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A new estimator

for the multicollinear Poisson
regression model: simulation
and application

Adewale F. Lukman®™, Emmanuel Adewuyi?, Kristofer Mansson? & B. M. Golam Kibria*

The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of
multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator
with some biasing parameters to estimate the regression coefficients for the PRM when there is
multicollinearity problem. Some simulation experiments are conducted to compare the estimators’
performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft
damage data has been analyzed. The simulation results and the real-life application evidenced that
the proposed estimator performs better than the rest of the estimators.

The Poisson regression model (PRM) is often adopted in modelling count data. PRM is employed to model the
relationship between the response variable and one or more regressors. The response variable comes in the form
of a count variable or non-negative integers such as the defects in a unit of manufactured product, errors or bugs
in software, number of road accidents, number of times a machine fail in a month, occurrences of virus disease,
count of particulate matter or other pollutants in the environment etc. The regression coeflicients in PRM are
estimated using the Maximum Likelihood Estimator (MLE).

In LRM, the estimator performance suffers from high instability when the regressors are correlated, i.e.
multicollinearity (for example, see'?). Multicollinearity effects include significant variance and covariances of
the regression coeflicients, wider confidence intervals, insignificant ¢-ratios and high R-square. Multicollinear-
ity also negatively influence the performance of the MLE in PRM**. Alternative estimators to the MLE in LRM
are the ridge regression estimator by Hoerl and Kennard®, Liu estimator by Liu%, Liu type estimator by Liu’,
two-parameter estimator by Ozkale and Kaciranlar®, k-d class estimator by Sakallioglu and Kaciranlar®, a two-
parameter estimator by Yang and Chang'?, modified two-parameter estimator by Dorugade'" and recently, the
modified ridge type estimator by Lukman et al.'?, modified new two-parameter estimator by Lukman et al."?,
modified new two-parameter estimator by Ahmad and Aslam'%, and K-L estimator by Kibria and Lukman®®.

Researchers have applied some of these estimators to the Poisson regression model. These include the Poisson
ridge regression estimator (PRE) by Mansson and Shukur®, Ménsson et al.'® developed the Poisson Liu estimator
(PLE) to mitigate the problem of multicollinearity in PRM. Batah et al.'” proposed the modified jackknifed ridge
regression estimator (MJRE) for the LRM while Turkan and Ozel'® adopted the MJRE to the Poisson regression
model as a remedy to the problem of multicollinearity. Ozkale and Kaciranlar® combine the Liu regression estima-
tor and the ridge regression to form the two-parameter estimator in LRM. Thus, Asar and Genc!® implemented
the two-parameter estimator to the Poisson regression model. Rashad and Algamal®® developed a new ridge
estimator for the Poisson regression model by modifying Poisson modified jackknifed ridge regression. Qasim
et al.* suggest some new shrinkage estimators for the PLE. We classified these estimators into Poisson regression
estimators with a single shrinkage parameter and two-parameters, respectively. Recently, Kibria and Lukman'®
proposed another ridge type estimator called K-L estimator with a single shrinkage parameter.

This study aims to propose an estimator that can handle multicollinearity in a Poisson regression model.
We harmonize the K-L estimator to the PRM and suggest some shrinkage estimators for the estimator. Also,
compare the proposed estimator’s performance with the MLE, PRE and PLE in terms of the matrix mean square
error (MSEM) and mean square error (MSE). The small sample properties are investigated using a simulation

!Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria. 2Department of Statistics, Federal
University of Technology, Akure, Nigeria. 3Department of Economics, Finance and Statistics, Jonképing University,
Jénkoping, Sweden. “Department of Mathematics and Statistics, Florida International University, Miami,
USA. “email: adewale.folaranmi@Imu.edu.ng

Scientific Reports |

(2021) 11:3732 | https://doi.org/10.1038/s41598-021-82582-w nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82582-w&domain=pdf

www.nature.com/scientificreports/

experiment. Finally, the new method’s benefit is evaluated in an example using aircraft damage data that was
initially analyzed by Myers et al.>.

This paper structuring is as follows: the Poisson regression model, some estimators and the MSEM and MSE
properties of the estimators are discussed in Sect. 2. A Monte Carlo simulation experiment has been conducted
in Sect. 3. To illustrate the finding of the paper, aircraft damage data was analyzed in Sect. 4. Some concluding
remarks are presented in Sect. 5.

