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Abstract: Photoplethysmography (PPG) is a low-cost, noninvasive optical technique that uses
change in light transmission with changes in blood volume within tissue to provide information for
cardiovascular health and fitness. As remote health and wearable medical devices become more
prevalent, PPG devices are being developed as part of wearable systems to monitor parameters such
as heart rate (HR) that do not require complex analysis of the PPG waveform. However, complex
analyses of the PPG waveform yield valuable clinical information, such as: blood pressure, respiratory
information, sympathetic nervous system activity, and heart rate variability. Systems aiming to derive
such complex parameters do not always account for realistic sources of noise, as testing is performed
within controlled parameter spaces. A wearable monitoring tool to be used beyond fitness and heart
rate must account for noise sources originating from individual patient variations (e.g., skin tone,
obesity, age, and gender), physiology (e.g., respiration, venous pulsation, body site of measurement,
and body temperature), and external perturbations of the device itself (e.g., motion artifact, ambient
light, and applied pressure to the skin). Here, we present a comprehensive review of the literature
that aims to summarize these noise sources for future PPG device development for use in health
monitoring.

Keywords: photoplethysmography; cardiovascular disease; remote health

1. Introduction

Remote and continuous/intermittent monitoring (RCIM) has proven to be a promising
route to deliver preventative care by reducing both the death rate and burdens placed on the
healthcare system [1–3]. One emerging RCIM technique frequently being used to monitor
wellness is photoplethysmography (PPG). PPG works by illuminating the skin (commonly
the finger, wrist, forearm, or ear) with light and collecting the transmitted or reflected
light with a nearby detector. The collected light varies in intensity and has a pulsatile
component, often called the AC component, and a quasi-DC component. The variation
in the quasi-DC component is due to many factors: the optical properties of the tissue,
average blood volume, respiration, vasomotor activity, vasoconstrictor waves, Traube
Hering Meyer waves, and thermoregulation [4–14]. The common pulsatile (“AC”), change
in the PPG is usually the variation associated with arterial blood volume. As the systolic
and diastolic pulse travel through an artery or arteriole, the properties of the pulse itself and
the compliance of the vessel lead to a change in vessel diameter and consequently a change
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in blood volume. This correlates with a change in light detected by a photodiode after
illumination and hence a change in the voltage or current generated by the photodetector.
Changes in erythrocyte orientation can also lead to changes in optical transmittance, further
modifying light detected by a photodiode as a function of blood volume [15]. Over an
entire cardiac cycle, if the quasi-DC baseline light signal from the other tissue parameters
is removed, this leads to the AC PPG waveform, which is attributed primarily to the
cardiac pulse. This pulse is often inverted and displayed as seen in Figure 1a. In addition
to the possibility of gathering clinical information from the PPG waveform itself, some
have used its derivatives to gather information including the first derivative known as
the velocity plethysmograph (VPG, Figure 1b) and the second derivative known as the
second derivative photoplethysmograph or acceleration plethysmograph (SDPPG or APG,
Figure 1c) [16].
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tions and is a general term for those diseases that affect the heart or blood vessels, and 
include (but are not limited to): coronary artery disease, cardiomyopathy, heart failure, 
arrhythmia, myocardial infarction, and peripheral artery disease [19]. CVD is often asso-
ciated with a build-up of fatty deposits inside the arteries (atherosclerosis) and an in-
creased risk of blood clots. It is the number one cause of death globally, contributing to 
more than 17 million deaths [20]. Cardiovascular disease is currently diagnosed or moni-
tored through noninvasive means using a variety of approaches depending on the specific 
manifestation. These include: PPG, pulse oximeter, blood pressure cuff, Holter monitor 
electrocardiagram (ECG), ECG during a stress test, computerized tomography (CT) scans, 
ultrasound imaging, and magnetic resonance imaging (MRI) [21]. These approaches are 

Figure 1. (a) Photoplethysmography (PPG) waveform: 1. systolic peak; 2. dicrotic notch; 3. diastolic
peak; 4. slope transit time; 5. heart rate; 6. area under systolic waveform; 7. area under diastolic
waveform; (b) first derivative, velocity plethysmograph (VPG): 8. max slope in systole; 9. end of
systolic peak; 10. Start of dicrotic notch; 11. max slope in diastole; (c) second derivative, second
derivative photoplethysmograph or acceleration plethysmograph (SDPPG/APG): 12. a-point; 13. b-
point; 14. c-point; 15. d-point; 16. e-point. Created with BioRender.com.

Beyond fitness and heart rate monitoring, the primary medical use of the PPG has been
focused on obtaining information about the cardiovascular system towards cardiovascular
disease (CVD) diagnosis and treatment [17,18]. CVD is a class of chronic conditions and is a
general term for those diseases that affect the heart or blood vessels, and include (but are not
limited to): coronary artery disease, cardiomyopathy, heart failure, arrhythmia, myocardial
infarction, and peripheral artery disease [19]. CVD is often associated with a build-up of
fatty deposits inside the arteries (atherosclerosis) and an increased risk of blood clots. It is
the number one cause of death globally, contributing to more than 17 million deaths [20].
Cardiovascular disease is currently diagnosed or monitored through noninvasive means
using a variety of approaches depending on the specific manifestation. These include: PPG,
pulse oximeter, blood pressure cuff, Holter monitor electrocardiagram (ECG), ECG during
a stress test, computerized tomography (CT) scans, ultrasound imaging, and magnetic
resonance imaging (MRI) [21]. These approaches are often used in combination with
monitoring blood biomarkers [22,23]. PPG systems developed for remote and wearable
use are typically for general wellness and fitness. This precludes it from being prescribed
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for medical use at home. The blood pressure cuff, ECG patch, and Holter monitor are also
not often used for long-term remote monitoring [24]. Additionally, these tests are rarely
administered preventatively, despite research which concludes that preventative testing
could reduce deaths by up to 25% [1]. PPG can fill this gap if a sufficiently accurate and
precise device is developed.

As depicted in Figure 1, a tremendous amount of information can be extracted from
the PPG and its derivative waveforms. Every feature labeled in Figure 1 has been proposed
for use to assess cardiovascular health [22,25–27]. Specifically, the systolic peak can be used
for heart rate, the dicrotic notch and the area of the curve before and after the notch are
used for stroke volume, slope transit time can be used for hypertension, the first derivative
parameters are largely used to assess blood velocity, and the five points in the second
derivative are used ratiometrically to assess vascular health and risk for cardiovascular
disease [22,28–30]. Additionally, some parameters in the literature such as pulse transit
time (PTT), which is used to determine pulse wave velocity (PWV) and estimate blood
pressure without a cuff, requires extraction of the time delay from two PPG waveforms
or from an ECG and PPG waveform [31,32]. Overall, the literature has demonstrated the
potential diagnostic and prognostic strength for the PPG; however, the PPG features can
only be utilized if the waveform is of a high quality with high signal-to-noise ratio (SNR).

PPG-based RCIM devices that are U.S. Food and Drug Administration (FDA) cleared
or approved and can accurately and consistently record clinical parameters in a sufficiently
diverse population for true health monitoring are scarce. Table 1 summarizes the existing
PPG-based RCIM devices and their FDA status. All six identified devices with FDA status
appear to be able to provide patients and providers with data for oxygen saturation (SpO2),
respiration rate, and pulse rate. The oldest device in Table 1 is Equivital™’s EQO2 Lifemon-
itor, a device worn in a chest harness that also uses ECG. In some cases, FDA approval
is only for when the wearable is used within a software suite or healthcare framework.
This is the case with the Samsung Gear S2, which is FDA cleared to monitor heart rate
toward detecting atrial fibrillation when done with the LIVMOR Halo™ Detection Sys-
tem. The indications for use in these devices are very significant advancements in remote
monitoring, but still lag in the potential prognostic capabilities of the PPG. Numerous
non-FDA cleared/approved fitness devices exist and can estimate heart rate by quantifying
the number of systolic peaks in a period of time, but a single parameter limits the amount
of extractable information. Additionally, there are many reports of inaccuracy in these
devices [33]. The most popular of these devices are listed in Table 1.

The difficulty in determining features in PPG devices lies in the numerous sources of
noise that can impede the output of the PPG. These sources of error pertain to variation
within and across individuals (e.g., skin tone, obesity, age, and gender), physiology (e.g.,
respiration, venous pulsation, body site of measurement, and body temperature), and
external perturbations of the device itself (e.g., motion artifact, ambient light, and applied
pressure to the skin). In addition, the hardware and software within the device itself can
contribute to the noise. These many sources of noise create limitations in the application
of PPG to derive advanced physiological parameters. To the authors’ knowledge, there
is no work that comprehensively summarizes the literature surrounding these sources of
noise and how they affect the waveform of the PPG and its derivatives. Thus, the factors
identified in this report may be useful to guide future PPG system designs for true health
monitoring. True health monitoring should consider not only the obvious noise sources
for commercial fitness devices such as motion artifacts and ambient light, but some of the
sources of variability found in diverse patient populations that are prone to cardiovascular
disease. These often-overlooked disparities with diversity (e.g., skin tone and obesity) are
now becoming more documented in the literature [34–36]. Furthermore, this work could
assist in defining the parameters that would be needed for human trials to validate the
efficacy of constructed devices across variable populations.
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Table 1. PPG-based remote and continuous/intermittent monitoring (RCIM) devices with Food and Drug Administration (FDA) status and popular fitness devices.

Device Company FDA Status PPG-Derived Parameters Release Year Notes

Devices with FDA Status

Samsung Gear S2/LIVMOR
Halo™ Samsung/LIVMOR Cleared Heart rate variability 2020

Samsung Gear S2 is FDA approved to assess heart
variability only with the LIVMOR Halo™ Detection
System

BB-613 BioBeat Cleared

Oxygen saturation of arterial
hemoglobin (SpO2), pulse
rate, and changes in blood

pressure

2019 Available as a wristwatch or patch

Loop Spry Health Cleared Heart rate, respiration, pulse
oximetry 2019 -Wristwatch designed for individuals with chronic

obstructive pulmonary disease

Wearable Current Health Cleared Pulse rate, SpO2 2019
-Upper arm patch
-Part of the Current Health Full-Service Remote
Healthcare Platform

EQO2 Lifemonitor Equivital Cleared SpO2 2013 -Worn as an insert in a chest harness
-Works with ECG and other measurements

Everion Biofourmis Exempt SpO2, Heart Rate 2017
-Biofourmis is currently performing clinical
validation for Heart Rate Variability and
Respiration Rate

Popular Fitness Devices

Fēnix 6 Series Garmin None SpO2, Heart rate 2019 -Heart rate variability available with chest heart
rate monitor

Xiaomi Mi Band 5 Xiaomi None Heart rate, Heart rate
variability 2020 -Also measures “respiration information”

Suunto 9 Suunto None Heart rate, Heart rate
variability 2018 -Heart rate variability for sleep quality

Apple Watch Series 6 Apple Cleared (ECG only) SpO2, Heart rate, Heart rate
variability 2020 ECG clearance is for irregular rhythm notification

Versa 3 Fitbit Pending (ECG only) SpO2, Heart rate, Heart rate
variability 2020 Heart rate measurement is for rest conditions only
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2. Individual Variations in the Human Population

This section consists of a discussion surrounding works that have explored normal
variation within the human population as a source of error or variance within PPG mea-
surements. The variations within the human population to be discussed are skin tone,
obesity, age, and gender. These categories largely exist as a spectrum, such as skin tone or
age. As such, the effect these categories have on PPG accuracy can be similarly broad.

