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Abstract: The novel coronavirus pandemic (COVID-19) caused by SARS-CoV-2 has affected more 

than 53 million individuals worldwide. Currently, there is a dire need to develop or find potential drugs 

that can treat SARS-CoV-2 infection. One of the standard methods to accelerate drug discovery and 

development in pandemics is to screen currently available medications against the critical therapeutic 

targets to find potential therapeutic agents. The literature has pointed out to the 3CLpro and RdRp 

proteins as the most important proteins involved in viral replications. In the present study, we used an 

in-silico modeling approach to examine the affinity of six tyrosine kinases inhibitors (TKIs), Imatinib, 

Ponatinib, Nilotinib, Gefitinib, Erlotinib, and Dasatinibagainst the 3CLpro and RdRp by calculating the 

energy balance. The six tested TKIs had energy balance values of more than -7 Kcal/mol for both viral 

target proteins. Nilotinib and Ponatinib showed the highest affinity for 3CLpro (-8.32, -8.16, 

respectively) while Dasatinib, Ponatinib, and Imatinib presented the strongest binding toRdRp(-14.50, 

-10.57, -9.46, respectively). Based on these findings, we recommend future evaluations of TKIs for 

SARs-CoV-2 infection in-vitro and further testing in clinical trials.  
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1. Introduction 

The recent novel coronavirus disease pandemic (COVID-19) has affected more than 53 

million individuals worldwide. To the moment, there is a lack of antiviral agents that can 

provide pharmacological viral clearance of the SARS-CoV-2 infection. The recently approved 

Remedesivir was found to accelerate the recovery but with no impact on patient survival. Also, 

the recent findings on Dexamethasone clinical trials suggest a clinical benefit for the subset of 

patients requiring oxygen supplementation and those in the ICU with a lack of benefit for the 

subgroup of patients with mild and moderate infections [1]. 

Consequently, the mortality rates of SARS-CoV-2 are still substantial in light of the 

explosive and rapid spread of the virus. There is an unmet clinical need to find potent antiviral 

treatments that can inhibit virus replication and translate to better clinical outcomes and lower 

mortality rates among infected individuals. 

Results of many sequence alignment studies have shown that 3CLpro was highly 

conserved with 100% identity in all SARS-CoV-2 genomes examined [2,3]. The protein 

sequence of SARS-CoV-2 3CLpro with the protein sequence of 3CLpro of the other homologs 

(Bat-CoV, SARS-CoV, MERS-CoV, Human-CoV, and Bovine-CoV) [3,4]. According to the 

comparison, 3CLpro clusters of Bat-Cov shares 99.02% with those of SARS-Cov-2. 

Furthermore, SARS-Cov-2 3CLpro shares 96.08%, 87%, 90%, and 90% sequence identity with 

SARS-CoV, MERS-CoV, Human-CoV, and Bovine-CoV homologs, respectively [2,4,5]. 

These findings imply that SARS-CoV-2 has a higher similarity with SARS-CoV than MERS-

CoV and shares a common ancestor with Bat-CoV. Although the similarity of SARS-CoV to 

SARS-CoV-2 is very high, there are variations at 12 different positions in the sequence of 

(residues numbers 33, 44, 63, 84 86, 92, 132, 178, 200, 265, 283, and 284) [6,7]. The 

physiochemical characteristics of 3CLpro revealed that it has a polypeptide chain of 306 amino 

acids and a molecular weight of 33,796.64 Da [2]. RNA-dependent RNA polymerase (RdRp) 

is a conserved protein called Nsp12, which is a vital enzyme for the replication and 

transcription of SARS-CoV-2. In previous research, it was found that Nsp12-RdRp has been 

used as a significant drug target. Inhibition of Nsp12 does not cause significant toxicity on host 

cells, while it can kill SARS-CoV-2 [8–11]. 

