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Abstract— In modern society, epistemic uncertainty limits 

trust in financial relationships, necessitating transparency and 

accountability mechanisms for both consumers and lenders. One 

upshot is that credit risk assessments must be explainable to the 

consumer. In the United States regulatory milieu, this entails both 

the identification of key factors in a decision and the provision of 

consistent actions that would improve standing. The traditionally 

accepted approach to explainable credit risk modeling involves 

generating scores with Generalized Linear Models (GLMs) - 

usually logistic regression, calculating the contribution of each 

predictor to the total points lost from the theoretical maximum, 

and generating reason codes based on the 4 or 5 most impactful 

predictors. The industry standard approach is not directly 

applicable to a more expressive and flexible class of nonlinear 

models known as neural networks. This paper demonstrates that 

an eXplainable AI (XAI) variable attribution technique known as 

Integrated Gradients (IG) is a natural generalization of the 

industry standard to neural networks. We also discuss the unique 

semantics surrounding implementation details in this nonlinear 

context. While the primary purpose of this paper is to introduce 

IG to the credit industry and argue for its establishment as an 

industry standard, a secondary goal is to familiarize academia 

with the legislative constraints – including their historical and 

philosophical roots – and sketch the standard approach in the 

credit industry since there is a dearth of literature on the topic.  

Keywords—Credit Scoring, Explainable Artificial Intelligence, 

Machine Learning Deep Learning, Integrated Gradients, Trust, 

Transparency, Fairness 

I. INTRODUCTION: CREDIT, TRUST, AND EXPLAINABILITY 

Assessments of creditworthiness – the probability that a 
borrower will meet their financial obligations – are a critical 
component of the lending process. These assessments are 
derived from historical financial records (i.e. – credit reports) 
that, for consumers in the United States, are maintained 
primarily by 3 Consumer Reporting Agencies (CRAs), known 
colloquially as ‘credit bureaus’: Equifax, TransUnion, and 
Experian [1]. Risk models are often built on the raw information 
in these reports to generate credit scores, which quantify the 

probability of repayment for a potential borrower. Some scores 
are specific to particular market segments, while others are more 
general. Of the general scores, the most common are the 3 digit 
FICO8/9 developed by Fair Isaac Corp. [2] and the 
VantageScore 3.0/4.0 developed jointly through the big 3 CRAs 
[3]. 

Lenders are not the only ones that have come to rely on credit 
reports. Employers, landlords, insurance companies, and even 
prospective dates may wish to leverage this sensitive 
information on the grounds that good credit is associated with 
good moral character – trust, in particular [4]. While making 
broad ethical generalizations about individuals based on their 
creditworthiness may be specious, credit scores do seem to be 
quite effective at discriminating between borrowers who can 
safely be trusted to pay as agreed from those who cannot [5]–
[7]. 

This is no accident. Credit reporting was developed as a 
solution to practical ethical concerns involving trust in financial 
relationships and many of the ethical concerns around this 
solution have their roots in a still largely unappreciated 
fundamental tension between trust and transparency [8], [9]. 

A. Trust and Transparency 

The philosophy of trust (as well as other ethical concepts we 
touch on) is not a settled matter. Here, we consider trust to be a 
justified belief in the trustworthiness of another party, where 
we regard trustworthiness to be some function of the willingness 
and capability of that party to behave as desired. If the party is, 
in fact, trustworthy, then – as a true, justified, belief – trust 
arguably constitutes a kind of knowledge about that party’s 
character, and this knowledge allows us to make ourselves 
vulnerable to them. Luck may still play a prominent role in the 
outcome, but we can at least count on that party to do their best. 
Of course, we can never know for certain that the other party 
will not betray our trust. The degree to which our reasons and 
evidence support our belief in the other party’s trustworthiness 
is our epistemic certainty. Epistemic certainty is crucial to trust, 
distinguishing trust from blind faith. 



Consider the following situation involving 2 parties – Alice 
and Bob: Alice and Bob enter into a relationship where Alice 
expects Bob to behave in a certain way and Bob expects Alice 
to behave in a certain way. For Alice and Bob to rationally and 
voluntarily enter into such a relationship and if one or both are 
made vulnerable, then the vulnerable party or parties must 
extend trust (Note that without vulnerability – either because 
there is no risk or there exists some guarantee of the other party’s 
behavior – trust is unnecessary [10]). Under conditions of sub-
optimal epistemic certainty, trust cannot be extended. One way 
to overcome this is by making up the difference with 
transparency requirements. As a form of surveillance, 
transparency requirements come at the cost of the other party’s 
privacy, but they offer some degree of security to the 
vulnerable party. Power and power differentials factor in here, 
as well, though; if a vulnerable party has no ability to hold the 
other party accountable for their actions, then transparency may 
give little security. Finally, note that if transparency and 
accountability requirements are too onerous and invasive, they 
may infringe privacy to such a degree that autonomy and 
dignity of the surveilled party are infringed, perhaps even 
hamstringing their ability to behave in the manner expected by 
the other party [9]. 

Contrary to popular belief, then, transparency is not required 
for trust. It may, however, be required to establish trust. 
Transparency allows a trustor to make up for a lack of epistemic 
certainty, but, as evidence is accumulated over time, trust may 
be extended and transparency requirements may be withdrawn. 
Many of us have found ourselves at one end of this ethical 
quagmire at some point in our lives. While these concepts are 
usually considered in an intimate interpersonal context (e.g. – 
friends, family), they are also relevant in other social contexts, 
such as financial and political relationships.  

