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ORIGINAL ARTICLE

Almon-KL estimator for the distributed lag model

Adewale F. Lukmana� and Golam B. M. Kibriab

aDepartment of Mathematics, Landmark University, Kwara, Nigeria; bDepartment of Mathematics and Statistics,
Florida International University, Miami, FL, USA

ABSTRACT
The Almon technique is widely used to estimate the parameters of the distributed lag model
(DLM). The technique suffers a setback from the challenge of multicollinearity because the
explanatory variables and their lagged values are often correlated. The Almon-Ridge estima-
tor (A-RE) and Almon-Liu estimator (A-LE) were introduced as alternative estimators for effi-
cient modelling. We developed a new method of estimating the coefficients of the DLM
using the Almon-KL estimator (A-KLE). A-KLE dominates the other estimators considered in
this study via theoretical findings, simulation design and two numerical examples. The esti-
mators’ performance was compared using the mean squared error.
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1. Introduction

Distributed lag model (DLM) is a model that is com-
monly adopted to predict the current values of a
response variable based on both the current values of
a regressor (explanatory variable) and its lagged values
(Cromwell, Hannan, Labys, & Terraza, 1994; Judge,
Griffiths, Hill, & Lee, 1980). For instance, the effect of
public investment such as road and highways con-
struction on growth in the gross national product
(GNP) will show up with a lag, and this effect will likely
linger on for some years (Maddala, 1974). Under certain
assumptions, the ordinary least squares estimator
(OLSE) is the easiest method of estimating the distrib-
uted lags’ parameters. The assumptions include assum-
ing a fixed maximum lag; the error should be normally
distributed and unrestricted relationship among the
lagged explanators. However, multicollinearity arises
from the relationship between the explanatory varia-
bles and their lagged explanators, resulting in a large
variance of the coefficient estimates. The OLSE
becomes inefficient when there is multicollinearity.
Also, the method suffers a breakdown when the num-
ber of observations does not sufficiently exceed the
number of lags (Almon, 1965; Fisher, 1937; Frost, 1975;
Maddala, 1974). Almon technique proposed by Almon
(Fisher, 1937) is widely used to estimate the parameters
of DLM because the methods reduced the effect of

multicollinearity (Fair & Jaffee, 1971; Majid, Aslam,
Altaf, & Amanullah, 2019). The assumption under the
Almon lag model is that there must be a finite lag
length and the lag weight approximated by a polyno-
mial of suitable degree.

The Almon estimator (AE) is the best linear
unbiased estimator (BLUE) for the DLMs (Vinod &
Ullah, 1981). Therefore, this estimator has widespread
usage in applied econometrics due to its ease of esti-
mation. However, the estimator still suffers a break-
down when there is a high correlation among the
explanatory variables. Biased estimators were devel-
oped as alternatives to the OLS estimator in the linear
regression model (LRM) (Baye & Parker, 1984; Hoerl &
Kennard, 1970; Kaçıranlar & Sakallıo�glu, 2001; Kibria &
Lukman, 2020; Li & Yang, 2012; Liu, 1993; Lukman,
Ayinde, Kibria, & Adewuyi, 2020; Massy, 1965; Swindel,
1976). Some of these estimators have been adapted
to AE to mitigate the effect of multicollinearity.

The ridge estimator was suggested as an alternative
to the AE (Chanda & Maddala, 1984; Lindley & Smith,
1972; Lukman, Ayinde, Binuomote, & Onate, 2019;
Maddala, 1974; Vinod & Ullah, 1981; Yeo & Trivedi,
2009). The limitation of the ridge regression estimator
for the DLMs was pointed out in the following study
(Lindley & Smith, 1972; Maddala, 1974; Yeo & Trivedi,
2009). According to Maddala (1974) and Yeo and
Trivedi (2009), the empirical findings do not fulfil
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expectations despite adopting different ridge parame-
ters, k. Alternative estimators include the Almon modi-
fied ridge and Liu estimators (G€ultay & Kaçı ranlar,
2015). €Ozbay & Kaçıranlar (2017) introduced the Almon
two-parameter estimator to deal with the problem of
multicollinearity for the DLM. The estimator extends
the two-parameter estimation procedure by €Ozkale
and Kaçıranlar (2007) to the DLM. The Almon two-par-
ameter ridge was also developed to handle multicolli-
nearity in DLM (Lipovetsky, 2006; Lipovetsky & Conklin,
2005; Ozbay, 2019). Kibria and Lukman (2020) devel-
oped the Kibria–Lukman estimator (KLE) to cushion the
effect of multicollinearity in the LRM. The estimator
gain advantage over the ridge and the Liu estimator.
Thus, the focus of this study is to develop the Almon-
KL estimator (A-KLE) based on KLE.

