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ABSTRACT A key challenge in the analysis of longitudinal microbiome data is the
inference of temporal interactions between microbial taxa, their genes, the metabo-
lites that they consume and produce, and host genes. To address these challenges,
we developed a computational pipeline, a pipeline for the analysis of longitudinal
multi-omics data (PALM), that first aligns multi-omics data and then uses dynamic
Bayesian networks (DBNs) to reconstruct a unified model. Our approach overcomes
differences in sampling and progression rates, utilizes a biologically inspired multi-
omic framework, reduces the large number of entities and parameters in the DBNs,
and validates the learned network. Applying PALM to data collected from inflamma-
tory bowel disease patients, we show that it accurately identifies known and novel
interactions. Targeted experimental validations further support a number of the pre-
dicted novel metabolite-taxon interactions.

IMPORTANCE While a number of large consortia collect and profile several different
types of microbiome and genomic time series data, very few methods exist for joint
modeling of multi-omics data sets. We developed a new computational pipeline,
PALM, which uses dynamic Bayesian networks (DBNs) and is designed to integrate
multi-omics data from longitudinal microbiome studies. When used to integrate
sequence, expression, and metabolomics data from microbiome samples along with
host expression data, the resulting models identify interactions between taxa, their
genes, and the metabolites that they produce and consume, as well as their impact
on host expression. We tested the models both by using them to predict future
changes in microbiome levels and by comparing the learned interactions to known
interactions in the literature. Finally, we performed experimental validations for a
few of the predicted interactions to demonstrate the ability of the method to iden-
tify novel relationships and their impact.

KEYWORDS longitudinal microbiome analysis, multi-omic integration, microbial
composition prediction, dynamic Bayesian networks, temporal alignment

Microbiomes are communities of microbes inhabiting an environmental niche. The
study of microbial communities offers a powerful approach for inferring their

impact on the host environment and their role in specific diseases and health (50).
Metagenomics involves analyzing sequenced reads from the whole metagenome in a
microbial community in order to determine a detailed profile of microbial taxa (1).
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More recently, additional types of biological data are being profiled in microbiome
studies, including metatranscriptomics, which involves surveying the complete meta-
transcriptome of the microbial community (2), metabolomics, which involves profiling
the entire set of small molecules (metabolites) present in the microbiome’s environ-
mental niche (3), and host transcriptomics, which provides information about the lev-
els of genes expressed in the host (4).

The goal of the second phase of the Human Microbiome Project (HMP) (5), called
the integrative Human Microbiome Project (iHMP) (6), is to generate longitudinal
multi-omics data sets as a means to study the dynamics of the microbiome and the
host across select diseases, including preterm births, type 2 diabetes, and irritable
bowel disorders.

A major challenge in microbiome data analysis is the integration of multi-omics
data sets (7, 51). Most multi-omic studies focus on a separate analysis of each omics
data set without building a unified model (8). There have been some attempts (9–13)
and tools (14, 15) to facilitate the analysis, but there is still much room for improve-
ment regarding reproducibility, flexibility, and biological validity (7, 16, 17).

Deep learning approaches for integrating multi-omics (18) have also been devel-
oped, but their lack of interpretability prevents these models from providing insights
into the interplay of the different omics entities, with the exception of MMvec (19), but
it combines only metabolites and taxa. Even partial least-squares models have been
used to facilitate this integration (20), but they have their own set of limitations
depending on the underlying data generation model and are prone to provide spuri-
ous results when applied to high-dimensional data (21).

In addition, microbiomes are inherently dynamic, and so to fully understand the
complex interactions that take place within these communities, longitudinal micro-
biome data appear to be critical (22). Many attempts have been made to analyze data
from longitudinal studies (12, 13, 23); however, these approaches do not attempt to
study interactions between taxa. An alternative approach involves the use of dynami-
cal systems such as the generalized Lotka-Volterra (gLV) models (24, 25); however, the
large set of parameters in these models diminishes their utility for probabilistic
inference.

Previously, we have shown that probabilistic graphical models, specifically dynamic
Bayesian networks (DBNs), can be used to study metagenomic sequence data from
microbiome studies, leading to models that can accurately predict future changes as
well as identify interactions within the microbiome (26). However, these prior methods
were able to analyze only a single omic data set. Here, we present a new pipeline for
the analysis of longitudinal multi-omics data (PALM), which, in addition to modeling
metagenomics interactions, can incorporate time series metatranscriptomics, metabo-
lomics, and host expression data to train an integrated model of microbiome-host
interactions.

A number of challenges are associated with such large-scale integration. First, mod-
eling such data leads to a considerable increase in the size of the model and the num-
ber of parameters in the DBN, which grows as the product of the number of entities in
each omics data set grows. More complex models make the computation less tractable
and harder to interpret. Additionally, such a large number of nodes and parameters
can lead to overfitting. PALM overcomes these challenges by restricting the set of
allowable interactions (edges) between the omics entities based on sound biological
assumptions and by relying on continuous representation and alignment to integrate
a large set of observations when training a specific model.

An additional challenge with modeling microbiomes is the difficulty of validating
the model’s predictions. To address this, PALM uses in silico approaches employing
multiple public databases (a genomic sequence database and a metabolic pathway
database) and recently proposed software tools for the validation.

Applying PALM to inflammatory bowel disease (IBD) data led to models that cor-
rectly predicted microbiome abundance levels and identified known and novel
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FIG 1 Computational pipeline proposed in this work. For simplicity, the figure shows only the microbial taxon Bacteroides dorei at each step in the pipeline
from a set of five individual samples (subjects M2072, C3027, C3013, C3015, and E5002) of the IBD data set. (a) The relative abundance for each sample
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interactions. Statistical validations indicated that PALM can accurately recover known
interactions and improves upon prior approaches. We also experimentally validated a
few of the highly scoring metabolite-taxon interactions predicted by the model.

RESULTS

We developed a computational pipeline (PALM), presented in Fig. 1, to process
multi-omic microbiome data and infer their interactions. PALM first normalizes the
data and then performs spline interpolation using continuous curves to enable imputa-
tion of missing time points and to overcome irregular sampling (Fig. 1b). We next tem-
porally align the data to correct for the different progression rates of each individual
(Fig. 1c) as well as filter out abnormal and noisy samples (Fig. 1d). Alignment can be
performed using either of the data types, as we discuss below, and PALM extrapolates
the transformation to the other omics types. Our dynamic Bayesian network (DBN)
learning algorithm utilizes prior knowledge to constrain the resulting model, reducing
overfitting and improving accuracy (Fig. 1e). These dynamic constraints can be custom-
ized in the form of an adjacency matrix. Using the imputed, aligned data, we train a
DBN to model interactions within and between the different data types (Fig. 1f).
Finally, we validate the model’s predictive ability and the edges using a curated list of
taxon-gene and taxon-metabolite interactions.