In the United States in the early 1800s, this contextual 
distinction was rare. Most financial and political relationships 
involved people that were well-acquainted. By the middle of the 
19th century, however, this milieu was changing. As settlers 
pushed westward and immigration surged, trade networks grew 
more complex and increasingly involved connections between 
relative strangers in ever growing chains of credit [11], [12]. For 
example, in the spring and fall, scores of merchants from across 
the country would descend on the port cities to procure goods 
from wholesalers [12]. According to Olegario, “…almost all 
applied to buy goods on credit from wholesalers who were 
obliged to decide, in the lingo of nineteenth century commerce, 
whether or not to ‘trust’ them” [11, p. 5]. In the highly 
competitive environment, the most imminent risk of losing 
customers often forced wholesalers to adopt overly liberal 
policies [11]. In 1837, the problem with all of this unwarranted 
trust became painfully apparent as the country plunged into a 
deep recession. 

B. The Need for Transparency and the Evolution of Credit 

Reporting in the United States 

In 1841, after being nearly ruined in the wake of the Panic of 
1837, Lewis Tappan and his brother established the Mercantile 
Agency, the world’s first credit reporting firm. The firm 
compiled information on “…all known businesses in the United 
States…[,] with detailed reports on the personal character, 

financial means, and local reputations of their proprietors” [12, 
p. 303]. The Tappans were not the only ones whose business had 
been shuttered in the recession, and the Bankrupty Act of 1841, 
which “…provided the insolvent with generous legal and 
financial protection” [12, p. 307], left many merchants feeling 
vulnerable and embittered. The Mercantile Agency offered 
much-needed transparency, allowing business owners to make 
more calibrated assessments and justify their decisions to extend 
trust. 

The Mercantile Agency – later R.G. Dun and Company – 
and its primary competitor, Bradstreet Company, were 
concerned chiefly with commercial credit reporting. In fact, to 
this day Dun & Bradstreet – the result of a 1933 merger between 
the two rivals – continues in this vein. Consumer credit reporting 
took nearly half a century longer evolve [13]. Even in the largest 
cities in the latter half of the nineteenth century, most 
shopkeepers still knew their customers well enough that credit 
reports were deemed unnecessary. Moreover, participating in 
the emerging retail credit reporting infrastructure involved a 
quid pro quo that many found to be either too loathsome from 
the standpoint of competition or conscience or too 
administratively burdensome [13]. However, consumer credit 
found a toehold in department stores, installment houses, and 
other large retail stores. During the early 1900s, the evolution of 
filing and communication technology and the 
professionalization of retail credit management drove more 
widespread adoption, and credit reporting by local CRAs 
became an indispensable tool for assessing the financial 
trustworthiness of individuals and businesses alike. 

While consumer credit reports offered transparency to 
businesses, consumers in the mid-twentieth century were often 
left in the dark, not only regarding the contents of these reports, 
but also regarding how these reports and other information 
collected by lenders were used to arrive at potentially life-
altering decisions. In a mere hundred years, the pendulum had 
swung, and the consumer became a vulnerable party in the credit 
relationship. As we will see in Section 2, in the second half of 
the twentieth century, the United States enacted legislation 
around fair lending to make the process more transparent, more 
accurate, and less discriminatory. Importantly, lenders were 
required to provide consumers with explanations regarding 
adverse action (i.e. – denial of credit), allowing consumers to 
understand not only the who and the what, but the why. 

C. Explainable Credit Scoring in the Age of AI 

Exactly what constitutes an acceptable answer to a ‘why’ 

question, or, more precisely, what constitutes an explanation 

is complex. There is a rich body of work on this topic in 

philosophy [14]–[17], cognitive science [18], [19], social 

psychology [20], [21], and, increasingly, in machine learning 

[22], and, while we draw on this literature at points, our scope 

is narrower and grounded in traditional notions of 

explainability for credit scoring models in the context of the 

United States regulatory milieu. We outline the history and 

structure of relevant regulation in Section 2, and, in Section 3, 

detail the current industry standard approach to explainable 

credit modeling and extracting explanations. This approach 

relies on linear models, which are naturally interpretable and, 

usually, yield explanations that are both faithful to the 



mechanism and that are comprehensible by humans – 

fulfilling transparency requirements not only to the 

consumers, but to the lenders who rely on them. Modern 

machine learning techniques (deep neural networks, 

specifically) hold significant promise for the credit industry, 

but they are not obviously amenable to explanation in the way 

that linear models are. In this paper, we show that, in the 

context of the industry standard approach to credit scoring and 

with appropriately implemented monotonicity constraints, 

they are. 

We argue that to accomplish this requires a principled 

approach to variable attribution, and, in Sections 4 and 5, we 

review the problem of variable attribution for differentiable, 

nonlinear models (e.g. – neural networks), survey the 

landscape of approaches, and conclude that a technique known 

as Integrated Gradients is not only desirable, but that it is 

actually equivalent to the industry standard approach for linear 

models and represents a generalization of the approach to 

differentiable, nonlinear models. In Section 6, we discuss 

interesting semantic considerations that appear in the context 

of baseline variable attribution methods (e.g. – Integrated 

Gradients) applied to nonlinear models that are absent in the 

linear case. In Section 7, we conclude with remarks on 

interesting future directions. 

II. CREDITWORTHINESS: FROM REPUTATION TO REGULATION 

We defined creditworthiness in the introduction as the 

probability that a borrower will meet their financial obligations, 

but how does one assess such a thing? Clearly, it cannot be 

measured directly, and the outcome can only be known with the 

benefit of hindsight. One important factor is certainly 

“…whether one [is] the sort of person who [feels] sufficiently 

constrained, by conscience or social obligation, to [repay one’s 

debts]” [12, p. 307] (i.e. - trustworthiness). However, external 

factors play a role in whether even the most trustworthy and 

well-intentioned individual succeeds [23], and, in the case of 

failure, the ability to liquidate assets or lean on one’s social 

network can attenuate losses. Thus, historical, economic, and 

environmental information cannot be ignored. 

In the early days of credit reporting, these factors were 

captured by “the ‘three Cs’ of credit reporting: character, 

capacity, and capital” [12, p. 309]: 

Each category had its own implicit indicators. For character: the 

individual’s work habits (hard working? conscientious?), local reputation 

(well liked? trusted?), and personal life (married? alcoholic? gambler? 
philanderer?). For capacity: age, experience in business, past employment, 

and known history of successes or failures. For capital: assets, liabilities, 

and property owned by the individual, as well as assets potentially 
available through well-to-do family or business connections who might 

rescue an individual in default [12, p. 309-310]. 