The other part of the article is structured as fol-
lows: we introduced the DLM, its estimation meth-
ods, and the proposed estimator in Section 2.
Section 3 deals with the theoretical comparisons and
the choice of biasing parameters. We examined the
estimators’ performance using a simulation study
and two examples in Sections 4 and 5, respectively.
Finally, we provide a concluding remark.

2. Distributed lag model (DLM) and method
of estimation

The finite DLM is defined as

yt ¼ b0xt þ b1xt�1 þ b2xt�2 þ :::þ bpxt�p þ ut

¼
Xp
i¼0

bixt�i þ ut , t ¼ pþ 1, :::, T ,
(2.1)

where bi are the current and lagged coefficients of
xt , yt denotes the t-th observation on the response
variable y, xt�p denotes the (t-p)th observation on
the explanatory variable x, ut is the disturbance
term corresponding to the t-th observation and is
assumed to be IN(0, r2) and p denotes the lag
length. Model (2.1) can be written in matrix form as

y ¼ Xbþ u, (2.2)

where

X ¼

xpþ1 xp � � � x1
xpþ2 xpþ1 � � � x2

..

. ..
. . .

. ..
.

xT xT�1 � � � xT�p

2
666664

3
777775,

y ¼

ypþ1

ypþ2

..

.

yT

0
BBBBB@

1
CCCCCA, b ¼

b0
b1

..

.

bp

2
666664

3
777775and u ¼

upþ1

upþ2

..

.

uT

0
BBBBB@

1
CCCCCA:

The OLSE of b is

b̂ ¼ X 0Xð Þ�1
X 0y: (2.3)

The OLS estimator of b is BLUE when there is no vio-
lation of the model assumptions (Lukman et al., 2019).
As earlier mentioned, there is high tendency of multicol-
linearity among the regressors since lags of the same
explanatory variable appear in the model (G€uler, G€ultay,
& Kaçiranlar, 2015; G€ultay & Kaçıranlar, 2015). It becomes
difficult to estimate with the conventional OLS when the
lag length (p) is known and large (G€uler et al., 2015;
G€ultay & Kaçıranlar, 2015; Ozbay, 2019; €Ozbay & Kaçıran-
lar, 2017). The Almon polynomial lag distribution was
recommended as a replacement to the OLS estimator
(Almon, 1965). The Almon polynomial lag is defined as

bi ¼ a0 þ a1iþ a2i2 þ :::þ asis, p � s � 0: (2.4)

The above equation can simply be written as

b ¼ Aa, (2.5)

where a ¼
a0
a1
..
.

as

2
6664

3
7775 and A ¼

1 0 0 � � � 0
1 1 1 � � � 1
1 2 22 � � � 2s

..

.

1

..

.

p

..

.

p2

..

.

..

.
..
.

ps

2
6666664

3
7777775

are a : ðsþ 1Þ � 1 vector and A : ðpþ 1Þ � ðr þ 1Þ
matrix, respectively. The ranks of matrices X and A
are assumed to be ðpþ 1Þ<ðT�pÞ and ðsþ 1Þ<ðpþ
1Þ, respectively. If s<p then the rank of A is sþ 1.
We substitute (2.5) into (2.2) and obtained the new
equation as,

y ¼ XAaþ u ¼ Zaþ u, (2.6)

where Z ¼ XA: The OLS estimator of (2.6) becomes
the AE in (2.7):

âA ¼ Z0Zð Þ�1
Z0y, (2.7)

such that

b̂A ¼ AâA: (2.8)

