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Abstract
In this work, we study codes generated by elements that come from group matrix 
rings. We present a matrix construction which we use to generate codes in two dif-
ferent ambient spaces: the matrix ring M

k
(R) and the ring R,  where R is the commu-

tative Frobenius ring. We show that codes over the ring M
k
(R) are one sided ideals 

in the group matrix ring M
k
(R)G and the corresponding codes over the ring R are 

Gk-codes of length kn. Additionally, we give a generator matrix for self-dual codes, 
which consist of the mentioned above matrix construction. We employ this genera-
tor matrix to search for binary self-dual codes with parameters [72, 36, 12] and find 
new singly-even and doubly-even codes of this type. In particular, we construct 16 
new Type I and 4 new Type II binary [72, 36, 12] self-dual codes.

Keywords Group Matrix Rings · Linear Codes · Self-Dual Codes · Codes over 
Rings

1 Introduction

Self-dual codes are one of the most widely studied and interesting class of codes. 
They have been shown to have strong connections to unimodular lattices, invariant 
theory, and designs. In particular, binary self-dual codes have been extensively stud-
ied and numerous construction techniques of self-dual codes have been used in an 
attempt to find optimal self-dual codes.
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In this work, we give a new construction of self-dual codes motivated by the 
constructions given in [6] and [11]. In our construction, we use group rings where 
the ring is a ring of matrices to construct generator matrices of self-dual codes. 
The main point of this construction is to find codes that other techniques have 
missed. We construct numerous new self-dual codes using this technique.

We begin with some definitions. A code C over an alphabet A of length n is a subset 
of An . We say that the code is linear over A if A is a ring and C is a submodule. This 
implies that when A is a finite field, then C is a vector space. We attach to the ambient 
space the standard Euclidean inner-product, that is [�,�] =

∑
viwi . When A is commu-

tative, we define the orthogonal to this inner-product as C⟂ = {� |[�, �] = 0,∀� ∈ C}. 
If the ring A is not commutative, then we say that the code is either left linear or right 
linear depending if it is a left or right module. In this scenario, we have two orthogo-
nals, namely L(C) = {� | [�, �] = 0,∀� ∈ C} and R(C) = {� | [�,�] = 0,∀� ∈ C}. 
If the ring is not commutative then these two codes are not necessarily equal, and in 
general will not be. Moreover, L(C) is a left linear code and R(C) is a right linear 
code. If the ring is commutative, then L(C) = R(C) = C⟂. It is known that if C is a 
left linear code over a Frobenius ring A then |C||R(C)| = |An| and if C is a right linear 
code over a Frobenius ring A then |C||L(C)| = |An|. For commutative rings, this gives 
that |C||C⟂| = |An|. For a complete description of codes over commutative rings see 
[4]. For a description of codes over non-commutative rings see [5]. Throughout this 
work we assume that every ring has a multiplicative identity and is finite.

Later in this work, we construct binary self-dual codes. For this reason, we 
now recall the following. An upper bound on the minimum Hamming distance 
of a binary self-dual code was given in [15]. Specifically, let dI(n) and dII(n) be 
the minimum distance of a Type I (singly-even) and Type II (doubly-even) binary 
code of length n, respectively. Then

and

Self-dual codes meeting these bounds are called extremal.
In this work, we shall use the theory of group rings to build codes. We shall give the 

necessary definitions for this study. Let R be a ring, then if R has an identity 1R, we say 
that u ∈ R is a unit in R if and only if there exists an element w ∈ R with uw = 1R. Let G 
be a finite group of order n, then the group ring RG consists of 

∑n

i=1
�igi , �i ∈ R , gi ∈ G.

Addition in the group ring is done by coordinate addition, namely

The product of two elements in a group ring is given by

dII(n) ≤ 4⌊ n

24
⌋ + 4

dI(n) ≤

�
4⌊ n

24
⌋ + 4 if n ≢ 22 (mod 24)

4⌊ n

24
⌋ + 6 if n ≡ 22 (mod 24).

n∑
i=1

�igi +

n∑
i=1

�igi =

n∑
i=1

(�i + �i)gi.
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This gives that the coefficient of gk in the product is 
∑

gigj=gk
�i�j. Notice, that while 

group rings can use rings and groups of arbitrary cardinality, we restrict ourselves to 
finite groups and finite rings. Note that we have not assumed that group nor the ring 
is commutative.

The space of k by k matrices with coefficients in the ring R is denoted by Mk(R). It 
is immediate that Mk(R) is a ring, however, it is, in general, a non-commutative ring. 
Moreover, it is fundamental in the study of non-commutative rings since any finite 
ring moded out by its Jacobson radical is isomorphic to a direct product of matrix 
rings. Moreover, we know that Mk(R) is a Frobenius ring, when R is Frobenius.

