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Abstract: Biosensors hold great potential for revolutionizing personalized medicine and environ-
mental monitoring. Their construction is the key factor which depends on either manufacturing
techniques or robust sensing materials to improve efficacy of the device. Functional graphene is an
attractive choice for transducing material due to its various advantages in interfacing with biorecog-
nition elements. Graphene and its derivatives such as graphene oxide (GO) are thus being used
extensively for biosensors for monitoring of diseases. In addition, graphene can be patterned to a
variety of structures and is incorporated into biosensor devices such as microfluidic devices and
electrochemical and plasmonic sensors. Among biosensing materials, GO is gaining much attention
due to its easy synthesis process and patternable features, high functionality, and high electron trans-
fer properties with a large surface area leading to sensitive point-of-use applications. Considering
demand and recent challenges, this perspective review is an attempt to describe state-of-the-art
biosensors based on functional graphene. Special emphasis is given to elucidating the mechanism of
sensing while discussing different applications. Further, we describe the future prospects of func-
tional GO-based biosensors for health care and environmental monitoring with a focus on additive
manufacturing such as 3D printing.

Keywords: graphene; functionalized graphene; graphene oxide; biosensor; 3D Printing

1. Introduction

Biosensors detect various analytes (deoxyribonucleic acid, ribonucleic acid, proteins,
cells, and pathogens) in biofluids such as serum, blood, and urine, and trace harmful mi-
croorganisms/chemicals/agrochemical waste in the environment (air, water, soil, etc.) [1,2].
Detection of these analytes is very important for disease screening and treatment, and
in environmental monitoring. Traditionally circulating biomarkers (proteins, cells, and
nucleic acids), pathogens (viruses, bacteria, yeast, etc.), and toxic chemicals are being
investigated using enzyme linked immunosorbent assay (ELISA), lateral flow assays, flow
cytometry, DNA sequencing, reverse transcription-polymerase chain reaction (rt-PCR),
and high-performance liquid chromatography (HPLC) [3,4]. Due to advancements in
nanoscience/technology, researchers are focused on early detection of disease biomarkers
and environmental testing of analytes for better healthcare management. Despite showing
high sensitivity towards lower detection limits, these techniques still lack clinical sensitivity
for early and rapid diagnosis of diseases. Next-generation equipment will be relying on
early detection, portability, and quicker decision making for developing better healthcare
monitoring systems. Researchers are exploring various next-generation two-dimensional
nanomaterials such as (Ti3C2Tx) MXenes, molybdenum disulfide (MoS2), and graphene to
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achieve ultra-sensitive biomedical sensors for point-of-care diagnostics and environmental
monitoring with high accuracy [5,6].

Graphene has shown great promise in the development of biosensing devices and is
of increasing interest for the development of ultra-sensitive biosensors due to its single-
atom layer thickness, extremely high carrier mobility, unique electrical conductivity, and
inherently low electrical noise [7]. Since the invention of graphene by Geim and coworkers
in 2004, numerous formations of graphene such as graphene oxide (GO), reduced graphene
oxide (rGO), and graphene quantum dots (GQD) have been applied in biomedical sensors
including enzymatic biosensors, immunosensors, and DNA sensors for health monitoring
and agriculture sensing [8,9]. This is because of its low-cost fabrication, larger surface area
(2630 m2/g for single layer graphene), and the fact that it is easy to functionalize with
biomolecules as functional graphene has large number of groups and high electron transfer
properties. Owing to direct electron transfer and high electrocatalytic properties, functional
graphene is in high demand for developing sensitive biosensors.

Among the graphene derivatives, GO-based transducers exhibit excellent unique
characteristics that enable the development of ultrasensitive devices for detection of minute
amount of target analytes (biomolecules, chemicals, toxic waste) due to their high surface
area to volume ratio, high electron mobility, good water dispersibility, biocompatibility,
and size controllability [10,11]. In addition, GO has been demonstrated as a promising
nanomaterial in applications such as drug delivery, electronics, wearable devices, and
bioimaging [12,13]. Its ease of surface modification using various methods to control
the size of its nanosheets and its unique physical and chemical properties make GO an
attractive material for biosensor fabrication as well as for designing active surfaces for
patterning on solid supports such as gold, platinum, indium tin oxide, and silver electrode.
The various groups present on GO nanosheets are epoxides (C–O–C), phenolic hydroxyl
(–OH), and carboxylic (–COOH) and other carbonyl groups (C=O) which provide covalent
modification/functionalization for covalent linkage of chemical bonds or functional groups
onto the surface for biomolecule attachment. To fabricate optical sensors, GO can be
processed in colloidal suspension and it is easily complexed with biomolecules to produce
highly efficient long-range photoluminescence signals [10]. The properties of graphene
and its derivatives have been explored for developing label-free optical sensors such as
optical fiber-based sensors, surface plasmon resonance (SPR) sensing, and surface-enhanced
Raman scattering for bioimaging, antibacterial activity, and drug delivery system [13,14].
Furthermore, GO has a high surface area to volume ratio that provides abundant active sites
for direct coupling with the antibody resulting in improved system performance. Moreover,
GO-based immunoassay has successfully demonstrated a much wider dynamic range and
was found to be more sensitive than the same immunoassay using biotin–streptavidin
functionalization [14].