Equation (2.8) is referred to as AE of b which is still
BLUE. A notable problem with this technique centered
on the choice of lag length and the degree of the
polynomial, respectively because the two are
unknown in practice. One of the suggested means of
selecting the lag length is to select a reasonable lag
and check if it fit the model (2.1) using any of the fol-
lowing criteria: Akaike information criterion (AIC),
Bayesian information criterion (BIC) and adjusted coef-
ficient of determination ð�R2Þ (Davidson & MacKinnon,
1993). The ridge estimator was suggested as an alter-
native approach due to the limitation of the AE. The
Almon-Ridge estimator (A-RE) of b is defined as

b̂
k
A ¼ Aâk, k>0 (2.9)

where âk ¼ ðZ0Z þ kIÞ�1Z0y: €Ozbay and Toker (2021)
examined the predictive performance of A-RE.
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According to G€ultay & Kaçıranlar (2015), the Almon-
Liu estimator (A-LE) is defined as:

b̂
d
A ¼ Aâd , 0 < d < 1ð Þ (2.10)

where âd ¼ ðZ0Z þ IÞ�1ðZ0Z þ dIÞâA:
The Liu estimator overcomes the limitation in the

ridge estimator for the LRM. Recently, Kibria and
Lukman (2020) developed the KL estimator (KLE) to
mitigate multicollinearity in the LRM. The estimator
is a modification of the Liu estimator; it gained an
advantage over the Liu estimator using the mean
squared error. The bias of KLE is two times lower
than the bias of the ridge estimator. Thus, the KL
estimator performs better than the ridge and the Liu
estimators. Following this merit, the estimator is
adapted to the AE to handle multicollinearity in this
study. The A-KLE is defined as

b̂
KL
A ¼ AâKL, (2.11)

where âKL ¼ ðZ0Z þ kIÞ�1ðZ0Z � kIÞâA:
Suppose Z ¼ XQ, a ¼ Q0b, and Z0Z ¼ Q0X 0XQ ¼

E ¼ diagðe1, :::, esþ1Þ such that e1 � e2 � ::: � esþ1 are
the ordered eigenvalues of Z0Z and Q is the matrix
whose columns are the eigenvectors of Z0Z: and the
canonical form of the estimators are as follows:

âA ¼ E�1Z0y, (2.12)

âk ¼ E þ kIð Þ�1Z0y, (2.13)

âd ¼ E þ Ið Þ�1 E þ dIð ÞâA, (2.14)

âKL ¼ E þ kIð Þ�1 E � kIð ÞâA: (2.15)

The statistical properties of A-KLE are as follows:
The bias of the A-KLE is defined as:

BðâKLÞ ¼ �2kEka, (2.16)

where Ek ¼ ðE þ kIÞ�1: The variance of the A-KLE is
defined as:

DðâKLÞ ¼ r2EkðE�kIÞE�1EkðE�kIÞ: (2.17)

Therefore, the mean square error matrix (MSEM)
and the scalar mean square error (SMSE) of A-KLE,
respectively, are

MSEMðâKLÞ ¼ r2EkðE�kIÞE�1EkðE�kIÞ þ 4k2EkEkaa0,
(2.18)

and

SMSEðâKLÞ ¼ r2
Xsþ1

i¼1

ei � kð Þ2
ei ei þ kð Þ2

 !
þ 4k2

Xsþ1

i¼1

a2i
ei þ kð Þ2

 !
:

(2.19)

3. Theoretical comparisons among
the estimators

In this section, we adopted Lemma 3.1 to evaluate
the estimators’ performance.

Lemma 3.1. Let b̂1 and b̂2 be two linear estimators
of b: The difference in the covariance of the two
estimators D is positive definite if and only
if biasðb̂2Þ0 r2Dþ biasðb̂1Þbiasðb̂1Þ0

h i�1
biasðb̂2Þ<1:

Consequently,

MSEMðb̂1Þ�MSEMðb̂2Þ ¼ r2Dþ biasðb̂1Þbiasðb̂1Þ0

�biasðb̂2Þbiasðb̂1Þ0>0

(R Core Team, 2020; Trenkler & Toutenburg, 1990).

3.1. Comparison between âA and âKL

Theorem 3.1. The estimator âKL is preferred to âA in
the MSEM sense, if and only if, b0½r2ðE�1�EkðE�kIÞ
E�1EkðE�kIÞÞ��1b<1 where b ¼ �2kEka:

Proof.

D ~̂aA
� �

�D âKLð Þ ¼ r2E�1 � r2EkðE � kIÞE�1EkðE � kIÞ
� �

¼ r2diag
1
ei
� ei � kð Þ2
ei ei þ kð Þ2

( )sþ1

i¼1

:

(3.1)

It is noted that E�1�EkðE�kIÞE�1EkðE�kIÞ is non-
negative (nn) because ei þ k>ei�k for k>0:

3.2. Comparison between âk and âKL

Theorem 3.2. The estimator âKL is preferred to âk in
the MSEM sense, if and only if, b0½r2ðEkEEk�EkðE�kIÞ
E�1EkðE�kIÞÞ þ ~b01b1��1b<1 where b ¼ �2kEka
and b1 ¼ kEka:

Proof.