Despite its highly subjective nature, ‘character’ has 

historically held the preeminent role in credit evaluations; 

honest and hardworking debtors were preferential to the 

wealthy and capable, but unscrupulous, as the former would 

pay what they could while the latter were unpredictable. Indeed, 

early credit reports available through Tappan’s Mercantile 

Agency were often little more than a brief encapsulation of 

one’s public reputation, and any financial information was 

usually hearsay, as well. The rise of reference books with coded 

ratings in the latter half of the nineteenth century started the 

move towards quantification and, by the turn of the century, 

financial information was usually split out from general 

reputation. Consumer credit reporting inherited many of the 

practices of commercial credit reporting, and, in addition to 

ledger information, subjective character assessments remained 

a core component of both credit reports and credit evaluations 

into the mid twentieth century. As demand for consumer credit 

exploded during the 1910s and 20s, many credit managers 

relied on generalizations and blacklists to quickly sort 

applicants based on occupation, location of residence, and other 

perceived correlates of financial deviance [13]. Initial 

screenings were frequently followed by face-to-face interviews, 

which were potentially subject to any manner of idiosyncratic 

and socio-normative biases. 

Despite the potential problems with such high-degrees of 

subjectivity in both data and decisioning, the issue that 

catalyzed an avalanche of congressional hearings between 1966 

and 1969 was a more general issue with quality control in credit 

reporting [13]. In the late 1960s, with the exceptions of the 

Credit Data Corporation and the Retail Credit Company, credit 

reporting was largely distributed across thousands of local 

bureaus, and a lack of standardization and regulation meant that 

report quality varied significantly and data provenance was 

uncertain. Even if a consumer was able to ascertain the origins 

of their potential multiplicity of credit reports, they were 

usually not permitted to view the contents of those reports. In 

the case of adverse action (e.g. – denial of credit), they often 

received little to no explanation. 

Congress responded to this need with the Consumer Credit 

Protection Act of 1968 (CCPA) and the Fair Credit Reporting 

Act of 1970 (FCRA), which, among other provisions, limited 

who could obtain credit reports, restricted the kinds of 

information contained in the reports, put time limits on 

derogatory information, outlined specific procedures for 

notifying consumers in the case of adverse action, including 

giving consumers the CRA’s contact information and a right to 

know the contents of their credit report, and requiring CRAs to 

respond to disputes and correct inaccuracies in a timely manner. 

Later amendments gave consumers the right to a free annual 

copy of their credit report from each CRA and gave 

enforcement responsibility to the Consumer Financial 

Protection Bureau (CFPB) in addition to the Federal Trade 

Commission (FTC) (originally charged with enforcement in 

1971) among several other provisions [24]. While the FCRA 

introduced much needed transparency and accountability into 

the reporting aspect of credit, it did little for transparency on the 

decisioning side where the subjectivity in credit managers’ 

decisioning processes intersected growing public concerns 

about unfair discrimination. 

Since the dawn of commerce, decisions to grant credit had 

been based on professional judgment and, therefore, were prone 

to influence from irrelevant information and undesirable biases. 

Even worse, human intuition is a black box. Explanations for 



such ‘system 1’ thinking are necessarily retroactive and ad-hoc 

[25]. Unconscious recall and framing biases may further pollute 

explanations in unpredictable and misleading ways [25], [26]. 

This opacity makes it difficult to determine whether and to what 

degree discrimination [27] or disparate treatment [28] has 

occurred. 

The advent of statistical risk modeling in the 1930s 

provided a tool to reduce subjectivity in decisioning by forcing 

creditors to explicitly encode the factors they considered 

relevant to decision-making. These tools were also more 

interpretable and transparent than human decision-making. 

Linear models, in particular, lend themselves naturally to 

explanation (as we will see in next section). However, as these 

tools gained wider acceptance in the late 1960s, it became clear 

that the inherent transparency and explainability afforded by 

these tools did not eliminate issues of fairness and 

discrimination; it only made them explicit, accessible, and (to 

some degree) quantifiable in ways that were impossible when 

dealing with credit managers. According to Lauer: 

Consumer lenders and retailers were in business to make money. Generally 

speaking, they did not reject female credit applicants because of their 

gender, but because women typically earned less than men and often left 
the workforce (and their own incomes) to have and raise children. 

Likewise, lenders did not uniformly refuse to lend to African Americans 

as a class, but avoided dealing with residents of unstable, low-income 
inner-city neighborhoods where many African Americans lived…. Credit 

decisions that privileged men over women and whites over African 

Americans were a reflection of real structural inequalities in American 

society [13, p. 236]. 

A first step in addressing these issues was taken with the 

Equal Credit Opportunity Act of 1974 (ECOA) and subsequent 

amendments in 1976 – implemented in Regulation B, which 

forbade discrimination “(1) on the basis of race, color, religion, 

national origin, sex or marital status, or age (provided the 

applicant has the capacity to contract); (2) because all or part of 

the applicant’s income derives from any public assistance 

program; or (3) because the applicant has in good faith 

exercised any right under this chapter” [29]. It did allow the use 

of age under the caveat that its use could not harm judgments 

of creditworthiness in older applicants. 

Most relevant for the purposes of this paper, however, the 

ECOA as implemented in Regulation B introduced new adverse 

action disclosure requirements. Both the FCRA and the ECOA 

/ Regulation B have requirements surrounding adverse action 

notifications. Those in the FCRA [30] are more about the who 

and the what (i.e. – who is responsible and what information). 

