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(e known linear regressionmodel (LRM) is usedmostly formodelling theQSAR relationship between the response variable (biological
activity) and one or more physiochemical or structural properties which serve as the explanatory variables mainly when the distribution
of the response variable is normal. (e gamma regression model is employed often for a skewed dependent variable. (e parameters in
both models are estimated using the maximum likelihood estimator (MLE). However, the MLE becomes unstable in the presence of
multicollinearity for both models. In this study, we propose a new estimator and suggest some biasing parameters to estimate the
regression parameter for the gamma regressionmodel when there ismulticollinearity. A simulation study and a real-life applicationwere
performed for evaluating the estimators’ performance via the mean squared error criterion.(e results from simulation and the real-life
application revealed that the proposed gamma estimator produced lower MSE values than other considered estimators.

1. Introduction

(e gamma regression model (GRM) is generally adopted
to model a skewed response variable that follows a gamma
distribution with one or more independent variables. It is
used in modelling the real-life data problems of several
fields such as the medical sciences, health care economic,
and automobile insurance claim [1]. When the positively
skewed response variable follows a gamma distribution
with a given set of independent variables, then it is pre-
ferred to use the gamma regression model [2–4]. As in
linear regression models, the explanatory variables inde-
pendence assumption rarely holds in practice, so the
multicollinearity problem exists in the gamma regression
models which means the maximum likelihood estimator
(MLE) is unstable and gives high variances [5]. Conse-
quently, constructing confidence intervals or testing the
regression parameters of the model becomes difficult [6]. A
lot of authors proposed different estimators for handling

multicollinearity. (e ridge estimator given by Hoerl and
Kennard [7] is an alternative to MLE to overcome the
multicollinearity in the linear regression model. (e esti-
mator has been extended to the generalized linear models
(GLM) (see [8, 9]). Also, Månsson and Shukur [10] and
Månsson [11] introduced the ridge estimator to the Poisson
regression model and the negative binomial regression
model, respectively. Kurtoglu and Ozkale [12] extend the
Liu estimator of Liu [13] to the gamma regression model.
Batah et al. [14] proposed a modified Jackknife ridge es-
timator by combining the ideas of the generalized ridge
estimator and Jackknifed ridge estimator. Also, Algamal [3]
developed the modified Jackknifed ridge gamma regression
estimator. Recently, the modified version of the ridge re-
gression estimator with two biasing parameters was pro-
posed for both the LRM and GRM [15, 16]. Kibria and
Lukman [17] proposed a new estimator called the ridge-
type estimator and applied to the popular linear regression
model.
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(e main objective portrayed in this article is to extend
the new ridge-type estimator of Kibria and Lukman [17] to
the GRM.(e article organization is as follows: in Section 1,
we proposed the new ridge-type gamma estimator, and then
we derived its properties. Also, we have done the theoretical
comparisons and have explained the estimation of the bi-
asing parameter in Section 2. A simulation study is con-
ducted to investigate and compare the performance of the
new gamma estimator and some existing estimators in
Section 3. We also analyzed a real-life data in Section 4.
Finally, we have provided some concluding remarks in
Section 5.

2. The Statistical Methodology

Consider the response variable yi which follows the known
gamma distribution with the parameter of the nonnegative
shape aand the parameter of the nonnegative scale b with
probability density function:

f yi(  �
y

a− 1
i e

− yi/b( )

Γ(a)b
a , yi ≥ 0, (1)

where E(yi) � ab � θi and Var(yi) � ab2 � (θ2i /a), θi � exi
′β.

(e log-likelihood function of (1) is

l(β) � 
n

i�1
(a − 1)ln yi(  −

yi

b
− a ln(b) − ln(Γ(a)) . (2)

Equation (2) is solved iteratively since it is nonlinear in
βusing the Fisher scoring method as follows:

βt+1
� βt

+ I
− 1 βt

 S βt
 , (3)

where t is the iteration degree, S(β) � zl(β)/zβ and
I− 1(β) � (− E(z2l(β)/zβ zβ′))− 1. (e last step for the esti-
mated coefficients is considered as

βMLE � D
− 1

X′Wz, (4)

where D � X′ WX, W � diag(θ
2
i ) matrix, θi � exp(xi

′βMLE),
and z is called the vector in ith element, z � θi + (yi − θi/θ

2
i ).