D âkð Þ�D âKLð Þ ¼ r2 EkEEk � EkðE � kIÞE�1EkðE � kIÞ
� �� �

¼ r2diag
ei

ei þ kð Þ2 �
ei � kð Þ2

ei ei þ kð Þ2
( )sþ1

i¼1

:

(3.2)

It is noted that EkEEk�EkðE�kIÞE�1EkðE�kIÞ is
non-negative because e2i �ðei�kÞ2>0 for k<2ei:

3.3. Comparison between âd and âKL

Theorem 3.3. The estimator âKL is preferred to âd in
MSEM sense if and only if, b0½r2ðEdE�1E0d�EkðE�kIÞ
E�1EkðE�kIÞÞ þ b02b2��1b<1 where b ¼ �2kEka and
~b2 ¼ �ð1� dÞðE þ IÞ�1a:

Proof.

D âdð Þ�D âKLð Þ¼ r2 EdE
�1E0d�EkðE�kIÞE�1EkðE�kIÞ

� �� �
¼r2diag

eiþdð Þ2
ei eiþ1ð Þ2�

ei�kð Þ2
ei eiþkð Þ2

( )sþ1

i¼1

:

(3.3)
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It is noted that EdE�1E0d�EkðE�kIÞE�1EkðE�kIÞ is non-
negative since ðei þ kÞ2ðei þ dÞ2�ðei � kÞ2ðei þ 1Þ2>0
for k> eið1�dÞ

dþeiþ1 and d> eið1�kÞ�k
eiþk :

4. Monte Carlo simulation study

We conducted a simulation study for DLM to explore
the estimators’ performance. The dependent variable
and explanatory variables are generated according
to the following study (G€uler et al., 2015; €Ozbay &
Kaçıranlar, 2017; €Ozbay & Toker, 2021).

yt ¼ b0xt þ b1xt�1 þ :::bpxt�p þ ut , (4.1)

x1 ¼ v1, (4.2)

xt ¼ sxt�1 þ
ffiffiffiffiffiffiffiffiffiffiffi
1�s2

p
vt 8t � 2, (4.3)

wheres denotes the correlation between the regres-
sors and its values are chosen as follows: 0.8, 0.9,
0.99, and 0.999. The MSE is minimized subject to the
constraint b0b ¼ 1 (G€uler et al., 2015; €Ozbay & Kaçı
ranlar, 2017; €Ozbay & Toker, 2021). ut and vt are gen-
erated such that ut�Nð0,r2Þ and vt�Nð0, 1Þ, respect-
ively. The choices of r2 are 1, 5 and 10. The data for
each replication are determined in accordance with
the following studies (G€uler et al., 2015; €Ozbay &
Kaçıranlar, 2017; €Ozbay & Toker, 2021). An observa-
tion of T-p¼ 60 and 100 with the lag length of 8
and 16 was evaluated. The experiment is repeated
2000 times using the RStudio programming lan-
guage (R Core Team, 2020). The model (4.1) is trans-
formed back to the Almon model (2.6) after
generating the observations. The mean squared error
is obtained as follows:

MSEðb̂Þ ¼ 1
2000

X2000
j¼1

b̂ ij � bi

� �0
b̂ ij � bi

� �
(4.4)

where b̂ ij denotes the estimate of the ith parameter
in jth replication and bi is the true parameter values.
The simulated MSE values are presented in Tables 1
and 2 for lag length are 8 and 16, respectively.

From Tables 1 and 2, we observed the following
trend about the mean squared error. The mean
squared error increases as the following increases:
level of multicollinearity, lag length, and the error vari-
ance. The mean squared error decreases as the sample
size increase. This trend is more feasible considering
Figure 1. The results show that AE suffers setback
when the regressors are correlated. The biased estima-
tors provide a more consistent estimate when there is
multicollinearity. However, the A-KLE produces the
best result by producing smaller mean squared error
among all the estimators under study.

5. Applications

To illustrate the theoretical findings of the paper, we
consider the two real datasets.