2.1. Skin Tone

The most common way to characterize skin tone is via the Fitzpatrick Scale [37].
Shown in Figure 2, the Fitzpatrick Scale ranges from 1 to 6, where 1 is near-albino and
6 is highly pigmented skin. An individual’s skin tone, and thus Fitzpatrick category, is
correlated to the amount of eumelanin in their epidermis [38]. While this scale was devised
to discuss skin UV-sensitivity, it is often used within the biophotonics community due
to the effect eumelanin has on how light travels through skin. This is due to the high
absorbance of eumelanin with a peak in the ultraviolet wavelength (220 nm) and a steady
decay through the visible wavelength region. Figure 3a illustrates not only this decay across
the visible range but also the high, two to three orders of magnitude offset in absorption of
epidermal melanin as it compares to the absorption of bulk dermis, which has no melanin.
Since the absorption of epidermal melanin is much higher in the visible region of light and
much lower in the near infrared region (NIR), the NIR range of light will travel further
through pigmented skin. However, many PPG devices use green light (~550 nm). The
decision to use green light in most PPG systems is primarily driven by the relatively high
absorption spectrum of hemoglobin in this range (Figure 3b), which is the main absorber in
blood and thus can potentially give a strong pulsatile signal with changes in blood volume.
For those with a lighter skin tone, this enables a higher signal-to-noise ratio for determining
heart rate: the primary parameter derived by PPG. However, the wavelength range needs
to be optimized for both skin tone and blood absorption, particularly as more advanced
parameters are derived from PPG signals, as the absorption of green light by melanin in
individuals with a darker skin tone limits the light penetration to the subcutaneous tissue
where the blood is located.

Biosensors 2021, 11, x FOR PEER REVIEW 5 of 36 
 

This section consists of a discussion surrounding works that have explored normal 
variation within the human population as a source of error or variance within PPG meas-
urements. The variations within the human population to be discussed are skin tone, obe-
sity, age, and gender. These categories largely exist as a spectrum, such as skin tone or 
age. As such, the effect these categories have on PPG accuracy can be similarly broad. 

2.1. Skin Tone 
The most common way to characterize skin tone is via the Fitzpatrick Scale [37]. 

Shown in Figure 2, the Fitzpatrick Scale ranges from 1 to 6, where 1 is near-albino and 6 
is highly pigmented skin. An individual’s skin tone, and thus Fitzpatrick category, is cor-
related to the amount of eumelanin in their epidermis [38]. While this scale was devised 
to discuss skin UV-sensitivity, it is often used within the biophotonics community due to 
the effect eumelanin has on how light travels through skin. This is due to the high absorb-
ance of eumelanin with a peak in the ultraviolet wavelength (220 nm) and a steady decay 
through the visible wavelength region. Figure 3a illustrates not only this decay across the 
visible range but also the high, two to three orders of magnitude offset in absorption of 
epidermal melanin as it compares to the absorption of bulk dermis, which has no melanin. 
Since the absorption of epidermal melanin is much higher in the visible region of light 
and much lower in the near infrared region (NIR), the NIR range of light will travel further 
through pigmented skin. However, many PPG devices use green light (~550 nm). The de-
cision to use green light in most PPG systems is primarily driven by the relatively high 
absorption spectrum of hemoglobin in this range (Figure 3b), which is the main absorber 
in blood and thus can potentially give a strong pulsatile signal with changes in blood vol-
ume. For those with a lighter skin tone, this enables a higher signal-to-noise ratio for de-
termining heart rate: the primary parameter derived by PPG. However, the wavelength 
range needs to be optimized for both skin tone and blood absorption, particularly as more 
advanced parameters are derived from PPG signals, as the absorption of green light by 
melanin in individuals with a darker skin tone limits the light penetration to the subcuta-
neous tissue where the blood is located. 

 

Figure 2. The Fitzpatrick Scale, ranging from I (little epidermal melanin, ~3% volume fraction mel-
anosomes) to VI (significant epidermal melanin, ~43% volume fraction melanosomes) [39]. 

Preejith et al. confirmed that skin tone matters when using green light only. The anal-
ysis of their PPG biosensor (single source 535 nm LED) showed a significant direct corre-
lation SNR of the heart rate with skin tone, indicating that a darker skin tone yields higher 
error in the measurement [40]. Specifically, Preejith et al. developed a dorsal wrist-based 
heart rate monitor that utilizes 535 nm light and validated its performance against 256 
subjects (54 with “fair” skin, 181 with “moderate” skin, and 21 with “dark” skin). The 
device features a single green LED and two photodetectors on opposing sides. Ground 
truth was obtained using a Masimo Radical-7 which is a commercial handheld fingertip 
pulse oximeter that uses seven wavelengths of light across the visible/NIR range to deter-
mine cardiovascular parameters. The Masimo Radical-7 was placed on the index finger of 
the same hand where their device was worn. Their results indicate a greater than 10 times 
increase in absolute error with the darker skin tone, calculated by taking the absolute 
value of the difference between their sensor and the Masimo Radical-7. There was an error 
of 1.04 beats per minute (BPM) for “fair” skinned individuals and an error of 10.90 BPM 

Figure 2. The Fitzpatrick Scale, ranging from I (little epidermal melanin, ~3% volume fraction melanosomes) to VI
(significant epidermal melanin, ~43% volume fraction melanosomes) [39].

Preejith et al. confirmed that skin tone matters when using green light only. The
analysis of their PPG biosensor (single source 535 nm LED) showed a significant direct
correlation SNR of the heart rate with skin tone, indicating that a darker skin tone yields
higher error in the measurement [40]. Specifically, Preejith et al. developed a dorsal
wrist-based heart rate monitor that utilizes 535 nm light and validated its performance
against 256 subjects (54 with “fair” skin, 181 with “moderate” skin, and 21 with “dark”
skin). The device features a single green LED and two photodetectors on opposing sides.
Ground truth was obtained using a Masimo Radical-7 which is a commercial handheld
fingertip pulse oximeter that uses seven wavelengths of light across the visible/NIR range
to determine cardiovascular parameters. The Masimo Radical-7 was placed on the index
finger of the same hand where their device was worn. Their results indicate a greater
than 10 times increase in absolute error with the darker skin tone, calculated by taking the
absolute value of the difference between their sensor and the Masimo Radical-7. There
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was an error of 1.04 beats per minute (BPM) for “fair” skinned individuals and an error
of 10.90 BPM for “dark” skinned participants, citing the lack of usability of their device
for dark skinned individuals. Hermand et al. determined the same trends as Preejish et al.
while using the PPG heart rate monitor Polar OH1. They analyzed its performance across
70 subjects ranging from Fitzpatrick 1 to Fitzpatrick 6 during various levels of exercise
and motion. Hermand et al. had participants run, bike, and walk while wearing the
Polar OH1 on their upper arm and the Polar H7 chest strap (ECG based device) paired
with the Polar M400 watch as the ground truth. The Polar OH1 consists of 6 green LEDs
forming a circle around a single photodiode. In determining heart rate, it was found that
bias (defined as the mean difference between the OH1 and ground truth) increased with
darker skin (p < 0.001), and heart rate accuracy was positively correlated to skin tone
(p < 0.05). However, the authors also mentioned that the lack of environmental control
leads to increased humidity and possibly increased vasodilation [41]. In addition to these
examples, numerous other studies that stratify results against Fitzpatrick classification
identify the same trend; errors in determining heartrate from wearable PPG devices that
use primarily green light as their source is increased in individuals with dark skin tones
due to the high absorption caused by increased amounts of epidermal melanin [42–45].
Lastly, Bent et al. published an experimental analysis of error observed in optical heart rate
sensors manufactured by Apple (Apple Watch 4), Fitbit (Fitbit Charge 2), Garmin (Garmin
Vivosmart 3), Xiaomi (Xiaomi Miband 3), Empatica (Empatica E4), and Biovotion (Biovation
Everion) as a function of skin tone [46]. By collecting data from 56 patients (34 female,
22 males, 18–54 years old, and at least 8 participants in each Fitzpatrick classification) when
they are at rest and exercising (elevating heart rate to 50% of maximum via a treadmill),
it was found that there was no statistically significant relationship between measured
heart rate from the wearable and an ECG (Bittium Faros 180) reference. Interestingly, this
conclusion contrasts with the previous discussion. It is possible that the lack of increase
in error observed is due to the already large error present in the results reported—the
mean absolute error is approximately 9 BPM across all skin tones. The authors do not
discuss why the results presented conflict with those previously reported. Additionally,
the wearable devices used in this study utilized red and near infrared light, which can
more easily penetrate the epidermis.
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The lower absorption of melanin using light sources at higher wavelengths can im-
prove the signal for individuals with a high Fitzpatrick classification. Mohapatra et al.
demonstrates that this is the case with a multiwavelength PPG device placed on the cen-
tral dorsal wrist. The device comprised 2590 nm (yellow/orange) LEDs and a single
520 nm LED symmetrically opposite to the 590 nm LED on the vertical axis. There was
approximately 0.7 cm center to center source/detector separation for each LED. With



Biosensors 2021, 11, 126 7 of 36

20 subjects ranging from Fitzpatrick II to Fitzpatrick IV, the perfusion index (AC/DC),
pulsatile strength, and SNR were all found to increase when data collected with the 590 nm
LED were analyzed. For Fitzpatrick IV individuals, the perfusion index increased between
1.2 and 7.1 times with the use of the 590 light, while pulsatile strength increased by 1.1 to
3.1 times and SNR increased by 1.3 to 2.6 times, although no statistical significance analyses
were performed [51]. Fallow et al. performed a similar study by using more wavelengths
and including exercise [52]. Specifically, Fallow et al. measured reflectance PPG above the
radial artery (4 cm from the wrist), that likely included a signal from both the arterioles
and possibly the artery depending on the wavelength of light used, in 22 individuals with
varying skin tone from Fitzpatrick scales I to V. By obtaining a resting signal then having
participants exercise via forearm flexion and extension, researchers were able to determine
the SNR of participants with four different wavelengths (blue—470 nm, green—520 nm,
red—630 nm, NIR—880 nm) at rest and after exercise. Mean modulation, often termed the
perfusion index, defined as the ratio of AC/DC, was significantly lower in Fitzpatrick V
individuals than others for all wavelengths (p < 0.001). In the resting condition, green light
had larger mean modulation (p < 0.001) than other wavelengths, and after exercise, blue
and green had greater SNR ratios than red or infrared (p < 0.001). These results indicate that
overall, the mean modulation goes down with increasing Fitzpatrick scale, and with exer-
cise one would expect greater blood volume changes causing a higher signal for the more
absorbing blue/green wavelengths, at least for the source to detector distances used in the
study. Further research should be conducted that analyzes the fidelity of the PPG waveform
under these conditions, which would allow interpretation of which wavelengths can be
used to derive more complicated parameters from PPG [52]. Furthermore, since no details
are given on the source/detector alignment of these devices, different source/detector
alignments should be assessed as that can dramatically affect the performance of PPG
devices depending largely on the wavelength of light due to light–tissue interactions. This
is seen in Mendelson et al., who analyzed the effect of source–detector separation on pulse
oximetry with red (660 nm) and infrared (950 nm) light [53]. By collecting the SpO2 of
seven Caucasian, lower Fitzpatrick scale, individuals via a Hewlett-Packard HP47201A
transmittance eight-wavelength ear oximeter and reflectance (red and NIR) oximeter on the
left thigh, the effect of source/detector separation on the reflected light was determined [53].
It was found that relative amplitude of the AC component to the entire signal (AC + DC)
increased as LED/photodiode spacing increased from 4 to 11 mm, although no statistical
analyses were presented. Subsequent studies should analyze the relative performance
of various wavelengths on different skin types, but ensure that data at each wavelength
are collected at an optimized source/detector separation. This could be facilitated first in
silico via modeling using Monte Carlo Simulation [54,55]. Furthermore, one component of
optimizing source/detector separation is the depth of the target vessel and intervening
pulsating arterioles, which may vary across individuals and within individuals with body
location and due to factors such as level of obesity [56].