Those in the ECOA / Regulation B [31] also have (different) 

who/what requirements, but they also contain requirements on 

why. The creditor must not only explain what action was taken, 

but they must give the consumer specific reasons about why: 

(2) Statement of specific reasons. The statement of reasons for adverse 

action required by paragraph (a)(2)(i) of this section must be specific and 

indicate the principal reason(s) for the adverse action. Statements that the 
adverse action was based on the creditor's internal standards or policies or 

that the applicant, joint applicant, or similar party failed to achieve a 

qualifying score on the creditor's credit scoring system are insufficient 

[31]. 

Together, the FCRA and ECOA / Regulation B are the legal 

bedrock of transparency and accountability for consumers in 

the U.S. credit industry. In the rest of this paper, we will focus 

specifically on the portion of this legislation related to 

explaining adverse credit decisions to the consumer – how it is 

done, how it should be done, and how it can be extended in a 

way that is compatible with modern deep learning systems and 

that is mutually beneficial for both lenders and consumers. We 

begin this journey with the relevant section of the CFPB’s 

current interpretation of the fair lending legislation: 

Credit score and key factors disclosed  

In addition to the notice, a creditor, such as a financial institution, must 
also disclose the credit score, the range of possible scores, the date that the 

score was created, and the “key factors” used in the score calculation. “Key 

factors” are all relevant elements or reasons adversely affecting the credit 
score for the particular individual, listed in the order of their importance, 

and based on their effect on the credit score. The total number of factors to 

be disclosed must not exceed four. However, if one of the key factors is the 

number of inquiries into a consumer’s credit information, then the total 

number of factors must not exceed five. These key factors come from 

information the consumer reporting agencies supplied with any consumer 
report that was furnished containing a credit score (Section 605(d)(2)) [24, 

p. 28]. 

This interpretation still leaves room for debate. In the next 

section, we will look at the current industry standard approach 

to regulatory-compliant explainable credit risk modeling. 

III. THE INDUSTRY STANDARD APPROACH 

Based on much of the academic literature, the landscape of 

credit scoring models appears as diverse as any other field 

within machine learning [32]–[35]. An extensive survey 

conducted by Louzada et al. covering the period from January 

1992 through December 2015 indicated that neural networks 

and Support Vector Machines (SVMs) were the dominant 

classes of models used in credit scoring, not counting hybrid 

models and model ensembles [35]. Tree-based models and 

Bayesian networks made strong showings, as well. Use of 

logistic regression was tied with neural networks for first place 

only in recent years, but, generally, according to the study, 

appeared to be just one of many methods in common use. 

The industry viewpoint contrasts starkly. Logistic 

regression has been the industry standard approach to binary 

risk classification for decades [6], [7], and it is only due to 

recent innovations in monotonically constrained neural nets and 

tree-based models that the landscape has begun to shift [36]. 

Compliance with regulation (see Section 2) is paramount, and 

Generalized Linear Models (GLMs) – logistic regression, 

specifically – are viewed by lenders and regulators alike as the 

gold standard. Not only are they well understood [37] and 

decently predictive in the credit scoring context [5]–[7], but 

they naturally yield explanations that satisfy the ECOA as 

implemented by Regulation B. 

To illustrate, consider the following logistic regression 
model with 𝑚 predictor variables:  

 ln (
𝑝

(1−𝑝)
) = 𝑓(𝒙) = 𝛽0 + 𝛽1 ∙ 𝑥1 +⋯+ 𝛽𝑚 ∙ 𝑥𝑚 

          = 𝛽0 + 𝜷 ∙ 𝒙 



This logistic regression models the natural logarithm of the 

odds (logodds) of defaulting (𝑝 being the probability of 

defaulting) as a linear combination of predictor variables 𝒙, 

where 𝜷 is an associated vector of coefficients and 𝛽0 is the 

intercept. In practice, the predictors are engineered in a way 

that allows the model output to be converted into a fixed range 

score where higher is better. For now, however, we will 

simply work with the logodds of default 𝑓(𝒙). 

Suppose a customer with a given vector of attributes 𝒙 is 

seeking credit from a lender, but the customer’s predicted 

logodds of default 𝑓(𝒙) exceeds the lender’s pre-defined 

threshold. When the lender denies credit to that customer, the 

fair lending laws discussed in Section 2 may be triggered. 

Among the requirements is an obligation to report the specific 

and principal reasons for the adverse action corresponding to 

the top 4 or 5 key factors listed in order of importance based 

on size of effect on the score. 

The standard approach to generating such reasons begins 

by identifying the attribute vector 𝒙′ corresponding to the 

hypothetical ideal/perfect customer. This process is 

straightforward if the following conditions are met: 

1. All predictors have a known maximum, and their 

minimum values are 0 (As binning is standard 

practice, this is usually not an issue). 

2. The relationship between each predictor and the 

default probability is monotonic. 

3. For each predictor: 

a. If the predictor is positively correlated with 

default probability, then leave it as is. 

b. Otherwise, transform the predictor by 

subtracting it from its maximum possible 

value 

If these conditions are met, then the ideal customer 

corresponds to the zero vector. The predicted logodds of 

default for this ideal customer 𝑓(𝒙′)  is just the intercept term 

𝛽0. 

The difference in the predicted logodds of default between 

the prospective customer and the theoretical ideal is as 

follows: 

 

𝑓(𝒙) − 𝑓(𝒙′) = 𝛽0 + 𝜷 ∙ 𝒙 − (𝛽0 + 𝜷 ∙ 𝒙
′) 

= 𝜷 ∙ (𝒙 − 𝒙′) 
                                      = 𝜷 ∙ 𝜟𝒙 

                    = 𝛽1 ∙ 𝛥𝑥1 +⋯+ 𝛽𝑚 ∙ 𝛥𝑥𝑚 

Thus, the difference in predicted values can be expressed 

as the sum of the contributions from the marginal differences 

in each predictor variable, where the contribution is the 

coefficient of that variable times the difference in the values of 

that variable for the prospective customer and the theoretical 

ideal. This linearity makes it simple to list the predictors in 

descending order of their contribution to the difference; the 

top 4 predictors (5 if number of enquiries is amongst them) are 

regarded as the key factors in the adverse decision. The 

corresponding reasons are presented to the customer [38]. 

