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Quantum Fourier transform 
is the building block for creating 
entanglement
Mario Mastriani 

This study demonstrates entanglement can be exclusively constituted by quantum Fourier transform 
(QFT) blocks. A bridge between entanglement and QFT will allow incorporating a spectral analysis 
to the already traditional temporal approach of entanglement, which will result in the development 
of new more performant, and fault-tolerant protocols to be used in quantum computing as well as 
quantum communication, with particular emphasis in the future quantum Internet.

Jean-Baptiste Joseph Fourier (Auxerre, France, 21 March 1768, Paris, 16 May 1830) was a French mathematician 
and physicist, a disciple of Joseph-Louis Lagrange (Turin, Italy, 25 January 1736, Paris, 10 April 1813), known for 
his work on the decomposition of periodic functions into convergent trigonometric series called Fourier series, 
a method with which he managed to solve the heat equation. The projection of his work in the two centuries 
following his death on areas as diverse as electricity, optics, electronics, and so on, culminated during the twen-
tieth century in the creation of the famous Discrete Fourier  Transform1, Fast Fourier  Transform2, and Quantum 
Fourier  Transform3 (QFT), where the latter constitutes a key piece within Quantum Information  Processing4 for 
the case of those quantum algorithms that require a phase  estimation5, or phase estimation in qudit  systems6, as 
well as, the presence of QFT in a d-level quantum  system7.

On the other hand,  entanglement8–10, so reviled by Albert Einstein, Boris Podolsky, and Nathan Rosen in their 
so famous 1935  paper11, has become the cornerstone of Quantum  Computing4 and Quantum  Communication12, 
in particular, in communications protocols such as quantum  teleportation13, quantum secret  sharing14, quantum 
key  distribution15, quantum secure direct  communication16, and quantum  repeaters17, with a marked commit-
ment to the future quantum  Internet18–22.

The union of both entities, i.e. QFT, and entanglement, seems at first something quite strange, at least in the 
way it is presented in this work, where the first becomes a basal element for the creation of the second, however, 
the approach that will be presented then it will allow access to the hidden face of the entanglement, its spectral 
face.

QFT is constituted by an important family of quantum operations over the ring ℤ2
n. The n-qubit QFT 

makes a coherent mapping from an input state or qubit string �x⟩ = ��x1 … xn⟩ to an output state or qubit string ��y⟩ = ��y1 … yn⟩ in the computational  basis23 as follows:

where �2n = ei2�∕2
n is the  2n root of unity, while the inverse QFT is:

The Hadamard matrix H is equivalent to the 1-qubit QFT and its  inverse24,25,

That is, for the 1-qubit QFT all its components are equivalent. Instead, for the 2-qubit QFT, the same does 
not happen, since

(1)��y⟩ ↦ 1√
2n

2n−1�
v=0

�u.v
2n
�x⟩, u = 0, 1, 2, … , 2n − 1

(2)�x⟩ ↦ 1√
2n

2n−1�
u=0

�−v.u
2n

��y⟩, v = 0, 1, 2, … , 2n − 1

(3)F21 = H =
1√
2

�
1 1

1 −1

�
= H−1 = F−1

21
∈ ℂ

21×21 .
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and

are different: F22 ≠ F−1
22

 , where F22 ∧ F−1
22

∈ ℂ
22×22 . On the other hand, the Feynman’s  gate4 (also known as Con-

trolled-X, CNOT, or CX gate), as well as its flipped version are respectively:

and

where the difference between them consists in that in Eq. (5a) the upper qubit is the control qubit, while 
the lower qubit is the target qubit. Instead, in the version of Eq.  (5b) it is exactly the opposite, being: 
CNOTflipped = (H ⊗H) × CNOT × (H ⊗H) , “×” the matrix product, and “⊗” the Kronecker  product4.

Multiplying both F22 by itself and F−1
22

 by itself, both multiplications result equal to the CNOTflipped gate of 
Eq. (5b): F22 × F22 = F−1

22
× F−1

22
= CNOTflipped . This can be easily verified by multiplying CNOTflipped by itself, and 

F22 × F22 by F−1
22

× F−1
22

 and regrouping,

However,

and

Therefore, 
√
CNOT ≠ F22 and 

√
CNOTflipped ≠ F22 . Finally, the CNOT gate is equal to the flipped version of 

the multiplication of QFT F22 by itself,

Equation (8) is fundamental in the creation of the entanglement for two or more qubits, as well as in all the 
applications that require it, as is the case of quantum  teleportation11.