W and z are obtained by procedure of the Fisher scoring
iterative (see [12, 18]).(ematrix form of the covariance, the
matrix of the mean squared error (MMSE), as well as the
mean square error (MSE) are obtained by Algamal and Asar
[19] and written, respectively, as follows:

MMSE βMLE  � Cov βMLE  � ϕD
− 1

, (5)

where ϕ � (1/n − p) 
n
i�1((yi − θi)

2/θ2i ).

MSE βMLE  � tr MMSE βMLE   � ϕ

p

j�1

1
cj

, (6)

where cj is considered as an jth eigenvalue of the given
matrix D � X′ WX and the notation X′is the transpose of X.

(e gamma ridge estimator (GRE) is considered as

βGRE � D
− 1
k

βMLE, k> 0, (7)

where Dk � (Ι + kD− 1) and k is the biasing parameter. (e
MMSE and MSE of GRE are given by

MMSE βGRE  � Cov βGRE  + Bias βGRE Bias βGRE ,

� ϕD
− 1
k D

− 1
D

− 1
k + k

2
D

− 1
k D

− 1ββ′D− 1′
D

− 1′
k

MSE βGRE  � tr MMSE βGRE  ,

� ϕ

p

j�1

cj

cj + k 
2 + k

2


p

j�1

α2j
cj + k 

2,

(8)

where α � P′β such that P is the matrix of eigenvectors of D.
(e gamma Liu estimator (GLE) is given by

βGLE � Fd
βMLE, 0<d< 1, (9)

where Fd � (D + Ι)− 1(D + dΙ) and d is the biasing parameter.
(e MMSE and MSE of GLE are given by

MMSE βGLE  � Cov βGLE  + Bias βGLE Bias βGLE ′

� ϕFdD
− 1

Fd

+ (1 − d)
2
(D + Ι)− 1ββ′(D + Ι)− 1

,

MSE βGLE  � tr MMSE βGLE  

� ϕ

p

j�1

cj + d 
2

cj cj + 1 
2 + (1 − d)

2


p

j�1

α2j
cj + 1 

2.

(10)

2.1. 5e New Gamma Estimator. For the known linear re-
gression model, Kibria and Lukman [17] proposed the
following new ridge-type estimator and called as the
Kibria–Lukman (KL) estimator, which is defined as

βKL � W(k)M(k)βOLS, k> 0, (11)

where W(k) � (Ι + k(X′X)− 1)− 1, M(k) � (Ι − k(X′X)− 1),
and βOLS � (X′X)− 1X′Y.

In this study, we extend the KL estimator to the GRM
and referred to the estimator as gamma KL estimator (GKL)
which is written as follows:

βGKL � D
− 1
k Rk

βMLE, (12)

where Rk � (Ι − kD− 1).
(e bias and covariance matrix form of GKL estimator

are gotten respectively as:

Bias βGKL  � D
− 1
k Rk − Ι β, (13)

where E(βMLE) � β and
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Cov βGKL  � ϕD
− 1
k RkD

− 1
Rk
′D− 1′

k . (14)

So, the MMSE and MSE in terms of eigenvalues are
defined, respectively, as

MMSE βGKL  � Cov βGKL  + Bias βGKL Bias βGKL ′

� ϕD
− 1
k RkD

− 1
Rk
′D− 1′

k

+ D
− 1
k Rk − Ι ββ′ D

− 1
k Rk − Ι ′,

MSE βGKL  � tr MMSE βGKL  

� ϕ

p

j�1

cj − k 
2

cj cj + k 
2 + 4k

2


p

j�1

α2j
cj + k 

2.