Since logistic regression assumes the relationships 

between independent (predictor) variables and the logodds are 

linear and monotonic, if the customer takes rational action to 

improve their score, it will always improve. For example, say 

adverse action is taken because credit utilization is too high. 

The monotonic relationship between credit utilization and 

logodds of default means that if the customer decreases their 

credit utilization, then they can be confident that their 

predicted logodds of default will decrease. It will never be the 

case that decreasing credit utilization will increase the logodds 

of default. Moreover, monotonicity ensures that it will never 

be the case that 2 different customers will receive reasons with 

conflicting implications regarding to the same attribute. For 

example, it will never be the case that customer A will be 

penalized for having a credit utilization that is too high, while 

customer B will be penalized for having a credit utilization 

that is too low. Monotonicity ensures that explanations are 

consistently actionable. 

While consistent actionability is not an explicit 

requirement of the ECOA or Regulation B, not satisfying this 

requirement would clearly contradict at least some aspect of 

the teleological intent underpinning this legislation. As we 

discussed in Section 2, transparency for consumers in the 

lending approval process is one part of this intent, and the 

legitimacy of the explanation as a transparent window into the 

decisioning process requires the possibility of counterfactual 

reasoning. For example, a claim that the value of some factor 

was too high implies that a lower value would be better. If this 

were not so, then the reason is underspecified; it is unclear 

how the factor was used to reach a decision. 

So, there are at least 3 requirements that adverse action 

explanations must meet: 

1. The explanations must be consistently actionable. 

2. The explanations must correspond to the 4 (or 5) key 

factors in the decision [24]. 

3. The explanations must be rank-ordered by the size of 

the contributions of their corresponding key factors 

to the decision [24]. 

Logistic regression readily yields explanations that meet 

these requirements due to the linearity in the relationship 

between the predictors and the logodds of default. Not only 

does linearity ensure monotonicity, it ensures that the model 

coefficients are the same for all possible combinations of 

attributes. Because these coefficients are constant, it is simple 

to determine how much a change in a predictor will change 

the score (see Figure 1), and, conversely, linear separability 

makes it easy to attribute any change in score to the predictors. 

For nonlinear models, these properties may not hold. The 

relationship with the output may be nonmonotonic, and, in the 

case of differentiable nonlinear models, the gradient of the 

output with respect to the predictors is not constant (i.e. – the 

coefficients of a local linear approximation will vary – see 

Figure 1). This latter fact makes it difficult to determine the 

degree to which each predictor contributes to a change in 

score. This is known as the problem of variable attribution. 



Ensuring that the model output is monotonic in its predictors 

satisfies the first of the three requirements. To satisfy the 

second and third requirements, we must have a way to do 

variable attribution for nonlinear models. 

 

 
 

Fig. 1. Linear and Nonlinear univariate models of logodds of default as a 

function of credit utilization. For the linear model, 𝛽𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  is constant 

making it easy to convert a change in utilization into a change in logodds or 

vice versa (left). For the nonlinear model, the conversion rate covaries with the 

value of utilization, making variable attribution more difficult (right). 

IV. VARIABLE ATTRIBUTION 

 Research into variable attribution for differentiable 
nonlinear machine learning models has exploded in recent years 
due to the rise of deep learning. While linear models are not 
necessarily more interpretable or explainable than simple neural 
networks [22], deep learning models are generally quite 
complex, often regarded as black boxes whose inner workings 
cannot be explained or understood in simple terms [39]. The 
quest to understand complex machine learning models has led 
to rapid growth in the field of eXplainable AI (XAI) in recent 
years [40]–[43], though some believe this post hoc approach to 
be misguided [44]. Some have succeeded in building flashlights 
to peer directly into the box [45]. However, many fruitful 
approaches have instead focused on analyzing the input-output 
behavior of neural networks using variable attribution methods. 

 The problem of variable attribution concerns how to quantify 
or distribute responsibility amongst a model’s predictors for a 
given prediction made using a particular input. As such, it is 
concerned with local, instance-level explanations rather than 
global explanations of the model itself [46], [47]. Some variable 
attribution approaches rely on local gradients (or a modified 
analogous quantity) to identify important features (e.g. – 
Explanation Vectors [48], Saliency Maps [49], Deconvolutional 
Networks [45], Guided Backpropagation [50], Layer-wise 
Relevance Propagation (LRP) [51], Class Activation Mapping 
(CAM) [52], Gradient-weighted Class Activation Mapping 
(Grad-CAM) [53]). The features identified by these methods are 
those that (locally) would have the greatest impact on the score 
if changed, but they are not necessarily those that were most 
important in calculating the score. As Kindermans et al. point 
out, the gradient does not necessarily align with the signal in the 
data [54]. Additionally, the contributions from the most 
important features may be saturated at the input value [55]. In 
other words, it is possible that a feature may contribute greatly 
to the signal, but lightly perturbing it will have minimal or no 
impact on the prediction. For example, credit utilization – the 
ratio of outstanding balances to total credit – is extremely 
important in credit risk modeling, but for sufficiently low 
utilization, a small change is unlikely to have a significant 

impact. Gradient methods are not the only ones susceptible to 
this problem. Other approaches relying on occlusions, ablations, 
or perturbations [45], [56]–[58] may also fail to properly 
account for saturated features [55], [59]. 

 Overcoming the saturation problem requires the use of 
baselines [59] (alternatively, reference points [55] or root points 
[54], [60]), and several approaches have been put forward (e.g. 
– DeepLIFT [55], Deep Taylor Decomposition (DTD) [60], 
Integrated Gradients (IG) [59]). The purpose of a baseline is to 
act as a contrast for the input. It could be an impartial 
benchmark, an instance-specific counterfactual foil, or even a 
random noninformative or neutral input. Choosing an 
appropriate baseline is not trivial, and we discuss this in more 
detail in Section 6, but, ideally, the baseline should differ from 
the input in all and only the task-relevant respects. For the 
industry standard approach to credit scoring, the baseline is the 
ideal customer. 