2.2. Obesity

Obesity, determined by having a body mass index greater than 30, affects 40% of the
United States and leads to cardiovascular disease, hypertension, and type 2 diabetes [57]. It
is caused by a combination of physical, behavioral, environmental, and genetic factors that
lead to the accumulation of body fat [48,58]. In particular, obesity can lead to changes in
skin thickness, blood flow, and oxygen saturation. This affects the optical properties of skin
in addition to the distance light has to travel to reach a target vessel or vessels [48,59,60].
The variation of BMI across individuals is thus a potential source of variation for PPG
measurements. While, to the authors’ knowledge, publications that experimentally and
explicitly demonstrate the effect of obesity or BMI on the PPG waveform are limited, we
will explore works which suggest that there would be a substantial effect [56,59–70].

Blood flow regulation and oxygen saturation are both known to deviate with respect
to obesity and BMI [71]. Individuals with obesity experience increased cutaneous blood
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flow to meet the oxygenation needs of tissue. However, the blood flow of adipose tissue
generally decreases with obesity both after a meal and during a fasting state [61,72].
Conversely, Chin et al. used laser doppler flowmetry and dynamic capillaroscopy to
measure cutaneous blood flow at the nailfold of children of comparable age, sex, and
skin temperature, but with different levels of obesity, finding significant increases in
baseline cutaneous flow with obesity [61]. Dermal blood cell flow has also been shown
to significantly increase in the forearm of overweight individuals (BMI 29.1 ± 2.7 kg/m2)
compared to non-obese (BMI 20.4 ± 1.9 kg/m2). In adults, while some studies show
that at rest there is no significant change in dermal capillary density, the majority of
findings find that dermal capillary density does negatively correlate on average with
increasing BMI [62–65]. This effect of obesity could lead to a decrease in the dominant “DC”
component of a PPG waveform due to the increased blood volume of the obese [61–64].
The literature has confounding results in capillary recruitment, defined as the percentage
increase in capillary density during venous congestion, in the obese, but this could be due
to the populations studied. For instance, Czernichow et al. reported capillary recruitment
in the skin after adjustment for age, sex, mean arterial pressure and fasting glucose was
higher in overweight (defined as BMI 27.9 ± 2.7 kg/m2) as compared with lean individuals,
and that obese individuals were normotensive, nondiabetic, male and female subjects [63].
However, the findings of De Jongh et al. showed capillary recruitment to be decreasing
rather than increasing with obesity (defined as BMI > 30 kg/m2), but the study was done
only on women with a mean age of 38.9 ± 6.7 years and the obese subjects were both
hypertensive and had impaired insulin sensitivity [65]. In this study, it was acknowledged
that capillary recruitment was negatively correlated with blood pressure but positively
correlated with insulin sensitivity [57]. Although higher capillary density on average
appears to negatively correlate to BMI, the subject’s BMI level, gender, age, as well as
their metabolic syndrome need to be considered when assessing capillary recruitment. A
hypothetical increase in capillary recruitment due to an increase in BMI would similarly
decrease PPG signal intensity, as is hypothesized for dermal capillary density. Lastly,
oxygen saturation of hemoglobin has consistently been shown to be inversely associated
with BMI across various populations [66,67,73]. The increased absorption of deoxygenated
hemoglobin compared to that of oxygenated hemoglobin in the far-red region could
decrease SNR of PPG measurements that use those wavelengths of light. The cumulative
effect of various vascular changes in the obese on the PPG waveform remains to be seen.
One such change where the impact on PPG has been observed in silico is that of skin
thickness.

Perhaps most detrimental to the PPG waveform is skin thickness, as it is directly cor-
related to BMI and can dampen PPG signal amplitude [56,70]. For example, the epidermal
thickness of the volar forearm has been shown to be higher in overweight normotensive
nondiabetic individuals compared to age- and sex-matched healthy controls [72]. Note
that skin thickness in the literature has always showed an increase with obesity, but the
increase is body site-dependent. To the authors’ best knowledge, literature does not exist
that demonstrates this relationship for the finger, a common location for pulse oximeters.
Elsewhere, this thickening leads to a dramatic effect on the physiology and structure of
the skin, consequently reducing the signal strength and resolution as photons encounter
more possibilities for scattering, absorption, and autofluorescence with thicker tissue [74].
For example, the increase in skin thickness affects the vessel depth, and Boonya-ananta
et al. used Monte Carlo simulations that predicted a 40% loss of PPG signal amplitude due
to this effect in obese individuals, specifically on the wrist as the simulated radial artery
increases in depth from 2.5 to 3.5 mm [74]. This loss of PPG signal amplitude is significant
as it makes it more difficult to quantify and identify features within a waveform.

One observation regarding the skin of the obese which may serve to increase PPG sig-
nal intensity is the increase in trans epidermal water loss (TEWL) as BMI increases [69]. At
longer wavelengths, the absorption of water is more dominant than hemoglobin (Figure 3b).
Overall, the morbidly obese exhibit a reduction in water, measured as an increase in the
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TEWL compared to normal BMI subjects [69]. This in turn could increase the signal com-
ponent in the NIR and IR range due to the reduction in water molecules. Interestingly,
however, the TEWL values in the epidermis of the face, forehead and abdomen decrease
from normal to overweight but then increase from overweight to obese and morbidly
obese [69]. Due to these inter-dependencies, measuring capillary densities, blood flow,
and oxygen saturation in the obese using optical signals should be validated using other
non-optical modalities before a definite conclusion can be made on how these parameters
impact the PPG signal.

While the exact cumulative effect of these BMI-related parameters on PPG remains
unknown, Ferdinando et al. were able to identify obesity from PPG waveforms originating
from the Liang et al. dataset [75,76]. Using k-nearest neighbor and support vector machines,
Ferdinando et al. were able to identify five classes of obesity from PPG waveforms using
17 parameters derived from the decomposition of the PPG waveform into five lognormal
functions. While arterial stiffness is mentioned as a potential cause of variations in the
PPG waveform, the work does not discuss characteristics of the waveform itself, or how a
waveform originating from an obese individual compares to a waveform originating from
a non-obese individual.

Overall, the literature has shown that obesity dramatically affects physiological factors
associated with PPG signal intensity and quality, including capillary density, capillary
recruitment, blood flow, SpO2, TEWL, and skin thickness. These changes are summarized
in Table 2. There are also in silico works suggesting that obesity can dampen PPG signal
intensity. We believe that the aforementioned literature provides strong evidence that
obesity, when assessed in combination with a subject’s metabolic state, body location,
gender and age will likely influence PPG systems and can manifest themselves as significant
noise sources. The next section will go into more detail about the later, chronological age.

Table 2. Obesity-induced effects on PPG.

Parameter BMI-Induced Changes Presumed Effect on PPG Relevant Work Reference

Skin thickness Skin thickness increases as
BMI increases

Decreased signal resolution
and intensity

Iacopa et al., 2020
Altintas et al., 2016

Boonya-Ananta et al.,
2021

[36,60,72,77]

Blood flow

Baseline cutaneous blood
flow increases in obese

children, dermal blood cell
flow increases in overweight
individuals, cutaneous blood
flow increases in the nailfold

of obese children

Decreased signal resolution
and intensity

Chin et al., 1999
Czernichow et al., 2010

Altintas et al., 2016
[61,63,72]

Capillary Density Capillary density decreases
as BMI increases

Increased signal resolution
and intensity Francischetti et al., 2011 [62]

Oxygen saturation Oxygen saturation decreases
as BMI increases n/a Petrofsky et al., 2015 [67]

Trans-epidermal water
loss

TEWL increases as BMI
increases

Increase PPG intensity and
resolution (NIR and IR only) Rodrigues et al., 2017 [69]

2.3. Age

Aging leads to various anatomical and physiological changes that impact the ability to
use PPG to assess cardiovascular health. These changes mostly occur in the vascularization.
As arteries age, the tunica intima and tunica media layers within the arteries thicken with
an increase in the number and density of collagen [78]. The cross-linking of these fibers,
along with fractured and fatigue elastin, leads to a loss of compliance and increased artery
stiffness [78]. Along with calcification, the result of these age-related changes is an increase
in blood pressure, observed in older populations [79]. Additionally, the endothelium
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of the vessels thickens and develops irregularly shaped cells over time which increases
blood flow resistance [78]. PPG principally measures the response/elasticity of arteries to
blood flow, and thus will change if the properties governing artery compliance changes.
Beyond vascular changes, skin thickness is another parameter that has a relationship with
age. Once adolescence is reached, skin is known to thin as age increases [70,80–82]. This
relationship is maintained in the three primary layers of skin: epidermis, dermis, and
hypodermis/subcutis. Thinning represents a decrease in distance for light to travel before
it interacts with vessels, possibly affecting PPG [70,80–82]. Overall, these changes can
manifest themselves in variations observed across PPG waveforms either in the shape or
amplitude of the waveform.

There are many components to a PPG signal and its derivatives that literature records
having variation as a function of age [83]. There are differences in the timing of events,
manifested as changes in parameters such as PTT, and relative amplitude of features such as
the dicrotic notch. Many of these result from changes in vessel compliance, as the decrease
in distensibility of arteries leads to different changes in blood volume when compared to
younger individuals.

Using data from 93 individuals of various ages, Ahn et al. extracted features from
fingertip-based PPG and the second derivative PPG, acceleration plethysmography (APG,
Figure 4), and correlated them to chronological age in order to determine what they defined
as the vascular age index [83]. However, this is not to be confused with vascular age,
which is a specific term used to guide risk assessment for CVD, and is well known from
D’agostino et al.’s work, often referred to as the “Framingham study” [84]. The work of
Ahn et al. more closely resembles a chronological age index, as they correlated PPG features
to chronological age and not CVD risk [85]. The parameters listed in Table 3 attributed to
Ahn et al. yielded a statistically significant, albeit poor, correlation with age [83]. Others
have also reported on correlations involving the APG. The ratio b/a has been found to
correlate positively to age, while c/a, d/a and e/a have all been correlated negatively to
age [29,59]. Jayasree et al., Dutt and Shruthi, and Yousef et al. similarly report changes in
the PPG and APG, such as an increase in the area under the systolic peak with increasing
age, a decrease in time between the systolic and diastolic peaks with increasing age, and an
increase in crest time as age increases [86–88]. While these works relate features within a
waveform to age, they do not examine characteristics that are derived from multiple PPG
waveforms such as PTT and PWV.
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The timing of blood transit through vessels is an important measurement used to
determine clinically relevant parameters such as heart rate variability and blood pressure.
Caceres and Hasan used the first derivative to create the “waveform transit time” index.
This index utilizes an inverse linear relationship to correlate age to the manually estimated
difference between the first local minimum (occurring at the systolic peak) and the next
local maximum (occurring at the dicrotic notch) of the first derivative. This time difference
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was termed TTW. The index was created by using data from the right index finger of
230 Spanish subjects (134 male) ranging in age from 8 to 89 years old. It was found that
TTW decreases with age [89]. The authors state that this is a function of the time delay
associated with incident and reflected light in a PPG, and is an easy way to determine PWV,
which has been shown to decrease as a function of age. Using the ears, fingers, and toes,
Allen and Murray analyzed the changes in PPG signal normalized width and PWV as a
function of age. Corroborating with other literature, an increase in pulse wave velocity
with age is related to a diminished dicrotic notch. They also note the increase in time of the
systolic rising edge (and thus decrease in slope of the systolic rising edge) as a function
of age. This is explained by the increase in resistance and decrease in compliance of older
arteries [90]. PTT is inversely related to PWV—the same authors note in a different work
that as age increases, PTT decreases. By analyzing the change in PTT as a function of
age within a population of 134 healthy, Caucasian subjects (median age 43, total range:
13–72), it was found that there is a statistically significant decrease at the toes (r2 = 0.48),
fingers (r2 = 0.26), and ears (r2 = 0.15) [91,92]. Most of the listed changes are due to the
cardiovascular system, as arteries change how they respond to a cardiac pulse as the vessel
ages. However, the integumentary system also responds to aging.