Lately, microfluidic systems have paved a generic way for miniaturization, integration,
automation, and parallelization of (bio-)chemical processes such as isolation/detection of
analytes from biological fluids on a single chip [15]. Currently, integration of graphene
with optofluidic and electrochemical microfluidic chips is of great interest in biomarker
sensing owing to offering multiplex sensing with high sensitivity and militarization. Trau
et al. developed a microfluidic platform that uses GO and gold-based biochips for sensitive
cell and protein analysis in human serum samples [14]. GO containing negatively charged
oxygenated functional groups at physiological pH, and the hexagonal aromatic graphene
structure, promoted hydrogen bonding and electrostatic, hydrophobic van der Waals, and
π–π interactions allowing it to interact with protein analytes [16]. Their GO-based chip
successfully demonstrated the higher capture yields and lower detection limits for multiple
biomarkers spiked into serum, which had not been reported earlier. With functionalized
GO on the gold surface as an effective sensing platform, they were able to capture and
characterize single cells (10–20 cells per mL) and proteins (10 fg/mL) in human serum as
an early disease detection system.
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Another problem in clinical diagnosis is disease heterogeneity i.e., single marker
detection is not enough in clinical settings. For example, there are reports about various
mutations existing in the environment of the COVID-19 viruses requiring more robust
diagnostic tool to capture all the variants of single virus type. Similarly in cancer treatment,
instead of detecting individual analytes, it might be possible to characterize the molecular
composition of a tumor indirectly, by sampling the blood and searching for alterations
in the serum [17].Thus, detection of multiple biomarkers such as proteins, DNA/RNA,
exosomes, and cells in the serum and blood sample of a cancer patient might provide more
information about the disease stage and improve disease diagnosis, aiding the patient’s
recovery. GO and its composites have the capability of detecting and analysis of multiple
biomarkers in various platforms for point-of-care (POC) application. Campbell et al.
demonstrated GO as a novel multifunctional platform for therapeutic delivery, biological
imaging, and cancer sensing [13]. Similarly, three different proteins thrombin (TB), prostate
specific antigen (PSA), and hemagglutinin (HA) were detected using both DNA and RNA
aptamers immobilized on the GO surface to show the multiplicity capacity of GO-based
aptasensors [18].

In addition to biomedicine, GO-based sensors have been applied in agriculture mon-
itoring such as measurement of soil moisture and nutrient sensing, and as natural bio-
imaging agents with photoluminescent potassium-doped GO from agricultural waste used
for developing stable fluorescence probes for bio-imaging applications. Functionalized
GO/iron (GO-Fe) composite was also utilized as a fertilizer to supply phosphate ions to soil
for better agricultural product development [19–21]. In all-solid-state ion-selective sensors,
GO acted as ion-to-electron transducing layer that replaced the internal-filling reference
solution between the conductor layer and ion-selective membrane. For example, rGO com-
bined with polypyrrole was used as an ion-to-electron transducing layer in an all-soli-state
ion-selective sensor for nitrate detection in soils [22]. In this sensor, introduction of rGO
exhibited long term stability of the sensor, negligible potential drift (0.67 ± 0.05 mV/h),
higher Nernstian slope (56.2 ± 0.2 mV/decade), low detection limit (10–5.2 ± 0.1 M), wider
linear range (10−5–10−1 M), and shorter detection time (≤15 s). This indicates that the
application of functional graphene can be potentially used for agriculture monitoring for
precision and sustainable farming.

In this article, we critically review the application of graphene and functionalized
graphene such as GO towards health monitoring. We have emphasized different sens-
ing modalities based on functionalized graphene and its derivatives for the detection of
biomarkers and chemicals. Specially, we cover examples of enzymatic biosensors, im-
munosensors, DNA sensors, and pathogenic biomarkers. Further, we critically discuss
and summarize the future of biosensor technology based on graphene using the indus-
try 4.0 manufacturing outlook that focuses on additive manufacturing (i.e., 3D printing).
3D printing enables the potential impact of constructing prototyping and developing
production/commercial quality platforms in multidisciplinary areas such as electronics,
biotechnology, aerospace and defense, and chemical engineering [23]. Figure 1 shows the
number of biosensing applications per year for graphene and graphene-based material
(data from Scopus) in the last decade and it may be seen that roughly 50% of graphene-
based biosensors have use GO in the last 5 years. Although there are numerous applications
of graphene oxide (which are detailed in Figure 2) we have also found that functional
graphene and GO are a most exciting material for manufacturing of biosensors to monitor
disease biomarkers.
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Figure 1. The chart shows the number of documents indexed in Scopus which have the following
keyword combinations: “graphene” AND “biosensor”, “graphene oxide” AND “biosensor”, over
the time span from 2009 to 2020. In 2009, there was one biosensor document with the keyword
“graphene oxide” against 10 with the word “graphene”. The curve with triangular markers shows the
percentage of biosensor articles containing “graphene oxide” for all articles containing “graphene”
as a keyword, which indicates that during the last 5 years, these have been constant at around
48–50%. This suggests that GO is a dominant material for graphene-based biosensors, and it has
been discussed in almost 50% of the biosensor articles on graphene.
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Figure 2. The application of GO in different fields including biosensors for detection of pathogens
such as viruses and bacteria is presented in the schematic.