 For baseline variable attribution methods, the goal is to 
attribute the differences in how the model scored the input and 
the baseline to the differences between the input and baseline 
themselves. Sundararajan et al. explicitly define the problem of 
variable attribution for neural networks as follows: 

Formally, suppose we have a function 𝐹 :  𝑅𝑛 → [0,1]  that represents a 
deep network, and an input 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝑅

𝑛 . An attribution of the 
prediction at input 𝑥 relative to a baseline input 𝑥′ is a vector 𝐴𝐹(𝑥, 𝑥

′) =
(𝑎1,… , 𝑎𝑛) ∈ 𝑅

𝑛 where 𝑎𝑖 is the contribution of 𝑥𝑖 to the prediction 𝐹(𝑥) 
[59, pg. 1]. 

 There are many possible approaches to assigning 
attributions, but not all of them are desirable. There are certain 
properties that we may like to see in an attribution method. For 
example, a lack of what Sundararajan et al. call sensitivity(a) is 
why the aforementioned gradient methods have issues with 
saturated features [59]. Roughly, this axiom says that if an input 
and baseline receive different scores and only differ in one 
feature, then that feature should receive some attribution. A 
stronger version of this – variously called completeness [59], 
efficiency [61], summation-to-delta [55], and conservative [60] 
– requires that the sum of the attributions across all features be 
equal to the difference in scores for the input and the baseline. 
We noted in Section 3 that this ability to comprehensively 
decompose the difference onto the features was a useful property 
of linear models, and it would be equally useful if we could do 
this with nonlinear credit models. 

 Sundararajan et al. enumerate several other properties that, 
as we show in the Appendix, are also satisfied by the industry 
standard approach outlined in Section 3. These additional 
properties include sensitivity(b), linearity, and implementation 
invariance [59]. Roughly, sensitivity(b) requires 0 attribution be 
given to unused features, linearity preserves attribution under 
linear combination, and implementation invariance requires 
attributions to be invariant across functionally equivalent 
networks, where “[t]wo networks are functionally equivalent if 
their outputs are equal for all inputs, despite having different 
implementations” [59, p. 2]. Only attribution methods based on 
path integrated gradients satisfy completeness, sensitivity(b), 
linearity, and implementation invariance (see [59] for details). If 
we add one additional requirement, that the attribution method 
be symmetry-preserving in the sense that “for all inputs that have 
identical values for symmetric variables and baselines that have 



identical values for symmetric variables, the symmetric 
variables receive identical attributions” [59, p. 5], then there is 
only one attribution method that can satisfy these requirements: 
Integrated gradients [59]. 

Sundararajan et al. define Integrated Gradients as follows 
[59]: 

The integrated gradient along the 𝑖𝑡ℎ dimension for an input 𝑥 and baseline 

𝑥′ is defined as follows. Here, 
𝜕𝐹(𝑥)

𝜕𝑥𝑖
 is the gradient of 𝐹(𝑥) along the 𝑖𝑡ℎ 

dimension. 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖(𝑥) = (𝑥𝑖 − 𝑥𝑖
′) × ∫

𝜕𝐹(𝑥′+𝛼×(𝑥−𝑥′))

𝜕𝑥𝑖
𝜕𝛼

1

𝛼=0
 

 Essentially, integrated gradients calculates the average 
gradient along the straightline path obtained by interpolating 
between the baseline and the input, and the resulting attributions 
are the elementwise product of this path averaged gradient 
vector and the input-baseline difference vector. The entries in 
the path averaged gradient vector are analogous to the 
coefficients in the logistic regression model from Section 3. 
From this perspective, integrated gradients bears a strong 
resemblance to the industry standard approach. Furthermore, 
since integrated gradients is provably the only variable 
attribution method satisfying the 5 desirable properties we 
touched on, and since the industry standard approach also shares 
these properties (see Appendix), the approaches must be the 
same at some level. In the next section, we will show that, 
indeed, integrated gradients is a generalization of the industry 
standard approach to variable attribution in nonlinear spaces. 

V. FROM INDUSTRY STANDARD TO INTEGRATED GRADIENTS 

 Let us now return to the industry standard approach to 
variable attribution. Consider the following univariate model: 

𝑦 = 𝑓(𝑥) 

where 𝑦  is the output (e.g. – logodds of default), 𝑥  is some 
predictor (e.g. – credit utilization), and 𝑓(∙) is a function relating 
the two. Let us begin by assuming that 𝑓(∙) is a linear function 
(see Figure 2): 

𝑦 = 𝛽0 + 𝛽1𝑥     𝑥
′ ≤ 𝑥 ≤ 𝑥∗ 

where 𝑦  is the output (e.g. – logodds of default), 𝑥′ is the 
baseline (e.g. – hypothetical ideal), and 𝑥∗  is an input (e.g. – 
prospective customer). While credit scoring models are usually 
constructed in such a way that they are bounded (see Section 3), 
it would be unusual for 𝑥∗ to correspond to the worst possible 
customer as would seem to be the case with the above 
construction. This need not be the case. For our purposes, we are 
only interested in the behavior of the model between the baseline 
and input, so the model has been defined in this way for 
pedagogical simplicity. 

 As we saw in Section 3, the industry standard approach 
yields: 

                                  𝛥𝑦 = 𝑓(𝑥∗) − 𝑓(𝑥′) 
                         = 𝛽1(𝑥

∗ − 𝑥′) 
                                       = 𝛽1𝛥𝑥 

 

Fig. 2. y is a linear function of x, and the difference in y evaluated at input and 

at baseline is simply the difference in input and baseline multiplied by the slope. 