A circulant matrix is one where each row is shifted one element to the right relative to 
the preceding row. We label the circulant matrix as circ(�1, �2,… , �n), where �i are ring 
elements appearing in the first row. A reverse-circulant matrix is one where each row is 
shifted one element to the left relative to the preceding row. We label the reverse-circulant 
matrix as revcirc(�1, �2,… , �n), where �i are ring elements appearing in the first row. A 
block-circulant matrix is one where each row contains blocks which are square matrices. 
The rows of the block matrix are defined by shifting one block to the right relative to the 
preceding row. We label the block-circulant matrix as CIRC(A1,A2,… ,An), where Ai 
are k × k matrices over the ring R appearing in the first row. The transpose of a matrix A,  
denoted by AT , is a matrix whose rows are the columns of A,  i.e., (AT )ij = Aji. A sym-
metric matrix is a square matrix that is equal to its transpose. A persymmetric matrix is a 
square matrix which is symmetric with respect to the north-east-to-south-west diagonal.

2  Matrix construction from group matrix rings

The following construction of a matrix which was used to construct codes that 
were ideals in a group ring was first given for codes over fields by Hurley in [11]. 
It was then extended to finite commutative Frobenius rings in [6]. Let R be a finite 
commutative Frobenius ring and let G = {g1, g2,… , gn} be a group of order n. Let 
v = �g1g1 + �g2g2 +⋯ + �gngn ∈ RG. Define the matrix �(v) ∈ Mn(R) to be

We note that the elements g−1
1
, g−1

2
,… , g−1

n
 are the elements of the group G in a 

some given order.
This matrix was used as a generator matrix for codes. The form of the matrix guaran-

teed that the resulting code would correspond to an ideal in the group ring and thus have 
the group G as a subgroup of its automorphism group, that is the group G, acting on the 
coordinates, would leave the code fixed. The fundamental purpose of this was to construct 

(
n∑
i=1

�igi

)(
n∑
j=1

�jgj

)
=
∑
i,j

�i�jgigj.

(2.1)�(v) =

⎛
⎜⎜⎜⎜⎝

�g−1
1
g1

�g−1
1
g2

�g−1
1
g3

… �g−1
1
gn

�g−1
2
g1

�g−1
2
g2

�g−1
2
g3

… �g−1
2
gn

⋮ ⋮ ⋮ ⋮ ⋮

�g−1
n
g1

�g−1
n
g2

�g−1
n
g3

… �g−1
n
gn

⎞
⎟⎟⎟⎟⎠
.
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codes that were not found using more traditional construction techniques. It was shown in 
[6] that certain classical constructions would only produce a subset of all possible codes 
(in this case self-dual codes) and would often miss codes that were of particular interest. 
With this in mind we are interested in expanding these kinds of constructions to enable us 
to find codes that would be missed with other construction techniques.

We now generalize the matrix construction just defined. Let R be a 
finite commutative ring and let G = {g1, g2,… , gn} be a group of order n. 
We note that no assumption about the groups commutativity is made. Let 
v = Ag1

g1 + Ag2
g2 +⋯ + Agn

gn ∈ Mk(R)G, that is, each Agi
 is a k × k matrix with 

entries from the ring R. Define the block matrix �k(v) ∈ Mn(Mk(R)) to be

We note that the element v is an element of the group matrix ring Mk(R)G. Of 
course, this is the same construction as was previously given for group rings but we 
specify it here since we will use it in very different ways. Namely, we can consider 
the matrix as generating two distinct codes in different ambient spaces.

This group matrix ring can be non-commutative in two ways. First, since the group 
may not be commutative, multiplication on the left by an element g ∈ G can give a dif-
ferent element than multiplication on the right by g. We note that in generating the matrix 
�k(v) the rows are formed from elements that were constructed by a group element multi-
plying on the left. Moreover, multiplication by an element B ∈ Mk(R) on the left can give 
a different element than multiplication on the right by B.

As in the matrix �(v) from Eq. 2.1, the elements g−1
1
, g−1

2
,… , g−1

n
 are the elements 

of the group G given in a some order. This order is used in order aid in the computa-
tional aspects of some proofs. We note that when k = 1 then �1(v) = �(v), that is, �1(v) is 
equivalent to the matrix �(v) in the original definition. In general, we shall often assume 
that k > 1.

The next theorem sets up some useful algebraic tools.

Theorem 2.1 Let R be a finite commutative ring. Let G be a group of order n with 
a fixed listing of its elements. Then the map �k ∶ Mk(R)G → Mn(Mk(R)) is a matrix 
ring homomorphism.