2. Functionalized Graphene Oxide for Enzymatic Biosensors

In enzymatic biosensors, enzymes have been incorporated as bioreaction elements
which allow catalytic biochemical reactions with specific target biomolecules. However,
the main concerns are the enzyme functionalization and stability on a given transducing
layer. GO has been repeatedly used to develop enzymatic biosensors and some of the novel
reports are described in this section with a focus on the mechanism of detection. Zhou
et al. [24] reported the performance enhancement of a zinc oxide (ZnO)-nanorod-based
enzymatic glucose sensor with rGO introduced between the ZnO nanorods and indium
tin oxide (ITO) electrode and then stimulated under UV irradiation. The electrochemical
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characterization indicated that the rGO not only facilitated electron transfer through the
ZnO nanorods to the ITO electrode but also inhibited the fast recombination of the photo-
generated electrons and holes. Ultra-violet (UV) irradiation stimulates holes in the valence
band of the ZnO nanorods (Figure 3A,B), as oxidants enhance the catalytic activity of
the glucose oxidase (GOx) towards glucose [25,26]. The rGO increased the sensitivity
of the ZnO-nanorod-based glucose sensor 1.6-fold and decreased the detection limit 2.3-
fold. The sensor also works on serum samples. Together with the rGO, UV irradiation
further increased the sensitivity 1.7-fold and but diminished the detection limit 2-fold.
Wang et al. [27] demonstrated an electrochemical transistor based on polypyrrole (PPy)
nanowires and rGO for glucose sensing (Figure 3). The biochemical reaction is shown in
Figure 3A [27]. Figure 3B shows the schematic presentation of sensor construction using
a composite matrix of PPy and rGO [27]. The composite in the sensor not only holds
glucose oxidase (enzyme) but also helps in the electron transfer from electrolyte to collector.
In another, sensor it was found that rGO nanosheets promoted the growth and increase
the number of PPy nanowires [28], and improved the electrical characteristics of fiber
transistors such as on/off ratio, switch speed, and cycling stability. Glucose sensors based
on these transistors exhibited excellent sensitivities, fast response times (~0.5 s), a wider
linear range (1 nM to 5 µM), and a low limit-of-detection (LOD). Further, GO was modified
with chitosan (a biocompatible material) that acted as a suitable transduction material for
glucose sensing [29,30].
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Figure 3. (A) Biochemical reaction shows glucose sensing using glucose-oxidase-based (GOx) polypyrrole (PPy) and
reduced graphene oxide (rGO) [27] (B) A transistor-based glucose sensor. In this sensor, GOx was immobilized on PPy
nanowires and rGO surface and further coated with Nafion. Nafion was used to improve selectivity of the sensor. Reprinted
with permission from ref. [27] Copyright 2017 Elsevier.

Covalent modification of GO is achieved by a standard carboxylic activation/amidation
approach in the presence of available amino groups in chitosan. The composite GO−Ch
was deposited on standard screen-printed electrodes (SPCE) by a drop-casting approach.
Comparison between a chitosan—GO blend and pristine GO demonstrated the superior
reliability and efficiency of the electrochemical response for glucose as a consequence of
the high number of enzyme binding sites and of the partial reduction of GO during the car-
boxylic activation synthetic step. Zhou et al. [31] have reported a 1-aminopyrene-reduced
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graphene oxide (AP−rGOs) composite-based transducer that utilizes the direct electron
transfer of laccase and its enzymatic oxidation of the analyte to detect the presence of toxic
phenols. Laccase, the enzymatic receptor, is immobilized onto the AP−rGOs resulting
in Lac/AP−rGOs through a glutaraldehyde-mediated cross-linker. Following treatment
with chitosan, the Lac/AP−rGO/chitosan stock solution was dropped onto a GCE which
could detect phenols in water samples and demonstrated a fast response time (<5 s), high
stability (retained >97% activity after 7 days of storage), and an LOD of 2 and 7 µM for
hydroquinone and catechol, respectively. Zhou and coworkers [32] have described a novel
magnetic-controlled photoelectrochemical (PEC) sensing system developed for the sensitive
detection of prostate-specific antigen (PSA) using reduced graphene oxide-functionalized
bismuth ferrite (rGO-BiFeO3). The rGO-BiFeO3 acted as a photoactive material possessing
accelerated charge transfer with improved visible light absorption. The biosensor involved
an anchor DNA-conjugated magnetic bead (MB-aDNA), PSA aptamer/trigger DNA (Apt-
tDNA), and two glucose-oxidase-labeled hairpins (H1-GOx and H2-GOx). When the target
PSA reacted with the aptamer, initially the trigger DNA was released, which partially
hybridized with the anchor DNA on the MB. Consequently, the unpaired trigger DNA on
the MB allowed the opening of the hairpin DNA structures in sequence and this propagated
a chain reaction of hybridization events between two alternating hairpins resulting in the
formation of a long-necked double-helix with numerous GOx enzymes on it. Following
this, hydrogen peroxide (H2O2) was generated as an enzymatic product and consumed the
photo-excited electrons from rGO-BiFeO3 under visible light irradiation thereby enhancing
the photocurrent. This intelligent combination of target-triggered hybridization chain
reaction and enzyme-catalyzed photoelectric reaction enabled the biosensor to achieve
an LOD of 0.31 pg/mL within the linear range of 0.001–100 ng/mL, in phosphate buffer
saline (PBS) and showed remarkable performance in human serum. Huang et al. [33] have
demonstrated a simple and ultrasensitive GO-based cholesterol biosensor incorporating
gold nanoparticles (AuNPs). Cholesterol oxidase (CHOD), cholesterol esterase (CHER),
and GO were immobilized onto the surface of AuNP-modified SPCE, which hydrolyzed the
cholesterol to produce H2O2. This reduced the silver (Ag) ions in the cholesterol-containing
silver nitrate (AgNO3) solution to metallic Ag. Anodic stripping voltammetry was used as
the electrochemical technique and the reported LOD was 0.001 µg/mL.