Being the most critical viral proteins affecting the SARS-CoV-2 replication cycle, the 

3CLpro and RdRp were used for this in-silico modeling to study the potential of TKIs in 

inhibiting SARS-CoV-2 replication. The rationale for examining TKIs for these targets could 

be explained as follows [12]: 

First of all, several TKIs that possess anticancer activity have recently shown broad-

spectrum in-vitro activity against HCV, HIV, SARS-CoV, MERS-CoV, DENV, and EBOV 

[13–17]. The underlying antiviral mechanism of TKIs could not be attributed to a specific 

pathway since TKIs do not possess an equal affinity to all the kinases but for only one to three 

kinases.  

Second, COVID-19 uses ACE-2 receptors on the cell surface to enter lung alveolar type 

II (AT2) epithelial cells through spikes, which are prior activated by extracellular proteases, 

including transmembrane protease serine 2 (TMPRSS2) [18–20]. Bcr-Abl tyrosine kinase 

inhibitors would block multiples pathways associated with cell differentiation and 
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proliferation, which is anticipated to reduce ACE-2 levels in epithelia. Consequently, yielding 

immature cells expressing a low level of ACE-2 makes them theoretically less vulnerable to 

infection [21–23]. Side to side with the fact that ABL1 inhibitors such as Nilotinib & ponatinib 

were found to combat cytokine storm seen in lethal influenza infection, resulting in higher 

survival rates of infected mice. This effect is believed to be effective in reducing the mortality 

of SARS-Cov-2 [24,25]. While inhibitors of Adaptor-associated protein kinase 1 (AAK1) and 

Cyclin G-associated kinase (GAK) such as erlotinib & sunitinib, which are activating protein 

2 (AP2) regulators that modulate ACE-2 induced clathrin endocytosis, which is considered a 

central point in the virion entry mechanism [26–33]. 

Third, Fyn kinase was found to play a role in dengue virus RNA replication [34–37]. It 

was also reported to be associated with the activation of NF-κB, which is responsible for the 

expression of cytokines in response to interferon signaling, resulting in its inflammatory 

response observed in neural cells [38–41]. An Inhibitor of Fyn kinase, such as Dasatinib, was 

repurposed to treat SARS-CoV because it inhibited SARS-CoV in-vitro with EC50 = 2.1 µM 

and MERs-CoV with EC50= 5.47 µM. At this level, the drug is considered non-cytotoxic 

[21,42]. However, dasatinib activity against SARS-CoV suggests that there are other subtle 

undiscovered mechanisms.  

As such, we herein will shed light on the accessibility of such TKIs as a possible 

treatment for COVID-19 through carrying out drug modeling studies on non-structural protein 

targets in the virus-like RNA-dependent RNA polymerase (RdRp) and chymotrypsin-like 

protease (3CLpro). 

2. Materials and Methods 

2.1. Protein data preparation. 

MOE docking approach against both enzymes 3CLpro and RdRp was applied to predict 

the degree of inhibition of SARS-CoV-2 by approved anticancer medications. Proteins in PDB 

format were downloaded from Brookhaven Protein Data Bank (www.rcsb.org/pdb), and the 

binding sites were generated from the co-crystallized ligand within crystal protein. At first, 

water molecules were removed from the complex. Then, crystallographic disorders and unfilled 

valence atoms were corrected using protein report, utility, and clean protein 

options.Afterwards, protein-energy was minimized by applying CHARMM [43–45] and 

Amber14: HT force fields [46]. 

2.2. Optimization and data preparation of TKIs. 

Table 1. The selected TKIs for the molecular modeling process . 

Name IUPAC name PubChem 

CID 

Molar 

mass 

Formula 

Imatinib (4-methylpiperazin-1-yl)methyl]-N-[4-methyl-3-[(4-

pyridin-3-ylpyrimidin-2-yl)amino]phenyl] benzamide 

5291 493.6 C29H31N7O 

Nilotinib 4-methyl-N-[3-(4-methylimidazol-1-yl)-5-

(trifluoromethyl)phenyl]-3-[(4-pyridin-3-ylpyrimidin-2-

yl)amino] benzamide 

644241 529.5 C28H22F3N7O 

Dasatinib N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-

hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-

yl]amino]-1,3-thiazole-5-carboxamide 

3062316 488 C22H26ClN7O2S 

Ponatinib 3-(2-imidazo[1,2-b]pyridazin-3-ylethynyl)-4-methyl-N-

[4-[(4-methylpiperazin-1-yl)methyl]-3-

(trifluoromethyl)phenyl]benzamide 

24826799 532.6 C29H27F3N6O 
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Name IUPAC name PubChem 