Skin thins as age increases beyond adolescence [70,80,93]. Keratinocytes become
shorter, water content decreases, lipid content decreases, and most notably, collagen syn-
thesis and turnover decrease [93]. This change in skin thickness decreases the necessary
propagation of light to obtain a PPG signal, which can contribute to an increase in PPG
signal strength, along with capillary depletion. Leveque et al. studied the skin thickness
and PPG signal of 69 individuals from 8 to 89 years old [94]. A Holtain skin caliper applied
to the dorsal forearm found a decrease in skin thickness, and an infrared PPG was used to
determine PPG amplitude. The authors attribute the positive, direct relationship between
PPG amplitude and age to capillary depletion, due to similar skin thicknesses observed
between older participants and children, despite an increased PPG amplitude in the older
participants. However, the skin thickness data presented in this study are not consistent
with those in other literature, so further work is required to be conclusive. Another study
by Hartmann et al. determined that there is no statistically significant change in PPG
amplitude as a function of age; however, this work featured 36 individuals ranging in
age from only 33 to 58. It is possible that 25 years may not be long enough to discern a
significant change [95]. In a study with participants ranging in age from 30 to 60+, Yousef
et al. found that there is no significant increase in pulse magnitude measured at the index
finger with an increase in age. This work suggests that the decrease in vessel compliance
will contribute more to variations in a PPG waveform than other effects of aging [88].

Overall, the impact of age-related changes in skin thickness on PPG may be dependent
on the body site of measurement, and its significance is yet to be directly studied. However,
if this effect is delineated and determined to be significant, it can be used in models that
aim to determine blood pressure from PPG.

Artificial intelligence and machine learning have been used to determine blood pres-
sure from PPG and mitigate the effects age have on the estimate. In 2010, Monte-Moreno
utilized machine learning to determine blood pressure from a PPG obtained from subjects
ranging from 9–80 years old. An algorithm that incorporates age into systolic and dias-
tolic blood pressure determination was created. While this work utilized a population of
individuals with good cardiovascular health, it was found to correlate with both systolic
and diastolic blood pressure, with an r2 of approximately 0.90 [92]. Suzuki and Oguri
similarly used artificial intelligence to determine blood pressure from a cuffless monitor
and incorporated age into their algorithm [96]. While the wide spectrum of ages can make
it a difficult parameter to incorporate into models, gender is binary, making it easier to
incorporate.
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Table 3. Age-induced changes on PPG.

Parameter Change as Age Increases Relevant Work Reference

Tissue Changes

Skin thickness Decrease
Derraik et al., 2014

Van Mulder et al., 2017
Farage et al., 2013

[70,80,93]

Artery compliance Decrease Knight et al., 2017
Allen et al., 2002 [78,90]

Capillary
Recruitment Decrease Leveque et al., 1984 [94].

PPG Changes

PWV Increase Cáceres et al., 2015 [89]

PTT Decrease Allen et al., 2002
Monte-Moreno, 2011 [91,92]

Systolic rising edge
slope Decrease Allen et al., 2003 [90]

Dicrotic notch shape Decrease Allen et al., 2003 [90]

Systolic time Decrease Ahn et al., 2017 [83]

Diastolic peak
amplitude Decrease Ahn et al., 2017 [83]

Inflection point area Decrease Ahn et al., 2017 [83]

Reflection index Increase Ahn et al., 2017 [83]

First Derivative Changes

TTW Decrease Cáceres et al., 2015 [89]

Second Derivative Changes

Magnitude of c Increase Ahn et al., 2017 [83]

Magnitude of d Decrease Ahn et al., 2017 [83]

Slope of line between
b and d Increase Ahn et al., 2017 [83]

b/a Increase Ahn et al., 2017 [83]

c/a Decrease Takazawa et al., 1998
Elgendi et al., 2012 [29,59]

d/a Decrease Takazawa et al., 1998
Elgendi et al., 2012 [29,59]

e/a Decrease Takazawa et al., 1998
Elgendi et al., 2012 [29,59]

2.4. Gender

The physiological differences between men and women extend into cardiovascular
health and are thus noticeable in the PPG waveform [97,98]. Phuong and Maibach noted
that gender differentiation in average blood pressure and average heart rate indicate that
baseline differences in vascular and cardiovascular parameters must be considered to
determine cardiovascular health between males and females, which also extends into
analyses of the PPG waveform [98]. These physiological baseline differences can skew
PPG signals along with interpretation algorithms for the determination of cardiovascular
health per gender. Proctor et al. reported that the average heart rate for males was
70–72 BPM and the average for females was 78–85 BPM in 16 endurance-trained men
and 14 endurance-trained women [99]. Males have a 15–30% increase in heart mass
compared to females resulting in females’ hearts having to beat faster to maintain the same
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output [100]. This leads to dramatic changes in PWV and subsequently PTT. Regarding
blood pressure, Reckelhoff reported the mean blood pressure was 6–10 mmHg higher in
males than in pre-menopausal females. However, post-menopausal females have higher
blood pressure than males, which can be attributed to arterial stiffness [101]. Additionally,
most vessels have gender-dependent diameters. For example, the radial artery diameter
also differs between males and females, with males having a diameter of 2.76 ± 0.009 mm
and females a diameter of 2.32 ± 0.07 mm at the same segment [102]. As expected, a
larger target vessel will yield a PPG with a greater signal resolution. These significant
differences in artery diameter lead to significantly different radial artery flow rates as well,
with a flow rate of 21 ± 4 and 10 ± 1 mL/min for males and females, respectively [102].
Skin thickness is another gender-dependent variable known to affect signal strength (as
mentioned previously), and is observed to be higher in men than women across all age
ranges [97,103]. Shuster et al. measured skin thickness in 90 Caucasian men and 107 women
and found that forearm skin thickness is greater in men than women, but no statistics were
presented to explore statistical significance [103]. Each of the aforementioned parameters
can influence the hardware chosen and utilized when designing a PPG system to ensure a
normalization between measurements for males and females, as they directly translate to a
difference in PPG signal.

PWV is highly dependent on vascular stiffness and is observable through PPG. Ahi-
mastos et al. studied the changes in arterial stiffness in pre- and post-puberty males and
females by measuring arterial compliance and PWV [104]. It was discovered during pre-
puberty, females have lower arterial compliance and higher central and peripheral PWV
yielding stiffer arteries compared to males. Post-puberty, both males and females have an
increase in arterial compliance, determining no gender-dependent differences between the
measurement. However, for females, PWV stayed roughly the same, while there was an
increase in PWV for males. This increase in PWV originates from an increase in arterial
stiffness for males corresponding to a higher pulse pressure while the female pulse pres-
sure remained constant throughout pre- and post-puberty. Pulse pressure is dependent on
both arterial stiffness and cardiac output. On the other hand, post-menopausal females
experience an increase in arterial stiffness and pulse pressure. Dehghanojamahalleh et al.
demonstrated variations in PPG morphology attributed to gender differences [105]. Inter-
estingly, direct influence of gender variation was only significantly different at the upper
peripheral measurement site such as the hand and fingers as opposed to lower extremities
such as the ankle and feet. The study measured the pulse arrival time and PTT, where both
measurements showed dependence on gender. Pulse wave propagation delay between the
genders indicates baseline differences in arterial stiffness with women displaying lower
degrees of pulse arrival latency delay indicating higher vascular stiffness [106,107]. A study
on heart rate variability using PPG by Antelmi et al. shows changes between gender across
different age ranges [108]. The results presented show men as having greater low-frequency
signal components and women as having greater high-frequency components. When com-
paring the accuracy of commercial devices as done by Shcherbina et al., a significantly
higher device measurement error is seen in males than females for all devices [109]. The
devices under analysis include the FitBit, Apple Watch, Microsoft Band, Samsung Gear, and
Basis Peak watch, and the measurement metrics showing higher error for males include
heart rate and maximal oxygen uptake. This provides insight into PPG signal variation
due to varying deep internal vasculature leading to peripheral measurement sites.

Accounting for the manifestation of these differences in a PPG is known to be an under-
researched area [110,111]. For respiratory measurements, Nilsson et al. have reported that
respiratory synchronous variation in the PPG signal is irrespective of gender, and thus no
action is required [111]. Nowara et al. report insignificant differences in blood volume
pulse SNR in iPPG (imaging PPG) between males and females [112]. More work should
be conducted to evaluate accountancy methods for the propagation of gender-induced
variation in applications of PPG beyond respiration. Table 4 summarizes the physiological
data supporting the presence of differences.
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Table 4. Gender-induced changes on PPG.

Physiological
Characteristic Gender Discrepancies Effect on PPG Signal Relevant Work Reference

Average Heart Rate Higher average heart
rate in females

Higher average heart rate yields
higher average frequency

content of the signal
Proctor et al., 1998 [99]

Heart Mass Greater heart mass in
males

Increased heart mass yields
lower heart rate which yields

lower frequency content of the
signal

Prabhavathi et al., 2014 [100]

Blood Pressure Higher mean blood
pressure in males

Increased blood pressure
increases PWV

Reckelhoff et al., 2001
Nye et al., 1964 [101,113]

Radial Artery Diameter Larger average radial
artery in males

Increased diameter increases
flow rate which is an increase in

PWV
Joannides et al., 2002 [102]

Arterial Stiffness

Greater arterial
stiffness in pre-puberty
and post-menopausal

females

Increased arterial stiffness
increases PWV and increases b/a

ratio

Joannides et al., 2002
Ahimastos et al., 2003

Von Wowern et al., 2015
[102,104,114]

3. Physiology

While the previous section discussed variations across individuals, the next section
will discuss the effect that physiology can have on the PPG waveform. We will discuss
respiration, venous pulsations, body site of measurement, and local body temperature.
Underlying physiology can affect the baseline values or periodicity of the PPG waveform
or even change the waveform shape entirely [115,116]. Thus, it is important to explore and
identify these sources of error so that they do not propagate to cardiovascular parameter
values.