3. Graphene Oxide for Immunosensing

Immunosensors [34,35] are a special class of biosensors, based on an antigen—antibody
reaction, wherein the antibody or antigen is the receptor/recognition element. Graphene-
based immunosensors have been described previously [36,37] and one of the first applica-
tions of GO in immunosensors is found in the work of Li et al. [38]. They used a transducer
composed of graphene-polyaniline (GR−PANI) and carboxylated GO which increased the
current response for the electrochemical sensor. The carboxylated GO facilitated the forma-
tion of horseradish peroxidase−GO−antibody (HRP-GO-Ab) conjugates, wherein the per-
oxidase increased the catalytic activity of hydrogen reduction, and the antibody was bound
with the target 17β-estradiol. The sensor could detect estradiol in spiked samples of water
and milk and performed better than conventional competitive electrochemical immunosen-
sors [39] and aptamer-based electrochemical sensors [40]. A disposable immunosensor for
the detection of cancer antigen 153 was reported by Ge et al. [41]. This used a sandwich
method to immobilize monoclonal antibody on the GO-modified SPCE whose catalytic
activity was augmented by peroxidase such as magnetic silica nanoparticles/graphene
oxide labels (Figure 4). The authors reported detection in spiked human serum samples and
excellent correlation with commercial electrochemiluminescent analyzer. A label-free im-
munosensor was reported by Ali et al. [42], wherein an aminated reduced-GO (rGO)-based
electrode was constructed to immobilize anti-apolipoprotein B-100 that could bind with
the target low-density-lipoprotein (LDL) cholesterol. The electroactive sites of rGO could
promote increased heterogenous electron transport (HET) [43,44] and the high loading
capacity of the antibody enabled a linear range of 5–120 mg/dL of LDL cholesterol in
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the electrochemical impedance spectroscopy (EIS)-based immunosensor. The sensor also
demonstrated a fast reaction time of 250 s with a stability of 5 weeks. Singh et al. [45]
reported the use of a AuNPs−rGO composite deposited onto an SPCE immunosensor
for the electrochemical detection of the cardiac biomarker myoglobin. The AuNPs−rGO
composite showed higher electrical conductivity compared to pristine rGO as the AuNPs
formed an inter-penetrating network promoting electron conduction pathways. Addi-
tionally, the large surface area of nanostructured electrodes [46] and the oxygen-related
defects in the rGO [47] increased the electrochemical response, enabling an eight-fold
better LOD compared to ELISA. Another cardiac biomarker called cardiac troponin I (cTnI),
which is used in the diagnosis of acute myocardial infarction (AMI), was detected using a
porous GO nanostructure-based label-free impedimetric immunosensor as discussed by
Kazemi et al. [48]. Ren et al. [49] have described the use of AuNP-decorated branched
polyethylenimine-reduced GO in creating a competitive immunosensor for the detection of
toxic melamine. The polyethylenimine acted as both a grafting agent and a reductant of
GO and together with the AuNPs facilitated the increased electrochemical response. Thus,
enormous possibilities of health monitoring devices introduced by realizing functionalized
graphene have been reported by various researchers.
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Figure 4. Graphene-oxide-based electrochemical immunosensor. In this sensor, graphene oxide was
modified using click chemistry. (A) The magnetic silica nanoparticle/GO composite was synthesized
via conjugation of azide-functionalized magnetic silica nanoparticles to acetylene-functionalized
graphene oxide by click chemistry with a copper-catalyzed 1,3-dipolar cyclo-addition reaction.
(B) The immunosensor for sensing cancer antigen 153 (CA 153) was fabricated following the sandwich
method by immobilizing a monoclonal anti-CA 153 antibody on the GO attached on a screen-printed
electrode, and H2O2-like magnetic silica nanoparticle/GO composites functioned as a signal label.
Reprinted with permission from ref. [41] Copyright 2014 Elsevier.
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4. DNA Sensing via Functionalized Graphene Oxide

GO presents unique mechanical, optical, electrical, and chemical performance for
construction of DNA-based biosensors. Among many sensing modalities, it serves as an
effective acceptor of fluorescence resonance energy transfer (FRET) to quench the fluores-
cence of labeled DNA samples upon adsorption [50–52]. Such a property is prevalently
applied in the DNA sensing. In addition, DNA sensing by GO typically possesses great
precision, high selectivity, high sensitivity, and low detection limits at low cost.

Various types of GO biosensors for DNA detection have been developed over the
past few years. Zhou et al. applied a chemically reduced GO modified glassy carbon
(CR-GO/GC) electrode for the DNA sensing [53], and showed enhanced electron transfer
kinetics compared to graphite-modified glassy carbon (graphite/GC) and glassy carbon
(GC) electrodes, thus demonstrating the improvement and robustness of CR-GO as an
advanced carbon electrode material for electrochemical and biological sensing. Balapanuru
et al. synthesized a charge-transfer complex composed of GO and pyrene dye PNPB, which
exhibited a highly selective and rapid detection of DNA in biological mixtures which may
also contain RNA, proteins, and glucose [54]. This is due to the formation of an ionic
complex between DNA and PNP+ on GO, which switches on the fluorescence, as shown in
Figure 5A. The other biomolecular species cannot remove PNP+ from GO due to the π–π
stacking effect, thus quenching the fluorescence. Stine et al. employed nanometer-thick
layers of reduced GO (rGO) to covalently attach with single-stranded DNA (ssDNA),
and formed a field-effect transistor (FET) device to implement sensitive, real-time, and
label-free detection of DNA hybridization [55]. Large-area deposition of rGO films and
incorporation of reference sensors contributed to the improvement of detection specificity
reported in their work, while the limit of detection for this rGO FET compared favorably
with other types of label-free detection platforms, such as surface plasmon resonance (SPR)
and nanowire devices. Wang et al. designed an aptamer—carboxyfluorescein (FAM)/GO
nanosheet (GO-nS) complex to investigate DNA and protein probing in living cells, and
revealed dramatic protection, delivery, sensing, and intracellular tracking capabilities of
GO−nS [56]. Noncovalent binding between GO−nS and DNA strands indicated that
GO−nS can serve as a good protector and an efficient cargo for cellular delivery of genes.
Liu et al. utilized GO as a functional matrix to develop fluorescent sensors for amplified
and multiplexed detection of DNA and aptamers [57], as shown in Figure 5B. Based on the
specific interaction between DNA constructs and GO, they also implemented the activation
of the “OR” and “AND” logic gates for the developed biosensing platform. Qian et al.
developed a fluorescent sensing platform for DNA detection based on the regulation of
interaction between GO and graphene quantum dots (GQD) [58], as shown in Figure 5C.
The platform can distinguish the complementary and mismatched DNA sequences with
high sensitivity, good reproducibility, and excellent biocompatibility; thus it may promote
the application of carbon-based nanomaterials in effective immunoassays.