Proof Let G = {g1, g2,… , gn} be the listing of the elements of G. Now define the 
map �k ∶ Mk(R)G → Mn(Mk(R)) as follows. Suppose v =

∑n

i=1
Agi

gi. Then

(2.2)�k(v) =

⎛
⎜⎜⎜⎜⎝

Ag−1
1
g1

Ag−1
1
g2

Ag−1
1
g3

… Ag−1
1
gn

Ag−1
2
g1

Ag−1
2
g2

Ag−1
2
g3

… Ag−1
2
gn

⋮ ⋮ ⋮ ⋮ ⋮

Ag−1
n
g1

Ag−1
n
g2

Ag−1
n
g3

… Ag−1
n
gn

⎞
⎟⎟⎟⎟⎠
.

�k(v) =

⎛
⎜⎜⎜⎜⎝

Ag−1
1
g1

Ag−1
1
g2

Ag−1
1
g3

… Ag−1
1
gn

Ag−1
2
g1

Ag−1
2
g2

Ag−1
2
g3

… Ag−1
2
gn

⋮ ⋮ ⋮ ⋮ ⋮

Ag−1
n
g1

Ag−1
n
g2

Ag−1
n
g3

… Ag−1
n
gn

⎞⎟⎟⎟⎟⎠
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where each Agi
 is a square matrix of order k. It can be easily verified that this map-

ping is additive. We now show that �k is multiplicative. Consider w =
∑n

i=1
Bgi

gi 
then

Now suppose w ∗ v = t, where t =
∑n

i=1
Cgi

gi. Then

and this is �k(t) = �k(w ∗ v) as required.   ◻

Let the first column of the matrix in Eq. (2.2) be labelled by g1, the second column by 
g2, etc. Then if b =

∑n

i=1
Bgi

gi is in Mk(R)G then the coefficient of gi in the product b ∗ v 
is (Bg1

,Bg2
,… ,Bgn

) times the i-th column of �k(v). We note here that we are multiplying 
by b on the left. This could easily be done on the right to get a similar result.

We define the k by k matrix Ik in the usual way. That is (Ik)ij = 1 if i = j and 
(Ik)ij = 0 if i ≠ j. Since each ring we consider in this paper has a multiplicative 
identity this matrix is always an element in Mk(R).

Theorem  2.2 Let R be a finite commutative ring. Then v ∈ Mk(R)G is a unit in 
Mk(R)G if and only if �k(v) is a unit in Mn(Mk(R)).

Proof Suppose v is a unit in Mk(R)G and that w is its inverse. Then v ∗ w = (Ik)Mk(R)G
 

and hence �k(v ∗ w) = �k((Ik)Mk(R)G
) = Ikn, the identity matrix in Mn(Mk(R)). Thus 

�k(v) ∗ �k(w) = Ikn. Similarly, �k(w) ∗ �k(v) = Ikn and so �k(v) is invertible in 
Mn(Mk(R)).

Suppose now that �k(v) is a unit in Mn(Mk(R)) and let N denote its inverse. Let 
v =

∑n

i=1
Agi

gi. Then

where each Agi
 is a square matrix of order k. Let (B1,B2,… ,Bn) be the first row of 

N,  where Bi are the square matrices each of order k. Then:

�k(w) =

⎛
⎜⎜⎜⎜⎝

Bg−1
1
g1

Bg−1
1
g2

Bg−1
1
g3

… Bg−1
1
gn

Bg−1
2
g1

Bg−1
2
g2

Bg−1
2
g3

… Bg−1
2
gn

⋮ ⋮ ⋮ ⋮ ⋮

Bg−1
n
g1

Bg−1
n
g2

Bg−1
n
g3

… Bg−1
n
gn

⎞
⎟⎟⎟⎟⎠
.

�k(w) ∗ �k(v) =

⎛
⎜⎜⎜⎜⎝

Cg−1
1
g1

Cg−1
1
g2

Cg−1
1
g3

… Cg−1
1
gn

Cg−1
2
g1

Cg−1
2
g2

Cg−1
2
g3

… Cg−1
2
gn

⋮ ⋮ ⋮ ⋮ ⋮

Cg−1
n
g1

Cg−1
n
g2

Cg−1
n
g3

… Cg−1
n
gn

⎞
⎟⎟⎟⎟⎠

�k(v) =

⎛
⎜⎜⎜⎜⎝

Ag−1
1
g1

Ag−1
1
g2

Ag−1
1
g3

… Ag−1
1
gn

Ag−1
2
g1

Ag−1
2
g2

Ag−1
2
g3

… Ag−1
2
gn

⋮ ⋮ ⋮ ⋮ ⋮

Ag−1
n
g1

Ag−1
n
g2

Ag−1
n
g3

… Ag−1
n
gn

⎞⎟⎟⎟⎟⎠
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N o w 
v = Ag1

g1 + Ag2
g2 +⋯ + Agn

gn = Ag−1
i
g1
g−1
i
g1 + Ag−1

i
g2
g−1
i
g2 +⋯ + Ag−1

i
gn
g−1
i
gn, for 

each i,  1 ≤ i ≤ n.

