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ABSTRACT OF THE DISSERTATION

INDUCING STEREOTYPICAL CHARACTER ROLES FROM PLOT STRUCTURE

by

Labiba Jahan

Florida International University, 2021

Miami, Florida

Professor Mark A. Finlayson, Major Professor

If we are to understand stories, we must understand characters: characters are central to

every narrative and drive the action forward. Critically, many stories (especially cultural

ones) employ stereotypical character roles in their stories for different purposes, including

efficient communication among bundles of default characteristics and associations, ease

understanding of those characters’ role in the overall narrative, and many more. These

roles include ideas such as hero, villain, or victim, as well as culturally-specific roles

such as, for example, the donor (in Russian tales) or the trickster (in Native American

tales). My thesis aims to learn these roles automatically, inducing them from data using a

clustering technique.

The first step of learning character roles, however, is to identify which coreference

chains correspond to characters, which are defined by narratologists as animate entities

that drive the plot forward. The first part of my work has focused on this character iden-

tification problem, specifically focusing on the problem of animacy detection. Prior work

treated animacy as a word-level property, and researchers developed statistical models to

classify words as either animate or inanimate. I claimed this approach to the problem is

ill-posed and presented a new hybrid approach for classifying the animacy of coreference

chains that achieved state-of-the-art performance.

The next step of my work is to develop approaches first to identify the characters and

then a new unsupervised clustering approach to learn stereotypical roles. My character

vi



identification system consists of two stages: first, I detect animate chains from the coref-

erence chains using my existing animacy detector; second, I apply a supervised machine

learning model that identifies which of those chains qualify as characters. I proposed a

narratologically grounded definition of character and built a supervised machine learning

model with a small set of features that achieved state-of-the-art performance.

In the last step, I successfully implemented a clustering approach with plot and the-

matic information to cluster the archetypes. This work resulted in a completely new

approach to understanding the structure of stories, greatly advancing the state-of-the-art

of story understanding.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Characters are an indispensable element of the narrative. Most definitions of narrative

acknowledge the central role of character: Monika Fludernik, a famous narratologist,

defines a narrative as “a representation of a possible world . . . at whose centre there are

one or several protagonists of an anthropomorphic nature . . . who (mostly) perform goal-

directed actions . . . ” [Fludernik, 2009, p. 6]. Thus, if we are to achieve the long-term goal

of automatic story understanding, it is critical that we be able to automatically identify

a story’s characters, distinguishing them from non-character entities such as props, loca-

tions, or other referents, and further understand their function in the story, which often

falls into one or more stereotypical roles. The goal of my thesis is to learn these roles

automatically, inducing them from data using a novel co-clustering technique.

My thesis will have an impact on Natural Language Processing, Story Understanding,

and Cognitive Science because stories are filled with stock or stereotypical characters

(such as heroes, villains, victims, tricksters, and so forth) that allow efficient communi-

cation of cultural and situational knowledge. If we wish to enable culturally sensitive

story understanding, our systems will naturally have to be aware of cultural roles that

are played, both in stories or in society or culture at large. How does one learn these

categories? One can be explicitly taught them, of course, but there is evidence from an-

thropology and psychology that people actually learn these categories in an unsupervised

fashion, inferring them from their repeated occurrence across the many stories that they

hear day-in and day-out. My work seeks to model this process computationally, produc-

ing a system that will learn these character roles automatically in a context-sensitive way.

It will directly advance our understanding of narratives, as well as the human language.
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1.2 Problem Statement and Research Components

The research problem that I solved is learning stereotypical roles from narratives in an

unsupervised fashion. It consists of three major research components: animacy detection,

character identification, and stereotypical role learning.

1.2.1 Component 1: Animacy Detection

The first step toward character detection is animacy detection, where animacy is the char-

acteristic of being able to independently carry out actions in a story world (e.g., movement

or communication). All characters are necessarily animate—although not all animate

things are necessarily characters—and so detecting animacy will immediately narrow the

set of possibilities for character detection. Prior work has conceived of animacy as a word-

level phenomenon, marking animacy as an independent feature on each individual word

(e.g., [Orǎsan and Evans, 2007], [Bowman and Chopra, 2012], [Karsdorp et al., 2015]).

However, characters and other entities are expressed in texts as coreference chains made

up of referring expressions [Jurafsky and Martin, 2007], where referring expressions are

natural language expressions used to perform reference, and coreference chain is a set

of co-referring expressions. So, we need some way of computing animacy on the chains

directly. We can attempt to compute animacy directly on the referring expressions and

coreference chains, which is the approach I have pursued in my work. I developed a

hybrid system merging supervised machine learning (ML) and a small number of hand-

built rules to compute the animacy of referring expressions and coreference chains. This

method achieved state-of-the-art performance [Jahan et al., 2018].

2



1.2.2 Component 2: Character Identification

The second step is to identify which animate entities correspond to characters (those im-

portant entities that help drive the plot forward). Numerous prior approaches have in-

corporated character identification in one way or another. Some approaches, e.g., exam-

ining charaters’ social networks [Sack, 2013], take character identification for granted,

implementing heuristic-driven identification approaches over named entities or corefer-

ence chains that are not examined for their efficacy. Other approaches have sought to

solve the character identification task specifically, but have relied on domain-specific on-

tologies [Declerck et al., 2012] or complicated case bases [Valls-Vargas et al., 2014a].

Others have taken supervised machine learning approaches [Calix et al., 2013]. Regard-

less, all of the prior work has, unfortunately, had a relatively impoverished view of what a

character is, from a narratological point of view. The authors had either previous knowl-

edge of the character in their models or considered animate entities and name entities as

characters in those works. In particular, a key aspect of any character is that it contributes

to the plot; characters are not just any animate entity in the narrative. I proposed a narra-

tologically grounded definition of character based on its participation in the plot events.

Also, I implemented a preliminary supervised machine learning model with a small set of

features that achieved state-of-the-art performance [Jahan et al., 2020a].

1.2.3 Component 3: Stereotypical Role Learning

The third step, which comprised the remainder of my dissertation, is to learn the stereo-

typical roles the characters play because, without the ability to understand that a character

is a hero (rather than a villain, or some other role), no computer will ever have an under-

standing of a story in the same way that a person does. Few models are built to solve this

task, but most of them incorporated some previous knowledge of stereotypical roles in
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the models; as an example, some of them used computer-aided qualitative data analysis

software [Harun and Jamaludin, 2016], some of them included archetype information in

an ontology [Groza and Corde, 2015], others used feature vectors of archetype informa-

tion [Valls-Vargas et al., 2016]. I proposed a new approach to learn stereotypical roles

in an unsupervised way and implemented a clustering approach to learn them using a

character’s plot and thematic information that performed well on Russian folktales.

1.3 Dissertation Contributions

My dissertation made several contributions in the cases of the three research components

I described above.

Animacy Detection

I made five major contributions in the area of animacy detection. First, I have redefined

the problem of animacy classification as one of marking animacy on coreference chains,

in contrast to all prior work that seeks to mark the animacy at the word level. Second, I

have presented a hybrid system merging an SVM classifier and hand-built rules to pre-

dict the animacy of referring expressions directly, achieving performance of 0.90 F1,

which is comparable to the state of the art for word-level animacy detection [Jahan et al.,

2018]. Third, I used a majority voting approach to obtain the animacy of coreference

chains. The overall performance of this approach is substantially improved in compar-

ison with my prior work [Jahan et al., 2017]. Fourth, I provided 15 texts annotated for

word-level animacy and 142 texts annotated for coreference chain animacy, as well as the

code reproducing the results. Finally, I tested and confirmed the generilizability of my

proposed animacy models. Additionally, I published code and data for the community

(link: https://dspace.mit.edu/handle/1721.1/116172).
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Character Identification

I made four major contributions in the area of character identification. First, I pro-

posed a more appropriate definition of character, contrasting with prior computational

works which did not provide a theoretically grounded definition of character based on

its participation in the plot. Additionally, I reported the findings of a review of the lit-

erature that is helpful to delineate and define the concept of character (§3.3). Second,

I annotated 170 texts for character, generating data that will be useful for the commu-

nity. Third, I have demonstrated a supervised machine learning classifier for identify-

ing characters, achieving weighted average of 0.90 F1, establishing a new standard for

this task [Jahan et al., 2020a]. Finally, I tested and confirmed the generilizability of my

proposed character model and I published my code and data for the community (link:

https://doi.org/10.34703/gzx1-9v95/RB6ZH0).

Stereotypical Role Learning

I made two major contributions in the area of stereotypical role learning. First, I designed

and developed a pipeline to automatically learn stereotypical roles. Second, I proved that

plot functions and thematic role information are important to cluster similar archetypes.

Moreover, I will publish code and data for the community.

During my work I mentored two undergraduate students, Geeticka Chauhan and Rahul

Mittal who helped me in some parts of the data annotation, features extraction and running

experiments.

1.4 Outline

The dissertation proceeded as follows. First, I discussed the details of my animacy model;

motivation, data and annotation, methodology, results, etc. (§2). I next described the
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details of my character model just like I did for the animacy work (§3), following which

I discussed the details of my stereotypical role learning model (§4). Although I have

discussed prior work briefly in the motivation section of each chapter, I summarized work

related to this study (§5) before I concluded (§6).
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CHAPTER 2

ANIMACY DETECTION

2.1 Motivation

Animacy is the characteristic of being able to independently carry out actions (e.g., move-

ment, communication, etc.). For example, a person or a bird is animate because they move

or communicate under their own power. On the other hand, a chair or a book is inanimate

because they do not perform any kind of independent action. Animacy is a useful se-

mantic property for different NLP systems, including word sense disambiguation (WSD),

semantic role labeling (SRL), coreference resolution, among many others. Animacy can

be used to distinguish different senses and thus help a WSD system assign senses to dif-

ferent words. As an example, animacy has been applied in grouping senses from WordNet

[Palmer et al., 2004, 2007]. Animacy can also be used directly in a WSD system to de-

cide thematic assignment, which is useful for assigning senses: for example, Carlson and

Tanenhaus [1988] used the presence of an animate subject in a sentence to determine if

a the verb is transitive, which is useful for thematic role assignment. Another task where

animacy can play an important role is semantic role labeling (SRL). Agentive or semantic

subject roles must often be filled by animate entities, whereas goal, theme, patient, in-

strument and location roles are often filled by inanimate entities [Kittilä et al., 2011]. In

some works [Connor et al., 2013, Kittilä, 2006, for example], animacy is used as a feature

that helps to identify agents, and Ferreira [1994] showed how knowing the animacy of

roles allows one to better identify the passive voice. In many coreference resolution sys-

tems [Raghunathan et al., 2010, Iida et al., 2003, Cardie and Wagstaf, 1999, for example]

animacy is used as a semantic feature to determine co-referents of an expression.

In addition to these broad uses of animacy, I am particularly interested in detecting

animacy with a view toward identifying characters in stories. Most definitions of narrative
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acknowledge the central role of character, for example: “a representation of a possible

world . . . at whose centre there are one or several protagonists of an anthropomorphic

nature . . . who (mostly) perform goal-directed actions . . . ” (emphasis ours) [Fludernik,

2009, p. 6]. If we are to achieve the long-term goal of automatic story understanding,

it is critical that we be able to automatically identify a story’s characters, distinguishing

them from non-character entities. All characters are necessarily animate—although not

all animate things are necessarily characters—and so detecting animacy will immediately

narrow the set of possibilities for character detection.

2.2 Approach

Prior work treated animacy as a word-level phenomenon, marking animacy as an indepen-

dent feature on individual words [Orǎsan and Evans, 2007, Bowman and Chopra, 2012,

Karsdorp et al., 2015]. But word-level animacy is not always sufficient to identify an an-

imate or an inanimate object. For example, horse is normally animate, but a dead horse

is obviously inanimate. On the other hand, tree is an inanimate word but a talking tree is

definitely an animate thing. So, assigning animacy at the word level confuses the issue

and makes it more difficult to classify these type of complex cases.

Furthermore, referents are expressed in texts as coreference chains comprised of re-

ferring expressions, and so conceiving of animacy as a word-level phenomenon requires

an additional method for computing chain animacy from word animacy. One way to

do this is to combine word-level animacy markings—say, using majority vote—into re-

ferring expressions animacy and then coreference chains. As it turns out, this does not

work all that well and I used this method as my baseline. Alternatively, we can attempt

to compute animacy directly on the referring expressions and then use majority vote of
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referring-expression-level animacy to compute animacy of coreference chains, the ap-

proach I pursued here.

Although detecting animacy might seem to be straightforward, it presents a number

of subtleties. For example, some theorists have proposed closed lists of linguistic expres-

sions that should be automatically considered animate entities, such as titles, animals, or

personal pronouns [Quirk et al., 1985, Yamamoto, 1999]. However, texts, especially sto-

ries about unreal worlds, can arbitrarily introduce characters that would not be animate

in real life, for example, walking stoves or talking trees. Figure 2.1 shows an example

sentence from a Russian fairytale which contains three animate chains, one of which is a

tree that talks: trees would not be normally be considered animate according to canonical

lists of animate entities. Therefore some context sensitivity in detection is needed.

Figure 2.1: Example text containing animate and inanimate coreference chains. Colored
boxes represent referring expressions, while links between them signify coreference. An-
imate chains are green, while inanimate chains are red. The text is drawn from Story
#113 The Magic Swan Geese [Guterman, 1975, p. 350] and has been slightly modified
for clarity.

In my work, I computed animacy directly on referring expressions, and transferred

those markings up to the coreference chain level, to get a direct classification of the an-

imacy of the whole chain. I presented a hybrid system combining statistical machine

learning (ML) and hand-built rules for classifying the animacy of referring expression,

and also presented a voting model to identify the animacy of coreference chains based on

the animacy of the chain’s constituent referring expressions.
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2.3 Data and Annotation

I started this project seeking to use existing data annotated for animacy, as there have

been a number of studies on animacy detection already. However, no prior data in En-

glish was readily available to use; the best performing prior work on word-level animacy

was done on a corpus of 74 stories comprising 74,504 words in Dutch [Karsdorp et al.,

2015]. Orǎsan and Evans [2007] did their work in English but their data was not available.