(15)

2.2. 5e 5eoretical Comparison for the Estimators. Some
needed lemmas are stated as follows for comparing the
estimators in theoretical.

Lemma 1. Suppose n × n matrices F is positive definite (p.d.)
as well as A is p.d. (or Ais nonnegative); then, F>A iff
λmax(AF− 1)< 1, where λmax(AF− 1) is the max eigenvalue for
the matrix AF− 1[20].

Lemma 2. Suppose R is an n × n matrix which is p.d. and αbe
a vector; then, R − αα′is p.d. iff α′R− 1α< 1 [21].

Lemma 3. Suppose that αi � Liy, i � 1, 2 be the given two
linear estimators of α. Also, suppose I � Cov(α1) − Cov(α2) is
p.d., where Cov(αi)i � 1, 2 is considered as the covariance
matrix form of αi and bi � Bias(αi) � (LiX − I)α, i � 1, 2.
Consequently,

Δ α1 − α2(  � MMSE α1(  − MMSE α2( 

� σ2I + b1b1′ − b2b2′ is p.d.,
(16)

if b2′[σ2I + b1′b1]b2 < 1, whereMMSE(αi) � Cov(αi)+ bibi
′ [22].

2.2.1. Comparison of GKL and MLE

Theorem 1. βGKL is better than βMLE if

β′ D
− 1
k Rk − Ι ′ ϕ D

− 1
− D

− 1
k RkD

− 1
Rk
′D− 1′

k   D
− 1
k Rk − Ι β< 1.

(17)

Proof. (e difference of the dispersion is

Cov βMLE  − Cov βGKL  � ϕ D
− 1

− D
− 1
k RkD

− 1
Rk
′D− 1′

k .

(18)

We observed that D− 1 − D− 1
k RkD− 1Rk

′D− 1′
k is positive

definite (p.d.) since (cj + k)2 − (cj − k)2 � 4cjk> 0, for
k> 0. By Lemma 3, the proof is done.

2.2.2. Comparison of GKL and GRE

Theorem 2. βGKL is superior to βGRE if

β′ D
− 1
k Rk − Ι ′ V1 + D

− 1
k − Ι ββ′ D

− 1
k − Ι   D

− 1
k Rk − Ι β,

λmax AF
− 1

 < 1,

(19)

where

V1 � ϕ D
− 1
k D

− 1
D

− 1′
k − D

− 1
k RkD

− 1
Rk
′D− 1

k ,

A � kD
− 1
k D

− 1
D

− 1
k ,

F � 2D
− 1
k D

− 1
k .

(20)

Proof

V1 � ϕ D
− 1
k D

− 1
D

− 1′
k − D

− 1
k RkD

− 1
Rk
′D− 1

k 

� ϕ D
− 1
k D

− 1
D

− 1′
k − D

− 1
k Ι − kD

− 1
 D

− 1 Ι − kD
− 1

 D
− 1
k 

� ϕkD
− 1

(F − A)D
− 1

,

(21)

where A � kD− 1
k D− 1D− 1

k and F � 2D− 1
k D− 1

k .
Clearly, for the biasing parameters k> 0 and 0<d< 1,

F> 0 as well as A> 0. F − A> 0 if λmax(AF− 1)< 1, where
λmax(AF− 1) is the max eigenvalue of the matrix form AF− 1.
By Lemma 1, the proof is done.

2.2.3. Comparison of GKL and GLE

Theorem 3. βGKL is superior to βGLE if

β′ D
− 1
k Rk − Ι ′ V2 + (1 − d)

2
(D + Ι)− 1ββ′(D + Ι)− 1

  D
− 1
k Rk − Ι β≤ 1,

(22)

where V2 � ϕ(FdD− 1Fd
′ − D− 1

k RkD− 1Rk
′D− 1′

k ).