Resulting DBNmodels.We used the inflammatory bowel disease (IBD) cohort from
the iHMP study (13), which followed 132 individuals over a year. These were profiled
every 2 weeks, on average, for different omic types. The preprocessing steps included
filtering, interpolation, temporal alignment, variable selection, and removal of subjects,
with limited measured time points (see Materials and Methods for complete details).
Based on these preprocessing steps, the resulting set used to train the model consisted
of 50 individuals across 101 microbial taxa, 72 genes, and 70 metabolites. In addition,
for each host, the model includes 40 gene measurements profiled at two sites (ileum
and rectum) from a single sampled time point, and the only environmental variable
considered was the week in which the sample was obtained. While PALM can use time
series host expression data, the IBD study profiled individual expression levels only
once at different sites. Thus, for the analysis presented here, we used the host expres-
sion profile as a static attribute. We used this data set to train multi-omic dynamic
Bayesian models that provide information about interactions between taxa, genes, and
metabolites and the impact of environmental variables and host transcriptomics on
these entities over time. We used two sets of constraints: Skeleton and Augmented,
depicted in Fig. S1 in the supplemental material and described in the section
“Constraining the DBN structure,” below. The network with the complete IBD data set
is presented in Fig. S2, with a total of two connections between the week of sample
obtained and any other node, and Fig. S3, with no connections from the week variable,
reinforcing the assumption that the system is in a steady state. For illustrative purposes
of the capabilities of our methodology, we trained a DBN on a subset of the data set
comprised solely of the 10 most abundant entities of each omic type, as shown in
Fig. 2. Gene copy number effects can impact the observed expression levels. While this

FIG 1 Legend (Continued)
measured at potentially nonuniform intervals is the input of the pipeline. (b) Cubic B-spline curve for each individual sample. Subject E5002 (yellow) does
not contain enough measured time points and was excluded from further analysis. The remaining smoothed curves enable principled estimation of
unobserved time points and interpolation at specified intervals. (c) Temporal alignment of all taxa of each individual against the optimal reference subject
(subject M2072 in blue). The learned warping function is extrapolated to all other omics data (e.g., genes and metabolites) of each subject. This process is
then repeated, generating a different data set, with each omic taken as a reference. (d) Postalignment filtering of samples with a higher alignment error
than a predefined threshold. Sample C3015 in gray was discarded. (e) Biologically inspired Skeleton constraints imposed on training the DBNs computed
by PALM. The biological assumption is that at the current time (ti), the expression of host genes (hexagons) and the environmental conditions (triangles)
affect the abundances of microbial taxa (circles), which impacts the expression of microbial genes (diamonds), which in turn dictates the metabolites
(squares) released, and which finally impacts the abundances of taxa in the next time instant (ti11). These restrictions are flexible and can be modified by
the user as input to the pipeline. (f) Learning a two-stage DBN structure and parameters, where nodes correspond to either host genes, environmental
variables, taxa, genes, or metabolites. The figure shows two consecutive DBN time slices, ti and ti11, where dotted lines connect nodes from the same time
slice, referred to as intra-edges, and solid lines connect nodes between time slices, referred to as inter-edges. Biological relationships are annotated with
the learned DBN parameters as either positive (green) or negative (red). Note that while this figure illustrates a general framework, in this study, we used
only one static measurement (at baseline) for the host genes data.

Ruiz-Perez et al.

March/April 2021 Volume 6 Issue 2 e01105-20 msystems.asm.org 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

2 
D

ec
em

be
r 

20
22

 b
y 

13
1.

94
.1

87
.1

16
.

https://msystems.asm.org


may be a problem for the normalization procedure, in general, such an impact is im-
plicitly accounted for since our regression-based DBN uses taxon abundance as
parents for the gene expression nodes.

In the DBN figures, each node represents either a bacterial taxon, a gene, a metabo-
lite, or an environmental variable; directed edges represent inferred temporal relation-
ships between these nodes. On the supporting website, we also provide a Cytoscape
session with an interactive version of each network, together with the original files and
a list of each edge’s learned weight for every network.

Figure S2 shows the full network learned by PALM, comprised of 284 nodes per
time slice (101 microbial taxa, 72 genes, 70 metabolites, 40 host genes, and 1 environ-
mental variable). To identify significant edges in the network, we applied bootstrap-
ping, which involves rerunning the method 100 times, with each execution using a
new data set created by randomly selecting, with replacement, as many subjects as
there were in the data set. We next extracted all edges from all executions, resulting in
1,077 distinct directed edges (470 inter-edges and 607 intra-edges). Among all the
1,077 edges, we observed 362 (33%) negative interactions. Interestingly, a closer look
at the learned DBN revealed that 79% (193 out of 243) of nodes with potential depend-
encies listed at least one negative interaction. Additionally, each edge is annotated
with the percentage of bootstrap iterations in which it appears. Note that while there
was considerable overlap between edges learned in each iteration, since we used the
union of all the networks, the number of edges in the final network is larger than
the number of possible edges for a single iteration (1,077 versus 284 � 3= 852). While
we focus mainly on the union, since it leads to more novel predictions, analysis of the
intersection leads to similar statistical results. The learned DBN with the Augmented
framework is shown in Fig. S3.

FIG 2 Learned DBN by PALM with the Skeleton constraints on the top 10 most abundant entities of each omic type and a maximum number of parents of 3.
Nodes are either taxa (circles), genes (diamonds), metabolites (squares), host genes (hexagons), or environmental variables (triangles). The different node types
have been grouped in different circles; their transparency is proportional to their average normalized abundance relative to that node type. While there are two
consecutive time slices, ti (blue) and ti11 (orange), nodes with no neighbors and self-loops were removed for simplicity. Dotted lines denote intra-edges (i.e.,
directed links between nodes in same time slice), whereas solid lines denote inter-edges (i.e., directed links between nodes in different time slices). Edge color
indicates positive (green) or negative (red) temporal influence, and edge transparency indicates the strength of bootstrap support. Edge thickness indicates the
statistical influence of the regression coefficient after normalizing for parent values, as described in reference 26.
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Evaluating the learned DBN model. We first performed a technical evaluation of
the learned DBN model and compared it to models constructed by other existing
methods (26, 27). The performance of each model was evaluated through leave-one-
out cross-validation, with the goal of predicting microbial composition using each
learned model. Figure 3 represents the observed and predicted taxon compositions for
subject C3013.

