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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism
that is highly contagious and has been responsible for more than 240 million cases and 5 million
deaths worldwide. Using masks, soap-based hand washing, and maintaining social distancing are
some of the common methods to prevent the spread of the virus. In the absence of any preventive
medications, from the outset of pandemic, alcohol-based hand sanitizers (ABHS) have been one of the
first-line measures to control transmission of Coronavirus Disease 2019 (COVID-19). The purpose of
this narrative review is to evaluate the sensitivity of SARS-CoV-2 towards ABHS and understand their
potential adverse effects on humans. Ethanol and isopropanol have been the most commonly used
alcohols in ABHS (e.g., gel, solution, spray, wipes, or foam) with alcohol in the range of 70–85% v/v in
World Health Organization or Food and Drug Administration-approved ABHS. The denaturation of
proteins around the envelope of SARS-CoV-2 positive sense single-stranded RNA virus is the major
mechanism of action of ABHS. Due to frequent use of high-percentage alcohol-containing ABHS over
an extended period of time, the oral, dermal, or pulmonary absorption is a possibility. In addition
to the systemic toxicity, topical adverse effects such as contact dermatitis and atopic dermatitis are
plausible and have been reported during COVID-19. ABHS appear to be effective in controlling the
transmission of SARS-CoV-2 with the concern of oral, dermal, or pulmonary absorption.

Keywords: SARS-CoV-2; COVID-19; alcohol-based hand sanitizers; ethanol; isopropanol;
dermal/pulmonary toxicity

1. Introduction

Coronavirus Disease 2019 (COVID-19), which was first reported from Wuhan, China
in December 2019, has inflicted major public health and economic disasters throughout
the world. On 11 March 2020, COVID-19 was declared a pandemic by World Health
Organization (WHO) [1]. Over the last one year, the understanding of mode of transmission
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative organism
of COVID-19, has gone through some transformation. It is commonly recognized that
direct physical contact and respiratory droplets are the primary modes of transmission
among humans. Due to its highly contagious nature, SARS-CoV-2 has been found to cause
community spread with ease [2]. Following exposure to SARS-CoV-2, the symptoms can
start appearing from second day and continue up to 14 days on average. The typical time
to experience symptoms is four to five days [3,4]. The prototype symptoms of COVID-19
include fever, chills, shortness of breath to respiratory distress, and occasionally, impaired
taste and smell. The ‘cytokine storm’ or formation and release of inflammatory proteins
such as interleukins, tumor necrosis factor α is considered to be one of the hallmarks of
COVID-19, especially in severe cases [3]. Due to the extraordinary transmission pattern
and severity of this viral infection, as of 27 November 2021, WHO has reported 259,502,031
confirmed cases and 5,183,003 deaths [5].

At the onset of the pandemic, the society and medical community went through
significant improvisation of strategies to manage the spread and treatment. Because of the
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nascent nature of COVID-19, there was no approved medications available for prevention
and/or treatment. Till now, remdesivir is United States Food and Drug Administration
(FDA)-approved only agent for COVID-19 with limited documented efficacy [6]. Apart
from remdesivir, bamlanivimab and sotrovimab are two other drugs approved by Health
Canada for COVID-19 treatment [7]. In the European Union (EU), remdesivir, regdanvimab,
and casirivimab/imdevimab are authorized for the same purpose [8]. Considering the
unavailability of effective drugs and scarcity of vaccines against this lethal virus, preven-
tion of transmission using alcohol-based formulations has been the primary strategy [9].
Prevention strategies recommended by the health agencies such as WHO and Centers for
Disease Control and Prevention (CDC) early in the pandemic have been highly useful.
These measures included social distancing, use of masks, and frequent application of
ABHS [1,10]. Despite virucidal property of ABHS towards SARS-CoV-2, the active ingre-
dient alcohols, such as ethanol, isopropanol, in ABHS may pose toxicity to both human
health and environment. These toxicities potentially occur through dermal absorption,
inhalation, and ingestion following recurrent use.

