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a b s t r a c t

The detection of acute myocardial infarction directly depends on the concentration of the cardiac
troponin I (CTnI) in human blood plasma. In this study, the sensitive, selective, and fast sandwich-type
electrochemical CTnI immunosensor was developed by using nitrogen and boron-dopped graphene
quantum dots -as electrode platform and two-dimensional Ce-dopped SnO2/SnS2 (CeeSnO2/SnS2) as
signal amplification. In preparation of electrochemical CTnI immunosensor, the coordinated covalent
bond between capture antibody (anti-CTnI-Ab1) and nitrogen and boron-dopped graphene quantum
dots as electrode platform led to immobilization of anti-CTnI-Ab1, and the strong esterification between
the secondary antibody (anti-CTnI-Ab2) and thioglycolic acid-modified CeeSnO2/SnS2 resulted in anti-
CTnI-Ab2 conjugation. Finally, the resultant electrochemical CTnI immunosensor was formed via antigen-
antibody interaction. High-resolution transmission electron microscopy, X-ray photoelectron spectros-
copy, X-ray diffraction, Fourier transform infrared spectroscopy, UVeVis spectroscopy and Raman
spectroscopy, as well as some electrochemical characterization techniques, including cyclic voltammetry,
differential pulse voltammetry and electrochemical impedance spectroscopy were used to characterize
the prepared immunosensor. The detection limit of CTnI in plasma samples was calculated as
2.00 fg mL�1, making it an effective tool for acute myocardial infarction testing.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Coronary artery blockage causes cardiovascular disease, which
is one of the most severe illnesses for people's health. Acute
myocardial infarction (AMI) is a life-threatening illness that has
become a primary risk factor for mortality among seniors [1,2].
Therefore, a precise determination of AMI is critical to avoid fatality
and morbidity. The I subtype (CTnI), T subtype, and C subtypes of
cardiac troponin are regulative proteins for cardiac muscular con-
tractions [3,4]. Once the AMI arises, CTnI is transferred to the cir-
culation for a brief moment, in time without being influenced by
other troponin subtypes. Hence, as a specific biomarker, CTnI is
.

essential in the diagnosis and treatment of AMI [5]. The average
concentration of CTnI in healthy people is ca.1.25 ng mL�1, whereas
the CTnI concentration of more than 2.0 ng mL�1 implies an
elevated risk of AMI [6,7]. Laboratory test procedures for deter-
mining CTnI are precise and trustworthy; however, they are time-
consuming, necessitate expert staff, and are not suitable for
moment-in-time testing [8,9]. A range of methods for detecting
CTnI has recently been proposed, including enzyme-linked
immunosorbent assays, chemiluminescence, surface plasmon
resonance, fluorescence analysis, and electrochemiluminescence
[10e13]. A key priority is the development of a straightforward,
practical, and low-cost method for detecting CTnI. Recently, owing
to their efficient operation and low reagent consumption, precise
and straightforward electrochemical methods used in place of
conventional techniques have piqued attention [14e17].
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Electrochemical immunosensors are a viable option because of
their quick reaction time and ease of scaling, which enables
portability. The electrochemical immunosensors, in particular, can
effectively accomplish the detection by using straight and partic-
ular immunologic intercommunication between the antibody and
antigen. All immunosensors rely on the specificity of antigen mo-
lecular sensing to achieve a stable pair [18]. Numerous studies have
shown that using diverse types of nanostructures (e.g. carbon-
based nanomaterials, noble metal nanoparticles, and their nano-
composites) may significantly boost the performance of the elec-
trochemical analysis [19e22]. The morphological structure and
particle size distribution of nanomaterials are directly related to the
specificity of immunosensors, which are linked to mass transport,
as well as biomolecule loading [23].

Graphene quantum dots (GQDs), as zero-dimensional material,
is produced from both graphene and carbon dots and are regarded
as graphene's small pieces [24,25]. GQDs has important quantum
confinement and edge effects similar to carbon dots [24]. In addi-
tion, it shows superior properties, such as high biocompatibility,
low toxicity, and electrochemical catalysis effect [26]. The doping
modification of graphene/GQDs by several atoms such as B, N, Al,
and O has been currently confirmed as the effective technique for
the modulation of morphological and electronic features of gra-
phene nanosheets in terms of sensor/biosensor applications
[27e31]. Especially, B and N atoms have significant attention owing
to their atomic size close to C atom. It is concluded that B and N
atoms' electron acceptor and donor properties can produce p-type
and n-type graphene, respectively [30,32,33]. In addition, nitrogen
and boron-dopped graphene type materials demonstrate tunable
properties with respect to the doping sites [34,35].

