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My dissertation builds on a systematic review of 125 clinical trials reporting on

treatment-related adverse events (AEs) associated with PD-1/PD-L1 inhibitors pub-

lished from 2010 to 2018. The motivating dataset contained the following study-level

components extracted from each publication: trial name, number of treated patients,

selected immunotherapy drug, dosing schedule, cancer type, number of AEs within each

category, and the pre-specified criteria for AE reporting. The number of AEs were re-

ported based upon all-grade (Grade 1-5) and Grade 3 or higher (Grade 3-5) severity. My

overall objective was to increase our understanding of the toxicity profiles of five most

common cancer immunotherapy drugs, and to evaluate AE incidence across subgroups in

a meta-analysis setting. However, for assessing drug safety in clinical trials, a common

challenge is that many published clinical studies do not report rare AEs. In particular, if

the number of AEs observed is lower than a pre-specified cutoff value, these events may

not always be reported in the publication (i.e., they are censored).

My doctoral dissertation research, thus, proposes an innovative statistical method-

ology for effectively handling censored rare AEs in the context of meta-analysis of im-

munotherapy trials. First, by deriving exact inference and robust estimates for the miss-



ing not at random data, we proposed a Bayesian multilevel regression model in the

coarsened data framework to accommodate censored rare event data. We also demon-

strated that if the censored information was ignored, the incidence probability of AEs

would be overestimated. Second, to select the best Bayesian censored data model among

a set of candidate models in the presence of complicated or high-dimensional features,

we proposed an alternative strategy to implement Bayesian model selection for censored

data analysis in Just Another Gibbs Sampling (JAGS). To generate deviance samples

from a Bayesian model using JAGS, if censoring occurs, an existing function incorrectly

calculates the value of deviance function because of the “wrong focus”, i.e., the incorrect

likelihood computed on the basis of model specification in JAGS. Therefore, we proposed

a strategy to establish a simultaneous way to calculate the true value of deviance function

in JAGS. The alternative strategy could be generalized to model other types of data and

be applied to many other disciplines. Third, we developed a sparse Bayesian selection

model with prior specifications on meta-analysis of censored rare AEs to perform selec-

tion of pairwise interactions between various study-level factors. Because the toxicity

profiles of immunotherapy drugs may not be explained comprehensively by main effects

of study-level factors, we identified the high-risk group by considering two-way interac-

tions that impact the outcome of interest. Through simulation studies, we demonstrated

that the proposed interaction selection method outperforms others in prediction accuracy

and interaction identification in the presence of missing outcome data. Lastly, we also

applied the proposed method to our real-world motivating dataset.

In sum, my dissertation work makes significant and innovative contributions to the

field of applied statistics and cancer research.
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Chapter 1

BACKGROUND

The Nobel Prize in Physiology or Medicine in 2018 was awarded to two cancer im-

munotherapy researchers who found alternative ways to activate the immune system in

the body to attack cancer cells. One of them discovered that blocking programmed cell

death protein 1 (PD-1, a protein on the surface of T cells) or programmed cell death

ligand 1 (PD-L1, a protein on the cancer cells) enables the immune system to identify

tumor cells and fight them back. This brilliant work inspired the development of the

five most popular cancer immunotherapy drugs: Keytruda (Pembrolizumab) and Opdivo

(Nivolumab), which inhibit PD-1, and Tecentriq (Atezolizumab), Bavencio (Avelumab)

and Imfinzi (Durvalumab), which target PD-L1. Immunotherapy is an innovative and

effective treatment approach to attack tumor cells for patients in different types of cancer.

However, it still poses a risk of adverse events (AEs) even if less toxic than other

cancer treatments. The severity of AE can be ranked into five categories: Grade 1 (mild),

Grade 2 (moderate), Grade 3 (severe), Grade 4 (life-threatening) and Grade 5 (death).

There is also a “Grade 0”, which is defined as absence of an AE. Since one study has

limited information on study-level factors associated to AEs, in order to see the big

picture of toxicity profiles of immunotherapy drugs, meta-analysis of relevant trials is
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needed. In the past eight years, A number of published clinical trials have reported

treatment-related AEs, providing an ideal resource for comprehensive analysis of AE

incidences. The incidence/prevalence of an adverse event is defined as the proportion of

subjects experiencing an adverse event in the study population [1]. The number of AE

cases within each study is assumed to follow a binomial distribution.

In the reporting of clinical trials, AEs are typically summarized as a count of the

observed number of incidents, which fall into many different categories. However, for

categories with a small number of observed counts (typically less than 5% of the study

sample size), trial reports may omit exact numbers for these rare events, and report only a

cut-off. Therefore, quantitative modeling of sparse binomial event data in a meta-analysis

setting has become a critical and challenging question in understanding the toxicity pro-

files of immunotherapy drugs.

Motivating Example

The methodological work of my dissertation builds on a systematic review of clinical trials

reporting PD-1 and PD-L1 inhibitors associated adverse events published from 2010 to

2018. The dataset contains the following study-level components: trial name, number

of treated patients, selected immunotherapy drug, dosing schedule, cancer type, number

of adverse events within each category, and the pre-specified criteria for AE reporting

in the corresponding publication. Some trials may include multiple dose levels, others

may treat a couple of cancer types. Here, the number of adverse events are reported

based upon all-grade (Grade 1-5), and grade 3 or higher (Grade 3-5) severity. This

motivating example illustrates how we encounter the missing outcome data in the meta-

analysis of rare adverse events and why it is essential to take informative missingness into

account. In meta-analysis to evaluate the rates of treatment-related adverse events (AEs)

of PD-1/PD-L1 immune checkpoint inhibitors from 125 eligible trials, approximate 60%

2



of AEs on average for each study were not reported due to low incidence [2]. Some AEs

were censored because they were less frequently observed based on the pre-determined

censoring cutoffs by clinical professionals. In practice, those rare events may not always

be reported. For example, left censoring occurs when some severe (Grade 3 or higher)

AEs are not reported due to low incidence. Furthermore, right censoring occurs when

some studies only report Grade 2 or higher AEs instead of all-grade AEs (if we aim to

estimate the overall all-grade AEs in the meta-analysis). In the literature, meta-analyses

either ignored the AEs with low incidence, or discarded the studies with missing outcome

(AE) data, contributing to substantial publication selection bias. Therefore, those studies

should not be ignored or treated as missing completely at random (MCAR) in the meta-

analysis, otherwise, the overall inference on incidence rates would be biased. This type

of missing data problem in the meta-analysis for rare events, however, has barely been

addressed in the previous literature.

1.1 Literature Review

1.1.1 Meta-analysis of Rare Events

Meta-analysis synthesizes findings from a set of independent clinical studies and pro-

vides a more powerful analysis than from a single study [3]. However, traditional meta-

analytical methods provide poor estimates of the true incidences of adverse events when

events are rare [4]. When the event is rare, which are commonly encountered in routine

practice, special attention should be paid statistically [5]. The existing method to model

binary event is either an approximation method based on the normal distribution or

an exact method based on the binomial distribution [6]. Estimating the probability of

rare events using a normal approximation may also lead to biased results [7, 8]. There

are a number of review articles for meta-analysis of rare events that focus on compar-

3



ing fixed-effects meta-analysis methods including inverse variance fixed effect method,

Mantel-Haenszel, and Peto, with frequentist or Bayesian random-effect models [3, 9], but

these articles do not handle any censored cases along with rare adverse events in the meta-

analysis setting. There is a rich literature on statistical methods for meta-analysis of rare

events, which includes Poisson random effects model to estimate relative risk between two

treatment groups [10], new methods to estimate the treatment effect and heterogeneity

parameter in the random-effect model [5], and a general exact meta-analysis approach to

combine inferences from multiples studies in the rare event setting [11]. However, none

of these papers mentioned missing data in the meta-analysis of rare event.

1.1.2 Missing Data in Meta-analysis

A common problem arises in the case of rare events, when the data was missing due to

especially low incidence, which makes a meta-analysis of incidence rate more method-

ologically challenging. When we encounter missing outcome data in the meta-analysis

setting, the first thing is to determine the mechanisms of missing data. The missingness

of an outcome can be classified as missing completely at random (MCAR) if it does not

depend on any other variables. Such scenario is generally not realistic in practice. For

missing at random (MAR), the missingness does not depend on the actual unobserved

outcome even if it is associated with observed data. Both MCAR and MAR are ignorable

without leading to biased estimations. However, the missing data could also be nonig-

norable when it directly relies on the unobserved outcome. The data are then missing

not at random (MNAR), also known as informatively missing because of relatedness [12].

For example, some adverse events are not reported due to being less frequently observed

in a study on the basis of a pre-specified cutoff value. In the presence of informative

missingness, if statistical analysis is only based on the likelihood of the observed data,

then the inferences on parameters are biased. Furthermore, the missing data problem

4



can also be addressed under the framework of data coarsening. When the exact value

of the data is not observed, but the unobserved true data lie in a subset of the sample

space, such incomplete data is defined as coarse data [13]. A general model of incomplete

data was proposed by Heitjan and Rubin to solve coarse data problems in the biomedical

field [14]. If the data are coarsened at random (CAR), which is a generalization of MAR,

as well as the model parameters and coarsening process are independent, suggesting the

ignorability of the incompleteness mechanism, then the likelihood inference is still valid

without considering the randomness in the coarsening [15].

There are relatively few articles dealing with the missing outcome data in the meta-

analysis of clinical trials. Much of the work focuses on complete/available cases analysis

by only including observed cases, imputation approaches (replacing with the mean or

the last observed value), best-case/worst-case scenarios, and uncertainty interval for the

summary estimates using adjusted weights [16]. These methods summarized above are

capable of dealing with data that are MCAR or MAR, but they cannot directly give

reliable and unbiased parameter estimations if the missing pattern is MNAR and/or the

percentage of missingness is high. An early reference on meta-analysis of studies with

varying proportions of missing data is Yuan and Little’s paper [17]. Three methods were

proposed to correct the bias caused by individual-level missing data in meta-analysis,

but not for the context of study-level missing outcome data which is more frequent in

the meta-analysis setting.

1.1.3 Bayesian Modeling of Censored Data and Implementation

in JAGS

In the study-level meta-analysis of censored and rare events, we aggregate evidence across

all relevant studies. For example, we aim to estimate the overall prevalence of adverse

events related to the immunotherapy drugs. Such statistical inference has been increas-
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ingly based on the evidence from meta-analysis of immuno-oncology clinical trials rather

than one trial. However, existing statistical models for meta-analysis cannot account for

the both censored and rare event data. A Bayesian hierarchical model is an appropriate

approach to deal with censored rare event data in a meta-analysis setting since it natu-

rally has advantages in describing the randomness and heterogeneity between studies as

well as solving the missing data problems without multiple imputation techniques.The

uncertainty associated with model parameters of interest can be described by prior prob-

ability distributions. Thus, to close the gap, we adopt the Bayesian framework to fit

informatively censored rare event data within a Bayesian multilevel (hierarchical) logis-

tic regression model framework, and to demonstrate how we can use this model to provide

insights into the AE incidences of immunotherapy drugs in meta-analysis.

The major computational challenge of Bayesian inference is that, for all but very

simple models, it is necessary to run simulations to obtain samples from the distribution of

the parameters. For hierarchical models, it becomes more challenging due to integrations

over plenty of unknown parameters. Markov Chain Monto Carlo (MCMC) algorithm,

which approximate the posterior distribution of a model parameter by random sampling

in a probabilistic space, is the most commonly used computational method to fit Bayesian

models. The primary benefit of MCMC over other computational methods is that it

allows uncertainty quantification, which is a key advantage of Bayesian modeling.

Just Another Gibbs Sampling (JAGS) is a software to generate posterior samples,

which makes Bayesian hierarchical models easily to be implemented using MCMC simu-

lation [18]. In particular, rjags is a R package that allows fitting JAGS model in R. The

major advantage for fitting Bayesian models in JAGS using MCMC sampling is that we

only need to specify likelihood functions and prior distributions in the model file without

writing out the full conditional distributions for model parameters, especially when the

closed form expressions are not available. In the presence of complicated features, how
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to select the best one among a set of candidate models becomes extremely important.

However, JAGS has the following limitations that prevent its much broader usage to per-

form deviance-based model selection. In the presence of censored data in the response

variable, an existing function, known as dinterval distribution is commonly used to model

censored data [19, 20]. There is an unsolved issue to calculate the correct likelihood and

Bayesian deviance due to the “wrong parameter focus”, i.e., the model specification for

censored data in JAGS gives an incorrect likelihood [21].

As one of extensions to the proposed multilevel regression model, we aim to identify

a model which is able to best describe the information in the data by comparing alter-

native models from a Bayesian perspective. Even if there is an existing function in R

available to call the dic module and perform Bayesian model selection by directly extract-

ing the deviance samples from a JAGS model to compute the posterior mean deviance, it

fails to estimate the correct deviance in the presence of missing outcome data [21]. Such

inconvenience of implementation in JAGS limits the usage of Bayesian methods to model

censored data and perform model selection for censored data models. There is an unmet

statistical computing demand to establish a simultaneous way to calculate the correct

deviance function in JAGS when censored data occurs. In this work, our focus is on

the algorithm of modeling censored data and its implementation in JAGS for Bayesian

model selection. We will demonstrate in detail how to model censored data within the

Bayesian framework using the alternative strategy in JAGS which assists in simultane-

ously calculating the correct deviance using posterior samples from MCMC simulations

for further censored data model comparison.

1.1.4 Bayesian Variable Selection Methods

To better understand the toxicity profiles of immunotherapy drugs, in addition to in-

cluding the marginal effects in a Bayesian hierarchical model, we identify the potential
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two-way interactions between various study-level factors. The major statistical question

is how to select the promising subsets of interaction terms by avoiding the overwhelm-

ing problem of computational burden posed by the high-dimensional set of interaction

terms. By fitting a sparse linear model, we select only a subset of interaction terms which

are non-zeros, which is beneficial both in terms of enabling scientific interpretation by

identifying the truly important interactions, and in terms of statistical modeling, as the

assumption of sparsity reduces the number of parameters to be estimated.

There are a number of approaches in both the Bayesian and frequentist frameworks

for achieving sparsity, with the most popular approach being the LASSO [22]. The major

existing approaches to Bayesian variable selection in the context of regression modeling

include indicator model selection, adaptive shrinkage, model space approach, stochastic

search variable selection (SSVS) [23], and horseshoe. The two methods of indicator model

selection simply set θj = Ijβj, where Ij is an auxiliary indicator variable for covariate j

and βj is jth regression coefficient. The Kuo & Mallick (K&M) method [24] assumes the

priors of the indicator and effects are independent, indicating P (Ij, βj) = P (Ij)P (βj),

while Gibbs variable selection (GVS; [25]) assumes that prior distributions are condi-

tionally independent of each other, suggesting P (Ij, βj) = P (Ij)P (βj|Ij). Rather than

using an auxiliary indicator variable,one may specify a normal prior as well as placing a

hyper-prior on its variance to induce sparseness. For example, in the Laplacian shrink-

age, a double exponential prior distribution is assigned to each model parameter [26]. In

the model space approach, priors are placed on the number of selected covariates and

corresponding coefficients using reversible jump MCMC (rjMCMC) technique [27]. The

strength of model space approach is that only the selected variables are needed to be

summed over leading to a smaller likelihood and a more convenient computation strat-

egy. SSVS is a procedure to identify the promising subsets of predictors which have

higher posterior probability using Gibbs sampling [28]. In a full Bayesian framework, a
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widely used and parameter tuning-free approach to handle unknown sparsity is known

as horseshoe prior, which has the following advantages over other procedures in terms of

robustness, adaptivity, and tractability [29, 30]. To mitigate the computational challenge

for high-dimensional data, Rovckova and George [31] proposed an alternative approach

to stochastic search, known as Expectation-Maximization (EM) variable selection, which

relies on the basis of the EM algorithm to quickly identify the promising subsets in the

high-dimensional setting.

Each Bayesian variable selection method has certain strengths and weaknesses [23];

thus, none is optimal for all scenarios, but some are better for certain scenarios. The

choice of method may depend heavily on the prior formulations. In general, rjMCMC is

the fastest method in terms of computational speed, but it may have poorer mixing. The

indicator model selection methods such as K&M and GVS are slower per iteration than

the other methods. Even though it has a reasonable computational speed, the Laplacian

method may perform poorly in mixing and separation. Overall, in terms of computa-

tional speed, efficiency of mixing, and performance of separation, the adaptive shrinkage

approach using Jeffreys’ prior can be considered as a benchmark. To handle large search

space of variables, SSVS, as a popular search algorithm for high-dimensional data, is ca-

pable of randomly exploring a small portion of the whole model space. It has the ability

to handle cases where there are more variables than the total number of observations,

and it becomes more attractive when the speed is faster under the random effects model,

and when the informative priors are assigned to improve the mixing performance and to

achieve good separation.
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1.2 Public Health Significance

Cancer, which is the second leading cause of death in the United States and world-

wide, has a significant impact on public health. Since 2014, cancer immunotherapy (anti

PD-1/PD-L1) drugs have been developed to treat different types of cancer. The ad-

verse events (AEs) of these PD-1/PD-L1 inhibitors are often serious but rare, leading to

sparse data [3]. It is critical to understand the toxicity profiles of immunotherapy drugs

and evaluate the incidences of treatment-related AEs in the meta-analysis of published

clinical trials, which may help guide clinical practice for clinicians in the future. Thus,

conducting cancer-related public health research in the meta-analysis setting by aggre-

gating medical information, such as drug safety data from a large number of published

studies, is important, but it comes with certain statistical challenges.