The available reports demonstrated that ethanol is more effective against hydrophilic
viruses such as rotavirus, human immunodeficiency virus (HIV), and coronaviruses,
while isopropanol is superior against lipophilic viruses such as poliovirus and hepatitis A
virus [11,12]. Although ABHS are central to the prevention of SARS-CoV-2, their indiscrim-
inate use, and the potential to cause toxicities in humans as well as flammability-related
environmental destruction are major concerns. Hence, understanding the effectiveness of
ABHS towards SARS-CoV-2 and evaluating the adverse effects that are associated with
the use of ABHS are critical. The goal of this narrative review is to appraise the available
information on the sensitivity of SARS-CoV-2 towards alcohol-based formulations and
highlight the potential adverse effects of ABHS on humans. Specifically, the current work
highlighted the general characteristics of SARS-CoV-2, sensitivity of ABHS towards SARS-
Cov-2, absorption of alcohol from ABHS, and their related toxicities in humans. The dual
effects of ABHS in fighting COVID-19 transmission and potential exposure of humans to
alcohol-related toxicities will be appreciated through this study.

2. Methods

The literature for this narrative review was obtained through a keyword-based tar-
geted search of different electronic databases until 26 November 2021 (Figure 1). Combina-
tions of different keywords were used to acquire relevant articles: “COVID-19”, “coron-
avirus disease 2019”, “SARS-CoV-2”, “severe acute respiratory syndrome coronavirus 2”,
“2019-nCOV”, “2019 novel coronavirus”, “ethanol”, “propanol”, “isopropyl alcohol”, “iso-
propanol”, “alcohol-based hand sanitizers”, “toxicity”, “dermal”, “inhalation”, and “pul-
monary”. We searched PubMed, Medline, and Google Scholar electronic databases. In the
first step, the titles and abstracts were analyzed, followed by evaluation of the full text.
Original research, government health agency databases, and case studies were included
in this review. Studies were excluded if they were not on humans, non-COVID-19, mech-
anistic, commentary, letter to Editors, narrative review, expert opinion, overview, case
report, or duplicates. Both the authors independently performed the literature search and
evaluation of articles and reconciled the resources. The present work only includes articles
that were published in English language.
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Figure 1. Flow chart of literature search and selection process.

3. Characteristics of SARS-Cov-2 and Other Coronaviruses

The coronaviruses that belong to the Coronaviridae family are a class of positive
sense single-stranded RNA viruses surrounded by envelopes [13]. They are categorized
into four groups based on genera and sera: α, β, γ, and δ-coronaviruses. There are seven
types of human coronaviruses that are classified under α and β genera only. Among them
HCoVNL63 and HCoV-229E fall within α genus and HCoV-HKU1, HCoV-OC43, severe
acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-
related coronavirus (MERS-CoV), and the novel SARS-CoV-2 are under the category of
β genus. These viruses predominantly cause common cold and respiratory illnesses in
humans [14]. On the contrary, γ and δ-coronaviruses mainly trigger avian infectious
diseases [15,16].

Like other coronaviruses, SARS-CoV-2 harbors an enveloped positive sense single-
stranded RNA genome that is about 30 kb. The genome comprises of a polyprotein
ORF1a/b that upon proteolytic cleavage generates 16 non-structural proteins, four ma-
jor structural proteins, and nine accessory protein ORFs (3a, 3b, 6, 7a, 7b, 8, 9b, 9c,
and 10) [17–19]. The structural proteins include spike (S), envelope (E), membrane protein
(M), and nucleoprotein (N) [20,21]. The spike S protein is a glycoprotein that plays a central
role in binding to receptors and is critical for the infective capacity [22]. S protein can be
further cleaved by host proteases into an N-terminal S1 subunit and a membrane-bound
C-terminal S2 domain. After the virus is internalized into the host endosome through
the attachment of S1 subunit to the receptor, the S protein undergoes a conformational
change followed by a cathepsin CTSL-mediated cleavage. This leads to the emergence of
S2 domain that facilitates fusion of the virion and cellular membranes. The S protein was
also reported to have a furin-like cleavage site that contributes to the zoonotic infection
of the virus [23]. The E and M proteins are embedded within the S proteins in the virus
envelope [24,25].