Sn-based composites present superior biological compatibility,
high catalysis performance, and low toxicity for catalytic applica-
tions, such as biomolecule and environmental pollution detections
[36,37]. These composites are generally composed of tin, sulfur, and
oxygen. Nonetheless, single-atom Sn-based compounds, including
SnS2 and SnO2, offer limited electric conversion efficiency. As a
result of the formation of heterostructures, electron/hole separa-
tion may be achieved, suggesting enhanced both usage range and
catalytic efficiency [38].

Herein, in the light of all aforementioned points in mind, the
goal of this work is to establish a state-of-art electrochemical car-
diac troponin I immunosensor relied on nitrogen and boron-dop-
ped graphene quantum dots (NeB-GQDs) and CeeSnO2/SnS2 for
the first time in literature. The fabricated immunosensor provides a
number of benefits, including ease of use, speed, and selectivity.
Moreover, a precise LOD of 2.00 fg mL�1 was observed with high
selectivity and no interference in plasma samples. Hence, the pro-
posed electrochemical cardiac troponin I immunosensor paws the
way for developing a novel approach in the early-stage detection of
possible cardiac disorders.

2. Materials and methods

2.1. Materials

CTnI, anti-CTnI monoclonal capture antibody (anti-CTnI-Ab1),
anti-CTnI monoclonal secondary antibody (anti-CTnI-Ab2),
myoglobin (MYG), bovine serum albumin (BSA), cardiac troponin T
(cTnT), 3-aminophenyl boronic acid monohydrate (3-ABAM),
hydrogen peroxide (H2O2), Ce(NO3)3,6H2O, SnCl4,5H2O, thio-
acetamide, thioglycolic acid (TGA), N-(3-dimethylaminopropyl)
(EDC) and N-hydroxysuccinimide (NHS) were supplied from
Sigma-Aldrich. As a supporting electrolyte and diluting buffer so-
lution, a 0.1 M phosphate-buffered saline (PBS) solution (pH ¼ 7.0)
were used.
2

2.2. Apparatus for evaluation of nanomaterials

Surface morphological characteristics were explored by using a
JEOL 2100 TEM. X-ray patterns of nanomaterials were recorded by a
Rigaku X-ray diffractometer with CueK radiation (l ¼ 0.150 nm).
The PHI 5000 Versa Probe spectrometer was used to perform the
XPS survey. FTIR, UVeVis and Raman measurements were per-
formed by Jasco FTIR Spectrometer, Mettler Toledo and LabRam HR
Raman Spectrometer, respectively. Electrochemical characteriza-
tion methods including CV, EIS and DPV were also conducted via
the Gamry Reference 600 workstation (Gamry, USA).

2.3. Synthesis of NeB-GQDs

First, the dissolution of 3-ABAM (0.10 g) was prepared in acetone
(50.0 mL) under strong stirring. After that, H2O2 (10.0 mL) was
introduced into the as-obtained solution. Followed by the ultra-
sonication of this dispersion, it was transferred into a Teflon
stainless autoclave and heated to 240 �C. The product was dialyzed
for 10 days using a molecular porous membrane after cooling to
room temperature. Afterward, NeB-GQDs was collected and dried
at 25 �C [39].