Define w = B1g1 + B2g2 +⋯ + Bngn. Then:

Hence: v ∗ w = (B1g1 + B2g2 +⋯ + Bngn)(Ag1
g1 + Ag2

g2 +⋯ + Agn
gn) equals to:

and this is g1 from the above. Thus g−1
1

∗ w is the inverse of v and v is a unit in 
Mk(R) .   ◻

3  Group matrix ring codes

In this section, we employ the matrix construction from the previous section to gen-
erate codes in two different ambient spaces. We make two distinct constructions.

Construction 1 For a given element v ∈ Mk(R)G, we define the following code 
over the matrix ring Mk(R):

Here the code is generated by taking the all left linear combinations of the rows of 
the matrix with coefficients in Mk(R).

Construction 2 For a given element v ∈ Mk(R)G, we define the following code 
over the ring R. Construct the matrix �k(v) by viewing each element in a k by k 
matrix as an element in the larger matrix.

Here the code Bk(v) is formed by taking all linear combinations of the rows of the 
matrix with coefficients in R. In this case the ring over which the code is defined is 
commutative so it is both a left linear and right linear code.

The following lemma is immediate.

(2.3)

B1Ag−1
1
g1

+ B2Ag−1
2
g1

+ … + BnAg−1
n
g1

= Ik,

B1Ag−1
1
g2

+ B2Ag−1
2
g2

+ … + BnAg−1
n
g2

= �,

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

B1Ag−1
1
gn

+ B2Ag−1
2
gn

+ … + BnAg−1
n
gn

= �.

Bigi(Ag1
g1 + Ag2

g2 +⋯ + Agn
gn) = BigiAg−1

i
g1
g−1
i
g1 + BigiAg−1

i
g2
g−1
i
g2+

+⋯ + BigiAg−1
i
gn
g−1
i
gn = BiAg−1

i
g1
g1 + BiAg−1

i
g2
g2 +⋯ + BiAg−1

i
gn
gn.

B1Ag−1
1
g1
g1 + B2Ag−1

2
g1
g1 + … + BnAg−1

n
g1
g1

+ B1Ag−1
1
g2
g2 + B2Ag−1

2
g2
g2 + … + BnAg−1

n
g2
g2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

+ B1Ag−1
1
gn
gn + B2�g−1

2
gn
gn + … + BnAg−1

n
gn
gn

(3.1)Ck(v) = ⟨�k(v)⟩.

(3.2)Bk(v) = ⟨�k(v)⟩.
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Lemma 3.1 Let R be a finite Frobenius ring and let G be a group of order n. Let 
v ∈ Mk(R)G . 

1. The matrix �k(v) is an n by n matrix with elements from Mk(R) and the code Ck(v) 
is a length n code over Mk(R).

2. The matrix �k(v) is an nk by nk matrix with elements from R and the code Bk(v) is 
a length nk code over R.

We illustrate these construction techniques in the following example.

Example 3.2 Let

where the group ⟨a, b⟩ ≅ D8, the dihedral group with 8 elements. Then �2(v) gener-
ates a code C2(v) which is the ambient space M2(�2)

8.

The matrix

and �2(v) can be row reduced to

v =

(
0 0

0 0

)
+

(
0 0

0 0

)
a +

(
0 0

0 0

)
a2 +

(
0 1

1 0

)
a3 +

(
0 1

1 0

)
b

+

(
1 1

1 1

)
ba +

(
1 1

1 1

)
ba2 +

(
1 1

1 1

)
ba3 ∈ M2(�2)D8,

�2(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1

1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1

0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1

0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1

0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1

0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0

1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0

1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0

1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1

1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0

1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0

1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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It can be easily checked that B2(v) is a binary self-dual code with parameters 
[16,  8,  4]. We also note that the code B2(v) can be constructed from �2(v) where 
v ∈ �2(C2 × D8) but this requires employing a group of order 16.

It is clear that the aim of this construction is to construct interesting binary 
self-dual codes. That is, over the matrix ring, the code constructed was trivial, 
however, over the binary field the code constructed was an interesting self-dual 
code.