Therefore I sought other data (specifically stories, because of my interest in story under-

standing), and my annotated data was a corpus comprising a variety of Russian folktales,

Islamist Extremist stories, and Islamic Hadiths that are freely available and assembled

for other work, and had been annotated for referring expressions and coreference chains

[Finlayson, 2017, Finlayson et al., 2014]. The composition of the corpus is shown in

Table 2.1.

# Texts # Tokens # Ref. # Coref.
Text Types Exp. Chains

The extended ProppLearner 46 109,120 20,391 4,950
Islamist Extremist Texts 32 26,557 8,041 3,684
Islamic Hadiths 64 20,477 6,266 2,307

Total 142 156,154 34,698 10,941

Table 2.1: Counts of various text types in the three corpora. Ref. Exp. stands for referring
expression and Coref. stands for coreference.

The corpus contains 46 Russian folktales, originally collected in Russian in the late

1800’s but translated into English in the mid-twentieth century [Finlayson, 2017]. The

other portion (the N2 corpus) contains 96 stories of relevance to Islamist Extremists

[Finlayson et al., 2014]. All but 31 of the texts in the corpus already contained gold-

standard annotations for token and sentence boundaries, parts of speech, referring expres-

sions, and coreference chains (as well as other layers of annotation. I processed these 31

un-annotated texts using the Stanford CoreNLP suite [Manning et al., 2014], automati-

10



cally generating tokens, sentences, parts of speech, referring expressions, and coreference

chains.

Total Ani. Inani. Unique Unique
Entity Entity Entity Ani. Inani.

Token (15 stories) 23,291 3,896 19,395 291 2,221
Referring Expression (142 stories) 34,698 22,052 12,646 1,104 2,249
Coreference-chain (142 stories) 10,941 3,832 7,109 - -

Table 2.2: The total number of animate and inanimate tokens, referring expressions, and
coreference chains, with breakdowns of each class’s number of unique entities. Ani.
Entity and Inani. Entity stand for the total number of animate and inanimate entities;
Unique Ani. and Unique Inani. stand for the total number of unique animate and unique
inanimate entities.

I along with my mentee, Geeticka Chauhan, singly and doubly annotated the cor-

pus for animacy of coreference chains, and the first fifteen stories for animacy at the

word level. We propagated the animacy annotations from the chains to their constituent

referring expressions to generate animacy annotations at that level. Because I had to au-

tomatically compute referring expression and coreference chains on 31 of the texts, and

the CoreNLP coreference resolution is somewhat noisy, I hand-corrected the chains. I did

this hand-correction using the Story Workbench annotation tool [Finlayson, 2008, 2011]

that allows for the manipulation and correction of referring expression and coreference

chains.

Gold Standard Corpora is the standard collections of corpora that are verified by a

meaningful annotation evaluation method [Wissler et al., 2014]. The annotation of the

animacy of coreference chains and referring expressions for the first fifteen stories was

performed by me and Geeticka Chauhan. Disagreements were discussed and corrected

to generate a gold-standard annotation. Agreement for the coreference-level was 0.99 F1

and 0.99 Cohen’s kappa coefficient (κ), which represents near-perfect overall agreement
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[Landis and Koch, 1977]. The annotation of the rest of the stories was performed by only

me.

Referring Expression Class Explanation

the dragon, Abu Bakr Ani. Normally ani. entities
walking stove, talking tree Ani. Normally inani. but are ani. in context
“what it is” Inani. Discourse acts, when marked as referents
the mosque, this world Inani. Normally inani. objects
dead horse Inani. Normally ani. but are inani. in context
her eyes, his hands Inani. Inani. parts of ani. entities

Word

princess, dragon Ani. Nouns denoting ani. entities
he, she, her Ani. Personal pronouns referring to ani. objects
stronger [dragon] Ani. Adjectives that suggest animacy
Morning, [talking] stove Ani. Usually inani. but are ani. in context
Kiev, world Inani. Nouns denoting inani. entities
it, that Inani. Personal pronouns referring to inani. objects

Table 2.3: Examples of annotation of coreference- and word-level animacy. At the word
level, only an adjectives suggesting animacy or nouns referring to an animate object are
marked animate. Everything else (including verbs, adverbs, determiners, and so forth) are
marked inanimate. Ani. stands for Animate and Inani. stands for inanimate.

We also annotated the first fifteen Russian tales for word-level animacy so that I could

test via re-implementation the existing best performing word animacy model [Karsdorp

et al., 2015]. This annotation was done under the following guidelines. First, all nouns

that would refer to animate entities in real life, such as humans or animals, as discussed in

[Quirk et al., 1985, pp. 314 & 345] were marked animate. We marked gendered pronouns

as animate, e.g., he, she, his, hers, etc. We also marked adjectives suggesting animacy

as animate, e.g., alive, vital, kindlier, etc., whereas adjectives implying inanimacy, such

as dead in the noun phrase dead horse, were marked inanimate. Second, we marked as

animate any words directly referring to entities that acted animately in a story, regardless

of the default inanimacy of the words. For example, we marked stove animate in the case

of a walking stove, or tree animate in the case of a talking tree. This also covered proper
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names that might normally be marked as inanimate because of their ostensible class, such

as those underlined in the next example:

All of them were born in one night—the eldest in the evening, the second at

midnight, and the youngest in the early dawn, and therefore they were called

Evening, Midnight, and Dawn. [Guterman, 1975, Tale #140, p. 458]

The word-level annotation was done by me and Geeticka Chauhan. Disagreements

were discussed and corrected to generate a gold-standard annotation. We annotated every

word in the corpus for animacy directly (marking each word as either animate or not).

Agreement was 0.97 F1 and 0.97 Cohen’s kappa coefficient (κ), which represents near-

perfect overall agreement [Landis and Koch, 1977].

A summary of the counts of animate and inanimate words, referring expressions, and

coreference chains is given in Table 2.2. Examples of animate and inanimate words are

given in Table 2.3.

2.4 Methodology

My hybrid system is comprised of two parts: a rule-based classifier that can mark the

animacy of roughly 50% of the referring expressions, followed by a statistical classifier

trained on the annotated data that can be applied to the remaining referring expressions.

Once all referring expressions are marked for animacy, the animacy of a coreference chain

is inferred from the animacy of its constituent referring expression.

2.4.1 Rules

I implemented five rules that considered semantic subjects parsed from the semantic role

labeler associated with the Story Workbench annotation tool [Finlayson, 2008, 2011], the
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named entities computed using the classic API of Stanford dependency parse [Manning

et al., 2014, v3.7.0], and knowledge from WordNet [Fellbaum, 1998]. These rules were

inspired by existing rule-based animacy systems. I also considered the last word of a

referring expression in most of the rules because it helps to mark quotes as inanimate, as

well as to detect the regular animate and inanimate referring expression.

1. If the last word of a referring expression is a gendered personal, reflexive, or pos-

sessive pronoun (i.e., excluding it, its, itself, etc.), the model marked it animate.

2. If the last word of a referring expression is the semantic subject to a verb, the model

marked it animate.

3. If a referring expression contains a proper noun the model marked it animate. I

excluded anything tagged as location, organization, or money, as determined by

the Stanford CoreNLP NER system.

4. If the last word of a referring expression is a descendant of living being in WordNet,

the model marked it animate.

5. If the last word of a referring expression is a descendant of entity WordNet, the

model marked it inanimate.

2.4.2 Features

I explored seven different binary and vector features to train the statistical classification

model, some of which are drawn from prior work.

Word Embeddings (WE)

I computed pre-trained word embeddings in 300 dimensions for all the words in the stories

using the skip-gram architecture algorithm [Mikolov et al., 2013]. I used the DeepLearn-
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ing4J library [Deeplearning4j Development Team, 2017], and configured the built-in skip-

gram model with a minimum word frequency of 3, layer width (dimensions) of 300, a

window size of 5, and trained for 10 iterations. I explored a few different combinations of

these parameters, but found that these settings produced the best results. This is a vector

feature drawn from [Karsdorp et al., 2015], and is primarily relevant to classifying word-

level animacy. I ran this model on each word of our data and used the output vector as a

feature.

Word Embeddings on Referring Expressions (WER)

I calculated pre-trained word embeddings in 450 dimensions for just the words within

the referring expressions, again using the skip-gram approach as above, except with a

minimum word frequency of 1 (this is a vector feature). This approach worked better for

450 dimensions (rather than 300), which I discovered after exploring the parameter value

from 50-600. I ran this model on each referring expression of our data and used the output

vector as a feature.

Composite Word Embedding (CWE)

I computed a composite pre-trained word embedding for the neighborhood (three words

before and three words after) of each word, adding the word embedding vectors for three

words before and three words after the target word (excluding the target). This is also a

vector feature and is again partially drawn from [Karsdorp et al., 2015]. The idea of this

feature is that it estimates the similarities of the context among all animate words (or all

inanimate words) as well as the dissimilarities of animate from inanimate, and vice versa.
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Parts of Speech (POS)

By analogy with the other embeddings, I computed an embedding over part of speech

tags in 300 dimensions, with the same settings as in feature #1 (WE). This feature models

the tendency of nouns, pronouns, and adjectives to refer to animate entities.

Noun (N)

I checked whether a given referring expression contained a noun and encoded this as a

boolean feature because I observed that in the first 15 stories 43% of nouns are animate.

Thus this feature explicitly captures the tendency of nouns to refer to animate entities.

I used dependency parses generated by the classic API of Stanford dependency parser

[Manning et al., 2014, v3.7.0].

Grammatical Subject (GS)

Animate references tend to appear as the grammatical subjects of verbs [Ovrelid, 2005].

I used dependency parses generated by the classic API of Stanford dependency parser

[Manning et al., 2014, v3.7.0] to check if the last word of a given referring expression

was used as a grammatical subject relative to any verb in the sentence, and encoded this

as a boolean feature.

Semantic Subject (SS)

I also computed whether or not a referring expression appeared as a semantic subject to

a verb. I used the semantic role labeler associated with the Story Workbench annotation

tool [Finlayson, 2008, 2011] to compute semantic roles for all the verbs in the stories. I

then checked whether the last word of a given referring expression contained an ARG0

for a verb (an exact match was not required), and encoded this as a boolean feature.
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2.4.3 Classification Models

I implemented the classification models using SVM [Chang and Lin, 2011], with a Ra-

dial Basis Function Kernel. The features used to train the different models are shown in

Table 2.6. I trained each model using cross validation, and report macroaverages across

the performance on test folds. I have three models for animacy: referring expressions,

coreference chains, and words. For the referring expression animacy model, I imple-

mented three approaches. The first is a ML-only approach, in which I explored different

combinations of features: word embedding over referring expressions (WER), noun (N),

grammatical subject (GS), and semantic subject (SS). I configured the SVM with γ = 1,

C = 0.5 and p = 1. I measured the performance of the classifier using 10-fold cross

validation. The second approach is a rule based system and the third approach is a hy-

brid system where I first applied the rules, then applied the ML classifier for referring

expressions not covered by the rules.

For the coreference chain animacy model, I implemented a majority voting approach

for combining the results of the referring expression animacy model to obtain a corefer-

ence animacy prediction. In the case of ties, the chain was marked inanimate.

2.5 Preliminary Analysis

This is a preliminary study, and I only use a small corpus of 15 folktales to demonstrate

the feasibility of the approach. I first annotated animacy on coreference chains directly,

and then propagated these markings to the referring expressions. Using these annota-

tions I then trained a support vector machine (SVM) classifier for the animacy of refer-

ring expressions themselves, and compared two methods for computing the animacy of a

coreference chain using those values. Majority voting performed best in this context, and

it outperforms a baseline that computes referring expression animacy by majority vote
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over the word-level animacy markings. Overall I built three different models for animacy

detection. The first is the referring expression model, on which the second model for

coreference chains builds. I also built a third model for word-level animacy, which is

used for the baseline comparison.

2.5.1 Data

I used a small set of the ProppLearner corpus for my preliminary study. The corpus

contains 15 tales, originally collected in Russian in the late 1800’s but translated into

English in the mid-twentieth century. Table 2.4 summarizes counts of various aspects of

the annotated data. The corpus contains gold-standard annotations for token and sentence

boundaries, parts of speech (Penn Treebank II Tagset; [Marcus et al., 1993]), referring ex-

pressions, and coreference chains (as well as other layers of annotation). The annotation

procedure is described in the (§2.3) section.

Referring Coreference
Token Expressions Chains

Total 23,291 6,631 1,633
Animate 3,896 4,288 344
Inanimate 19,395 2,343 1,289

Unique Items

Animate 291 798 -
Inanimate 2221 1459 -
Total 2,199 2,231 -

Tokens Noun Pronoun Adjective

Animate 1,658 (43%) 2,252 (58%) 38 (1%)
Inanimate 2,220 (11%) 401 (2%) 862 (4%)

Table 2.4: Counts of various aspects of annotated data, including total number of animate
and inanimate tokens, referring expressions, and coreference chains, with breakdowns of
number of unique items and part of speech in each class.
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2.5.2 Models

I implemented the classification models using SVM [Chang and Lin, 2011], with a Radial

Basis Function Kernel. I varied the features used to train the different models as shown in

Table 2.5. I trained each model using cross validation, and report macroaverages across

the performance on test folds.

I have three models for animacy: referring expressions, coreference chains, and words.

For our referring expression animacy model, I explored different combinations of the fea-

tures: word embedding over referring expressions (WER), noun (N), grammatical subject

(GS), and semantic subject (SS). I configured the SVM with γ = 1, C = 0.5 and p = 1,

which were chosen after a small amount of parameter space exploration. The first two

values are relatively low in the range for these parameters, which is appropriate for a bal-

anced class situation. I measured the performance of the classifier using 10-fold cross

validation.

I calculated two baselines for referring expression animacy. The first is the majority

class baseline (inanimate is the majority class). The second combines word-level animacy

predictions generated by my word animacy model (discussed below) via a majority vote.

For the coreference chain animacy model, I implemented two majority vote approaches

for combining the results of the referring expression animacy model to obtain a corefer-

ence animacy prediction. First, I computed the majority vote considering all referring

expressions in a coreference chain. In the case of ties, the chain was marked inanimate.