Bell states
Pauli’s  matrices4 can be expressed in terms of the so-named Hadamard rotation  gates26 or the general unitary 

operator U(�,�, �) =

[
cos(�∕2) −ei �sin(�∕2)
ei�sin(�∕2) ei(�+�)cos(�∕2)

]
 as follows:

(4a)F22 =
1

2

⎡
⎢⎢⎢⎣

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎥⎦
,

(4b)F−1
22

=
1

2

⎡
⎢⎢⎢⎣

1 1 1 1

1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎤
⎥⎥⎥⎦
,

(5a)CNOT =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦
,

(5b)CNOTflipped =

⎡⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤⎥⎥⎥⎦
,

(6)
CNOTflipped × CNOTflipped =

(
F22 × F22

)
×
(
F−1
22

× F−1
22

)

= F22 ×
(
F22 × F−1

22

)
× F−1

22
= F22 × I × F−1

22
= F22 × F−1

22
= I22×22 .

(7a)
√
CNOT =
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,

(7b)
�
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(8)(H ⊗H) ×
(
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)
× (H ⊗H) = (H ⊗H) ×

(
F−1
22

× F−1
22

)
× (H ⊗H) = CNOT .

(9a)I = HIHI = HIIIHIII = HIIHIV = HIVHII,

(9b)X = HIIIHII = HIIHI = HIHIV = HIVHIII,
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where I is a 2 × 2 identity matrix, i =
√
−1 , HI = H = U(�∕2, 0,�) of Eq. (3), while

The equivalence of Eq. (9b) can be used to represent the four Bell states:

with �0⟩ =
�
1

0

�
 , and �1⟩ =

�
0

1

�
 . That is, replacing in Eqs. (11a–11d) the equivalence corresponding to X of 

Eq. (9b),
H of Eq. (3), I of Eq. (9a), and CNOT of Eq. (8), it is possible to implement the four Bell states exclusively 

basing on QFT blocks. Without losing generality, Fig. 1a,c represents the implementation of the ���00⟩ = �Φ+⟩ Bell 
state in terms of its two original versions (direct and flipped), while Fig. 1c,d constitute their respective counter-
parts based exclusively on QFT blocks, confirming that these blocks are all that is needed to create entanglement 
while revealing its spectral nature.

N-qubits Greenberger–Horne–Zeilinger  (GHZN) states
This family of configurations is the most commonly used in practice when it comes to entanglement between 
three or more  particles4,8–10, being its general form as follows:

Without loss of generality, in this study only ��GHZ3⟩ and ��GHZ4⟩ are implemented in terms of QFT blocks, 
where:

Equations (13) and (14) are graphically represented in Fig. 2a and d, respectively. Figure 2b shows ��GHZ3⟩ 
with one  QFT2

1
×2

1 and four flipped  QFT2
2

×2
2, while Fig. 2c represents it thanks to one  QFT2

1
×2

1 and two flipped 

(9c)Y = iHIIIHI = iHIIHII = −iHIVHIV = −iHIHIII, and

(9d)Z = −HIIHIII = HIHII = −HIIIHIV = HIVHI,

(10)
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1√
2

�
1 −1
1 1

�
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1√
2

�
−1 1

1 1

�
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1√
2

�
1 1

−1 1

�
= U(�∕2,�,�)

(11a)��𝛽00⟩ = ��Φ+
�
= 1∕

√
2(�00⟩ + �11⟩) = CNOT(H ⊗ I)�00⟩,

(11b)��𝛽01⟩ = ��Ψ+
�
= 1∕

√
2(�01⟩ + �10⟩) = CNOT(H ⊗ I)�01⟩ = CNOT(H ⊗ I)�0⟩X�0⟩,

(11c)��𝛽10⟩ = �Φ−⟩ = 1∕
√
2(�00⟩ − �11⟩) = CNOT(H ⊗ I)�10⟩ = CNOT(H ⊗ I)X�0⟩�0⟩, and