A common statistical problem arise in the case of rare adverse events (AEs), which

are encountered in routine practice, when the event data are missing (not reported) due

to very low incidence, which makes a meta-analysis of AE incidence probability more

methodologically challenging. To the best of our knowledge, this statistical problem on

meta-analysis of censored rare AEs has not been addressed. Thus, in my dissertation

work, we proposed a modified Bayesian multilevel logistic regression model to avoid the

biased estimation on both observed and censored data, and derive the valid inference

for better understanding the toxicity profiles of immunotherapy drugs. To perform cen-

sored model selection and implement in JAGS, we proposed an alternative strategy to

model censored data in the Bayesian framework. We selected significant interaction terms

among all candidates in the model and successfully identified the high toxicity subgroup

among cancer patients treated with immunotherapy.

One significant impact of my dissertation work is that it shows the generalizability

of the proposed strategy to model censored data and to conduct Bayesian model selection

with implementation in JAGS. For example, the proposed strategy can be used to model
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survival data, binary data, count data, and ranking data. In addition, the proposed

strategy can be used to fit Bayesian hierarchical model for censored normal outcome

[32], semiparametric accelerated failure time (AFT) models [33], illness-death model using

Bayesian approach for semicompeting risks data [34], and Bayesian Thurstonian models

for ranking data [35]. Furthermore, the proposed strategy can also be applied to many

other fields, including survival analysis, behavioral science [36], environmental science

[37], food science [38], as well as human health [39]. Finally, the proposed strategy

can be extended to model truncated data, in particular, left-truncated right-censored

observations that are common in survival analysis.

Another significant impact of my dissertation work in on drug adoption and public

health policy-making. From the perspective of health economics, the unbiased estimation

on AE incidence by severity can provide a reliable probability of each arm in the decision

tree model to calculate the incremental cost-effectiveness ratios of immunotherapy drugs

in the cost-effectiveness analysis. This information on AEs, in turn, may assist healthcare

policymakers to reasonably budget for immunotherapy treatments for various types of

cancer. Thus, my dissertation work makes significant and innovative contributions to the

field of applied statistics, as well as cancer-related healthcare system.

1.3 Research Questions and Specific Aims

1.3.1 Aim 1: Bayesian Meta-analysis of Censored Rare Events

with Stochastic Coarsening

Meta-analysis is a powerful tool for drug safety assessment by synthesizing findings from

independent clinical trials. However, published clinical studies may or may not report

all adverse events (AEs) if the observed number of AEs were fewer than a pre-specified
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study-dependent cutoff, which can be considered as a special type of data coarsening [13]

for rare events. To derive exact and robust inference, we investigate the stochastic nature

of informative censoring and the conditions of ignorability for coarsened data mechanism.

The proposed approach is illustrated using data from a recent meta-analysis of 125 clin-

ical trials involving PD-1/PD-L1 inhibitors with respect to their toxicity profiles. We

demonstrate that if the censored information is ignored, the incidence probability of ad-

verse event is overestimated; this bias could have significant impact on immunotherapy

drug adoption and public health policy.

1.3.2 Aim 2: Bayesian Censored Data Analysis in JAGS

Just Another Gibbs Sampling (JAGS) is a convenient tool to draw posterior samples

using Markov Chain Monte Carlo for Bayesian modeling. However, the built-in func-

tion dinterval() to model censored data may limit its usage to perform likelihood based

model comparison. The censored observations are ignored in the deviance monitor of

the dic module in JAGS, such that an incorrect deviance of the model would be mistak-

enly reported at each iteration if censoring occurs. To establish an automatic approach

to specify the correct deviance function in JAGS, we propose an alternative modeling

strategy to implement Bayesian model selection for analysis of censored outcomes. The

proposed approach is applicable to a broad spectrum of data types, including right-

censored, left-censored and interval-censored survival data, and many different Bayesian

model structures.
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1.3.3 Aim 3: Bayesian Interaction Selection for Meta-analysis

with Censored Rare Events.

In a meta-analysis of clinical trials reporting on adverse events (AEs) associated with

PD-1/PD-L1 inhibitors, the toxicity profiles of immunotherapy drugs may not be ex-

plained comprehensively by main effects of study-level factors, such as AE categories,

cancer types, and drug therapies. In the context of censored and rare AEs, as an exten-

sion of Bayesian modeling of censored rare events on the basis of Aim 1, we identify the

potential two-way interactions between various study-level factors to better understand

the toxicity profiles of immunotherapy drugs and, thus, guide clinical practice. In this

work, we develop a sparse Bayesian approach with prior specifications to select pairwise

interactions in a meta-analysis of censored and rare AEs, and compare its performance

with that of other approaches. We demonstrate that the proposed approach outperforms

other competitors in terms of prediction accuracy and interaction identification in simula-

tion studies, and that it can be effectively applied to a recent meta-analysis on drug safety.
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Chapter 2

JOURNAL ARTICLE 1

Bayesian Meta-analysis of Censored

Rare Events with Stochastic

Coarsening

2.1 Introduction

Over the past decade, a number of PD-1 and PD-L1 immune checkpoint inhibitors for

cancer treatment have been approved by the Food and Drug Administration (FDA).

These innovative drugs for immunotherapy, which enhance the ability of a patient’s own

immune system to attack tumor cells, have been shown to be efficacious in treating

many types of cancer, and tend to be less toxic than traditional forms of cytotoxic

chemotherapy. However, because they stimulate the immune system, immunotherapy

drugs can lead to serious and even life-threatening side effects such as autoimmune-like

disorders. To gain insight into the frequency of adverse events (AEs) associated with
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PD-1 and PD-L1 immune checkpoint inhibitors, [2] conducted a systematic review of

cancer therapy clinical trials published from 2010 to 2018. They selected trials in which

patients were treated with one of the five single-agent immune checkpoint inhibitors,

ultimately including 125 studies with a total of 20,218 patients. The primary outcome

was the number of adverse events reported based upon all-grade (Grade 1-5) and grade

3 or higher (Grade 3-5) severity. To identify possible source of heterogeneity between

studies, the following study-level information were also extracted: trial name, number of

treated patients, selected immunotherapy drug, dosing schedule, cancer type, number of

AEs within each category, and the pre-specified criteria for AE reporting.

Meta-analysis synthesizes findings from a set of independent clinical studies and

provides a more powerful analysis than from a single study [3]. To analyze the anti-PD-

1/PD-L1 AE data, special attention should be paid to rare events [5]. Standard methods

to model binary events rely on either an approximation method based on the normal

distribution or an exact method based on the binomial distribution [6]. Both approaches

provide poor estimates of the true incidences of rare events [4]. For example, estimating

the probability of rare events using a normal approximation may lead to significantly

biased results [7, 8]. Reviews on statistical methods for meta-analysis of rare events

were given in [3, 9], including a Poisson random effects model to estimate relative risk

between two treatment groups [10], newer methods to estimate the treatment effect and

heterogeneity parameter in the random-effect model [5], and a general exact meta-analysis

approach to combine inferences from multiples studies in the rare event setting [11].

Nevertheless, the rare events data may be missing due to low incidence. In the

anti-PD-1/PD-L1 AE data, approximately 60% of treatment-related AEs were not re-

ported. Many AEs were missing because their observed incidences were lower than a

pre-determined study-specific reporting cutoff (e.g. 3% or 5% of the study sample size).

If statistical analysis was only based on the likelihood of the observed data, then the
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inferences on incidence rates would be biased [40].

This type of missing data problem in the meta-analysis for rare events has barely

been addressed. The limited literature on the missing outcome data in the meta-analysis

of clinical trials either considered the missing data at individual participant level [17],

or assumed that the data were missing completely at random (MCAR) or missing at

random (MAR) [16]. However, as the missing data mechanism depends on the value of

unobserved outcomes, the missing outcome cannot be simply ignored in the presence of

missing not at random (MNAR) [12]. In literature, some meta-analyses either totally

ignored the AEs with low incidence, or completely discarded the studies with missing

AE data [41], contributing to substantial publication selection bias.

Furthermore, some AEs were still reported even though their incidences were lower

than the reporting cutoff, which suggests a separate pattern for AE reporting. This

pattern could be clinically recognized as ‘must report’ regardless of the clinical outcome.

A set of AEs, for example, immune-related or cancer-type specific, could be of special

interest for one clinical trial or disease group. Unfortunately, when an AE was reported

with incidence larger than the cutoff, the actual pattern that it belongs to would not be

identifiable. This creates additional technical difficulty to justify the missing data mecha-

nism that can be ignored when we later explore the missing data problem in a coarsened

data framework [13]. Therefore, it is essential to take both non-ignorable missingness

and pattern non-identifiability into account in the meta-analysis of rare adverse events.

In this paper, we propose a Bayesian approach to handle rare event data in meta-

analysis, with an aim to give feasible and reliable parameter estimations if the missing

pattern is non-identifiable and/or the percentage of missingness is high. When data are

MNAR, there are so many possible ways that the missing data can interact with the

missing data mechanism. The rest of the article is organized as follows. To avoid making

additional assumptions on missing pattern, in Section 2.2, we present a simplified case for
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univariate outcome followed by adapting coarsened at random (CAR) to anti-PD-1/PD-

L1 AE data. In Section 2.3, we explore a more complicated case for multivariate outcome

in the bivariate coarsened data framework, and present a joint coarsening model when the

coarsened data mechanism (CDM) is ignorable. In Section 2.4, we implement the pro-

posed approach in Just Another Gibbs Sampler (JAGS; [42]) with a tailored presentation

for simultaneous Bayesian model selection. In Section 2.5, we conduct numerical stud-

ies under distinct scenarios by comparing our Bayesian model with other conventional

methods. In Section 2.6, we present the real data meta-analysis results demonstrating

the advantage of our approach along with a sensitivity analysis. Lastly, some concluding

remarks and discussion are given in Section 2.7.

2.2 Data Coarsening

Missing values are a form of data coarsening [40]. When the exact value of the data

is not observed, but the unobserved true data lie in a subset of the sample space, such

incomplete data can be defined as coarsened data, which can take the form of censor-

ing, grouping, heaping or missing data. Heitjan and Rubin [13] generalized the seminal

work by Rubin[43] for coarsened data and developed a general theory to identify when

coarsening mechanism can be ignored when making likelihood-based inference about the

parameters of interest. Jacobsen and Keiding [44] made a rigid justification in general

sample space with the measure theory. Here we explore the informative missingness for

the anti-PD-1/PD-L1 AE data in this framework.

To start from the simplified case, suppose that our primary focus is Grade 3 or

higher(G35) AE, we treat G35 AE count as a binomial outcome and present it under

the coarsened data framework in Section 2.2. Considering the inherent monotonicity

between all-grade(G15) and G35 AE counts, and the potential correlation between the
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coarsening mechanism corresponding to each AE severity group, in Section 2.3, we extend

our univariate binomial distribution to more complicated multinomial distribution, and

explore the multinomial outcome data {no AE, G12 AE, and G35 AE} will then be

explored under the bivariate coarsening mechanism.

2.2.1 Notations

At the study level, we assume that the number of the jth adverse event Yij follows

a binomial distribution given the total number of nij = ni patients recruited in the

ith study. For simplicity in notation, the subscript ij is omitted in the absence of

ambiguity. Y is a random variable representing the underlying truth, which can be

observed incompletely, with the degree of incompleteness under the control of c and

M . The threshold (cutoff) variable c is fully observed in each study, as specified in the

published article of each clinical trial, such that the actual observation yc may possibly

be censored at c, dependent on the coarsening pattern indexed by M .

The variable M represents the nature of the coarsening mechanism [13], and deter-

mines the precision of reporting in the sense of which specific rule of mapping Y M7−→ Yc to

use in coarsening Y . M could be either fully observed in some cases, for instance, to label

the units into subsets of Yobs (indicated by M = 0) and Ymis (indicated by M = 1) in

a standard missing data example, when M can be modeled explicitly in pattern mixture

model factorization; or stochastic in nature, when the coarsened observation Yc do not

necessarily imply known values of the pattern indicator M = m.

In reporting clinical studies, there are two general coarsening mechanisms: the num-

ber of adverse events Y could be either reported (M = 0; no coarsening) or censored only

if below certain pre-specified cutoff value c (M = 1; censored). Denote Ξ = {0, 1, · · · , n},

the sample space for a random variable Y , and Ψ = {0, 1}, the sample space for a random

variable M . If the exact number of an adverse event was reported, it could be either
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following the no coarsening mechanism M = 0 or following the censored mechanism

M = 1 by being larger than c, creating a stochastic nature of the coarsening mechanism.

X stands for a group of independent predictor variables which, for our application, in-

clude cancer type, AE subtype, drug and dosing schedule, and study used to model AE

incidence. Z is a set of study-level covariates used to model coarsening mechanism.

2.2.2 Coarsening of Rare Events

Consider a general form of coarsening on the complete data (Y, n, c, x,M, z) when only

variables Y and M are random, and n, c, x, and z are given and known. We suppose

that, instead of observing Y and M directly, one only observes Yc = Yc(Y,M, c), a coarse

version of Y defined on the subspace of Ξ into which Y has fallen. The sample space of

Yc is a restricted subset of 2Ξ with possible probability in mapping Y to Yc, where 2Ξ

denotes the power set of Ξ. Given Y = y and M = m, the conditional distribution which

follows a deterministic rule, r(yc|y,m) for (Y,M) 7→ Yc, is a degenerate distribution:

r(yc | y,m) =



1, if



m = 0, yc = y.

y ≤ c,m = 1, yc = {0, 1, · · · , c}.

y > c,m = 1, yc = y.

0, otherwise.

(2.1)

Though not directly observed, the random variables Y and M can be inferred from the

observed value Yc = yc.

The complete coarsened-data likelihood, which correctly accounts for the coarsening
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of Y and the stochastic nature of the coarsening mechanism M , can be written as,

LC(θ | yc) ∝ f1(yc | θ) =
∫

Ψ

∫
Ξ
fY,M(y,m | n, x, z, θ, γ)r(yc | y,m, c)dydm

=
∏

I(yc>c)
Bin(yc|n, x, θ)

∏
I(yc∈{0,...,c})

Bin(yc | n, x, θ)Pr(m = 0 | y = yc, z, γ)

∏
I(yc={0,...,c})

c∑
k=0

Bin(k | n, x, θ)Pr(m = 1 | y = k, z, γ),

(2.2)

where the subscript C implies both complete and correct, fY,M(y,m|n, x, z, θ, γ) is the

joint distribution of Y and M and the integration is with respect to the underlying count-

ing measure. Here, we assume the parameters describing the measurement process (θ)

are functionally independent of those describing the coarsening mechanism (γ), suggest-

ing Y ⊥⊥ M | θ, γ, thus, we can present the joint probability density function of Y and

M in the selection model factorization

fY,M(y,m | n, x, z, θ, γ) = fY (y|n, x, θ) · fM |Y (m|y, z, γ).

The second equation in (2.2) then holds because the subspace r(yc|y,m) = 1 in (2.1) can

be written equivalently as

{y > c, yc = y} ∪ {y ≤ c,m = 0, yc = y} ∪ {y ≤ c,m = 1, yc = {0, 1, · · · , c}} .

The general form of the likelihood LC in (2.2) is subject to the specific choice of fM |Y .

Modeling the mechanism can be challenging, and parameters can often be poorly identi-

fied [45]. If the coarsening mechanism M is ignorable, the observed random variable Yc

becomes only a function of Y and model specification can then be significantly simplified.
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The degenerate conditional distribution rign(yc | y, θ) maps Y 7→ Yc:

rign(yc | y) =


1, if


yc = y.

y ≤ c, yc = {0, 1, · · · , c}.

0, otherwise.

(2.3)

The corresponding coarsened data likelihood is

Lign(θ | yc) ∝ f2(yc | θ) =
∫

Ξ
fY (y | n, x, θ)rign(yc | y, c)dy

=
∏

I(yc∈{0,...,n})
Bin(yc | n, θ)

∏
I(yc={0,...,c})

c∑
k=0

Bin(k | n, θ).
(2.4)

This likelihood Lign is appealing because it allows inference for θ using only the density

of interest fY and the observed data yc. However, note that M is not observed when the

number of an adverse event Y > c. Hence Lign could incorrectly specify the likelihood

for statistical inference especially when the coarsening process is stochastic [15].

2.2.3 Ignorability

A question of primary interest concerns whether the coarsening process in (2.2) is ignor-

able. In the coarsening data framework [13], Heitjen and Rubin suggested a sufficient

condition for coarsened at random (CAR) based on the conditional distribution of Yc

given Y . If (a) the data are coarsened at random (CAR), and (b) the model parameters

θ in data process and γ in the coarsening process are a priori independent, then the

coarsening mechanism is ignorable without affecting the statistical inference.