Because short coreference chains were responsible for much of the poor performance, I

also calculated the performance of majority voting excluding chains of length four and

below.

To compare with prior work, I also implemented a word animacy model, adapting

an existing system with the best performance [Karsdorp et al., 2015]. That model used

features based on word N -grams, parts of speech, and word embeddings. Similarly, we
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implemented our classifier using word embeddings over words (WE), combined word

embeddings (CWE), and parts of speech (POS). The SVM was configured with γ = 5,

C = 5000 and p = 1, which were chosen after a small amount of parameter space explo-

ration. The first two values are relatively high in the range for these parameters, which

is appropriate for a unbalanced class situation. I measured the performance with 10-20

fold cross-validation and mentioned the best performance with 20-fold cross-validation

in Table 2.5.

2.5.3 Findings

I evaluated the models by measuring accuracy, precision, recall, F1, and Cohen’s kappa

(κ) relevant to the gold-standard annotations. Table 2.5 summarizes the results for both

the animate and inanimate classes.

In the case of referring expression animacy I omit some combinations of features (e.g.,

WER & N) that produced especially poor results. I obtained the best result using three

features: word embeddings over referring expressions (WER), noun (N) and semantic

subject (SS).

For the coreference animacy model, majority vote does not work as well as expected,

with an overall F1 of 0.61 when calculated over all chains. This poor performance relative

to the word and referring expression animacy models is due largely to under-performance

on short coreference chains (those with four referring expressions or fewer). This suggests

that in future work we need to concentrate our effort on solving the short chain issue.

The word model performed very close to the prior state of the art with the small data

set. My model achieved F1 of 0.98 for the inanimate class, where the state of the art

achieved 0.99. On the other hand, my model achieved an F1 of 0.90 for the animate class,

where the state of the art achieved 0.93.
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Inanimate Animate
Model Feature Set Acc. κ Prec. Rec. F1 Prec. Rec. F1

Word
Karsdorp et al. - - 0.98 0.99 0.99 0.94 0.91 0.93
WE, CWE, POS 96% 0.87 0.98 0.98 0.98 0.91 0.88 0.90

Ref.
Exp.

Baseline MFC 37% 0 0.38 1.0 0.55 0 0 0
Baseline MV 75% 0.53 0.59 0.99 0.74 0.99 0.62 0.76
WER 72% 0.49 0.58 0.99 0.73 0.98 0.57 0.72
N 80% 0.56 0.85 0.60 0.70 0.80 0.93 0.86
GS 80% 0.56 0.85 0.60 0.70 0.79 0.93 0.86
SS 76% 0.51 0.67 0.74 0.70 0.83 0.78 0.80
WER, GS 84% 0.64 0.89 0.66 0.76 0.82 0.95 0.88
WER, SS 87% 0.72 0.87 0.79 0.82 0.87 0.91 0.89
N, GS, SS 80% 0.56 0.84 0.60 0.70 0.79 0.93 0.86
WER, N, GS 84% 0.64 0.88 0.67 0.76 0.82 0.95 0.88
WER, N, GS, S 87% 0.73 0.85 0.80 0.83 0.88 0.90 0.89
WER, N, SS 86% 0.70 0.83 0.77 0.80 0.87 0.91 0.90

Coref.
Maj. vote (all) 79% 0.48 0.93 0.80 0.86 0.50 0.76 0.61
Maj. vote (long) 84% 0.68 0.86 0.78 0.82 0.82 0.89 0.86

Table 2.5: Preliminary Results of different Animacy Models (Bolded according to when
our F1 measure is higher). MFC stands for “Most Frequent Class”, MV stands for “Ma-
jority Vote” and the other abbreviations stand for features as indicated in the “Features”
section.

Nevertheless, there is no prior work that reports animacy classification results directly

for referring expressions and coreference chains, and so these results set the initial foun-

dation for animacy classification of these objects.

2.5.4 Future Direction

A detailed error analysis of the results revealed at least four major problems for the clas-

sifier which are useful for the future direction: short chains, quotations, agency selection

restrictions, and proper names.
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Short coreference chains

Determining the animacy of short coreference chains is apparently a challenging task

for the system. As the length of a chain tends toward a single referring expression, the

coreference classifier performance should converge to the referring expression classifier

performance. However, for chains between two and four referring expressions long, the

majority voting approach seems to fall short. I suspect this is because many referring

expressions are themselves quite short, and can contain false alarms: e.g., our system

classifies “his hands” as animate because of the animate word “his” in the expression. I

believe one approach to solving this problem is more data, and explicitly incorporating

the animacy of heads of noun phrases as features.

Quotes

The second problem is that many quotes are full of animate words, e.g., ”the fate of the

tsar ’s daughter to go to the dragon” is a phrase that is itself a referring expression in one

story, and should be inanimate according to my animacy annotation rule but the classifier

detects it as animate because it finds three animate words ”tsar”, ”daughter” and ”dragon”

in that quote. This will require some rule-based processing to address.

Selectional restrictions

A third problem is that although animacy correlates with semantic subject position, it

is not strictly implied by it. Consider the difference between “The bird flew across the

field” (implies that the bird is animate) and “The ball flew across the field” (the ball is

inanimate). To address this problem, I plan to incorporate animacy selectional restrictions

as training features, where the selectional restrictions are drawn from existing lexical

resources (e.g., VerbNet; [Schuler, 2005]). This will allow me to distinguish between

semantic roles which imply animacy and those which do not.
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Names identical to inanimate entities

Finally, in the folktales we see names whose surface form are identical to inanimate en-

tities, e.g., Evening, Midnight, or Dawn, as mentioned previously. Addressing this will

requiring integrating named entity recognition into the system.

2.6 Results and Discussion

I calculated two baselines for referring expression animacy. The first baseline is to choose

the majority class (animate). The second baseline combines word-level animacy predic-

tions generated by my word animacy model via a majority vote; I measured the upper

bound for this over the 15 texts for which I have gold-standard word animacy annota-

tions.

Inanimate Animate
Model Feature Set Acc. κ Prec. Rec. F1 Prec. Rec. F1

Ref.
Expr.

Baseline MFC 61% 0.0 0.0 0.0 0.0 0.61 1.0 0.76
Baseline MV 75% 0.53 0.59 0.99 0.74 0.99 0.62 0.76
WER, N, GS, SS 76% 0.47 0.80 0.51 0.62 0.76 0.92 0.83
N, GS 78% 0.51 0.83 0.54 0.65 0.77 0.93 0.84
N, SS 79% 0.53 0.80 0.60 0.68 0.78 0.91 0.84
N, GS, SS 79% 0.53 0.81 0.59 0.68 0.78 0.91 0.84
Rule Based 82% 0.60 0.89 0.60 0.72 0.81 0.96 0.88
Hybrid 83% 0.62 0.84 0.67 0.74 0.83 0.93 0.88
Sampling 92%∗ 0.85 0.87 0.93 0.91 0.96 0.92 0.94

Coref.
Maj. vote 82% 0.61 0.87 0.84 0.86 0.73 0.77 0.75
Sampling 90%† 0.80 0.86 0.98 0.92 0.97 0.81 0.88

Table 2.6: Result of different Animacy Models (Bolded according to when our F1 mea-
sure is higher). MFC stands for “Most Frequent Class”, MV stands for “Majority Vote”
and the other abbreviations stand for features as indicated in the “Features” section. *Es-
timated ±2% with 95% confidence. †Estimated ±1% with 95% confidence.

I evaluated my models by measuring accuracy, precision, recall, F1, and Cohen’s

kappa (κ) compared to the gold-standard annotations. Table 2.6 shows the results for both
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classes. For referring expression animacy I varied the features to determine the optimal

set. I obtained the best result (F1 of 0.84) using different combinations of three features:

noun (N), grammatical subject (GS) and semantic subject (SS). My hybrid model for

referring expression animacy performed better (F1 of 0.88) than the statistical model (F1

of 0.84). The rule-based model achieved 0.88 F1 when I applied the rules first, and marked

any remaining referring expressions as majority class. The rule based model performed

similarly to the hybrid model, but the hybrid model is more consistent.

For the coreference animacy model, I implemented the majority vote approach to

detect animacy of coreference chain using the best output of referring expression model.

Majority vote resulted in an overall F1 of 0.75, around 3% of coreference chains resulted

in a tied vote, and these were marked as inanimate (the majority class).

I also evaluated my model using direct sampling [Saunders et al., 2009]. I ran the

hybrid model over 200 news articles from the OntoNotes [Hovy et al., 2006] data set con-

taining 46,088 referring expressions and 7,836 coreference chains. I randomly sampled

558 coreference chains and checked their animacy markings by hand, resulting in a esti-

mated accuracy of 90% ±2% at a 95% confidence level, as well as estimated precision,

recall, and F1 listed in Table 2.6. Those coreference chains contained 3,543 referring ex-

pressions, which allowed me to estimate the accuracy of the referring expression model

at 92% ±1% at a 95% confidence level.

The data contains 46 folktales, which have 142 mentions of 12 characters who are

members of traditionally inanimate classes (e.g., stoves that walk, trees that talk). I man-

ually identified those 12 characters and evaluated my model’s performance on them. The

system is able to detect the animacy of these unusual referents with an F1 of 0.95. Con-

versely, there was only one mention of a normally animate class that was inanimate in

context (“dead horse”), and this was correctly marked by the system.
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2.7 Error Analysis

A detailed error analysis of the results revealed at least three minor problems for the

hybrid model : short chains, quotes, and exceptions to the rules.

Short coreference chains

Determining the animacy of short coreference chains is still challenging for my system:

approximately 11% of short chains are incorrectly marked. As the length of a chain tends

toward a single referring expression, the coreference classifier should converge to the

referring expression classifier performance. However, for chains between two and four

referring expressions long, the majority voting approach seems to fall short. I believe

another approach to solving this problem is to generate new rules in my hybrid model so

that it can handle these type of special cases.

Quotes

Many quotes are still full of animate words, approximately 2.5% of quotes that are refer-

ring expressions are incorrectly marked, and handling this likely will require rule-based

processing.

Exceptions to the rules

Finally, a common error type was exceptions to the rules. In the hybrid system I combined

together a large number of similar referring expressions under one rule so that I can handle

them under a similar animacy class. But there are always exceptions for every rule: for

example, I define “it” as inanimate but of course sometimes “it” can refer to an animate

object. For the most part these individual instances will be out-voted by animate referring

expressions in long chains, so it is a relatively small problem. One approach to solving
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this would be to implement the idea of Orǎsan and Evans [Orǎsan and Evans, 2001, 2007]

to use supervised machine learning to mark unseen WordNet senses by their animacy

rather using specific rules.

2.8 Confirming Generalizability

My animacy work demonstrated a new approach to detecting animacy where animacy is

considered a direct property of coreference chains (and referring expressions) rather than

words. I combined hand-built rules and machine learning (ML) to identify the animacy

of referring expressions and used majority voting to assign the animacy of coreference

chains, and reported high performance of up to 0.90 F1. I also ran some experiments to

verify that the approach generalizes to two different corpora (OntoNotes and the Corpus

of English Novels) and I confirmed that the hybrid model performs best, with the rule-

based model in second place. My tests apply the animacy classifier to almost twice as

much data as my initial study. The results also strongly suggest, as would be expected,

the dependence of the models on coreference chain quality. I released our data and code

to enable reproducibility.

My initial experiments left some questions as to the generalizability of the detector

to other story forms. Here I tested the generalizability of my animacy detector on two

new corpora, a news subset of OntoNotes [Weischedel et al., 2013] and the subset of

the Corpus of English Novels (CEN) [De Smet, 2008]. I tested all three of the models,

specifically, an SVM-based ML, a rule-based model, and a hybrid model combining both.

I showed, in agreement with the previous results, that the hybrid model performs best,

followed by the rule-based model. The results also suggest that the animacy models have

a strong dependence on the quality of coreference chains; in particular, the performance
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of the models on the CEN data (with automatically computed chains) is much poorer than

on OntoNotes and the ProppLearner corpus (with manually corrected chains).

2.8.1 Data

I annotated animacy on two new corpora. First, 94 news texts drawn from the OntoNotes

Corpus [Weischedel et al., 2013]. Second, 30 chapters from 30 novels drawn from CEN.

I performed this manual annotation by following the same guidelines described in (§2.3).

In accordance with the procedure, I have annotated the coreference chains of these two

corpora as to whether each coreference chain head acted as an animate being in the text.

Because the inter-annotator agreement for this annotation was quite high, I only per-

formed single annotation. Details of the corpora are given in Table 2.7. These corpora

contain approximately twice as much data, by count of referring expressions and corefer-

ence chains, as the initial work.

OntoNotes (ON)

OntoNotes (ON) [Weischedel et al., 2013] is a large corpus containing a variety of gen-

res, e.g., news, conversational telephone speech, broadcast, talk show transcripts, etc.,

in English, Chinese, and Arabic. I extracted 94 English broadcast news texts that had

coreference chain annotations and annotated the animacy of the coreference chains.

Corpus of English Novels (CEN)

Corpus of English Novels (CEN) [De Smet, 2008] contains 292 English novels written be-

tween 1881 and 1922 comprising various genres including drama, romance, fantasy, etc.

I selected 30 novels and listed the characters of these novels from the online resources.

Then I extracted a single chapter of each novel that contains a significant number of char-
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acters. I computed coreference chains using Stanford CoreNLP [Manning et al., 2014],

and annotated those chains for animacy.

Ani. Inani.
Ref. Ref. Ref. Coref. Ani. Inani.

Corpus Texts Exp. Exp. Exp. Chains Chains Chains

Previous 142 34,698 22,052 12,646 10,941 3,832 7,109

ON 94 4,197 2,079 2,118 1,145 472 673
CEN 30 70,379 20,937 49,442 17,251 2,808 14,443

Total 124 74,576 23,016 51,560 18,396 3,280 15,116

Table 2.7: Counts of various text types. Ref. Exp. stands for Referring Expression; Coref.
stands for Coreference; Ani. stands for Animate; Inani. stands for Inanimate.

2.8.2 Models

My animacy model first classifies the animacy of referring expressions, and second clas-

sifies each coreference chain as animate or not by taking the majority vote of it’s con-

stituting referring expressions. In these experiments I ran my three referring expression

animacy detection models and the single coreference chain animacy detection model (ma-

jority vote backed by the different referring expression models, which were determined

by to be the best coreference model).

