
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Mechanical, Industrial & Systems Engineering
Faculty Publications Mechanical, Industrial & Systems Engineering

2021

Deep learning computer vision for robotic disassembly and Deep learning computer vision for robotic disassembly and

servicing applications servicing applications

Daniel P. Brogan
University of Rhode Island

Nicholas M. DiFilippo

Musa Jouaneh
University of Rhode Island, jouaneh@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/mcise_facpubs

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Citation/Publisher Attribution Citation/Publisher Attribution
Brogan, D. P., DiFilippino, N. M., & Jouaneh, M. K. (2021). Deep learning computer vision for robotic
disassembly and servicing applications. Array, 12, 100094. https://doi.org/10.1016/j.array.2021.100094
Available at: https://doi.org/10.1016/j.array.2021.100094

This Article is brought to you for free and open access by the Mechanical, Industrial & Systems Engineering at
DigitalCommons@URI. It has been accepted for inclusion in Mechanical, Industrial & Systems Engineering Faculty
Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons@etal.uri.edu.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/mcise_facpubs
https://digitalcommons.uri.edu/mcise_facpubs
https://digitalcommons.uri.edu/mcise
https://digitalcommons.uri.edu/mcise_facpubs?utm_source=digitalcommons.uri.edu%2Fmcise_facpubs%2F1119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.array.2021.100094
mailto:digitalcommons@etal.uri.edu

Array 12 (2021) 100094

Available online 23 September 2021
2590-0056/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/locate/array

Deep learning computer vision for robotic disassembly and servicing
applications
Daniel P. Brogan a, Nicholas M. DiFilippo b,∗, Musa K. Jouaneh a

a University of Rhode Island, Kingston RI, USA
b Johnson & Wales University, Providence RI, USA

A R T I C L E I N F O

Keywords:
Screw detection
YOLO
Robotic disassembly
Robotic servicing
Deep learning

A B S T R A C T

Fastener detection is a necessary step for computer vision (CV) based robotic disassembly and servicing
applications. Deep learning (DL) provides a robust approach for creating CV models capable of generalizing
to diverse visual environments. Such DL CV systems rely on tuning input resolution and mini-batch size
parameters to fit the needs of the detection application. This paper provides a method for determining the
optimal compromise between input resolution and mini-batch size to determine the highest performance for
cross-recessed screw (CRS) detection while utilizing maximum graphics processing unit resources. The Tiny-
You Only Look Once v2 (Tiny-YOLO v2) DL object detection system was chosen to evaluate this method.
Tiny-YOLO v2 was employed to solve the specialized task of detecting CRS which are highly common in
electronic devices. The method used in this paper for CRS detection is meant to lay the ground-work for
multi-class fastener detection, as the method is not dependent on the type or number of object classes. An
original dataset of 900 images of 12.3 MPx resolution was manually collected and annotated for training.
Three additional distinct datasets of 90 images each were manually collected and annotated for testing. It
was found an input resolution of 1664 x 1664 pixels paired with a mini-batch size of 16 yielded the highest
average precision (AP) among the seven models tested for all three testing datasets. This model scored an AP
of 92.60% on the first testing dataset, 99.20% on the second testing dataset, and 98.39% on the third testing
dataset.

1. Introduction

Electronic waste (e-waste) is a rapidly growing problem. In 2019
alone, 53.6 million metric tons (Mt) of e-waste was generated glob-
ally; however, only approximately 17.4% was formally recycled. It
is estimated that the annual e-waste generation will increase to 74
Mt by 2030 , increasing at almost 2 Mt per year [1]. Over half of
the e-waste gathered for recycling in developed countries is sent to
developing countries for processing, where health and safety regula-
tions are not enforced, and dangerous methods for recycling e-waste
are used [2]. Methods to dispose of e-waste include destructive, semi-
destructive, and non-destructive disassembly methods. Destructive dis-
assembly methods involve destroying the product through shredding or
metallurgical processes (hydro or pyro) to recover valuable resources.
Non-destructive methods are more useful when the disassembly goal
is to recycle or reuse parts of the product. However, non-destructive
disassembly typically needs to be performed by trained workers, which
can be expensive because of pay and safety [3]. Robotic disassembly

∗ Corresponding author.
E-mail addresses: danbrogan7@my.uri.edu (D.P. Brogan), Nicholas.DiFilippo@jwu.edu (N.M. DiFilippo), jouaneh@uri.edu (M.K. Jouaneh).
URL: https://github.com/Dan-Brogan/Cross-Recessed-Screw_Deep-Learning-Datasets (D.P. Brogan).

offers an efficient non-destructive method for disassembling e-waste.
This method can be used in situations where the goal is to reuse parts or
disassemble parts that contain hazardous materials in a safe manner [4,
5]. Many products, such as laptops, cellphones, and electric vehicle
batteries, have outer cases held together with fasteners which must
be unfastened during non-destructive disassembly. To fully realize the
potential of automated disassembly, it becomes necessary to implement
a computer vision (CV) system capable of automatically recognizing
and locating these screws on these outer cases [6].

Robotic servicing is another critical application of CV fastener de-
tection. The amount of space debris reached 3 million kilograms in
2013 and continues to increase. This debris poses a serious threat to
the safety of future space missions [7]. NASA suggests that retired
satellites should either lower their orbits and reenter or raise their
orbit to a graveyard region within 25 years of mission completion
to mitigate space debris buildup, but this procedure has not been
globally accepted because of the significant technical challenges and

https://doi.org/10.1016/j.array.2021.100094
Received 21 June 2021; Received in revised form 20 August 2021; Accepted 16 September 2021

http://www.elsevier.com/locate/array
http://www.elsevier.com/locate/array
mailto:danbrogan7@my.uri.edu
mailto:Nicholas.DiFilippo@jwu.edu
mailto:jouaneh@uri.edu
https://github.com/Dan-Brogan/Cross-Recessed-Screw_Deep-Learning-Datasets
https://doi.org/10.1016/j.array.2021.100094
https://doi.org/10.1016/j.array.2021.100094
http://creativecommons.org/licenses/by/4.0/

Array 12 (2021) 100094

2

D.P. Brogan et al.

cost associated with it [8]. Robotic servicing can extend the life of
current satellites without the need for sending more as replacements.
Therefore, there is a need to develop on-orbit satellite servicing robots
to increase the longevity of artificial satellites [9]. CV can be used to
aid robotic servicing missions in the detection of important mechanical
features such as fasteners and docking rings. The lighting and camera
orientations are highly variable in this application and deep learning
provides a possible solution for making generalized predictions in this
variable environment. Robots are especially useful in satellite servicing
missions, where sending humans can be much more costly [10].