 Now, let us assume that 𝑓(∙) is a piecewise linear function 
with 2 segments (see Figure 3): 

𝑓(𝑥) = {
𝛽0
1 + 𝛽1

1𝑥 𝑥′ ≤ 𝑥 ≤ 𝑐1
𝛽0
2 + 𝛽1

2𝑥 𝑐1 < 𝑥 ≤ 𝑥∗
 

The industry standard approach can be applied to both segments 
separately, and their contributions added together yield the total: 

𝛥𝑦 = 𝛥𝑦1 + 𝛥𝑦2 

   = 𝛽1
1(𝑐1 − 𝑥

′) + 𝛽1
2(𝑥∗ − 𝑐1) 

Assuming that 

(𝑐1 − 𝑥
′) = (𝑥∗ − 𝑐1) = 𝛥𝑥 

Then, 

𝛥𝑦 = (𝛽1
1 + 𝛽1

2)𝛥𝑥 

 

Fig. 3. y is a piecewise linear function of x with 2 segments, and the difference 

in y evaluated at input and at baseline is simply the sum of the products of the 

difference in x along each segment and the slope of each segment. 

 Now, let us assume that 𝑓(∙) is a piecewise linear function 
with 𝑚 segments (see Figure 4): 

𝑓(𝑥) =

{
 

 
𝛽0
1 + 𝛽1

1𝑥 𝑥′ ≤ 𝑥 ≤ 𝑐1
𝛽0
2 + 𝛽1

2𝑥 𝑐1 < 𝑥 ≤ 𝑐2
… …

𝛽0
𝑚 + 𝛽1

𝑚𝑥 𝑐𝑚−1 < 𝑥 ≤ 𝑥∗

 

Once again, assuming that the change in x along each segment 
is the same 

(𝑐1 − 𝑥
′) = (𝑐2 − 𝑐1) = ⋯ = (𝑥∗ − 𝑐𝑚−1) = 𝛥𝑥 

And following same logic as before, we get the following: 

 𝛥𝑦 = 𝛥𝑥∑ 𝛽1
𝑘𝑚

𝑘=1  



 

Fig. 4. y is a piecewise linear function of x with m segments, and the 

difference in y evaluated at input and at baseline is simply the sum of the 
products of the difference in x along each segment and the slope of each 

segment. 

Note that 

𝛥𝑥 =
1

𝑚
(𝑥∗ − 𝑥′) 

And 

 𝛽1
𝑘 =

𝜕𝑓(𝑥′+
𝑘

𝑚
(𝑥∗−𝑥′))

𝜕𝑥
 

Plugging in and rearranging 

 𝛥𝑦 = (𝑥∗ − 𝑥′) × ∑
𝜕𝑓(𝑥′+

𝑘

𝑚
(𝑥∗−𝑥′))

𝜕𝑥

𝑚
𝑘=1 ×

1

𝑚
 

 This is exactly the Riemann approximation of the integrated 
gradients integral we saw in Section 4 in the case where the 
model is univariate (See equation 3 in [59]). The extension of 
our argument to the multivariate case is straightforward 
mathematically, though it is less amenable to visualization (see 
Appendix). In short, as long as the change along each marginal 
of each segment remains constant (i.e. – the interpolation 
between baseline and input occurs along a straightline path), 
then the analogous (full) result holds. The industry standard 
method applied to an ever-finer-grained piecewise linear 
approximation of a nonlinear function yields the Riemann 
approximation of the IG integral. 

 We have shown that the industry standard approach to 
variable attribution yields integrated gradients as we move from 
linear to nonlinear models. It is also easy to go the other 
direction, showing that Integrated Gradients reduces to the 
industry standard approach for linear models: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖(𝑥) = (𝑥𝑖 − 𝑥𝑖
′) × ∫

𝜕𝐹(𝑥′ + 𝛼 × (𝑥 − 𝑥′))

𝜕𝑥𝑖
𝜕𝛼

1

𝛼=0

 

 

When 𝐹(𝑥)  is linear  
𝜕𝐹(𝑥)

𝜕𝑥𝑖
= 𝛽𝑖 is a constant value, and IG is 

equivalent to the industry standard approach: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖(𝑥) = (𝑥𝑖 − 𝑥𝑖
′) × 𝛽𝑖  

We have shown both that: 

1. Integrated gradients is a natural extension to nonlinear 
models of the industry standard approach to variable 
attribution for linear models. 

2. The industry standard approach is a special case of 
integrated gradients; specifically, when the model is a 
linear function of the inputs. 

 These results have major implications for the use of 
differentiable nonlinear models (e.g. – neural networks) in credit 
scoring. If the industry standard approach to variable attribution 
is an acceptable approach to identifying and ranking ‘key 
factors’, then integrated gradients must also be an acceptable 
approach to identifying and ranking ‘key factors’. Recall that the 
ability to identify and rank ‘key factors’ is all that is needed to 
satisfy the 2nd and 3rd requirements mentioned in Section 2, and 
a strict monotonic relationship between the output and the inputs 
is all that is needed to satisfy the 1st requirement. So, any model 
architecture – linear or nonlinear – that is compatible with 
use of integrated gradients and which satisfies appropriate 
input-output monotonicity constraints arguably meets the 
requirements for generating regulatory compliant 
explanations. This opens up a wide swath of machine learning 
models that previously, have been off the table. Furthermore, as 
we will touch on in our conclusions and future work, integrated 
gradients is a part of a larger, unified framework that extends in 
a straightforward way to nondifferentiable nonlinear models, 
potentially opening the door to even more (appropriately 
monotonically-constrained) machine learning models. 