2.4. NeB-GQDs-modified glassy carbon electrode (NeB-GQDs/
glassy carbon electrode) as electrochemical sensor platform with
anti-CTnI-Ab1 and CTnI immobilizations

The glassy carbon electrode (GCE) was prepared as follows to be
used in the further steps [40]. First, 0.1 mm and 0.05 mm Al2O3
slurries were transferred on cleaning pads, respectively. Following,
the GCE were polished with these alumina slurries for 20 min.
Subsequently, the electrodes were rinsed with isopropyl alcohol
and acetonitrile, respectively, to remove the alumina remains at
25 �C. The electrode modifications with NeB-GQDs suspension
(10.0 mL, 0.1 mgmL�1) were performed by dropping the suspension
on the clean GCEs. After 20 min, the solvent removal was carried
out by an infrared heat lamp, providing NeB-GQDs modified GCEs
(NeB-GQDs/GCE). Anti-CTnI-Ab1 (20.0 mL, 20.0 mg mL�1) was
introduced drop wise onto the surface of NeB-GQDs/GCE,
providing anti-CTnI-Ab1/NeB-GQDs/GCE via the coordinated co-
valent bond at 37.0 �C for 20 min. Following that, BSA (3.0% w/v)
was incubated on anti-CTnI-Ab1/NeB-GQDs/GCE at 37.0 �C for
20 min to eliminate the non-specific interactions (BSA/anti-CTnI-
Ab1/NeB-GQDs/GCE). Various CTnI proteins were incubated to BSA/
anti-CTnI-Ab1/NeB-GQDs/GCE for 20 min (CTnI/BSA/anti-CTnI-
Ab1/NeB-GQDs/GCE). Finally, non-contacting CTnI proteins were
eliminated via interfacing the prepared CTnI/BSA/anti-CTnI-Ab1/
NeB-GQDs/GCE with 0.1 M PBS (pH 7.0).

2.5. Preparation of CeeSnO2/SnS2 and TGA-modified CeeSnO2/SnS2

A facile one-step hydrothermal production technique was used
for the synthesis of CeeSnO2/SnS2. With this regard, the mixture of
Ce(NO3)3,6H2O (0.30 mmol) and SnCl4,5H2O (5.0 mmol) was
prepared in ultra-pure water (40.0 mL) under stirring for 20 min.
Subsequently, thioacetamide (8.0 mmol) was gently introduced
into the previous solution for 10 min. The solution was then placed
into a Teflon stainless autoclave, and the thermal annealing was
conducted at 200 �C for 20 h. After the cooling to the ambient
temperature, CeeSnO2/SnS2 was collected via centrifugation at
5000 rpm, following it was rinsed with ethanol several times, and
as-obtained CeeSnO2/SnS2 was dried at 25 �C [41].

Finally, the dispersion of CeeSnO2/SnS2 (10.0 mmol, 20.0 mL) was
treatedwith TGA solution (20.0mmol, 20.0mL) and stirred for 20min,
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providing TGA-modified CeeSnO2/SnS2 via [SneSeCH2eCOOH]
(TGA/CeeSnO2/SnS2).

2.6. TGA-modified CeeSnO2/SnS2 signal amplification with anti-
CTnI-Ab2 conjugation

The mixture (10.0 mL) of EDC/ N-hydroxysuccinimide disper-
sion (1:1, v/v) was interacted with TGA/CeeSnO2/SnS2 (10.0 mL,
10.0 mg mL�1) to activate eCOOH groups on TGA/CeeSnO2/SnS2.
Then, the binding of anti-CTnI-Ab2 (20.0 mL, 20.0 mg mL�1) to
TGA-modified CeeSnO2/SnS2 was performed by interaction be-
tween eCOOH of TGA-modified CeeSnO2/SnS2 and eNH2 of anti-
CTnI-Ab2 via strong ester bond, providing anti-CTnI-Ab2/
CeeSnO2/SnS2 [42].

2.7. Electrochemical measurements

The dispersion of anti-CTnI-Ab2/CeeSnO2/SnS2 (20.0 mL,
20.0 mg mL�1) was dropped on CTnI/BSA/anti-CTnI-Ab1/NeB-
Scheme 1. Schematic illustration of the fabrication pr
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GQDs/GCE electrode surface at a 20 min immunological response
time. The fabricated electrochemical immunosensor was tagged as
CeeSnO2/SnS2/anti-CTnI-Ab2/CTnI/BSA/anti-CTnI-Ab1/NeB-GQDs/
GCE and stored in 0.1 M PBS (pH 7.0, 5.0 mL) at 25 �C. Before the
electrochemical measurements, high purity Ar gas (99.999%) was
circulated through the electrochemical cell for 10 min to remove
dissolved oxygen and eliminate corrosive effects. The voltammo-
grams were acquired at 25 �C in an isolated cabinet with no pres-
sure fluctuations to avoid the external ambient effects. For
monitoring the electrochemical performance toward CTnI, the
potential ranging from þ0.0 to þ0.3 V was applied to 1.0 mM H2O2
solution. Scheme 1 showed the preparation procedure of electro-
chemical CTnI immunosensor, including the preparations of elec-
trode platform and signal amplification.