When the coarsening process, M , is stochastic, it is difficult to verify the condition

of CAR, which, in turn, makes it challenging to identify the coarsened data mechanism for

anti-PD-1/PD-L1 AE data. Given a deterministic rule in (2.1), we propose the following
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Lemma for stochastic coarsening process M with a deterministic rule r.

Lemma 1. The data y are coarsened at random (CAR) if the observed data yc are

coarsened by a deterministic rule r(yc | y,m, θ, γ) = r(yc | y,m), and given any z and γ,

fM |Y (m | y, z, γ) takes the same value for all y ∈ yc.

The proof of Lemma 1 is given in Appendix 2.8. Compared with Theorem 1 in [13],

Lemma 1 simplifies the sufficient condition for ignorable missingness when a deterministic

mapping rule r is present, making it much more intuitive and easier to verify.

For Bayesian inference, if the data are CAR, and the model parameter θ and coars-

ening process γ are a priori independent, then the complete coarsened-data likelihood

LC is proportional to the coarse data likelihood Lign and the posterior distribution of

θ based on Lign equals the correct posterior distribution based on LC . Therefore, the

likelihood do not need to account for the stochastic nature of the coarsening mechanism,

and θ and γ are a posteriori independent.

2.3 Joint Modeling under Coarsened Data Mecha-

nism

Returning to our motivating data application, from the clinical perspective, grade 3 or

higher adverse events (Grade 3-5 AEs) contain partial information in all-grade (Grade1-

5) AEs, that is, the number of Grade 3-5 AEs never exceeds the number of Grade 1-5

AEs in each study. Furthermore, the coarsening mechanisms for Grade 3-5 AEs and

Grade 1-5 AEs can be correlated. Such inherent monotonicity of G35 and G15 counts,

and correlation between data coarsening mechanisms should both be considered in a

joint coarsening model setting. Therefore, instead of modeling our Grade 1-5/Grade 3-5

AE data separately, we present a joint model for censored rare events based upon no-
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grade (G0), grade 1-2 (G12) and grade 3-5 (G35) under the bivariate data coarsening

mechanism. To be specific, the proposed joint model for coarsened data can handle both

left-censored G35 AEs and right-censored G0 AEs (when G15 AEs are left-censored).

2.3.1 Extending Univariate to Multivariate

Given all-grade (G15) AE, and grade 3 or higher (G35) AE count of the jth AE in the ith

study in the motivating example, the grade 1-2 (G12) AE is obtained by Y 12
ij = Y 15

ij −Y 35
ij

and no-grade (G0) AE is Y 0
ij = ni − Y 15

ij . Suppose our random outcome vector Yij =

Y = (Y 0, Y 12, Y 35) is a length-k vector of jth AE in the ith study, where k = 3, e.g. a

realization of random vector, yij = y = (y0, y12, y35). Then, we can model these data

by assuming a multinomial distribution: Y ∼ Multinom(n; θ0, θ12, θ35), where n = ni =∑3
k=1 y

(k) is the total number of patients in the ith study, and θ(·) is the probability of

incidence at each severity level (G0/G12/G35) with condition ∑3
k=1 θ

(k) = 1.

2.3.2 Bivariate Coarsening Mechanisms

To explore the potential correlation between data coarsening mechanisms, rather than

using univariate Bernoulli distribution to model each of coarsening mechanism, M , sepa-

rately in Section 2.2, we now consider a bivariate Bernoulli random vector (M1,M2),

in which, M1 = {0, 1} is the data coarsening mechanism for Y 0 and M2 = {0, 1}

is the data coarsening mechanism for Y 35. Therefore, (M1,M2) takes values from a

set of pairs {(0,0), (0,1), (1,0), (1,1)} in the Cartesian product space, suggesting that

M1 ×M2 = {(m1,m2) | m1 ∈M1,m2 ∈M2} = {0, 1} × {0, 1} = {0, 1}2.

In contrast of the coarse version of Y , Yc = Yc(Y,M, c) in Section 2.2, now, Yc

becomes a function of Y 0, Y 12, Y 35,M1,M2, c
0, c35, where c0 = n − c15 − 1 and c35 are

cutoff value corresponding to G0 and G35, respectively. Specifically, no-grade AE, Y 0,

is right-censored if Y 0 > c0, and Grade 3 or higher AE, Y 35, is left-censored if Y 35 ≤ c35.
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Given a multivariate vector of outcomes and a bivariate vector of coarsening mechanisms,

the conditional distribution then follows a more complicated deterministic rule, r(y0
c , y

35
c |

y0, y35,m1,m2). Such deterministic rule in (2.9) for (Y 0, Y 35) M1,M27−−−−→ (Y 0
c , Y

35
c ) is free of

parameters, resulting in a degenerate distribution provided in Appendix 2.8.

To identify CAR for multinomial outcome data, we extend our Lemma 1 in Section

2.2 to Lemma 2 for bivariate stochastic coarsening process, (M1,M2), with a determin-

istic rule in (2.9). The Lemma 2 and its proof are given in Appendix 2.8. Therefore,

for any observed y0
c and y35

c , if fM|Y(m1,m2 | y0, y35, z, γ) takes the same value for all

y0 ∈ y0
c , y

35 ∈ y35
c , then the complete coarsened-data likelihood LC in (2.10) is propor-

tional to the coarse data likelihood Lign in (2.6) and the posterior distribution of θ based

on Lign in n(2.6) equals the correct posterior distribution based on LC in (2.10). For

Bayesian inference, if the data are CAR, and the model parameter θ and coarsening

process γ are a priori independent, then the likelihood do not need to account for the

stochastic nature of the coarsening mechanism, and θ and γ are a posteriori independent.

If the coarsening mechanism vector (M1,M2) is ignorable, the observed random

vector (Y 0
c , Y

35
c ) would be a function of Y 0, Y 35 only. The degenerate conditional distri-

bution rign(y0
c , y

35
c | y0, y35, θ) maps (Y 0, Y 35) 7→ (Y 0

c , Y
35
c ):

rign(y0
c , y35

c | y0, y35) =



1, if



y0
c = y0, y35

c = y35.

y0
c > c0, y0

c = {c0 + 1, · · · , n− y35
c }, y35

c = y35.

y0
c = y0, y35

c ≤ c35, y35
c = {0, 1, · · · , c35}.

y0 > c0, y35
c ≤ c35, y0

c = {c0 + 1, · · · , n}, y35
c = {0, 1, · · · , c35}, y0

c + y35
c ≤ n.

0, otherwise.

(2.5)

To summarize, we extended the binomial outcomes in the univariate coarsening

framework to the multinomial outcomes in the bivariate coarsening framework by speci-

fying the deterministic rules for constructing both complete likelihood and ignored like-
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lihood. The proposed rule in (2.5) by ignoring the coarsening mechanisms helps us to

model the multinomial outcomes jointly in the next section.

2.3.3 Coarsening Model of Multinomial Outcomes

Let the probability of AE incidence at each severity category be θ1 = θ0, θ2 = θ12, and

θ3 = θ35 in the multinomial outcome setting. To fit a multinomial logistic regression

model for k = 3 outcome category, we need k − 1 = 2 logit functions comparing G35 to

G0, and comparing G12 to G0, and denote the ratio of the probability of each severity

category (G12 or G35) relative to a baseline category (G0) as r1 = θ2/θ1, r2 = θ3/θ1.

The two logit functions are as follows:

log
(
θ2

θ1

)
= log(r1) = µG12 + β + αG12 + η + ζ,

and

log
(
θ3

θ1

)
= log(r2) = µG35 + β + αG35 + η + ζ,

where µG12 and µG35 are overall mean of log odds of G12 to G0, and G35 to G0, respec-

tively. Here, two functions share the same parameters consisting of study-level effects

(β), drug-dose effects (η) and effects of cancer type (ζ) except the effects of AE subtype

(α). Therefore, the incidence probability of each severity category can be rewritten as,

θ1 = 1
1 + r1 + r2

, θ2 = r1

1 + r1 + r2
, θ3 = r2

1 + r1 + r2
,

where the odds ratios of AE outcome at G35 and at G12 being compared to the no-grade

AE are,

r1 = exp(µG12 + β + αG12 + η + ζ)

r2 = exp(µG35 + β + αG35 + η + ζ)
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To estimate the incidence probabilities defined above, we can construct the coarse data

likelihood of joint multinomial model by ignoring the coarsening mechanisms as

Lign(θ | y0
c , y

35
c ) ∝ f(y0

c , y
35
c | θ) =

∫
Ξ
fY(y0, y35 | n,x,θ)rign(y0

c , y
35
c | y0, y35, c0, c35)dy

=
∏

y0
c ,y

35
c ∈{0,...,n}

Multi(y0 = y0
c , y

35 = y35
c |n,x,θ)

∏
y0

c ={c0+1,...,n−y35
c },y35

c ∈{0,...,n}

n−y35∑
k=c0+1

Multi(k, y35
c | n,x,θ)

∏
y0

c∈{0,...,n},y35
c ={0,...,c35}

c35∑
k=0

Multi(y0
c , k|n,x,θ)

∏
y0

c ={c0+1,...,n},y35
c ={0,...,c35},y0

c +y35
c ≤n}

n−k2∑
k1=c0+1

c35∑
k2=0

Multi(k1, k2 | n,x,θ)

(2.6)

where c0 and c35 are cutoffs corresponding to the study-level criteria to report no-grade

and Grade 3-5 AEs. Note that Multi(y0, y35) = Multi(y0, y12 = n − y0 − y35, y35) and

c0 = n− c15 − 1.

The prior specifications for parameters in the model are briefly summarized below. We

place a non-informative normal prior with a large variance on µG12 , µG35 , respectively.

µG12 , µG35 ∼ N(0, σ2
µ), where σµ = 100

The main effects follow normal distributions with mean 0 and variance σ2
(·),

β ∼ N(0, σ2
β), αG12 , αG35 ∼ N(0, σ2

α), η ∼ N(0, σ2
η), ζ ∼ N(0, σ2

ζ ),

Following the recommendation in [46], we assign weakly-informative half-Cauchy prior
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distributions to the standard deviation parameters,

σβ, σα, ση, σζ ∼ C+(0, A),

where scale parameter A = 25.

2.4 Model Implementation and Selection using JAGS

In order to perform inference on the model specified above, we apply Just Another Gibbs

Sampling (JAGS) to generate samples from the posterior distribution. JAGS makes

Bayesian hierarchical models easy to implement using MCMC simulation [18] and fit in

R. In the presence of censored data in the response variable, an existing function, known

as dinterval distribution is commonly used to model censored data [19, 20]. However,

such model specification for censored data in JAGS calculates an incorrect likelihood

[21], which also hinders us to obtain the true deviances of candidate models directly from

JAGS for model assessment.

Therefore, we aim to overcome the difficulty of modeling censored data based on

the ideas of data augmentation. In our alternative modeling strategy, we first intro-

duce a censoring status variable, W , which follows a Bernoulli distribution, with W = 1

indicating left-censoring, and W = 0 indicating right-censoring. When a binomial out-

come, Y , is left-censored at a cutoff, c, with study-level sample size (n), covariate (x)

and AE incidence (θ), the likelihood can be described by the cumulative distribution

FY (c) = FY (c|n, x, θ). If we assume that Pr(W = 1) = FY (c) = ∑c
k=0

(
n
k

)
θk(1 − θ)n−k,

then for left-censored data (w = 1), the probability mass function of W is fW (w; Pr(W =

1)) = Pr(W = 1)w(1− Pr(W = 1))1−w = FY (c).

Proposition 1. The likelihood generated from this alternative JAGS model using the

cumulative binomial distribution for censored data is identical to the exact likelihood.
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The proof of Proposition 1 can be found in Appendix 2.8. Our strategy creates the

right focus of model parameters and produces the true likelihood for the censored data.

Meanwhile, it is beneficial for us to identify the best model using deviance information

criterion (DIC; [47]) for both coarsening mechanism in the sensitivity analysis conducted

later in Section 2.6.2 and for our event data in the presence of complicated study-level

features. Most importantly, the proposed algorithm in JAGS properly draws posterior

samples, as well as simultaneously computes the correct deviance for model selection.

In the multinomial setting in Section 2.3, the distribution of Y 35 conditional on

Y 0 = y0 follows a binomial distribution with sample size, n∗ = n−y0, and incidence prob-

ability parameter, θ∗ = θ3
θ2+θ3

, denoted as Y 35 | Y 0 ∼ Bin(n− y0, θ3
θ2+θ3

). Meanwhile, the

conditional distribution of Y 0 given Y 35 = y35 is denoted as Y 0 | Y 35 ∼ Bin(n−y35, θ1
θ1+θ2

).

The multinomial outcomes, Y = (Y 0, Y 12, Y 35) can be partly observed and indicated

by a vector of censoring status variable W = (W1,W2,W3). For example, the data

y = (y0,NA,NA) shows only grade 0 (G0) AE is observed, while grade 3 or higher (G35)

AE is left-censored at a cutoff, c35, with sample size (n − y0) and AE incidence ( θ3
θ2+θ3

).

In that case, the likelihood of Y 35 is described by a cumulative binomial distribution,

Pr(W3 = 1) = Pr(Y 35 ≤ c35) = FY 35(c35) = ∑c35

k=0

(
n−y0

k

) (
θ3

θ2+θ3

)k (
1− θ3

θ2+θ3

)n−y0−k
.

Similarly, the data y = (NA,NA, y35) indicates only G35 AE is observed, while G0 AE

is right-censored at a cutoff, c0, with sample size (n − y35) and AE incidence ( θ1
θ1+θ2

),

suggesting the likelihood of Y 0 is given by Pr(W1 = 0) = Pr(Y 0 > c0) = 1 − FY 0(c0) =

1−∑c0

k=0

(
n−y35

k

) (
θ1

θ1+θ2

)k (
1− θ1

θ1+θ2

)n−y35−k
.

2.5 Simulation

In this section, we conduct a simulation study to assess the performance of the proposed

Bayesian model in estimating the incidence rates and odds ratios (ORs) in the meta-
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analysis of rare adverse events (AEs) with censored information, as well as compare it

with that of other existing methods. According to a recent meta-analysis of treatment-

related AEs of PD-1/PD-L1 inhibitors in clinical trials [2], AEs are either rare or censored

if their number is not reported due to very low incidence. When this scenario arises in

medical research, the common solution is to use observed (partial) data while ignoring the

censored information [41], which results in the overestimation of the incidence probability

of AEs because not all of the available data are included in the analysis.

2.5.1 Settings

To assess the performance of the proposed model that incorporates both observed and

censored data, we consider four scenarios: (1) no censoring; (2) low percentage (40%) of

censoring; (3) high percentage (80%) of censoring; and (4) mixed percentage of censoring,

which suggests no censoring for Drug 1, 40% for Drug 2, and 80% for Drug 3. In Scenario

1, the number of AEs for all studies are fully observed. In the other scenarios (Scenarios

2–4), which include censored observations, data with low incidence are informatively cen-

sored to mimic real-world cases, where low and zero events are often censored. Therefore,

in Scenario 2, we treat the 40% of AE data with low incidence as censored data and the

60% of AE data that have a relatively higher incidence as observed data. Similarly, in

Scenario 3, in order to stress test the robustness of estimation in a more extreme case of

censoring, 80% of AE data with low incidence are treated as censored and the remaining

20% are treated as observed. Lastly, in Scenario 4, which is more comprehensive, all

studies corresponding to Drug 1, the top 60% of studies corresponding to Drug 2, and

the top 20% of studies corresponding to Drug 3 are treated as observed data, and the

remaining studies for each drug are treated as censored data. Such an unbalanced case

of censoring for different drugs can illustrate the real performance of odds ratio (OR)

estimation, when similar biased effects in incidence estimation can no longer be canceled
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out in OR estimation.

We compare the proposed model, Bayesian method of censored data (BMCD), with

four other methods: the pooled estimation method after continuity correction (PEM), the

normal approximation method (NAM), the logistic regression method (LRM), and the

normal approximation method with robust variance estimator (RVE). In PEM [48], we

pool observations by drug and add 0.5 correction to those studies with zero observations

to avoid undefined OR of pairwise comparison. The 95% confidence intervals (CIs) for

drug effects are calculated by the exact binomial test. We exponentiate the confidence

limits of the logarithm of OR to obtain the 95% CIs of OR [49]. In NAM, as a standard

method in practice [50], we use a normal likelihood procedure to estimate the incidence

rate by taking the inverse logit of the observed logit incidence [6] of each drug weighted

by its within-drug variance. In LRM, we estimate the drug effects by an exact method

through fitting a generalized linear model with logit link. In addition, we compare the

performance of NAM with and without robust variance estimators [51]. Therefore, in

RVE, instead of Fisher information, we implement the sandwich estimator of variance

into NAM to improve the robustness of the statistical inference on incidence rates and

ORs.