CID 

Molar 

mass 

Formula 

Gefitinib N-(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholin-

4-ylpropoxy)quinazolin-4-amine 

123631 446.9 C22H24ClFN4O3 

Erlotinib N-(3-ethynylphenyl)-6,7-bis(2-

methoxyethoxy)quinazolin-4-amine 

176870 393.4 C22H23N3O4 

MMFF94X force field. The energy minimization was first implemented to the tested 

compounds. These compounds were then adjusted for charges, and potential energy and other 

parameters were controlled by MMFF94 forcefield. The minimized structures were prepared 

for docking using MOE. The defined pocket was taken as the active site and extended to 6.5Å 

to include all putative active site residues. Triangle matcher was chosen as the placement 

methodology, London dG, as the scoring function. The receptor was held rigid, while the 

ligands were allowed to be flexible during the refinement. Each molecule was allowed to 

produce five different interaction poses with the protein. GBVI/WSA dG was used as a scoring 

function during refinement. The docking scores of the best-fitted poses with the active site at 

both protein sites were recorded. We used all these processes to predict the proposed binding 

mode, affinity, preferred orientation of each docking pose, and binding Free energy (∆G) of 

the tested compounds with RdRp . 

2.2. Pharmacophore modeling. 

The protein co-crystallized with the ligand was loaded into MOE (PDB code: 7b2v) 

and prepared using Amber10 forcefield. The interaction between the ligand and the protein was 

visually inspected. The electrostatic map for the active site was created, and the pharmacophore 

query was created using the pharmacophore query editor. The program created annotation 

points, which were used to select the most relevant features. After feature selection, the volume 

feature was added to only include the volume occupied by the active ligand. The model created 

was then tested against all 6 compounds allowing the partial matching of a minimum of 4 

features and keeping s minimum of 1 aromatic feature and 1 H-acceptor feature. 

2.3. ADMET analysis. 

The prediction of pharmacokinetics, potential toxicities, and carcinogenicity of each 

drug was carried through the AdmetSAR2 database [47,48]. 

3. Results  

3.1. Structure of target proteins. 

The main therapeutic targets for SARS-CoV-2 used for the study were 3CLpro and 

RdRp. The three-dimensional structures of these proteins were obtained from the protein data 

bank (PDB ID: 6y2f, resolution 1.95) [49] and (PDB ID: 7bv2, resolution 2.50) [50,51], 

respectively. The 3CLpro model was predicted and designed as a homo-dimer with both 

protomers. Those protomers are oriented at almost right angles to each other and labeled as ‘A’ 

and ‘B’.  The single monomer was found to be composed of three different globular domains. 

Domain I and II form a substrate-binding site, which is formed of a Cys145-His41 catalytic 

dyad. The composition of the substrate-binding pocket is His41, Phe140, Asn142, Gly143, 

Ser144, Cys145, Tyr161, His163, Glu166, and His172 residues [52–55]. The interaction of the 

crystal ligand within the binding pocket of 3CLpro is shown in figure1-A. 
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3.2. Energy Balance for RdRp and 3CLpro with TKIs 

S: the final score; is the score of the last step, Rmsd-refine: the mean square deviation 

between the laying before refinement and after refinement pose, E-Conf: energy conformer, E-

Place: score of the placement phase, E-Score1: score the first step of notation, E-refine: score 

refinement step and the number of conformations generated by ligand [56,57]. 

Table 2. Energy Balances of TKIs–RdRp, and TKIs–3Clpro (Kcal/mol). 