2.8. Processing of samples

Sample preparation process was detailed on Supplementary
Data [43].
ocedure of electrochemical CTnI immunosensor.
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3. Results and discussion

3.1. Fundamental of electrochemical immunosensor based on NeB-
GQDs and Cee SnO2/SnS2

3-ABAM, H2O2, and acetone were used as a precursor, an
oxidizing agent, and a solvent, respectively, for the preparation of
NeB-GQDs at 240 �C via a two-step reaction. In the first step, the
incorporation of 3-ABAM monomers into macromolecules was
performed; thanks to the hydrogen bonds formed between the
amino and boric acid groups. Afterward, the bonds between carbon
and hydrogen of phenyl rings on macromolecules were broken off
for the generation of nitrogen and boron-doped carbon-based free
radicals, following larger carbon-based fragments at higher tem-
peratures because of acetone's gasification. Thus, the decomposi-
tion of H2O2 into O2, H2O, and free radicals such as HO� and HOO�
occurred. The improved pressure by O2 and H2O formed the crys-
tallization of carbon-based fragments, providing NeB-GQDs for-
mation. O2 also reacted with NeB-GQDs, resulting in inner vacancy
defects [44] and free radicals reacted with NeB-GQDs, resulting in
hydrophilic groups, providing NeB-GQDs’ dispersibility. Further-
more, the octet gap in the boron atom led to the formation of stable
chemical structures with biomolecules, including unpaired elec-
trons; thanks to the coordinated covalent bond [45]. In sensor
platform development, NeB-GQDs as Lewis acid with electron
deficiency via boron atoms and anti-CTnI-Ab1 as Lewis base with
unbound electron pairs via eNH2 groups formed anti-CTnI-Ab1/
NeB-GQDs by the coordinated covalent bond.

CeeSnO2/SnS2 as a signal amplification was prepared by a facile
one-step hydrothermal production technique. The valance and
conduction band levels of SnO2 and SnS2 indicated the ladder
pattern, suggesting a strong contact interface [46]. Owing to Ce
doping, the electron transfer and electron-hole pairs recombination
Fig. 1. (A) TEM image of NeB-GQDs (Inset: the lattice fringe of an NeB-GQD), (B) AFM ima
nitrogen and boron-doped graphene quantum dots; TEM, transmission electron microscop
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occurred, providing the improvement of electrochemical activity.
Then, the strong esterification between anti-CTnI-Ab2 and TGA-
modified CeeSnO2/SnS2 via eNH2 and eCOOH groups provided a
highly stable and conductive anti-CTnI-Ab2/CeeSnO2/SnS2. Finally,
H2O2 was used as a redox probe in this work because of its easy
oxidation into O2 and continuous monitoring [47,48].

3.2. Characterizations of NeB-GQDs

The TEM micrograph of NeB-GQDs provided in Fig. 1A offered a
mean particle size of 4e5 nm. The inset of Fig. 1A presenting the
high-resolution transmission electron microscopy (HR-TEM) image
suggested that the NeB-GQDs with a highly crystalline structure
belonging to an interplanar distance of about 0.211 nm, attributing
to (100) lattice planes of graphene [49]. Atomic force microscopy
(AFM) image (Fig. 1B) proved that the height of NeB-GQDs was to
be 1.8 nm and the thickness of about 0.65e0.75 nm [50]. Hence, the
preparation of NeB-GQDs with 2 or 3 layers was successfully ach-
ieved in this work. XRD (Fig. 1C) and Raman spectrum (Fig. 1D)
were obtained for the determination of crystallographic structure
and phase purity. XRD peak at 18.9� corresponded to 002 plane of
bulk graphite. Raman spectrum confirmed the high degree of
graphitization, suggesting the stronger G band at 1579 cm�1 than
the D band at 1349 cm�1 (the peak intensity ratio is about 2.0) [51].
The existence of defects in NeB-GQDs was also verified via D-band
[52,53].