Both automated disassembly and servicing robots require a CV
system that detects (classifies and locates) fasteners and other objects
so they can be engaged by the proper tool. This paper evaluates the
detection of cross-recessed screws (CRS), a common fastener used in
electronics.

The goal of many object detection systems is to detect large objects
such as vehicles and people [11]. Having a high input resolution is not
critical when detecting large objects because they typically occupy a
large portion of the frame. In this case, it is usually desirable to use
lower input layer resolutions as they can allow for faster detection
speed at the expense of some average precision (AP) [12]. The chal-
lenge with detecting CRS and other small objects is they usually occupy
a relatively small portion of the frame due to their size. Significant
visual information about the screws’ appearances is lost when processed
by low resolution input layers.

The training and testing of deep learning (DL) object detection
systems are usually highly dependent on available graphics processing
unit (GPU) resources. The number of hidden layers in a neural network
(NN), the input layer resolution, and the mini-batch size are all depen-
dent on available GPU resources. Finding the optimal balance of these
three parameters for a given GPU can be challenging, especially for de-
tecting small objects. The Tiny-You Only Look Once v2 (Tiny-YOLO v2)
DL object detection system was chosen for evaluation because YOLO
v2 is highly documented in literature as a widely used state-of-the-art
object detection system [12–17] and its Tiny configuration allowed for
more GPU resources to be allocated for higher input resolutions. Tiny-
YOLO v2 was set up using Darkflow [13], a Tensorflow translation
of Darknet [18]. YOLO v2 has 32 hidden layers while Tiny-YOLO
v2 has 16 hidden layers. Tiny-YOLO v2 is used so higher definition
input layers at reasonable mini-batch sizes can be evaluated within the
constraints of one NVidia Tesla V100 GPU with 32 Gigabytes (GB) of
RAM. This paper provides a method for determining the optimal com-
promise between input resolution and mini-batch size to determine the
highest performance for CRS detection while utilizing maximum GPU
resources. The method used in this paper is defined in the numbered
list below and was shown to work using the aforementioned GPU for
the application of CRS detection using Tiny-YOLO v2.

1. Identify the highest input resolution the given GPU can support
at the default mini-batch size.

• NOTE: If the GPU is unable to support at least high defi-
nition (1280 x 720 pixels) at the default mini-batch size, a
more capable GPU may be needed.

2. Select several evenly spaced mini-batch sizes above and below
the default value and identify the maximum corresponding input
resolution for each.

3. Obtain a training and testing dataset of images with a resolu-
tion equal to or greater than the highest input resolution value
determined in the previous step.

4. Train one model at each input resolution/mini-batch size config-
uration using the discrete learning rate decay method discussed
in this paper.

5. Evaluate the performance of each trained model on test datasets
of images indicative of the desired operating regime.

6. Choose the highest performing model for use in the field.

1.1. Related work

1.1.1. Object recognition tasks
Recently, deep learning approaches have been applied to all CV

application areas such as image classification [19,20], object recogni-
tion [21–23], semantic segmentation [24], depth estimation [25,26],
and human detection [27,28]. The goal of object detection is to cor-
rectly classify the object as well as predict the object’s location in
an image [29]. Object detection research has primarily used deep
convolutional neural network (DCNN), a feed-forward type of neural
network which works by trying to match features across an image
using convolution functions [30]. Wei et al. [31] compared the ef-
fectiveness of image processing and deep learning techniques on the
detection of railway track fastener defects for missing or broken links.
Four methods were compared: classical image processing, classification
based on Dense-Scale Invariant Feature Transform (SIFT), classification
based on the VGG16 DCNN, and classification based on Faster Region
Based Convolutional Neural Network (R-CNN). The Dense-SIFT method
scored the highest mean AP (mAP) of 99.26% but had the slowest image
processing time of 2.21s per image. Faster R-CNN scored the second
highest mAP of 97.90% with the fastest image processing time of 0.23s
per image.

K. Zhang et al. [32] applied an attention mechanism, which made
their model more sensitive to foreground pixels, to a custom CNN
to improve the detection of foreign objects in coal processing. Their
model correctly identified 97% of the foreign objects in their test set
and resized images to 416 x 416 pixels with a batch size of 4 for
training. The low resolution worked well for their application because
the foreign objects of concern occupied a considerable portion of the
frame. The small batch size seemed to work well because there is a
high variation of possible foreign objects, so it is desirable to avoid
over-normalizing the model to retain its sensitivity to such variation.

Y. Zhang et al. [33] examined how well a deep learning model
could identify if a bolt was loose or tightened to monitor a structure’s
health (e.g., a bolt that loosens over time). For testing, bolts were
loosened to various heights and the model was able to detect bolts that
were loosened by just 0.5 cm. Overall, the model was able to achieve
a mAP of 95.03%. Wang, Li, and Zhang [34] created a construction
waste recycling robot capable of detecting loose nails and screws. Their
vision system used the Faster R-CNN and their model achieved a mAP
of 89.10% on their testing dataset of nails and screws. Li, Zhao, and
Pan [35] used Fisher criteria in a four hidden-layer network to obtain
the location and classification of defects in fabrics. Their model scored
a detection rate (DR) of over 90% on their testing dataset, where DR is
the ratio of correctly detected defective samples.

The YOLO framework in particular has led to the development of
many promising applications [5,14,36–38]. Ding et al. [36] developed
a novel Unmanned Aerial Vehicle (UAV) capable of semi-automated
aerial drilling and screwing. Their design used the YOLO v3 CV system
to detect targets and maintain alignment in real-time during drilling
and screwing processes. A custom dataset of 600 images of targets at
different angles and distances was used to train the YOLO v3 model and
experiments successfully demonstrated high precision aerial drilling
and screwing.

Zheng et al. [37] presented a dataset of 13,000 images of UAV
flight scenarios and evaluated the performance of eight different DL
CV systems on UAV detection. Their study evaluated RetinaNet, Single-
Shot Detector, YOLO v3, Feature Pyramid Network, Faster R-CNN,
RefineDet, Grid R-CNN, and Cascade R-CNN DL CV systems. Each
system was trained using 70% of the dataset and the remaining 30%
was used for testing. YOLO v3 achieved an AP of 72.3%, which is
between the lowest performer, RefineDet, at 69.5%, and the highest
performer, Grid R-CNN, at 82.4%. They reported that among all eight
systems, Grid R-CNN had the slowest image processing time at 157 ms
while YOLO v3 had the fastest image processing time at 32 ms.