4. Discussion 

4.1. Summary of study findings. 

This study showed that TKIs might hold a promise for the treatment of SARS-CoV-2 

infection. The examined compounds (Dasatinib, Imatinib, Nilotinib, Erlotinib, Ponatinib, and 

Gefitinib) showed substantial affinity to 3CLpro and RdRP, which have a pivotal role in the 

SARS-CoV-2 replication cycle [58,59]. Notably, Dasatinib, Ponatinib, and Imatinib showed 

the highest scores for the inhibition of RdRp, while Ponatinib and Nilotinib were presented as 

potential inhibitors of 3CLpro. 

4.2. Explanation of the study results. 

4.2.1. RNA-dependent RNA polymerase (RdRp). 

The sequence identity percentage between SARS-CoV-2 RdRp and SARS, MERS, 

OC43, NL63, 229E, , HKU1 and HCoV strains were found to be 90.18%, 56.76%, 55.07%, 

48.79%, 48.55%, and 48.16%, respectively. These findings revealed that the SARS-CoVRdRp 

is the closest strain to the SARS-CoV-2 RdRp [60-63]. 

Dasatinib has shown an excellent binding capacity to the RdRp enzyme with an affinity 

of -14.5 kcal/mol, as shown in Table 2. Compared to crystal ligand, Dasatinib showed a 

comparatively higher affinity, which equals (-11.05) kcal/mol. Dasatinib has also presented a 

Drug Energy Balance of TKIs–RdRp (Kcal/mol) Energy Balance of TKIs–3Clpro (Kcal/mol) 

S Rmsd

-

refine 

E-

Conf 

E-

Place 

E-

Score1 

E-

Refine 

S Rms

d-

refin

e 

E-

Conf 

E-

Place 

E-

Score1 

E-

Refine 

Ligand -11.05 1.39 -

139.2

6 

-61.41 -16.08 -

118.83 

-

9.04 

2.23 67.07 -83.64 -9.26 -50.21 

Dasatinib -14.50 1.44 -

187.8

4 

-31.86 -21.98 -

179.92 

-

7.67 

2.08 -

197.5

1 

-96.80 -

10.511 

-44.69 

Ponatinib -10.57 3.38 145.0

5 

-46.23 -8.95 -

125.22 

-

8.16 

1.68 141.5

8 

-

110.7

8 

-9.94 -46.89 

Imatinib -9.46 2.12 -27.27 -

101.1

3 

-10.46 -97.57 -

7.74 

2.28 -14.32 -87.82 -10.21 -48.90 

Nilotinib -7.45 2.64 -59.54 -44.72 -9.49 -38.71 -

8.32 

1.76 -58.36 -96.77 -12.47 -48.32 

Gefitinib -7.82 5.38 -0.29 -82.17 -10.20 -82.51 -

7.55 

2.20 -3.65 -63.91 -9.81 -46.55 

Erlotinib -8.92 3.20 -33.14 -36.40 -10.30 -99.58 -

7.83 

1.70 -31.70 -90.06 -10.33 -49.21 
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low Root-mean-square deviation (RSMD) of 1.44 Å, which is smaller than that of the ligand, 

making the binding more stable with lower rotations. These results are illustrated by the 

presence of three main types of interactions between Dasatinib and RdRp, which are 

electrostatic, hydrophobic, and hydrogen-bonding interactions. In contrast, the ligand binding 

with RdRp is achieved through two main types of interactions are shown in Figures 1-A& 2-

A. As depicted in Figures 1-G& 2-G, the pyrimidine moiety of Dasatinib formed arene-H 

interaction with AB19, while the nitrogen atom of piperazine moiety formed an electrostatic 

interaction with MG1005. Moreover, the carbonyl group forms a hydrogen bond with both 

AC11.  

Imatinib score showed that it would bind with plausible binding energy to SARS-COV-

2 RdRp (-9.46 kcal/mol), which is lower than that of Dasatinibsince it lacks a strong hydrogen 

bond formed by the carbonyl group in Dasatinib. In comparison to the ligand, Imatinib also 

showed a fair binding affinity and lower RSMD, which result in more stable and potent binding 

to the active sites of RdRp. Five interactions work to stabilize the binding of Imatinib with 

RdRp. Arene-H interaction was formed between the pyrimidine moiety of Imatinib and AC11. 