The total number of studies for each drug is fixed at 10 to reflect the typical

number of studies in a meta-analysis. Our outcome of interest, the number of AEs for

each study, is generated from a binomial distribution with number of patients (n = 100)

and probability of events (d1 = 0.025, d2 = 0.025, and d3 = 0.013, respectively). The

probability of incidence is determined by the range of incidence rate for the main dose of

the corresponding drug to mimic the real-world data example in the next section. Based

on the selected incidence probabilities, the true OR between Drug 2 and Drug 1 is 1.0,

and the true OR between Drug 3 and Drug 1 (or Drug 2) is 0.5. We assess the coverage

probability of 95% CIs, point estimations with associated standard errors, mean absolute
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deviations, and root mean squared errors of all six parameters of interest in the four

scenarios.

2.5.2 Simulation Results

The results are based on 10,000 simulated data sets. For each method, we repeated the

same data generation procedure in order to be able to compare results across methods.

Figure 2.1 gives boxplots for point estimations with corresponding standard errors of

incidence rates and odds ratios (ORs) by scenario and method. Coverage probabilities

(CPs) of six parameters of interest by scenario and method are displayed in bar charts

in Figure 2.2. In Table 2.1, performance in terms of both mean absolute deviations

(MADs) and root mean square errors (RMSEs) of incidence rates and ORs based on the

five methods are shown for the four scenarios.

When there is no censoring (Scenario 1), the proposed method (BMCD) has CPs,

MADs, and RMSEs on incidence rates and ORs that are almost identical to those of the

PEM and LRM. Of the five methods compared, the PEM can be considered the gold

standard/benchmark for both interval and point estimations. Our results indicate that

the BMCD is not inferior to the PEM. They also indicate that the CP for each drug

obtained from the NAM appeared to be unstable on estimating incidence rates of rare

events compared with the other methods. The performance of the RVE is even worse

compared with that of the NAM because the model was properly specified. The point

estimations of incidence rates in both NAM and RVE are overestimated in Scenario 1.

This finding is consistent with arguments mentioned in the normal approximation for rare

events [7] and biased results of estimation for rare events using normal approximation

[8].

When 40% of data are censored (Scenario 2), the proposed method (BMCD) per-

forms better than the others in estimating incidence rates; its performance in Scenario 2
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Figure 2.1: Point estimations (PEs) with standard errors (SEs) of drug effects (inci-
dence rates of drugs; d) and odds ratios (ORs) for five methods, Bayesian method of
censored data (BMCD), pooled estimation method after continuity correction (PEM),
normal approximate method (NAM), logistic regression model (LRM), as well as normal
approximate method with robust variance estimation (RVE) under four scenarios: (S1)
0% censoring; (S2) 40% censoring; (S3) 80% censoring; and (S4) mixed censoring.

is as good as it is in Scenario 1. Because censored observations are ignored under other

four methods (PEM, NAM, LRM, and RVE), it is unsurprising that the point estima-

tions of incidence rates are overestimated and that the CPs in Scenario 2 are much lower

than those in Scenario 1. In contrast, the performance of BMCD in Scenario 2 is almost

identical to its performance in Scenario 1 for both interval and point estimations.

In a more extreme scenario where 80% of data are censored (Scenario 3), the

proposed method (BMCD) performs well, with little information loss compared with

Scenarios 1 and 2. However, all other estimators of drug effects led to inferior CP due

to increased percentage of censoring. The point estimations obtained from PEM, LRM,
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Figure 2.2: Coverage probabilities (CPs) of drug effects (d) and odds ratios (ORs) for five
methods, Bayesian method of censored data (BMCD), pooled estimation method after
continuity correction (PEM), normal approximate method (NAM), logistic regression
model (LRM), as well as normal approximate method with robust variance estimation
(RVE) under four scenarios: (S1) 0% censoring; (S2) 40% censoring; (S3) 80% censoring;
and (S4) mixed censoring.

NAM, and RVE in Scenario 3 are more biased than those obtained from these methods in

Scenario 2. Based on the MAD and RMSE, there were larger deviations from true values

of incidence rates compared with those in Scenario 2. Overall, the BMCD yields not only

more stable and superior coverage, but also unbiased estimator of incidence rates and

ORs in all three scenarios.

Keeping the censoring pattern fixed as in Scenario 2 (40% missing) and Scenario

3 (80% missing) across drugs results in the unbiased estimations on ORs even if the

point estimations of incidence are overestimated. Therefore, other than fixed censoring

in Scenarios 2 and 3, mixed censoring (0%/40%/80%; Scenario 4) is designed to show that
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Scenario Parameter True % of Mean Absolute Deviation Root-mean-squared Error
Value Missing BMCD PEM LRM NAM/RVE BMCD PEM LRM NAM/RVE

S1

d1 0.025 0% 0.004 0.004 0.004 0.009 0.005 0.005 0.005 0.010
d2 0.025 0% 0.004 0.004 0.004 0.009 0.005 0.005 0.005 0.010
d3 0.013 0% 0.003 0.003 0.003 0.008 0.004 0.004 0.003 0.009
OR21 1.000 0.245 0.242 0.235 0.190 0.326 0.322 0.313 0.246
OR31 0.500 0.152 0.151 0.150 0.170 0.201 0.200 0.200 0.221
OR32 0.500 0.148 0.147 0.146 0.169 0.194 0.194 0.193 0.219

S2

d1 0.025 40% 0.004 0.009 0.008 0.015 0.005 0.011 0.010 0.016
d2 0.025 40% 0.004 0.009 0.008 0.015 0.005 0.011 0.010 0.016
d3 0.013 40% 0.003 0.007 0.006 0.013 0.004 0.008 0.007 0.014
OR21 1.000 0.248 0.220 0.218 0.196 0.329 0.289 0.287 0.253
OR31 0.500 0.155 0.156 0.156 0.174 0.207 0.210 0.210 0.228
OR32 0.500 0.151 0.154 0.154 0.174 0.200 0.206 0.206 0.226

S3

d1 0.025 80% 0.005 0.021 0.019 0.026 0.006 0.023 0.021 0.028
d2 0.025 80% 0.005 0.021 0.019 0.026 0.006 0.023 0.021 0.028
d3 0.013 80% 0.003 0.016 0.015 0.021 0.004 0.017 0.016 0.022
OR21 1.000 0.290 0.237 0.239 0.229 0.391 0.316 0.319 0.302
OR31 0.500 0.177 0.197 0.196 0.206 0.241 0.266 0.266 0.273
OR32 0.500 0.176 0.199 0.197 0.208 0.239 0.266 0.266 0.274

S4

d1 0.025 0% 0.004 0.004 0.004 0.009 0.005 0.005 0.005 0.010
d2 0.025 40% 0.004 0.009 0.008 0.015 0.005 0.011 0.010 0.016
d3 0.013 80% 0.003 0.016 0.015 0.021 0.004 0.017 0.016 0.022
OR21 1.000 0.248 0.465 0.448 0.288 0.330 0.601 0.582 0.377
OR31 0.500 0.160 0.772 0.691 0.530 0.214 0.880 0.801 0.608
OR32 0.500 0.158 0.425 0.381 0.365 0.208 0.511 0.468 0.438

Table 2.1: Mean absolute deviations (MADs) and root mean square errors (RMSEs) of
drug effects (d) and odds ratios (ORs) for five methods, Bayesian method of censored data
(BMCD), pooled estimation method after continuity correction (PEM), normal approx-
imate method (NAM), logistic regression model (LRM), as well as normal approximate
method with robust variance estimation (RVE) under four scenarios: (S1) 0% censoring;
(S2) 40% censoring; (S3) 80% censoring; and (S4) mixed censoring.

the other four methods are all off-target in estimating CPs of ORs. When the censoring

pattern is mixed, the bias in estimating incidence rates impacts both point and interval

estimations of ORs for the other methods in Scenario 4.

The major advantage of the proposed method (BMCD) is that it can avoid bias

in estimating the incidence rates and ORs under different percentages of data censoring.

Across all scenarios considered above, the BMCD is more powerful and robust than the

other four methods in dealing with rare and censored event data. The BMCD also out-

performs the other four methods in estimating incidence rates as well as ORs when AEs

have low incidence and when a high proportion of AEs are censored. Furthermore, the
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quality of an estimator can be measured by its efficiency, which is defined as the asymp-

totic variance of an estimator [52]. The larger the variance, the lower the efficiency

of an estimator. Here, the asymptotic relative efficiency (RF) is given to examine the

amount of information loss in comparing two scenarios. Information loss in informative

censoring may lead to an inefficient estimator. According to the variance of the point

estimator from BMCD, regarding the drug effects, the RFs of two estimators by com-

paring high percentage of censoring (Scenario 3) to no censoring (Scenario 1) are 0.73,

0.76 and 0.78, respectively. In other words, 80% of censoring only results in 27%, 24%,

and 22% loss of efficiency in estimating incidence rates, respectively, compared with no

censoring. Meanwhile, the relative efficiency of Scenario 3, with respect to Scenario 1,

is approximately 0.70 on average for estimators corresponding to ORs, suggesting that

only 30% of information is lost under 80% of informative censoring.

2.6 Application

In this section, we apply the proposed Bayesian method of joint modeling to the real data

meta-analysis of all-grade & Grade 3-5 adverse events (AEs) with censored information

[2]. The goal is to evaluate the incidence rates of treatment-related AEs of two PD-1 and

three PD-L1 inhibitors in a meta-analysis of 125 clinical studies.

The joint model is implemented in the statistical software R and JAGS [18], which

uses a Markov Chain Monto Carlo (MCMC) algorithm to generate samples from the

posterior distribution of the parameters of interest. Along with listing the data and

setting the initial values of model parameters, we defined the likelihood functions and

priors of a Bayesian model before compilation in JAGS. We run three parallel chains

for the model. For each MCMC chain, after discarding the burn-in period of 30,000

iterations, the 3 chains showed good mixing and successful convergence to the target
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distribution. We eventually obtain 10,000 posterior samples per chain by retaining one

sample out of three. The 30,000 posterior samples of model parameters such as incidence

rates of the 75 all-grade AEs and 20 drug-dose effects are saved for inference. By contrast,

if those censored outcomes were treated as MCAR, by ignoring them in the analysis, the

estimated all-grade incidence rate would be biased and overestimated by 40%.

2.6.1 Main Results

According to the subgroup analysis of incidence rates of AEs by 75 subtypes of AEs,

Figure 2.4 shows the most common all-grade AE is abdominal pain (0.184; 95% credible

interval [CrI], 0.168-0.198), followed by hypophysitis (0.107; 95% CrI, 0.096-0.116), pneu-

monia (0.095; 95% CrI, 0.086-0.104), type I diabetes (0.094; 95% CrI, 0.084-0.102), that

had at least posterior median of incidence probability of 9%.

Figure 2.5 illustrates the corresponding proportions of Grade 3 or higher (G35)

AEs among patients who experienced all-grade (G15) AEs. Among the 75 AEs under

investigation, AST increased (64.46%; 95% CrI, 51.32%-76.47%) and platelet count de-

creased (61.92%; 95% CrI, 39.04%-81.82%) listed as top 2 highest proportions of grade

3 or higher AEs, suggesting more than 60% of patients developed severe platelet count

reduction or rise in AST levels after cancer immunotherapy. Other AEs with higher pro-

portions are erythema (52.73%; 95% CrI, 42.19%-63.31%), hypotension (49.19%; 95% CrI,

39.71%-58.98%), and colitis (46.10%; 95% CrI, 33.62%-59.21%). According to the forest

plot, 16 out of 75 (21.3%) severe AEs were seldom (≤ 2%) developed among patients.

Figure 2.3 in Appendix 2.8 displays a forest plot for the incidence rates of all-grade

AEs and their 95% CrIs by drug and dose, there are no significance differences in the

incidence of all-grade AEs among different dosing schedules for anti-PD-1/PD-L1 drugs.

Based on the posterior inference from the joint model of multinomial outcome (Y 0, Y 12,

Y 35), we find that the overall incidence of all-grade AE is 1.41% (95% CrI, 1.27% -
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Figure 2.3: Incidence of all-grade AEs by drug and dose

1.55%), the overall incidence of grade 3 or higher AE is 0.11% (95% CrI, 0.09% - 0.13%).
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Figure 2.4: Incidence of all-grade AEs by AE subtype
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Figure 2.5: Proportion of Grade 3 or higher AEs by AE subtype
39



2.6.2 Sensitivity Analysis

This sensitivity analysis aims to test the robustness of posterior inference in the presence

of uncertainty and explore the effects of input variables on the output. In our case, it

helps to demonstrate whether our AE data are coarsened at random (CAR), suggesting

the outcome (Y 0, Y 35) is conditionally independent of coarsening mechanism (M1,M2)

given a set of study-level covariates (z).

In our case, based upon the domain knowledge, we assume that the M1 is condi-

tional independent of Y 35 given Y 0 and M2; and, the M2 is conditional independent of

Y 0 given Y 35 and M1. Meanwhile, we aim to fit a simplified model through estimating

minimum number of parameters. Therefore, rather than modeling marginal distribution

of M1 and M2 directly, we start with modeling conditional distribution of M1 on M2 and

that of M2 on M1, denoted as q1j and q2j, respectively, on the basis of eq (2.11 ) in the

proposition 2.1 proved in [53]. It is straightforward to model the conditional distribution

of no coarsening for Y 0 given the coarsening process for Y 35 and that of no coarsening

for Y 35 given the coarsening process for Y 0 as follows,

q1j = q1,M2 = Pr(M1 = 0 |M2) = logit−1
(
φ1 +

4∑
i=1

γizi + ϑ1Y
0 − δ(1−M1)(1−M2)

)

q2j = q2,M1 = Pr(M2 = 0 |M1) = logit−1
(
φ2 +

4∑
i=1

γizi + ϑ2Y
35 − δ(1−M1)(1−M2)

)

where ϑ1, ϑ2 serve as sensitivity parameters to identify CAR, and δ is a correlation

coefficient representing the relationship between M1 and M2. Note that, in the model

fitting, we shift Y 0 and Y 35 by subtracting the corresponding mean values, without

changing the spread of data. Furthermore, the conditional distribution of the coarsening

mechanism depends on a set of study-level covariates z. Here, we use an inverse logit

to model the conditional probability of no coarsening given another coarsening pattern
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and other study-level covariates {z1, · · · , z4}: z1 denotes the study-level sample size in

the logarithm scale, log(n); z2 is an indicator function of immune-related AEs, I(irAEs),

which only contributes to model the coarsening mechanism; z3 and z4 are cancer type

and drug, respectively. Specifically, a study with a larger sample size is less likely to

report a number of AEs because of a higher pre-determined reporting cutoff (e.g., due to

publication space limit), but immune-related AEs (irAEs) are more likely to be reported

even if the incidence is less than the cutoff as irAEs are of particular clinical interest.

The main objectives of the sensitivity analysis are (a) to test whether M1, the

coarsening mechanism for Y 0, is conditionally independent of Y 0 through ϑ1; (b) to

test whether M2, the coarsening mechanism for Y 35, is conditionally independent of Y 35

through ϑ2; and (c) to check how M1 and M2 are correlated through δ. The coarsening

patterns, M1 and M2, are not observed if the number of no-grade (G0) AE is Y 0 ≤ c0 and

that of grade 3 or higher (G35) AE is Y 35 > c35, suggesting the coarsening mechanism is

stochastic in nature. According to the complete coarsened-data likelihood, LC(θ | yc) in

(2.2), the likelihood function of the joint sensitivity model, which contains 9 components

summarizing different characteristics of observed data, is presented in Appendix 2.8.

The regression coefficients γ̂1 < 0, γ̂2 > 0 in the conditional coarsening model

confirm the domain knowledge based on the drug safety data. Moreover, the sensitivity

parameters ϑ1 = ϑ2 = 0 would imply that the coarsening mechanisms for Y 0 and Y 35

are ignorable. The 95% credible interval (CrI) on ϑ̂1 and ϑ̂2 cover the value of zero,

further demonstrating the assumption that the AE data is conditionally independent of

the coarsening mechanism given other study-level covariates.
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2.7 Conclusions and Discussions

In this paper, we have shown the use of Bayesian hierarchical model in the meta-analysis

setting when the study-level events are rare and left-censored. In the presence of data

that are MNAR, it is essential to properly address the censoring which can lead to

overestimation of model parameters if ignored. For CAR, inference can be based on

the observed coarsened data, while the coarsening mechanism can be ignored. Under

this condition, likelihood-based analyses on the observed data provide valid results. The

proposed Bayesian approach is capable of limiting information loss and providing efficient

estimation of drugs effects and odds ratios. Simulation results in Section 2.5 suggest the

proposed approach outperforms four other methods when the AEs have low incidence and

a high degree of censored information. And, our approach gives the relative efficiencies

of high censoring with respect to no censoring for drug effects and odds ratios of 0.76

and 0.70 on average, respectively.