Array 12 (2021) 100094

3

D.P. Brogan et al.

Chen et al. [14] used a detection pipeline consisting of Super-
Resolution CNN (SRCNN) and YOLO v3 to detect electrical components
from UAV inspection images. They used SRCNN to enhance the resolu-
tion of blurry images before sending them to YOLO v3 for detection and
were able to achieve a mAP of 93.60% with their detection pipeline.

Yildiz and Wörgötter [5] investigated several DL methods for screw
detection in hard drives. The first method they evaluated used a Hough
Transform to detect circles which acted as screw candidates. The screw
candidates were sent to a classifier which predicted the class and loca-
tion of those candidates. Their best model used a weighted decision of
the predictions made by both the InceptionV3 and Xception classifier.
This model scored an AP of 80.23% on their testing dataset. They
compared these results to a model they trained using YOLO v3, which
scored an AP of 66.47% on their testing dataset.

1.1.2. Transfer learning with neural networks
Transfer learning is the method of appending training to a pre-

trained model to repurpose it for the needs of the desired application.
A common issue that arises in many problems is limited training data
because of the cost of obtaining and annotating new training data
[39]. Various applications that have used the YOLO network such as
object detection [40,41] and diagnosis of medical issues [42–44] have
instituted transfer learning methods.

Li et al. [16] introduced a method based on transfer learning and
sample enhancement with a small number of training samples that was
able to classify 87.5% of objects. They first initialized training weights
using unrelated sample data from the PASCAL Visual Object Classes
(VOC) dataset with Tiny-YOLO v2 then used the Tiny-YOLO v2 network
to further train the data.

Transfer learning can be used to improve detection results of mod-
els. Raza and Hong [41] designed a computer vision model using YOLO
v3 to monitor for fish in a marine ecosystem. They used a transfer
learning method that was pre-trained on 1.2 million samples of the
ImageNet dataset. By incorporating the transfer learning method as
well as some other improvement techniques, they were able to increase
the mAP by 4.13%. Montalbo et al. [42] developed a model that
could detect three types of brain tumors and used Tiny-YOLO v4 and
pre-trained weights from the COCO dataset. They achieved a mAP of
93.14% which outperformed other studies that had tried to detect brain
tumors using different deep learning networks.

1.1.3. Automatic screw detection for disassembly
In applications such as robotic disassembly, automated screw unfas-

tening is an important task robots can execute. Robots already perform
screw fastening for assembly operations [45,46], and there have been
many studies detailing the designs of robotic systems [47,48] and
end-effectors [49–51] for fastening applications. In these assembly
applications, when screw locations are known in advance, fixtures and
compliance devices can be used to achieve proper screw alignment.
When screw locations are not known in advance, as is typically the
case with disassembly operations [38,52], vision systems may be used
to determine screw positions [45].

Gil et al. [53] used various computer vision techniques such as
Douglas–Peucker’s algorithm, adaptive thresholding, Canny edge detec-
tion, and region detection with template matching to identify features
such as screws and other components (covers, wires, batteries, etc.) on
electronic equipment to create a robotic system to perform disassem-
bly tasks. Bdwidi et al. also designed a workstation to automatically
disassemble electric vehicle motors. They used a Microsoft Kinect sen-
sor capable of providing depth data, feature point detectors such as
the Harris detector, and then multiple optimization steps to identify
screws and remove false positives. A drawback of using these types of
classifiers is that they can be heavily dependent on lighting and require
controlled lighting environments. Vongbonyung et al. [54,55] designed
a robotic system that could learn actions and revise them to make
cuts to disassemble monitors. This system was also able to deal with

uncertainties that can arise during automated disassembly. The system
used computer vision to automatically determine the location of screws
and was able to find over 80% of them however, the authors reported
a high number of false positive (82.83%) and false negative (35.78%)
detections. A false positive detection would lead to redundant cutting
operations and would require human intervention for disassembly to
proceed.

Wegener et al. [6] proposed a concept for a human-assisted robot
workstation for the disassembly of electric vehicle batteries where
fastener detection was a primary task for the robot. They investigated
three methods of fastener detection: using a computer-aided design
(CAD) database, physically demonstrating the location of the screws,
and a CV algorithm. They determined that detailed CAD databases are
usually not accessible by the recycler and physical demonstrations are
too time-consuming, thus making these methods impractical. The final
option of using a CV algorithm was investigated using a Haar-Cascade
classifier trained on positive and negative images to create a model
for detecting the desired object classes. Their model was only able to
correctly detect 50% of the screws in their testing dataset.

DiFilippo and Jouaneh [4] developed an automated robotic disas-
sembly system that combined CV and force sensing to remove screws
from the back of laptops. The system comprised two webcams, a
Microsoft Kinect sensor, and a 3-axis cartesian robot with an actuated
sensor-equipped (SE) screwdriver. Once a laptop was placed on the
workspace, the overhead webcam identified circles as screw candidates
using a Hough Circle Transform. The robot would then move to the
locations of these circles and, using a webcam attached to the robot’s
end-effector, perform classical computer vision techniques to center the
screw. The SE screwdriver would then test if the circle was a screw by
attempting to remove it. If a screw was detected, the robot removed
the screw, and if no screw was detected, the robot would move to the
following circle location. This process proved to be time-consuming.
By using the Soar cognitive architecture [56], screw locations could
be stored in semantic memory after the first pass, thus reducing screw
removal time on subsequent passes. Even so, the fastest CV time per
circle was 6.5s. This paper builds upon their previous work by propos-
ing an optimized DL Tiny-YOLO v2 based CV system that can process
high-resolution images at over 3 frames per second (FPS). The image
processing speed of this method is not dependent on the number of
screws/screw-like objects in each image.

2. Background on tiny-YOLO v2 object detection system

Tiny-YOLO v2 is a lightweight version of YOLO v2, which is derived
from the original YOLO object detection system [12]. YOLO, YOLO
v2, and Tiny-YOLO v2 are high performance DL object detection sys-
tems that can be applied to real-time applications. YOLO is unique
from other object detection systems in that it simultaneously predicts
bounding boxes and object classes with a single NN.

Tiny-YOLO v2 has 1 input layer, 9 convolutional layers and 6
maximum pooling layers. The unmodified Tiny-YOLO v2 input layer
resizes images to 416 x 416 pixels, where the output is passed to
convolutional layers for feature extraction. Max pooling is used to
reduce the dimensionality of the convolutional layer outputs.