Statistical methodology
Poisson regression model and maximum likelihood estimator.  Suppose that the response variable,
yiis in the form of non-negative integers (or count data), then the probability function is given as follows

exp (—u))!
fon = 7y_" Lyi=0,1,2,... (2.1)
N

where i1; > 0.The mean and variance of the Poisson distribution in Eq. (2.1) are the same (i.e.E(y) = Var ( y) = ).
The model is written in terms of the mean of the response. According to Myers et al.?!, we assume that there exists
a function, g, that relates the mean of the response to a linear predictor such that

g(ui) = ni = Po+ Bix1 + - + Bpxp = xiB, (2.2)

where g(.) is a monotone differentiable link function. The log link function is a popular type of this link func-
tion such that g(u;) = In (i) = exp (xl/ ﬂ). This log link is generally adopted for the Poisson regression model
because it ensures that all the fitted values for the response variable are positive. The maximum likelihood
estimator is popularly used to estimate the coefficients of the PRM, where the likelihood function is defined as:

n }’1 n
n N N eXp(—Zm)
e =] eXp (i _ iz i=1 23)
yi! .
i=1 r 11!
i=1

where u; = g7 (x/8). The log-likelihood function is used to estimate the parameter vector 3

n n n
Inl(B) => yiln(u) =Y ui— > In(y!) (2.4)
i=1 i=1 i=1
Since Eq. (2.4) is nonlinear in B, the solution is obtained using iterative methods. A common such procedure
is the Fisher Scoring method defined as:
Bt =p +171 ()8 (), (2.5)

where S(8) = %f’?) and I"1(B) = (—E(azl(ﬁ)/aﬂaﬁ’))_l. The final step of the estimated coeflicients corre-
sponds to:

BPMLE — (X' WX) "1 X' W2 (2.6)

where W = diag(,u%) matrix and Z is the adjusted response variable, Z = x] BPMLE 4 )% W and 2 are obtained

i
using Fisher scoring iterative procedure (see Hardin and Hilbe??). The covariance matrix and mean square error
are given respectively as follows:

c@v(ﬁpMLE) - (X/nyl 2.7)

and

MSE (5”"“5) = i %1 (2.8)

i=1

where /; is the ith eigenvalue of the matrix X' WX.

Poisson K-L estimator. Mainsson and Shukur® developed the Poisson ridge regression estimator (PRRE)
to mitigate the problem of multicollinearity, which is defined as follows:

~ ~ -1 A A
BPRRE = (X'WX +KI) X' WXAPMLE, (2.9)

where k > 0is the biasing parameter, I is a p x p identity matrix and the optimal value of k is defined as:

1
k=——
2 (2.10)
¥} max
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where @; is the ith component of « = Q'B, Q is the matrix whose columns are the eigenvectors of X’ WX.
Mansson et al.'® introduced the Poisson Liu estimator (PLE) as follows:

A ~ -1 ~ A
BPLE — (X/WX +1) <X’WX n dI>ﬁPMLE, 0<d<1, @2.11)
where d according to Mansson et al.'® may be estimated by the following formula:
. 051»2 —1
d = max | 0, min : > (2.12)
nte

Kibria and Lukman'® proposed a new single parameter ridge-type estimator for the linear regression model,
which is defined as follows:

AKLE
B

= (X'X + kI,) " (X'X — kI,) pMLE (2.13)

Following Kibria and Lukman'®, we proposed the following new estimator for the Poisson regression model
as follows:

BPRLE = (X'WX + kI,) " (X' WX — kI,) BPMLE (2.14)

Suppose o =Q'BandQ 'XTWXQ=A = diag (21, ..., .p) where iy > Jp > ... > J,, A is the matrix of eigen-
values of XTWX and Q is the matrix whose columns are the eigenvectors of X (T WX. The matrix mean square
error and the mean square error of the estimators PMLE, PRRE, PLE and PKLE are provided in Egs. (2.15) to

(2.21) respectively as follows:

MSEM (6"MLE) = QA QT (2.15)
PMLE L 1
MSE (& ; Py (2.16)
MSEM (6P*RF) = QAR AA*QT + K Afaa” AF (2.17)
PRRE 2
MSE d K ( ) 2.
&)= Z((m-i-k)) Z Ui+ 17 219
MSEM (&) = QA4AT'ATQT + (A — Daa” (Ag — DT (2.19)
where Ag = (A +I)~1(A +dD).
MSEM (&PXIE) = QAR(A — kI,) A7 AR (A — k) Q + k2 AFQA aa’ (2.20)
where A¥ = (A + kIP)_l.
P 2
. (4—k)
MSE PKLE 2 ( > )
@h=2 (m(m+k) > Z ot B 22D
P ) d—1)%a?
MSE (&"*F) Z( Uy +d)° +(“ )O;’) (2.22)
=1 \4j (% + 1) (4 +1)

where /; is the ith eigenvalue of X' WX and a; is the jth element of «. For the purpose of theoretical comparisons,
we adopt the following lemmas.

Lemma 2.1 Let A be a positive definite (pd) matrix, that is A>0, and a be some vector, then A — aa > 0 if and
only if (iff @ A™la < 12,

Lemma2.2 MSEM(B1) — MSEM(B,) = 02D + bibY — byb] > Oifand only ifb] [02D + b b] | by < 1where
MSE </§J> = Cov <,3AJ> + bijj“.

Theorem 2.1 &PXKLE is better than &PMLE iff, MSEM [aPMLE] — MSEM [&PKLE] > 0 provided k> 0.
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Proof.

MSEM (&™) — MSEM (6"1F) = Q[A™" = A*(A — k) A~ A¥(A = Kip) | Q"

—4k2AkQAkaa/
, P (2.23)
1 =k T
= Qdiag{ — — ———
Q g{)»,‘ )M,'(i,'-f—k)z i:lQ
—4k2AkQAkaa’

The matrix A~! — A¥(A — kI)) A=Y AR(A — k) is pd since 4; (2 + k)* — 4i(Zi — k)* > 0.
Theorem 2.2 GPKLE is better than &PRRE iff, MSEM [&PRRE] — MSEM [&PXLE] > 0 provided k> 0.

Proof.

D(G"E) — D(a™1F) = Q[AFANF — A¥(A — I AT AK(A — k1] Q"

‘ i G-k " g 224)
= d —
o { Git R Tala + 02 }i_lQ

The matrix AKAAF — AR(A — kI)) A=Y AR(A — kI, is pd since 22(Zi + k)* — (4 + k)* (4 — k)* > 0 for
2/1,' —k>0.

Theorem 2.3 aPXLE is better than &PLE iff, MSEM [4PLE] — MSEM [&PKLE] > 0 provided k> 0.
Proof.
D(&"E) — D(aPKLE) = Q[AdA*1A§ — AR(A — k) AT AK(A — klp)} QT

G+d*  w-p* " (2.25)
43 +1)° AiGi+k)?

= Qdiag{

The matrlx fognd in the above eq2 uation AdA_lAg — Ak —kIP)A_lAk(A — kIp) is pd since
2iCi + 52 (% +d) 2 (% +1) (A —k)* > 0.
Selection of BIaSIng Parameter The parameter is estimated by taking the first derivative of the MSE

function of &"KLE with respect to k and equating the resulting solution to zero. We obtain the following estimates
of k:

_ ;Li

T 1t 2 (2:26)

Following Ménsson et al.'® and Lukman and Ayinde?, we propose the following forms of the shrinkage

parameters in Eq. (2.26).
~ ) Ai
k1 = max | 0, min m (227)

ky = |/ max (0 min (#)) 2.28
:= ’ 14 leiaiz (2.28)
Simulation Experiment

Simulation Design. Since a theoretical comparison among the estimators is not sufficient, as simulation
experiment has been carried out in this section. We generate the response variable of the PRM from the Poisson
distribution Po(u;) where u; = exp (x;f) i = 1,2,...,n, B = (,30,,31,/32, .. ,Bp) such that x; is the ith row of
the design matrix X and following Kibria!, we generated the X matrix as follows

1/2 . .
Xjj = (1—,02) / wij + pwipy1, i =1,2,...,m j=12,...p,p+1 (3.1)

where ,02 is the correlation between the explanatory variables. The values of p are chosen to be 0.85, 0.9, 0.95
and 0.99. The mean function is obtained for p=4 and 7 regressors, respectively. According to Kibria et al.?, the
intercept value are chosen to be —1, 0 and 1 to change the average intensity of the Poisson process. The slope
coeflicients chosen so that 2 i1 ﬁ 2 =landf; =B = = f, for sample sizes 50, 75, 100 and 200. Simulation
experiment conducted through R programming language27 The estimated MSE is calculated as
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Intercept n P PKLE1 |PKLE2 |PLE PRRE PMLE
0.8 0.2688 | 0.2324 0.2668 0.2691 0.3194
0.9 0.3422 | 0.2780 0.3468 0.3445 0.4434