Proof. (e difference of the dispersion is

V2 � ϕ FdD
− 1

Fd
′ − D

− 1
k RkD

− 1
Rk
′D− 1′

k . (23)

We observed that FdD− 1Fd
′ − D− 1

k RkD− 1Rk
′D− 1′

k is p.d.
since (cj + k)2(cj + d)2 − (cj − k)2(cj + 1)2 > 0 for k> 0
and 0<d< 1. By Lemma 3, the proof is done.

2.2.4. Estimation of Parameter k. (e optimal value of k in
βGKL is adopted from the KL estimator of the study of Kibria
and Lukman [17] as follows:
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k �
ϕ

2β2j + ϕ/cj  
. (24)

(e optimal value of k given in (24) depends on the
unknown parameters ϕ and β2j . (erefore, we put the cor-
responding unbiased estimators instead of them.
Consequently,

k �
ϕ

2β
2
MLE(j) + ϕ/cj  

. (25)

3. Simulation Design

R 3.4.1 programming language is adopted for the simulation
design of this study. Following Algamal [19], the response
variable is generated as follows:

yi ∼ G
θ2

υ
,
υ
θ

 , (26)

where θ � exp(X′β) and , υdenotes θ2. (e parameter
vector, β, is chosen such that 

p
j�1 β

2
j � 1[1, 23, 24]. Fol-

lowing Kibria [25] and Kibria and Banik [26], the given
explanatory variables are obtained as follows:

xij � 1 − ρ2 
1/2

wij + ρwip+1,

i � 1, 2, . . . , n; j � 1, 2, . . . , p, p + 1,
(27)

where wij are generated from standard normal and ρ2 is the
correlation between the explanatory variables. (e values of
ρin this study are chosen to be 0.95, 0.99, and 0.999. We
obtained the mean function for p= 4 and 7 explanatory
variables, respectively, for the following sample sizes: 20, 50,
and 200. For each replicate, we compute the mean square
error (MSE) of the estimators by using the following
equation:

MSE β∗i(  �
1

1000


1000

i�1
β∗i − β( ′ β∗i − β( , (28)

where β∗i would be any of the following estimators (MLE,
GRE, GLE, and GLK). (e smaller the mean square error
value is, the better the estimator is. (e biasing parameters
for GRE and GLE are obtained as follows:

k � min
ϕ

β
′2
MLE(j)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

p

j�1

,

d � min 0,

β
2
MLE(j)

ϕ/cj + β
2
MLE(j) 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

j�1

.

(29)

We examined two shrinkage parameters for the pro-
posed estimator. (ey are defined as follows:

k1 � min
ϕ

2β
2
MLE(j) + ϕ/cj  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

j�1

,

k2 �

��
k1



.

(30)

(e simulation results for different values of n, φ, and ρ
are presented in Tables 1 and 2 for p= 4 and 7, respectively.
For a graphical representation, we also plotted MSE vs n, ρ,
φ, and p in Figure 1.

It was observed from both Tables 1 and 2 and Figure 1
that the MSE increases as the level of multicollinearity in-
creases keeping other variables constant. For instance, when
n= 50, for the MLE, the MSE increases from 1.265 to 38.172
as the level of multicollinearity, ρrises from 0.95 to 0.999 for
given ϕ � 0.5 and p= 4. We also observed that, as the ex-
planatory variables increases from p= 4 to p= 7, the MSE
increases provided other variables are kept constant. For
instance, when n= 20 for ρ= 0.99 and ϕ � 1, the MSE for the
GRE-k rises from 6.753 to 19.071. Also, when other variables
are fixed, increasing the sample size n results in a decrease in
the MSE for all the estimators’, for example, the MSE value
of GLE-d for n= 200, ϕ � 0.5, p= 7, and ρ= 0.95 reduces
from 1.282 to 1.549. Furthermore, the MSE increases as the
dispersion parameter ϕ increases from 0.5 to 1. (e maxi-
mum likelihood estimator performs least as expected be-
cause of the effect of multicollinearity on the estimator. (e
result in Tables 1 and 2 and Figure 1 shows that the GKL
outperforms other estimators. Since the performance of the
proposed estimator GKL depends on its biasing parameter,
we examined two different biasing parameters for GKL
estimator and observed that the GKL estimator performs
best with the biasing parameter, k2. (e simulation result
further supports the theoretical results that the performance
of GKL estimator is the best. (e performance of the GRE
and GLE is better than that of the MLE. Furthermore, we
explored the performance of the proposed estimator and the
existing estimators by analyzing a real-life data in Section 4.