YOLO divides an image into an S x S grid, where each grid cell
predicts B bounding boxes with corresponding confidence scores. The
confidence, C, represents the probability that an object is encompassed
in a bounding box and is represented as:

𝐶 = 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈 𝑡𝑟𝑢𝑡ℎ
𝑝𝑟𝑒𝑑 (1)

where intersection over union (IOU) is defined as the ratio of the
area of overlap of the detection and ground truth bounding boxes
divided by the area formed by their union. A graphical representation
of IOU is shown in Fig. 1.

Array 12 (2021) 100094

4

D.P. Brogan et al.

Fig. 1. Graphical representation of intersection over union metric.

Table 1
Tiny-YOLO v2 model configurations.

Model Mini-batch size Input resolution

A 8 2368 x 2368
B 12 1920 x 1920
C 16 1664 x 1664
D 20 1472 x 1472
E 24 1344 x 1344
F 28 1248 x 1248
G 32 1184 x 1184

3. Training method

Input resolution and mini-batch size are parameters that directly
influence the performance of a deep NN. The input resolution is defined
in the first layer of the Tiny-YOLO v2 network. In this layer, images
of any size are accepted into the network and resized to the input
resolution specified by the network’s configuration. In this paper, high
definition (pixel density equal to or greater than 1280 x 720) input
resolutions are specified. The original aspect ratio is maintained during
this process. A higher input resolution allows for the network to process
higher resolution images.

At every step (gradient update), the model updates its weights based
on the normalized training loss results from one mini-batch of images.
The training loss reports the error between the model’s predictions and
the ground truth of the training dataset at the end of each step. A higher
mini-batch size allows for more normalized learning whereas a smaller
mini-batch size may evoke noise in the reported training loss.

Both input resolution and mini-batch size depend on the availability
of GPU memory allocations. Therefore, it is desirable to determine
the optimal compromise between these two parameters. A total of
seven models were trained using different combinations of input res-
olutions and mini-batch sizes to determine the optimal training con-
ditions. These combinations were chosen to represent a wide spread
of reasonable combinations of mini-batch size and resolution from
which a trend in reported AP should emerge. Table 1 shows the input
resolution/mini-batch pairing for each model. The default mini-batch
size for Tiny-YOLO v2 is 16 and mini-batch sizes above and below
this default value were explored in evenly-spaced steps of four mini-
batches from half of the default mini-batch value (8) to twice the
default mini-batch value (32). Each model’s mini-batch size was paired
with a respective input resolution that fully utilizes the resources of the
GPU. These input resolution values were identified by a trial-and-error
process which finds the highest input resolution that does not give a
memory error for a given batch size. The input resolution was chosen to
be square to remain unbiased to one image orientation as input images
may be landscape or portrait orientation. It should be noted the input
resolution of Tiny-YOLO v2 can have rectangular dimensions.

All datasets were manually collected using a Google Pixel 12.3 MPx
(3036 x 4048 pixels) camera to maintain uniform high resolution. Tiny-
YOLO v2 automatically resizes these images down to specified input
resolutions during training and testing. Thus, it is desirable to start with
an image resolution that is the same or higher than the specified input
resolution so that maximum visual information can be maintained.

Ground truth files containing the location and classification of
screws were manually generated for each image. Tiny-YOLO v2 uses
these ground truth files to train a model by associating the location and
classification of screws with the respective images. The testing process
also requires these ground truth images, as they are compared with
detection results to determine AP.

The training dataset consists of 900 images of general electronics
and hardware with embedded CRS. The objects in this dataset include
laptops, computer towers, hard drives, oscilloscopes, power supplies,
and other assorted hardware. Due to the diverse assortment of objects,
this dataset contains many variations of CRS. These 900 images were
taken in highly variable environments with various lighting conditions
and distances to the object (ranging from approximately 4 to 8 inches
from the surface of the objects). This dataset is intended to be highly
variable as it is hypothesized this variability will improve the generaliz-
ing ability of the models. Fig. 2 shows a sample of the images included
in this set.

Due to the relatively small training dataset of 900 images, a transfer
learning approach similar to the one discussed in [16] is employed to
avoid overfitting. Each model initializes training from the Tiny-YOLO
v2 Visual Objects Classes (VOC) weights file from [18] which has been
pre-trained on the VOC [11] dataset.

The generalizing ability of the model at a given training iteration is
evaluated by a validation set. The validation set will be referred to as
Test Set A, which contains 90 images of hardware with embedded CRS.
The images in Test Set A are not present in the training dataset and are
used to gauge the performance of the model throughout training. After
training was completed, the final performance results from each model
on Test Set A were recorded in Section 4.

The training method for each model is as follows. A discrete learning
rate decay method was used to achieve the optimal AP on Test Set A.
The learning rate is a parameter that dictates the amount of change
applied to the model’s weights after each training iteration in response
to the reported error between the model prediction and the ground
truth. Fig. 3 shows the learning rate progression method for each
trained model. This method entails first training a model at a high
learning rate of 5e-5 until a maximum attainable AP is reached on
Test Set A for this learning rate. The model then continues training
at a reduced learning rate of 2e-6 until a maximum attainable AP is
reached on Test Set A for this reduced learning rate. To determine the
maximum AP for both the high learning rate and the reduced learning
rate, validation tests are performed where the loss convergence occurs
that determine the AP where further training will cause the model to
overfit the data. The final trained model is the result of this procedure.

Fig. 4(a) shows the overall view of training loss curves for all seven
models. All loss curves closely follow the same trend, but models with
higher input resolutions tend to initialize with a greater loss value.
This higher loss is likely associated with there being more to learn
from higher resolution images. Higher resolution images inherently
contain more information, so it follows the initial training loss increases
with input resolution. Models with higher resolution also generally take
more steps to train; however, this trend is not followed exactly.

Fig. 4(b) shows a zoomed-in view of where the training loss for all
seven models begins to converge. As mentioned earlier, models with
lower batch sizes tend to evoke more noise in the reported training loss.
This is represented clearly in Fig. 4(b) since Model A has the lowest
batch size and shows the most noise, while Model G has the highest
batch size and shows a smooth curve. All seven models consistently
converge in the order of increasing initial loss values. While this
appears negligible in the overall view, it is helpful to confirm this
behavior in the zoomed-in view as it is expected that higher initial loss
values should take longer to converge.

Array 12 (2021) 100094

5

D.P. Brogan et al.

Fig. 2. Sample of images used for training each model.

Fig. 3. Learning rate progression of each model throughout the training process.

Fig. 4. Training loss reported over steps. (a) Overall view of each model throughout the training process. (b) Zoomed-in view of initial convergence for each model.