Fig. 2A showed XPS survey, confirming O1s, N1s, C1s, and B1s on
NeB-GQDs. According to the N1s spectrum (Fig. 2B), the peaks at
397.1 eV and 399.1 eV corresponded to pyridinic nitrogen. More-
over, the peaks that appeared at ca.399.8 eV and 401.8 eV were
attributed to pyrrolic and quaternary nitrogen, respectively [54].
B1s spectrum (Fig. 2C) showed three XRD peaks attributing to CeB
at 190.4 eV, C¼B at 192.1 eV and OeBeC at 193.8 eV [39]. The peaks
ge of NeB-GQDs, (C) XRD pattern and (D) Raman spectrum of NeB-GQDs. NeB-GQDs,
y; XRD, X-ray diffraction.



Fig. 2. (A) XPS survey of NeB-GQDs and high-resolution XPS spectrum of (B) N1s, (C) B1s, (D) C1s, and (E) O1s. NeB-GQDs, nitrogen and boron-doped graphene quantum dots; XPS,
X-ray photoelectron spectroscopy.
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at 284.7, 286.1, and 290.6 eV were ascribed to the CeC/C]C, CeO,
and OeC]O groups, respectively, as per C1's high-resolution XPS
survey (Fig. 2D) [55]. Moreover, the peaks at 532.1 and 532.3 eV
were detected in the high-resolution O1s spectra (Fig. 2E), which
were attributed to CO and CeOH groups, respectively [56].

FTIR spectrum (Fig. S1A) was also acquired for NeB-GQDs. The
absorption bands at 1710 cm�1 and 3440 cm�1 were ascribed to the
carboxylic acid's C¼O stretching and OH groups, respectively. The
hydrophilic groups on NeB-GQDs, such aseCOOH, was expected to
provide the nanomaterial to be water-soluble. In addition, NeB-
GQDs’ surface charge (Fig. S1B) was calculated to be �16.8 mV,
resulting from hydrophilic groups' presence. Moreover, the UVeVis
spectra (Fig. S2A) was obtained for NeB-GQDs and two absorption
peaks at 270 nm and 309 nmwere observed. The absorption peak at
270 nm corresponded to n-p* transition of C¼O, whereas the peak
at 309 nm was ascribed to the specific absorption of GQDs [57]. A
Fig. 3. (A) EDX image of CeeSnO2/SnS2, (B) UVeVis spectra of CeeSnO2/SnS2 (spectrum a), S
SnS2, TEM images of (E) SnS2 and (F) SnO2. HR-TEM, high-resolution transmission electron
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wide absorption peak ranging between 600 nm and 900 nm was
attributed to the conjugated system, including delocalized elec-
trons in NeB-GQDs [58]. In addition, several excitation wave-
lengths were used to gather photoluminescence spectra of NeB-
GQDs, and NeB-GQDs exhibited an excitation wavelength and
upconverted fluorescence (Fig. S2B and C) [39]. According to the
results, the distribution of emission intensity and peak position
varied with wavelength.

3.3. Characterizations of CeeSnO2/SnS2

According to Fig. S3 of CeeSnO2/SnS2, SnO2/SnS2, SnO2 and SnS2,
the specific XRD peaks at 14.82�, 28.17�, 31.89�, 50.17� and 52.49�

attributing to (001), (100), (101), (110) and (111) lattice planes of
tetragonal structure, respectively, confirmed the presence of SnS2
(curve d). Curve c of Fig. S3 showed a hexagonal phase of SnO2, in
nS2 (spectrum b) and SnO2 (spectrum c), (C) TEM and (D) HR-TEM images of CeeSnO2/
microscopy; TEM, transmission electron microscopy; UVevis, ultraviolet visible.