50 0.95 0.4729 |0.3391 0.4902 0.4812 0.6854
0.99 1.5356 | 0.5282 1.5721 1.5470 2.8210
0.999 | 15.5580 |2.9798 15.6323 | 15.3346 | 28.6901
0.8 0.1772 | 0.1635 0.1805 0.1777 0.2134
0.9 0.2477 | 0.2237 0.2528 0.2493 0.3067
75 0.95 0.3547 |0.3028 0.3640 0.3593 0.4681
0.99 0.9971 |0.5388 1.0494 1.0258 1.7516
0.999 8.3318 | 0.6540 8.3224 8.2732 | 15.8245
0.8 0.1644 | 0.1520 0.1623 0.1644 0.1763
0.9 0.2273 | 0.2076 0.2274 0.2278 0.2571
100 | 0.95 0.3323 | 0.2894 0.3366 0.3345 0.4074
0.99 1.0515 | 0.5912 1.1219 1.0801 1.7301
0.999 7.8180 | 0.7432 7.9173 7.7334 | 15.0254
0.8 0.0429 | 0.0420 0.0423 0.0429 0.0435
0.9 0.0535 | 0.0527 0.0535 0.0535 0.0557
200 |0.95 0.0816 | 0.0800 0.0827 0.0817 0.0879
0.99 0.2728 | 0.2438 0.2763 0.2749 0.3274
0.999 1.7187 | 0.6548 1.7933 1.7500 3.1157

Table 1. Simulated MSE when p=4 and intercept=—1.

Intercept n P PKLE1 | PKLE2 | PLE PRRE | PMLE
0.8 0.0701 | 0.0683 | 0.0707 |0.0702 | 0.0756
0.9 0.1003 | 0.0955 |0.1012 |0.1007 |0.1138
50 0.95 0.1715 | 0.1561 | 0.1741 |0.1735 |0.2143
0.99 0.5111 ]0.3241 | 0.5317 |0.5315 |0.9181
0.999 |4.6909 |0.6275 |4.6140 |4.6207 |9.0882
0.8 0.0546 | 0.0537 | 0.0547 |0.0546 | 0.0570
0.9 0.0801 0.0780 | 0.0803 |0.0802 |0.0856
75 0.95 0.1303 | 0.1245 | 0.1308 |0.1307 |0.1456
0.99 0.3850 | 0.3168 |0.3976 |0.3972 |0.5741
0.999 |3.0237 | 0.6477 |2.9929 |3.0076 |5.6671
0.8 0.0418 | 0.0413 | 0.0419 |0.0418 |0.0431
0.9 0.0690 | 0.0675 | 0.0691 |0.0691 |0.0727
100 | 0.95 0.1168 |0.1122 |0.1174 |0.1171 |0.1290
0.99 0.3912 | 0.3238 | 0.4055 |0.4034 |0.5806
0.999 |2.8662 |0.6173 |2.8339 |2.8511 |5.4321
0.8 0.0102 {0.0102 |0.0102 |0.0102 |0.0103
0.9 0.0147 |0.0146 |0.0147 |0.0147 |0.0149
200 |0.95 0.0265 |0.0263 |0.0265 |0.0265 |0.0270
0.99 0.1015 {0.0978 |0.1017 |0.1017 |0.1108
0.999 |0.6370 |0.4352 |0.6620 |0.6618 |1.1017

Table 2. Simulated MSE when p=4 and intercept=0.