Genome-wide phylogenetic analysis demonstrates that SARS-CoV-2 is a novel beta-
coronavirus that is distinct from two other closely related coronaviruses, SARS-CoV and
MERS-COV [26]. The SARS-COV-2 shows roughly 79% and 50% sequence identity with
SARS-CoV and MERS-CoV, respectively [27]. In the case of structural genes, SARS-CoV-2
exhibits roughly 90% amino acid identity with SARS-CoV except for the S gene [28,29].
On the other hand, SARS-CoV-2 displays more than 85% amino acid sequence identity
with SARS-CoV for non-structural proteins. A total of 16 non-structural proteins have been
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reported in SARS-CoV-2 that are obtained by proteolytic cleavage of a large polyprotein
(pp1ab) [17]. The S protein in SARS-CoV-2 (1273 amino acids) is larger than that of SARS-
CoV (1255 amino acids). It shares nearly 77% amino acid sequence identity with human
SARS-CoV [30]. Moreover, its receptor-binding domain (RBD) demonstrates 73% amino
acid identity with SARS-CoV. The S protein is subdivided into S1 and S2 subunits that are
linked by four amino acid residues (PRRA) that create the cleavage site which is cleaved
by furin and other proteases [23,31]. Harboring of S1-S2 cleavage site is a unique genomic
feature of SARS-CoV-2 since others are devoid of such site. A recent report demonstrated
that furin-cleavage site is associated with a diminished stability of SARS-CoV-2 S protein,
and it enables the virus to assume a conformational adaption that is critical for the binding
of the S protein to the Angiotensin Converting Enzyme 2 (ACE2) receptor [31]. However,
it is yet to be explored whether the presence of the furin-like cleavage site results in a
gain of function that ultimately facilitates the greater transmissibility of SARS-CoV-2 com-
pared with SARS-CoV. SARS-CoV-2 also shares about 88% identity with two bat-derived
SARS-like coronaviruses (bat-SL-CoVZC45 and bat-SL-CoVZXC21) [28]. In terms of target
receptor, both SARS-COV-2 and SARS-COV interact with ACE2 while MERS-COV interacts
with dipeptidyl peptidase 4 (DPP4) also known as CD26 [13,32]. All these coronaviruses
transmit through cough droplets and contact with infected individuals.

Although both SARS-CoV and SARS-CoV-2 possess similar receptor-binding do-
main structures, their amino acids differ at some major residues. These include the ab-
sence of 8a protein and variation in the number of amino acids in 8b and 3c proteins in
SARS-CoV-2 [28]. Moreover, ORF8 gene of SARS-CoV-2 encodes a protein that shares only
40% amino acid identity with the ORF8 of SARS-CoV [17]. The available reports show
distinguishable clinical features as well. For example, the patients infected with MERS and
SARS are reported to develop respiratory distress and renal failure in later stages [33,34].
However, in SARS-CoV-2 infection pneumonia is the most prevalent manifestation along
with other common symptoms such as fever, cough, and dyspnea [33].