Other than assessing the toxicity profile, the proposed method can be extended to

high-dimensional genomic data, in which large number of genes can be tested to estimate

the mutation rate across studies. For such an extension, if some numbers of mutation, the

primary outcome, are MNAR, they should be considered in the model using pre-specified

cutoff value determined by gene selection criteria. Our approach could also be extended

to analyze other data types/structures including time-to-event data with right-censoring,

count data and ranking data [35], as well as apply to many other fields such as behavior

science [36], environmental science [37] and food science [38].

In this work we only focused on the left censoring cases for all-grade AEs when

lower than pre-specified cutoff values. However, in estimation of the all-grade AEs in

meta-analysis, right censoring may also occur when some studies only report Grade 2 or

higher AEs instead of all-grade AEs [54]. Furthermore, the proposed model can also be

extended by identifying two-way interaction effects such as drug-by-cancer, drug-by-AE,
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and cancer-by-AE interactions through Bayesian model selection for better personalized

decision making.

Our work could have profound impact on public health policy. For example, our

unbiased estimation on AE incidence by severity can provide a reliable probability of

toxicity event in the decision tree model for calculating incremental cost-effectiveness

ratio in the cost-effectiveness analysis. We believe our work on AEs may assist healthcare

policymakers to reasonably budget for immunotherapy treatments for various types of

cancer and the associated treatments for AEs.
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2.8 Appendix

Proof of Lemma 1. For any deterministic rule r(yc | y,m), the conditional distribution

of Yc given Y = y is

k(yc | y, z, θ, γ) =
∫

Ψ
r(yc | y,m, θ, γ)fM(m | y, z, γ)dm =

∫
Ψ
r(yc | y,m)fM(m | y, z, γ)dm.

Given any M = m, z and γ, r(yc | y,m)fM(m | y, z, γ) takes the same value for all y ∈ yc

if fM(m | y, z, γ) takes the same value for all y ∈ yc.

Proof of Proposition 1. To illustrate if the likelihood from JAGS model is identical

to its exact likelihood, we start with deriving the formula of likelihood presented in the

censored JAGS model, which consists of two major components, observed case and one-

sided censored case. The full likelihood in the censored JAGS model can be written

as:

L =
∏
i∈O

fY (yi)
∏
j∈C

{
[FY (cj)]I(Wj=1) [1− FY (cj)]I(Wj=0)

}
(2.7)

=
∏
i∈O

fY (yi)
∏
j∈C
{Wj=1}

FY (cj) (2.8)

where O is the set of fully-observed event outcomes, C is the set of censored outcomes. W

is a binary indicator for left-censoring, following a Bernoulli distribution with cumulative

probability of left-censored case with a cutoff c, denoted as FY (c). For missing data with

left-censoring only, the subset {Wj = 0} in C is empty, so that equation 2.8 holds. In

general, equation 2.7 can also accommodate missing data with right-censoring only by

specifying them with W = 0, or both types of left- and right-censoring.
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The deterministic rule for (Y 0, Y 35) M1,M27−−−−→ (Y 0
c , Y

35
c ) in Section 2.3 is given by

r(y0
c , y

35
c | y0, y35,m1,m2) =

1, if



y0
c = y0, y35

c = y35.

y0 > c0,m1 = 0, y0
c = y0; y35 > c35, y35

c = y35.

y0 > c0,m1 = 1, y0
c = {c0 + 1, · · · , n}; y35 > c35, y35

c = y35.

y0 ≤ c0, y0
c = y0; y35 ≤ c35,m2 = 0, y35

c = y35.

y0 ≤ c0, y0
c = y0; y35 ≤ c35,m2 = 1, y35

c = {0, · · · , c35}.

y0 > c0,m1 = 0, y0
c = y0; y35 ≤ c35,m2 = 0, y35

c = y35.

y0 > c0,m1 = 0, y0
c = y0; y35 ≤ c35,m2 = 1, y35

c = {0, 1, · · · ,min(c35, n− y0)}.

y0 > c0,m1 = 1, y0
c = {c0 + 1, · · · , n}; y35 ≤ c35,m2 = 0, y35

c = y35.

y0 > c0,m1 = 1, y0
c = {c0 + 1, · · · , n}; y35 ≤ c35,m2 = 1, y35

c = {0, · · · , c35}; y0
c + y35

c ≤ n.

0, otherwise.
(2.9)

Lemma 2. The data y0, y35 are both coarsened at random (CAR) if the observed data

y0
c , y

35
c are coarsened by a deterministic rule r(y0

c , y
35
c | y0, y35,m1,m2, θ, γ) = r(y0

c , y
35
c |

y0, y35,m1,m2), and given any z and γ, fM|Y(m1,m2 | y0, y35, z, γ) takes the same value

for all y0 ∈ y0
c , y

35 ∈ y35
c .

Proof of Lemma 2. For any deterministic rule r(y0
c , y

35
c | y0, y35,m1,m2), the conditional

distribution of Yc given Y = (y0, y35) is

k(yc | y, z, θ, γ) =
∫

Ψ
r(y0

c , y
35
c | y0, y35,m1,m2, θ, γ)f(m1,m2 | y0, y35, z, γ)dm1dm2

=
∫

Ψ
r(yc | y,m)fM|Y(m | y, z, γ)dm

Given any M1 = m1,M2 = m2, z and γ, r(yc | y,m)fM|Y(m | y, z, γ) takes the

45



same value for all y0 ∈ y0
c , y

35 ∈ y35
c if fM|Y(m | y, z, γ) takes the same value for all

y0 ∈ y0
c , y

35 ∈ y35
c .

The complete coarsened-data likelihood for a joint coarsening model of multinomial out-

come in Section 2.3 can be written as

LC(θ | yc) ∝ f(yc | θ) =
∫

Ψ

∫
Ξ
fY,M(y,m | n, x, z, θ, γ)r(yc | y,m, c)dydm

=
∏

y0
c≤c0,y35

c >c35

Multi(y0 = y0
c , y

35 = y35
c |n, x, θ)

∏
y0

c∈{c0+1,...,n−y35
c },y35

c >c35

Multi(y0
c , y

35
c | n, x, θ)Pr(m1 = 0 | y0

c , y
35
c , z, γ)

∏
y0

c ={c0+1,...,n−y35
c },y35

c >c35

n−y35∑
k=c0+1

Multi(k, y35
c | n, x, θ)Pr(m1 = 1 | k, y35

c , z, γ)

∏
y0

c≤c0,y35
c ∈{0,...,c35}

Multi(y0
c , y

35
c |n, x, θ)Pr(m2 = 0 | y0

c , y
35
c , z, γ)

∏
y0

c≤c0,y35
c ={0,...,c35}

c35∑
k=0

Multi(y0
c , k|n, x, θ)Pr(m2 = 1 | y0

c , k, z, γ)

∏
y0

c∈{c0+1,...,n−y35
c },y35

c ∈{0,...,c35}
Multi(y0

c , y
35
c | n, x, θ)Pr(m1 = 0,m2 = 0 | y0

c , y
35
c , z, γ)

∏
y0

c∈{c0+1,...,n},y35
c ={0,...,min(c35,n−y0

c )}

c35∑
k=0

Multi(y0
c , k | n, x, θ)Pr(m1 = 0,m2 = 1 | y0

c , k, z, γ)

∏
y0

c ={c0+1,...,n−y35
c },y35

c ∈{0,...,c35}

n−y35∑
k=c0+1

Multi(k, y35
c | n, x, θ)Pr(m1 = 1,m2 = 0 | k, y35

c , z, γ)

∏
y0

c ={c0+1,...,n},y35
c ={0,...,c35}

y0
c +y35

c ≤n

n−k2∑
k1=c0+1

c35∑
k2=0

Multi(k1, k2 | n, x, θ)Pr(m1 = 1,m2 = 1 | k1, k2, z, γ)

(2.10)

[Chapter 2: manuscript is in preparation for publication.]
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Supplementary Materials: Sensitivity Analysis

Consider a bivariate Bernoulli random vector of coarsening mechanism, (M1,M2), we

let the joint density of M1 and M2 be pij = Pr(M1 = i,M2 = j), where i, j = {0, 1},

suggesting pij = (p00, p01, p10, p11) with condition ∑i∈{0,1}
∑
j∈{0,1} pij = 1. Moreover, the

marginal distribution of a random variable in a bivariate Bernoulli vector is a univariate

Bernoulli distribution in proposition 2.1 proved by Dai, Ding and Wahba [53]. Therefore,

the marginal distribution of M1 and M2 in a bivariate Bernoulli vector (M1,M2) can be

specified as follows,

M1 = 0 | Y 0, Y 35 ∼ Bernoulli(p01 + p00), M2 = 0 | Y 0, Y 35 ∼ Bernoulli(p10 + p00)

By defining the natural parameters f 1, f 2, f 12, we can write out the conditional distri-

bution of M1 given M2 and that of M2 given M1, denoted as q1j (q2j), where j = 0, 1.

q11 = Pr(M1 = 0 |M2 = 1) = p01

p01 + p11
= 1

1 + exp(f 1 + f 12)

q10 = Pr(M1 = 0 |M2 = 0) = p00

p00 + p10
= 1

1 + exp(f 1)

q21 = Pr(M2 = 0 |M1 = 1) = p10

p10 + p11
= 1

1 + exp(f 2 + f 12)

q20 = Pr(M2 = 0 |M1 = 0) = p00

p00 + p01
= 1

1 + exp(f 2)

where

exp(f 1) = 1− q10

q10
, exp(f 2) = 1− q20

q20
,

exp(f 12) = 1− q11

q11
· q10

1− q10
= 1− q21

q21
· q20

1− q20
,

exp(f 1 + f 2 + f 12) = 1− q20

q20
· 1− q11

q11
= 1− q10

q10
· 1− q21

q21
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⇒ f 1 = log(1− q10

q10
) = −logit(q10) = −(φ1 +

4∑
i=1

γizi + ϑ1Y1)

⇒ f 2 = log(1− q20

q20
) = −logit(q20) = −(φ2 +

4∑
i=1

γizi + ϑ2Y2)

⇒ f 12 = log(1− q11

q11
) + log( q10

1− q10
) = −logit(q11) + logit(q10) = −δ

⇒ f 12 = log(1− q21

q21
) + log( q20

1− q20
) = −logit(q21) + logit(q20) = −δ

Given the relationship between q and p, we can calculate the joint probability density

functions as follow,

p00 = 1
1 + 1−q10

q10
+ 1−q20

q20
+ 1−q20

q20

1−q11
q11

, p01 =
1−q20
q20

1 + 1−q10
q10

+ 1−q20
q20

+ 1−q20
q20

1−q11
q11

p10 =
1−q10
q10

1 + 1−q10
q10

+ 1−q20
q20

+ 1−q20
q20

1−q11
q11

, p11 =
1−q20
q20

1−q11
q11

1 + 1−q10
q10

+ 1−q20
q20

+ 1−q20
q20

1−q11
q11

In the sensitivity analysis, we assume the censored AE outcome data, following a binomial

distribution but being truncated below at value 0 and above at cutoff value c35 for Y 35,

or being truncated below at value c0 and above at study size at n for Y 0 . In the

presence of multinomial outcomes that are partially observed, such as left-censored Y 35,

we can evaluate if the coarsening mechanism for Y 35, M2, and G35 AE counts, Y 35,

are conditionally independent given the coarsening mechanism of G0 AE, by generating

random samples of Y 35 from a univariate conditional distribution of truncated binomial

distribution, denoted as TBinomial(n∗, p∗; a, b). For example,

1. when G0 AE is observed, but G35 AE is censored,

Y 0 ∼ Bin(n, θ1), Y 35 | Y 0 ∼ TBinomial(n− y0,
θ3

θ2 + θ3
; 0, c35)
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2. when G0 AE is censored, but G35 AE is observed,

Y 0 | Y 35 ∼ TBinomial(n− y35,
θ1

θ1 + θ2
; c0 + 1, n), Y 35 ∼ Bin(n, θ3)

3. when both G0 AE and G35 AE are censored,

Y 0 ∼ TBinomial(n, θ1; c0 + 1, n), Y 35 | Y 0 ∼ TBinomial(n− y0,
θ3

θ2 + θ3
; 0, c35)

49



Chapter 3

JOURNAL ARTICLE 2

Bayesian Analysis of Censored data

in JAGS

3.1 Introduction

Censored data are commonly observed in different disciplines such as economics, engi-

neering and life sciences [55, 56, 57]. Given the uncertainty in censored data, the modeling

and analysis fit naturally in the Bayesian framework by using expectation–maximization

(EM), data-augmentation (DA) and Markov chain Monte Carlo (MCMC) algorithms

[58, 59]. For example, in highly fractionated experiments, frequentist likelihood-based

estimates may not even exist for simple models consisting of only main effects, while

Bayesian approach offers a straightforward implementation strategy [60]. When the out-

come cannot be fully observed, censored data can be treated as additional parameters

from a fully Bayesian perspective, with a likelihood function specifying joint modeling for

both observed and censored data. The Bayesian approach has multiple advantages in the
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presence of censored data or inadequate sample size, and for nested/non-nested model

comparisons [61]. Compared with multiple imputation, Bayesian modeling is robust in

statistical inference even when a large proportion of missing data is present [62].

Just Another Gibbs Sampling (JAGS) is an object-oriented software to generate

posterior samples using MCMC simulations [18]. It simplifies the implementation of

Bayesian hierarchical models by only requiring the specification of likelihood functions

and prior distributions, making it unnecessary to specify the conditional distributions for

model parameters, especially when the closed form expressions are not available. JAGS

also clarifies certain confusing aspects for missing data in WinBUGS and OpenBUGS [63,

64]. To distinguish the concepts of censoring and truncation, it introduces a degenerate

dinterval distribution function for general interval-censored data [18].

For Bayesian inference especially with complicated model features, model selection

is a critical component to identify an approximate model best describing the information

in the data. Among many popular approaches, the seminal work of deviance information

criterion (DIC; [47]) was proposed based on Kullback-Leibler (K-L) divergence [65] and

embedded in JAGS as part of the dic module based on the posterior samples obtained

from MCMC simulations. However, when the outcome variables are censored, the built-

in function dinterval returns a constant value of 1 for the likelihood calculation [19, 20],

which is equivalent to ignoring all of the censored observations in the deviance monitor

of the dic module. As a result, it fails to calculate DIC for model comparison, which may

limit the broader usage of JAGS for Bayesian modeling of censored data [21].

Therefore, we propose an alternative modeling strategy for analysis of censored

outcomes in JAGS. It is a universal approach that automatically returns the correct

deviances for both observed and censored data, such that DIC and penalized expected

deviance [66] can be properly and simultaneously calculated using posterior samples from

MCMC simulations; thus Bayesian model selection for censored data modeling can be
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conducted using JAGS without analytical customization of the deviance of the model.

The proposed approach is applicable to many different Bayesian model structures, such

as Bayesian tobit regression model [67], semiparametric accelerated failure time (AFT)

models for censored survival data [33], illness-death model using Bayesian approach for

semicompeting risks data [34], Bayesian hierarchical model for censored normal outcome

[32], and Bayesian Thurstonian models for ranking data [35], among many.

The rest of the paper is organized as follows. The default approach for censored

data modeling using built-in function in JAGS is introduced in Section 3.2. The alter-

native strategy for correct deviance computation is proposed in Section 3.3. In Section

3.4, we use a right-censored survival example to illustrate the discrepancy in deviance

functions using both approaches, and applied Bayesian model selection using the cor-

rectly specified likelihood in an application to drug safety for cancer immunotherapy.

Concluding remarks and discussions are given in Section 3.5.

3.2 Default procedure for censored data modeling in

JAGS

Censoring occurs when the value of an observation is only partially observed, which is

common in medical research. For analysis of censored observations in JAGS, a default

approach is to use the built-in dinterval distribution function for model specification and

posterior sampling. The Model 1 below illustrates a general form of model specification

for censored data analysis in JAGS. It helps modeling three types of censoring: right-

censoring, left-censoring and interval-censoring [20].

model{ # Model 1

for (o in 1:O){ # O is the number of observed cases;

Y[o] ˜ f(theta[o])
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}

for (j in 1:J){ # J is the number of censored observations;

# Left censoring (R=0): lim[j,] = c(cut[j], inf);

# Right censoring (R=2): lim[j,] = c(-inf, cut[j]);

# Interval censoring (R=1): lim[j,] = c(cut1[j], cut2[j]);

R[j] ˜ dinterval(Y[j], lim[j,])

Y[j] ˜ f(theta[j])

}

# prior for theta’s

}

where the outcome of interest, Y , which can be either observed or censored (coded as NA

in the data table), follows density distribution f with parameter θ. R is a censoring vari-

able following an interval distribution. If R = 1, then the outcome is interval-censored;

If R = 0, the data is left-censored while outcome contains partial information which is

less than a lower limit; If R = 2, the data is right-censored, which is above a certain

cutoff value. lim[,] is a vector of length 2, which contains a pair of cutoff values for each

unobserved outcome data, as illustrated in the comment lines above.

However, dinterval() function has a limitation in deviance calculation when we assess

model fit based upon deviance-based statistics. When an existing function, dic.samples,

in the rjags package [68] is applied to call the dic module and to generate penalized

deviance samples within R [69], the following warning message appears.