Two H-bond was also created between two nitrogen atom and UC10, while the piperazine 

moiety interacted electrostatically with MG1005 and MG1004 (Figures 1-B& 2-B).  

Binding results of RdRp are consistent with the previously reported in-vitro inhibition 

of SARS-CoV results since Dasatinib showed higher inhibition results than Imatinib. RdRp 

results suggest that the virus is more liable to RdRp inhibition, and the TKIs might mediate 

their action on SARS-CoV-2 by inhibiting this target. 
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Figure 1. 2D binding mode representation of the binding site of SARS-CoV-2 RdRp with (A) Crystal ligand; 

(B) Imatinib; (C) Ponatinib; (D) Nilotinib; (E)Gefitinib; (F) Erlotinib; (G) Dasatinib. 
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Figure 2. 3D representation of essential amino acid residue of SARS-CoV-2 RdRp binding with (A) Crystal 

ligand; (B) Imatinib; (C) Ponatinib; (D) Nilotinib; (E)Gefitinib; (F) Erlotinib; (G) Dasatinib. 

3-Chemotrypsin-Like protease (3CLpro) 

The protein structure of 3CLpro could explain these energy balance results is stable, 

hydrophilic, and can create a hydrogen bond with drugs [64]. This could elucidate the 

provenaffinity of flavonoids and 3clpro as in apigenin, luteolin, quercetin, quercetin, 

epigallocatechin, epigallocatechin gallate, gallocatechin gallate, and kaempferol.These 

compounds were reported to inhibit the proteolytic activity of SARS-CoV 3CLpro mainly 

through hydrogen bonding and other interactions [65–71]. 
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Results for Nilotinib docking showed relatively higher binding to the 3CLpro enzyme 

with an affinity of -8.32 kcal/mol, as shown in Table 2. The azo group of Nilotinib forms an 

H-bond with Thr26. Another type of interaction was the heterocyclic imidazole that forms pi-

interaction with Met165. Moreover, the fluorine atom forms an electrostatic interaction with 

Thr190. Nilotinib also shows a Root-mean-square deviation (RSMD) of 1.76, which is lower 

than that of the ligand, making the binding more stable with minor rotations (Figures 3-D &4-

D).  

Ponatinib interaction with the 3CLpro enzyme revealed an affinity of -8.16 kcal/mol, as 

shown in Table 2. This binding energy is a result of hydrogen-bonding and hydrophobic 

interactions. The nitrogen atom of ponatinib formed a hydrogen bond with Met49, while 

Ponatinib generated hydrophobic interaction with Thr26. Compared to the ligand, ponatinib 

showed a reasonable binding affinity and lower RSMD (Figures 3-C&4-C). 

Dasatinib(Figures 3-G & 4-G) and Imatinib (Figures 3-B & 4-B) also showed an 

affinity to 3CLpro, making them available candidates in the treatment strategy of COVID-19 

targeting the 3CLpro enzyme hand in hand with the RdRp enzyme. 
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Figure 3. 2D binding mode representation of the binding site of SARS-CoV-2 3CLprowith (A) Crystal ligand; 

(B) Imatinib; (C)Ponatinib; (D) Nilotinib; (E)Gefitinib; (F) Erlotinib; (G) Dasatinib. 
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Figure 4. 3D representation of essential amino acid residue of SARS-CoV-2 3CLpro binding with (A) Crystal 

ligand; (B) Imatinib; (C)Ponatinib; (D) Nilotinib; (E)Gefitinib; (F) Erlotinib; (G) Dasatinib. 

4.3. Pharmacophore query. 

A 3D pharmacophore model was created based on the interaction between the ligand 

co-crystallized with the protein (PDB code: 7bv2) and the active site analysis. Seven features 

were derived: as shown in Figure 5, 2 aromatic features (F1 and F5) due to the presence of 

hydrophobic map at this position, at least one of these must be present, 4 Hydrogen bond 

acceptors (F2, F4, F6, and F7) reflecting the presence of H-bonds with the protein active site, 

a constrain was added (at least one of F4 and F6 must be present), and 1 H-bond donor (F3). 