4. Alcohol-Based Formulations of Hand Sanitizers

Though the use of alcohol as an antiseptic agent goes back to late 1800s or earlier,
ABHS have been used in medical and home settings for about 50 years now [35]. During
the ongoing COVID-19 pandemic there have been unprecedent increase in the use of ABHS
in all age groups and professions. In the absence of any effective medication for prevention
and treatment of COVID-19, ABHS have been one of the major first-line strategies to
mitigate the spread of SARS-CoV-2 [1,10]. The formulations of ABHS typically contain
different combinations of single or mix of alcohol (ethanol, isopropanol, n-propanol),
hydrogen peroxide, humectant (glycerin), and water. In the WHO- and FDA-recommended
formulations, the final concentration of alcohol varies between 70–85% v/v with hydrogen
peroxide and glycerol concentrations are fixed at 0.125% and 1.45% v/v, respectively [36–38].
Currently available ABHS are either gel, solution, spray, wipes, or foam with gels and
foams being the most commonly available products [36,39]. These ABHS differ among
their ability to interact with the skin, contact time, and handling of the products. For
example, foams use bis-polyethyleneglycol 12-dimethicone (bis-PEG12-dimethicone) as
the foaming agent and has relatively quick drying time [36]. In comparison, gels are sticky
in nature but give good contact with the skin to facilitate inhibitory effects on SARS-CoV-2.
Solution-based ABHS can have their own advantages such as less contact time and faster
drying time and disadvantages such as less stickiness leading to questionable interaction
duration with SARS-CoV-2 [39]. Spray types of ABHS mediate direct contact of the product
with the skin by triggering steam of alcoholic solution. However, they have the potential
of inflammability and over spraying. Wipes are also easy to use, and they can eliminate
the contamination possibility. However, due to extended storage wipes may lose their
virucidal capacity over time [40].

At the onset of pandemic, several health and pharmaceutical agencies such as WHO,
FDA, and United States Pharmacopeia (USP) have released policies for compounding
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of ABHS to address the shortage of hand sanitizers during this public health emer-
gency [37,38,41]. According to FDA guidelines, ABHS ingredients should possess ap-
propriate quality. This includes at least 94.9% pure ethanol, USP-grade isopropanol, food
chemical codex (FCC) or USP-grade glycerin, and boiled water/purified water equivalent
grade [38]. In addition, food grade alcohol manufactured by fermentation and distillation
as well as fuel or technical grade alcohol may also be used if they meet the USP or FCC
standards and the impurity levels are within the indicated limits [38]. Thus, ABHS can
have a vast range of quality and effectiveness, and due diligence is needed by the user to
ensure that the product conforms to the health agency guidelines and is effective to carry
out the preventive actions against SARS-CoV-2 transmission.

5. Effects of Different Alcohols on Coronavirus Family

Although initially the virucidal effectiveness of different alcohol-based formulations
was controversial, gradually it was unequivocally accepted that enveloped viruses such as
coronaviruses can be inactivated by alcohol with ease. Indeed, several strains of coronavirus
family including SARS, MERS or HCoV are highly susceptible to 62 to 71% ethanol that
can inactivate them in less than one minute. On the contrary, two other biocidal agents,
namely 0.02% chlorhexidine digluconate and 0.05%–0.2% benzalkonium chloride did not
render much benefit [42]. Siddharta et al. (2017) demonstrated that a 30% concentration
of WHO formulation II [75% isopropanol (w/w)] alleviated bovine coronavirus (BCoV)
infectivity; however, at least a 40% concentration of WHO formulation I [85% ethanol
(v/v)] was essential to produce the similar effect [43]. Several studies have implicated
alcohol-based formulations to be the agents of choice to fight enveloped viruses including
SARS-CoV-2 [43,44]. Kratzel et al. (2020) revealed a similar observation where they found
that 80% ethanol and 75% isopropanol inactivated the SARS-CoV-2 strain. Moreover, they
also reported that commercially procured ethanol and isopropanol were able to inactivate
SARS-CoV-2 in 30 s [37]. A very recent study conducted by Leslie et al. (2021) also
lends support to these findings where they demonstrated that commercially available
hand sanitizer gel and foam, both containing 70% ethanol (v/v), can robustly inactivate
SARS-CoV-2 [45]. This finding was remarkable since this study employed commercially
formulated ABHS marketed in the US for the very first time. Table 1 summarizes the
impact of alcohol against various strains of coronaviruses.

Table 1. Summary of Alcohol Sensitivity to Different Coronaviruses.