It is important to note that the oxygen concentration in GO may vary considerably
based on different synthesis protocols or procedures, which could potentially influence the
DNA-sensing effect. Quite a few investigations have been conducted to quantify this GO
compositional factor. Hong et al. noticed that the oxidation level of GO has a strong impact
on the binding interaction to ssDNA and the fluorescence-quenching ability [59]. They
discovered that the less-oxidized GO can bind more strongly to ssDNA and quench the
fluorescence more effectively than the more-oxidized GO, and the detection sensitivity in
serum is much higher than that in Tris-HCl buffer, indicating a suitable application of DNA
sensing by GO in biological fluids. Lu et al. pointed out that the preparation condition of
GO, more specifically, the further reduction step which decreases the oxygen content in
GO, can considerably affect the DNA-sensing efficiency [60]. They systemically compared
the GO and reduced GO samples in DNA sensing and found that GO presented a higher
signal enhancement and faster signaling kinetics, while rGO absorbed DNA more tightly,
and exhibited a greater resistance to the desorption induced by temperature, pH, urea, and
organic solvents. Wang et al. investigated the supramolecular interactions of aggregation-
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induced emission (AIE) probes and GO on DNA sensing [61]. They demonstrated that
AIE probes with short alkyl chains manifest higher binding affinity with ssDNA and GO
with a lower oxidation degree exhibits stronger binding interactions to ssDNA and greater
fluorescence quenching efficiency.
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Considerable efforts have also made to explain and clarify the mechanism that gov-
ern the GO biosensing for DNA detection, force generation, and nonspecific interactions.
Liu et al. reported a mechanism of DNA sensing on graphene oxide [62]. They discov-
ered a substantial fluorescence enhancement by exposing a fluorophore-labeled probe
DNA, which was preabsorbed on GO, to the complementary DNA. Subsequently, they
quantitatively demonstrated that the enhancement of DNA hybridization in the presence
of GO results from the displacement of probe DNA into the solution for hybridization
in response to the large adsorption energy difference between the probe DNA and its
complementary DNA, but not the Langmuir−Hinshelwood mechanism (hybridization on
GO, then desorption to solution) or the Eley−Rideal mechanism (direct hybridization in
solution without complementary DNA adsorbed on GO). Lu et al. compared GO with the
other 2D materials, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) for DNA
sensing [63], and explained the difference in surface forces for DNA adsorption based on
the chemical structures of three biosensors, i.e., GO absorbs DNA mainly by hydrogen
bonding and π–π stacking, while MoS2 and WS2 absorb DNA primarily by using of van der
Waals force. Liu et al. conjugated GO with the nucleobases of DNA, while screening metal
oxide nanoparticles to interact with the phosphate backbone of DNA, so as to reach highly
sensitive DNA detection in serum and avoid the non-specific DNA displacement induced
by proteins [64]. They reported that cobalt oxide (CoO) presents nearly full resistance to
protein-induced DNA displacement, while nickel oxide (NiO) shows the best detection
limit for DNA sensing.

The exceptional properties of GO biosensors make them an ideal choice for DNA
sensing with high precision, selectivity, and sensitivity. Many types of GO biosensors in
combination with glassy carbon, organic dyes, aptamer, and quantum dots have been
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reported to achieve the above goals with progressive improvement. Meanwhile, the
oxidization level of GO serves as an important factor in affecting DNA-sensing efficiency.
More specifically, the more reduced GO presents stronger binding with DNA strands
and greater fluorescence quenching efficiency. Finally, the displacement of probe DNA,
hydrogen bonding and π–π stacking, and nonspecific interaction induced by protein, are
unveiled as generic mechanisms that govern GO biosensing for DNA detection.

5. Pathogen Detection Enabled by Functional Graphene

The presence of various oxygen-containing functional groups on the GO surface
provides good dispersibility and favorable binding sites for functionalization in designing
high-quality biosensors for pathogen detection [65]. Analytes get attached to the GO
surface due to the presence of polar groups such as hydroxyls, carboxyls, and epoxides
mainly through electrostatic interactions providing a variety of interaction options for
bonding [7]. Similarly, partially reduced GO(p-rGO) or rGO interact with the various
biomarkers such as protein and DNA through van der Waals interaction [66]. In this
way, GO offers stronger, better, multiple adsorption capacities by GO sheets which could
influence the chemical bonds of pathogen body structures and be able to show improved
sensing performance in various detection techniques (Figure 2).

Among graphene derivatives, GO has been found to have the most active antibacterial
activity [67]. Liu et al. developed an innovative sensing antimicrobial mechanism to trap
bacteria using graphene nanosheets. The oxidative stress produced by graphene nano-
material sheets captured bacteria and ruptured their membranes, reducing the metabolic
rate of the bacteria. Wu et al. reported on the possible antimicrobial mechanisms of GO in
tackling bacteria through (i) inducing cellular trauma with the sharp edges of the nano-
material; (ii) oxidative stress caused by the generation of superoxides with treatment of
graphene nanomaterials; and (iii) wrapping or trapping the bacteria, and limiting the
physical movement and metabolism of the bacteria [11]. They demonstrated GO as a
potential antimicrobial nanomaterial for effectively controlling multidrug resistant (MDR)
pathogens such as Klebsiella pneumoniae (Kp), Escherichia coli (E. coli) and P. aeruginosa (Pa)
for in vivo and in vitro studies. They showed that GO inhibited the growth and killing of
Kp in macrophage and mouse models after GO solution were introduced with harvested
bacterial suspension for 2 h at 37 ◦C and results were recorded. Researchers also explored
the electrochemical properties of GO for sensing various biomolecules. Tiwari et al. devel-
oped a nucleic acid sensor using GO-modified iron oxide–chitosan hybrid nanocomposite
(GIOCh) film for detection of Escherichia coli O157:H7 (E. coli) [68]. The pDNA immobilized
onto the GIOCh/ITO sensor exhibited high sensitivity of 1 × 10−14 M. Researchers also
fabricated GO-based devices to clean the environment using pathogen-like hyphae fungus
to fabricate a mechanically stable thin film sensor. Zhang et al. developed highly flexible
porous film for dye removal by graphene oxide–fungus interaction. They designed a
flow-through adsorption device using GO and fungus hyphae which absorbed the target
dye pollutant to clean the environment [69].