3.1. Respiration

While the most commonly examined component of the PPG signal is the AC compo-
nent relevant to pulsatile blood volume, there are various factors which can modulate the
baseline of the PPG signal; one such factor is respiration. This is one of the most significant
sources of error in heart rate measurements using PPG, even though respiratory rate is
the most sensitive vital sign, often used as an indicator of clinical deterioration [117]. PPG
optical signal modulation by respiration is most commonly manifested as baseline and
amplitude modulation [117]. Physiologically, respiration and cardiac output are inherently
linked, as an increase in respiration rate can directly affect the variation of heart rate
through the nervous system reduced inhibitory control [118]. Modulation of the baseline
due to respiration presents itself as a superposition of the PPG signal corresponding to
the cardiac cycle and a lower-frequency sinusoidal waveform [117]. It is reported that
the lower-frequency wave manifestation in the total PPG signal can be attributed to the
venous vascular system [119]. As respiration occurs, the venous system is more compliant
to smaller changes in pressure as opposed to the less distensible arterial system [118]. Shifts
in blood volume in the venous system due to changes in respiratory behavior will cause
a corresponding change to the baseline amplitude of the PPG signal as blood volume in-
creases and decreases [120]. Changes in thoracic volume and pressure cause an alternating
pressure gradient in the venous vascular system [118]. It is also suggested that the coupling
of the respiratory system and the autonomic nervous system is a contributor to mechanical
effects on the vascular system which is detected in the PPG waveform as a direct result
of respiration. Removal of this signal contribution is often done via filtering and post
processing.

There are a wide variety of studies looking to extract respiration rate from obtained
PPG signal. However, it is, first, critical to investigate the quantifiable changes and errors
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to the PPG signal caused by respiration rate [118]. Dehkordi et al. and Addison et al.
identified the three significant variations to the PPG signal by respiratory rate after analyz-
ing PPG from 139 healthy adults (67–18 years old) and the Capnobase dataset [115,121].
These variations are respiratory-induced intensity variation (RIIV), respiratory-induced
amplitude variation (RIAV), and respiratory induced frequency variation (RIFV), as shown
in Figure 5 [115,121]. RIIV modulates the DC baseline of the PPG curve superimposing the
wave on top of a low frequency sinusoid. RIAV causes significant changes in each peak
amplitude. RIFV induces a phase shift between each cycle by elongating or squeezing each
wave. These changes to the PPG signal can occur in any combination.
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Li et al. conducted an investigation on the respiratory induced variations to the PPG
signal with a total of 28 subjects, 14 male and 14 female, with age ranging from 18 to
45 years [122]. The experiment was conducted with various controlled breathing condi-
tions, comparing period and amplitude of systolic, diastolic, and overall wave cycle. Across
the different positions, amplitude correlation coefficient shows distinctly larger difference
between diastole and reference versus systole and reference. However, amongst the various
conditions, the three factors that present the strongest correlation with respiration rate
influence are pulse period frequency variation, diastole amplitude variation, and peak in-
tensity variation [122]. From experimentation results, it is concluded that respiration signal
amplitude has the strongest influence on respiratory-induced variation of the PPG signal.
Moreover, as the respiratory rate increases, the respiratory signal decreases, indicating that
higher rates of respiration leads to lower fluctuations in respiratory influence changes to
PPG [122].

Through understanding the main influence of respiratory rate on overall PPG signal,
techniques can be developed to target these changes to separate the two signals. As a
method of isolation of the PPG signal from noise caused by respiration, some different
mathematical methods of signal analysis and conditioning have been proposed. The ba-
sic method of frequency filtering has been used to eliminate the frequency components
contributed by respiration [118]. Typically, high-pass filters with cut-on values ranging
from 0.25 to 0.5 Hz are used to eliminate low frequency noise which is most often repre-
sentative of respiration rate. Various other studies have been conducted to extract and
separate respiration rate from PPG signals using different algorithms or complex neural
networks [117,123,124].

Charlton et al. confirmed that the extraction of respiration rate from PPG and ECG
measurements is possible by testing 314 different extraction algorithms operating both in
the time domain and frequency domain [117]. However, the results indicate that respiration
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rate extraction is more precise when performed on ECG data as opposed to PPG. It is
suggested that this is due to the physiological mechanisms which generate these two
signals and their unique interaction with respiratory rate. The mechano-physiology factors
that lead to the behavior measured by PPG appears to be more sensitively influenced by
respiratory modulation. Interestingly, algorithms operating on the time domain provided
more accurate results than frequency domain extraction [117]. It is indicated that time
domain algorithms do not require quasi-static respiratory rate, unlike frequency domain
algorithms, which may contribute to their superior performance [117]. As mentioned
previously respiration is often filtered out and classified as noise. However, in cases where
this is desirable information, one looks towards the AC component of the venous network.

3.2. Venous Pulsations

As discussed at length, PPG sensitivity to blood volume changes yields an “AC” signal
component that relates to the mechanical properties of a corresponding vessel and even
the larger cardiovascular system. The venous system similarly contributes periodicity
to the PPG signal, but this is often considered noise. This noise originates from the
vascular network of small vessels transporting deoxygenated blood from the capillaries
to the heart. However, it is a recognizable waveform (Figure 6), and has been studied
previously [116]. Previous works have demonstrated that the venous system exhibits
mechanical changes in accordance with cardiac, respiratory, and autonomic physiological
functions [119]. Muscular contraction and relaxation are the major functions contributing to
the movement of blood from the veins back to the heart, as well as venous valves preventing
back flow of blood. The difference in compliance between the arterial and venous systems,
as well as the lower-pressure gradient, translates to the relative amplitude of the AC venous
component of the PPG being smaller than the AC arterial component [125]. While this
relationship is largely maintained over the body, PPG measurements at different body sites
can result in stronger relative contributions from the venous system, such as the forearm
versus the finger. The finger is arterially dominated while the forearm has a larger venous
component [120]. Thus, the venous system can potentially add noise to a PPG due to vein
pulsations and the variation of the amplitude of those pulsations across the body.
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Shelley et al. demonstrates diastole variability in the PPG signal is related to periph-
eral venous pulsation [116]. The investigation conducted utilized a PPG sensor on the
index finger alongside a radial catheter on the same hand. Measurements were taken
on three patients under general anesthesia: a 72-year-old woman with osteoarthritis and
nadolol-treated hypertension, a 40-year-old woman with a ruptured ectopic pregnancy,
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and a 57-year-old woman undergoing a suboccipital craniotomy with nifedipine-treated
hypertension. Data were presented observing the variation in arterial waveform, central ve-
nous pressure, peripheral venous pulsation, and PPG signals. Peripheral venous pressure
was monitored through an intravenous catheter with pressure. PPG signal was monitored
both pre- and post-catheterization to verify that the catheter did not significantly affect
the overall recorded signal. Continuous monitoring of both venous and artery contribu-
tions to the PPG waveform indicate strong correlation between the diastolic peak in the
plethysmograph and peaks in the venous pulse at the peripheral location of the hand [116].
In two specific cases, a qualitative test was performed by applying light pressure to a site
proximal to the measurement location on the upper arm and observing changes in three
different stages of the venous pulse and PPG. Pressure in the venous system is observed to
be significantly lower than the arterial system: below 20 mmHg has been reported [126].
Vascular compliance between the venous and arterial system can differ significantly, up
to 10-fold [126]. Light pressure application upstream is used to occlude the low-pressure
pulsation in the peripheral venous system. As the pressure is applied and released, the
amplitude of the venous pulsation can be observed as being superimposed at the diastolic
phase of the PPG curve with a slight time delay when there is no applied pressure, and no
superposition when there is low pressure applied proximal to the hand. It appears that
changes to diastolic amplitude due to the presence of the venous waveform can increase
diastolic phase amplitude up to 40% of the total alternating amplitude of the PPG signal.
In the case reports studied by Shelley et al., the significant relationship of the influence
of the venous pulsation to the PPG waveform is observed at the peripheral location [116].
Although the specific changes to the waveform itself are not quantified, the observable
effect of the venous system can alter conclusions made solely on the PPG signal without
accounting for venous pulsation. The presence of the venous pulsation associated peak in
the diastolic phase of the PPG waveform can present errors with identification and quan-
tification of the dicrotic notch and diastolic features. Noninvasive measurement of venous
pressure can help with diagnosing clinically relevant conditions such as congestive heart
failure or valvular heart disease; however, separation of these signals is desirable [116].

Shelley et al. and Sami et al. both demonstrated the influence of the venous signal
on SpO2, showing that forehead and earlobe pulse oximeters (respectively) produced a
significantly biased variable component of the PPG determined to originate from central
venous pressure (CVP) [125,127]. Sami et al. analyzed venous flow originating from a
72-year-old woman with ischemic cardiomyopathy and severe three-vessel disease. Shelley
et al. studied data from forehead pulse oximeters originating from 25 patients (20 female,
5 male) undergoing elective gynecological and urological procedures that are otherwise
healthy. The pulse oximetry values were both lower in cases where CVP contributed to the
signal. In five of the twenty-five patients monitored by Shelley et al., prominent interference
was observed by the venous component on forehead PPG signal when compared to signals
observed at the finger [102]. Nijland et al. also confirmed these results in fetal lambs, where
reflectance pulse oximetry SpO2 readings were significantly lower than fiberoptic SaO2
values. However, when the vessel was coagulated, this difference became negligible [128].
By having deoxygenated blood in the veins, a standard pulse oximeter will interpret there
to be a higher ratio of deoxygenated blood to oxygenated blood, which yields a lower
SpO2. All authors were able to eliminate the problem by applying pressure or otherwise
occluding veins, a common practice in commercial oximeters.

Within a PPG waveform, venous pulsations can also be detrimental. They have been
shown to artificially inflate the systolic peak amplitude and interfere with the rising systolic
edge of the typical PPG waveform; an important parameter used in cardiovascular health
determination [116]. The frequency components contributing to the perturbations in the
signal are similar to the cardiac frequency. Venous pressure can also add low-frequency
noise to the PPG waveform, the same effects seen by respiration, which is caused by venous
anatomy [129–131]. Often between 0 and 0.5 Hz, this noise contributes to be baseline
oscillations.
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Eliminating venous contributions to PPG, as mentioned previously, is often done by
application of contact pressure to the measurement site. However, it is possible that this will
eliminate the arterial pulsation in hypotensive patients as well as increase pressure-induced
injury risk to the measurement site [125]. This, along with the other effects of applied
pressure, is explored in Section 4.3. Grabovskis et al. noted that the amount of pressure
applied is often underreported and can manipulate the resultant PPG waveform [132]. This
then affects clinical parameters similar to those reported by Takazawa [29]. They determine
that the appropriate amount of pressure is such that the b/a ratio of the SDPPG is equal to
0.70. This means that the external pressure on the arterial wall is equal to the mean arterial
pressure [132]. However, this is detrimental, since manipulating the waveform to a specific
shape limits the useful data that can be extracted. Beyond contact pressure, the respiratory
component has been eliminated via adaptive and non-adaptive filters allowing signal from
approximately 0.5 to 4.0 Hz [133]. Additionally, previous works discuss variable-frequency
complex demodulation, continuous wavelet transformation, and autoregressive modeling
to decouple this signal from the arterial component of the PPG [22,120,127,132].

3.3. Body Site of Measurement

PPG systems have been developed for the fingers, wrist, brachia (upper arm), earlobe,
ear cartilage, superior auricular region, esophageal region, and the forehead [68]. For fitness
applications, the PPG system developed for the brachia is often used to monitor heart
rate, but devices that can be placed on the wrist have increased in popularity due to them
being commercial availability, their ease of use, cost, and portability. In clinical settings, the
fingertip or ear lobe are more common locations due to the high vascularization found in
these areas. While it is advantageous to have different devices for different locations, it is
problematic when algorithms, processing techniques, and indices to assess cardiovascular
risk are applied without considering the various anatomies at each of these locations.
Anatomical variations in parameters such as skin thickness and blood basal perfusion will
lead to changes in the AC and DC amplitude, and the duration of a PPG waveform. While
a thick epidermis will attenuate light more than a thin epidermis will, the vascularization
and perfusion of a given anatomy is particularly important in governing the magnitude of
the AC component of the PPG. Thus, this section will discuss the impact of body site of
measurement on the PPG waveform.