SVM Model

SVM Model is a supervised SVM classifier [Chang and Lin, 2011] for assigning animacy

to referring expressions, with a Radial Basis Function Kernel where SVM parameters

were set at γ = 1, C = 0.5 and p = 1. The features of the best performing model are

boolean values of whether a given referring expression contained a noun, a grammatical

or a semantic subject. I chose these features because animate references tend to appear

as nouns, grammatical subjects, or semantic subjects. When training and testing on the
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same dataset, I used ten-fold cross validation, and reported the micro-averages across the

performance on test folds.

Rule-Based Model

The second approach is a rule-based classifier that marks a referring expression as ani-

mate if its last word was: (a) a gendered personal, reflexive, or possessive pronoun (i.e.,

excluding it, its, itself, etc.); (b) the semantic subject to a verb; (c) a proper noun (i.e.,

excluding named-entity types of LOCATION, ORGANIZATION, MONEY); or, (d) a descen-

dant of LIVING BEING in WordNet. If the last word of a referring expression is a descen-

dant of ENTITY but not a descendant of LIVING BEING in WordNet, the model considers

it inanimate.

Hybrid Model

Hybrid Model is the third approach where hand-built rules are applied first, followed by

the ML classifier to those referring expressions not covered by the rules.

Majority Vote Model

The coreference model applies majority voting to combine the results of the referring

expression animacy model to obtain a coreference animacy prediction. For ties, the chain

was marked inanimate.

2.8.3 Experiments

I investigated four training setups for the SVM and Hybrid referring expression models:

first, training the model each data set individually, and also training on all three datasets

together. For all models (SVM, Hybrid, Rule-Based) I also varied the test corpus. Where
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the test data was a subset of the training data, I applied ten-fold cross-validation. In

all approaches, I used the majority vote classifier to identify the animacy of the coref-

erence chains. These experiments are used to compare the performance of the referring

expression animacy model on the new corpora, as well as determine the performance for

determining coreference chain animacy.

2.8.4 Findings

The results in Table 2.8 and Table 2.9 showed that the hybrid model outperformed all

of the other models in detecting referring expression animacy, which is the same result I

got from my previous experiments. It performed the best on the previous data, achieving

an F1 of 0.88, and is the most useful model when applying as input to the majority vote

model to identify the animacy of coreference chains, achieving an F1 of 0.77.

The rule-based model performs second-best. It performed best on the previous data

for referring expressions, achieving an F1 of 0.88. But the majority vote model achieved

the best result (F1 of 0.76) on OntoNotes when the rule-based results are used to detect

the chain animacy. I developed a baseline for chain animacy where I considered the first

referring expression only instead of majority vote and achieved an F1 of 0.69 and 0.43 on

OntoNotes and CEN.

The SVM model performed worse in most of the cases, especially when the outputs

are used for the majority vote model. It performed worst when it trained on the Corpus of

English Novels and tested on the previous data, achieving an F1 of only 0.56 for the refer-

ring expressions and achieved an F1 of 0.37 when the results of the referring expressions

are used for the majority vote model.

The majority vote model performed best when tested on OntoNotes. It performed

worst when tested on the Corpus of English Novels (CEN). Besides the text genre, the
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SVM Hybrid Rule-Based
Train Corpus Test Corpus F1 κ F1 κ F1 κ

Initial Initial 0.84 0.53 0.90 0.70 0.88 0.60

Initial OntoNotes 0.70 0.35 0.80 0.54 - -
Initial English Novels 0.75 0.53 0.80 0.60 - -
OntoNotes Initial 0.82 0.51 0.88 0.64 - -
OntoNotes OntoNotes 0.70 0.36 0.80 0.54 0.76 0.44
OntoNotes English Novels 0.76 0.54 0.80 0.61 - -
English Novels Initial 0.56 0.22 0.88 0.64 - -
English Novels OntoNotes 0.70 0.37 0.80 0.54 - -
English Novels English Novels 0.76 0.55 0.80 0.61 0.75 0.48
All All 0.80 0.53 0.84 0.62 0.82 0.54

Table 2.8: Performance of the majority vote referring expression animacy model backed
by different referring expression models for different training and testing setups. κ =
Cohen’s kappa [Cohen, 1960]. Note that the rule-based model does not require training,
and so results are not reported for different training combinations. Italics in the first line
are the initial results.

major difference between these corpora is the quality of the coreference chains. For

OntoNotes, they are manually corrected, while I automatically computed those on CEN.

This strongly suggests that the quality of coreference chains is a major factor in the per-

formance of the animacy classifier.

Finally, the results on the combined corpus are reasonable for the referring expres-

sion models but performed poorly for the majority vote coreference chain model. This

is perhaps to be expected because CEN is the largest corpus among the three and the

coreference chains are poor in quality.

Overall, these results strongly suggest that the features used in my animacy model are

generalizable to domains outside the Russian folklore corpus used as long as high quality

coreference chains are available.
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SVM Hybrid Rule-Based
Train Corpus Test Corpus F1 κ F1 κ F1 κ

Initial Initial 0.46 0.03 0.75 0.61 0.72 0.51

Initial OntoNotes 0.60 0.34 0.77 0.59 - -
Initial English Novels 0.52 0.40 0.54 0.41 - -
OntoNotes Initial 0.62 0.44 0.72 0.56 - -
OntoNotes OntoNotes 0.60 0.34 0.77 0.59 0.73 0.48
OntoNotes English Novels 0.42 0.40 0.54 0.41 - -
English Novels Initial 0.37 0.18 0.72 0.56 - -
English Novels OntoNotes 0.60 0.34 0.77 0.59 - -
English Novels English Novels 0.54 0.43 0.54 0.41 0.46 0.28
All All 0.58 0.42 0.60 0.43 0.54 0.33

Table 2.9: Performance of the majority vote coreference chain animacy model backed
by different referring expression models for different training and testing setups. κ =
Cohen’s kappa [Cohen, 1960]. Note that the rule-based model does not require training,
and so results are not reported for different training combinations. Italics in the first line
are the initial results.
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CHAPTER 3

CHARACTER IDENTIFICATION

3.1 Motivation

Characters are some of the most central elements of narratives, and the concept of char-

acter plays an important role in most definitions of narrative. As an example, Monika

Fludernik defines a narrative as “a representation of a possible world . . . at whose cen-

tre there are one or several protagonists of an anthropomorphic nature . . . who (mostly)

perform goal-directed actions . . . ” [Fludernik, 2009, p.6; emphasis ours]. This definition

clearly states that characters are central to stories per se. Therefore, it is natural to as-

sume that character identification is an important step in automatic approaches to story

understanding.

A number of approaches have been proposed for automatically identifying characters.

Some approaches, for example, have sought to solve the character identification task using

domain-specific ontologies [Declerck et al., 2012] or reasoning by reference to an exist-

ing case base [Valls-Vargas et al., 2014a]. Others have taken supervised machine learning

approaches [Calix et al., 2013, Barros et al., 2019], where a classifier is trained over

data annotated by people. Some approaches, e.g., examining characters’ social networks

[Sack, 2013], take character identification for granted, implementing heuristic-driven ap-

proaches over named entities or coreference chains that are not examined for their effi-

cacy. Regardless of approach, all prior work of which we are aware has, unfortunately,

had a relatively impoverished concept of character, at least from a narratological point

of view. In particular, a key aspect of any character is that it contributes to the plot—

characters are not just any animate entity in the narrative—and all prior work essentially

ignores this point. Therefore, I proposed to incorporate this narratologically grounded

definition of character into automatic character identification.
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3.2 Approach

I first defined and operationalized the concept of character, and used that concept to gen-

erate annotated data (170 narrative texts drawn from 3 different corpora) with high inter-

annotator agreement. Then I demonstrated a supervised machine learning model using

seven features that performs well (F1 of 0.94) on these data. The error analysis reveals

several choke points (section §3.8) in the performance of the system, most importantly

the quality of the co-reference chains.

3.3 An Operationalized Concept of Character

3.3.1 Core Concept of Character

All prior work that tackles the character identification task is unified by it’s lack of a clear,

operationalized definition of character. So far the work that reports the best performance

is by [Valls-Vargas et al., 2014a], where they give examples of different types of characters

such as humans, animals (e.g., a talking mouse), anthropomorphic objects (e.g., a magical

oven, a talking river), fantastical creatures (e.g., goblins), and folkloristic characters (e.g.,

the Russian characters Morozko and Baba Yaga). Despite this relatively comprehensive

list of character examples, they did not provide a procedure for reliably distinguishing

characters from other animate entities in a narrative.

Consider the following example. Let’s assume we have a story about Mary, a little

girl, and her dog named Fido. Mary plays with Fido when she feels lonely. Also, Fido

helps Mary in her daily chores and brings letters to Mary from the post office. One day

Mary and Fido are walking through town observing the local color. They see a crowd

gathered around a fruit vendor; an ugly man crosses the path in front of them; and another

dog barks at Fido. Many narratologists and lay people would agree that the story has at
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least two characters, Mary and Fido. Depending on how the story is told, either Mary or

Fido may be the protagonist. But what about the other entities mentioned in the story?

What about the unnamed man who crosses their path? Is he a character? What about the

faceless crowd? Is the crowd itself a character, or perhaps its constituent people? What

about the fruit vendor, who is hawking his wares? And what about the barking dog?

Where do we draw the line?

I noted these problems in prior work, and proposed a preliminary definition of char-

acter grounded in narrative theory that addressed these questions. I began by studying

different books and literature reviews on narratology that provided different definitions

of character. Helpfully, Seymour Chatman, in his classic book “Story and Discourse:

Narrative Structure in Fiction and Film” [1980], collected a number of views on char-

acter across multiple narratological traditions. Several of the definitions were complex

and would be quite difficult to model computationally. Others were too vague to inform

computational approaches. However, my definition provided a reasonable target:

The view of the Formalists and (some) structuralists resemble Aristotle’s in a

striking way. They too argue that characters are products of plots, that their

status is “functional,” that they are, in short, participants or actants rather

than personnages, that it is erroneous to consider them as real beings. Narra-

tive theory, they say, must avoid psychological essences; aspects of character

can only be “functions.” They wish to analyze only what characters do in

a story, not what they are—that is, “are” by some outside psychological or

moral measure. Further, they maintain that the “spheres of action” in which a

character moves are “comparatively small in number, typical and classable.”

[Chatman, 1980, p.111]
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Here, an actant is something that plays (i.e., acts in) any of a set of active roles in

a narrative, and plot denotes the main events of a story. This definition, then, though

presented via somewhat obscure narratological terminology, gives a fairly conceptually

concise definition of a character: a character is an animate being that is important to the

plot. By this measure then, we are justified in identifying Mary and Fido as characters,

but not the various entities they casually encounter in their stroll through town.

3.3.2 What Makes an Entity Important?

My definition considers animate beings who can contribute to the plot as characters. But

this definition leads to another problem, namely, how can we measure the importance

of the characters? How much of a contribution is enough to be a character? Unfortu-

nately, narratologists’ answers are not especially clear, and indeed very few narratologists

have attacked this question directly. As Chatman writes, “It is remarkable how little has

been said about the theory of character in literary history and criticism” [1980, p.107].

According to the famous cultural theorist and narratologist, Mieke Bal, it is difficult to

explain the ideas of character because a character so closely resembles a human being.

She writes “. . . no satisfying, coherent theory of character is available is due to this anthro-

pomorphic aspect. The character is not a human being, but it resembles one.” [Bal and

Van Boheemen, 2009, p.113]. Despite this, for the purposes of reliable inter-annotator

agreement to support training and testing effective computational approaches, it is critical

for us to define specific tests by which we can decide if an animate being is a character or

not.

Chatman points out the importance of the functionality of a character with regard to

the plot. I formulated my test by starting with the original theoretical work that led to the

development of the theory of functionality and actants, namely Vladimir Propp’s Mor-
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phology of the Folktale [1968]. In that theory, Propp describes the concept of a function,

which is an action or event that drives the plot forward, and is intimately interwoven with

the main characters (i.e., the dramatis personae). For example, the Villain of a story may

cause harm or injury to some member of the Hero’s family: Propp names this plot func-

tion Villainy and assigns it the symbol A. He defined 31 such functions. Prior work on

annotating Propp’s morphology has shown that the main characters can be reliably iden-

tified [Yarlott and Finlayson, 2016], and so those characters which are directly and un-

ambiguously involved in the forwarding of the plot are generally not difficult to identify.

These main characters have numerous mentions, close involvement in the main events,

and highly distinctive character traits. What about, however, edge cases—potential mi-

nor characters—such as the examples in the Mary and Fido above? Minor characters

have many fewer mentions, little involvement with main events, and often no uniquely

distinguishing traits.

To illustrate the difficulty consider the following example from Propp’s data, namely

the story Vasilisa the Beautiful, which is found in one of my corpora, the extended Prop-

pLearner corpus [Finlayson, 2017]. In this story, the heroine is Vasilisa, whose mother

dies right after giving birth to her. Before dying, the mother gave Vasilisa a doll, and the

rest of the story concerns how Vasilisa survives the predations of her stepmother with the

help of that doll. There is no doubt that Vasilisa is a main character of this story—she is

the Heroine—but there is some question about her birth mother. Does the birth mother

count as a character, albeit a minor one? I can apply the test of functionality by asking

whether the mother’s actions or presence are critical to the progression of plot. In par-

ticular, the mother gives Vasilisa a critical magical artifact (the doll, which itself become

a major character) without which Vasilisa would have been unable to effect much of the

action of the story. Because of the mother’s involvement, indirect though it may be, in

key events of the plot, I can reasonably consider the birth mother a minor character.
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In addition to the extended ProppLearn corpus, I also annotated texts from OntoNotes

5.0 [Weischedel et al., 2013] which presented many interesting edge cases. As an exam-

ple, OntoNotes contains many short news texts, one consisting only of 13 lines about a

day in the life of Bill Clinton just before the U.S. election of 2000. In that article “all

Americans” is mentioned: “The day got worse when he urged all Americans to vote on

November 2.”. It is clear that Bill Clinton is a character of this news article because the

whole story is about him, but what about the referent “all Americans”? Do they contribute

to the “plot” of the article, such as it is? Do they support the development of the main

character? In this case, “all Americans” neither effect any functional action in the plot of

the article, nor do they contribute anything necessary to the progression of the plot. In-

deed, if the reference to “all Americans” was struck from the text, the plot would remain

essentially unchanged. Based on this judgement, I do not consider “all Americans” to be

a character, even a minor one.