Type Surface Survival Time Virucide Exposure
Duration

Decrease in
Infectivity (log10) Reference

SARS-COV-2 NR NR 80% ethanol 30 s ≥3.8 [37]

NR NR 75% isopropanol 30 s ≥3.8 [37]

MERS-COV Steel 48 h (20 ◦C)
8–24 h (30 ◦C) 80% ethanol 30 s >4.0 [43,46]

Plastic 48 h (20 ◦C)
8–24 h (30 ◦C) 75% isopropanol 30 s ≥4.0 [43]

SARS-COV Glass 4 d (RT) 80% ethanol 30 s ≥4.3 [47,48]

Plastic ≤5 d (22–25 ◦C) 85% ethanol 30 s ≥5.5 [49,50]

Wood 4 d (RT) 95% ethanol 30 s ≥5.5 [47,50]

Paper 4–5 d (RT) 70% isopropanol 30 s ≥3.3 [47,48]

Gown 2 d (RT) 75% isopropanol 30 s ≥4.0 [43,51]

Metal 5 d (RT) 100% isopropanol 30 s ≥3.3 [47,48]

NR NR 45% isopropanol and
30% 1-propanol 30 s ≥2.8 [48]

RT, Room temperature; NR, Not reported.
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Denaturation of proteins is conceived to be the major mechanism through which
alcohols render their activities against viruses and other microorganisms [52]. Water is
indispensable for protein denaturation and that is why absolute alcohol is less effective
against the microbes compared to a mixture of alcohol and water [53]. The existing evidence
suggests that alcohols can inactivate the lipophilic, enveloped viruses better compared
to the non-enveloped viruses [36]. In fact, the envelope is sensitive to lipid solvents and
therefore, when the capsid is deprived of the envelope, it may not be able to attach to
or interact with the cell surface receptors. Since coronaviruses are lipophilic, enveloped
viruses they can be rapidly inactivated by alcohols (e.g., ethanol, isopropanol) [42]. These
viruses assume the envelope from the host cells during the budding stage of their life
cycle and the envelope is composed of a lipid bilayer. Hence, it is highly likely that even
after mutations these coronaviruses will still have the lipid bilayer that can be disinfected
by alcohol treatment. Due to the amphiphilic nature of alcohols, they can easily interact
with the viral envelope where they alter the membrane fluidity [54]. The polar oxygen
moieties strengthen the affinity of the membrane for water and simultaneously diminish
the lipophilic interactions between the non-polar residues. In this way, alcohols destabilize
and denature the viral proteins and elicit their destruction [55]. In a recent study, Das et al.
(2021) employed molecular dynamics simulation where they found that ethanol triggered
disintegration of the lipid bilayer and dislocation of the envelope (E)-protein from the
membrane environment [56]. Alcohol-mediated lysis of the viral envelope that leads to
the release of the internal content is shown in Figure 2. In addition, there are plausible
mechanisms of alcohol as virucidal including pH-dependent inactivation, divalent metal
ions, and oxidative stress for non-enveloped viruses [57–59]. It is worth mentioning
that a study reported a greater amplification in virucidal activity against the enveloped
coronaviruses with 75% isopropanol compared to the 85% ethanol-based formulation [60].
This can be explained by the fact that isopropanol, by virtue of having one more carbon than
ethanol is likely to impart superior lipophilicity against the lipophilic coronaviruses [36].
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6. Oral, Dermal, and Pulmonary Absorption of Alcohols and Their Related Toxicities