(11d)��𝛽11⟩ = �Ψ−⟩ = 1∕
√
2(�01⟩ − �10⟩) = CNOT(H ⊗ I)�11⟩ = CNOT(H ⊗ I)X�0⟩X�0⟩,

(12)��GHZN ⟩ = 1∕
√
2
��0⟩⊗N + �1⟩⊗N

�

(13)��GHZ3⟩ = 1∕
√
2(�000⟩ + �111⟩) = �

I2×2 ⊗ CNOT
��
CNOT ⊗ I2×2

��
H ⊗ I4×4

��000⟩, and

(14)
��GHZ4⟩ = 1∕

√
2(�0000⟩ + �1111⟩) = �

I4×4 ⊗ CNOT
��
I2×2 ⊗ CNOT ⊗ I2×2

��
CNOT ⊗ I4×4

��
H ⊗ I8×8

��0000⟩.

Figure 1.  Representation of the ���00⟩ = �Φ+⟩ Bell state in terms of QFT: (a) original version based on H and 
CNOT gates, (b) its representations in terms of one  QFT2

1
×2

1 and two flipped  QFT2
2

×2
2, (c) original version with 

one H and one flipped CNOT gates, and (d) its representations in terms of one  QFT2
1

×2
1 and two  QFT2

2
×2

2.
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 QFT2
3

×2
3. Finally, Fig. 2e shows ��GHZ4⟩ with one  QFT2

1
×2

1 and six flipped  QFT2
2

×2
2, while Fig. 2f represents it 

thanks to one  QFT2
1

×2
1 and two flipped  QFT2

4
×2

4.
Equivalences between Fig. 2a–c as well as between Fig. 2d–f, show again the spectral nature of the entangle-

ment even for the case of more than two particles entangled at the same time. In fact, the equivalences present 
in Fig. 2 between (N − 1) pairs of flipped  QFT2

2
×2

2 and two flipped  QFT2
N

×2
N, show that the equivalence of 

Fig. 1 is not a simple coincidence for a particular case like a Bell state, but actually, the entanglement in all its 
manifestations has a spectral nature, where the QFT is the essential instrument for a spectral tomography of 
it. It only remains to project this equivalence, in perhaps the most conspicuous application of entanglement, 
quantum  teleportation13.

Teleportation
This  protocol13 is implemented in three different ways in Fig. 3, where a qubit ��⟩ to be teleported is prepared 
and introduced in the upper qubit on the left of the protocol. A Bell state like that of Fig. 1 is distributed between 
Alice and Bob. Subsequently, a module applied in the two upper qubits and constituted by a CNOT gate, an H 
gate, and two quantum measurement blocks (QuMe) constitute what in practice is known as a Bell State Meas-
urement (BSM)  module4,8–10. The double lines at the output of each QuMe convey classical information from 
Alice to Bob in the form of two classical disambiguation or control bits. For this reason, this means of transport 
is known as a classic channel of disambiguation, control, or simply as an auxiliary channel.

A 2-qubits Controlled-ℤ gate or simply Cℤ gate can be constructed from QFT blocks according to the equiva-
lence of Eq. (9d), or in terms of two H and one CNOT (Controlled-X or CX) gates from the following identity:

As can be seen in Fig. 3c, except for the QuMe blocks, everything else in this protocol is representable using 
QFT blocks. This extends, with identical results, to all other protocols that are based on entanglement such as 
quantum secret  sharing14, quantum key  distribution15, quantum secure direct  communication16, and quantum 
 repeaters17, and that are used in quantum  Internet18.

Quantum spectral analysis. A time decomposition, based on Fig. 4, is developed according to the inter-
vention of each QFT block in the creation of the ���00⟩ = �Φ+⟩ Bell state. This analysis begins with the creation of 
a flipped  QFT2

2
×2

2 in terms of a  QFT2
2

×2
2 and four Hadamard (H) gates, where the last ones are used for flipping 

it as follows,

(15)CZ =
(
I2×2 ⊗H

)
CX

(
I2×2 ⊗H

)