Additionally, we explored the effects of several different temporal alignments using
taxa, genes, or metabolites. In each iteration, the whole longitudinal microbial abun-
dance profile of a single subject was selected as the test set, and the multi-omics data
from all other subjects were used for building the network and learning model param-
eters. Next, starting from the second time point, we used the learned model to predict
an abundance value for every taxon in the test set at each time point using the previ-
ous and current time points. Finally, we normalized the predicted values in order to
represent the relative abundance of each taxon and measured the average predictive
accuracy by computing the mean absolute error (MAE) for the selected taxon in the
network. This process of predicting microbial composition was repeated for different
combinations of multi-omics training data (including metagenomics, metatranscrip-
tomics, metabolomics, and host transcriptomics) on the aligned data sets, as well as
unaligned data. A visual representation of the predicted trajectories for taxon- and
gene-based alignment for subject C3028 is shown in Fig. S4a. The average MAE for the
taxon predictions of PALM on the IBD data set for a sampling rate of 2 weeks using a
gene-based temporal alignment is summarized in Fig. 4. Figure S5 shows the average
MAE of PALM across different alignments based on taxa, genes, and metabolites.
Finally, Fig. S6a and b show how MAEs vary for different maximum numbers of parents
for Augmented and Skeleton, respectively.

We used this process to compare the multi-omics DBN strategy to the one that
used only metagenomic data (26), referred to as Baseline on the unaligned and aligned
IBD data, as well as MTPLasso (27), which models time series multi-omics microbial
data using a gLV model. In both cases, we used the default setup and parameters, as
described in the original publications. As shown in Fig. 4, our method outperforms
Baseline and MTPLasso when gene expression data are used for temporal alignment of

FIG 3 Comparison of observed versus predicted microbial composition trajectories. The figure shows the observed and predicted gene-aligned microbial
composition trajectories for a representative aligned subject (C3013). The microbiota composition profile for this subject is comprised of the top 15 most
abundant bacteria along with all remaining bacteria merged into the “other” category. The y axis corresponds to the relative abundance of each bacterium,
while the x axis represents the original measured time point after alignment.
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microbiome samples. Specifically, when gene expression data were used for alignment,
the MAE significantly dropped to 4.01E–03, compared to an MAE of 6.03E–03, achieved
using taxon alignment, as indicated by a one-tailed unpaired t test with the null hy-
pothesis that the means are equal and the alternative hypothesis that the population
mean of the method with gene expression-based alignment is less than the mean of
the (Baseline) taxon-based alignment method (P value = 6.71E–07). Figure 4 also shows
that gene-based alignment significantly outperforms unaligned data regardless of the
underlying method used. Similarly, in the case of taxon- or metabolite-based align-
ment, Fig. S5 shows that our method outperforms MTPLasso when all microbiome enti-
ties are used in the model (taxon, 5.93E–03 versus 7.93E–03; metabolite, 5.82E–03 ver-
sus 7.97E–03). Moreover, Fig. S5 also shows that our method outperforms Baseline
(taxon, 5.93E–03 versus 6.03E–03; gene, 4.01E–03 versus 4.19E–03; metabolite, 5.82E–
03 versus 6.01E–03). Overall, our results suggest that gene expression data are more
suitable for temporal alignment of multi-omics microbiome samples. This is consistent
with previous findings which reported that technical noise dominates the abundance
variability for nearly half of the detected taxa in gut samples (28). Therefore, we used
gene-based alignment for the rest of the analysis, discussed next.

In addition, since PALM can easily be extended to predict other omic types, we pre-
dicted the metabolite concentration and compared our results with those of MMvec
(19) (Fig. S5b). MMvec is the state of the art in metabolite prediction and uses neural
networks for estimating interactions between microbes and metabolites through their
cooccurrence probabilities. Our method significantly outperforms MMvec for all
approaches tested (P value = 4.10E–30 for a two-tailed paired t test against the
Augmented framework) at predicting metabolite abundances. We note that while
MMvec aims to predict an entire metabolite abundance from the microbial read, PALM
can also rely on metabolomics observations from previous time points for such predic-
tions. Still, since MMvec is one of the only prior methods for linking metabolites and
taxa, we compared our method to MMvec in Fig. S5b.

Computationally validating predicted edges. We compiled taxon-metabolite
(T ! M) and taxon-gene (T ! G) databases and used those databases to validate the
predicted edges and score each model. A T ! G interaction was added to the data-
base if any strain of taxon T has gene G in its genome according to the KEGG database.
For T ! M, we relied on the tool MIMOSA (29), which calculates the metabolic poten-
tial of each taxon for a particular data set. See Materials and Methods for complete
details.

Each predicted interaction was either considered “validated” if it appears in the vali-
dation database or “not validated” if it was not found, but the parent and child nodes
were part of the database. Interactions predicted between taxa and/or metabolites not
included in the database were not used in this analysis. We compared the results

FIG 4 Comparison of average predictive accuracies between methods for the IBD data. The figure shows the MAE of our proposed DBN models against a
baseline method using only metagenomic data and a previously published approach, MTPLasso, which models longitudinal multi-omics microbial data
using a generalized Lotka-Volterra (gLV) model for a sampling rate of 2 weeks, which most closely resembles the originally measured time points. The
figure also compares the performances of the methods on the unaligned and aligned data sets.
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between the learned DBNs by PALM using the Skeleton and Augmented constraints,
as well as a random network. To generate the random network, we used the same
nodes in the multi-omic network and assigned the same number of edges as in the
learned DBN by randomly selecting a parent and child from the possible interaction
list (Fig. S1). This was repeated 1,000 times, averaging the metrics over all random
runs.

Figure 5a shows the validation comparison for edges of the form T ! G. The
Skeleton constraints were used to train the networks. The learned DBN with the gene-
aligned data set (green) was compared against a learned DBN with the data set that
was not aligned (blue). As can be seen, the aligned data set results in networks that
outperform the networks from the unaligned data and random networks, with the pre-
cision difference increasing as the threshold increases. This indicates that the bootstrap
score for an edge can serve as a way to determine its likely accuracy.