Changing skin thicknesses across the body lead to changes in the amount of light
attenuated before it reaches microvasculature, such as the arterioles or an artery. This
influences the signal amplitude and SNR of the resultant PPG waveform. The thickness of
individual skin layers has been well characterized in a variety of ways; however, the skin
as a function of anatomical location has been less well studied [134–136]. In general, skin
found on tactile anatomies such as the finger will be thinner than skin found on anatomies
such as the palm of the hand or the sole of the foot. In vivo high frequency ultrasound
is the current standard for monitoring skin thicknesses, as old practices such as stained
samples from biopsies or results postmortem often yield values with poor intersample
agreement [137,138]. Overall, the literature has shown that the fingertips have the thinnest
skin, followed by the forearm, dorsal hand, cheek, and forehead [139]. The skin thickness
for 38 anatomical locations has been ranked based off 5 separate works (Figure 7). However,
there exists tremendous variation even within a given body site caused by factors such as
age, gender, BMI, sun-damage, and experimental methodology, leading to coefficients of
variation up to 40% [139–141]. Skin thickness is not the only body site-dependent factor
causing variations in PPG results. In order to quantify the effect of body site on PPG,
one must also analyze changes in blood supply and basal perfusion. The literature has
analyzed their cumulative effect on PPG.
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A common difference across anatomies is basal perfusion, which directly affects
PPG signal amplitude. Tur et al. utilized laser doppler velocimetry (LDV) and PPG to
assess variations in blood perfusion across the body for 10 healthy men between 20 and
30 years old. Both tools in combination provided assessment of both blood velocity and
blood volume. It was found that the hand and the face had significantly higher (p < 0.01)
perfusion values than the trunk, upper, and lower limb. Additionally, the side of the trunk
was found to have very low perfusion. Finally, sites within the face and hand did not
yield widespread statistical difference between themselves. The back of the ear and earlobe
yielded significantly higher PPG signal amplitude than the hand and postauricular region
(i.e., neck behind the ear), but LDV values and comparisons to the fingertips and the rest
of the face were not significant. These data support the hypothesis that the ear and the
fingertips will yield the largest PPG signal amplitude [144]. This study did not look at the
wrist, but as mentioned previously, authors found the forearm to have lower perfusion
levels as compared to the face and hand. While these results provide information about
superficial vasculature 1–2 mm deep in the skin, it did not provide information about
accompanying variations in skin thickness across sites. Overall, it has been found that
locations on the head and finger provide the greatest PPG amplitude [95,145]. Locations
around the ear are less uniformly reported in the literature; however, this likely is caused
by inconsistencies across works, as some state “ear” and others provide more detail. Fallet
et al. found via iPPG that for all wavelengths of light, the forehead is superior to the cheeks
and the whole face for determining heart rate. The forehead yielded the greatest power at a
frequency matching a reference ECG, likely due to the increased perfusion to the area [146].

Beyond PPG amplitude, the aforementioned anatomical variations lead to changes
in PPG waveform. First, it is important to note bilateral symmetry. Allen and Murray
have noted that PPG waveforms are largely similar between bilateral anatomies at the ear,
finger, and toe at rest, according to their study featuring 116 (68 male, 48 female) healthy
Caucasian subjects with a median age of 43 [90]. Additionally, PTT is also similar bilaterally
at the ears and finger, while a small difference exists at the toes [91]. This is important
as studies often do not note the bilateral location of the sensor (if relevant) or place the
sensor on the dominant hand [147,148]. These studies demonstrate that a given left and
right extremity will give the same signal, save for differences such as motion artifacts.

Rajala et al. analyzed the waveform and pulse arrival time of PPGs taken at the wrist
and the finger of 30 subjects (19 males, 11 females, average age of 42) [26]. It was found
that the wrist significantly (p < 0.01) had a greater full-width half-max than the finger. The
authors ascribed this difference to the flat shape of the wrist PPG, whereas the finger PPG
more closely resembles a traditional PPG with a noticeable dicrotic notch. Additionally,
the authors noted a consistent increase in signal amplitude in the wrist PPG compared
to the finger PPG. They hypothesized that this effect could be due to an increase in wrist
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temperature due to the fabric component of the PPG sensor. Hartmann et al. performed a
similar study in 36 healthy subjects (12 male, 24 female, mean age of 33), looking at the peak
point position, dicrotic notch time, and reflection index at the forehead, earlobe, arm, wrist
(upper, under), and the finger [95]. The finger yielded a significant peak point position,
meaning a shorter systolic rising edge (p < 0.001 for all sites except under the wrist, which
had p = 0.04). Dicrotic notch duration at the finger was not significantly different from
measurements under the wrist and forehead, but was different from the earlobe, arm, and
wrist. Finally, the finger was shown to have a significantly lower (p < 0.001) reflection
index.

These differences across anatomies are crucial to note when using PPGs to derive
clinical diagnoses/prognoses. For example, Alty et al. demonstrated the use of crest time
to classify CVD, where the crest time is directly related to the systolic rising edge which is
significantly shorter in the fingertip [149]. Takazawa et al. named numerous ratio metric
parameters as a function of the APG, the second derivative of the PPG. Many of these
parameters involve components of the reflection index, which the above study showed can
be different at various anatomies [29]. Thus, not only should researchers be consistent to
the same anatomy across studies, but it is possible that different anatomies are better at
providing diagnostic/prognostic-friendly waveforms for various applications. Nillsson
et al. demonstrated that this is the case for respiratory rate. It was found that the forearm
had a high respiratory rate spectral power content compared to anatomies such as the
finger, which had signal primarily derived from heart rate [130].

Overall, the literature has demonstrated that different anatomies demonstrate PPGs
with varying waveforms. Additionally, the thickness of skin and blood perfusion will play
a role in the strength of the signal able to be obtained. Due to the presence of a distinct
dicrotic notch and low skin thickness, the finger is likely to be a successful anatomy that
can be used with consistency. It remains to be seen if diagnostic predictor parameters
such as those presented by Takazawa retain their statistical and predictive power across
anatomies and local variables such as body temperature [29].

3.4. Local Body Temperature

Thermoregulation is an important component of homeostatic function. Large shifts in
temperature typically occur in response to external stimuli, such as exercise and contact.
Subtle temperature changes can follow regular patterns associated with normal physio-
logical functions. For example, Allen et al. studied three adjacent fingers of the hand of
15 healthy males measuring PPG, laser doppler flow (LDF), and skin temperature changes
following a deep inspiratory gasp of air. They reported a 2.6-times increase in PPG am-
plitude, 93% decrease in LDF flux, and median decrease of 0.089 degrees Celsius [150].
The body’s thermoregulatory response to stimuli includes vasoconstriction/vasodilation,
which could lead to a delayed response of temperature in the skin. Thus, while the pulsat-
ing components of PPG are related to arterial blood volume, the non-pulsating component
is a function of the average blood volume, respiration, the sympathetic nervous system,
and thermoregulation [151]. As such, typically filtered out PPG components can pro-
vide information surrounding thermoregulatory blood flow, one example being through
arterio-venous anastomosis shunt vessels [151]. Furthermore, while studying the effec-
tiveness of PPG on identifying limb ischemia among men and women of an average age
of 70 years old, Carter and Tate reported that PPG amplitude is significantly correlated
(r = 0.550; p < 0.001) to skin temperature of the toe, as body cooling leads to reductions
in PPG wave amplitude [152]. Lindberg et al. found that PPG amplitude showed a di-
rect response to skin temperature elevation, especially in the finger skin of 10 Caucasian
young adults (aged 22–30) using three different arrangements of PPG probes with differ-
ent source/detector separations [153]. These correlations of PPG with body temperature
should be noted among varying demographic groups. For example, Iacopi et al. found
the skin of the foot of obese patients to be about 7 degrees Celsius higher than the foot of
nonobese patients, and thus caution should be noted if PPG is measured at the foot [60].
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Khan et al. investigated the effects of finger temperature on PPG signal on 20 healthy
adult volunteers (24.5 ± 4.1 years of age), reporting a reduction in PPG Root Mean Square
values as ambient temperatures went from warm to cold temperatures [154]. The authors
conclude that PPG quality is improved with warm temperatures, yet do not mention the
effect of thermoregulatory responses [155]. Hahn et al. studied the effect of cold exposure
on arterial PPG among 10 heathy volunteers and 10 individuals with systemic sclerosis.
They report significant reductions in PPG pulse wave amplitudes (p < 0.0001) between the
groups both at rest and after cooling the finger to 16 degrees Celsius [156]. Askaraian et al.
reported that while measuring PPG with a submerged finger of 20 healthy volunteers aged
18 to 80 years old, they found that a drop in 40 degrees Celsius contributed to a 12 dB drop
in PPG signal amplitude [157].

Temperature drops also seem to result in decreased accuracy of heart rate estimation.
Jeong et al. found that local skin surface temperature changes affect PPG components
of 16 healthy subjects aged 23–30 years (26 ± 2.1) and BMI ranging between 20 and 26
(23 ± 4.8), hence recommending that temperature be monitored in order to reliably evaluate
cardiovascular parameters [158]. Zhang et al. demonstrated how PPG reproducibility is
affected by cold exposure and acclimatization after middle finger submersion in 9 ± 2 ◦C
water for 2 min and comparison with index finger as a reference [159]. Significant changes
in DC and AC amplitudes of the PPG pulse indicate that the mild cold exposure has
a substantial effect on finger blood circulation. The authors suggested that mild cold
exposure may have a delayed effect on PTT due to cold-induced vasodilatation and could
be a potential source of error [159]. Thus, while physiological temperature changes due
to thermoregulation may impact a signal, studies detailing changes caused by external
temperatures also illustrate significant PPG impact.

Aside from temperature changes due to the subjects’ physiological state, abrupt
changes in ambient temperature could affect the PPG system components, and thus the
PPG signal. There are also PPG instrumentation aspects that have strong temperature
dependence. For example, many of the photodetectors are subject to creating artifacts from
sensor-tissue motion and sensor deformation changes [160]. For silicon photodiodes, the
absorption coefficient increases with temperature, and thus the detectors will absorb less
light at higher temperatures, inducing an apparent shift in PPG amplitude [161]. Higher
temperatures also generate higher thermal noise in the detector. Drift current varies directly
with temperature when photodiodes are used in photovoltaic mode [161].

It has been shown that the temperature of the body site where PPG data are being
collected can influence the resultant waveform amplitude, and even the time between
waveforms. This is summarized in Table 5. However, many of these studies suggested
that external temperature has a much more significant effect on the PPG waveform. Thus,
beyond variation found within individuals and changing physiologies, external factors can
also significantly impact RCIM PPG.

Table 5. Factors that affect local body temperature that affect PPG.

Temperature
Increase/Decrease Effect on PPG Signal Relevant Work Reference

Increase Increase PPG amplitude
and total signal Allen et al., 2002 [150,153–155]

Decrease
Decrease in PPG

waveform amplitude,
decrease PTT

Lindberg et al., 1991
Hahn et al., 1999

Askarian et al., 2019
Zhang et al., 2006

[152,156,157,159]

4. External Factors

The previous two sections discussed sources of error pertaining to the subjects of
cardiovascular monitoring. This next section explains sources of error that originate from
the environment and factors outside of the patient’s characteristics. These are motion



Biosensors 2021, 11, 126 22 of 36

artifacts, ambient light, and applied pressure to the measurement site. While the previous
sections are relevant to discerning and evaluating the PPG waveform, this section more
heavily discusses obtaining an accurate signal.