Warning message:

In dic.samples(model = model, n.iter = n.iter, type = "pD") :

Failed to set mean monitor for pD

Support of observed nodes is not fixed

By default, the dic module was created to monitor and record the likelihood/deviance
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of a JAGS model at each iteration. In the presence of censored outcomes, even if the

dinterval() function can generate the proper posterior distribution of the parameters in

JAGS, the likelihood function is misspecified with the wrong focus of inference on the

censored outcome variable [21]. Instead, a constant value of 1 for the likelihood function,

or equivalently, a constant value of 0 for the deviance function, is counted for the censored

outcomes in the deviance monitor. The posterior mean deviance computed from the dic

module using the default procedure dinterval() is, in fact, the posterior mean deviance of

observed data only. It suggests that the posterior mean deviance extracted from the dic

module in JAGS should not be used in model assessment [19].

It is always possible to manually calculate the deviance by definition for model

selection using posterior samples [47], which actually contradicts with the design of

JAGS to develop a convenient tool for the Bayesian analysis of complex statistical mod-

els using MCMC methods. It also adds additional technical obstacles, especially for

non-statistician practitioners. For example, the likelihood or deviance function for each

candidate model need be specified individually. In the calculation of DIC, the value of

deviance function at the posterior mean or mode has to be evaluated externally. To avoid

those difficulties, in the next section we will explore the alternative modeling strategy in

JAGS which can not only produce correct inference for posterior distributions but also

automatically specify correct deviances in the dic module for censored observations.

3.3 Alternative modeling strategy in JAGS

Rather than handling censored data with the dinterval function in the JAGS Model 1, we

develop an alternative modeling strategy to specify the proper deviance. Based on the

type of censoring for each observation, we divide the data into 3 subgroups: observed,

left- or right-censored, and interval-censored. For incomplete observations, we introduce
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ancillary indicator variables Z1 for left- and right- censored data and Z2 for interval-

censored data. Hence, we can present the alternative JAGS model specification (Model

2) in a general form:

model{ # Model 2

# block 1: fully-observed

for (o in 1:O){

Y[o] ˜ f(theta[o])

}

# block 2: left/right censoring

for (c in 1:C){

Z1[c] ˜ dbern(p[c])

p[c] <- F(cut[c], theta)

}

# block 3: interval censoring

for (i in 1:I){

Z2[i] ˜ dbern(p[i])

p[i] <- F(cut2[i], theta) - F(cut1[i], theta)

}

# prior for theta’s

}

Every subgroup is self-blocked with a separate section of the likelihood in JAGS, where

O is the set of observed data, C is the set of left/right-censored observations, and I is

the set of interval-censored observations. Z1 is a binary random variable, where Z1 = 1

if it is left-censored, or Z1 = 0 if right-censored. The probability of success p in Bernoulli

distribution of Z1 is defined by the cumulative distribution F for the censored outcomes,

which neatly identifies the probabilities for both left-censored and right-censored data
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with properly specified cutoffs. For interval censored observations, we set Z2 = 1 and the

probability of success in Bernoulli distribution is the incremental change of the values in

F function between the cutoffs, corresponding to the unobserved outcome which lies in

a semi-closed interval.

The JAGS Model 2 encompasses a broad range of model structures. The censored

regression models, which are also called tobit models, usually have data both in blocks 1

and 2 with normally distributed or t-distributed errors [67, 70]. Some extensions include

time-series analysis [71], longitudinal data analysis [72] and spatial analysis [73]. In

the context of survival data analysis, some commonly assumed parametric distributions

F include exponential, Weibull, generalized gamma, log-normal, and log-logistic [74,

75],since the event times are positively valued with a skewed distribution, making the

symmetric normal distribution a poor choice for fitting the data closely. Additionally,

it is unnecessary to assume a known censoring time. Because the cutoff can be either

pre-specified with a fixed value or modeled as a random variable, the proposed approach

naturally accommodates models with unobserved, stochastic censoring thresholds [76].

Even for non-censored data, the proposed modeling strategy can still be useful in

some situations for computational advantages. After converting the standard model to a

latent-variable formulation, we can adapt logit, probit or complementary log-log models

as a type of block 2 data with Z1 defined as the binary outcome and cut (cutoff) treated

as fixed at 0 [77]. It is also possible to extend the proposed approach for ordered probit

analysis [78], which accommodates many applications in economics and marketing [79].

Next, we justify that the proposed alternative procedure constructs the correct

likelihood function for censored outcomes. In likelihood-based inference, the full like-

lihood for observed and censored data comprises four key components: observed case,

left-censored case, right-censored case and interval-censored case. For observed data,

the likelihood is simply a product of individual probability density/mass function of ob-
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served outcome. For any type of censored cases, the likelihood can be presented in a

form of FY (b)−FY (a), defining the probability of a censored outcome Y observed in the

semi-closed interval, (a, b]. Here, FY (y) = P(Y ≤ y) denotes the cumulative distribution

function of the random outcome variable if it is fully observed. If the outcome variable

is left-censored at a cutoff, yl, then FY (b) = FY (yl) and FY (a) = FY (−∞) = 0. If data is

right-censored with a lower bound, yr, then FY (a) = FY (y−r ) and FY (b) = FY (+∞) = 1.

For interval-censored data, the likelihood function is the product of Pr(ui ≤ Y ≤ vi) =

FY (vi)− FY (u−i ), where ui and vi are a pair of interval thresholds, which could vary for

every observation. Therefore, the exact likelihood function is given by:

Lexact (θ; y) =
∏
o∈O

fY (yo)
∏
l∈L

FY (yl)
∏
r∈R

[
1− FY

(
y−r
)]∏

i∈I

[
FY (vi)− FY

(
u−i
)]
, (3.1)

where O is the set of observed outcome, L (or R) is the set of left (or right) censored

observations, and I is the set of interval-censored data with ui and vi denoting the lower

and upper bound of the ith interval-censored observation.

In the JAGS Model 2, we can specify the cutoff value cut = yl if data are left-

censored, cut = y−r if data are right-censored, and (cut1, cut2) = (u−i , vi) if data are

interval censored. Defining F = FY , we have the following property for the likelihood

from the proposed JAGS model.

Proposition 2. The likelihood generated from the JAGS Model 2 using Bernoulli distribu-

tion with the cumulative probabilities for censored data is identical to the exact likelihood

(3.1).

Proof. To illustrate that the likelihood from the JAGS Model 2, Ljags, is identical to its

exact likelihood, Lexact, we start with deriving the formula for the likelihood presented in

the censored JAGS model, which has three major components: observed case, one-sided
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censored case, and interval-censored case. The full likelihood, Ljags, can be written as:

Ljags (θ; y) =
∏
o∈O

fY (yo)
∏
c∈C

{
[F (cutc)]I(Z1,c=1) [1− F (cutc)]I(Z1,c=0)

}
∏
i∈I

[F (cut2i)− F (cut1i)]I(Z2,i=1)

=
∏
o∈O

fY (yo)
∏
c∈C

{Z1,c=1}

F (cutc)
∏
c∈C

{Z1,c=0}

[1− F (cutc)]

∏
i∈I

{Z2,i=1}

[F (cut2i)− F (cut1i)]

=
∏
o∈O

fY (yo)
∏
l∈L

FY (yl)
∏
r∈R

[
1− FY

(
y−r
)]∏

i∈I

[
FY (vi)− FY

(
u−i
)]
.

(3.2)

Proposition 2 demonstrates that the proposed alternative modeling strategy in the

JAGS Model 2 has a correctly specified likelihood function for censored data, which war-

rants the JAGS Model 2 to generate proper posterior samples and deliver valid statistical

inference. For K-L based model comparison, especially when there are complicated model

features, it is convenient to employ the automatic computation of deviance function and

model selection criteria. Because the computation is implemented via the built-in dic

module in JAGS, we empirically compare the deviance reported from the JAGS Model 2

to the deviance manually calculated using posterior samples in the next Section.

3.4 Illustrative Examples

In this section, two real data applications are examined with the proposed approach.

The first example in Section 3.4.1 applies both the default approach and the alternative

strategy to model time-to-event outcome with right censoring. The reported deviance

of the model is assessed with the true value calculated manually based on the full likeli-
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hood function. It demonstrates that the alternative strategy can not only properly draw

posterior samples in JAGS, but also automatically deliver the correct deviance for model

assessment. The second example in Section 3.4.2 shows that the proposed approach is

capable of comparing censored data models by DIC [47] and penalized expected deviance

(PED, [66]) simultaneously, using a drug safety subset [2] in which some of the outcome

data are missing not at random (MNAR).

3.4.1 survival data

Right censoring is common in the time-to-event data of survival analysis.The first ex-

ample is from a classical right-censored survival dataset on acute myeloid leukemia [80].

Individual patient-level data were collected along with survival or censoring time to test

whether the standard course of chemotherapy should be maintained for additional cy-

cles or not. The Bayesian survival analysis is conducted using MCMC simulation and

implemented in JAGS 4.3.0 software [20] and R version 3.4.1. The JAGS codes for both

models are attached in Appendix 3.6. We run three parallel chains for the model and

discard 30,000 iterations of burn-in, followed by 10,000 posterior samples of hazard rates

per MCMC chain with thinning in the exponential survival regression model. Once the

posterior samples are obtained, the deviance function of the model based on the exact

likelihood function is manually calculated, and compared with the calculated deviance

using dic.samples() function in the rjags package with additional 10,000 iterations.

Figure 4.1(a) and 4.1(b) compare the kernel density plots of posterior samples for

coefficients in the exponential survival regression model between the default approach

using dinterval() and the alternative strategy. The proposed approach has almost identical

distribution to the default approach using dinterval() in estimation of the coefficient

parameters. The output of dic.samples() function for mean deviance estimation is plotted

in Figure 4.1(c), where the solid vertical line shows the mean deviance using dinterval()
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Figure 3.1: (a): A kernel density plot of regression coefficient β0 in the exponential
survival regression model comparing two methods; (b): A kernel density plot of re-
gression coefficient β1 comparing two methods; (c): A kernel density plot of deviance
functions comparing two methods by manual computation of deviance from posterior
samples (based upon the exact likelihood). The two vertical lines show the mean de-
viances generated via the dic.samples() function by the two methods.

function and the dashed vertical line using the proposed alternative strategy. Based on

30,000 posterior samples of each method, we also manually calculate the deviance based

on the exact likelihood (3.1) and plot their kernel density curves displayed in the last

panel. The result demonstrates that the proposed JAGS Model 2 provides the correct

value of mean deviance, while the estimate using dinterval() function is significantly biased

due to the deviances ignored for censored outcomes.

3.4.2 binomial data

The second example is from an application to assess drug safety for cancer immunother-

apy, known as programmed cell death protein (PD-1) and programmed death-ligand 1

(PD-L1) inhibitors. In clinical practice, it is important to investigate the incidences

of treatment-related adverse events (AEs) and to better understand the safety profiles

of these immuno-oncology drugs. In this illustrative example, we apply the alternative

strategy after extracting all-grade pneumonitis (a specific type of AE for inflammation
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of lung tissue) data from a recent meta-analysis [2]. The primary response is a binomial

outcome for the number of pneumonitis cases that could be censored; some rare pneu-

monitis data may be missing due to low incidence. Usually, the less frequently observed

AEs are less likely to be disclosed, given the prevalent manuscript word count limitations

for clinical trial publications in medical journals. For each censored AE, a study-specific

cutoff value can be identified; only the AEs either of special interest or with observed

incidence exceeding the cutoff were reported. To take those non-ignorable censored data

into account, we considered study-level rare binomial AE outcome data within the data

coarsening framework [13] to examine the impact of stochastic censoring mechanism. If

the data are coarsened at random, then we can construct the resultant likelihood ignoring

the coarsening mechanism and model the outcome data only, as is presented below. The

complete likelihood can be represented and modeled using selection model factorization

including sensitivity analysis [81].

In the Bayesian context, we compare seven distinct censored binomial models for

all-grade pneumonitis data to examine the model performance using the proposed strat-

egy. To apply the JAGS Model 2, an outcome variable Z1 is incorporated for censoring

status in block 2. In Model A, a baseline beta-binomial model by complete pooling is

to estimate the overall incidence of AE, in which no additional effect is included. In

Model B, two-group drug effect is incorporated into the baseline model, and then we can

estimate the AE incidences for two drug groups (PD-1 vs. PD-L1 inhibitors). To allow

for five drug-specific (Nivolumab vs. Pembrolizumab vs. Atezolizumab vs. Avelumab vs.

Durvalumab) effect on the incidence of AE, we begin with modeling drug effects without

any link function as Model C, and then extend to specify half-Cauchy prior [46] to the

standard deviation of drug effect with logit, cloglog, and probit link functions in Model

D-F, respectively. Lastly, we include a saturated model G to estimate the incidence rate

corresponding to each study without pooling. Mean deviance (D̄), effective number of

61



parameters (pD), DIC, optimism (popt), and PED are all calculated and compared based

on the seven candidate models described above. The model assessment results obtained

from the proposed JAGS models are summarized in Table 3.1.

Model D̄ pD DIC popt PED
A 380.85 0.99 381.84 2.05 382.90
B 371.11 1.99 373.10 4.26 375.37
C 343.14 4.61 347.75 10.65 353.79
D 343.35 4.56 347.91 11.02 354.37
E 343.39 4.54 347.93 13.19 356.58
F 343.38 4.61 347.99 10.28 353.66
G 269.30 94.60 363.90 865.69 1134.99

Table 3.1: Model Comparison: posterior mean deviance (D̄), effective number of parame-
ters (pD), deviance information criterion (DIC), optimism (popt), and penalized expected
deviance (PED) from modeling observed and censored all-grade AE (pneumonitis) data.
DIC = D̄ + pD, PED = D̄ + popt.

Per the results summarized in Table 3.1, there is no significant discrepancy on

either DICs or PEDs among Model C-F, indicating that the data are not sensitive to

the choice of link functions. In general, models with drug-specific effects (Model C-F)

outperform the baseline model with complete pooling (Model A) and the model with PD-

1/PD-L1 effect (Model B); the beta-binomial model without pooling (Model G) overfits

the data. All results are simultaneously computed from dic.samples() function in the rjags

R package.

3.5 Discussion

In this paper we propose an alternative strategy to apply Bayesian modeling for cen-

sored data in JAGS. It specifies the correct deviances for censored observations such that

the model selection methods DIC and PED can be easily calculated from the built-in

dic module. The proposed approach can also simplify the calculation of other popu-

lar Bayesian K-L based measures such as the Bayesian predictive information criterion
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(BPIC, [82]) and the widely applicable information criterion (WAIC, [83]). Though not

explicitly specified, the proposed approach can be easily extended to model truncated

data, for example, left-truncated right-censored observations in survival analysis. Even

for non-censored data such as binary outcomes, the proposed approach can still be useful

for computational advantages.

The proposed method may have a similar model presentation to the EM algorithm

[58] to handle censored data, for example, in tobit or probit regression modeling [84, 85].

In Bayesian contexts, the EM-type algorithms are designed to apply parameter opti-

mization in the posterior mode estimation, while the goal is to achieve the automatic

calculation of deviance with the posterior distribution estimation. DA is another rele-

vant approach to estimate the posterior distribution, which constructs computationally

convenient iterative sampling via the introduction of unobserved data or latent variables

[59, 67, 78]. Different from our approach, it requires the sampling of the unobserved

data, which may alter the deviance in application of K-L based model selection [47].

Censoring is frequently observed in real-world data analysis. In addition to nor-

mally distributed data in censored regression models, various types of outcome, including

survival data [61], binomial data [2], count data [86] and ranking data [35], can all be

modeled by the proposed alternative strategy when censoring occurs. Not only to the

medical sciences, the proposed strategy can also be applied to many other fields, such

as, in measuring the performance of timing asynchronies using censored normal sensori-

motor synchronization data in behavioral science [36], comparing industrial starch grain

properties with ordered categorized data in agriculture [87], exploring forest genetics by

modeling censored growth strain data for narrow-sense heritability estimation in envi-

ronmental science [37], determining the importance of influential factors to lower the risk

of food contamination for censored microbiological contamination data in food science

[38], and modeling the interval-censored as well as right-censored time to dental health
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event in primary school children for public health science [39]. In summary, the proposed

JAGS Model 2 can encompass a broad range of popular model structures and be utilized

in a wide spectrum of applications.
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3.6 Appendix

The following is the JAGS textsf for survival regression model in Section 3.4.1.