5.1. Application example I

The Almon dataset is employed to illustrate the perform-
ances of each of the estimators (Almon, 1965). These data
are quarterly data that spanned from 1953 to 1967 with
expenditures as the response variable and appropriations
as the independent variable. Following G€uler et al. (2015),
the lag length is taken to be 8 and the lagweight approxi-
mated by a polynomial of order 2. The eigenvalues of Z0Z
are computed to be 2.388929eþ 13, 1.628323eþ 09,
4.312742eþ 07, and 4.782067eþ 00, respectively. The
condition index of CI ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðeiÞ=minðeiÞ
p

is determined
to be 2235083, which revealed the presence of severe
multicollinearity among the explanatory variable and its
lagged variables. The library dLagM in RStudio is used to
analyse the data. The biasing parameter for A-RE and A-
KLE is computed using:

k̂ ¼ ðsþ 1Þr̂2Psþ1
i¼1

â2i
: (5.1)

The biasing parameter for the A-LE is obtained
using the following:

Table 1. Estimated MSE’s when lag length is 8.
s n âA âk âd âKL âA âk âd âKL

r ¼ 1 r ¼ 3

0.8 60 0.1674 0.1602 0.1650 0.1592 0.6916 0.4321 0.6715 0.4218
100 0.0868 0.0822 0.0859 0.0817 0.3625 0.2501 0.3570 0.2471

0.9 60 0.2100 0.1839 0.2026 0.1803 1.1223 0.5994 1.0569 0.5656
100 0.1150 0.1040 0.1126 0.1026 0.5820 0.3468 0.5644 0.3376

0.99 60 0.9213 0.5185 0.6491 0.4089 7.8423 3.2830 5.2921 2.1330
100 0.5481 0.3218 0.4303 0.2708 4.5558 1.9046 3.4994 1.4332

0.999 60 8.1325 3.2601 2.2957 1.8764 72.8119 27.1628 19.4490 13.1906
100 4.7814 1.9103 1.5831 1.1510 42.8105 15.4087 13.5760 7.4965

r ¼ 5 r ¼ 10

0.8 60 1.7403 0.9165 1.6845 0.8882 6.6563 3.1017 6.4333 2.9896
100 0.9136 0.5319 0.8989 0.5244 3.4961 1.7298 3.4387 1.7015

0.9 60 2.9472 1.3722 2.7656 1.2797 11.5020 4.9011 10.7757 4.5334
100 1.5155 0.7646 1.4678 0.7408 5.8904 2.5921 5.7016 2.5005

0.99 60 21.6850 8.6932 14.5764 5.4667 86.5740 34.0261 58.0927 21.0607
100 12.5698 4.9479 9.6402 3.6427 50.1325 19.1852 38.4314 13.9808

0.999 60 202.1728 74.9526 53.7505 35.7999 808.5568 298.9995 214.5284 141.7912
100 118.8650 42.3641 37.5870 20.1206 475.3627 168.7284 150.1936 79.2424
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Table 2. Estimated MSE’s when lag length is 16.
s n âA âk âd âKL âA âk âd âKL

r ¼ 1 r ¼ 3

0.8 60 0.2962 0.2972 0.2958 0.2871 0.4960 0.4843 0.4944 0.4837
100 0.2683 0.2671 0.2681 0.2670 0.4060 0.3863 0.4053 0.3859

0.9 60 0.3338 0.3369 0.3331 0.3268 0.6413 0.5913 0.6381 0.5900
100 0.2507 0.2491 0.2503 0.2489 0.4353 0.4002 0.4338 0.3996

0.99 60 0.4506 0.4575 0.4395 0.4450 2.1966 1.4400 2.1064 1.3956
100 0.3460 0.3434 0.3391 0.3415 1.4811 0.9597 1.4310 0.9361

0.999 60 2.1662 1.3504 1.6118 1.1542 17.7419 8.5903 12.5604 6.3731
100 1.4091 0.8720 1.0823 0.7644 11.2974 5.0830 8.3108 3.8912

r ¼ 5 r ¼ 10

0.8 60 0.9555 0.7870 0.9515 0.7852 3.1094 2.0455 3.0941 2.0384
100 0.6810 0.5604 0.6793 0.5595 1.9695 1.2798 1.9630 1.2768

0.9 60 1.2570 0.9576 1.2487 0.9537 4.1441 2.5555 4.1120 2.5402
100 0.8040 0.6159 0.8003 0.6141 2.5310 1.5152 2.5171 1.5086

0.99 60 5.6904 3.2553 5.4411 3.1313 22.0723 11.6831 21.0737 11.1863
100 3.7503 2.0627 3.6143 1.9984 14.3853 7.1859 13.8470 6.9328

0.999 60 48.8983 23.0546 34.4455 16.7950 194.9542 90.8715 137.0058 65.6459
100 31.0719 13.4201 22.7715 10.0711 123.7601 52.4691 90.5636 39.0175

Figure 1. Graphical illustration of the simulation result.