Figure 2.  Implementations of ��GHZ3
⟩ and ��GHZ4

⟩ : (a) original version of ��GHZ3
⟩ in terms of one H and two 

CNOT gates, (b) ��GHZ3
⟩ thanks to one  QFT2

1
×2

1 and four flipped  QFT2
2

×2
2, (c) ��GHZ3

⟩ based on one  QFT2
1

×2
1 

and two flipped  QFT2
3

×2
3, (d) original version of ��GHZ4

⟩ in terms of one H and three CNOT gates, (e) ��GHZ4
⟩ 

thanks to one  QFT2
1

×2
1 and six flipped  QFT2

2
×2

2, (f) ��GHZ4
⟩ based on one  QFT2

1
×2

1 and two flipped  QFT2
4

×2
4.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22210  | https://doi.org/10.1038/s41598-021-01745-x

www.nature.com/scientificreports/

Next, the complete timeline is developed according to Fig. 4, starting at t1, where |||�
(
t1
)⟩

 is the wave-function 
in that instant,

���qu
�
t1
��

= �0⟩ is the upper qubit in Fig. 4, and ���ql
�
t1
��

= �0⟩ is the lower qubit in that figure. The qubits obtained 
��qu⟩ and ��ql⟩ at time t1 are completely independents8, and are used as inputs to the next step, which is made up of 
an H gate in ��qu⟩ and an identity matrix in ��ql⟩,

(16)

F22,flipped = (H ⊗H)F22 (H ⊗H)

=
1

2

⎡⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎥⎦
1

2

⎡⎢⎢⎢⎣

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎥⎦
1

2

⎡⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎥⎦
=

1

2

⎡⎢⎢⎢⎣

1 1 1 1

1 1 −1 −1
1 −1 i −i
1 −1 −i i

⎤⎥⎥⎥⎦

(17)���𝜓
�
t1
��

= �0⟩⊗ �0⟩ = �00⟩ =
⎡⎢⎢⎢⎣

1

0

0

0

⎤⎥⎥⎥⎦
=
���qu

�
t1
��

⊗
���ql

�
t1
��

Figure 3.  Quantum teleportation protocol: (a) the original implementation, (b) Controlled-Z is replaced with 
its equivalent in terms of one CX and two H gates, and (c) a version based exclusively on QFT blocks, where 
QuMe means quantum measurement, and the double lines represent classical information obtained after each 
QuMe.

Figure 4.  Timeline of the ���00⟩ = �Φ+⟩ Bell state of Fig. 1b based on QFT blocks.
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where �+⟩ =
�
1∕

√
2

1∕
√
2

�
 , ���qu

�
t2
��

= �+⟩ , and ���qd
�
t2
��

= �0⟩ . As in the previous case, Eq. (18) shows us that both 

qubits obtained at time t2 are also completely  independent8. Instead, in the next step yields,

where Eq. (19) indicates that ��qu⟩ and ��ql⟩ at time t3 are correlated8, i.e. although this case does not result in entan-
glement, |||�

(
t3
)⟩

 cannot be factored. In this intermediate instance, between both flipped  QFT2
2

×2
2, the impos-

sibility of factoring can be observed, since there are no values of |||qu
(
t3
)⟩

 and |||ql
(
t3
)⟩

 , such that 
|||𝜓

(
t3
)⟩

=
|||qu

(
t3
)⟩

⊗
|||ql

(
t3
)⟩

 . Undoubtedly, this constitutes advance respect to the literature on the subject in 
force to date, which associated the aforementioned impossibility with the intervention of the CNOT gate, as a 
whole, in an exclusive way, or with an inappropriate coupling between the individual contributions of H and 
CNOT gates. In consequence, this analysis makes explicit an intermediate instance to the one already known for 
the non-separability and indistinguishability of the states during entanglement, which is exclusively the respon-
sibility of a particular characteristic of the Discrete Fourier  Transform1 (DFT) and that is inherited by the  QFT3. 
This characteristic refers to the fact that the DFT is a dense matrix, i.e. all its elements are different from zero, 
since, they are the N roots of the unit or twiddle  factors1, which when they are multiplied by the input vector 
produce an output vector where each of its elements represents a mixture or weighted sum of the incoming vec-
tor. Finally, the intervention of the second flipped  QFT2