Fig. 4. (A) Cyclic voltammograms, (B) EIS responses at (a) bare GCE, (b) NeB-GQDs/GCE, (C) anti-CTnI-Ab1/NeB-GQDs/GCE, (D) BSA/anti-CTnI-Ab1/NeB-GQDs/GCE, (E) CTnI/BSA/
anti-CTnI-Ab1/NeB-GQDs/GCE, (F) the final immunosensor including c-anti-CTnI-Ab1, CTnI and anti-CTnI-Ab2 (scan rate of 50 mV s�1) in 1.0 mM [Fe(CN)6]3- containing 0.1 M KCl
and (C) DPV responses of the proposed immunosensors incubated with 0.500 pg mL�1 CTnI using anti-CTnI-Ab2/SnO2/SnS2 (curve b) and anti-CTnI-Ab2/CeeSnO2/SnS2 (curve c) in
absence of H2O2 (curve a) and in presence of 1.0 mM H2O2. BSA, bovine serum albumin; DPV, differential pulse voltammetry; GCE, glassy carbon electrode; EIS, electrochemical
impedance spectroscopy; NeB-GQDs, nitrogen and boron-doped graphene quantum dots.
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which the peaks detected at 26.54�, 34.17�, 38.24�, 52.19� and
66.19� was attributed to (100), (101), (200), (211), (112) lattice
planes. Curve a and curve b verified the presence of SnO2/SnS2,
providing the successful synthesis of nano-heterostructure. Finally,
it was realized that due to the modest doping of Ce on the nano-
heterostructure, the divergence between curves a and b was mi-
nor. However, according to the energy dispersive x-ray (EDX) image
(Fig. 3A), the presence of O, S, Sn, and Ce elements confirmed the
successful dopping tretament of Ce on nano-heterostructure.
Fig. 3B demonstrated UVeVis spectra of CeeSnO2/SnS2, SnS2 and
SnO2. There were weak absorption bands of SnO2 and SnS2 in
comparison with CeeSnO2/SnS2, indicating the improved absorp-
tion capacity of CeeSnO2/SnS2. TEM image (Fig. 3C) of CeeSnO2/
SnS2 showed the rod type nano-heterostructure. According to
Fig. 3E and F, the large pieces, including in SnO2 and SnS2, were
observed. Finally, HR-TEM image (Fig. 3D) of CeeSnO2/SnS2 indi-
cated the lattice spaces, including 0.313, 0.279, 0.334, and
0.264 nm, corresponding to (100), (101) of SnS2 and (110), (101) of
SnO2, respectively [41].

Fig. S4A showed XPS survey, providing the presence of Ce, O, S,
and Sn elements on CeeSnO2/SnS2. Furthermore, the peaks
detected at ca.886.8 eV, 902.1 eV, and 918.2 eV were attributed to
Ce3þ 3d5/2, Ce4þ 3d3/2, and Ce4þ 3d3/2 states, respectively
(Fig. S4B) [59]. On the other hand, the peaks at 161.2 eV and
162.2 eV corresponded to S2� 2p3/2 and S2� 2p1/2, respectively,
confirming sulfur presence (Fig. S4C) [60]. In addition, O2� 1s
binding energy at 531.4 eV was attributed to oxygen element in
SnO2 (Fig. S4D). Finally, XPS peaks at 485.7 eV and 495.1 eV were
attributed to Sn4þ 3d5/2 and Sn4þ 3d3/2, respectively. Hence, the
preparation of CeeSnO2/SnS2 was successfully accomplished
(Fig. S4E).
Fig. 5. Concentration effect (from 0.01 to 1.0 pg mL�1 CTnI) on immunosensor signals,
Inset: Calibration curve for electrochemical CTnI immunosensor (Potential range
is þ0.0/þ0.3 V; Parameters are frequency of 100 Hz, pulse amplitude of 25 mV and
scan increment of 5 mV).
3.4. Evaluation of electrochemical performance of the sensor
platform and signal amplification

The evaluation of the electrochemical performance of the as-
prepared sensor platform was progressively performed, by using
CV and EIS methods in the presence of 1.0 mM [Fe(CN)6]3-/4- as
redox pair. First, the anodic and cathodic signals on bare GCE were
observed at Epa¼ 500mV and Epc¼ 350mV, respectively, (curve a
of Fig. 4A). As expected, when NeB-GQDs/GCE was used, the
increased electrochemical sensor signals were observed because of
GQDs' quantum confinement and edge effects [61,62] (curve b of
Fig. 4A). Nonetheless, the anti-CTnI monoclonal capture antibody
(anti-CTnI-Ab1)'s blocking effect resulted in the decreases in anodic
and cathodic signals (curve c of Fig. 4A). To confirm the successful
anti-CTnI-Ab1 immobilization, SEM image (Fig. S5) of anti-CTnI-
6