The mechanisms of absorption, distribution, metabolism, and excretion of alcohols
have been known for decades. Briefly, alcohols are absorbed through the oral, inhala-
tion, or dermal routes to different extents. Alcohols are well distributed across different
organs; especially, due to their volatile nature alcohols can easily cross the blood-brain
barrier [62–64]. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDHs)
enzymes are responsible for metabolism of different alcohols. Ethanol is converted to
acetaldehyde and acetic acid by ADH and ALDH, respectively [62,65]. A small fraction of
ethanol is also metabolized by glucuronidation (ethyl glucuronide) and sulfation (ethyl
sulfate) pathways [66]. Ethanol remaining after the oxidative and nonoxidative metabolism
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(<5%) is excreted from the body via urine, sweat, or breath [66]. ABHS contain very high
level of ethanol or isopropanol which increases the potential of their absorption through
dermal, inhalation, or oral pathways during frequent use over the duration of pandemic.
Since very high alcohol-containing ABHS (75–80%) are applied on the hand, there is a
potential that alcohol will reach to mouth while consuming food or by inadvertent exposure
of hand into the mouth. Most importantly, accidental or intentional ingestion of ABHS
can contribute to significant oral absorption of alcohol. Indeed, in US between 2011 and
2014, among 65,293 cases of ABHS-related poisoning, 95% of the cases were oral ingestion
in children [67]. The absorption of alcohol follows first-order kinetics signifying the rate
of absorption is corresponding to the quantity of alcohol in the stomach [68]. Alcohol can
also reach to the systemic circulation through oral mucosa [69,70]. The cardiovascular,
central nervous system (CNS), and respiratory effects of isopropanol-based hand sanitizers
start demonstrating within an hour of ingestion [71]. The mechanism of gastrointestinal
absorption of alcohols involves passive diffusion towards the concentration gradient [65].
Thus, ABHS with high alcohol content have the potential to be absorbed in the systemic
circulation through oral route.

Similarly, both ethanol and isopropanol can enter the systemic circulation, albeit at
a lower rate than oral route, through intact skin layers [72,73]. From a pre-COVID-19
study, Turner et al. (2004) reported that blood isopropanol levels increased in nine among
the ten individuals tested (range < 0.5–1.8 mg/L) following application of hand rubs
six times an hour for four hours [73]. Though the increase in isopropanol was not high
enough following dermal absorption to cause intoxication (50 mg/dL), blood acetone
(metabolite of isopropanol) level in individuals exposed to isopropanol was not estimated.
Similarly, inhalation of vaporized alcohol or droplets produced from the spray or foams
have the potential to reach systemic circulation through pulmonary route. It is important
to recognize that ethanol can reach to brain quickly through the inhalation route [74,75].
The absorption of alcohol through nasal membrane and alveolar epithelium is faster
than the gastrointestinal compartment [76]. ABHS caused an affirmative breathalyzer
test following pulmonary absorption of ethanol after a 4-h hospital shift [77]. However,
86 health care workers (18–50 years) did not experience any notable dermal absorption
despite multiple usage of ABHS [77]. It is important to note that these studies did not
measure the metabolic products of ethanol or isopropanol (e.g., acetaldehyde, acetone)
which may have contributed to the lower blood alcohol levels. Additional evidence
of dermal or pulmonary absorption of alcohols from ABHS can be interpreted through
disulfiram-ethanol reaction as a surrogate marker of alcohol absorption. Disulfiram, which
is used to treat alcohol abuse-related problems, can cause unpleasant experiences when the
patient has systemic presence of ethanol [78,79]. Ghosh et al. (2021) reported disulfiram-
ethanol reaction in about 19% of the participants that were using ABHS. It was postulated
that dermal and pulmonary absorption of alcohol contributed to the increased blood
alcohol levels and subsequent reaction with disulfiram [79]. Due to high volatility of
ethanol and isopropanol along with large dermal surface area or extensive pulmonary
vascular structure, the potential to be absorbed and cause systemic effects is high [64,72].
In a recent systematic review published before COVID-19 pandemic started, multiple
studies reported increase in breath alcohol content, ethyl glucuronide, and ethyl sulfate
following inhalation of alcohol from ABHS [64].