2
×2

2 allows obtaining the wave-function at the time t4,

where, as in the previous case, it is impossible to decompose |||�
(
t4
)⟩

 into two independent states ��qu⟩ and ��ql⟩ , 
that is, |||�

(
t4
)⟩

 is not factorable. This gives rise to a very particular state of null spin called entanglement8.
The four density matrices associated with every wave-function of Fig. 4 are the following:

where (•)* is the complex conjugate of (•),

(18)

���𝜓
�
t2
��

= (H ⊗ I)
���𝜓

�
t1
��

= (H ⊗ I)�00⟩ =
⎡
⎢⎢⎢⎢⎣

1∕
√
2 0 1∕

√
2 0

0 1∕
√
2 0 1∕

√
2
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√
2 0 −1∕

√
2 0

0 1∕
√
2 0 −1∕

√
2

⎤
⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1

0

0

0

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1∕
√
2

0

1∕
√
2

0

⎤⎥⎥⎥⎦
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�
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��

⊗
���ql

�
t2
��

,

(19)

���𝜓
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���𝜓
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��

=
1
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1 −1 i −i
1 −1 −i i

⎤
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√
2

0
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⎡
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√
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0
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√
2 0

�
=

⎡
⎢⎢⎢⎣

1∕2 0 1∕2 0

0 0 0 0

1∕2 0 1∕2 0

0 0 0 0

⎤
⎥⎥⎥⎦
,

(23)

�
�
t3
�
=
����

�
t3
���

�∗
�
t3
���� =

⎡
⎢⎢⎢⎢⎣

1∕
√
2

0

(1 + i)∕2
√
2

(1 − i)∕2
√
2

⎤
⎥⎥⎥⎥⎦

�
1∕

√
2 0 (1 + i)∕2

√
2 (1 − i)∕2

√
2

�

=

⎡⎢⎢⎢⎣

1∕2 0 (1 + i)∕4 (1 − i)∕4
0 0 0 0

(1 + i)∕4 0 i∕4 1∕4
(1 − i)∕4 0 1∕4 −i∕4

⎤
⎥⎥⎥⎦
, and
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The four density matrices can be seen in Table 1, where only �
(
t3
)
 has an imaginary part. On the other hand, 

comparing the 3D bars of the density matrices at t2 and t4, it can be seen that the consecutive action of both 
flipped  QFT2

2
×2

2 has a stretching effect as far as the locations of the bars are concerned. This shows that both 
flipped  QFT2

2
×2

2 are the architect of a bad copy of wave-function |||�
(
t2
)⟩

 of Eq. (18), that is to say,

(24)�
�
t4
�
=
����

�
t4
���

�∗
�
t4
���� =

⎡⎢⎢⎢⎣

1∕
√
2

0

0

1∕
√
2

⎤⎥⎥⎥⎦

�
1∕

√
2 0 0 1∕

√
2

�
=

⎡⎢⎢⎢⎣

1∕2 0 0 1∕2
0 0 0 0

0 0 0 0

1∕2 0 0 1∕2

⎤⎥⎥⎥⎦
.

(25)U
����

�
t2
��

= U(�+⟩�0⟩) ≠ �+⟩�+⟩,

Table 1.  Density matrices of the four wave-functions of Fig. 4.

Instant Real part of the density matrices Imaginary part of the density matrices

t1

 

–

t2

 

–

t3

  

t4

 

–
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where U = flipped  QFT2
2

×2
2 × flipped  QFT2

2
×2

2, being the true result generated by both,

This shows that entanglement is the result of an inadequate copy by a very inefficient copy machine embodied 
by both flipped  QFT2

2
×2

2. The aforementioned stretching effect added to the unification of the entanglement’s 
own wave-function triggers its most conspicuous characteristic, that is to say, the impossibility of factoring the 
wave function of Eq. (20).

Moreover, given two subsystems (A, and B) that interact with each other, their density matrices treated 
individually are,

and their von Neumann entropies are,

where tr(•) is the trace of the square matrix (•), and log(•) is logarithm base 2 of (•). In the same way, for a com-
posed system, the entropy is,

SA∪B depends on the degree of correlation (completely independent, correlated, and entangled) between 
both subsystems. Besides, in the classical and the quantum worlds, the correlations between the subsystems are 
those established by the additional information. In the case of composite quantum systems, the mutual informa-
tion SA∩B is introduced to quantify that additional information, allowing us to obtain the degree of correlation 
between both  subsystems8,

Therefore, the entropy of the composite system SA∩B indicates that the uncertainty of a state �A∪B is less than 
the two subsystems SA and SB added together.