It is apparent that this generalization opens up a new direction for new construc-
tions of codes. This is because the matrix �k(v) does not only depend on the ring ele-
ments and the finite group G as does the matrix �k(v) , but rather �k(v) also depends 
on the form of the matrices Agi

. We note that the k × k matrices Agi
 over R can each 

take a different form - this is the first advantage of our generalization over the matrix 
�(v) . We also note that the matrix �k(v) gives us more freedom for controlling the 
search field when finding a special family of codes since the matrices Agi

 do not have 
to be fully defined by the ring elements appearing in their first rows - and this is the 
second advantage of our generalization over the matrix �(v).

Theorem  3.3 Let R be a finite commutative Frobenius ring, k a positive integer 
and G a finite group of order n. Let v ∈ Mk(R)G . Let Ik(v) be the set of elements of 
Mk(R)G such that 

∑
Aigi ∈ Ik(v) if and only if (A1,A2,… ,An) ∈ Ck(v). Then Ik(v) is 

a left ideal in Mk(R)G.

Proof Each row of �k(v) corresponds to an element of the form hv in Mk(R)G, where 
h is any element of G. That is, the multiplication by h is done from left. The sum of 
any two elements in I(v) corresponds exactly to the sum of the corresponding ele-
ments in Ck(v) and so Ik(v) is closed under addition.

Now we shall show when the product of an element in Mk(R)G and 
an element in Ik(v) is in Ik(v). Let w1 =

∑
Bigi ∈ Mk(R)G, where Bi are 

the k × k matrices. Then if w2 is a row in Ck(v), it is of the form 
∑

Cjhjv. 
Then w1w2 =

∑
Bigi

∑
Cjhjv =

∑
BiCjgihjv which corresponds to 

an element in Ck(v) gives that the element is in Ik(v). Next, consider 
w2w1 =

∑
Cjhjv

∑
Bigi =

∑
CjhjvBigi which may not be an element in Ck(v). Thus, 

Ik(v) is a left ideal of Mk(R)G .   ◻

Given this theorem, we know that any code Ck(v) has G as a subgroup of its 
automorphism group.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1

1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1

0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1

0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1

0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1

0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The above two results highlight the difference between group codes studied 
in [6] and the codes we explore in this work. Namely, in group codes it is the 
coordinates that are held invariant by the action of the group G and in the codes 
we study in this work, it is the blocks that are held invariant by the action of the 
group G. For this reason, from now on, we refer to codes Ck(v) as group matrix 
ring codes.

Now we show that the orthogonal of a group matrix ring code for some group 
G is also a group matrix ring code. Let Jk be a one-sided, left ideal in a group 
matrix ring Mk(R)G. Define ℜ(C) = {w | vw = 0,∀v ∈ Jk}. It is immediate that 
ℜ(Jk) is a one-sided, right ideal of Mk(R)G.

Let v = Ag1
g1 + Ag2

g2 +⋯ + Agn
gn ∈ Mk(R)G and Ck(v) be the corresponding 

group matrix ring code. Let Ψ ∶ Mk(R)G → (Mk(R))
n be the canonical map that 

sends Ag1
g1 + Ag2

g2 +⋯ + Agn
gn to (Ag1

,Ag2
,… ,Agn

). Let Jk be the one-sided, left 
ideal Ψ−1(C). Let � = (B1,B2,… ,Bn) ∈ ℜ(C). Then

This gives that

Let w = Ψ−1(�) =
∑

Bgi
gi and define � ∈ Mk(R)G to be 

� = Cg1
g1 + Cg2

g2 +⋯ + Cgn
gn where

Then

Then g−1
j
gig

−1
i

= g−1
j
, hence this is the coefficient of g−1

j
 in the product of � and 

g−1
j
v. This gives that � ∈ ℜ(Jk) if and only if � ∈ ℜ(C).

Let � ∶ (Mk(R))
n
→ Mk(R)G by �(�) = �. It is clear that � is a bijection between 

ℜ(C) and ℜ(Ψ−1(C)).

Theorem 3.4 Let C = Ck(v) be a group matrix ring code in Mk(R) formed from the 
element v ∈ Mk(R)G. Then Ψ−1(ℜ(C)) is a one-sided, left ideal of Mk(R)G. Moreo-
ver, if Ck(v) is a left-linear matrix ring G-code with the elements of the group acting 
on the left then ℜ(Ck(v)) is a right-linear matrix group G-code with the elements of 
the group acting on the right.

Proof Follows from the above discussion.   ◻

We can now investigate the situation for the code Bk(v). We begin with a defini-
tion. Let G be a finite group of order n and R a finite Frobenius commutative ring. 

(3.3)[(Ag−1
j
g1
,Ag−1

j
g2
,… ,Ag−1

j
gn
), (B1,B2,… ,Bn)] = 0, ∀j.

(3.4)
n∑
i=1

Ag−1
j
gi
Bi = 0, ∀j.