Individuals from all age groups have been using ABHS during COVID-19. Intrinsi-
cally, alcohols above a certain level have systemic or topical toxic effects in humans [80].
The systemic acute toxic effects of ethanol and isopropanol involve CNS depression, lower
respiratory reflex, and nausea [81,82], whereas chronic toxicities include cardiac arrhythmia
and hepatic injury [83]. ABHS can contribute to the increase in blood alcohol level-related
systemic toxicities and more importantly can cause dermal toxicities such as contact der-
matitis and atopic dermatitis. For example, among the 434 healthcare workers surveyed in
Hubei, China, 76.6% of the participants indicated conditions similar to dermatitis during
COVID-19 [84]. From a mechanistic point of view, skin disorders are a natural progression
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of extensive use of ABHS where the lipid or emollient contents of the skin is lost and
keratin protein is denatured, leading to dry skin, itching, irritation, and eventually clinical
diagnosis of dermal disorders [39,85]. ABHS-related skin disorders can also facilitate higher
dermal alcohol absorption through cracked skin [80]. Usually, the skin becomes dry very
easily after applying ABHS and the healthcare personnel are more susceptible in this regard
because of wearing occlusive gloves. Moreover, in cold and dry environment the skin fails
to retain moisture making the use of ABHS even more troublesome. Hence, a moisturizer
with emollient properties could be beneficial to prevent the skin disruption after using
ABHS [86]. Additionally, frequent and extended use of ABHS has posed the danger of
antimicrobial resistance to non-viral microbes or virus that are not inherently affected by
alcohol [80,85].

Though the dermal absorption of alcohol is debatable and a topic of investigation,
due to the rapid partition of alcohol in different tissues, the timing of measurement of
blood alcohol profile after absorption through skin is critical. Additionally, the unprecedent
extensive use of ABHS for such an extended period of time has never been experienced in
the modern time. It is important to recognize that despite the focus on dermal or pulmonary
absorption from ABHS, there is a huge risk of toxicity from oral exposure or accidental
ingestion of ABHS, especially, in the younger people. For example, Pourmand et al. (2021)
reported a case where a patient ingested hand sanitizer while staying in the emergency
department [87]. Moreover, a recent study by Hohl et al. (2021) reported a greater incidence
of ethanol-mediated burns during the pandemic [88]. Indeed, during COVID-19, the
reporting of ABHS-related toxicities to poison center has increased in different part of
United States [89,90] which also highlights other avenues through which ABHS can cause
public health hazards. Table 2 highlights some examples of the adverse effects of different
disinfecting agents on human health.

Table 2. General Mechanisms of Disinfecting Agents and Their Impacts on Human Health.

Agent Mechanism of Action Benefits Drawbacks Adverse Effects Reference

Ethanol
(>60%)

Denaturation of
proteins

Recommended by
U.S. FDA against

SARS-CoV-2;
economical and
easy to handle

Disagreeable odor,
dryness of skin,

possibility of
unwanted toxicity

in children

Skin: Itching, allergy, dermatitis
Liver: Hypocalcemia, hypokalemia,
hypomagnesemia, myoglobinuria

Others: Vomiting, drowsiness,
respiratory arrest, keto acidosis,

arrhythmia, cardiac arrest

[42,80,91]

Isopropanol
(>70%)

Denaturation of
proteins

Recommended by
U.S. FDA against

SARS-CoV-2;
economical and
easy to handle

Unpleasant odor,
dryness of skin,

possibility of
unwanted toxicity

in children

Skin: Rash, itching, irritation, allergy
Others: Myoglobinuria, gastritis,

respiratory depression
[42,80,91]

Quaternary
ammonium
compounds

Enzymatic
inactivation;

Degradation of
cellular proteins

Minimal human
toxicity, better

tolerability,
no bad odor

Less effective in
low pH and in the

presence of
organic substances

Mild irritation [91,92]

Hydrogen
peroxide

Free-radical induced
oxidation of cellular

components

Relatively less
toxic, inexpensive,

easy to use
Corrosive Mild irritation in skin and mucous

membrane, vomiting, air embolism [80,91,93]