Based on these examples, I can propose a rule for assessing the importance of an

entity: if an animate entity is mentioned numerous times, has clear and close involvement

in the main events of the plot, and has highly distinguishing character traits, then it is

almost certainly a main character. For other animate entities that are mentioned less often,

have more tangential connection to the plot, and perhaps lack distinguishing traits, the key

test is whether that entity critically contributes to the plot either by directly participating

in a important plot event, or enabling the participation of other characters in the plot.

In my annotation, I observed that the difficulty of distinguishing characters from non-

characters depends strongly on the length of a story. The shorter the text, the harder it is

to identify the characters, primarily because there is much less opportunity for entities to

present distinct characteristics and contribute clearly to the development of the plot. As

a case in point, identifying characters in the third corpus, the Corpus of English Novels

[Weischedel et al., 2013], where the chapters are quite long, was easier than identifying
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characters in the Propp’s folktales, and substantially easier than in the short OntoNotes

news texts.

3.3.3 Other Aspects of Characters

With a operationalized definition of character now in hand, one might ask whether char-

acters can be further characterized along different dimensions. For example, Ismail Talib

[2010] described a number of different possible dimensions of characters: protagonist

vs. antagonist, flat vs. round, static vs. developing, and so forth. Propp described seven

different types of dramatis personae: Hero, Villain, Princess, Helper, Donor, Dispatcher,

and False Hero. While these are interesting directions to explore, in this work I did not

seek to categorize entities in any way other than character or not.

3.4 Data and Annotation

I with the help of Rahul Mittal annotated characters on 170 texts across three corpora, one

with 46 texts (the extended ProppLearner corpus), the second with 94 texts (a subset of the

OntoNotes corpus), and the third with 30 texts (a subset of The Corpus of English Novels).

Table 3.1 shows the counts of various items of interest across the data. We manually

annotated these corpora as to whether each coreference chain acted as a character in the

story. Gold coreference chains were already marked on the ProppLearner corpus and

OntoNotes, while the coreference chains were automatically computed for the Corpus of

English Novel. According to the definition mentioned above, we marked a chain as a

character if it is animate and is important to the plot of the story. First, we read the story

and find the events important to the plot, there was no agreement across the annotators

what the events important to the plot are. Then we assessed the animate objects directly

or indirectly involved those events to determine if they were characters or not. As our
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Figure 3.1: Mentions vs. chain: the extended ProppLearner corpus

supervised model is highly dependent on the annotation, therefore, if there are more than

one plot, or if the plot is highly subjective, then it should be reflected by the annotators.

# Texts # Coref. #Ani. #Inani. #Char. #Non-Char.
Text Types Chains Chains Chains Chains Chains

ProppLearner 46 4,950 2,004 2,946 564 4,386
OntoNotes 94 1,145 472 673 347 798
CEN 30 17,251 2,808 14,443 436 16,815

Total 170 23,346 5,284 18,062 1,347 21,999

Table 3.1: Counts of various text types in the corpus. Coref. stands for coreference; Ani.
stands for Animate; Inani. stands for inanimate; Char. stands for character.

3.4.1 The extended ProppLearner (PL)

The extended ProppLearner [Finlayson, 2017] contains gold-standard annotations for re-

ferring expressions, coreference chains, and animacy. It comprises 46 Russian folktales

originally collected in Russia in the late 1800s but translated into English within the past

70 years.

We double annotated this corpus at the coreference chain level for character, achieving

an agreement of 0.78 Cohen’s kappa (κ). This level of agreement represents substantial

overall agreement [Landis and Koch, 1977]. We discussed any disagreements and cor-

rected them to generate a gold-standard annotation. Our high agreement measures are in

accordance with prior work that has shown that dramatis personae (i.e., main characters)
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Character Chain Character Chain

Non-character Chain

Character Singleton

There was the apple tree. "Apple tree, apple tree, little mother, hide me !" she begged. "If you eat my wild apple. 

She ate it quickly. The apple tree covered her with branches and leaves; the geese flew by.

Figure 3.2: Sample text fragment of the extended ProppLearner corpus

can be annotated with high reliability. In particular, Yarlott and Finlayson [2016] showed

that dramatics personae can be annotated with agreements of F1 > 0.8 and κ > 0.6.

Because of the high agreement for this annotation task, I single-annotated the remaining

two corpora for the sake of efficiency.

3.4.2 OntoNotes (ON)

OntoNotes [Weischedel et al., 2013] is a large corpus containing a variety of genres,

including news, conversational telephone speech, broadcast news transcripts, talk show

transcripts, among others, in English, Chinese, and Arabic. I extracted 94 English broad-

cast news transcripts that had gold-standard coreference chain annotations and annotated

the coreference chains as to character. Despite having clear narrative elements, including

characters and events, the news texts have very different goals and textual properties. For

example, the plot is only partially represented in a news text, while we have a full plot in

many narrative texts.
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Figure 3.3: Mentions vs. chain: OntoNotes corpus
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Character Chain

Character Chain

Non-character Chain

George W. Bush wants to modernize Social Security, as he puts it, by allowing workers

to take a small share of their Social Security, payroll tax, to increase themselves.

Figure 3.4: Sample text fragment of the OntoNotes corpus

3.4.3 The Corpus of English Novels (CEN)

The Corpus of English Novels (CEN) [De Smet, 2008] contains 292 English novels writ-

ten between 1881 and 1922, comprising various genres, including drama, romance, fan-

tasy, adventure, etc. I selected 30 novels and from each extracted a single chapter that

contained a significant number of characters. I computed coreference chains using Stan-

ford CoreNLP [Manning et al., 2014], and annotated those chains as to character. I anno-

tated only one chapter per novel due to time constraints; I am aware that in a full novel,

the picture might be very different than in a single chapter.
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Figure 3.5: Mentions vs. chain: CEN corpus

3.5 Methodology

My character detection model comprises two steps: first, I automatically marked the ani-

macy of coreference chains, and second I applied a supervised machine learning classifier

to identify the characters.
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Character Chain

Character Chain

Character Chain

Character Singleton

"They don't have porridge for breakfast," said Tiza, tossing her head, when she and Milly were out together.

"Mother always gives us porridge. And I won't sit next Charlie. He's always dirtying hisself. He stickied

hisself just all over this morning with treacle. Mother would have given him a clout."

Figure 3.6: Sample text fragment of the CEN corpus

3.5.1 Animacy Detection

According to my definition of character, it must be an animate object that is important

to the plot. Thus one first step to identifying characters is to identify the animate enti-

ties. I used my existing animacy classifier for coreference chains, and tried two of their

best-performing models, both of which achieved state-of-the-art performance; one is a

hybrid model incorporating supervised machine learning and hand-built rules, and the

other is a rule-based model consisting of hand-built rules only. As I have gold standard

animacy annotation in the extended ProppLearner corpus that allows training the super-

vised portion of the hybrid model, I trained and ran the hybrid model on this data. For

OntoNotes and the Corpus of English Novels, I ran the rule-based model, which did not

require gold-standard animacy markings for training, to detect animacy.

3.5.2 Character Classification: Features

I explored seven different integer and binary features to train the character identification

model. As I have mentioned earlier, not all animate entities are characters, but all char-

acters are animate entities. Therefore, I incorporated the animacy features while adding

additional features for character, and so most of the features are designed to interrogate

whether an animate entity acts as a semantic subject of an event or has person-like char-

acteristics. Some of the features are drawn or inspired by prior work.
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Coreference Chain Length (CL)

I computed the length of a coreference chain and then normalized the numeric length

feature by z score = (x − µ)/σ, where x is the raw chain length, µ is the chain length

mean, and σ is the chain length standard deviation. This feature explicitly captures the

tendency of the long chains to be characters, as discussed in prior work [Eisenberg and

Finlayson, 2017].

Semantic Subject (SS)

I also computed whether or not the head of a coreference chain appeared as a semantic

subject (ARG0) to a verb, and encoded this as a boolean feature. I used the semantic

role labeler associated with the Story Workbench annotation tool [Finlayson, 2008, 2011]

to compute semantic roles for all the verbs in the stories. Semantics roles have been

previously used for Named Entity Recognition (NER) as seen in [Pang and Fan, 2009]

Named Entity (NE)

I checked whether or not the head of a coreference chain was a named entity with the

category PERSON, and encoded this as a boolean feature. The named entities were com-

puted using the standard API of the Stanford dependency parse [Manning et al., 2014,

v3.7.0].

WordNet (WN)

I detected if the head of a coreference chain is a descendant of Person in WordNet, and

encoded this as a boolean feature.
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Dependency Link (DP)

I computed whether or not the head of a coreference chain appeared as a dependent of

nsubj dependency link among the enhanced-plus-plus-dependencies of a sentence. The

dependencies were extracted using the standard API of the Stanford dependency parse

[Manning et al., 2014, v3.7.0] I have used for Named Entity feature. Similar dependencies

were used as features elsewhere [Valls-Vargas et al., 2014a].

Triple (TP)

I computed if the head of a coreference chain matches the subject position of any triple and

encoded this information as a boolean feature. The triples were extracted from Stanford

OpenIE associated with the classic API of the Stanford CoreNLP toolkit [Manning et al.,

2014, v3.7.0]. [Goh et al., 2012a] used a similar extraction of an S-V-O triplet.

ConceptNet Feature (CN)

I checked if the head of a coreference chain has any edge that related to Person in the Con-

ceptNet semantic network [Speer et al., 2017] and encoded this information as a boolean

feature. Features extracted from ConceptNet have also been used as features elsewhere

[Calix et al., 2013, Valls-Vargas et al., 2014a].

3.5.3 Character Classification: Models

My character classification model is a simple supervised machine learning classifier with

the hand-built features identified above. I used the extended ProppLearner corpus to

explore different combinations of features and their importance to model performance.

The best-performing model uses all seven features. I then trained and tested this model

to the OntoNotes and Corpus of English Novels corpora to see how the model works on
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different kinds of data sets. The implementation of the character model is done by using

an SVM [Chang and Lin, 2011] with a Radial Basis Function Kernel.SVM parameters

were set at γ = 1, C = 0.5 and p = 1. I have demonstrated the results on different

corpora in Table 3.5 and Table 3.6. I trained each model using ten-fold cross-validation,

and report macro-averages across the performance on the test folds.

3.6 Preliminary Analysis

Armed with this refined definition of character, I proceeded to generate preliminary data

that could be used to explore this idea and demonstrate the feasibility of training a super-

vised machine learning system for this concept of character. I sought to explore how easily

computable features, like those used in prior work, could capture this slightly refined con-

cept of character. I began with the fact that characters and other entities are expressed in

texts as coreference chains made up of referring expressions [Jurafsky and Martin, 2007].

Thus any labeling of character must apply to coreference chains. I generated character

annotations on two corpora, one with 46 texts (the extended ProppLearning corpus) and

other with 94 texts (a subset of the InScript corpus), for a total of 1,147 characters and

127,680 words. The annotation procedure is described in the (§3.4) section.

3.6.1 Data

The extended ProppLearner

The ProppLearner corpus was constructed for other work on learning plot functions [Fin-

layson, 2017]. The corpus that was reported in that paper comprised only 15 Russian

folktales, but I obtained the extended set of 46 tales from the authors. These tales were

originally collected in Russian in the late 1800’s but translated into English within the
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past 70 years. All of the texts in the corpus already had gold-standard annotations for

major characters, congruent with our proposed definition. Usefully, the corpus also has

gold-standard annotations for referring expressions, coreference chains, and animacy.

Coreference Chains
Texts Tokens Total Ani. Inani. Char. Non-Char.

ProppLearner 46 109,120 4,950 2,004 2,946 1,047 1,361
Inscript (Subset) 94 18,568 615 105 510 94 521

Total 140 127,680 5,565 2,098 3,467 1,141 1,882

Table 3.2: Counts across coreference chains of different categories, as well as texts and
tokens. Ani. stands for animate and Inani. stands for inanimate.

InScript

I also investigated the InScript corpus [Modi et al., 2017]. InScript contains 1,000 stories

comprising approximately 200,000 words, where each story describes some stereotypical

human activity such as going to a restaurant or visiting a doctor. I selected a subset (94

stories, approximately 19k tokens) of the corpus that describes activity of taking a bath.

It has referring expressions and coreference chains already annotated.

3.6.2 Features

I used four different features for our character identification model.

Coreference Chain Length (CL)

I computed the length of a coreference chain as an integer feature. This feature explicitly

captures the tendency of the long chains to be characters, as discussed in prior work

[Eisenberg and Finlayson, 2017].
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Semantic Subject (SS)

I also computed whether or not the head of a coreference chain appeared as a semantic

subject (ARG0) to a verb, and encoded this as a boolean feature. I used the semantic role

labeler associated with the Story Workbench annotation tool [Finlayson, 2008, 2011] to

compute semantic roles for all the verbs in the stories.

Named Entity (NE)

I computed whether or not the head of a coreference chain appeared was a named entity

with the category PERSON, and encoded this as a boolean feature. The named entities

were computed using the classic API of the Stanford dependency parse [Manning et al.,

2014, v3.7.0].

WordNet (WN)

I checked if the head of a coreference chain is a descendant of person in WordNet, and

encoded this as a boolean feature.

3.6.3 Models

My classification model is straightforward supervised machine learning, in which I ex-

plored different combinations of the features. I implemented my model using an SVM

[Chang and Lin, 2011] with a Radial Basis Function Kernel. SVM parameters were set

at γ = 1, C = 0.5 and p = 1. We tested different combinations of features on the

ProppLearner corpus, and their relative performances are shown in Table 3.4. The best

performing feature set was using all four features, and I also tested this model on the

InScript data. I trained each model using ten-fold cross validation, and report macroaver-

ages across the performance on the test folds.
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3.6.4 Findings

The best model, using all four features, achieves an F1 of 0.81 on the ProppLearner data,

and an F1 of 0.99 on the InScript data. The result on the InScript data is misleadingly high

and deserves some discussion. The InScript stories are quite simple, only told in the first

person, and usually featuring only a single animate referent who is also the protagonist.