(3.5)Cgi
= Bg−1

i
.

(3.6)
n∑
i=1

Ag−1
j
gi
Bi = 0 ⟹

n∑
i=1

Ag−1
j
gi
Cg−1

i
= 0.
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Let D be a code in Rsn where the coordinates can be partitioned into n sets of size 
s where each set is assigned an element of G. If the code D is held invariant by the 
action of multiplying the coordinate set marker by every element of G then the code 
D is called a quasi-group code of length ns and of index s.

Lemma 3.5 Let R be a finite Frobenius ring and let G be a finite group with 
v ∈ Mk(R) . Then Bk(v) is a quasi-G-code of length nk and index k.

Proof Let v ∈ Mk(R)G and let � be a row of the matrix �k(v) . Letting any element in 
G act on the k coordinates corresponding to the matrices, gives a new row of �k(v). 
Therefore, the code Bk(v) is a quasi-G-code of length nk and index k.   ◻

Consider a quasi-G-code of index k. Then rearranging the coordinates so that the 
i-th coordinates of each group of k coordinates are placed sequentially, then it is easy 
to see that any (g1, g2,… , gn) ∈ Gn holds the code invariant. Namely, any quasi-G-
code of length kn and index k is a Gk-code. This gives the following.

Theorem  3.6 Let R be a finite Frobenius ring and let G be a finite group with 
v ∈ Mk(R) . Then Bk(v) is a Gk code of length kn.

Proof Follows from Lemma 3.5 and the previous discussion.   ◻

4  Generator matrices of the form [I
kn
|�

k
(v)] and self‑dual codes

In this section, we investigate constructions of self-dual codes from �k(v) over the 
finite commutative Frobenius ring R.

Lemma 4.1 Let R be a finite commutative Frobenius ring. Also, let G be a group 
of order n and v = A1g1 + A2g2 +⋯ + Angn be an element of the group matrix 
ring Mk(R)G. The matrix [Ikn|�k(v)] generates a self-dual code over R if and only if 
�k(v)�k(v)

T = −Ikn.

Proof Follows from the standard proof that (Im | A) generates a self-dual code of 
length 2m if and only if AAT = −Im .   ◻

Recall that the canonical involution ∗∶ RG → RG on a group ring RG is given by 
v∗ =

∑
g agg

−1, for v =
∑

g agg ∈ RG. Also, recall that there is a connection between v∗ 
and v when we take their images under the map �, given by

The above connection can be extended to the group matrix ring Mk(R)G. Namely, let 
∗∶ Mk(R)G → Mk(R)G be the canonical involution on the group matrix ring Mk(R)G 
given by v∗ =

∑
g Agg

−1, for v =
∑

g Agg ∈ Mk(R)G where Ag are the k × k blocks. 
Then we have the following connection between v∗ and v under the map �k:

(4.1)�(v∗) = �(v)T .
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Lemma 4.2 Let R be a finite commutative ring. Let G be a group of order n with a 
fixed listing of its elements. Then the map �k ∶ v → M(R)kn is a ring homomorphism.

Proof The proof is similar to the proof in Theorem 2.1 and simply consists of show-
ing that addition and multiplication are preserved.   ◻

Now, combining together Lemmas 4.1, 4.2 and the fact that �k(v) = −Ikn if and only 
if v = −Ik, we get the following corollary.

Corollary 4.3 Let Mk(R)G be a group matrix ring, where Mk(R) is a non-commuta-
tive Frobenius matrix ring. For v ∈ Mk(R)G, the matrix [Ikn|�k(v)] generates a self-
dual code over R if and only if vv∗ = −Ik. In particular v has to be a unit.

When we restrict our attention to a matrix ring of characteristic 2, we have that 
−Ik = Ik, which leads to the following further corollary:

Corollary 4.4 Let Mk(R)G be a group matrix ring, where Mk(R) is a non-commuta-
tive Frobenius matrix ring of characteristic 2. Then the matrix [Ikn|�k(v)] generates a 
self-dual code over R if and only if v satisfies vv∗ = Ik, namely v is a unitary unit in 
Mk(R)G.

4.1  New binary self‑dual codes of length 72

In this section, we search for binary self-dual codes with parameters [72, 36, 12] by 
considering generator matrices of the form [Ikn|�kn(v)], where v ∈ Mk(�2)G for differ-
ent values of k and different groups G to show the strength of our construction and 
particularly, the strength of the matrix �kn(v).

The possible weight enumerators for a Type I [72, 36, 12] codes are as follows ( [7]):

where � and � are parameters. The possible weight enumerators for Type  II 
[72, 36, 12] codes are ( [7]):

where � is a parameter.
Many codes for different values of � , � and � have been constructed in [2, 3, 7, 8, 9, 

10, 12, 14, 16–19]. For an up-to-date list of all known Type I and Type II binary self-
dual codes with parameters [72, 36, 12] please see [13].