4. Testing results and discussion

Each model was tested on three distinct datasets; Test Sets A, B, and
C. The authors chose to make the visual environments (lighting, size
of CRS relative to overall frame, distance, and camera angle) equally
diverse between these test sets as to capture a broad representation
of possible conditions that could be encountered by this vision system
during nominal operation. As a result, the authors did not feel a need
to do a systematic investigation of model performance as a function of
the visual environment. Each testing dataset consists of 90 new images
outside of the training dataset. Table 2 provides the total number of
CRS, a description, and sample image for each test set.

Test Set A, which was also used for training validation, consists of
images of general hardware with embedded CRS. This test set evaluates
the ability of the models to make detections on new images of similar
objects to those found in the training dataset.

It is useful to evaluate the models’ performance when given spe-
cialized tasks they were not primarily trained to encounter. Test Sets B
and C provide two different specialized tasks. Test Set B evaluates the
ability of the models to perform CRS detection on laptops and Test Set
C evaluates their ability to perform CRS detection on boxed electronics
such as power supplies, power tools, and oscilloscopes.

The AP metric is used to evaluate the performance of each model.
AP computes the area under a monotonically decreasing precision–
recall curve for a single class as defined in [11]. For reference, Fig. 5
shows similar information to Table 3 but in a visual format for the
precision–recall curve for Model C on Test Set A. Similar graphs can be
constructed for all of the models (A–G) on all of the Test Sets (A,B,C).
IOU is used to differentiate true positives (TP) from false positives (FP).
A TP is defined as a prediction with the correct classification that has
an IOU greater than 50%. A FP is defined as a detection with an IOU
less than 50%. Python scripts developed by Cartucho, Ventura, and

Array 12 (2021) 100094

6

D.P. Brogan et al.

Table 2
Test set descriptions.

Fig. 5. Model C precision–recall curve for CRS detection on Test Set A.

Veloso [17] were used to plot the AP and generate visual overlays of
the detections over ground truth bounding boxes.

Table 3 shows the AP, TP, FP, network initialization time, total
prediction time, and FPS for each model on Test Sets A, B, and C.
The network initialization time is the amount of time Tiny-YOLO v2
takes to set up its network for testing. The total prediction time is the
amount of time spent passing the entire dataset through the network
while generating detection output files for each image in sequence.
FPS is defined as the number of images passed through the network
divided by the total prediction time. The reported network initialization
time and total prediction time are averaged results taken from five
trials for each model. These results are averaged to account for the
GPU’s slight variation in computing times. The AP, TP, and FP will
always remain constant for a given trained model as neither the model’s
weights nor the input image pixels change during testing. Model C
scored the highest AP on all three test sets.

Table 4 shows a sample of images representative of Model C’s
performance on all three test sets. Detections are shown as green or
red boxes labeled ‘‘CRS", which stands for cross-recessed screw. Ground
truth boxes associated with each detection are shown in blue. Green
boxes represent TP and red boxes represent FP.

Test Set A contains a total of 164 screws. Model C correctly pre-
dicted 152 screws while only making one FP prediction. This shows
Model C was more likely to miss a TP rather than assign a FP in Test
Set A. As shown in Table 4, Model C performs exceedingly well when

Table 3
Results on Test Sets A, B, and C.

Model Test Set A

AP TP FP Network Total Frames
Init. time (s) Prediction time (s) Per second

A 85.54% 142 2 10.053 49.576 1.815
B 92.44% 154 4 10.052 42.014 2.142
C 92.60% 152 1 10.047 35.507 2.535
D 90.41% 151 4 10.022 32.989 2.728
E 91.74% 153 8 10.057 30.193 2.981
F 86.97% 146 4 10.039 28.915 3.113
G 83.66% 141 10 10.047 28.720 3.134

Model Test Set B

AP TP FP Network Total Frames
Init. time (s) Prediction time (s) Per second

A 90.44% 120 4 10.084 49.869 1.805
B 98.88% 130 4 10.042 41.722 2.157
C 99.20% 130 2 10.045 35.541 2.532
D 95.01% 125 2 10.066 31.892 2.822
E 93.54% 123 4 10.058 30.599 2.941
F 92.01% 121 2 10.072 28.610 3.146
G 93.50% 123 4 10.016 28.470 3.161

Model Test Set C

AP TP FP Network Total Frames
Init. time (s) Prediction time (s) Per second

A 84.82% 170 1 10.090 48.901 1.840
B 90.50% 181 0 10.090 40.497 2.222
C 98.39% 197 1 10.081 34.244 2.628
D 94.42% 189 2 10.048 30.033 2.997
E 91.21% 183 7 10.048 29.393 3.062
F 90.24% 183 4 10.065 28.016 3.212
G 90.10% 181 10 10.053 27.577 3.264

presented images with a blend of screws and screw-like objects. Grates,
connectors, and holes are often screw-like in appearance and can be a
source of difficulty for classical CV techniques. As shown, the approach
used in this paper is robust in differentiating screws from screw-like
objects. The top right picture in Table 4 shows the only FP Model C
predicted in Test Set A, which is a circular indent in an electronics
case. Model C scored 92.60% AP on Test Set A with an average speed
of 2.535 FPS. This result reaffirms the value of using DL techniques
for fastener detection as they can exhibit high performance and speed
when optimized.

Test Set B contains a total of 131 screws. Model C correctly pre-
dicted 130 screws while making only 2 FP predictions. Both FP cases
are shown in the center and mid-right pictures in Table 4, where the
model mistook a power connector and another circular feature as a
screw. Still, Model C is robust when presented with images containing
holes that do not contain screws. Model C scored 99.20% AP on Test
Set B with an average speed of 2.532 FPS.

Test Set C contains a total of 200 screws. Model C correctly pre-
dicted 197 screws while making only 1 FP prediction. The FP case is
shown in the bottom right picture of Table 4, where the model did
surround the CRS in a bounding box; however, the IOU was less than
50%, which resulted in a FP. Model C scored 98.39% AP on Test Set
C with an average speed of 2.628 FPS. These results show that model
C is highly robust when given the specialized task of CRS detection in
boxed electronics.

Fig. 6 shows the FPS for all seven input resolutions on all three test
sets. Average FPS decreases as input resolution increases for all test
sets. This is expected since more computation is needed for evaluating
higher resolution images. The FPS curves for Test Sets A, B, and C are
nearly identical and follow the same trajectory. The minor variations
between both curves can be attributed to the slight inconsistency of
the GPU’s processing speed. It should be noted the CV time spent using
classical techniques is dependent on the number of screws and screw-
like objects in an image [4,56]. Fig. 6 shows even when three different

Array 12 (2021) 100094

7

D.P. Brogan et al.