1000

MSE(/@) = TIOO > (5:1 - ,31')/(31‘1 - ﬁi) (3.2)
P

where /3,-]- denotes the estimate of the ith parameter in jth replication and p; is the true parameter values. The
experiment is replicated 1000 times. The simulated MSE values of the estimators for p=4 and intercepts=—1, 0
and 1 are presented in Tables 1, 2, 3 respectively and p="7 and intercepts=—1, 0 and 1 are presented in Tables 4,
5, 6, respectively.
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Intercept n P PKLE1 | PKLE2 | PLE PRRE | PMLE
0.8 0.0411 | 0.0408 | 0.0411 |0.0411 | 0.0416
0.9 0.0519 |0.0511 |0.0519 |0.0519 |0.0532
50 0.95 0.0822 | 0.0793 | 0.0823 |0.0822 | 0.0868
0.99 0.2734 1 0.2298 | 0.2818 |0.2784 | 0.3567
0.999 |1.7816 | 0.4751 1.8210 | 1.7884 |3.4578
0.8 0.0269 | 0.0268 | 0.0269 |0.0269 |0.0271
0.9 0.0390 |0.0387 |0.0391 |0.0390 |0.0396
75 0.95 0.0596 | 0.0586 | 0.0596 |0.0596 |0.0613
0.99 0.2104 |0.1944 |0.2118 |0.2113 |0.2389
0.999 |1.2893 |0.6147 1.3499 | 1.3232 |2.3019
0.8 0.0235 |0.0234 | 0.0235 |0.0235 |0.0236
0.9 0.0343 1 0.0340 |0.0343 |0.0343 |0.0345
100 | 0.95 0.0519 |0.0512 |0.0519 |0.0519 |0.0528
0.99 0.2060 | 0.1900 | 0.2073 |0.2066 |0.2279
0.999 | 1.1375 | 0.5447 1.2443 | 1.1820 |2.0549
0.8 0.0057 | 0.0056 | 0.0057 |0.0057 |0.0057
0.9 0.0076 | 0.0076 | 0.0076 |0.0076 |0.0076
200 |0.95 0.0115 {0.0115 |0.0115 |0.0115 |0.0116
0.99 0.0421 |0.0415 |0.0421 |0.0421 |0.0430
0.999 |0.3123 |0.2704 |0.3185 |0.3159 |0.3868

Table 3. Simulated MSE when p=4 and intercept=1.

Intercept | n P PKLE1 |PKLE2 |PLE PRRE PMLE
0.8 0.5026 0.4263 0.4988 0.5018 0.6064
0.9 0.7669 0.5998 0.7795 0.7688 1.0486

50 0.95 1.2641 0.8189 1.2873 1.2721 1.9715
0.99 6.3135 1.5820 6.1834 6.2140 10.7269
0.999 |64.7209 |21.1207 |64.3927 |63.0823 | 112.6646
0.8 0.2380 0.2162 0.2388 0.2385 0.2770
0.9 0.3137 0.2732 0.3264 0.3177 0.4234
75 0.95 0.4385 0.3349 0.4646 0.4486 0.7010
0.99 2.1826 0.8014 2.1642 2.1503 3.9059
0.999 |23.5750 9.5019 |22.9197 |22.6216 42.8199
0.8 0.1463 0.1413 0.1478 0.1464 0.1610
0.9 0.2107 0.2019 0.2149 0.2113 0.2386
100 | 0.95 0.3366 0.3134 0.3505 0.3396 0.4186
0.99 1.2396 0.8224 1.2956 1.2697 1.9434
0.999 |12.1942 1.9688 | 11.9290 |11.9912 20.8725
0.8 0.0516 0.0506 0.0512 0.0516 0.0524
0.9 0.0757 0.0744 0.0759 0.0757 0.0791
200 |0.95 0.1279 0.1240 0.1285 0.1281 0.1362
0.99 0.4777 0.4019 0.4916 0.4866 0.6330
0.999 4.0605 1.3613 3.9903 3.9785 6.9296

Table 4. Simulated MSE when p="7 and intercept=—1.