# The default approach implemented in JAGS
model{

for (j in 1:J){
R[j] ˜ dinterval(Y[j],lim[j]) # right-censored
Y[j] ˜ dexp(lambda[j])
lambda[j] <- exp(b0+b1*group[j])

}
b0 ˜ dnorm(0, tau0) # tau0 fixed at 0.01
b1 ˜ dnorm(0, tau1) # tau1 fixed at 0.01

}

# The proposed approach implemented in JAGS
model{

for (o in 1:O){
Y[o] ˜ dexp(lambda.adj[o]) # observed
lambda[o] <- exp(b0 + b1*group[o])

}
for (c in 1:C){

Z[c] ˜ dbern(p.adj[c]) # censoring status
p[c] <- pexp(cut[c],lambda[c+O]) # cumulative exp. dist.
lambda[c+O] <- exp(b0 + b1*group[c+O])

}
b0 ˜ dnorm(0, tau0) # tau0 fixed at 0.01
b1 ˜ dnorm(0, tau1) # tau1 fixed at 0.01

}

[Chapter 3: manuscript has been submitted for publication.]
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Chapter 4

JOURNAL ARTICLE 3

Bayesian Interaction Selection for

Meta-analysis with Censored Rare

Events

4.1 Introduction

In this article, we are interested to identify the potential two-way interactions between

various study-level factors in a meta-analysis of rare and censored adverse events (AEs).

As an extension of a recent meta-analysis of clinical trials reporting on AEs associated

with PD-1 (programmed cell death protein 1; a protein on the surface of T cells) and

PD-L1 (programmed cell death ligand 1; a protein on the cancer cells) inhibitors [2], the

primary motivations for incorporating interactions into a Bayesian multilevel regression

model include (1) obtaining more accurate toxicity profiles of immunotherapy drugs, (2)

helping early detection and close monitoring of symptoms for proper management of
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adverse events, and (3) identifying the high-risk subgroups of patients, in the presence

of missing outcome data. The major statistical question we addressed in this work is

how to select the promising subsets of interaction terms when the search space is large.

In general, the majority of features could be irrelevant. In our context, the idea of

sparsity comes from the true interactions should be reasonably sparse, suggesting the AE

incidence is not impacted by too many interactions. By fitting a sparse linear model,

we only select a subset of interaction terms which are non-zeros. It is beneficial both in

terms of enabling scientific interpretation by identifying the truly important interactions,

and in terms of statistical modeling, as the assumption of sparsity reduces the number

of parameters to be estimated.

A number of papers in both the Bayesian and frequentist frameworks proposed ap-

proaches on how to achieve sparsity, with the most popular approach being the LASSO

[22]. The major existing approaches to the Bayesian variable selection in the context of

regression modeling include indicator model selection, stochastic search variable selec-

tion (SSVS), Laplacian shrinkage and shrinkage by horseshoe. Two methods of indicator

model selection are Kuo & Mallick (K&M; [24]) and Gibbs Variable Selection (GVS;

[25]). The K&M method assumes the prior distributions of the auxiliary indicator vari-

ables and regression coefficients are independent, whereas GVS assumes that two prior

distributions are conditionally independent of each other. As a Bayesian alternative to

LASSO, Bayesian LASSO (Laplacian shrinkage) uses a double-exponential prior distribu-

tion to each model parameter [26]. SSVS is a procedure to identify the promising subsets

of predictors which have higher posterior probability using Gibbs sampling [28]. To miti-

gate the computational challenge for high-dimensional data, [31] proposed an alternative

approach to stochastic search, known as Expectation-Maximization (EM) variable selec-

tion, which relies on the basis of the EM algorithm to quickly identify the promising

subsets in the high-dimensional setting. To achieve sparsity in the Bayesian variable se-
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lection, recently, a horseshoe prior has become a widely used choice for shrinkage [30, 29],

which is also free of tuning parameters.

However, interaction selection problem in the presence of informative censoring

has been barely addressed. In this article, from the Bayesian perspective, we develop

a sparse interaction selection method along with the prior specification on shrinkage

parameters for the interaction coefficients to handle censored and rare event in a meta-

analysis setting. The major challenge of Bayesian interaction selection is that the possible

sets of two-way interactions could be high dimensional. How to specify proper priors and

control the shrinkage properties for coefficients of interactions in the sparse Bayesian

hierarchical model framework are crucial.

The rest of this article is organized as follows. In Section 4.2, we present the

proposed model and prior specifications with aim to select sparse interactions in the

Bayesian framework, along with discussing the criteria for the performance of interaction

selection. In Section 4.3, we compare the simulation results of the proposed approach

with others in the presence of missing outcome data. In Section 4.4, we apply the

proposed method to a meta-analysis of immunotherapy trials reporting adverse events

for identifying high risk groups by selecting a set of significant interactions that highly

impact on AE incidence. Some concluding remarks and discussion are given in Section

4.5.

4.2 Methods

The goal of interaction selection is to recognize the high risk subgroups that have higher

probability of AE incidence in a sparse model. In the context of univariate binomial

safety data, other than including marginal effects in the model, we are also interested in

identifying pairwise interactions by specifying priors to control shrinkage properties for
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those that are believed to be highly relevant to the AE incidence.

4.2.1 Bayesian Interaction Selection

The proposed Bayesian multilevel logistic regression model starts with the following ad-

ditive study-level factors such as study, therapeutic regimen (drug), cancer type and AE

category. However, these independent categorical factors may interact with each other.

For example, the effect of drug on the incidence of an adverse event may also depend

upon AE subgroup. The drug × AE interaction indicates that AE category influences the

relationship between drug and AE incidence. Therefore, we first extend the main effect

model by adding two-way interactions to help us to target interesting candidate features.

We also consider to select from other candidate interactions, such as cancer × AE and

cancer × drug.

4.2.2 Model Specification

Let Yij be the binomial outcome for jth AE in the ith study. Consider the Bayesian

multilevel logistic regression model involving interactions effects between two factors:

Yij ∼ Binomial(Ni, pij), logit(pij) = Zu+Xβ,

where i = 1, · · · , I, and j = 1, · · · , J . pij is a length-(I × J) vector of AE incidence,

Yij is a length-(I × J) vector of observed number of AE within each study, Nij = Ni is

the study-level sample size of ith study, and Z is a known (I × J) × q design matrix

for random effects, and X is a known (I × J) × k design matrix for interactions. u is

a q-dimensional of random marginal effects such as study, therapeutic regimen, cancer

types and AE categories. β is a k-dimensional of interaction effect coefficients. Our

goal is to find a subset of interactions terms to include in the model. With k potential
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two-way interactions, we introduce k binary indicator (latent) variables corresponding to

candidate interactions, δ1, · · · , δk. If δk = 1 (k = 1, · · · , K), then Xk is included in the

model. If δk = 0, then Xk is excluded. The posterior probabilities of model parameters

can be generated using MCMC and the model including a smaller subset of strongest

interactions terms with marginal inclusion probability greater or equal to 0.5 will be

selected.

4.2.3 Prior Specifications

We consider all q random marginal/main effects to be included in the model and kth

interaction to be included if the corresponding coefficient βk 6= 0. To specify the prior

for each coefficient of marginal effect, we use a normal prior, which is of the form :

uq ∼ N(µ, σ2
u), where the most common choice for µ is zero and the standard deviation

parameter, σu > 0. Moreover, for the choice of prior on σu, following the recommendation

in [46], we use a weakly-informative prior: σu ∼ C+(0, A), where C+ denotes half-Cauchy

distribution and A is a scale parameter, which is chosen to be 25.

To perform sparse Bayesian interaction selection, we place priors on the individual

interactions, as well as independent priors on the hyperparameters. Specifically, we use

spike and slab priors to discriminate between the truly important interaction effects

and the negligible ones. The stochastic search variable selection (SSVS) technique was

developed to identify regression coefficients via Gibbs sampling [28]. In this project,

we use SSVS to recognize promising subsets of interaction terms rather than marginal

effects in the model. We define a normal mixture prior for each of interaction coefficients:

βk|δk ∼ (1− δk)×N(0, σ2
k) + δk ×N(0, c2

kσ
2
k). Given the relationship between precision

and variance: τk = 1/σ2
k, the choice of ck, τk is started with a fixed value by setting ck

large enough (e.g. 100) and precision τk at 4. Alternatively, we can also assign a uniform

prior on the standard deviation of the spike component, e.g., σk ∼ Unif(0, 1). The prior
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probability of inclusion (suggesting interaction k has a nonzero effect), Pr(δk = 1) =

1− Pr(δk = 0) = pk, is fixed at 0.5.

If β is believed to be sparse, we may also place a horseshoe prior [29] on each of

interaction coefficient: βk|λk, τ ∼ N(0, λ2
kτ

2), in which λk is a local shrinkage parameter

and τ is an overall (global) shrinkage parameter. Both hyperparameters follow standard

half-cauchy distributions [30]: λk, τ ∼ C+(0, 1). The advantage of adopting horseshoe

prior is no tuning of any hyper-parameter is required in the model specification.

4.2.4 Model Implementation in JAGS

For Bayesian inference in logistic regression, after determining the full likelihood func-

tion of the data and forming a prior distribution over regression parameters, we can

find the posterior distribution over all parameters via Bayes theorem. Since the closed

form expression of full conditional is not available, we will implement in Just another

Gibbs Sampling (JAGS) using Markov Chain Monto Carlo (MCMC) algorithm to ap-

proximate/generate samples from the marginal posterior distribution for each regression

coefficient.

To overcome the difficulty of modeling censored outcome data, we use an alternative

modeling strategy to define a binary censoring status variable, W (W = 1 if left-censored,

0 if right-censored), in JAGS. The details can be found in the second aim. In the

presence of left-censored AE data with a pre-specified study-level cutoff value, c, instead

of modeling binomial outcome with density fY (y|n, p) directly, we may construct the

censored data likelihood by cumulative distribution, FY (c|n, p) = ∑c
k=0

(
n
k

)
pk(1− p)n−k,

as the probability of left censoring, to help estimate AE incidence. The full model

specification of censored data with horseshoe prior for interaction selection in JAGS is

in the Appendix 4.6. In the next two sections, we will program the simulation study as

well as case study in JAGS.
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4.3 Simulation Study

4.3.1 Settings

In this section, to show the importance of including two-way interaction terms in the

model and to find an optimal interaction selection method, we conduct a simulation

study to evaluate the performance of our two proposed sparse Bayesian models with

interaction (sBMI), an sBMI under horseshoe prior (sBMIhs) and an sBMI under spike-

and-slab prior (sBMIss), with that of other competitors. These include a Bayesian model

of censored data (BMCD), which is a marginal model without interactions [2]; glmIA, a

classical generalized linear regression model with logit link including true interactions as

a reference model; and glm, a logistic regression model without interaction. We generate

100 datasets, each of which contains the training and test set of n = 1, 000.

To assess the performance of the proposed method, we consider three scenarios.

The first scenario (Scenario 1) is when AEs are fully observed. The second and third sce-

narios (Scenario 2 & 3) are when some of AEs are missing (censored). In scenarios with

censored observations, the AE outcome data with low incidence are informatively cen-

sored to mimic real-world cases, where low and zero events are often censored. Therefore,

the second scenario (Scenario 2) treats 40% and the third scenario (Scenario 3) treats

80% of AE outcome data with low incidences as censored data and keep the remaining

observations with higher incidences as observed data.

In the training dataset, we use the same procedure to generate the true value of

AE outcome (Ytrain) for all models. Let the total number of main effects, nME, be 125,

including 100 studies, 10 cancer types, 5 drugs and 10 AE subtypes; let the total number

of candidate pairwise interactions, nIA, be 200, including 100 AE × drug interactions, 100

AE × cancer interactions, and 50 cancer × drug interactions; and set the total number

of observations, nobs, at 1,000. Then, we generate a design matrix (Z) for marginal
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effects and specify the marginal effects (a vector of length nME = 125) by a normal

distribution, u ∼ N(−1, 0.42). Meanwhile, we generate another design matrix (X) for

interaction effects by assuming 20 (out of 200) as selected (nonzero) interactions with

value of 1 (β = 1) and the rest of them as zeros, in the case of sparse interaction signals

(assuming the level of sparsity at 10%). Thereafter, the true AE outcome (Ytrain) of each

observation is generated by a binomial distribution with number of patients within study

(n = 100) and toxicity probability at p = logit−1(Zu+Xβ).

All three Bayesian censored models are implemented in JAGS. In BMCD (model

with main-effect only), we fit 200 main study-level factors into the marginal model in

JAGS and eventually obtain the estimated marginal effects (û) using MCMC techniques.

In sBMIhs, we fit main study-level factors as well as candidate two-way interactions into

the proposed interaction selection model and eventually obtain the posterior samples of

marginal effects (û) and interaction terms (β̂). In sBMIss, we fit the same training data

sBMIhs, but different prior specification for interaction coefficients. For model fitting in

JAGS, we discard the 30,000 iterations of burn-in and obtain 30,000 posterior samples

for each parameter of interest as well as the corresponding posterior median and 95%

credible intervals. In contrast, glmIA aims to be treated as a gold standard by including

all nonzero interactions in a generalized linear model with logit link. Moreover, glm is a

multiple logistic regression model without interactions and it treats the marginal effects

as fixed categorical covariates.

We use the same generation procedure as training set for test dataset with all 125

marginal effects and 200 candidate pairwise interaction effects. The true AE outcome

in the test dataset is generated by Ytest = Ỹ ∼ Bin(n, p), where the true probability

of incidence, p = logit−1(Zu + Xβ). Thereafter, in BMCD (main-effect only), the

predicted AE outcome, Ŷ , is generated from a binomial distribution with sample size n

and the estimated incidence probability, p̂ = logit−1(Zû), where û are the medians of
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posterior samples for marginal effects. In contrast, in sBMIhs and sBMIss, the predicted

AE outcome, Ŷ , is generated from a binomial distribution with sample size n and the

estimated probability of incidence, p̂ = logit−1(Zû + Xβ̂), in which, the estimated

marginal effects and interactions are extracted from the posterior medians of samples

using MCMC. After generating both Ytest and Ŷ for each model, we calculate the average

value of MSPE across all replications using formula below.

All five models are compared using the mean squared prediction error (MSPE),

which is the mean squared difference between the true value of the outcome (Ỹ ) from

the test dataset and the fitted value (Ŷ ) from the model. To evaluate the performance

of the proposed model with selected interactions, we calculate the mean squared error

(MSE) of regression coefficients, sensitivity (true positive rate; TPR) and specificity (true

negative rate; TNR). In the context of interaction selection, true positive rate (TPR; the

proportion of actual positives correctly identified) is defined as the probability that actual

nonzero interactions are correctly selected, and false positive rate (FPR = 1 - TNR; the

proportion of actual negatives that are identified as positives) is defined as the probability

that actual zero interactions are finally selected. We can define the sensitivity (TPR),

specificity (1-FPR), mean MSPE, and MSE as follows:

MSPE = 1
n

n∑
i=1

(Ỹi − Ŷi)2, MSE = 1
n

n∑
i=1

(ui − ûi)2

TPR = TP

TP + FN
= number of actual non-zeros are selected

total number of non-zeros

FPR = FP

TN + FP
= number of actual zeros are selected

total number of zeros

Furthermore, we include Matthews correlation coefficient (MCC), a measure of the overall

interaction selection accuracy, to evaluate the identification performance of each selection
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method.

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP represents the number of actual non-zero interactions that are selected, TN is

the number of actual zeros that are not selected, FP is the number of actual zeros that

are selected, and FN is the number of non-zeros that are not selected.

In the Bayesian selection model using spike-and-slab prior, the posterior probability

of inclusion (PPI) for kth interaction is defined as

PPIk =
∑I
i=1 δ̂

(i)
k

I

where I = total number of MCMC iterations after burn-in.

4.3.2 Simulation Results

The purpose of simulation study is to show that the proposed Bayesian selection model

gives the unbiased estimation on probability of incidence across subgroup to identify

high-risk groups, as well as identifies the candidate interactions in the presence of missing

data.

In the case of the sparse models, uncertainty qualification by marginal credible

intervals has been demonstrated to be an effective tool for detecting true and false dis-

coveries of signals [88]. Therefore, we visualize the 95% credible interval (CrI) for each

interaction based on two prior specifications under different percentages of missingness

by plots. Figures 4.1 and 4.2 show the posterior medians of 200 interaction coefficients

with 95% CrIs at sparsity level of 10% (number of signals = 200 × 10% = 20) under 0%

and 80% of missingness, respectively. Each figure is based on a single simulated dataset.

The true values of 20 nonzero interaction effect (plotted in green) equal to 1 and the

remaining 180 interactions at 0 (plotted in red). For actual nonzero interactions, if 95%
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CrI of each interaction coefficient (β) covers zero, it is not successfully selected. However,

for those actual zero interactions, if 95% CrI of each β does not cover zero, it is mistak-

enly selected. As shown, the proposed selection models detect the true interactions well

(i.e., sensitivity at 0.75 and specificity at 1) in the presence of no missingness (Scenario

1). In contrast, when the missingness gets higher, the 95% CrIs of interaction coefficients

become wider, but the proposed selection models can still recover the underlying truth

at TPR = 0.65 and TPR = 0.60, with FPR = 0 in Scenarios 2 and 3 based on a single

simulated dataset.
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Sensitivity = 0.75 
 1 − Specificity= 0
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Figure 4.1: 95% marginal credible intervals of interaction coefficients based on horseshoe
prior for just a single simulated fully-observed data set, in a setting with nIA = 200 and
20 non-zero interactions.