(4.2)�k(v
∗) = �k(v)

T .

W72,1 = 1 + 2�y12 + (8640 − 64�)y14 + (124281 − 24� + 384�)y16 +…

W72,2 = 1 + 2�y12 + (7616 − 64�)y14 + (134521 − 24� + 384�)y16 +…

1 + (4398 + �)y12 + (197073 − 12�)y16 + (18396972 + 66�)y20 +…
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We now split the remaining of this section into subsections, where in each we con-
sider a generator matrix of the form [Ikn|�k(v)] for a specific group G and some specific 
k × k block matrices to search for binary self-dual codes with parameters [72, 36, 12]. 
All the upcoming computational results were obtained by performing searches using a 
particular algorithm technique (see [14] for details) in the software package MAGMA 
([1]).

4.1.1  The group C2 and 18 × 18 block matrices

In this section, we consider the cyclic group C2 with some 18 × 18 block matrices. Let 
G = ⟨x � x2 = 1⟩ ≅ C2. Let v =

∑1

i=0
Yix

i ∈ (M(�2))18C2, then

where

with

where Ai are some matrices. We now employ a generator matrix of the form 
[I | �18(v)], where I is the 36 × 36 identity matrix, for different forms of the matrices 
Ai to search for binary self-dual codes with parameters [72,  36,  12]. We only list 
codes with parameters in their weight distributions that were not known in the lit-
erature before. Also, since the matrix �18(v) is fully defined by the first row, we only 
list the first row of the matrices Y0, and Y1 which we label as rY0 and rY1 respectively. 

 Case 1. Here we let 

 We summarise the results in Tables 1 and 2.

 Case 2. Here we let 

(4.3)�18(v) =

(
Y0 Y1
Y1 Y0

)
,

Y0 =

(
A B

B A

)
, Y1 =

(
C D

D C

)

A =CIRC(A1,A2,A3),

B =CIRC(A4,A5,A6),

C =CIRC(A7,A8,A9),

D =CIRC(A10,A11,A12)

A1 = revcirc(a1, a2, a3),

A2 = revcirc(a4, a5, a6),

… ,

A12 = revcirc(a34, a35, a36).
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We summarise the results in Tables 3 and 4.

 Case 3. Here we let 

 We summarise the results in Tables 5 and 6.

4.1.2  The group D18 and 2 × 2 block matrices

In this section, we consider the dihedral group D18 with some 2 × 2 block 
matrices.

Let G = ⟨x, y � x9 = y2 = 1, xy = x−1⟩ ≅ D18. Let 
v =

∑8

i=0

∑1

j=0
A1+i+9jx

iyj ∈ M(�2)D18, then

with

where Ai are some matrices.
We now employ a generator matrix of the form [I|�2(v)], where I is the 36 × 36 

identity matrix, for different forms of the matrices Ai to search for binary self-
dual codes with parameters [72, 36, 12]. We only list codes with parameters in 
their weight distributions that were not known in the literature before. 

A1 = revcirc(a1, a2, a3),

A2 = revcirc(a4, a5, a6),

… ,

A6 = revcirc(a16, a17, a18),

A7 = circ(a19, a20, a21),

A8 = circ(a22, a23, a24),

… ,

A12 = circ(a34, a35, a36).

A1 = circ(a1, a2, a3),

A2 = circ(a4, a5, a6),

… ,

A6 = circ(a16, a17, a18),

A7 = revcirc(a19, a20, a21),

A8 = revcirc(a22, a23, a24),

… ,

A12 = revcirc(a34, a35, a36).

(4.4)�2(v) =

(
A B

BT AT

)
,

A =CIRC(A1,A2,A3,… ,A9),

B =CIRC(A10,A11,A12,… ,A18)
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 Case 1. Here we let 

 Since �2(v) is fully defined by the first row, we only list the first rows of the 
matrices A and B which we label as rA and rB respectively. We summarise the 
results in Table 7.

 Case 2. Here we let 

 and 

 We note here, that the first nine blocks are the 2 × 2 per-symmetric matri-
ces - defined by three independent variables and that the next nine blocks 
are the 2 × 2 circulant matrices - defined by two independent variables both 
appearing in the first rows. This gives a search field of 245 . To save space, 
we only list the three variables of each persymmetric matrix which we label 
as rA1

, rA2
, rA3

,… , rA9
 and the first row of the matrix B which we label as rB 

since this matrix is fully defined by the first row. We summarise the results in 
Table 8.

We note that the code C17 in the above table is the first example of a self-dual 
[72, 36, 12] code with � = 27 in its weight distribution.