Virus infection is a global phenomenon, and the COVID-19 pandemic has caused
havoc by infecting and killing almost 1.7 million people worldwide between late 2019
and mid-2021. Therefore, we require more robust and sensitive early detection systems to
control the global pandemic caused by deadly viruses such as the corona virus. One of the
earliest works for pathogen detection using GO was led by Lu et al., who demonstrated
water-soluble GO as a new platform for the sensitive and selective detection of DNA
and proteins [70]. They explored the fluorescence quenching properties of GO in DNA
biosensing using a fluorescein-based dye. Similarly, Jung et al. reported on a simple,
highly sensitive and selective GO-based biosensor platform for detecting rotaviruses [71].
The detection occurred by GO photoluminescence quenching induced by fluorescence
resonance energy transfer (FRET) between GO sheets and AuNPs. The high affinity
between gold nanoparticles and the amino functional groups of the DNA nucleotides
provided a selective attachment of target cells of the rotavirus to the GO sheets. This
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interaction resulted in detection of rotavirus cells due to reduction in the fluorescence
quenching of GO.

One interesting work was reported by Song et al. who developed a novel GO-
based label-free method to capture and disinfect environmental viruses (enteric EV71
and H9N2) [72]. They demonstrated that GO interacted with the membrane of the virus
to extract the viral RNA and finally destroyed the virus to prevent further transmission
in the environment. Under optimal temperature with prolonged exposed time, GO was
able to denature the protein structure of the virus by breaking the chemical bonds. This
novel method showed a simple method of reducing the risk of infection with minimized
environmental contamination and reduced time, processing, and cost.

GO-based microfluidic immunosensors are becoming attractive alternatives to tradi-
tional pathogen-detection techniques such as ELISA, cell culture, and rt-PCR for better
clinical tests due to rapid diagnosis, cost effectiveness, easy application, and high repro-
ducibility. In the current scenario, we require highly sensitive, rapid, and early detection
tools for quick diagnosis of highly infectious disease such as COVID-19 and the Zika and
Ebola viruses. Figure 6 shows an innovative immunosensor chip using 3D nanoprinting of
three-dimensional electrodes of gold nanopillars known as the ‘3D-printed COVID-19 test
chip (3DcC)’ which were coated with nanoflakes of reduced graphene-oxide (rGO) [73].
This device was created using an aerosol-jet 3D nanoparticle printer wherein a 10 × 10 mi-
cropillar array was created by layer-by-layer printing (Figure 6A,B). The array was coated
with rGO nanoflakes and functionalized with spike S1 antigens of SARS-CoV-2 (His Tag)
enabled by EDC-NHS chemistry. Figure 6 C, D shows the SEM images of micro-textures of
printed micropillar array. An optical image of this device is shown in Figure 6E. The sensor
was designed with two different spike antigens such as S1 and RBD receptor-binding
domain (RBD) specific to COVID-19 antibodies (immunoglobin; IgG). This sensor has an
interface with a smartphone-based readout (Figure 6F) and showed 9-time regeneration
ability to detect COVID-19 antibodies. The sensor detected COVID-19 antibodies within
10 seconds via an electrochemical transduction mechanism. Sensing results of this device
for S1 antibodies are shown in Figure 6G. In addition, this rapid test enabled by rGO has
the potential to investigate the immune dynamic of the COVID-19 patients at their different
stages of infection which is important keeping in mind the various difficulties with COVID-
19 testing [74]. We believe that merging the manufacturing of graphene-based sensitive
biosensors with wearable technology and the internet of things (IoT) can introduce the next
generation of innovative technology for better and economic health care. We discuss future
biosensor technology using graphene and its derivative using advanced manufacturing in
the next section.
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6. Future Perspectives—3D Printed Graphene-Based Biosensors

Graphene-based nanomaterials as transducing biosensing materials have shown great
promise due to their large surface area, compatibility with biomolecules, electron transfer
rate, and ability to immobilize a variety of different biomolecules. Although graphene-
based materials are excellent electrode materials for biosensing applications, their applica-
tion in industrial products is limited. In addition, manufacturing of compact biosensors at
low cost is an important factor in biosensor technology since it involves development of
reproducible, robust, and reliable sensors with high sensitivity, specificity, and low limit-
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of-detection. Traditional manufacturing processes such as screen printing of graphene
electrodes provided two-dimensional surfaces which limited the performance of devices.
So far, many techniques have been explored to produce graphene and graphene-derived
nanomaterials such as thermal decomposition [75], mechanical exfoliation [8], the hum-
mer method [76], and chemical vapor deposition [77]. GO/rGO synthesis using wet
chemical methods is a tedious and time-consuming process which requires a series of
oxidation/reduction steps, repeated washings, and centrifugation resulting in uncontrolled
oxygen functionalities at the sheets. In addition, GO/rGO sheets in liquid solutions tend
to restack to generate graphite [78]. After synthesis of graphene using these methods,
their manufacturing in terms of electrochemical electrodes is still challenging. One of the
methods, electrodeposition of graphene, was utilized to fabricate graphene electrodes [79].
However, the mass production of graphene electrodes using electrodeposition is a major
concern due to structural integrity issues.