Figure 5b shows the comparison for edges of the form T ! M. For this, we can only
use the network results from the Augmented constraints since no such edges are per-
mitted when using Skeleton. Again, we observed better performance for the networks
from aligned data than for the networks from unaligned data and random networks,
with an improvement in performance for higher bootstrap thresholds. Note that for
both T ! G and T ! M, the not-aligned network does not even outperform the ran-
dom network, highlighting the importance of the alignment step.

Figure S7 shows the computational validation results of metabolite- and gene-
based alignment and for various maximum numbers of parents for both restriction
frameworks. These results highlight our choice of alignment and maximum-parent
parameters. In addition, Fig. S8a shows the validation of the data set normalized
using log ratios to circumvent bias in compositional data (30), and Fig. S4c shows
the log ratio-normalized abundance trajectory prediction for the same subject as in
Fig. 3. Finally, Fig. S8b shows the validation of learned DBNs with gene-based align-
ments between sampling rates of 14 days against 1 day using the Skeleton
framework.

Biological validation experiments. We performed experiments to validate a few
of the interactions predicted by the DBNs. We focused on edges of the form M ! T ,
i.e., edges where a metabolite is predicted to impact the abundance of a bacterial
taxon. Such edges imply that the metabolite M promotes (or represses, depending
on the sign) the growth of the bacterial taxon T under appropriate growth
conditions.

We first sorted all predicted M ! T interactions based on their confidence (product
of normalized weight and bootstrap score). Next, we selected some of the top edges
to validate taking into account the availability of the metabolites and taxa and the lab-
oratory resources for growth experiments at our disposal. See the section “Laboratory

FIG 5 In silico validation results of the predictions of PALM for the IBD data set. The left part of each subfigure shows the precision (percentage of
predicted edges that were validated), and the right part shows the probability of validating at least that many edges by chance (the y axis is in the
reverse logarithm scale, so higher is better for both). The x axis represents the bootstrap value threshold that was used to select the edges included in
the analysis. For example, for a threshold of 0.7, the score for edges that appear in more than 70% of the repetitions is shown. (a) Validation for T ! G
interactions (bacterial taxon expressing a gene). (b) Validation for T ! M interactions (bacterial taxon consuming a metabolite).
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validations of (metabolite-to-taxon) edges,” below, for details on this process. Based on
these considerations, we focused on two common model organisms, namely,
Pseudomonas aeruginosa and Escherichia coli, and picked from the top predictions
those involving any of these two taxa for validation. In addition, we trained an inde-
pendent densely sampled network (sampling rate of 1 day) to address the possible dis-
connect between the sampling rates of the DBN and the experiments. The results
show that the learned networks are consistent when the much denser sampling is
used. Specifically, the Skeleton gene alignment networks shared 372 out of 671 (55%)
interactions, with a bootstrap score of >= 0.5 (given the sparsity of the networks, this is
a significant overlap). Only 10 bootstrap repetitions were used due to the computa-
tional resources needed. More importantly, all three positive controls tested in the wet
lab were also found in the unaligned and aligned (metabolite-based) networks using
the Skeleton framework. Furthermore, two out of the three positive controls were also
found in the learned networks from gene- and taxon-based alignments. Interestingly,
none of the densely sampled networks learned the negative-control interaction.

� 4-Methylcatechol (4-MC)! Escherichia coli
� 4-Hydroxyphenylacetate (4-HPA)! Escherichia unclassified
� D-Xylose! Pseudomonas unclassified

Standard lab strains, P. aeruginosa PAO1 (31) and E. coli HB101 (32), were used in
the laboratory experiments. The choice of chemicals used to verify was somewhat lim-
ited by commercial availability. A standard Luria-Bertani (LB 20%) culture medium was
used to measure the bacterial growth curve, expressed as bacterial density (optical
density at 600 nm [OD600]), in the absence and presence of metabolites. Metabolites
were added at the stationary phase when the bacteria were multiplying very slowly,
mimicking biofilm growth (33). As positive controls, the preferred carbon sources of E.
coli and P. aeruginosa, glucose and succinate, respectively, were chosen. Figure 6
shows the resulting growth curves of the microbes before and after addition of the
metabolites and a control case without addition of the metabolites (LB 20%).
Confirming the predictions of our networks, D-xylose significantly enhanced P. aerugi-
nosa, and 4-HPA and 4-MC significantly increased E. coli growth. Regarding the con-
trols, as expected, D-xylose and glucose enhanced E. coli, and succinate enhanced P.
aeruginosa, whereas the negative control 1-methylnicotinamide (1-MNA) did not.

The P values for all observations can be seen in Table 1, where a two-tailed paired t
test was executed for the three time points with the highest difference from the base-
line. For more details on the experimental settings, please refer to the section
“Laboratory validations of (metabolite-to-taxon) edges,” below, as well as Fig. S9 for
growth results at a lower concentration of 0.2mM.

FIG 6 Growth curves at 1mM. In this figure, different metabolites were introduced at a 1mM concentration at the end of the exponential phase (0 to 14
h). The figure shows the growth curves after all data points were averaged over 10 replicates. (a) E. coli, with glucose and D-xylose as positive controls. (b)
P. aeruginosa, with succinate as a positive control and 1-MNA as a negative control.
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DISCUSSION

Previous microbiome studies focused primarily on metagenomics sequence data.
More recent data sets are much richer, notably including host and bacterial gene
expression and metabolomics data. The ability to integrate these multi-omics with lon-
gitudinal data remains a major challenge for microbiome analysis.

Here, we have presented PALM, a new approach based on a temporal normalization
using continuous curve alignment, followed by DBN modeling. Our method first repre-
sents each time series using continuous curves and then aligns them using a reference
time series. Next, we sample the aligned curves uniformly and train a DBN model that
combines data from taxa, host genes, bacterial genes, and metabolites. Edges in the
DBN represent predicted interactions between the entities and can be used to explain
changes in the microbiome over time.