Ab1/NeB-GQDs/GCE demonstrating a spherical size and agglom-
eration was obtained, providing a successful immobilization of
anti-CTnI-Ab1. After the immobilizations of BSA (curve d of Fig. 4A)
and CTnI (curve e of Fig. 4A), respectively, the gradual decreases on
anodic and cathodic signals were obtained owing to more electron
transfer blocking. Thus, it is concluded that the immobilization
treatments of BSA and CTnI on electrode surfaces were successfully
carried out. In the case of the utilization of the final immunosensor
(curve f of Fig. 4A), a further decrease in sensor signals was
observed due to the more antibody-CTnI interactions. EIS mea-
surements confirmed CV results in the immunosensor develop-
ment process (Fig. 4B). The obtained charge transfer resistances
were calculated as 190 U for bare GCE (curve a), 90 U for NeB-
GQDs/GCE (curve b), 110 U for anti-CTnI-Ab1/NeB-GQDs/GCE
(curve c), 130 U for BSA/anti-CTnI-Ab1/NeB-GQDs/GCE (curve d),
150 U for CTnI/BSA/anti-CTnI-Ab1/NeB-GQDs/GCE (curve e) and
170 U for the final immunosensor, respectively. Thus, it was
concluded that the preparation procedure of the immunosensor
was completed successfully based on CV and EIS results.

For electrochemical performance characterization (Fig. 4C) of
the prepared signal amplification, several immunosensors using
anti-CTnI-Ab2/SnO2/SnS2 (curve b) and anti-CTnI-Ab2/CeeSnO2/



Table 1
The comparison of electrochemical CTnI immunosensor with the other novel techniques.

Method Linear Range LOD Ref.

Electrochemiluminescence 100.00 fg mL�1 e 20.00 ng mL�1 43.00 fg mL�1 [64]
Electrochemical 10.00 fg mL�1 e 100.00 ng mL�1 3.02 fg mL�1 [65]
Electrochemical 0.01e100.0 ng mL�1 3.0 pg mL�1 [7]
Photoelectrochemical 0.01 pg mL�1 e 1.00 ng mL�1 3.00 fg mL�1 [66]
Electrochemiluminescence 0.01e1000.0 pg mL�1 5.01 fg mL�1 [67]
Electrochemiluminescence 5.00 pg mL�1 e 20.00 ng mL�1 3.20 pg mL�1 [68]
Photoelectrochemical 0.001e100.0 ng mL�1 0.30 pg mL�1 [69]
QCM 25.00 pg mL�1 e 15.00 ng mL�1 18.0 pg mL�1 [70]
Electrochemical immunosensor 0.01 e 1.00 pg mL¡1 2.00 fg mL¡1 This study
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SnS2 (curve c) were fabricated by 0.50 pg mL�1 CTnI at the immune
reaction time of 20 min, and DPV signals were recorded in
1.0mMH2O2. The optimal and highest electrochemical signals were
observed by using CeeSnO2/SnS2. Because of cerium's good cata-
lytic activities and its superior chemical and electronic properties,
the obvious electrocatalytic activity on sensor signals was obtained
[63]. In addition, because of the strong esterification bond between
anti-CTnI-Ab2 and TGA-modified CeeSnO2/SnS2, stable electro-
chemical signals were provided by using the developed electro-
chemical immunosensor in this study.

3.5. Optimization for electrochemical measurements

The influences of the solution pH, immune reaction time, H2O2,
and anti-CTnI-Ab2/CeeSnO2/SnS2 solution concentrations were
evaluated and detailly presented in Fig. S6.