Table 4
Model C detected output images from Test Sets A, B, and C.

*Some images have been rotated 90◦ to better fit the table as the test sets contain both portrait & landscape images.

Fig. 6. Image processing speed reported as a function of input resolution for all test
sets.

datasets with varying numbers of screws and screw-like objects are
evaluated, the CV time is dependent almost exclusively on input resolu-
tion. This suggests an image with few screws would likely be evaluated
in the same amount of time as an image with many screws.

Fig. 7a shows the AP vs. mini-batch size, Fig. 7b) shows the AP vs
input resolution and Fig. 7c) shows a 3D plot of the AP scored on Test
Sets A, B, and C as a function of input resolution and mini-batch size.
Models scored highest on Test Set B likely because it has the smallest
variety of objects. Models scored lowest on Test Set A likely because it
contains the largest variety of objects. The general AP curve for all three
test sets is similar, with all curves reaching optimal AP when a mini-
batch size of 16 is paired with an input resolution of 2.77 MPx (1664
x 1664 pixels). This indicates the method used in this paper yields
a configuration that shows consistently optimal performance across
several variations of CRS detection tasks.

The results obtained in this paper show improvement over results
that have been reported from previous work, either in the time to detect
a screw or in the screw detection accuracy. A summary of this work

compared with previous results can be found in Table 5 where the work
described by this paper is referred to as Tiny-YOLO v2 (Model C). In
terms of detection accuracy, Wegener et al. [6] used a Haar Cascade
classifier but was only able to detect 50% of screws. Vongbunyong
et al. [54,55] also used a Haar Classifier and reported being able to
detect over 80% of screws [54], however they also indicated a high
number of false-positive screw detections (82.32%) and false-negative
screw detections (35.78%) [55]. Yildiz and Wörgötter [5] reported their
custom deep learning model was able to achieve an AP of 80.23% on
a testing dataset compared to the 66.47% YOLO v3 was able to do.
DiFilippo and Jouaneh [56] tested multiple laptops using contour and
blob detection, and the accuracy of detection was based on the color of
the laptop and vision system settings. The system performed the best on
lighter laptops and detected 86.7% of screws, and the fastest computer
vision time was 6.5s per screw. For laptops that had darker cases, the
percentage of screws that were correctly identified decreased. The work
presented in this paper has a higher percentage, as the best-trained
model (Model C) has an AP of 92.60% on Test Set A, 99.20% on Test Set
B, and 98.39% on Test Set C. It was also faster than previous systems
that reported the time it took to detect a screw [4,55], as one frame
took approximately 0.4s to process.

5. Conclusions

In conclusion, fastener detection is a required step for CV based
robotic disassembly and servicing applications. The use of DL for this
task offers several advantages to classical CV techniques, including
higher detection speed and performance. Fasteners typically occupy a
small portion of an image, so it is important to use a high-resolution
NN to capture maximum detail when detecting images. It is desirable to
find the optimal compromise between input resolution and mini-batch
size for a given NN as both parameters are dependent on available GPU
resources.

This paper presents a method for determining the optimal compro-
mise between input resolution and mini-batch size for CRS detection
while utilizing maximum GPU resources. An optimal compromise for
an NVidia Tesla V100 GPU with 32 GB of RAM was found with a mini-
batch size of 16 and an input resolution of 1664 x 1664 pixels. At this

Array 12 (2021) 100094

8

D.P. Brogan et al.

Fig. 7. (a) AP vs. mini-batch size for all test sets (b) AP vs. input resolution for all test sets (c) AP reported as a function of input resolution and mini-batch size for all test sets.

Table 5
Comparison of screw detection with previous results.

Authors Accuracy (%) Detection time (s)

Wegener et al. [6] 50 Not reported
Vongbunyong et al. [54,55] >80 [54] 2.60

82.32 (False Positive) [55]
35.78 (False Negative) [55]

Yildiz and Wörgötter [5] 80.23 (custom DCNN) Not reported
66.47(YOLO v3)

DiFilippo and Jouaneh [4] 86.7 (Light Laptop — Best Parameters) 6.7
Tiny-YOLO v2 (Model C) 92.6 (Test Set A) 0.4

99.20 (Test Set B)
98.39 (Test Set C)

configuration, Model C scored 92.60%, 99.20%, and 98.39% AP on Test
Sets A, B, and C respectively. A limitation of the models in this paper
is FPS must be sacrificed for such high input resolutions. While much
faster than classical CV techniques, the fastest model in this paper ran
at only around 3 FPS. These results from the best-performing model
shows improvement over accuracy and detection time from previous
models and approaches that have been presented in literature. Another
limitation is the time spent upfront in manually creating a training
dataset for the purpose of screw detection. Unless publicly available,
the practitioner must generate their own training dataset for their
specific application. For this reason, the authors have created a publicly
available repository containing the manually generated datasets used
in this paper. The repository may be accessed through the follow-
ing link: https://github.com/Dan-Brogan/Cross-Recessed-Screw_Deep-
Learning-Datasets.

Future work should include training a single Tiny-YOLO v2 network
to detect multiple types of screws and even other useful features
commonly found on electronics. Some considerations for multi-class
detection include the requirement for additional training data on mul-
tiple object classes and the mAP metric should be used to evaluate
performance in place of AP. It is hypothesized that the method used
in this paper applies to any GPU; however, future work is needed to
investigate this hypothesis. Future work should also investigate the
integration of this CV system into a robotic test bed.

CRediT authorship contribution statement

Daniel P. Brogan: Methodology, Funding acquisition, Data cura-
tion, Formal analysis, Software, Visualization, Writing – original draft.
Nicholas M. DiFilippo: Project administration, Supervision, Concep-
tualization, Writing – review & editing. Musa K. Jouaneh: Project
administration, Supervision, Conceptualization, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The first author would like to acknowledge the NASA Rhode Is-
land Space Grant (RISG) Consortium, USA for supporting his work on
this project. The NASA RISG Consortium provided financial support
independent of influencing the study design; collection, analysis, and
interpretation of data; writing of the report; or in the decision to submit
the article for publication. We also like to thank Harrison Decker and
Indrani Mandal for providing access to the University of Rhode Island
AI Laboratory GPU computing resources.

References

[1] Forti V, Baldé CP, Kuehr R, Bel G. The global e-waste monitor 2020. Tech. rep.,
Bonn/Geneva/Rotterdam: United Nations Univ., Int. Telecommun. Union & Int.
Solid Waste Assoc. (ISWA); 2020.