The distance between the features in Angstrom is shown in Figure 5. The created model was 

tested against the six compounds with a minimum of 4 features, including at least one of F1and 

F5 aromatic features and F4 and F6 acceptor features. All six compounds matched the 

pharmacophore query created.  
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Figure 5. 3D pharmacophoric model for Covid-sars 2 RdRp showing different features of the query A) 

Representation of different features as F1 and F5: aromatic features, F2, F4, F6, and F7: H-bond acceptors and 

F3: H-bond donor, B) Distance in Angstrom between F1, F2, and F7, C) Distance in Angstrom between F1, F2, 

and F5, D) Distance in Angstrom between F4, F5, and F6. 

4.4. ADMET analysis. 

Selected parameters are shown in Table 3. The ADMET analysis provided by 

admetSAR2 revealed that the six molecules pass the blood-brain barrier (BBB) and intestinal 

mucosa with a high probability ranging from [(0.96-0.99). (0.93-0.99), respectively]. All the 

mentioned compounds were presented as III category acute oral toxicity; thus, these drugs are 

anticipated to have low irritation and can be a candidate for transdermal administration. These 

drugs have excellent absorption and distribution characteristics that are explained by the 

possible inhibition of P-glycoprotein that has a significant role in the reduction of the 

bioavailability and permeability to certain organs (56). Moreover, TKIswere was predicted to 

inhibit the human ether-a-go-go-related gene (hERG), but the prediction results were variable 

since Nilotinib showed the highest inhibition results. Testing inhibition of hERG is essential 

because it holds the potential to develop long QT syndrome (57). 

Table 3. ADMET prediction results of admetSAR2.  

Drug Blood-brain 

barrier 

Human intestinal 

absorption 

P-glycoprotein inhibitor hERG Carcinogen 

(binary) 

Acute oral 

toxicity 

(kg/mol) 

Dasatinib + (0.96) + (0.93) + (0.70) - (0.72) - (0.87) III(0.64) 

2.85  

Imatinib + (0.99) + (0.98) + (0.95) + (0.85) - (0.71) III (0.70) 

2.766  

Nilotinib + (0.97) + (0.96) + (0.83) + (0.91) - (0.71) III (0.54) 

3.413  

Ponatinib + (0.99) + (0.96) + 0.84 + (0.72) - (0.71) III (0.61) 

3.224  

Erlotinib + (0.97) + (0.98) + (0.92) + (0.69) - (0.92) III (0.69) 
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Drug Blood-brain 

barrier 

Human intestinal 

absorption 

P-glycoprotein inhibitor hERG Carcinogen 

(binary) 

Acute oral 

toxicity 

(kg/mol) 

2.403  

Gefitinib + (0.99) + (0.99) + (0.88) + (0.89) - (0.98) III (0.70) 

2.80  

4.5. Previous Studies. 

To the best of our knowledge, TKIs were not tested and are not currently being tested 

in any of the currently ongoing clinical trials of COVID-19. However, previous studies provide 

a strong rationale for testing those agents in SARS-CoV-2. Dasatinib and Imatinib were 

evaluated for SARS-CoV-1 in-vitro, and there is a great potential to inhibit the SARS-CoV-2 

replication. 

4.6. Recommendations for future research and clinical practice.  

Based on the present findings, we suggest that those agents are potential candidates for 

SARS-CoV-2 treatment that should be advanced to in-vivo and in-vitro evaluations to further 

testing through well-designed randomized controlled trials. 

5. Conclusions 

The modeling results presented in this study indicate that the FDA-approved tyrosine 

kinase inhibitors, Imatinib, Ponatinib, Nilotinib, Gefitinib, Erlotinib, and Dasatinib may inhibit 

viral replication of SARS-CoV-2. Future experiments are recommended to explore the efficacy 

of these agents in SARS-CoV-2 infected patients. 
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