3.6. Linearity range

The calibration equation by using CTnI concentrations and the
electrochemical immunosensor signals was y ¼ 23.76x þ 0.2779,
with a correlation coefficient of R2 ¼ 0.9987, here, y and x stand for
the current (mA) and CTnI concentration (pg mL�1), respectively
(Fig. 5). The quantification limit and LOD were found to be
0.01 pg mL�1 and 2.00 fg mL�1, respectively. The comparisons be-
tween the prepared electrochemical CTnI immunosensor and the
other new detection methods were tabulated in Table 1. According
to the findings, it can be speculated that the ultra-sensitive and
selective CTnI immunosensor was first presented in the literature,
providing early detection of significant cardiovascular diseases in a
shorter time. In contrast to conventional CTnI detection techniques,
Fig. 6. (A) Immunosensor selective responses against the prepared solutions (n ¼ 6),
(i) 100.0 pg mL�1 MYG þ 100.0 pg mL�1 BSA þ 100.0 pg mL�1 cTnT, (ii) 0.500 pg mL�1

CTnI þ 100.0 pg mL�1 MYG, (iii) 0.500 pg mL�1 CTnI þ100.00 pg mL�1 BSA, (iv)
0.500 pg mL�1 CTnI þ 100.00 pg mL�1 cTnT; (B) Stability test of electrochemical CTnI
immunosensor, including 0.500 pg mL�1 CTnI (n ¼ 6) at 25.0 �C. BSA, bovine serum
albumin; MYG, myoglobin.
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the removal of time-consuming steps in CTnI immunosensor
preparation allows for portable application. In addition, the pro-
duction of fast immunosensor signals resulted in efficient analysis
in a shorter time. Finally, the immunosensor preparation with the
minimal waste generation showed that the prepared immuno-
sensor was friendly to the environment and human health. Hence,
the developed stable and reproducible electrochemical CTnI
immunosensor may offer a potential for early cardiovascular
detection.

3.7. Recovery

The recovery experiments including plasma samples were per-
formed by the prepared electrochemical CTnI immunosensor. The
close to 100.00% values suggested the high selectivity of the elec-
trochemical immunosensor, providing the successful CTnI analysis
without interference effect (Table S1). Furthermore, the standard
addition method was applied to plasma samples and y ¼ 24.09x þ
10.0963, with R2 ¼ 0.9993 was obtained as a calibration equation.
Hence, we can say that the close slope values between direct cali-
bration (inset of Fig. 5) and standard addition methods confirmed
the high selective CTnI analysis.

3.8. Selectivity, stability, and reproducibility

For the selectivity assessment, several electrochemical CTnI
immunosensors were fabricated by using various target disper-
sions, such as (i) 100.0 pg mL�1 MYG þ 100.0 pg mL�1

BSAþ 100.0 pg mL�1 cTnT, (ii) 0.500 pg mL�1 CTnIþ 100.0 pg mL�1

MYG, (iii) 0.500 pg mL�1 CTnI þ100.00 pg mL�1 BSA, (iv)
0.500 pg mL�1 CTnI þ 100.00 pg mL�1 cTnT. Afterward, these
electrochemical immunosensors were applied to 1.0 mM H2O2

solution. Fig. 6A confirmed that the prepared electrochemical
immunosensor was able to provide high selectivity toward CTnI
protein. Moreover, Fig. 6B demonstrated the stability test of the
prepared electrochemical immunosensor for 7 weeks. It was
determined that the final immunosensor signals were about 99.08%
of the first electrochemical signal, providing the high stability of the
immunosensor. Finally, for the reproducibility test, 25 identical
electrochemical CTnI immunosensors were prepared separately by
the same protocol described in sections 2.4, 2.6, and 2.7. The rela-
tive standard deviation of 0.93 was calculated by using the
observed 25 electrochemical signals, confirming the high reliability
of the immunosensor production procedure.

4. Conclusions

Herein, highly selective and sensitive electrochemical cardiac
troponin I immunosensor based on NeB-GQDs as electrode plat-
form and 2D Ce-doped SnO2/SnS2 as signal amplification was pre-
sented. The developed electrochemical immunosensor was
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fabricated via the coordinated covalent bond between capture
antibody-NeB-GQDs, and the strong esterification between
secondary antibody-Ce-doped SnO2/SnS2. Hence, the stable elec-
trochemical signals were accomplished in terms of early cardio-
vascular detection. Moreover, the prepared immunosensor was
reproducible biosensor and did not include time-consuming steps,
such as sensor preparation. Finally, it can be speculated that the
proposed immunosensor can be easily integrated into a commercial
biosensor tool and used to diagnose AMI.
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