Simulation results discussion. The simulation result in Tables 1, 2, 3, 4, 5, 6 shows that the following
factors affect the estimators’ performances: the degree of correlation, the number of explanatory variables, the
sample size and the value of the intercept. We observed that increasing the sample size led to a decrease in the
MSE values of all the estimators, which is one of the unique properties for any statistical estimator. The proposed
estimator, PKLE2 consistently possessed the minimum MSE. Increasing the degree of correlation increases the
simulated MSE values for each of the estimators. The Poisson ridge (PRE) and Liu estimator (PLE) competes
favorably with the proposed estimator. For instance, The MSE of PRE and PLE are very similar to the pro-
posed estimator, especially when multicollinearity is low (p=0.8-0.95).The performance of PMLE is the worst
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Intercept | n P PKLE1 |PKLE2 |PLE PRRE PMLE
0.8 0.1489 | 0.1447 0.1503 0.1492 0.1617
0.9 0.2452 | 0.2323 0.2483 0.2467 0.2835
50 0.95 0.4212 | 0.3767 0.4310 0.4288 0.5537
0.99 1.8687 | 0.9555 1.8648 1.8765 3.2182
0.999 | 204742 |3.3127 |19.9500 |20.0905 |35.4611
0.8 0.0658 | 0.0644 0.0661 0.0659 0.0699
0.9 0.1094 | 0.1044 0.1103 0.1099 0.1236
75 0.95 0.1797 |0.1623 0.1833 0.1827 0.2302
0.99 0.7702 | 0.4389 0.7854 0.7866 1.3652
0.999 8.0166 |2.3384 7.5503 7.6873 | 14.7306
0 0.8 0.0489 | 0.0484 0.0489 0.0489 0.0501
0.9 0.0755 |0.0744 | 0.0755 | 0.0755 | 0.0782
100 | 0.95 0.1306 | 0.1272 0.1308 0.1307 0.1394
0.99 0.5228 | 0.4570 0.5342 0.5335 0.7070
0.999 4.4932 | 1.4207 4.3748 4.4380 7.5910
0.8 0.0134 | 0.0133 0.0134 0.0134 0.0135
0.9 0.0227 | 0.0226 0.0227 0.0227 0.0230
200 |0.95 0.0401 | 0.0397 0.0401 0.0401 0.0412
099 | 01930 |0.1819 | 0.1945 | 0.1943 | 0.2241
0.999 1.4410 |0.7989 1.4362 1.4478 2.4561
Table 5. Simulated MSE when p=7 and intercept=0.
Intercept | n p PKLE1 | PKLE2 | PLE PRRE | PMLE
0.8 0.0792 | 0.0784 | 0.0792 |0.0792 0.0805
0.9 0.1247 | 0.1218 | 0.1248 | 0.1248 0.1296
50 0.95 0.2244 |0.2126 | 0.2253 | 0.2249 0.2448
0.99 0.8773 | 0.6405 | 0.9176 |0.9017 1.3239
0.999 |8.8188 1.8730 | 8.4501 |8.6064 | 15.0688
0.8 0.0347 |0.0344 | 0.0347 |0.0347 0.0351
0.9 0.0518 | 0.0508 |0.0518 |0.0518 0.0534
75 095 |0.0983 |0.0941 |0.0985 |0.0984 | 0.1055
0.99 0.3866 | 0.2998 | 0.4050 |0.3981 0.5553
0.999 |3.2853 1.0512 | 3.1833 |3.1984 5.9012
! 0.8 0.0218 |0.0217 |0.0218 |0.0218 0.0218
0.9 0.0322 | 0.0321 0.0322 | 0.0322 0.0325
100 | 0.95 0.0547 | 0.0541 0.0547 | 0.0547 0.0556
0.99 0.2388 | 0.2251 0.2398 | 0.2393 0.2612
0999 |1.7042 |0.9834 |1.7764 |1.7417 | 2.7838
0.8 0.0072 | 0.0072 | 0.0072 |0.0072 0.0072
0.9 0.0103 |0.0103 |0.0103 |0.0103 0.0104
200 |0.95 0.0171 0.0170 |0.0171 |0.0171 0.0172
0.99 0.0814 |0.0793 |0.0814 |0.0814 0.0846
0.999 |0.6326 |0.4903 |0.6622 |0.6495 0.9012

Table 6. Simulated MSE when p=7 and intercept=1.

compared to other estimators, especially when the correlation among regressors is 0.90 and higher. This study
increased explanatory variables from 4 to 7 and observed that the MSE rises by increasing explanatory variables.
The MSE for all the estimators decreases when we change the intercept value from —1 to + 1. Consistently, the
proposed estimator PKLE2 outperforms all other estimators considered in this study. We also plotted MSE vs
sample sizes and different p and intercepts and presented them Figs. 1, 2, 3, 4 and 5. From these figures, we
observed that PKLE2 consistently possessed minimum value at the different sample size (1), followed by PKLE1
while PMLE has the worst performance. These figures also revealed that the estimators’ performance becomes
similar for large n (200) or small correlation (0.80). However, the proposed estimator, PKLE2 performed the

best.