4.1. Motion Artifacts

PPG sensors are used in settings where a person is sedentary or in motion. Within
all settings, motion artifacts are picked up by the sensor and cause fluctuations within
the collected signal. During sedentary moments, respiration rate, thermoregulation, and
sympathetic nervous system activity cause the DC baseline to wander [162]. Adjusting
positions or tapping a finger can be considered a micro-motion, while a macro-motion
is performing an exercise such as walking or jogging—both types of motion cause more
significant fluctuations to the signal than sedentary motions. With macro-motions, there
are different grades of intensity, and each affects accurate signal acquisition. All these
motions range between 0.1 and 20 Hz, which is within the frequency range for heart rate
(1–4 Hz) [163]. With the addition of motion artifacts within a PPG signal, results for SpO2,
heart rate, and other PPG dependent measurements can be skewed. This can create false
alarms or inaccurate readings. Another issue is when motion is cyclical or periodic. Heart
rate tracking devices will pick up on the cyclical motion and mistake it for the cardiac cycle,
causing false readings as well [46]. With the increase in commercial heart rate monitoring
devices, there is an increased need for motion artifact identification and elimination.

Motion artifacts can affect the acquired signal differently based on the location of the
sensor along with what wavelength of light is used. Maeda et al. measured both IR and
green wavelengths along the upper arm, forearm, wrist, and finger [162]. They found the
upper arm had the lowest artifact ratio, which is the ratio of the magnitude of the PPG
signal after a motion and the magnitude of the PPG signal before the motion. The green
sensor also had a lower artifact ratio for all locations compared to the IR sensor. The highest
correlation coefficient between the PPG signal and a chest ECG was that of the green sensor
on the upper arm. Lee et al. saw similar results regarding the wavelength used [164]. They
looked at the correlation coefficient and ∆SNR for blue (470 nm), green (530 nm), and red
(625 nm). With the longer wavelength, red had a significantly bigger ∆SNR than green
or blue. It was determined that green was the best option due to its higher correlation
coefficient, but blue is an alternative option due to its significantly similar ∆SNR as green.
With their longer wavelengths, red and IR have deeper penetration depths compared
to blue and green, making them prone to more motion artifacts such as the factors that
directly affect the DC baseline [162,164]. Aside from location and wavelength, the intensity
of motion also plays a role in how accurate heart rate monitoring is.

In order to understand how motion artifacts affect the accuracy of heart rate monitor-
ing, researchers have tested off-the-shelf health and fitness trackers and compared them to
a chest ECG during different intervals of motion. All the discussed trackers are designed
to be worn on the wrist. Jo et al. compared the accuracy of the Basis Peak (BP) and Fitbit
Charge HR (FB) during high-intensity events where the mean ECG HR was >116 bpm,
and low-intensity events where the mean ECG HR was <117 bpm [165]. Overall, they
discovered that the BP performed better, in relationship to the ECG, (r = 0.92, p < 0.0001)
than the FB (r = 0.83, p < 0.0001). During the low-intensity events, the BP provided accurate
heart rate readings (r = 0.84, p < 0.05), while the FB had a moderate correlation (r = 0.73,
p < 0.05). High-intensity events caused the BP to have a weaker correlation (r = 0.77,
p < 0.05), whereas the FB had the weakest correlation (r = 0.58, p < 0.05). These results
align with an assessment done by Stahl et al., where they measured the mean absolute
percentage error values (MAPE) of BP and the FB to be 3.6% and 6.2%, respectively [166].
Stahl et al. also looked at the Scosche Rhythm, Mio Alpha (MA), Microsoft Band, and
TomTom Runner Cardio (TT). When going from a resting phase to a low-intensity walking
phase, they found that the correlation coefficient went down but had slowly rebounded
when moved into a more intense walking phase. They also reported that during the high
intensity running stage, they saw some of the lowest MAPE from the MA (0.82%), the TT
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(0.97%), and the BP (3.28%). This conclusion showed that during intermediate and low
intensity motions, the accuracy is dependent on the device. In another study, performed by
Dooley et al., the comparison was made between the Apple Watch (AP), FB, and Garmin
Forerunner 225 (GF), where the AP was considered the best in terms of MAPE (1.14–6.70%),
while the FB and the GF had a MAPE of 2.38–16.99% and 7.87–24.38%, respectively [167].
The AP (p = 0.84) and GF (p = 0.35) had no significant difference in HR readings from the
ECG during vigorous intensity. All had a significant difference during low-intensity events.
This shows that, depending on the exercise, each tracker will have a different accuracy,
which could be attributed to the different noise-canceling algorithms used on board. Bent
et al. confirmed that the wearable device and activity condition are significantly corre-
lated in their study [46]. There was a significant difference between research-grade and
consumer-grade wearables. The mean absolute error (MAE) for all motion phases was
better for the consumer wearables than the research wearables. This study also showed
that the Apple Watch 4 had the highest accuracy with an MAE of 2.7 BPM at rest and 4.6
BPM during the walking phase, confirming the results from Dooley et al. All the studies
have shown that motion artifacts cause varying accuracies depending on motion intensity
and the type of heart rate monitor used. Being able to detect the motion artifact regardless
of motion intensity is crucial for more accurate heart rate measurements.

There are several ways of detecting noise or motion artifacts that do not rely on
secondary sensors, which include using filters with cross-correlation, analyzing the mor-
phology of the signal, and higher-order statistics in both the frequency and time domain.
Karlen et al. created an algorithm with 96.21% sensitivity and 99.2% positive predictive
value for good pulses using repeated Gaussian filters and cross-correlation [168]. The signal
is analyzed in the time and frequency domains and then cross-correlated to determine
whether the pulse has a high or low signal quality index (SQI). The correlation utilizes the
rising slopes of at least three previous pulses along with applying repeated Gaussian filters
to predict where the next pulse should be. If the pulse does not fall within the range of pre-
diction, the pulse is deemed as bad (low SQI) and could be eliminated from HR calculations.
With this algorithm, Karlen et al. were able to distinguish where motion artifacts occurred
in a beat-to-beat manner. Another form of predicting motion artifacts is to dissect the signal
using morphology. Sukor et al. focused on locating the pulse amplitude, the differences
in trough depth between successive pulses, and the pulse width [169]. They found their
algorithm to have an accuracy of 83 ± 11%, a sensitivity of 89 ± 10 %, and a specificity of
77 ± 19%. When comparing their algorithm to an ECG, they were able to lower the error
in heart rate readings to 0.49 ± 0.66 bpm, whereas without the algorithm, the error was
7.23 ± 5.78 bpm. Chong et al. also worked on identifying four time-domain characteristics
while using a support vector machine to build a decision threshold to classify clean and
corrupt PPG signals [170]. They were able to achieve an accuracy of 93.7% during a daily
motion experiment, and they saw a significant reduction in error for SpO2 and heart rate
measurements. Karlen et al., on the other hand, identified time-domain characteristics
by using pulse segmentation to determine the up-slopes of the PPG signal [171]. Their
application was created for mobile PPG measurements instead of wearable. They were able
to achieve a positive predictive value of 96.68% and a sensitivity of 98.93%. Like the others,
Coucerio et al. used time-domain analysis, but they also implemented period domain
analysis to identify 26 features across both domains [172]. They were able to achieve a
specificity of 92.7% and a sensitivity of 82.7%. The last detection method is to use higher-
order statistics done by Krishnan et al. and Selvaraj et al. [173,174]. Kurtosis and Shannon
Entropy were the measurements used by Selvaraj et al. to determine motion artifacts, and
they were able to perform an accuracy of 88.8% in a laboratory setting [174]. Krishnan et al.
used kurtosis and skew in the time domain while also analyzing frequency domain kurtosis
and quadratic phase coupling [173]. They discovered skew and kurtosis measurements in
the time domain to be higher when there was corruption, and the frequency-domain kurto-
sis was smaller when there was corruption. The quadratic phase was present in corrupted
signals. All the parameters could then be used to eliminate sections of the PPG signal that
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were corrupted with motion artifacts. The discussed detection methods are all real-time
ways to detect and eliminate sections of acquired PPG signals that contain corrupted areas
due to motion artifacts. This will help to keep heart rate and SpO2 measurement error
lower.

As implemented by consumer-grade HR monitors, secondary sensors can also be
integrated into PPG sensors to detect motion. These include accelerometers [175–179],
gyroscopes [179,180], piezoelectric transducers [181], or the utilization of another wave-
length of light as a motion reference [182,183]. Each of these sensors is used to detect and
then reduce or eliminate noise so a clean signal can be reconstructed. Accelerometers and
gyroscopes are the standards, but when trying to measure micro motions such as finger
tapping, accelerometers and gyroscopes do not always pick up on the motion because
the wrist remains still. Both the piezoelectric transducer and another wavelength of light
can pick up these finer motions [181,182]. The algorithms used to detect motion with a
secondary sensor also use adaptive filters which have been used independently of sensors
as noise reduction techniques but are better suited to work in conjunction with secondary
sensors. Table 6 lists adaptive filters used to reduce motion artifacts.

Table 6. Adaptive filters utilized to eliminate or reduce motion artifacts independently and in
conjunction with secondary sensors. This is not an all-inclusive list.

Filter Relevant Work Reference

Least Mean Square Chan et al., 2002 [184]

Recursive Least Squares
Gibbs et al., 2005
Khan et al., 2015
Lee et al., 2010

[175,176,185]

Normalized Least Mean
Squares

Han et al., 2007
Casson et al., 2016

Lee et al., 2010
Yousefi, 2013

[177,179,185,186]

Kalman Smoother Lee et al., 2010 [185]

Spectrum Subtraction Zhang et al., 2015
Zhang et al., 2015 [178,187]

Continuous Wavelet
Transform

Zhang et al., 2019
Bousefsaf et al., 2013

Teng et al., 2003
[182,188,189]

Independent Component
Analysis

Lee et al., 2020
Krishnan et al., 2010

Kim et al., 2006
Holton et al., 2013

[183,190–192]

Principal Component
Analysis

Holton et al., 2013
Motin et al., 2017 [192,193]

Singular Value Decomposition Lee et al., 2020
Reddy et al., 2007 [183,194]

Empirical Mode
Decomposition

Yousef et al., 2012
Zhang et al., 2015
Motin et al., 2017

[88,187,193]

With the use of adaptive filters and secondary sensors, motion artifacts can be identi-
fied and eliminated, or they can be identified and reconstructed to restore the original PPG
signal, void of all motion artifacts. This has been shown to decrease the error in heart rate
and SpO2 measurements.
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4.2. Ambient Light

PPG signals are low-amplitude signals and have a normal pulse frequency within
the range of 0.5 to 4 Hz [195,196]. The interference of ambient light with the PPG signals
can lead to an inaccurate heart rate estimation. The ambient light intensity can be a zero
frequency (e.g., DC), such as sunlight, or at a variable frequency, as from room lights (e.g.,
60 Hz in the US) and is generally multiple orders of magnitude larger than the pulsatile (AC)
component of the PPG, which can lead to signal saturation. Thus, ambient light rejection
is important to preserve the efficacy of PPG sensors [197,198]. In 1991, it was found that
commercial pulse oximeters had measurement error caused by ambient light [199]. Since
then, development for RCIM has trended towards PPG devices that operate with applied
pressure on the body and/or in body sites that help block other light, ensuring that the
detectors are receiving maximum transmitted/reflected light from only the device.