Applying our methods to data from IBD patients, we show that multi-omics DBNs
can successfully predict taxon abundance at future time points, thus improving on
models that do not use all available data and on previous methods developed for
modeling temporal taxon interactions. We curated validations for taxon-to-metabolite
and taxon-to-gene interactions; edges predicted by the learned DBNs significantly
intersect these interactions. Finally, we experimentally tested and validated select pre-
dictions of metabolite-to-taxon relationships. We have ignored the case-control struc-
ture of the IBD data set for this work, but the framework can easily be used for that
purpose either by training different models for each disorder or by adding a “diagno-
sis” node to the network and studying its outgoing edges. To address any concern
regarding the learning test independence resulting from the alignment step, we high-
light that the predicted trajectory is evaluated using 101 taxon profiles, while only a
subset of them (9 out of 101) participated in the temporal alignment step. More impor-
tantly, in the results presented in this paper, we did not rely on taxon-based alignment.
Instead, we used gene expression for the temporal alignments and computed the MAE
from predicting microbial composition trajectories. While there may be correlation
between taxa and genes, this is much weaker than using the taxon itself for the align-
ment, and so the results that we present do show that alignment improves the ability
to predict microbiota composition.

Microbiome interaction databases are critical for evaluating learned DBNs but
appear to be incomplete. More complete databases of validated interactions would

TABLE 1 Effect of 1mMmetabolites on bacterial cell densitya

aTaxon density appears in black (OD600), while the P values are inside parentheses. Red P values represent a
significant difference from LB 20% values (P, 0.05). Green P values represent a nonsignificant difference from
LB 20% values. Met., metabolites.
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help validate computational methods for this task. The laboratory validations show a
viable way to validate some of the interactions. However, they may also be improved
by attempting to re-create more realistic conditions for the experiments and may be
enhanced to validate other omics observations as well. Our models suggest that cer-
tain metabolites can be used as predictors of the abundance of taxa. Our interpretation
is that bacteria consume these metabolites, which causes fluctuations in their abun-
dances, but other indirect effects may also be possible.

Comparing DBNs constructed using different omics data allows for an important
kind of inference (Fig. S10). According to this premise, in the DBN built using only
metagenomics data, the edge Streptococcus parasanguinis ! Pseudomonas unclassi-
fied appears with a high confidence (bootstrap score of 1). In the multi-omic DBN, the
following chain of interactions can be found: Streptococcus parasanguinis (T) ! RNA
polymerase (G) ! D-xylose (M) ! Pseudomonas unclassified (T). It is important to note
that though DBN edges may not imply causal relationships, the in silico validation pro-
cess described in this paper supports the above relationships. Finally, D-xylose !
Pseudomonas unclassified was validated experimentally (see “Biological validation
experiments,” above). Thus, comparing DBNs before and after adding additional multi-
omics data can “unroll” and “explain” relationships between taxa.

Our alignment and DBN methods are implemented in Python and Matlab. The
source code and data set used can be obtained from the link in the section “Data avail-
ability,” below, to reproduce the findings of this paper, together with the networks
learned and interactions predicted, sorted by relevance.

MATERIALS ANDMETHODS
Below, we describe the computational pipeline PALM, developed to integrate and model the interac-

tions between the different types of omics.
Data. To test PALM’s proposed analysis pipeline, which combines temporal alignment with Bayesian

network learning and inference for multi-omics microbiome data, we used the inflammatory bowel dis-
ease (IBD) cohort from a study that included 132 individuals across five clinical centers (13). During a pe-
riod of 1 year, each subject was profiled (biopsy specimens, blood draws, and stool samples) every 2
weeks, on average. This yielded temporal profiles for metagenomes, metatranscriptomes, proteomes,
metabolomes and viromes across all subjects. Specifically, a taxon abundance profile is a sequence of
measurements capturing the abundance levels of a specific microbial taxon over time. Although the
metatranscriptomics data summarized functional profiling via HUMAnN2 (34) with species-specific and
species-agnostic quantification of gene families, EC enzyme modules, and pathways, we focused solely
on metabolic enzyme quantification (i.e., of EC enzyme modules) at the community level. We note that
the proposed framework can be used to integrate the full metatranscriptomics data (gene families, EC
enzyme modules, and pathways) as well as other omics data (e.g., viromics); however, given the com-
plexity of the current data sets that we have modeled here, we have restricted the analysis to only EC
enzyme modules in this paper. Additionally, for each subject, host- and microbe-targeted human RNA
sequencing was yielded from biopsy specimens collected at the initial screening colonoscopy, with
patients sampled at three locations (colon, ileum, and rectum); however, only ileum and rectum data
were used in this study, as colon data were missing for 82% of the subjects analyzed. All data sources
are fully described and available at https://ibdmdb.org/.

Each data set was associated with the week when it was sampled, except for the host transcriptom-
ics, for which only a single biopsy specimen was obtained at each location (ileum and rectum).
Therefore, host transcriptomics data were used as static variables in the DBN.

Data preprocessing. First, for each subject, the different omic profiles (taxon, gene, and metabolite)
were normalized separately such that each omic type sums up to 1. In order to account for the common
pitfalls when comparing relative abundances across samples, as highlighted by recent studies (30, 35,
36), we also separately normalized microbial taxon data using log ratios, which have been shown to cir-
cumvent bias in compositional data (30). Specifically, we used Faecalibacterium prausnitzii as the refer-
ence species. Next, for each individual with n. 1 different longitudinal microbial samples, s1; � � � ; sn , we
computed the additive log ratio transformation (37) of the i-th sample as

log
si
s1
; for i ¼ 2; � � � ; n:

Additionally, RNA-seq data from the ileum and rectum of each host were analyzed using DESeq2
(38) and the count of transcripts per kilobase million (TPM). As a proof of concept, for each body
site, we selected the top 20 genes with the highest variance across all subjects. We note that this set
of genes is limited, as previous studies have reported over 1,000 differently expressed genes for IBD
individuals at these locations compared to individuals without IBD (13). In the case of metabolomics
data, metabolites without an HMDB correspondence were removed. Then, we filtered out
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metabolites for which the mean intensity was less than 0.1% or had zero variance from the originally
sampled time points. Next, we performed temporal alignment of time series data from individuals,
as described in the work of Lugo-Martinez et al. (26). For this, we needed to represent each discrete
time series using a continuous function. Here, we used B-splines for fitting continuous curves to the
time series multi-omic data profiled from each subject, including the microbial composition, gene
expression, and metabolic abundance. To improve the accuracy of the reconstructed profiles, we
removed any sample that had fewer than five measured time points in any of the multi-omics meas-
urements. Although the IBD data are composed of 107 individuals with taxonomic profiles, 77 indi-
viduals with gene expression profiles, and 80 individuals with metabolic profiles, and each omic pro-
file has at least 5 longitudinal measurements, there are exactly 62 individuals whose trajectories
have at least 5 measured time points for all three omic types. This set is further reduced to 51 indi-
viduals when cross-referenced with the gene expression profiles derived from host transcriptomics
data. Therefore, the final set is comprised of 51 individual multi-omic time series used for further
analysis.