Therefore the almost exclusive reference to characters in these stories was the personal

pronoun I. Thus both the animacy detector and the character identifier had much higher

performance than one would expect on more complicated stories.

Inanimate Animate
Corpus Acc. κ Prec. Rec. F1 κ Prec. Rec. F1

ProppLearner 85% 0.72 0.93 0.82 0.87 0.72 0.78 0.92 0.84
InScript 99% 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 3.3: Performance of the animacy model on the corpora.

Non Character Character
Corpus Feature Set Acc. κ Prec. Rec. F1 Prec. Rec. F1

Propp-
Learner

Baseline MFC 56% 0.0 0.57 1.0 0.72 0.0 0.0 0.0
SS, WN, NE 80% 0.82 1.0 0.87 0.93 0.75 0.80 0.77
WN, CL 80% 0.82 1.0 0.87 0.92 0.75 0.80 0.78
CL, SS, WN 84% 0.78 1.0 0.84 0.92 0.75 0.84 0.79
CL, WN, NE 82% 0.81 0.86 0.92 0.92 0.82 0.77 0.80
CL, SS, WN 84% 0.78 1.0 0.84 0.92 0.75 0.84 0.79
CL, SS, WN, NE 85% 0.78 1.0 0.85 0.91 0.88 0.76 0.81

InScript CL, SS, WN, NE 99% 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 3.4: Preliminary results of different features sets for identifying characters. MFC
stands for most frequent class; Acc. stands for accuracy; Prec. stands for precision; Rec.
stands for recall. κ = Cohen’s kappa [Cohen, 1960]
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3.6.5 Future Direction

A detailed error analysis of the results on the ProppLearner data revealed at least three

major problems for the character identification model.

Animacy model

The character model relied on the output of the animacy model, and so if a character

was not marked animate, the character model also missed it. Conversely, sometimes

inanimate chains are incorrectly marked animate, providing an additional opportunity for

the character model to err. Thus, in order to improve the performance of our character

model, we have to improve the performance of the animacy model.

Short coreference chains

It is hard to detect a character chain with a very few mentions. To solve this problem we

could possibly add some new features related to events of the story because event patterns

can be helpful to find a character.

Correlation between animacy and character

Some non-character animate entities were incorrectly identified as characters, because

there is strong correlation between animacy and character. To solve this problem we need

more analysis of the plot structure and to find features that more specific to character

vis-a-vis animacy.

Encoding aspects of the plot

The last point is critical. Although it seems that features related to how animate and

prevalent a referent is are quite useful for identifying characters, they still fall somewhat
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short. I hypothesize that features related to encoding aspects of the plot, to determine if

a referent is contributing to the plot in a meaningful way, will be critical to substantially

improving character identification performance. I plan to explore this idea in final work.

3.7 Results and Discussion

The extended ProppLearner (PL)

I performed some preprocessing on this corpus, primarily involved in correcting minor

errors in the coreference chain annotation. This included removing duplicate coreference

chains generated by Stanford CoreNLP, merging coreference chains with the same chain

heads, and merging pronouns with the correct chain heads. As expected, I obtained good

results using this corpus as the coreference chains are of high quality (i.e., I started with

gold standard chains and corrected the small number of errors I found). Table 3.5 and

Table 3.6 showed the full set of experiments with the model on each corpus. For the

ProppLearner corpus I experimented with different combinations of features as shown.

Using all seven features my model achieved an F1 of 0.81 on this corpus. As mentioned

above, I used ten-fold cross-validation. Furthermore, to evaluate the effect on the per-

formance due to the character class imbalances in the animate chains from the animacy

classifier, I experimented with two types of class balancing approaches: (1) oversampling

the minority class only, and (2) oversampling the minority class and undersampling the

majority class. In case 1, the performance improved marginally to an F1 of 0.84, and in

case 2, the performance improved to an F1 of 0.88.

OntoNotes (ON)

I evaluated the model in three ways on OntoNotes data. First, I trained and tested the

character model on the complete OntoNotes data with all features, achieving an F1 of
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Non Character
Corpus Feature Set Acc. κ Prec. Rec. F1

Propp-
Learner

Baseline MFC 70% 0.0 0.70 0.1 0.82
CL, WN 86% 0.67 0.89 0.92 0.91
CL, SS, WN, NE 89% 0.74 0.90 0.97 0.93
CL, SS, WN, NE, DP, CN 90% 0.76 0.91 0.96 0.93
CL, SS, WN, NE, DP, TP, CN 89% 0.74 0.91 0.95 0.93
Over Sampling 84% 0.68 0.82 0.88 0.85
Over and Under Sampling 88% 0.76 0.87 0.90 0.88

OntoNotes

Baseline MFC 60% 0.0 0.60 0.1 0.74
CL, SS, WN, NE, DP, TP, CN 49% 0.0 0.0 0.0 0.0

Evaluation by Random Sampling* 70% 0.0* 0.0* 0.0* 0.0*
Over and Under Sampling 24% 0.0 0.18 1.0 0.29
Over Sampling 87% 0.50 0.76 0.50 0.58

CEN Baseline MFC 95% 0.0 0.95 0.1 0.97
CL, SS, WN, NE, DP, TP, CN 97% 0.71 0.97 0.99 0.98
Over Sampling 94% 0.80 0.95 0.98 0.97
Over and Under Sampling 90% 0.80 0.88 0.92 0.90

Evaluation by Random Sampling* 96% 1.0* 0.96 1.0* 0.98

Weighted Average (by # of Coref Chains) 89% 0.92 0.93 0.95 0.94

Table 3.5: Performance of different features sets for identifying characters. MFC stands
for most frequent class; Acc. stands for accuracy; Prec. stands for precision; Rec. stands
for recall. κ = Cohen’s kappa [Cohen, 1960].

0.66. Because the OntoNotes coreference chains are not completely clean (containing

some duplicates and incorrect chains), I used direct sampling [Saunders et al., 2009] to

select a subset of the chains and manually corrected them, and trained and tested the

full model over this subset. This achieved an improved F1 of 0.82, suggesting that the

classes are imbalanced because the model voted for majority class only. The details of

the sampling are: confidence Level = 95% , Confidence Interval = 4, Population = 1,145

and Sample Size = 394. Finally, as the classes are imbalanced (there are many fewer

character chains with non-character chains), I performed over- and under-sampling in

the same fashion as for the ProppLearner data. When oversampling only, I achieved an

improved performance of 0.91 F1. When over- and under-sampling simultaneously, I

achieved a performance of 0.92 F1.
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Character
Corpus Feature Set Acc. κ Prec. Rec. F1

Propp-
Learner

Baseline MFC 70% 0.0 0.0 0.0 0.0
CL, WN 86% 0.67 0.81 0.73 0.77
CL, SS, WN, NE 89% 0.74 0.91 0.73 0.81
CL, SS, WN, NE, DP, CN 90% 0.76 0.90 0.77 0.81
CL, SS, WN, NE, DP, TP, CN 89% 0.74 0.74 0.86 0.81
Over Sampling 84% 0.68 0.86 0.82 0.84
Over and Under Sampling 88% 0.76 0.90 0.86 0.88

OntoNotes

Baseline MFC 60% 0.0 0.0 0.0 0.0
CL, SS, WN, NE, DP, TP, CN 49% 0.0 0.50 1.0 0.66

Evaluation by Random Sampling* 70% 0.0* 0.50 1.0* 0.82
Over and Under Sampling 24% 0.0 0.83 1.0 0.91
Over Sampling 87% 0.50 0.90 0.95 0.92

CEN Baseline MFC 95% 0.0 0.0 0.0 0.0
CL, SS, WN, NE, DP, TP, CN 97% 0.71 0.87 0.63 0.73
Over Sampling 94% 0.80 0.91 0.78 0.83
Over and Under Sampling 90% 0.80 0.91 0.88 0.90

Evaluation by Random Sampling* 96% 1.0* 1.0* 1.0* 1.0*

Weighted Average (by # of Coref Chains) 89% 0.92 0.91 0.88 0.90

Table 3.6: Performance of different features sets for identifying characters. MFC stands
for most frequent class; Acc. stands for accuracy; Prec. stands for precision; Rec. stands
for recall. κ = Cohen’s kappa [Cohen, 1960].

Corpus of English Novels (CEN)

I evaluated our model on CEN in exactly the same way as on OntoNotes. First, I ran

our character model on the whole CEN data and achieved an F1 of 0.73. I used direct

sampling to select and correct coreference chains, and the model achieved an F1 of 1.0

over this corrected data, suggesting that coreference chain quality was a significantly

larger factor in performance over this data. The details of the sampling are: confidence

Level = 95% , Confidence Interval = 4, Population = 17,251 and Sample Size = 580.

Finally, tried oversampling alone to achieve a significantly improved F1 of 0.83. I also

tried simultaneous over- and under-sampling to achieve an improved result of 0.90 F1.
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Corpus Sampling Settings

PL Over Duplicated 532 char. chains
Over & Under Duplicated 532 char. chains, removed 266 non-char. chains

ON Over Duplicated 347 char. chains
Over & Under Duplicated 225 char. chains, removed 225 non-char. chains

CEN Over Duplicated 2,927 char. chains
Over & Under Duplicated 6,104 char. chains, removed 10,275 non-char. chains

Table 3.7: Different settings for over and under Sampling.

3.8 Error Analysis

A detailed error analysis of the results revealed some minor problems for the character

identification model that depend mainly on the external tools I have used and the quality

of the data.

Animacy model

The character model uses the output of the animacy detector and so if a character was

not marked animate, the character model also missed it. Conversely, sometimes inani-

mate chains are incorrectly marked animate, providing an additional opportunity for the

character model to err. Thus, the character model’s performance is bounded by that of

the animacy model. This dependency is shown in Figure 3.7, where the character model

performed better when I used the human-annotated animacy labels.

Quality of coreference chains

The quality of coreference chains is critical for the character model. We can see from

Table 3.5 and 3.6 that in the initial experiments, my model achieved excellent results

for the extended ProppLearner (F1 of 0.81) data because of its clean and hand-corrected

coreference chains. On the other hand, the character model achieved a notably lower

performance (F1 of 0.66 and F1 of 0.73) on the Ontonotes and CEN corpus, primarily
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because I have used the automatically generated conference chains for CEN corpus pro-

duced by Stanford CoreNLP. This was demonstrated by a random sampling evaluation to

manually correct sample of CEN data, after which the model achieved a significantly im-

proved F1 of 1.0. We need better systems for automatically generating coreference chains

to solve this problem.

Short coreference chains

Identifying the character information of short chains is a challenging task because chain

length is one of the most effective features of the character model. In the case of short

chains, the model only depends on the chain heads, and if a chain head does not carry

much meaningful information, then the model can classify that chain incorrectly. We can

see the performance improvement of the character model with increasing chain length

from Figure 3.7. Solving this problem is critical, but adding more features that carry

semantic information of a chain could be helpful.

Imbalanced data

The data should be balanced to obtain good performance, which is a common requirement

for any machine learning model. The performance improvement is shown in Table 3.5

and 3.6 for the three datasets after applying under- and over-sampling. The character

model achieved the best performance when I applied over- and under-sampling together to

ProppLearner (F1 of 0.88). For OntoNotes, my model reached the best performance when

oversampling is applied (F1 of 0.92). Similarly, the model’s performance significantly

improved when over and under sampling are applied together to CEN (F1 of 0.90).
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Limited foreign words

One minor source of error for my character model is limited foreign words, which is

a data specific problem. The extended ProppLearner data contains numerous Russian

character names (e.g., Parakha, Gornya, Shabarsha, etc.) that are not commonly found

in English training data for NER systems or linguistic resources (WordNet, ConceptNet).

As a result, our system was sometimes not able to identify these chains as a person, and

that affects the model’s performance. To address this problem, we could, for example,

improve coverage of the NER gazetteers.
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Figure 3.7: F1 vs. chain length of the character identification model on OntoNotes for
both manually corrected and automatically computer animacy markings.

3.9 Confirming Generalizability

I evaluated the generalizability of my model by experimenting with different corpora in

training and testing. Table 3.8 shows that the model trained on ProppLearner performed

best on every test corpus, and the model trained on OntoNotes performed poorly on others.

The overall performance for these experiments is not as high as the experiments keep-

ing the training and testing corpus the same. As I have discussed before, the three corpora

are different in size, type, and structure. The ProppLearner is a well-structured corpus

including Russian folktales between 647 and 5,699 words; OntoNotes is a corpus full of
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Test Corpus Micro-
ProppLearner OntoNotes CEN Avg

Train Corpus Acc. κ F1 Acc. κ F1 Acc. κ F1 F1

CEN 84% 0.68 0.84 48% 0.37 0.60 94% 0.85 0.96 0.93
ON, CEN 85% 0.72 0.85 50% 0.47 0.62 91% 0.83 0.92 0.89
PL, CEN 86% 0.72 0.86 47% 0.33 0.59 91% 0.83 0.91 0.89
All 85% 0.72 0.85 54% 0.07 0.66 91% 0.83 0.92 0.89
PL, ON 87% 0.74 0.87 81% 0.46 0.88 87% 0.75 0.88 0.88
PL 89% 0.79 0.89 69% 0.27 0.80 87% 0.75 0.88 0.85
ON 71% 0.43 0.76 88% 0.47 0.93 71% 0.42 0.76 0.77

Table 3.8: Performance of character model for different training and testing setups. Acc.
stands for accuracy. κ = Cohen’s kappa [Cohen, 1960].

short broadcast news texts (<1,028 words) that are loosely-structured story-wise; while

the CEN corpus includes large chapters from English novels (1,402 - 7,060 words each)

where the plot and characters are well developed. As a result, when I run the experi-

ments on different training and testing corpus, the model sometimes finds it challenging

to identify the right pattern for another type of corpus.
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CHAPTER 4

STEREOTYPICAL ROLE LEARNING

4.1 Motivation

Stereotypical characters are characters that both play an important role in the plot of a

story and fit into recognizable categories. In general, characters are central to every nar-

rative and drive the action forward, and stereotypical character roles include both com-

mon, context-independent roles such as Hero, Villain, or Victim, as well as culturally-

specific roles such as the Donor (in, for example, Russian tales) or the Trickster (in, for

example, Native American tales). Referred to alternatively as archetypes [Abrams and

Harpham, 2014] or dramatis personae [Propp, 1968], stereotypical character roles are

crucial aids to narrative understanding: they facilitate efficient communication with bun-

dles of default characteristics and associations and ease understanding of the purpose of

those character in the overall narrative [Robbins, 2005]. Beyond demonstrated cognitive

effects, stereotypical character roles are useful for NLP tasks such as narrative genera-

tion [Gervás, 2013], interactive dialogue generation [Rowe et al., 2008], and sentiment

analysis [Bhaskaran and Bhallamudi, 2019].