4. Real-Life Data: Algamal Data

(e chemical dataset adopted in this study was employed in
the study of Algamal [3, 19]. He employed the quantitative
structure-activity relationship (QSAR) model to study the
relationship between the biological activities IC50 of 65
imidazo [4, 5-b] pyridine derivatives – an anticancer
compound – and 15 molecular descriptors. (e QSAR
model is widely used in the following fields: chemical sci-
ences, biological sciences, and engineering. (e linear re-
gression model is popularly used to model the QSAR
relationship between the response variable (biological ac-
tivity) and one or more physiochemical or structural
properties which serve as the explanatory variables especially
when the response variable is normally distributed [27].
However, the regression modelling is employed when the
response variable is skewed [3, 19, 24, 28]. In this study,
following Algamal [3, 19], the variables of interest are de-
scribed in Table 3.
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According to Algamal [3, 19]; the response variable, y,
follows a gamma distribution. Using the chi-square good-
ness of fit test, author examined that the response variable is
well fitted to the gamma distribution with test statistic (p
value) given as 9.3657 (0.07521). Algamal [19] reported that
the correlation coefficient between the following variables,
Mor21v and Mor21e, SpMax3_Bh(s) and ATS8v,
SpMaxA_D and MW and finally MW and ATS8v, is greater
than 0.9 and interpreted as high correlation. (e eigenvalues
of X′ WX are 7.6687E + 8, 1.3238E+ 6, 85791, 5523.6,

358.71, 250.51, 148.46, 42.731, 27.239, 18.015, 9.1197, 8.6175,
5.7748, 2.4292, 1.6532, and 0.3659, respectively. (us, the
condition number, CN is computed as follows:

CN=
���������������������������
max(eigenvalue)/min(eigenvalue)


=45777.7

which indicates the presence of severe multicollinearity [19].
(e results of the gamma regression model and the mean
square error are presented in Table 4.

(e result in Table 4 agrees with the simulation results.
(e performance of the MLE is the worst in terms of
possessing the highest MSE. (e proposed estimator with

Table 1: Estimated mean squared error when p= 4.

ϕ n ρ MLE GRE-k GLE-d GKL (kmin) GKL (k2)

0.5

20
0.95 2.008 0.949 1.643 1.193 0.942
0.99 8.195 2.761 7.156 4.083 2.018
0.999 78.599 23.305 75.070 37.119 17.929

50
0.95 1.265 0.643 1.025 0.763 0.601
0.99 4.277 1.257 3.532 1.799 1.102
0.999 38.172 8.044 35.320 13.298 7.051

200
0.95 0.544 0.444 0.478 0.459 0.435
0.99 0.923 0.467 0.682 0.551 0.463
0.999 5.068 0.554 4.067 1.522 0.545

1

20
0.95 3.514 1.758 3.113 2.025 1.357
0.99 15.677 6.753 14.558 8.226 4.568
0.999 154.076 63.790 150.439 79.217 61.203

50
0.95 2.671 1.528 2.406 1.655 1.155
0.99 11.034 5.410 10.200 6.003 2.205
0.999 105.109 48.863 102.240 54.610 26.562

200
0.95 0.628 0.449 0.546 0.473 0.445
0.99 1.392 0.504 1.050 0.683 0.463
0.999 9.837 3.220 8.355 2.948 1.276

Table 2: Estimated mean squared error when p= 7.