4.1.3  The group C6,3 and 2 × 2 block matrices

In this section, we consider the cyclic group C6,3 and some 2 × 2 matrices.
Let G = ⟨x � x6⋅3 = 1⟩ ≅ C6,3. Let v =

∑5

i=0

∑2

j=0
A1+i+6jx

3i+j ∈ M(�2)C6,3, then

A1 = circ(a1, a2),

A2 = circ(a3, a4),

… ,

A12 = circ(a35, a36).

A1 =

(
a1 a2
a3 a1

)
,A2 =

(
a4 a5
a6 a4

)
,A3 =

(
a7 a8
a9 a7

)
,… ,A9 =

(
a25, a26
a27, a25

)

A10 = circ(a28, a29),

A11 = circ(a30, a31),

A12 = circ(a32, a33),

… ,

A18 = circ(a44, a45).

(4.5)�2(v) =

⎛⎜⎜⎝

A B C

C� A B

B� C� A

⎞⎟⎟⎠
,
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where

and where Ai are some 2 × 2 matrices.
We now employ a generator matrix of the form [I|�2(v)], where I is the 36 × 36 

identity matrix, for different forms of the matrices Ai to search for binary self-dual 
codes with parameters [72,  36,  12]. We only list codes with parameters in their 
weight distributions that were not known in the literature before. 

 Case 1. Here we let 

 We note that the search field here is 236. Since the matrix �2(v) is fully defined 
by the first row, we only list the first rows of the matrices A, B and C which we 
label as rA, rB and rC respectively. We summarise the results in Table 9.

 Case 2. Here we let 

 and 

A =CIRC(A1,A2,… ,A6),

B =CIRC(A7,A8,… ,A12),

C =CIRC(A13,A14,… ,A18),

B� =CIRC(A12,A7,A8,… ,A11),

C� =CIRC(A18,A13,A14,… ,A17)

A1 = circ(a1, a2),

A2 = circ(a3, a4),

A3 = circ(a5, a6),

… ,

A18 = circ(a35, a36).

A1 =

(
a1 a2
a3 a1

)
,A2 =

(
a4 a5
a6 a4

)
,A3 =

(
a7 a8
a9 a7

)
,… ,A9 =

(
a25, a26
a27, a25

)

Table 4  New Type II [72, 36, 12] codes

r
Y0

r
Y1

� |Aut(C
i
)|

C6 (1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 
0, 1, 1, 1)

(1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 
1, 1, 1, 0)

− 2706 36
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 We note here, that the first nine blocks are the 2 × 2 per-symmetric matri-
ces - defined by three independent variables and that the next nine blocks 
are the 2 × 2 circulant matrices - defined by two independent variables both 
appearing in the first rows. This gives a search field of 245 . To save space, 
we only list the three variables of each persymmetric matrix which we label 
as rA1

, rA2
, rA3

,… , rA9
 and the first rows of the matrices A10,A11,A12,… ,A18 

which we label as rA10
, rA11

, rA12
,… , rA18

 since these matrices are each defined 
by the first row. We summarise the results in Table 10.

We would like to stress that the above constructions represent a very small fraction of 
the possible matrix constructions that can be derived for the generator matrix [Ikn|�k(v)]. 
That is, there are many more different choices for the groups and their sizes, the forms of 
the k × k matrices and their sizes which can all lead to constructing optimal binary self-
dual codes of various lengths - this shows the strength of our generator matrix.

5  Conclusion

In this work, we defined group matrix ring codes that are left ideals in the group 
matrix ring Mk(R)G. We generalized a well known matrix construction so that this 
generalization can be used to generate codes in two different ambient spaces. We 
presented a generator matrix for self-dual codes which we believe can be used to 
construct many new codes that could not be obtained from other, known in the liter-
ature, generator matrices. Additionally, we employed our generator matrix to search 
for binary self-dual codes. In particular, we constructed Type I binary [72, 36, 12] 
self-dual codes with new weight enumerators in W72,1:

and Type II binary [72, 36, 12] self-dual codes with new weight enumerators:

A suggestion for future work is to consider the generator matrix we presented in this 
work, for different groups, different types of the k × k matrices and different alpha-
bets to search for new optimal binary self-dual codes of different lengths.

A10 = circ(a28, a29),

A11 = circ(a30, a31),

A12 = circ(a32, a33),

… ,

A18 = circ(a44, a45).

(� = 0, � = {186, 342}),

(� = 9, � = {264}),

(� = 18, � = {237, 342, 387, 420, 432}),

(� = 27, � = {345}),

(� = 36, � = {417, 423, 510, 543, 561, 564, 597})

(� = {−2604,−2706,−2538,−3066}).
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