Scientific Reports |

(2021) 11:3732 |

https://doi.org/10.1038/s41598-021-82582-w

nature portfolio



www.nature.com/scientificreports/

50 75 100 200

=2

e PKLE1 PKLE2 PLE PRRE

PMLE

Figure 1. Intercept=-1; p=0.95; p=4.
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Figure 2. Intercept=0; p=0.99; p=4.
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Figure 3. Intercept=0; p=0.999; p=7.

Real life application

In this session, we examined the effectiveness of the new estimator using real-life data. We adopted the aircraft
damage data to evaluate the proposed estimator’s performance and some other estimators in this study. The
dataset was initially used by Myers et al.?! and recently by Asar and Genc'? and others. The dataset provides the
information about two types of aircraft, the McDonnell Douglas A-4 Skyhawk and the Grumman A-6 Intruder.
This data describe 30 strike missions of these two aircraft. The explanatory variables are as follows: x, is a binary
variable representing the aircraft type (A-4 coded as 0 and A-6 coded as 1), x, and x; denote bomb load in tons
and total months of aircrew experience, respectively. The response variable, y represents the number of locations
with damage on the aircraft, which follows a Poisson distribution'**!. Amin et al.”® examine if the model follows
a Poisson regression model by adopting the Pearson chi-square goodness of fit test. The test confirms that the
response variable is well fitted to the Poisson distribution with test statistic (p-value) is given as 6.89812 (0.07521).

Scientific Reports|  (2021)11:3732 | https://doi.org/10.1038/s41598-021-82582-w nature portfolio



www.nature.com/scientificreports/

35

25

1.5 /
1

0.5

MSE

0.8 0.9 0.95 0.99 0.999
P

e PKLEL PKLE2 PLE PRRE s PVILE

Figure 4. Intercept=1; n=200; p=4.
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Figure 5. Intercept=1;n=200;p=7.

Coef. &PMLE &PRRE &PLE &PKLE] &PKLEZ
& -0.4060 |-0.1676 |-0.2555 | -0.1085 | -0.1068
ay 0.5688 0.3799 0.4789 0.3921 0.3906
a; 0.1654 0.1705 0.1665 0.1675 0.1675
a3 -0.0135 |-0.0153 |-0.0147 | -0.0158 | -0.0158
MSE 1.0290 0.2727 0.4320 0.2251 0.2249

Table 7. Regression coefficients and MSE.

According to Myers et al.”!, there is evident of multicollinearity problem in the data. The eigenvalues of the

X'WX matrix are 4.3333, 374.8961 and 2085.2251. The condition number, CN = | / mx(egemalue) _ 5, 565
min (eigenvalue)

also shows multicollinearity in the dataset>'?. The estimators’ performances are assessed through the mean
squared error (MSE). The MSE of the estimators is computed using Eqs. (2.15). (2.17), (2.19) and (2.21), respec-
tively. The biasing parameters are determined using Egs. (2.10), (2.12), (2.27) and (2.28), respectively. The regres-
sion coefficients and the MSE values are provided in Table 7. From Table 7, we observed that all the coefficients
have a similar sign. PMLE has the highest mean square error, while the proposed estimator (PKLE2) has the
lowest MSE which established its superiority. The maximum likelihood estimator possesses the highest MSE due

to the presence of multicollinearity. The ridge and Liu estimator equally perform well when there is multicol-
linearity. We observed that the performance of the proposed estimator is a function of the biasing parameter, k.

Some concluding remarks

The K-L estimator is an estimator with a single biasing parameter, k which eliminates the biasing parameter’s
computational rigour as obtainable in some of the two-parameter estimators. It falls in the ridge and Liu estimator
class to mitigate multicollinearity in the linear regression model. According to Kibria and Lukman'®, K-L estima-
tor outclasses the following estimators: the ordinary least squares estimator, the ridge and the Liu estimator in
the linear regression model. As earlier stated, the multicollinearity influences the performance of the maximum
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likelihood estimator (MLE) in both the linear regression models and the Poisson regression models (PRM). The
ridge regression and Liu estimator at a different time were harmonized to the PRM to solve multicollinearity.
However, in this study, we developed a new estimator, establish its statistical properties, carried out theoretical
comparisons with the estimators mentioned above. Furthermore, we conducted a simulation experiment and ana-
lyzed a real-life application to show the proposed estimator effectiveness. The simulated and application results
show that the proposed estimators outperform the existing estimators, while PMLE has the worst performance.
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