Prior work has demonstrated the utility of pre-identified roles. But how do we learn

the roles in the first place? There have been several approaches to this task, but all prior

work incorporated some a priori knowledge of the possible stereotypical roles in the

model, for example, results of manual qualitative analyses [Harun and Jamaludin, 2016],

an archetype ontology [Groza and Corde, 2015], or feature vectors of archetype infor-

mation [Valls-Vargas et al., 2016]. Ideally, a solution to this task will learn roles from

the data in a completely unsupervised manner. I present just such an approach here, a k-

means-based unsupervised clustering using plot functions as the key feature: I show that
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if we know characters’ involvement in plot functions for a corpus, we can automatically

induce the stereotypical roles with reasonable performance.

4.2 Propp’s Morphology

Vladimir Propp (1895-1970) was a Russian folklorist who wrote one of the first classic

analyses of stereotyped character roles in literary theory [Propp, 1968]. Propp analyzed

100 Russian folktales and introduced seven stereotypical character roles, including 31

basic structural elements or plot functions typical of all fairy tales Russian folklore.

4.2.1 Stereotypical Character Roles

According to Propp in [Propp, 1968], all of the characters in stories can be reduced to the

following seven stereotypical character roles.

Hero The role model of a story.

Villain The negative character who creates struggles for the hero.

Donor The character who provides some magical object to the hero.

Helper The character who helps the hero.

Princess The character who becomes a companion of the hero.

Dispatcher The character who illustrates the need for the hero’s quest and sends the

hero off.

False Hero The character who takes credit for the hero’s actions.

4.2.2 Plot Functions

Propp described 31 consecutive plot functions in [Propp, 1968].

Absentation One of the members of a family absents himself from home.
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Interdiction An interdiction is addressed to the hero.

Violation of interdiction The interdiction is violated.

Reconnaissance The villain makes an attempt at reconnaissance.

Delivery The villain receives information about his victim.

Trickery The villain attempts to deceive his victim in order to take possession of him

or his belongings.

Complicity Victim submits to deception and thereby unwittingly helps his enemy.

villainy The villain causes harm or injury to a member of a family.

Lack A member of a family lacks something or desires to have something.

Meditation Misfortune or lack is made known; the hero is approached with a request

or command; he is allowed to go, or he is dispatched.

Beginning counteraction The hero agrees to or decides upon counteraction.

Departure The hero leaves home.

First function of the Donor The hero is tested, interrogated, attacked, etc., which

prepares the way for his receiving either a magical agent or a helper.

The hero’s reaction The hero reacts to the actions of the future Donor.

Provision of a magical agent The hero acquires the use of a magical agent.

Guidance Hero is led to the whereabouts of an object of search.

Struggle The hero and the villain join in direct combat.

Branding The hero is branded.

Victory The villain is defeated.

Liquidation of Lack The initial misfortune or lack is liquidated.

Return The hero returns.

Pursuit The hero is pursued.

Rescue Rescue of the hero from pursuit.

Unrecognized arrival Unrecognized, he arrives home or in another country.
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Unfounded claims A false hero presents unfounded claims

Difficult task A difficult task is proposed to the hero.

Solution The task is resolved.

Recognised The hero is recognised.

Exposure The false hero or villain is exposed.

Transfiguration The hero is given a new appearance

Punishment The villain is punished.

Wedding The hero is married and ascends the throne.

4.3 Approach

I implemented K-Means clustering using plot function and thematic information. My

approach aims to prove that if we know a character’s involvement in the plot functions,

we can automatically learn its role.

4.4 Data and Annotation

I demonstrate my method on the so-called extended ProppLearner corpus [Jahan et al.,

2020a], which is an expansion of the 16 tale ProppLearner corpus [Finlayson, 2017]. This

corpus comprises 46 Russian folktales originally collected in Russia in the late 1800s but

translated into English, and then annotated using modern linguistic annotation methods

for a variety of useful information. To the best of my knowledge, this is the only corpus

that provides gold-standard stereotypical character role annotations as well as plot func-

tion information. It also contains gold-standard annotations for referring expressions,

coreference chains, animacy, and character [Jahan et al., 2018, 2020a]. I along with my

mentee, Rahul Mittal performed some manual correction on this corpus, primarily elim-
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Element Type Counts Archetype Gold Automated

Texts 46 Hero 58 53
Tokens 1,09,120 Villain 97 72
Coreference Chains Donor 28 21
Total 4,960 Helper 50 31
Gold Animate 2,004 Princess 27 25
Automated Animate 2,225 Dispatcher 20 17
Gold Character 564 False Hero 2 2
Automated Character 534 Others 282 313
Archetype 194

Table 4.1: Counts of different archetypes of the gold-standard annotation and the auto-
mated output of the animacy-character-archetype model.

inating minor errors in the coreference chain and plot function annotation and merging

coreference chains that were erroneously split. Table 4.1 shows various information about

the corpus, focusing on both gold standard and automatically computed features of coref-

erence chains, and also including counts of coreference chains that were marked with

various stereotypical character roles.

4.5 Methodology

My approach assumes I begin with coreference chain annotations. I first detected the

animate entities using my existing state-of-the-art animacy detector [Jahan et al., 2018],

then identified which of those animate entities are characters using my existing character

identifier [Jahan et al., 2020a]. Finally, I implemented k-means clustering to learn the

stereotypical roles of those characters.

4.5.1 Animacy Detection

According to the operational definition of character found in Jahan et al. [2020a], a char-

acter must be an animate object that is important to the plot. Thus the first step of role
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learning is to detect the animate entities. I used my animacy classifier described in the

chapter (§2) for animacy detection over coreference chains. I used the best-performing

model, a hybrid model incorporating supervised machine learning and hand-built rules.

4.5.2 Character Identification

For identifying characters, I used the character identifier and the gold-standard character

annotation of the character identifier I described in the chapter (§3). The character model

is a straightforward supervised machine learning model that includes seven features, and

it performs quite well on the extended ProppLearner corpus.

4.5.3 Clustering: Models

To cluster identified characters into Propp’s stereotypical character role groups, I used

k-means clustering. Although Propp identifies seven roles, I excluded the False Hero

characters from the data because there are only two examples. I have added an extra label

named Others which represents non-archetype characters or non-major characters.

4.5.4 Clustering: Features

tf-idf

I computed tf-idf vectors over words of the heads of the coreference chains as a feature.

The vector size is 319, which means 319 unique words where each coreference chain has

non-zero tf-idf entries for at least one place in the vector or possibly more, depending on

the number of words in the head. Using sci-kit learn the tf-idf parameters were max df =

0.1, min df = 0.01, and stop-words = “english”.
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Bag-of-words

I computed bag-of-words vectors over coreference chain head words as a feature. The

vector length is 319, one entry for each unique word across the co-reference chain heads.

The parameters of the bag-of-words are configured as max df = 0.1, min df = 0.01, and

stop-words = “english”.

Hashing

I calculated hashing vectors to convert the words of the coreference chain heads to a sparse

matrix of token occurrence counts. The parameters of the bag-of-words are configured as

n features = 52.

Plot

I explored six different vector encodings of how characters participated in plot functions

(P1c, P1b, P2c, P2b, P3, and P4). Vectors P1 and P2 were computed in one of two

ways: “count” where each index represents how many times a character participates in a

particular function, and “binary” where each index represents whether or not a character

participates a particular function.

P1c and P1b These feature vectors are of length 31 (one for each of Propp’s plot

functions), and encodes whether there is a string match between the input character chain

and the sentences containing the plot function events. I calculated this feature in both

“count” (P1c) and “binary” (P1b) ways. This feature vector is intended to capture whether

a character participates in a function.

P2c and P2b These feature vector are of length 62 (two places for each of Propp’s plot

functions), and encodes whether there is a string match between the input character chain

and the agent or patient arguments (computed via a semantic role labeler) for the verb

associated with each plot function. I calculated this feature in both ways, “count” and
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“binary”. These feature vectors are intended to capture whether a character participates

in a function but distinguish between agent and patient participation.

P3 This feature vector is of length 62 and is a function of P2c and P2b. The first

31 places encode the difference between the P2c agent and P2c patient counts for each

plot function: i.e., P3[i]0−30 = P2c[i]−P2c[i + 31]. The second 32 places encodes the

P2 binary agent entry OR’d with the binary patient entry for each plot function: i.e.,

P3[i]31−61 = P2b[i] ∨ P2b[i + 31]. This feature vector is intended to capture how much

more a character participates in a function as agent or patient.

P4 This feature vector is the same as P3 except the first 31 places are mapped via the

sgn() function to -1, 0, or 1. This feature vector captures merely whether a character on

balance participates in a function more as agent or patient.

4.5.5 Clustering: Cluster Evaluation Method

Because the output of the k-means clustering is just a set of clusters, to evaluate against

the gold standard I must assign a stereotypical character role to each cluster. To do so, I

followed the following procedure: (a) Order the list of seven stereotypical character role

labels by their gold-standard annotation counts in descending frequency. (b) Pop the first

label from the list and compute the F1 of that specific label in each cluster based on the

gold-standard annotations for characters. (c) The cluster with the maximum F1 for that

label will be assigned to that label. (d) Repeat steps b − c until the label list is empty. I

explored variations of this procedure using counts and percentages instead of F1, but the

final result was unchanged.
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4.6 Results and Discussion

For each feature set explored, I swept the number of clusters (k) from 1 to 20, calculating

the overall F1 across the clustering as an objective measure. In most cases, k = 7 produces

the highest performance, which matches the number of labels in the set. In general, the

plot function P1b feature outperformed all of the other plot function features. My model

achieved the best performance (F1 0.58) for the feature set of P1b, tf-idf, bag-of-words,

and hashing for all clustering assignment methods.

For the case of individual cluster results, we can see that the results of Hero, Villain,

Princess, and Other clusters are better than Donor, Helper, and Dispatcher clusters. I

hypothesize that this is due to both lack of data for the latter labels, as well as lack of

distinctiveness in the distributions of their plot function participation.

Features Hero Villain Donor Helper Princess Dispa- Other ARI F1

tcher

tf-idf 0.35 0.42 0.09 0.33 0.70 0.55 0.03 0.11 0.24
P2c 0.03 0.04 0.00 0.18 0.04 0.24 0.61 0.09 0.41
P2b 0.00 0.30 0.32 0.00 0.26 0.28 0.65 0.18 0.43
P4 0.24 0.38 0.05 0.21 0.46 0.09 0.63 0.14 0.47
P3 0.03 0.04 0.00 0.20 0.06 0.24 0.61 0.09 0.41
P1c 0.15 0.05 0.00 0.05 0.00 0.32 0.60 0.07 0.39
P1b 0.38 0.59 0.44 0.37 0.27 0.00 0.69 0.27 0.50
P1b, T, B, H 0.60 0.63 0.27 0.37 0.67 0.40 0.68 0.29 0.58

Table 4.2: Performance of the different feature sets for k = 7. ARI = Adjusted Rand
Index, T = tf-idf, B = bag-of-words, H = Hashing

4.7 Error Analysis

A detailed error analysis of the results revealed some minor problems for the archetype

model that depend mainly on the external tools I have used and the quality of the data.
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Animacy and character models

The archetype model uses the output of the animacy and character detectors. So if a

character was not marked animate, the character model also missed it, and therefore,

the archetype model missed it. Conversely, sometimes inanimate chains are incorrectly

marked as animate or character, providing an additional opportunity for the archetype

model to err. Thus, the archetype model’s performance is bounded by that of the animacy

and character models.

Quality of coreference chains

The quality of coreference chains is critical for the archetype model. Initially, my archetype

model did not achieve good performance, but the performance increased gradually when

some hand-corrections of the coreference chains were done. Besides, there are some

mentions where multiple characters are present in plural forms in the coreference chains.

Thus, my model sometimes can not perform the string match successfully. Manual cor-

rection can be done to solve this problem.

Partial involvement of the characters

Some characters are partially involved in the plot functions; therefore, the archetype clus-

tering model can not successfully cluster them in the right cluster. Exclusion of these data

points can be a quick solution, but I did not exclude them from the corpus due to a lack

of data points.

Multiple roles

A few characters have multiple roles simultaneously, but my model can learn only one

role for a specific character. To resolve this issue, one might want to implement hier-
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archical clustering on other approaches that support multiple roles simultaneously. I did

not implement these approaches because most of the characters in extended proppLearner

have only one role.

Plot function annotation

The plot function is an important part of this stereotypical role learning project. Initially,

I used the gold annotations that were already present in the extended ProppLearner cor-

pus. Later, I revised the annotation, and the model achieved better performance with the

revised annotations.
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CHAPTER 5

RELATED WORK

5.1 Animacy Detection

I divided the related work for animacy into two sections: first animacy detection in En-

glish, followed by animacy detection in other languages. The work reported here is in

English (thus the related work of the first section), but the material covered in non-English

second section makes clear both that my approach had not attempt before in any language,

and also that no language-specific features have been used in any prior work. There have

been both rule-based and machine learning methods to classify the animacy of words,

but to the best of my knowledge, no one has combined both techniques, and no one has

tackled animacy classification at the referring expression or coreference level.