The results of posteriors are based on 100 simulated training data sets. For each

model, we repeat the same data generation procedure in order to enable the comparison

of simulation results. After we extract the posterior medians of main effects (û) from

all three Bayesian models and interaction effects (β̂) from sBMIhs and sBMIss, we plug

estimates from these models to obtain the predicted AE incidence (p̂), and then generate

the predicted AE outcome (Ŷ ). For each iteration, we are capable of calculating MSPE,

the expected value of squared difference between the estimated AE outcome and true
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Figure 4.2: 95% marginal credible intervals of interaction coefficients based on horseshoe
prior for just a single simulated data set under 80% missingness, in a setting with nIA =
200 and 20 non-zero interactions.

value. Table 4.1 summarizes the MSPE, MSE, TPR, FPR, and MCC by averaging over

all iterations. Note that the true value of regression coefficients for marginal effects are

the same for both training and test datasets. The results are based on averaging over all

100 simulations.

The simulation results of each model are summarized in Table 4.1. As shown, when

all the data are fully observed in the analysis, the prediction accuracy of BMCD and glm

- marginal models without considering any interactions, but under different frameworks

- is the worst among all models in Scenario 1, demonstrating the potential interactions

between main effects. The prediction accuracy is then improved by the proposed sparse

interaction selection models. sBMIhs and sBMIss have superior prediction performance

compared with others in the presence of no/medium/high percentage of missingness.

Moreover, it is remarkable that the performance of BMCD (main-effect only), sBMIhs

and sBMIss is relatively stable when the percentage of missingness increases, further

demonstrating the benefits of handling censored rare event outcomes under the Bayesian

framework. Such robustness results from the ability to accommodate the informatively
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Scenario Method median(Ỹ ;Ŷ ) MSPE(SE) MSE(SE) TPR FPR MCC

0% BMCD 2.290;2.595 11.473(2.954) 1.300(0.099) - - -
censored sBMIhs 2.290;2.280 7.314(1.428) 0.531(0.042) 0.708 6e-5 0.827

sBMIss 2.290;2.265 7.360(1.479) 0.529(0.041) 0.724 2.2e-4 0.836
glmIA 2.290;2.210 7.849(1.817) -(-) - - -
glm 2.290;2.410 11.717(3.244) -(-) - - -

40% BMCD 2.290;2.750 11.618(2.939) 1.291(0.099) - - -
censored sBMIhs 2.290;2.495 7.418(1.463) 0.529(0.041) 0.687 6e-5 0.813

sBMIss 2.290;2.460 7.486(1.515) 0.525(0.042) 0.702 1.7e-4 0.822
glmIA 2.290;4.175 41.799(14.087) -(-) - - -
glm 2.290;4.485 37.423(12.793) -(-) - - -

80% BMCD 2.290;3.095 12.318(3.243) 1.294(0.102) - - -
censored sBMIhs 2.290;2.365 7.766(1.607) 0.541(0.041) 0.553 6e-5 0.723

sBMIss 2.290;2.320 7.731(1.546) 0.538(0.042) 0.582 1.7e-4 0.742
glmIA 2.290;8.180 73.471(24.081) -(-) - - -
glm 2.290;8.545 68.971(22.119) -(-) - - -

Table 4.1: The mean squared prediction error (MSPE) with sample standard deviation
(SSD) for the test data, the mean squared error (MSE) for regression coefficients, the aver-
age true positive rate (TPR), the average false positive rate (FPR), and Matthews corre-
lation coefficient (MCC) for five models, marginal-only model (BMCD), sparse Bayesian
model of interaction selection using horseshoe prior (sBMIhs), sparse Bayesian model of
interaction selection using spike-and-slab prior (sBMIss), logistic regression model with
all true interactions (glmIA), and logistic regression model without interactions (glm)
under 0%, 40%, and 80% censoring (missing not at random).

censored outcomes in the likelihood function. Compared to the proposed models, glmIA,

which includes all nonzero true interactions, has similar prediction accuracy based on

the value of MSPE in Scenario 1; however, in the presence of missingness (Scenarios

2 and 3), its prediction accuracy worsens due to only observed cases being included in

the model. Furthermore, glmIA has a limitation to handle multiple categorical covariates

with high-dimensional categories. For interaction identification, sBMIhs and sBMIss have

lower FP rates which are very close to zero in all scenarios, which suggests very few zero

interactions are incorrectly selected. Also, sBMIhs and sBMIss have highest TP rates

(over 0.7) in Scenario 1. In the case when 80% of AE outcomes are censored (Scenario

3), TP rates over 0.55 are still achieved without suffering high FP rates in both Bayesian
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interaction selection models. In all three scenarios, the sBMIhs gives the value of MCC

at 0.83, 0.81 and 0.72 on average, respectively.

4.4 Case Study

In this section, we utilize the proposed Bayesian interaction selection method to identify

pairwise interaction effects in the real data meta-analysis of treatment-related all-grade

(Grade 1-5) and Grade 3 or higher (Grade 3-5) adverse events (AEs) with informative

censoring [2]. We obtained the study-level safety data from systematic review of 125

clinical studies reporting AEs for two anti-PD-1 drugs (Nivolumab, Pembrolizumab)

and three anti-PD-L1 drugs (Atezolizumab, Avelumab and Durvalumab) published from

2011-2018. Other than the study-level AE outcome data, we have the following study-

level information including drug, AE subtype, cancer type, criteria of AE reporting. For

the severity level of AE outcome, the number of Grade 1-5/Grade 3-5 (G15/G35) AE was

recorded, however, more than 60% of AEs on average for each study was left-censored due

to lower than a pre-specified cutoff value. Therefore, censored AE outcomes were treated

as missing not at random (MNAR) in the analysis. The objective is to evaluate the

incidence probability of AEs by subgroups and identify the high risk groups by selecting

those nonzero two-way interactions in the presence of left-censored study-level data.

The proposed Bayesian interaction selection model under horseshoe prior is imple-

mented in the statistical software R and JAGS [18], which uses a Markov Chain Monto

Carlo (MCMC) algorithm to generate samples from the posterior distribution of the pa-

rameters of interest. Along with listing the data and setting the initial values of model

parameters, we specified the likelihood functions and prior distributions for the proposed

model in JAGS. We run three parallel chains for the model. For each MCMC chain, after

discarding the burn-in period of 30,000 iterations, the 3 chains showed good mixing and
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successful convergence to the target distribution. We eventually obtain 10,000 posterior

samples per chain by retaining one sample out of three. The 30,000 posterior samples

of model parameters such as incidence probabilities of AEs by subgroups and candidate

interactions are saved for the Bayesian inference.

Figure 4.3 displays the posterior medians and the corresponding 95% CrIs of those

selected interaction coefficients by horseshoe prior. Of the 927 candidate interactions, 30

nonzero ones were selected under both horseshoe and spike-and-slab prior, suggesting a

relatively consistent result on sparse interaction identification in the presence of censored

outcome data.
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Figure 4.3: Significant interactions for all-grade AEs selected by horseshoe prior

Based on the posterior medians and the corresponding 95% credible intervals (95%

CrI) of 927 interaction coefficients obtained from the proposed interaction selection model

for all-grade AEs using horseshoe prior, 32 interactions having 95% CrIs not covering 0

were selected. Among all those 22 selected AE × cancer interactions, vitiligo × melanoma

interaction has the largest effect (β̂ = 2.766; 95% CrI, 1.623-4.075) on all-grade AE

incidence, and the estimated all-grade (G15) incidence probability of AE is p̂G15 = 0.167

with 95% CrI (0.060,0.421), followed by neutropenia × hematologic malignancy interaction
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Figure 4.4: Significant interactions for Grade 3 or higher AEs selected by horseshoe prior

(β̂ = 2.252 (1.6881-2.814); p̂G15 = 0.106 (0.062-0.175)), and platelet count decreased ×

hematologic malignancy interaction (β̂ = 2.072; 95% CrI, 1.211-2.841. p̂G15 = 0.091;

95% CrI, 0.040-0.178). Among those 10 selected AE × drug interactions, infusion-related

reaction × avelumab interaction has the largest effect (β̂ = 2.986; 95% CrI, 2.243-3.461)

on AE incidence, and the estimated all-grade incidence probability of AE is p̂G15 = 0.178

with 95% CrI (0.076,0.275), followed by Amylase increased × Nivolumab (0.061; 95% CrI,

0.011-0.191). The overall mean incidence probability of all-grade AE is 0.011 (95% CrI,

0.005-0.013).

On the other hand, 8 pairwise interactions were selected based upon Grade 3 or

higher (Grade 3-5) AEs using horseshoe prior. Among three selected AE × cancer interac-

tions, neutropenia × hematologic malignancy interaction has the largest effect on Grade 3-5

(G35) AE incidence, and the estimated incidence probability of G35 AE is p̂G35 = 0.009

(95% CrI; 0.004,0.021), followed by pneumonitis × lung cancer interaction and colitis ×

melanoma interaction. Among those 5 selected AE × drug interactions, infusion-related

reaction × Avelumab interaction has the largest effect on G35 AE incidence, and the esti-

mated all-grade incidence probability of G35 AE is p̂G35 = 0.012 (95% CrI; 0.002,0.044),
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followed by Lipase increased × Nivolumab interaction, Amylase increased × Nivolumab in-

teraction, Lipase increased × Avelumab interaction, and γ-Glutamyl transferase increased

(GGT) × Durvalumab interaction. The overall mean incidence probability of G35 AE is

0.0007 (95% CrI, 0.0005-0.0009).

4.5 Discussion

In this work, we have developed a sparse full Bayesian interaction selection model to

simultaneously identify nonzero interactions and those high risk groups with higher inci-

dence probability of AE, in the presence of informative censoring. Through simulations,

we have demonstrated that the proposed interaction selection approach can improve the

prediction accuracy and select those non-zero interactions when the underlying truth is

sparse and the overall AE incidence is rare. We have also illustrated the proposed ap-

proach with a real-data meta-analysis to identify significant ones among high-dimensional

candidate pairwise interactions. The results from this application can make a tremendous

impact on cancer patients treated with immunotherapy drugs.

L1 regularization promotes sparsity, therefore, LASSO is preferred over ridge re-

gression to achieve sparsity in the model features. However, LASSO may not be suffi-

ciently sparse, especially when determining the optimal value for regularization/penalty

parameter using cross-validation, the model becomes denser and the significant features

are over-selected.

The interaction we identified between vitiligo, an autoimmune skin disorder, and

melanoma is consistent with reports in the literature; for example, a prospective study of

patients with metastatic melanoma treated with pembrolizumab observed a cumulative

incidence of vitiligo of 25% [89]. Low neutrophil counts (neutropenia) and low platelet

counts (thrombocytopenia) have both been reported as serious, but rare, hematological
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irAEs [90], so the link to hematological malignancies is logical. Avelumab has been

linked to infusion-related reactions, with a rate of 20% reported among subjects with

urothelial cancer treated in a Phase II study [91]. Thus, our real-data meta-analysis

demonstrates that the proposed interaction selection method yields clinically meaningful

results. Understanding the risk of various irAEs based on a subject’s cancer type and

potential treatment options is a key question which can guide improved prevention and

management of these events [92], and the proposed statistical framework can provide

robust estimates to inform these decisions.

The proposed method is appropriate for other applications if outcomes are cen-

sored. Extending the current sparse interaction selection approach to handle three-way

interactions, such as AE × drug × cancer should be possible, although the complexity

of model fitting may increase. Another potential direction is to extend the approach to

other types of priors along with appropriate calibrations on shrinkage parameters to cap-

ture much smaller effects and favor more sparsity. We hope to explore more clinical-type

models to offer practical guidance on drug safety as future research of interest.
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4.6 Appendix

JAGS for sparse Bayesian model of censored data with interaction selection based on

horseshoe prior (sBMIhs).

model{

for (j in 1:J1){ # observed

Y[j] ˜ dbin(theta[j], N[j]) # the likelihood

logit(theta[j]) <- theta.v1[v1[j]] + theta.v2[v2[j]] +

theta.v3[v3[j]] + theta.v4[v4[j]] + beta1[v5[j]] +

beta2[v6[j]] + beta3[v7[j]]

}

for (j in 1:J2){ # censored

Z[j] ˜ dbern(p[j]) # the likelihoo

p[j] <- pbin(cut[j], theta[j+J1], N[j+J1]) #Y<=cut

logit(theta[j+J1]) <- theta.v1[v1[j+J1]] + theta.v2[v2[j+J1]] +

theta.v3[v3[j+J1]] + theta.v4[v4[j+J1]] +

beta1[v5[j+J1]] + beta2[v6[j+J1]] + beta3[v7[j+J1]]

}

for (i1 in 1:n.v1){

theta.v1[i1] ˜ dnorm(0, prec.v1)

} # a half-cauchy prior on standard deviation

prec.v1 <- pow(sigma.v1, -2)

sigma.v1 ˜ dt(0, a, 1)T(0,) # a=1/Aˆ2, where scale parameter A=25

... # same priors on other main coefficients: v2, v3, v4
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for (k1 in 1:n.v5){

beta1[k1] ˜ dnorm(0, prec1[k1])

prec1[k1] <- pow(sigma1[k1], -2)# precision = 1/variance

sigma1[k1] <- lambda1[k1]*tau1

lambda1[k1] ˜ dt(0, 1, 1)T(0,) # local shrinkage parameters

} # horseshoe prior

tau1 ˜ dt(0, 1, 1)T(0,) # global shrinkage parameter

... # same priors on other interaction coefficients: v6, v7

}

In contrast, interaction selection based on spike-and-slab prior (sBMIss) as follows:

model{

# same model specification for likelihood and main coefficients as above.

...

for (k1 in 1:n.v5){

IndIA1[k1] ˜ dcat(PInd1[]) # returns 1 or 2

Ind1[k1] <- IndIA1[k1]-1 # returns 0 or 1

beta1[k1] ˜ dnorm(0, tauIA1[IndIA1[k1]])

} # SSVS

PInd1[1] <- 1/2

PInd1[2] <- 1-PInd1[1]

tauIA1[1] <- taub1 # spike: ind1 = 0

tauIA1[2] <- taub1/100 # slab: ind1 = 1

taub1 <- pow(sdbeta1, -2)

sdbeta1 ˜ dunif(0, 1)
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... # same priors on other interaction coefficients: v6, v7

}

[Chapter 4: manuscript is in preparation for publication.]
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Some figures on pairwise interaction selections from the real-data application.
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Figure 4.5: Shrinkage weights corresponding to 32 nonzero interactions for all-grade AEs
selected by horseshoe prior
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Figure 4.6: Shrinkage weights corresponding to 8 nonzero interactions for grade 3 or
higher AEs selected by horseshoe prior.
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Figure 4.7: Significant interactions for all-grade AEs selected by spike-and-slab prior
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Chapter 5

Summary and Future Work

5.1 Conclusion

A Bayesian hierarchical model is a natural choice to deal with sparse event data along

with accounting for study-specific heterogeneity in a meta-analysis setting when the

study-level outcome data are informatively censored. To better understand the toxicity

profiles of immunotherapy drugs, in Chapter 2, we present our model to handle censored

rare event outcome with missing not at random under the coarsened data framework.

The data are coarsened at random, and model parameters and coarsening process are a

priori independent, therefore, the resulting likelihood and Bayesian inferences are capable

of ignoring the stochastic nature of the coarsening mechanism.

An unsolved statistical computing issue has been identified during implementing

Bayesian model selection for censored data analysis in JAGS. To select the best one

among a set of candidate Bayesian censored data models in the presence of complicated

or high-dimensional features, in Chapter 3, we demonstrate that the alternative modeling

strategy draws correct posterior samples, as well as helps simultaneously computing the

true deviance on the basis of likelihood functions for censored model selection in JAGS.
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The proposed algorithm can also be generalized to different types of data, models as well

as many other disciplines.

On top of main effects in the model, we are also interested in exploring significant

pairwise interactions by specifying priors to control shrinkage properties for selection

of interactions. In Chapter 4, we aim to find the optimal method to identify two-way

nonzero ones that are truly relevant to outcome in a large search space of possible sets

of interactions. In addition to unbiasedly estimating the incidence probability across

subgroups, the proposed Bayesian interaction selection method is able to select significant

interactions among candidates and identify high-risk groups for practical guidance.

5.2 Discussion

The additional future directions will include the extension of the proposed Bayesian model

of censored data in aim 1 to (1) model high-dimensional genomic data at the study-level

or patient level and estimate the probability of genetic mutation by subgroup analysis;

(2) handle right-censored AE data when only grade 2 or higher AEs were reported in

a meta-analysis of trials reporting drug safety. The proposed algorithm in aim 2 can

also facilitate the comparison among eight possible variations of deviance information

criterion (DIC) for missing data models [93] , such as observed DICs, complete DICs,

conditional DICs. It would be of interest in future work. Extending the current sparse

interaction selection approach in aim 3 to handle three-way interactions, such as AE ×

drug × cancer should be possible, although the complexity of model fitting may increase.

Another potential direction is to extend the approach to other types of priors along with

appropriate calibrations on shrinkage parameters to capture much smaller effects and

favor more sparsity. We hope to explore more clinical-type models to offer practical

guidance on safety as future research of interest.
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