Temporal alignments. Given longitudinal samples from different subjects, we cannot expect
that the rates at which various multi-omics levels change would be exactly the same between these
individuals (39). To facilitate the analysis of such longitudinal data across subjects, we first aligned
the time series from the microbiome samples using the microbial composition profiles. As described
earlier, these alignments use a linear time transformation function to warp one time series into a
common, representative sample time series used as the reference (26). While prior alignment meth-
ods relied on taxon information, when multi-omics data are available, PALM can use other genomic
information for the alignment. Specifically, here we also tested the use of gene expression and
metabolite abundance profiles for determining accurate alignments of patients. As we show, by
using a better omics data type, the resulting DBNs can more accurately capture and predict taxon-
metabolite and taxon-gene relationships.

For each omics data type (i.e., taxa, genes, or metabolites), we selected an optimal reference sample
from the 51 time series as follows: we generated all possible pairwise alignments between them and
selected the time series that resulted in the least total overall error in the alignments. We then searched
for abnormal and noisy samples from the resulting set of alignments as follows: (i) computed the mean
(m) and standard deviation (d ) of the alignment error and (ii) removed all samples from an individual
whose alignment error exceeded m1ð2� d Þ, as previously described in the study by Lugo-Martinez et
al. (26). However, we did not remove any of the 51 time series samples, as none of the aligned profiles
displayed an alignment error satisfying these constraints across all three omic types. Figure 1a to d show
the overall alignment process of Bacteroides dorei from the taxon-based alignment perspective.

Given an individual’s warped/aligned time series over a specific omic type, the other multi-omics
data were incorporated as follows: the same transformation applied to the aligned sample was applied
to all the complementary multi-omics time series data. The resulting set used for the modeling was com-
prised of 50 individual-wise heterogeneous alignments involving 101 microbial taxa, 72 genes, and 70
metabolites. This smaller number of attributes was used because learning a Bayesian network is compu-
tationally intractable (40, 41) and is unlikely to have a run time that is polynomial in the number of fea-
tures; however, there is no imposed restriction on the number of features.

Dynamic Bayesian network models. Using the aligned time series multi-omics data, we next
trained graphical models that provide information about the relationships between the different omics
(taxa, genes, metabolites, host genes) and environmental (exogenous) variables. In PALM, we extend the
DBN model proposed in the work of Lugo-Martinez et al. (26) to account for multi-omics microbiome
data with the goal of inferring the temporal relationships between the heterogeneous entities in a mi-
crobial community. A DBN is a directed acyclic graph where, at each time slice, nodes correspond to ran-
dom variables of interest (e.g., taxon abundance, gene expression, age, etc.) and directed edges corre-
spond to their conditional dependencies in the graph. These edges are defined as either intra-edges,
connecting nodes from the same time slice, or inter-edges, connecting nodes between consecutive time
slices. In our DBN model, only two slices are modeled and learned, as shown in Fig. 1e.

In PALM, our DBN models encode five types of nodes: (i) taxon abundance, (ii) gene expression, (iii)
metabolite concentration, (iv) host gene expression, and (v) sample metadata information. The first three
types represent continuous variables, whereas the last two types can be either discrete or continuous.
For our DBNs, we use the formalism of conditional Gaussian Bayesian networks (42) to take advantage
of its ability to seamlessly integrate discrete and continuous variables in a single probabilistic framework.
However, since all DBNs presented in this paper use only continuous variables, we excluded any refer-
ence to discrete variables in the joint probability distribution. Formally, let H denote the set of parame-
ters for the DBN and G denote a specific network structure over continuous variables (denoted as W) in
the multi-omics microbiome study. The joint distribution P(W) can be decomposed as

PðWÞ ¼
Y

x2W
f ½x jPaGðxÞ�;

where f denotes a linear Gaussian conditional density over continuous variables and PaGðxÞ denotes the
set of parents for the variable x value in G (26, 43). In particular, continuous variables are modeled using
a Gaussian model with the mean set based on a regression model over the set of continuous parents, as
follows
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f ðx j u1; � � � ; ukÞ;Nðb 01
Xk

i¼1

b i � ui;s
2Þ;

where u1; . . . ; uk are continuous parents of x, b0 is the intercept, b 1; . . . ; b k are the corresponding
regression coefficients for u1; � � � ; uk , and s 2 is the standard deviation. This Gaussian regression model is
appropriate for modeling errors and is at least partially a way to deal with both normalization impact
and measurement noise. As highlighted in Fig. 1e, the conditional linear Gaussian density function for
variable Tti11

1 denoted as fðTti11
1 j Tti1 ;Mti

1 ; E
ti11
1 ; Eti11

2 Þ is modeled by

Nðb 01b 1 � Tti
11b 2 �Mti

11b 3 � Eti11
1 1b 4 � Eti11

2 ;s 2Þ;

where H ¼ fb 1; b 2; b 3; s
2g is the set of DBN model parameters. Here, we infer the parameters, H, by

maximizing the likelihood of the longitudinal multi-omics data, D, given our regression model and
known structure, G.

The problem of training the DBN is expressed as finding the optimal structure and parameters,

max
H;G

PðD jH;GÞPðH;GÞ ¼ max
G

PðD;H jGÞPðGÞ;

where PðD jH;GÞ is the likelihood of the data given the model. Since the likelihood of a structure
increases as the number of edges increases, one must effectively find the structure that maximizes the
likelihood of the data while penalizing overly complex structures. As in the study by Lugo-Martinez et al.
(26), we maximized PðD;H jGÞ for a given structure, G, using maximum log-likelihood estimation (MLE)
combined with a Bayesian information criterion (BIC) score, defined as

BICðG;DÞ ¼ logPðD jH;GÞ2 jHj
2

logjDj;

where jHj is the number of DBN model parameters in structure G and jDj is the number of observations
in D. This approach enables an effective way to search over the set of all possible DBN structures while
favoring simpler structures. Furthermore, this approach has been shown to outperform Bayesian-
Dirichlet scores, which require prior knowledge and can be sensitive to parameters and improper prior
distributions (26, 44, 45).