Table 2 shows entropies in terms of the degree of correlations between both subsystems, in such a way that 
when SA∪B = 2 , the entropy of the composite system SA∩B = SA + SB − SA∪B = 1 + 1 − 2 = 0 , which means that 
both subsystems do not have mutual information, and this null degree of correlation corresponds to the case of 
Eq. (18) of Fig. 4 at time t2, where |||�

(
t2
)⟩

 is factored into ���qu
�
t2
��

= �+⟩ , and ���ql
�
t2
��

= �0⟩ , that is, both sub-
systems are completely independents. Instead, when SA∪B = 1 , the entropy of the composite system 
SA∩B = SA + SB − SA∪B = 1 + 1 − 1 = 1 , this case corresponds to Eq.  (19) at time t3 of Fig. 4, where both 

(26)U
����

�
t2
��

= U(�+⟩�0⟩) = ���00⟩.

(27)�A = �B =
1

2
(�0⟩⟨0� + �1⟩⟨1�) = 1

2
I =

1

2

�
1 0

0 1

�
,

(28)SA = SB = −tr
[
�Alog

(
�A

)]
= −tr

[
�Blog

(
�B
)]

= −tr

[
1

2

[
1 0

0 1

]
log

(
1

2

[
1 0

0 1

])]
= 1,

(29)SA∪B = −tr
[
�A∪Blog

(
�A∪B

)]
.

(30)SA∩B = SA + SB − SA∪B ≥ 0.

Table 2.  Entropies in terms of the degree of correlations between both subsystems.

Degree of correlation between 
both subsystems SA∪B SA∩B Graphic of sets

Completely independent 2 0

 

Correlated 1 1

 

Entangled 0 2
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subsystems are correlated, i.e., |||�
(
t3
)⟩

 cannot be factored in terms of |||qu
(
t3
)⟩

 and |||ql
(
t3
)⟩

 . Although both sub-
systems (A, and B) share information and are not separable, they do not give rise to entanglement. Finally, if 
SA∪B = 0 , the entropy of the composite system SA∩B = SA + SB − SA∪B = 1 + 1 − 0 = 2 , that is to say, the mutual 
information between both subsystems is maxima. It is about the presence of entanglement corresponding to 
Eq. (20) at time t4 of Fig. 4, where, as in the previous case, it is impossible to decompose |||�

(
t4
)⟩

 into two inde-
pendent states ��qu⟩ and ��ql⟩ , that is, |||�

(
t4
)⟩

 is not factorable.

Conclusions
This study demonstrated the existing relationship between the  Feynman4 gate, known as Controlled-X, CNOT, 
or CX, with a pair of flipped  QFT2

2
×2

2. This, added to the already known equivalence between the Hadamard 
gate (H), and one  QFT2

1
×2

1 matrix, gives rise to the creation of entanglement based exclusively on QFT blocks. 
This equivalence is extended to the creation of entanglement between more than two particles, as is the case of 
the states ��GHZ3⟩ , and ��GHZ4⟩.

A representation of the famous quantum teleportation  protocol11 based exclusively on  QFT3,4 blocks is 
achieved, which highlights a clear projection of the study carried out here on the future quantum  Internet18–22.

The decomposition of the configuration for the creation of the entanglement in QFT blocks allows, through 
the timeline of Fig. 4, to perform an internal tomography of the entanglement, revealing, for the first time in the 
literature, the three degrees of correlation between  particles8, that is, completely independent, correlated, and 
entanglement, from a single configuration.

In the same process mentioned previously, it becomes evident as never before that entanglement arises from 
a defective copy starring both flipped  QFT2

2
×2

2.
Finally, the spectral analysis of all quantum computing and quantum communication protocols, added to 

the traditional temporal analysis present in the literature, will allow a better understanding of the inner nature 
of the entanglement, so that this new approach can help to create new and more efficient algorithms and fault 
tolerant protocols.
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