5.1.1 Animacy Detection in English

Evans and Orǎsan [2000] performed animacy classification to improve anaphora resolu-

tion using a rule-based method to identify animate WordNet hypernym branches. In later

work they used supervised machine learning to mark unseen WordNet senses for their an-

imacy [Orǎsan and Evans, 2001, 2007]. The rule-based method uses the unique beginners

in WordNet for classification of sense animacy using a statistical chi-squared method,

while the machine learning method uses k-nearest neighbors in a multi-step procedure,

along with careful feature engineering, to determine noun animacy. They achieved an F1

of 0.94 for animacy, and also performed an extrinsic evaluation using the MARS anaphora

resolution system and a word sense disambiguation algorithm. Similarly, Moore et al.

[2013] combined a majority vote model using rule-based methods, features from Word-
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Net, and a SVM to achieve an accuracy of 89% for majority voting and 95% for SVM (no

F1 score was reported).

Bowman and Chopra [2012] used a maximum entropy classifier to predict multiple

classes for noun phrases as human, vehicle, time, animal, etc., with an overall accuracy of

85%. A binary animacy classification could be derived from each of these classes, with a

performance of 94% accuracy.

Additionally, there are others that have used pure rule-based and pattern matching

methods. Ji and Lin [2009] generate n-grams and performed pattern matching using the

Google n-gram corpus to label gender and animacy properties for words for to assist

in person mention detection. With these gender and animacy markings, they applied a

confidence estimation which is compared against the test document using fuzzy matching.

The highest F1 they achieved for animacy was 0.67, with an F1 of 0.46 for gender.

Declerck et al. [2012] used an ontology-based method to detect characters in folktales.

Their ontology consists of family relations as well as elements of folktales such as super-

natural entities. After looking at the heads of noun phrases and comparing them with

labels in the ontology, they added the noun phrase to the ontology as a potential character

if a match was found. Then, they applied inference rules to the candidate characters in

order to find two strings in the text that refer to the same character. They discarded strings

that are related to a potential character only once and are not involved in an action. They

obtained an accuracy of 79%, a precision of 0.88, a recall 0.73, and an F1 of 0.80.

Wiseman et al. [2015] used a mention-ranking approach for coreference resolution,

using animacy as a feature, derived from the Stanford Coreference System [Lee et al.,

2013]. The Stanford Coreference System set animacy attributes using a static list for

pronouns, named entity labels, and a dictionary.

Finally, a marginally related rule-based system was implemented by Goh et al. [2012a]

using verbs and WordNet in order to determine the protagonists in fairy tales (where pro-
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tagonists must of necessity be animate). They used the Stanford parser’s phrase structure

trees to obtain the subjects and objects of the verbs and used the dependency structure to

obtain the head noun of compound phrases. Additionally, they used WordNet’s deriva-

tionally related relation to find verb associated with a particular nominal action. They

achieved a precision of 0.69, a recall of 0.75, and an F1 of 0.67.

5.1.2 Animacy Detection in Other Languages

Nøklestad [2009] implemented animacy detection for Norwegian nouns, using this along

with Named Entity Recognition to improve the performance of anaphora resolution. They

explored various pattern matching methods, using web data to extract lists of animate

nouns as well as to check the animacy of a particular noun. For example, if a noun co-

referred frequently with han (he) or hun (she), then it was characterized as animate. This

method achieved an accuracy of 93%. The main problem here, from my point of view,

is that using data from the web makes the problem too general: you only measure the

typicality of animacy, not the animacy of an item in context. In the case of folktales, we

have unusual animate entities (e.g., talking stoves) that will on the whole be seen by the

web as inanimate.

Bloem and Bouma [2013] developed an automatic animacy classifier for Dutch nouns

by dividing them into Human, Nonhuman and Inanimate classes. They use the k-nearest

neighbor algorithm with distributional lexical features—e.g., how frequently the noun

occurs as a subject of the verb “to think” in a corpus—to decide whether the noun was

predominantly animate. Prediction of the Human category achieved 87% accuracy, and

the large inanimate class was predicted correctly 98% of the time. But, again, this work

focuses on individual noun phrases, not coreference chains, and is concerned with the

default animacy of the expression, not its animacy in context.
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Another implementation of word-level animacy for Dutch was performed by Karsdorp

et al. [2015] on folktale texts. Because this work was the highest performing word-level

system, many of our features were inspired by their approach. They used lexical features

(word forms and lemmas), syntactic features (dependency parses to check which word is

a subject or an object), part of speech tags, and semantic features (word embedding using

a skip-gram model to vectorize each word). They implemented a Maximum Entropy

Classifier to classify words according to their animacy and obtained a good result of 0.93

F1 for the animate class, by just using the words, parts of speech, and embedding features.

Baker and Brew [2010] performed animacy classification on a multilingual dataset

containing English and Japanese. They used Bayesian logistic regression with morpho-

logical features, WordNet semantic categories, and frequency counts of verb-argument

relations. They obtained 95% classification accuracy. In sum, all the prior work has been

for word-level animacy (usually nouns, sometimes noun phrases). In contrast, I focused

on characterizing the animacy of referring expressions and coreference chains.

5.2 Character Identification

Prior work on automatic character identification has relied heavily on statistical tech-

niques and linguistic grammar-based techniques. My work is mainly inspired by Calix et

al. [2013] who used a Support Vector Machine (SVM) classifier to detect sentient actors

in spoken stories. The model compares four different ML classifiers with 83 features (in-

cluding knowledge features extracted from ConceptNet) and reports an F1 of 0.86. It was

found that certain speech features enhanced the results for non-named entities. However,

the model focuses on animacy detection rather than character identification.

A similar line of work by Valls-Vargas et al. [2014a] implemented a case-based ap-

proach using the Voz system. Apart from linguistic features, the most important features
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were extracted from WordNet and ConceptNet. Although they reported a 93.49% accu-

racy for a subset of the Proppian Folktales, it does not give a concrete definition of a char-

acter. They also proposed a similarity measure (Continuous Jaccard) that compares the

entities from the text and case-base of the Voz system. Valls-Vargas [2015] further incor-

porated a feedback loop into Voz; this iterative approach improves co-reference grouping,

but there isn’t an improvement in character identification.

The most recent work on character identification took a supervised ML approach to

classify nouns as characters using 24 different linguistic features, including capitalization

and possession-based on Freeling and JavaRAP [Barros et al., 2019]. Out of the

different classifiers, ClassificationViaRegression, achieved an F1 of 0.84; however, it only

worked for nouns and ignored pronouns.

Other approaches have used NER systems and domain-specific gazetteers in addi-

tion to other techniques such as graphs and verb analysis. Vala et al. [2015] proposed

an eight-stage pipeline for identifying characters by building a graph where each name

is represented as a node, and the nodes representing the same character are connected

with edges. NER and co-reference resolution are used to populate the graph and con-

nect nodes co-occurring in a chain, respectively. The main heuristics used distinguish

between distinct characteristics compares genders (by looking at honorifics) and names.

The model achieves an average F1 of 0.58 on two datasets; however, it is limited to a cor-

pus with characters that can be easily recognized by NER. Goh et al. [2012a] proposed

a NER-based approach to identify the protagonists in fairy tales using WordNet and verb

features. They used the Stanford parser to extract NE candidates, which is then filtered

by verb analysis. They reported an F1 of 0.67. In further work, Goh et al. [2013] iden-

tified the dominant character in fables using the VAHA (Verbs Associated with Human

Activity) architecture [Goh et al., 2012b] and taking into account quoted speech, achiev-

ing an F1 of 0.76. The same architecture, when applied to news articles, achieves an
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F1 of 0.88 [Goh et al., 2015]. Vani and Antonucci [2019] has described a modular tool

called NOVEL2GRAPH, which generates visual summaries of narrative text. As part of

the first module, characters are detected using Stanford’s NER, which are further filtered

using part-of-speech tagging. Character aliases are grouped using the DBSCAN cluster-

ing algorithm and stored in a dictionary. They did not report the performance of their

approach.

Lastly, Declerck et al. [2012] demonstrated an ontology-based approach for auto-

mated character identification in folktales. They compared indefinite noun phrases with

ontology labels, and used the matches to propose potential characters. Finally, they ap-

plied inference rules, and all occurrences of a particular ontology label were marked as

references to the same character. The study reports an F1 of 0.80. Although this approach

has the closest implicit definition of a character to mine, the ontology is domain-based

and is unlikely to generalize well to other domains.

5.3 Stereotypical Role Learning

Vladimir Propp (1895–1970) was a Russian folklorist who provided one of the first classic

accounts of stereotypical character roles in literary theory [Propp, 1968]. Propp studied a

corpus of 100 Russian Hero folktales, and in his analysis proposed 31 plot functions and

seven stereotypical character roles (which he called dramatis personae): Hero, Villain,

Donor, Helper, Princess, Dispatcher, and False Hero. While Hero and Villain are fairly

universal, roles such as Donor and False Hero are somewhat culturally specific.

There is a limited amount of prior work on learning or using stereotypical character

roles in stories. One body of work uses roles, but does not automatically extract them.

For example, Valls-Vargas et al. [2014b] built upon their work in character identification

[Valls-Vargas et al., 2014a] to assign stereotypical roles to characters. The authors en-
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coded Propp’s “sphere of action” [Propp, 1968, §6] into a role action matrix and used a

greedy similarity matching approach to assign roles to characters achieving 33.56% accu-

racy when using manually extracted characters. Similarly, Skowron et al. [2016] designed

a system to classify characters in action movies into categories such as Hero, Antagonist,

Spouses, and Sidekicks using graph and n-grams features, with an overall performance of

0.43 F1. Groza and Corde [2015] in which the authors integrated Propp’s seven dramatis

personae into an existing ontology, and then exploited constraints of character roles to

reason over the ontology, inferring such things as family relationships and whether an en-

tity was a main character. The model achieves 74% accuracy and outputs major characters

who belong to one the seven types, but does not classify them more precisely.

Other work has tackled unsupervised clustering of characters, but either at more ab-

stract levels or not quantitatively evaluated. The level of abstraction is important, because

the more abstract a character role, the more likely it is to be found across cultures: unlike

automatic character identification [Jahan et al., 2020a], which is generalizable across do-

mains, stereotypical character roles depend strongly on the cultural background of the

text. For example, Chen et al. [2019] used a minimum span clustering approach to

group characters into core, secondary and peripheral categories using a character net-

work; such categories, while useful for stereotypical role learning, are not themselves

culturally-specific stereotypical roles. Bamman et al. [2013] identifies the what they call

the persona of characters—similar to a stereotypical character role—by clustering agent

and patient actions as well as the adjectives used to describe the characters. Their model

achieves 42% purity at best between the models of the same size. Following a similar

persona definition, Bamman et al. [2014] developed the BookNLP pipeline to extract nar-

rative information from English novels. The model is hierarchical and assigns multiple

personas to a characters, and the authors used the analysis to explore the relationship be-
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tween character persona and author style and literary effects; however, the reliability or

performance of the actual persona extraction was not quantitatively evaluated.

Stereotypical roles are also useful in other NLP tasks. Gervás [2013] explores the

use of Propp’s 31 plot functions and seven dramatis personae to generate stories, while

Rowe et al. [2008] propose a model to generate role-appropriate dialogues for different

character archetypes in an interactive environment. Another recent work [Bhaskaran and

Bhallamudi, 2019] looks at stereotypical gender and occupational roles to identify bias in

sentiment analysis models.
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CHAPTER 6

CONTRIBUTIONS

In my dissertation, I focused on three major chapters that are critical to the field of

narrative and language understanding.

6.1 Animacy Detection

In the area of animacy detection, I made five significant contributions. To begin, I re-

framed the animacy classification problem as one of marking animacy on coreference

chains, as opposed to all previous work that attempted to label animacy at the word

level. Second, I presented a hybrid framework that combines an SVM classifier with

hand-written rules to directly predict the animacy of referring expressions, with an output

of 0.90 F1, which is comparable to the state of the art for word-level animacy detec-

tion. Third, to determine the animacy of coreference chains, I used a majority voting

method. In contrast to our preliminary analysis, the overall performance of this method

has significantly improved. Fourth, I issued 15 texts with word-level animacy annota-

tions and 142 texts with coreference chain animacy annotations, as well as the code

that reproduced the findings. Finally, I tested and confirmed the generilizability of my

proposed animacy models. My code and data is publicly available for the community

(link: https://dspace.mit.edu/handle/1721.1/116172). Additionally, I

have two workshop publications ([Jahan et al., 2017, 2020b]) and one conference publi-

cation ([Jahan et al., 2018]) on animacy work.

6.2 Character Identification

I made four major contributions in the area of character identification. First, I proposed

a more appropriate definition of character, contrasting with prior computational works
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which did not provide a theoretically grounded definition. Additionally, I reported the

findings of a review of the literature that is helpful to delineate and define the concept of

character. Second, I annotated 170 texts for character, generating data that will be useful

for the community. Third, I demonstrated a simple supervised machine learning classifier

for character identification that achieved a weighted average of 0.90 F1, setting a new

benchmark for this task. Finally, I checked and validated my proposed character model’s

generilizability. My code and data is publicly available for the community. (https://

doi.org/10.34703/gzx1-9v95/RB6ZH0) I also have one workshop publication

([Jahan and Finlayson, 2019]) and one conference publication ([Jahan et al., 2020a]) on

character work.

6.3 Stereotypical Role Learning

In the field of stereotypical role learning, I made two significant contributions. First, I

planned and built a pipeline to learn stereotypical roles automatically. All prior work

is done with some prior knowledge of stereotypical roles, while my work is done in a

completely unsupervised fashion. To the best of my knowledge, this is the first attempt

to learn stereotypical roles automatically. Second, I demonstrated the importance of plot

functions and thematic role information in clustering similar archetypes. In addition, I

will make code and data available to the public.
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2517âC“2523, Buenos Aires, Argentina, 2015.

Hardik Vala, David Jurgens, Andrew Piper, and Derek Ruths. Mr. bennet, his coachman,
and the archbishop walk into a bar but only one of them gets recognized: On the diffi-
culty of detecting characters in literary texts. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 769–774, Lisbon, Portugal,
2015.

Hui-Ngo Goh, Lay-Ki Soon, and Su-Cheng Haw. Automatic dominant character identi-
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