An approach to reduce the effect of ambient light in PPG measurements can be seen in
the work of Wang et al., which proposed an ear-worn sensor operating in reflective mode
with multiple light sources and detectors. The optical components in this sensor include
light sources which are DLED-660/905, DLED-660/940 and PDI-E835. It is important to
note that the photodetectors, BPW34 and BPW34FS from Siemens (Munich, Germany), used
in this sensor come with day-light filters. In addition to that, the components of the sensors
were optically shielded by embedding them into the base of the sensor and separating
them with an opaque medium [200]. This method was found to be effective in shielding
from noise due to ambient light, as the DC level of the PPG signal was considerably
low (measured to be less than 2 nA) when the LEDs were switched off. Patterson et al.
proposed a flexible PPG sensor with a design that can minimize the effects of ambient light
and other electromagnetic interference. This system with an API PDI-E832 light source,
which is a dual LED emitting at 660 and 905 nm, and an API PDV-C173SM photodetector,
measures the PPG signal from auricular region. The opto-electronic modulation scheme in
this flexible PPG sensor helps to eliminate ambient light noise through the multiplexing
technique and sampling of light level by keeping the LEDs off for a fixed time period and
later subtracting it out from the desired signals. Apart from its electronic system design,
the arrangement of the source and detector in this sensor also contributes to eliminate
the interference of ambient noise to the signal. This includes encasement of the active
area of the photodetector in a red plastic to filter out ambient light and addition of 2 mm
wide foam between the source and detector to prevent direct coupling of light from the
LED to the detector [201]. Selective filtering of unwanted signals (above and below 0.5 to
4 Hz frequency range) is another method followed to eliminate the noise due to ambient
light. With a low bandwidth of around 5 Hz, PPG signals can be extracted out from high
frequency noise using a low-pass filter and from low frequency noise using a high-pass
filter (e.g., to reject 60 Hz room lights and to reject DC sunlight). Various attempts are
also made in the PPG sensing circuitry level to effectively reject DC photocurrent. A
transimpedance amplifier (TIA) associated with PPG sensors converts and amplifies the
weak photocurrent from the PD to a differential voltage. An effective DC photocurrent
rejection circuit proposed by Wong et al. by developing an integrated TIA with bandpass
response in a NIR wearable sensor is an example. The dual loop TIA in this design acts as a
high pass filter by achieving a reduction in its cutoff frequency as low as 0.5 HZ, while the
other loop adaptively adjusts the DC photo current and prevents sensor saturation [202].

The accuracy of PPG measurements could be limited due to the interference of en-
vironment noise such as ambient light. This can be effectively compensated by various
methods like optical shielding of the transducer, selective filtering of noise outside the PPG
bandwidth, and with correlated double sampling. Modifications in the signal processing
method at the signal amplifier can also successfully reject DC photocurrent in PPG sensors.

4.3. Applied Pressure to Measurement Site

Discrepancies in PPG signals can arise where variations in applied pressure influence
the resulting waveform. This can result in an increase or decrease in amplitude along with a
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shift in offset. With a low applied external pressure from the sensor, the waveform exhibits
lower SNR with a low AC amplitude primarily because of a longer optical path length
through the tissue and a lower reflectance of photons due to high tissue absorption [203].
With increased applied pressure, the AC amplitude begins to increase due to a decrease
in optical path length through the tissue and the approach of the transmural pressure to
zero. The transmural pressure is defined as the pressure difference between the mean intra-
arterial pressure on the vessel (e.g., artery or arteriole) wall and the contact pressure. When
the transmural pressure reaches zero, the AC amplitude reaches its maximum [204,205].
As the external pressure exceeds the point where the transmural pressure is no longer zero,
the vessel begins to occlude, and the AC amplitude begins to decrease until there is no
longer a signal where the vessel is occluded. Different vasculature will occlude at different
amounts of pressure, also contributing to perturbations in the signal. With the change in
transmural pressure, there is also a related compliance change in the affected vessel. The
vessel reaches maximum compliance when the transmural pressure is zero [205].

Several characteristics of the PPG waveform are affected by changes in contact force,
including; the AC amplitude, the DC offset amplitude, the ratio of AC/DC amplitudes,
and the normalized pulse area. As reported by Teng and Zhang, with an applied force
at the finger of 0.2–1.8 N, there was an increase in AC amplitude and AC/DC ratio until
the parameters reached a peak and then decreased, while the pulse area decreased, and
the DC offset increased [206]. The change in these fundamental features can affect other
measurements such as the b/a ratio, derived from the a and b peaks of the second derivative
of a PPG signal, used to characterize arterial stiffness [132], the relationship between the
frequency response of a PPG signal and a blood pressure signal [207], or the pulse transit
time (PTT) which is used as an indicator for fluctuating stiffness or elasticity in arteries
and blood pressure [208]. Grabovskis et al. reported with an applied pressure range of
0–15 kPa, there was a variation of over 300 percent in the b/a ratio [209]. When an optimal
pressure was reached, the variation coefficient dropped to less than 5 percent. Using the
frequency response of the PPG signal taken at the finger, Hsiu et al. worked to understand
how the relationship between the first five harmonics of the PPG signal and corresponding
blood pressure signal varied with an applied pressure of 0–200 mmHg [207]. At 60 mmHg,
there were the greatest R2 values for four out of five harmonics, and with the different
applied pressures, the R2 values ranged from 0.13 to 0.77 for the first harmonic. Regarding
PTT, Teng and Zhang discovered that, with a contact force of 0.1–0.8 N applied at the finger,
the PTT measured from the R peak of an ECG and the peak of the second derivative of the
PPG increased significantly (p = 0.014) until the estimated transmural pressure approached
−0.1 N, after which the PTT remained roughly constant [208]. For the PTT measured
from 50% of the pulse amplitude, there was a significant increase in PTT (p = 0.038) before
reaching a constant at −0.1 N transmural pressure. Lastly, for the PTT calculated at 90%
of the pulse amplitude, there was a similar increasing trend for the PTT but without a
significant difference (p = 0.107). The PTT leveled out to a constant value for a transmural
pressure of around 0.1 N. Within all the studies, infrared light-emitting sources were used
to study the effects of contact pressure. Spigulis et al. worked to understand at what
pressure the signal amplitude would be at maximum and when the vasculature would
occlude at wavelengths of 405, 532, 645, 807, and 1064 nm. Since longer wavelengths going
from the visible to NIR penetrate deeper, it took larger pressures before occlusion occurred,
since the deeper arteries with higher mean arSPOterial pressure (MAP) were the ones
probed with the longer wavelengths [210]. For shorter wavelengths, the occlusion pressure
was lower, as more superficial arterioles with low MAP were in the light path at these
wavelengths. Overall, the above studies show that inaccurate PPG signal acquisition due
to varying contact pressures can lead to inaccurate secondary measurements. Therefore,
integrating a solution to produce constant contact pressure or being able to measure the
pressure in PPG devices will produce more consistent and repeatable measurements.

Integrating a sensor that can measure the applied force could help to standardize
PPG measurements such that the applied pressure does not skew the signal. For example,
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Nogami et al. designed a PPG sensor with an optical displacement sensor comprised
of a vertical-cavity surface-emitting laser, a mirror, and a photodiode [211]. Specifically,
there is a compressible frame with the mirror mounted to it and as a force is applied, the
intensity of light reflected from the mirror on to a photodiode changes in accordance with
the applied pressure. Another solution is to integrate a flexible thin-film force transducer
(FlexiForc A201, Tekscan Inc., Boston, MA, USA) between the PPG sensor and the designed
fastener, as done by Grabovskis et al. and Sim et al. [209,212]. Grabovskis et al. reported
a less than 3% coefficient of variation within a subject at the single measurement site
when determining the optimal pressure needed to determine an unloaded artery. Sim
et al. utilized the force transducer as a feedback mechanism within their system. A force
regulator consisting of a thermo-pneumatic actuator would heat a layer of expandable fluid
that pushed down upon the force transducer and PPG sensor. Without force regulation, the
coefficient of variation between five posture stages was calculated at 50.9%. The addition
of the force regulator dropped the coefficient of variation to 1.8%. Rhee et al. created a
finger-ring system that utilized a polyester braided elastic band to mount their sensor [213].
This band would apply a skin pressure of about 75 mmHg and, due to its compliance,
it would hold steady the applied pressure while the finger was in different positions.
Another force measuring modality to integrate with a PPG sensor is a Force Sensing
Resistor (FSR, Interlink Electronics, Camarillo, CA, USA), as done by Santos et al. [214].
Liu et al. implemented a fiber Bragg gating to measure applied pressure [215]. The Bragg
wavelength will measurably shift in relationship with the applied pressure to the sensor.
Utilizing this modality, they demonstrated that, when pressures are kept within the range
of 5–15 kPa, there is less than 2% error in the SpO2 measurements.

5. Summary

This review focused on the impediments to remote and continuous PPG devices.
PPG is a common tool used to monitor cardiovascular health in controlled environments.
However, only a limited number of RCIM PPG devices have FDA approval. A review of
the literature shows that the difficulty in creating such a device partially originates from the
many sources of noise that researchers encounter. Here, we compiled and evaluated sources
of noise found in published works and utilize understandings of photoplethysmography
and light/tissue interactions to summarize findings in order to provide guidance for future
PPG-based devices. As shown in Table 7, we found that sources of noise can be divided
primarily into three categories: individual variation, physiological processes, and external
perturbation. While many sources of noise had documented potential solutions, few had a
comprehensive solution and even our understanding of how conditions such as obesity
affect the skin and cardiovascular monitoring are still developing. Future research towards
a RCIM PPG device for true regulated health monitoring should incorporate larger studies
that are inclusive of the noise sources across diverse populations discussed herein.

Table 7. Summarized noise sources, effect, and solution.

Section Sources of Noise Impact Mitigation Technique

Individual Variation

Skin Tone Melanin absorption Decreased signal
intensity

PPG Wavelength
Selection

Obesity

Blood flow, skin thickness,
capillary recruitment, trans

epidermal water loss,
oxygen saturation

Decreased signal
intensity, modified PPG

waveform

None found in
literature

Age
Skin thickness, vessel
compliance, capillary

recruitment

Change in signal
intensity, modified PPG

waveform
Calibration

Gender
Cardiovascular baseline

differences, skin thickness,
vessel size

Change in signal
intensity Calibration
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Table 7. Cont.

Section Sources of Noise Impact Mitigation Technique

Physiology

Respiratory Rate Low frequency noise Modified PPG
waveform High pass filter

Venous Pulsations Reduction in overall signal,
low frequency noise

Modified PPG
waveform

High pass filter, apply
pressure

Local Body
Temperature

Cold temperatures
diminish PPG amplitude

Change in signal
intensity Calibration

Body Site Signal amplitude and PPG
waveform shape

Change in signal
intensity, modified PPG

waveform
Calibration

External Factors

Motion Artifacts High and low frequency
noise Change in signal SNR Filters and secondary

sensors

Ambient Light Increased Noise Change in signal SNR Optical shielding and
selective filtering

Applied Pressure Reduction in PPG
amplitude and SNR

Change in signal SNR,
modified PPG

waveform

Apply optimal pressure
for high SNR, without

affecting waveform
features
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