[2] Sthiannopkao S, Wong MH. Handling e-waste in developed and develop-
ing countries: Initiatives, practices, and consequences. Sci Total Environ
2013;463:1147–53.

[3] Cui J, Forssberg E. Mechanical recycling of waste electric and electronic
equipment: a review. J Hazard Mater 2003;99(3):243–63.

[4] DiFilippo NM, Jouaneh MK. A system combining force and vision sens-
ing for automated screw removal on laptops. IEEE Trans Autom Sci Eng
2017;15(2):887–95.

[5] Yildiz E, Wörgötter F. Dcnn-based screw detection for automated disassembly
processes. In: 15th Int. conf. signal-image technol. & internet-based syst. 2019,
p. 187–92.

[6] Wegener K, Chen WH, Dietrich F, Dröder K, Kara S. Robot assisted disassembly
for the recycling of electric vehicle batteries. Procedia CIRP 2015;29:716–21.

[7] Shan M, Guo J, Gill E. Review and comparison of active space debris capturing
and removal methods. Prog Aerosp Sci 2016;80:18–32.

[8] Liou J-C. An active debris removal parametric study for LEO environment
remediation. Adv Space Res 2011;47(11):1865–76.

https://github.com/Dan-Brogan/Cross-Recessed-Screw\T1\textunderscore Deep-Learning-Datasets
https://github.com/Dan-Brogan/Cross-Recessed-Screw\T1\textunderscore Deep-Learning-Datasets
https://github.com/Dan-Brogan/Cross-Recessed-Screw\T1\textunderscore Deep-Learning-Datasets
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb1
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb1
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb1
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb1
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb1
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb2
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb2
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb2
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb2
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb2
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb3
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb3
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb3
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb4
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb4
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb4
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb4
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb4
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb6
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb6
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb6
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb7
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb7
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb7
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb8
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb8
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb8

Array 12 (2021) 100094

9

D.P. Brogan et al.

[9] Hu H, Wang D, Gao H, Wei C, He Y. Vision-based position and pose determi-
nation of non-cooperative target for on-orbit servicing. Multimedia Tools Appl
2020;79(21):14405–18.

[10] On-orbit satellite servicing study project report. Tech. rep., Greenbelt, MD:
National Aeronautics and Space Administration, Goddard Space Flight Center;
2010.

[11] Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A.
The pascal visual object classes challenge: A retrospective. Int J Comput Vis
2015;111(1):98–136.

[12] Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proc. IEEE conf.
comput. vis. pattern recognit. 2017, p. 7263–71.

[13] Thtrieu TH. Thtrieu/darkflow. 2019, [Online]. Available: https://github.com/
thtrieu/darkflow. [Accessed 7 Nov. 2019].

[14] Chen H, He Z, Shi B, Zhong T. Research on recognition method of electrical
components based on YOLO V3. IEEE Access 2019;7:157818–29.

[15] De Gregorio D, Tonioni A, Palli G, Di Stefano L. Semiautomatic labeling for deep
learning in robotics. IEEE Trans Autom Sci Eng 2019;17(2):611–20.

[16] Li G, Song Z, Fu Q. A new method of image detection for small datasets under the
framework of YOLO network. In: EEE 3rd Adv. Inf. Technol., Electron. Automat.
Control Conf. 2018, p. 1031–5.

[17] Cartucho J, Ventura R, Veloso M. Robust object recognition through symbiotic
deep learning in mobile robots. In: IEEE/RSJ int. conf. intell. robots and syst..
IEEE; 2018, p. 2336–41.

[18] Redmon J. Darknet: Open source neural networks in C. 2019, [Online]. Available:
http://pjreddie.com/darknet. [Accessed 7 Nov. 2019].

[19] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Adv Neural Inf Process Syst 2012;25:1097–105.

[20] Raj RJS, Shobana SJ, Pustokhina IV, Pustokhin DA, Gupta D, Shankar K. Optimal
feature selection-based medical image classification using deep learning model
in internet of medical things. IEEE Access 2020;8:58006–17.

[21] Zhao Z-Q, Zheng P, Xu S-t, Wu X. Object detection with deep learning: A review.
IEEE Trans Neural Netw Learn Syst 2019;30(11):3212–32.

[22] Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, et al. Deep learning for
generic object detection: A survey. Int J Comput Vis 2020;128(2):261–318.

[23] Gupta A, Anpalagan A, Guan L, Khwaja AS. Deep learning for object detection
and scene perception in self-driving cars: Survey, challenges, and open issues.
Array 2021;100057.

[24] Lateef F, Ruichek Y. Survey on semantic segmentation using deep learning
techniques. Neurocomputing 2019;338:321–48.

[25] Eitel A, Springenberg JT, Spinello L, Riedmiller M, Burgard W. Multimodal deep
learning for robust RGB-D object recognition. In: IEEE/RSJ int. conf. intell. robots
and syst. 2015, p. 681–7.

[26] Xu J, Zhou W, Chen Z, Ling S, Le Callet P. Binocular rivalry oriented predictive
autoencoding network for blind stereoscopic image quality measurement. IEEE
Trans Instrum Meas 2020;70:1–13.

[27] Kim Y, Moon T. Human detection and activity classification based on micro-
Doppler signatures using deep convolutional neural networks. IEEE Geosci
Remote Sens Lett 2015;13(1):8–12.

[28] Zhao Y, Cheng J, Zhou W, Zhang C, Pan X. Infrared pedestrian detection with
converted temperature map. In: Asia-Pacific signal and information processing
association annu. summit and conf. 2019, p. 2025–31.

[29] Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual
understanding: A review. Neurocomputing 2016;187:27–48.

[30] Pathak AR, Pandey M, Rautaray S. Application of deep learning for object
detection. Procedia Comput Sci 2018;132:1706–17.

[31] Wei X, Yang Z, Liu Y, Wei D, Jia L, Li Y. Railway track fastener defect detection
based on image processing and deep learning techniques: A comparative study.
Eng Appl Artif Intell 2019;80:66–81.

[32] Zhang K, Wang W, Lv Z, Fan Y, Song Y. Computer vision detection of
foreign objects in coal processing using attention CNN. Eng Appl Artif Intell
2021;102:104242.

[33] Zhang Y, Sun X, Loh KJ, Su W, Xue Z, Zhao X. Autonomous bolt loosening
detection using deep learning. Struct Health Monit 2020;19(1):105–22.

[34] Wang Z, Li H, Zhang X. Construction waste recycling robot for nails and
screws: Computer vision technology and neural network approach. Autom Constr
2019;97:220–8.