Table 3. Estimates and t-tests for beta coefficients.
Coeff. Estimate Std. Error t value P(>jtj)
b0 0.0962 0.0168 5.71 9.04E� 07
b1 0.123 0.0067 18.4 3.02E� 22
b2 0.14 0.00552 25.3 7.47E� 28
b3 0.146 0.00906 16.1 4.83E� 20
b4 0.142 0.0103 13.7 1.80E� 17
b5 0.127 0.00876 14.5 2.29E� 18
b6 0.102 0.00541 18.9 9.77E� 23
b7 0.0669 0.00817 8.19 2.15E� 10
b8 0.0214 0.0189 1.13 2.64E� 01
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d̂ ¼ min
r̂2

â2i þ r̂2

ei

 !
: (5.2)

The regression parameter before transformation is
presented in Table 3 as follows:

By canonical transformation, the 4� 4 matrix ~Q is
the matrix of the eigenvectors, E is a 4� 4 diagonal
matrix of eigenvalues of Z0Z such that Z0Z ¼ QEQ0:
The Almon-estimators of a are presented in Table 4.
The result in Table 4 supports the fact that the
Almon-estimator suffers set back when there is mul-
ticollinearity. The regression coefficient of the biased
estimators appears very similar. The A-KLEr has the
lowest mean squared error followed by the A-RE.

5.2. Application example II

This dataset is composed of monthly global mean
sea level (GMSL) (compared to 1993–2008 average)
series by CSIRO, land ocean temperature anomalies
(1951–1980 as a baseline period) by GISS, NASA, and
monthly Southern Oscillation Index (SOI) by
Australian Government Bureau of Meteorology
(BOM) between July 1885 and June 2013 (Church &
White, 2011; Demirhan, 2020). In this study, the
response and the explanatory variables were chosen
to be GMSL and land ocean temperature anomalies,
respectively. The dataset is available in the R pack-
age data (seaLevelTempSOI). More detail on the data
description is available in the study of Demirhan
(2020). The lag length is taken to be 4 and the lag
weight approximated by a polynomial of order 2
(Demirhan, 2020). The eigenvalues of Z0Z are com-
puted to be 6607.86, 1590.99, 67.12 and 6.96,
respectively. The condition number is 948.82 which

shows that the explanatory variable and its lagged
variables are correlated. The regression parameter
before canonical transformation is presented in
Table 5.

By canonical transformation, the Almon-estimators
of a are in Table 6. From Table 6, the Almon-estima-
tor for the second lag has a positive sign as opposed
a negative sign by other estimators. As mentioned
earlier, one of the effects of multicollinearity on the
AE is that the coefficients can occasionally exhibit a
wrong sign. The results show that the new estimator
has the lowest mean squared error. This result
agrees with the theoretical and simulation result.

6. Some concluding remarks

The DLM is often adopted to predict the current val-
ues of a response variable based on both the current
values of a regressor and its lagged values.
Multicollinearity arises from the relationship between
the regressors and their lagged explanators. The AE
is popularly used to estimate the parameters of the
models. However, the estimator suffers a setback
when there is multicollinearity. The A-RE and A-LE
estimators were suggested as alternative techniques.
In this study, we developed the A-KLE to mitigate
the threat of multicollinearity for the DLM. We theor-
etically proved that A-KLE dominates AE, A-RE and
A-LE. The theoretical findings were supported by the
results of the simulation study and two numer-
ical examples.
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~a0 73.1 1.02E� 05 1.02E� 05 1.02E� 05
~a1 0.0962 1.05E� 01 1.05E� 01 1.05E� 01
~a2 0.0320 0.02607 0.02605 0.02608
~a3 �0.0052 �4.396E� 03 �4.394E� 03 �4.397E� 03
MSE 3397.92 194.34 232.54 145.33

Table 5. Estimates and t-tests for beta coefficients.
Coeff. Estimate Std. Error t value P(>jtj)
b0 1.6 1.01 1.58 0.114
b1 0.521 0.569 0.915 0.36
b2 �0.491 0.67 �0.733 0.464
b3 �1.43 0.569 �2.52 0.0119
b4 �2.31 1.01 �2.28 0.0229

Table 6. Estimates for the Almon coefficients.
Coeff. âA âk âd âKL
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