Recently, Ghanam et al., introduced a simple, scalable technique called laser-scribed
graphene (LSG) which employed a laser beam in order to convert carbon or polymer
precursor films into three-dimensional graphene electrodes without using any lithographic
mask [80]. This mask-free manufacturing method of graphene electrodes offered film
uniformity, mass production, and multilayered combination of graphene sheets with high
porosity and functional groups which are excellent features to construct sensitive biosensor
devices [80]. However, laser resolution for patterning graphene, laser quality and speed,
precise control of z-distance, and the fragile nature of graphene structures leading to lower
conductivity of electrodes are still impediments to mass-scale adoption. Technology for
manufacturing graphene-based biosensors at the industry level is thus still in its early
stages.

Owing to the excellent electrical and electrochemical properties of graphene and their
integration into flexible devices, graphene-based materials can provide versatile neural
recording probes which help to solve several problems in neural interface design [81].
Graphene provided increase adhesion, biocompatibility, and good viability with cell cul-
tures which can lead to the next generation of flexible neural implants [81]. For in vivo
brain activity recording, graphene showed good signal-to-noise ratio due to implantation of
3D graphene with high specific surface area, high porosity, and high spatial resolution [82].
Further, high mobility of charge carrier, high transconductance, and low intrinsic noise
of graphene field-effect transistors allowed them to detect action potentials of electrically
active cells in vitro and in brain activity [83,84]. In addition, graphene and its derivatives
are an excellent choice of materials which can be modified with specific bio-recognition
molecules for in situ biosensing of many neuromodulators and neurotransmitters including
dopamine, histamine, and glutamate in the central and peripheral nervous systems.

The fourth industry revolution (i.e., Industry 4.0) is an innovative approach and shows
the massive capability of manufacturing biomedical devices including biosensors [85]. In
recent years, advanced manufacturing (i.e., 3D printing) has revolutionized the manufac-
turing of biosensing structures with complex and customized features [86]. This enables
three-dimensional layer-by-layer printing with well-defined features at micro and sub
micrometer scale, and complex architectures of nanomaterials, polymers, and their com-
posites resulting in rapid prototypes in a controlled manner [87]. Compared to traditional
subtractive-based manufacturing processes such as drilling, milling, sawing, and broaching,
additive manufacturing can directly print three-dimensional parts through the sequential
layer stacking of materials, thus enabling enormous possibilities for rapid prototyping
and customized devices [88]. Note that 3D printing is a maskless and non-lithographic
process that can be performed by a click from the computer-aided-design file [89] and
does not require a clean room. The resolution of printing is dependent on the methods
of printing. The high-resolution capabilities of 3D printing create new manufacturing
opportunities for biosensor devices. Potential merits of 3D printing are design freedom,
flexibility, customizability, material combinations, and high sustainability. 3D printing
can be categorized mainly by seven different types such as material extrusion, vat pho-
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topolymerization, powder bed fusion, material jetting, binder jetting, sheet lamination, and
direct energy deposition. Since the invention of stereolithography (SLA) in 1986 by Chuck
Hull [90], there have been many methods of 3D printing such as digital light processing
(DLP), materials jetting (MJ), fused deposition modeling (FDM), direct ink writing (DIW),
selective laser sintering (SLS), multi-photon polymerization (MPP), and aerosol jet (AJ) 3D
printing. Printing resolution can vary according to the type of 3D printer [89,91]. Among
all techniques, extrusion-based printing is an attractive method for printing graphene
due to its easy printing process and the convenience of transferring graphene solution in
the solution form to the printing machine. For example, DIW is an extrusion-based 3D
printing which can deposit layer-by-layer of liquid graphene ink that quickly solidifies
upon extrusion resulting in 3D parts.

Three-dimensional platforms of graphene electrodes have enhanced biosensing perfor-
mance compared to two-dimensional electrodes in terms of sensitivity, limit-of-detection,
and selectivity indicating their importance in next-generation biosensor development.
Jakus et al., created a 3D printed scaffold structure consisting of graphene sheets and a
biocompatible material of polylactide-co-glycolide with minimum features of 100 µm and
improved electrical conductivity [92]. Polylactic acid’s (PLA) biodegradability has been ex-
ploited to fabricate 3D-printed graphene/PLA surfaces selectively and reproducibly in the
detection of 1-naphthol in aqueous solutions using alkaline phosphatase enzyme(ALP) [93].
This is a single-step fabrication process enabled by FDM for the development of a 3D
biosensor where proteinase K-mediated partial digestion of the PLA filament results in the
exposure of active graphene edges. The ALP is then adsorped on the exposed surface to
create the sensing electrode (Figure 7). Further, another 3D-printed graphene electrode
was employed to create an enzymatic biosensor [94]. In this sensor, the graphene-PLA
electrode was functionalized with horseradish peroxidase enzyme which enabled direct
electron transfer for hydrogen peroxide (H2O2) in human serum and had a stable response
after 7 days of incubation. This sensor did not require any mediator to detect H2O2, and
thus realized a third-generation biosensor [94]. However, due to the presence of binders
and other surfactants, the graphene-based 3D printed electrode manufacturing showed
poor performance. High levels of binder in graphene inks may lead to problems of nozzle
clogging due to high viscosity while low levels of binder may result in film cracking.
Solvent-assisted graphene nano-ink such as graphene dispersed in dimethylformamide sol-
vent can be used to print 3D structures of graphene to improve the device performance. A
3D printed graphene-PLA electrode was treated with dimethylformamide (DMF) before the
immobilization of enzyme by enabling crosslinking of glutaraldehyde [95]. This sensor was
utilized for simultaneous quantification of uric acid and nitrite in human urine and saliva,
respectively. Silva et al. [96] have also described sequential chemical treatment to produce
rGO within 3D-printed PLA, where a rGO-modified electrode produced after washing
with NaBH4 showed increased current density for the redox probe ferrocene-methanol in
contrast to PLA surface treated only by DMF. This is attributed to a better reorganization
of the rGO surface with reduction in defects and enhanced exposure of electroactive sites
validated using characterization through SEM, AFM, and Raman spectroscopy. The sensor
produced encouraging results in determining catechol in natural water samples.