[35] Li Y, Zhao W, Pan J. Deformable patterned fabric defect detection with fisher
criterion-based deep learning. IEEE Trans Autom Sci Eng 2016;14(2):1256–64.

[36] Ding C, Lu L, Wang C, Ding C. Design, sensing, and control of a novel
UAV platform for aerial drilling and screwing. IEEE Robot Automat Lett
2021;6(2):3176–83.

[37] Zheng Y, Chen Z, Lv D, Li Z, Lan Z, Zhao S. Air-to-air visual detection of micro-
UAVs: An experimental evaluation of deep learning. IEEE Robot Autom Lett
2021;6(2):1020–7.

[38] Chen WH, Wegener K, Dietrich F. A robot assistant for unscrewing in hybrid
human-robot disassembly. In: IEEE int. conf. robotics and biomimetics. 2014, p.
536–41.

[39] Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer
learning, In: Int. conf. on artificial neural networks. 2018, p. 270–9.

[40] Wang C-C, Samani H. Object detection using transfer learning for underwater
robot. In: Int. conf. advanced robotics and intelligent systems. 2020, p. 1–4.

[41] Raza K, Hong S. Fast and accurate fish detection design with improved YOLO-v3
model and transfer learning. Int J Adv Comput Sci Appl 2020;11:7–16.

[42] Montalbo FJP. A computer-aided diagnosis of brain tumors using a fine-tuned
YOLO-based model with transfer learning. KSII Trans Internet & Inf Syst
2020;14(12).

[43] George J, Skaria S, Varun V, et al. Using YOLO based deep learning network
for real time detection and localization of lung nodules from low dose CT scans.
In: Medical imaging 2018: computer-aided diagnosis. vol. 10575, International
Society for Optics and Photonics; 2018, p. 105751I.

[44] Al-Masni MA, Al-Antari MA, Park J-M, Gi G, Kim T-Y, Rivera P, et al. Simulta-
neous detection and classification of breast masses in digital mammograms via
a deep learning YOLO-based CAD system. Comput Methods Programs Biomed
2018;157:85–94.

[45] Jia Z, Bhatia A, Aronson RM, Bourne D, Mason MT. A survey of automated
threaded fastening. IEEE Trans Autom Sci Eng 2018;16(1):298–310.

[46] Lee NK, An Y, Tsung F. Studying effects of screw-fastening process on assembly
accuracy. Int J Adv Manuf Technol 2005;25(5–6):493–9.

[47] Cherubini A, Passama R, Fraisse P, Crosnier A. A unified multimodal control
framework for human–robot interaction. Robot Auton Syst 2015;70:106–15.

[48] Pitipong S, Pornjit P, Watcharin P. An automated four-DOF robot screw fastening
using visual servo. In: IEEE/SICE int. symp. system integration. 2010, p. 379–83.

[49] Hu Z, Wan W, Koyama K, Harada K. A mechanical screwing tool for parallel
grippers—Design, optimization, and manipulation policies. IEEE Trans Robot
2021.

[50] Bolmsjö G. Supporting tools for operator in robot collaborative mode. Procedia
Manuf 2015;3:409–16.

[51] Matsuno T, Huang J, Fukuda T. Fault detection algorithm for external thread
fastening by robotic manipulator using linear support vector machine classifier.
In: IEEE int. conf. robotics and automation. 2013, p. 3443–50.

[52] Li R, Pham DT, Huang J, Tan Y, Qu M, Wang Y, et al. Unfastening of
hexagonal headed screws by a collaborative robot. IEEE Trans Autom Sci Eng
2020;17(3):1455–68.

[53] Gil P, Pomares J, Diaz SvPC, Candelas F, Torres F. Flexible multi-sensorial system
for automatic disassembly using cooperative robots. Int J Comput Integr Manuf
2007;20(8):757–72.

[54] Vongbunyong S, Kara S, Pagnucco M. Basic behaviour control of the vision-based
cognitive robotic disassembly automation. Assem Autom 2013.

[55] Vongbunyong S, Kara S, Pagnucco M. Learning and revision in cognitive robotics
disassembly automation. Robot Comput Integr Manuf 2015;34:79–94.

[56] DiFilippo NM, Jouaneh MK. Using the soar cognitive architecture to re-
move screws from different laptop models. IEEE Trans Autom Sci Eng
2018;16(2):767–80.

http://refhub.elsevier.com/S2590-0056(21)00039-4/sb9
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb9
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb9
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb9
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb9
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb10
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb10
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb10
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb10
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb10
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb11
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb11
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb11
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb11
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb11
https://github.com/thtrieu/darkflow
https://github.com/thtrieu/darkflow
https://github.com/thtrieu/darkflow
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb14
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb14
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb14
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb15
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb15
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb15
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb17
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb17
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb17
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb17
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb17
http://pjreddie.com/darknet
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb19
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb19
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb19
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb20
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb20
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb20
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb20
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb20
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb21
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb21
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb21
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb22
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb22
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb22
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb23
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb23
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb23
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb23
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb23
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb24
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb24
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb24
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb26
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb26
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb26
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb26
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb26
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb27
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb27
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb27
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb27
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb27
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb29
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb29
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb29
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb30
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb30
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb30
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb31
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb31
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb31
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb31
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb31
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb32
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb32
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb32
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb32
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb32
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb33
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb33
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb33
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb34
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb34
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb34
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb34
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb34
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb35
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb35
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb35
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb36
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb36
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb36
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb36
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb36
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb37
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb37
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb37
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb37
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb37
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb41
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb41
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb41
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb42
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb42
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb42
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb42
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb42
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb43
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb43
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb43
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb43
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb43
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb43
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb43
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb44
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb44
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb44
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb44
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb44
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb44
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb44
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb45
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb45
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb45
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb46
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb46
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb46
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb47
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb47
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb47
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb49
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb49
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb49
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb49
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb49
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb50
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb50
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb50
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb52
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb52
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb52
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb52
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb52
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb53
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb53
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb53
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb53
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb53
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb54
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb54
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb54
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb55
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb55
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb55
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb56
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb56
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb56
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb56
http://refhub.elsevier.com/S2590-0056(21)00039-4/sb56

	Deep learning computer vision for robotic disassembly and servicing applications
	Creative Commons License
	Citation/Publisher Attribution

	Deep learning computer vision for robotic disassembly and servicing applications
	Introduction
	Related work
	Object recognition tasks
	Transfer learning with neural networks
	Automatic screw detection for disassembly

	Background on tiny-YOLO v2 object detection system
	Training method
	Testing results and discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