Constraining the DBN structure. An important innovation in PALM lies in the structure constraining
of the network to conform to our proposed metabolic framework, which ensures the desired flow of
interactions. These constraints (in the form of a matrix received as an input to the function) allow edges
only between certain types of nodes, highly reducing the complexity of searching over possible struc-
tures and preventing overfitting. Note that these constraints can easily be modified by the user, such as
by adding more data types or different restrictions in the input file containing the adjacency matrix.
Specifically, we allowed intra-edges from environmental and host transcriptomics variables to microbial
taxon (abundance) nodes, from taxon nodes to gene (expression) nodes, and from gene nodes to
metabolite (concentration) nodes. All other interactions within a time point (for example, direct gene to
taxa) were disallowed. We also allowed inter-edges from metabolites to taxon nodes in the next time
point, and self-loops from any node, Ati

1 , to Ati11
1 , except for environmental or host transcriptomics varia-

bles for which no incoming edges were allowed (host genes were measured at only a single time point,
so no incoming temporal edges were allowed for them). These restrictions referred to as the Skeleton
and depicted in Fig. S1a reflect our understanding of the basic ways that the different entities interact
with each other; i.e., environmental and host gene expression variables are independent variables, taxa
express genes, which are involved in metabolic pathways, and finally, the metabolites impact the
growth of taxa (in the next time slice).

We also trained DBNs using a less constrained framework, referred to as Augmented, as shown in
Fig. S1b. Unlike Skeleton, the Augmented framework also allowed direct edges between taxa and
metabolites to account for cases where noise or other issues related to profiling of genes can limit our
ability to indirectly connect taxa and the metabolites that they produce. Figure S1 summarizes each
framework in the form of an adjacency matrix. Note that other constraints, such as requiring that taxa
connect only to genes present in their genome, were not imposed since genomics reference databases
are not always complete and so they may lead to missing key interactions.

We used a greedy hill-climbing approach for structure learning, where the search is initialized with a
network that connects each node of interest at the previous time point to the corresponding node at
the following time point. Next, nodes are added as parents of a specific node via intra- or inter-edges,
depending on which valid edge leads to the largest increase of the log-likelihood function beyond the
global penalty incurred by adding the parameters as measured by the BIC score approximation.

Every network was bootstrapped by randomly selecting with replacements of as many subjects as in
the data set and training a different network 100 times. Although we explore multiple values as the max-
imum number of possible parents for each node (see Fig. S6 and S9, S10, and S11 for results with differ-
ent maximum numbers of parents), unless otherwise stated, the maximum number of possible parents
was fixed at 3. The networks were then combined, and the regression coefficients of the edges were
averaged. Each edge was also labeled with the bootstrap support (percentage of times that the edge
appears). Each repetition was set to run independently on a separate processor using MATLAB’s Parallel
Computing Toolbox. Other parallel implementations include parallelizing the cross-validation
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computation of the inference error and each independent alignment error calculation using Python’s
Parallel library.

Validating DBNs. A major challenge in building models of biological interactions lies in developing
methods to validate them and in providing confidence measures. Since DBNs are generative models,
one approach is to predict time series using previous time points and thus to achieve cross validation
(26). Such technical validations, while informative, can be thought as of “black-box” validation and do
not shed light on the accuracy of specific edges and interactions predicted by the model in which we
are interested.

We broadly discuss approaches to validate the types of edges present in the DBN (Fig. 1e), which are
the parameters learned by the model and hence closer to “white-box” validation. Edges from taxa to
genes can be circumstantially validated by verifying that (i) the taxon presence is guaranteed by its non-
zero abundance, (ii) the taxon genome has the gene, and (iii) the gene is expressed. PALM, therefore,
handles this using the in silico validation strategies mentioned below. Similarly, edges from genes to
metabolites or taxa to metabolites could potentially be validated.

The challenge is in validating edges from metabolites to taxa, for which an in silico approach is
unlikely to work since no such database has been compiled to the best of our knowledge. In
“Laboratory validations of (metabolite-to-taxon) edges,” below, we propose a validation approach
involving laboratory experiments.

In silico validation of DBN edges. In silico validations of DBN edges are handled by verifying the in-
formation against a database of known interactions between taxa to genes and/or taxa to metabolites.
Unfortunately, no such comprehensive database exists. For example, highly curated databases, such as
the HMDB (46) or MetaCyc (47) database, or the findings of the large-scale study of Maier et al. (48)
turned out to be inadequate since the intersection of their contents with the species and metabolites in
our networks was too small.

To assist in the validation of taxon-metabolite (T ! M) edges in our networks, we relied on the tool
MIMOSA (29). MIMOSA calculates the metabolic potential of each species, i.e., the ability of a species to
produce a metabolite under the conditions of the data set. The list of all taxon-metabolite pairs from
our DBNs that resulted in a positive score in MIMOSA was used as a validation database.

For taxon-gene (T ! G) validations, we used the KEGG database to build a validation database of
bacterial taxa and the genes present in their genomes. To keep this database small, we used only taxa
and genes present in our network. If multiple strains were available for a bacterial species, then all genes
from each strain were aggregated. The one-time creation of a local validation database also speeded up
our computations considerably.

To calculate the statistical significance of validated interactions compared to a null model, a Poisson-
binomial distribution test was executed to test if the interactions were expected to be validated by
chance. The main reason that a simple binomial test cannot be performed is the differences in the in-
degree distribution between different nodes in the validation set (essential metabolites or genes would
have a high probability of being connected to any given bacterium in the validation database). Because
some nodes have many more validated interactions than others, a uniform model for each edge does
not accurately capture the null probability of selecting such an edge. This was solved with the function
ppoisbinom from the R package poisbinom (49), which gives the cumulative distribution function of the
probability of validating by chance at least as many interactions as the number of true positives. For this
calculation, each possible interaction has a different probability of being selected (based on the valida-
tion database). The validation precision of the network was also calculated as the percentage of vali-
dated interactions from the ones predicted, even though this homogeneous metric ignores the differen-
tial significance of each interaction. We did not calculate the validation recall because in many cases a
false positive cannot be distinguished from a true interaction that was simply not recorded in the data-
base and may lead to misleading scores.