A review paper was recently published on additive-manufactured-based electrochem-
ical sensors [97]. That review summarized the possibilities of selective laser melting and
fused deposition molding (FDM)-based 3D printed electrodes in the area of electrochemical
sensors systems. However, until now, only a few biosensors have been reported based on
3D printed graphene electrodes. Table 1 summarizes the most-cited graphene oxide based
biosensors utilizing 2D and 3D sensor structures. Further research is needed to create 3D
graphene biosensors at a large scale and integrate them with wearable technology and
the internet of things (IoT) for health monitoring. In the future, additive manufacturing
approaches will be the next manufacturing technology for creating biosensor devices with
a range of sensing structures and electrodes. However, this is still at an early stage, and the
cost of manufacturing is still a major concern. We are expecting that the next generation of
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3D printing technology can reduce the cost of manufacturing significantly and will allow
fabrication in a convenient way by reducing instrument costs for large-scale production.
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Figure 7. (A) Schematic of a fused deposition modelling (FDM) printer. A coin-shaped electrode was
made of graphene and PLA composite filament 3D-printed with a FDM printer. The printed electrode
was electrochemically irresponsive for the ferro/ferricyanide redox marker, however, after being
modified with proteinase K-mediated PLA the electrode became eroded and electrochemically active.
(B) The 3D printed electrode was modified with alkaline phosphatase (ALP) enzyme on the graphene
surface, which acted as a catalytic electrode towards the conversion of 1-naphthyl phosphate into
1-naphtho [93]. Reprinted with permission from ref. [93]. Copyright 2019 RSC.

Table 1. Biosensors based on graphene oxide by enabling 3D printing and 2D traditional manufacturing. (FET, field effect
transistor; BSA, bovine serum albumin; PLA, polylactic acid; DPV, differential pulse voltammetry; EIS, electrochemical
impedance spectroscopy).

Transducer Materials Modalities Type of Sensor Analytes Ranges LOD Refs.

GO on Gold Electrode
(2D) SERS Immunosensor Cancer proteins

and cells
1 fg/mL to

10 pg/mL in PBS 1 fg/mL Reza et al. [14]

Carboxy-
Functionalized GO

(2D)
SPR Immunosensor Anti-BSA 0.01–100 pg/mL 0.01 pg/mL Chiu et al. [98]

Inkjet-Printed
GO/Pentacene (3D) FET DNA sensor Artificial DNA 0.1–100 pmoles/µL 0.1 pM Lee at al. [99]

AuNP-Graphene
oxide (2D) Chronoamperometry DNA sensor Breast cancer

biomarker ERBB2 0.37–10 nM 0.16 nM Saeed e al. [100]

Screen-Printed GO
film (2D) EIS Immunosensor Influenza A virus 10 ng/mL to

10 µg/mL 10 ng/mL Kinnamon et al.
[101]

3D-Printed Au- rGO
Array (3D) EIS Immunosensor COVID-19

Antibody
0.01 fM–30 nM in

PBS 2.8 fM Ali et al. [73]

3D-printed rGO/PLA
Electrode (3D) DPV Enzymatic

Phenolic
compound

catechol

30–700 µmol/L in
PBS 0.26 µmol/L Silva et al. [96]

Au-GO (2D) Voltammetry Enzymatic Cholesterol 0.01 µg/mL to
5000 µg/mL 0.001µg/mL Huang et al. [33]
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7. Conclusions

In summary, functional graphene and its derivatives are exciting materials in the
world of nanotechnology. The excellent properties of graphene have revolutionized the
development of electrochemical, fluorescence, and optical biosensors for point-of-care
health diagnostics. Continuous and growing applications of graphene are replacing the
current technologies and opening a new direction of biomedical sensors with high per-
formance. In this review, we covered the application of graphene and its derivatives for
the detection of a range of biomarkers including toxins, antibodies, pathogens, and DNA.
As the functionality of the graphene can be tuned for a specific application of biomarker
sensing, we covered a set of examples of biosensing with different modalities. We also
critically reviewed the fundamentals of functional GO and rGO towards DNA sensing,
enzymatic biosensors, monitoring of pathogens, and immunosensing. It is noted that GO is
more amenable to mass-scale production from the viewpoint of cost optimization and man-
ufacturability when compared to graphene. GO can be easily used in composites with other
polymers to produce electrochemically active, mechanically robust, functional transducers
for biosensors. GO-based platforms have been successfully used in electrochemical-, FET-
and surface-plasmon-resonance-based biosensors. Moreover, rGO offers the advantage of
various functionalization schemes for the recognition of elements of biosensors and thus
provides multidimensional advantages compared to other biosensing transducer materials.
In addition, we described the possibilities of the next-generation graphene-based biosen-
sors using advanced manufacturing such as 3D printing. It is noted that the production
of high-quality defect-free graphene sheets and their use in industrial manufacturing of
biosensors are still limited. This will need to be overcome for scaling up the production of
graphene. We are expecting that future research would address these challenges for the
commercial production of graphene at a low cost. In the coming years, we believe that
the additive manufacturing of graphene combined with IoT, and wearable technology can
potentially transform the market of traditional biosensor technology for health monitoring.
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