ϕ n ρ MLE GRE-k GLE-d GKL (kmin) GKL (k2)

0.5

20
0.95 4.049 2.193 3.473 2.784 2.165
0.99 17.213 6.962 15.174 10.464 6.451
0.999 172.420 63.921 164.530 102.441 55.631

50
0.95 2.393 1.525 2.188 1.800 1.520
0.99 7.742 3.192 7.036 4.588 2.509
0.999 69.729 22.843 67.015 36.936 22.786

200
0.95 1.375 1.155 1.282 1.252 1.103
0.99 2.131 1.210 1.750 1.561 1.207
0.999 9.941 1.658 8.325 4.507 1.431

1

20
0.95 7.397 4.424 6.884 5.075 3.476
0.99 34.889 19.071 33.216 22.709 11.262
0.999 356.808 192.852 350.583 231.657 123.844

50
0.95 4.790 3.348 4.651 3.564 2.779
0.99 19.784 12.398 19.291 13.428 5.905
0.999 191.838 116.591 189.700 126.654 35.276

200
0.95 1.644 1.462 1.549 1.402 1.348
0.99 3.269 1.583 2.839 2.125 1.437
0.999 20.402 4.716 18.550 9.311 4.049
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Table 3: Description of the variable.

Variable names Description
Mor21v Signal 21/weighted by van der Waals volume
Mor21e Signal 21/weighted by Sanderson electronegativity
IC3 Information content index
MW Molecular weight
SpMaxA_D Normalized leading eigenvalue from topological distance matrix
ATS8v Broto–Moreau autocorrelation of lag 8 weighted by van der Waals volume
GATS4p Geary autocorrelation of lag 4 weighted by polarizability
SpMax8_Bh(p) Largest eigenvalue n. 8 of Burden matrix weighted by polarizability.
SpMax3_Bh(s) Largest eigenvalue n. 3 of Burden matrix weighted by l-state.
P_VSA_e_3 P_VSA-like on Sanderson electronegativity, bin 3
TDB08m 3D topological distance-based descriptors; lag 8 weighted by mass
RDF100m Radial distribution function: 100/weighted by mass
MATS7v Moran autocorrelation of lag 7 weighted by van der Waals volume
MATS2s Moran autocorrelation of lag 2 weighted by l-state
HATS6v Leverage-weighted autocorrelation of lag 6/weighted by van der Waals volume
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Figure 1: Estimated MSE vs. different values of (a) n, (b) ρ, (c) φ, and (d) p.
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the biasing parameter k2, in this order has the least mean
square error followed by kmin, GRE-k and GLE-d estimators.
Recall in the simulation study GKL with k2 as the shrinkage
parameter performed the best.

5. Some Concluding Remarks

(e Kibria–Lukman [17] estimator was developed to cir-
cumvent the problem of multicollinearity for the linear
regression model. (is estimator is in the class of the ridge
regression and the Liu-type regression estimator, and it has a
single biasing parameter. In gamma regression model,
multicollinearity is also a threat for the performance of the
maximum likelihood estimator (MLE) in the estimation of
the regression coefficients. (e gamma ridge (GRE) and the
gamma Liu estimator (GLE) has been introduced in the
previous study to mitigate the problem of multicollinearity.
Since, Kibria and Lukman [17] claimed that the KL estimator
outperforms the ridge and Liu estimator in the linear re-
gression model, which motivated us to develop the gamma
KL (GKL) estimator for the effective estimation in the GRM.
We derived the statistical properties of GKL estimator and
compared it theoretically with the MLE, GRE, and GLE.
Furthermore, a simulation study and a chemical data
analysis were conducted in support of the theoretical study.
(e simulation and application result show that GKLE with
k2 as the shrinkage parameter performed the best. In con-
clusion, the use of the GKL estimator is preferred when
multicollinearity exists in the known gamma regression
model.
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[10] K. Månsson and G. Shukur, “A Poisson ridge regression
estimator,” Economic Modelling, vol. 28, no. 4, pp. 1475–1481,
2011.
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