Laboratory validations of (metabolite-to-taxon) edges. Wet-lab experiments were carried out to
validate predicted M ! T interactions. Testing each such edge is not a feasible proposition. We first
sorted all predicted M ! T interactions based on their confidence, which we defined as the value of
jnormalizeðweightÞ j � bootstrap. We applied this operation to the three parents (Skeleton for the
gene-aligned and no-alignment networks). The normalization was performed to counteract the differen-
ces in the abundances between the parent and child nodes according to reference 26. We narrowed it
down to edges that involved the species P. aeruginosa or E. coli because of the ready availability of these
species and the expertise and facilities available to us in our laboratories. Then, we combined and sorted
all interactions from the gene alignment and no-alignment networks and selected the top interaction
involving P. aeruginosa and the top two interactions involving E. coli to validate. The full list of interac-
tions along with their confidence scores can be seen in the Networks folder of the GitHub page. For pos-
itive controls, we selected metabolites known to enhance growth, and as a negative control, we selected
one metabolite that was not connected to the taxon in any of our learned networks.

The goal of the experiments was to validate an M ! T edge by studying the impact of the metabo-
lite M on the growth of taxon T. While the experimental setup does not re-create the conditions of the
interaction in the microbiome, we consider this an important step in the right direction. As with the in
silico validations, the laboratory validation confirms that the inferred interaction is a strong possibility.
We selected three predicted interactions involving readily available bacteria and metabolites from the
generated networks. The experiments were performed by growing relevant taxa in isolation and adding
the relevant metabolite to measure its impact on growth. These metabolites were expected to positively
impact the growth of the taxon because of the edge between metabolite concentration and taxon
abundance. To address the apparent disconnect of the time scales between the data set (2 weeks) and
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the laboratory experiments (several hours), we also subsampled the original data set with a sampling
rate of 1 day and learned independent networks, making sure that the tested interactions were also in
these densely sampled networks.

After plotting the growth curves with the bacterium and metabolite in question, using a two-tailed
paired t test, we assessed if each metabolite was enhancing/inhibiting the taxon growth in comparison
to growth without the metabolite.

Preliminary experiments. Three preliminary trials are outlined below, which paved the way for the
final experiments that were run. The bacterial strains used, Escherichia coli HB101 (32) and Pseudomonas
aeruginosa PAO1 (31), were routinely cultured in Luria-Bertani (LB 20%) broth (5 g tryptone, 10 g sodium
chloride, and 5 g yeast extract per liter) or agar (LB broth with 1.5% agar) (Difco, NJ, USA). Growth curve
assays were performed in media supplemented with the metabolites at 37°C. For the three preliminary
experiments, we attempted to mimic a limited-nutrient environment by using minimal medium [MM; in
grams/liter, (NH4)2SO4, 2.0; K2HPO4, 0.5; MgSO4 · 7H2O, 0.2; FeSO4 · 7H2O, 0.01, pH 7.2 6 0.2]. E. coli was
grown in the presence of 4-methylcatechol (4-MC, C7H8O2) and 4-hydroxyphenylacetate (4-HPA, C8H8O3).
P. aeruginosa was grown in the presence of D-xylose (C5H10O5), and 1-methylnicotinamide (1-MNA,
C7H9N2O

1).
In Experiment 1, bacteria were grown in 0.2 M of MM mixed with 0.2 mM glucose and 0.2 mM

metabolites. The cells reached the stationary phase at a very low OD, suggesting that this is not the suit-
able medium to be used. The metabolites did not affect the bacterial growth at the exponential phase.

In Experiment 2, the effect of metabolites on bacterial growth at the stationary phase was tested
using MM combined with 20% Luria Bertani broth with metabolites at 0.2, 1.0, and 2 mM. The cells
reached the stationary phase at a higher OD. The metabolites at lower concentrations did not affect the
exponential phase; however, they are lethal at 2 mM.

In Experiment 3, similar conditions in experiment 2 were repeated (MM plus 20% Luria Bertani broth)
but using only 0.2 and 1.0 mM metabolites individually. The metabolite effect on bacterial growth was
observed only at the stationary phase.

Final experiments. Because no significant difference was observed in the exponential growth rate
and consequently in the doubling time under all the conditions tested for both E. coli and P. aeruginosa,
we ran a new test in which the metabolites were added at the beginning of the stationary phase to test
its effect on it.

The growth of E. coli was monitored hourly in the absence (control) and presence of 4-MC, 4-HPA,
D-xylose, and glucose at 0.2 and 1mM. Glucose and D-xylose were used as enhancer positive controls.
At the lower concentration (0.2mM) in a comparison with the control (LB 20%), 4-HPA had no effect
and 4-MC, D-xylose, and glucose were enhancing (Fig. S9a and c). The compound 4-HPA has no effect
at a low concentration; however, at 1mM, there is a significant enhancing effect starting at early sta-
tionary phase (Table 1). At the highest concentration, all metabolites produce an enhancer effect that
is statistically significant (t test, P, 0.05); there is also a more pronounced enhancer effect of 4-MC
and glucose than of D-xylose and 4-HPA (Fig. 6).

The growth of P. aeruginosa PAO1 was monitored hourly in the absence (control) and presence of D-
xylose, 1-MNA, and succinate at 0.2 and 1mM. Succinate was used as the enhancer positive control, and
1-MNA was used as the negative control. It is worth noting that 1-MNA does not appear in any of our
learned networks: alignment, no-alignment, Skeleton, Augmented, or any number of parents tested. D-
Xylose and succinate at 0.2mM appear to have an enhancer effect in the stationary phase (Fig. S9b), but
the differences are not statistically significant at this concentration (Fig. S9d). No effect was observed on
P. aeruginosa growth in the presence 1-MNA. At a 1mM concentration, D-xylose and succinate produced
and enhanced growth, and the difference was statistically significant (Table 1) (t test, P, 0.05). The pres-
ence of 1-MNA did not have a significant effect on P. aeruginosa growth; it could potentially be an inhib-
itory compound (Fig. 6).

Data citation. All data analyzed in this work are derived from the iHMP IBD website (https://www
.ibdmdb.org; 13).

Data availability. Source code and data are freely available on our GitHub page (https://github
.com/DaniRuizPerez/PALM-Public-Respository), linked from the project website (http://biorg.cs.fiu
.edu/palm/), under the MIT Open Source license agreement.
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