Iodine
compounds

Degradation of
cellular proteins, fatty

acids, and
nucleotides

Non-corrosive,
ease of use

Unpleasant odor,
staining, irritation Rash, itching, local swelling [91,92]

Chlorine
compounds

Halogenation/
oxidation of cellular

proteins

Effective in low
concentration,

low-cost

Corrosive,
formation of toxic

by-products,
irritation

Nausea, coughing, shortness of
breath, irritation of mucous

membrane, stimulation of the
upper airways

[91,94]
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7. Alternatives and Precautions to ABHS

There are certain situations when use of alcohol-based products is not ideal. These
include but are not limited to cleaning significantly soiled hands, preventing the spread
of non-SARS-CoV-2 infections, and removing excessive bacterial load [95]. Additionally,
excessive use of ABHS can demotivate people to use the traditional health hygiene with
warm water and soap. At the same time, excessive use of soap and water can result in
contact dermatitis and risk of other microbial infections [96,97]. On the contrary, well-
formulated alcohol-based sanitizers are devoid of unwanted skin irritation by virtue of
having emollients and because of their better compliance, they are indeed preferred to soap
and water. Additionally, developing habits of not inserting the ABHS-exposed hands into
the eyes, mouth, or nose will minimize alcohol-related toxicities.

There are certain alternatives to using ABHS. For example, the CDC recommends
washing hands with soap and water for at least 20 s to reduce the possibility of SARS-CoV-2
transmission [98]. Moreover, hand wash is a common hygiene practice to remove other
microorganisms from the hands [99]. Hence, use of soap is by far the best alternative to
use of ABHS. To avoid nasal inhalation and oral ingestion, ABHS should be applied away
from the face. Specifically, the hands should be kept away from the face or body and ABHS
should be applied gently on the hands, rubbed, and let the hands dry. Using good quality
masks such as surgical, FFP2 or N95, and FFP3 masks and face shield are very rational
alternative to prevent the spread of the virus [100–102]. Furthermore, maintaining proper
social distancing and minimize touching high-traffic surfaces are also critical as alternatives
to less frequent use of ABHS [103]. It is advised to identify a product that is enriched with
humectant to promote hydration (e.g., glycerin) and emollient (e.g., aloe vera) which will
minimize skin irritation from ABHS. Water-based antiseptic lotions with benzethonium
chloride could be employed to minimize dermal toxicities since this exerts antiviral activity
and minimizes flammability [104]. Thus, simultaneous exercise of different preventive
measures will facilitate less frequent use of ABHS and use of low-toxicity FDA-approved
products will minimize alcohol-related toxicity issues.

8. Conclusions

In the absence of targeted antiviral medications, ABHS have been one of the frontline
measures in the first year of COVID-19 pandemic. SARS-CoV-2 which is an enveloped
positive sense single-stranded RNA is susceptible to damage by alcohol [105]. This principle
has been exploited by ABHS to denature the proteins surrounding the envelope which
eventually blocks the capsid to attach to the host. Though variable concentrations of alcohol
can be found in ABHS, typically 70–85% ethanol or isopropanol is the most common
during COVID-19. Available reports suggest that similar to other coronavirus family
members, SARS-CoV-2 can be neutralized by ABHS with alcohol content of ≥70% v/v [106].
Although the effectiveness of ABHS against SARS-CoV-2 appears to be convincing, there
are reasonable concerns of oral, dermal, or pulmonary absorption, leading to potential of
systemic and/or dermal toxicities. In addition, accidental ingestion of ABHS by younger
population has also posed some challenges to the society. Exposure to substandard ABHS
containing contraindicated methanol, toxic impurities, or with lower percentage of ethanol
or isopropanol, is also an issue that needed attention during this pandemic. Overall,
along with other measures, ABHS appear to be effective in controlling the transmission
of SARS-CoV-2 with the concern of oral, dermal, or pulmonary absorption and exposure
to substandard ABHS. Appropriate education on ABHS use, potential adverse effects,
alternatives, and precautions will increase the public health benefits of ABHS.
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