VI. SEMANTICS UNDERLYING CHOICE OF BASELINE AND PATH 

DEPENDENCE IN NONLINEAR MODELS 

 A key feature of path methods for variable attribution (e.g. – 
integrated gradients) is that they require choosing a baseline. In 
many applications (e.g. – computer vision tasks), the choice of 
baseline can be somewhat arbitrary. In credit modeling, 
however, as we saw in Section 3, there is a very natural baseline: 
the ideal customer. Another key feature of path methods is 
choice of path. For integrated gradients, this is the straightline 
path between baseline and input. The justification for this choice 
was an appeal to symmetry preservation as a naturally desirable 
property. It has been said that Occam’s razor makes straight 
cuts; so, in the absence of countervailing arguments, this seems 
reasonable. Additionally, the choice of a straightline path (where 
movement along each dimension from baseline to input occurs 
with constant stepsize) was crucial to connecting integrated 
gradients to the industry standard, but this only implies that 
movement along any segment must occur along a straightline 
path; the trajectory from baseline to input could be piecewise 
linear if there were some semantically important reason for 
visiting particular points along the way [62]. For example, 
suppose that the input and baseline are temporal snapshots of the 
same entity at different points in a sequence. There may be a 
host of intermediate snapshots carving out a jagged path from 
baseline to input. Integrating the gradients over this path may 
yield very different attributions. 

 The choice of path and the choice of baseline have semantic 
implications. The attributions generated by baseline variable 
attribution methods are a form of contrastive explanation [14], 
[18], [21]. They answer questions of the form ‘Why P rather than 
Q?’ or, more precisely, ‘Why [F(input)] rather than 
[F(baseline)]?’ (in terms of differences in the input and baseline 
and, in the case of path methods, as assessed along some path). 
For example, suppose one asks why some customer received the 



score they did. The answer depends. Why they received the 
score they did as opposed to a higher score requires selecting a 
baseline that has a higher score. There are generally many such 
possible baselines, and each will differ from our customer in 
different ways resulting in different attributions [62]. 

 Note that in the case of linear models, the attributions will be 
the same regardless of path choice. This is why the industry 
standard approach only needed to concern itself with choice of 
baseline. For nonlinear models, the attributions will generally 
vary depending on the chosen path. 

 We will look at 2 informative baselines and path choices for 
credit scoring models based on different explanatory goals 
assuming we have access to historical customer data. For a much 
more thorough treatment of the implications of various baseline 
and path choices when applying integrated gradients to explain 
neural credit risk models, see Alam et al. [62]. 

 

Fig. 5.  Illustration of 2 baseline / path choices. The history-agnostic 

explanation uses a fixed benchmark as baseline (origin in this case) and 
attributions are accumulated along a straightline path (left). The history-aware 

explanation takes a sequence of inputs and accumulates attributions along the 

piecewise linear path defined by this sequence (right). 

A. Goal 1: History-Agnostic Explanation  

 The goal of the history agnostic explanation is to give the 
customer a measure of their (history-agnostic) performance 
relative to some benchmark (see Figure 5). Here, we use the 
ideal customer – the attribute vector corresponding to the 
borrower with the lowest possible default probability – as 
baseline and a straight-line path between baseline and input. The 
choice of the ideal customer as baseline means we are explicitly 
interested in how differences in a customer and the theoretical 
ideal account for differences in their resultant scores. The ideal 
customer acts as a fixed and impartial standard, and, since every 
input uses the same baseline, it gives a logical way to compare 
the attributions of all the inputs. Here, the key factors will 
correspond to the most influential factors differentiating the 
customer from the ideal along the straightline path, but they do 
not necessarily reflect the relative influence of the factors in a 
historical causal sense. 

B. Goal 2: History-Aware Explanation  

 The goal of the history-aware explanation is to give the 
customer insight into the relative importance of each factor in 
their unique history. Consider a situation where a customer asks 
why their credit score has decreased in a particular month. The 
history-agnostic approach cannot answer that question because 
it was implemented to take a straight-line path from some 
impartial benchmark to the input. However, the history-aware 
explanation uses a piecewise linear path defined by the unique 

history of the customer allowing it to keep track of changes in 
attributions from point to point (see Figure 5). It can reveal 
exactly which features contributed the most at any point in time. 

 Consider the following equation: 

 ∑ 𝐴(𝑥(𝑖))
𝑝
𝑖=0 = 𝐹(𝑥) − 𝐹(𝑥0) 

Here, 𝑥(𝑖)  is the 𝑖𝑡ℎ  feature, 𝐴(𝑥(𝑖))  is the attribution of 𝑖𝑡ℎ 
feature, 𝑥 is the input, 𝐹(𝑥) is the model output at the input, 𝑥0 
is the baseline, and 𝐹(𝑥0) is the model output at the baseline. 

 The baseline (𝑥0) can be replaced by a point in the history of 
the borrower (𝑥ℎ). The interpretation will depend on which point 
is chosen. If we choose the previous month’s data as baseline, 
we will get attribution for one month. The integrated gradients 
can be calculated along a straight-line path from the new 
baseline (𝑥ℎ) to the input (𝑥). The attribution of each individual 
feature is their contribution in one month. Similarly, it is 
possible to calculate contribution of the features in each month 
by using the previous month as baseline and current month as 
input. Feature-wise addition of all the attributions for each 
month will give the total attribution with respect to the earliest 
month as baseline. 

 Let’s consider three months of borrower data 𝑥0, 𝑥1, and 𝑥2. 
𝑥0 is the earliest month while 𝑥2 is the current month. Let 𝐴𝑗,𝑘 

be the attribution of input data at 𝑗𝑡ℎ month with respect to the 

baseline data at the 𝑘𝑡ℎ month along a straight-line path from the 
baseline 𝑥𝑘 to the input 𝑥𝑗. Now, 

 ∑ 𝐴2,1(𝑥2
(𝑖))

𝑝
𝑖=0 = 𝐹(𝑥2) − 𝐹(𝑥1) 

 ∑ 𝐴1,0(𝑥1
(𝑖))

𝑝
𝑖=0 = 𝐹(𝑥1) − 𝐹(𝑥0) 

 ∑ 𝐴2,0(𝑥2
(𝑖))

𝑝
𝑖=0 = 𝐹(𝑥2) − 𝐹(𝑥0) 

So, 

 ∑ 𝐴2,1(𝑥2
(𝑖))

𝑝
𝑖=0 + ∑ 𝐴1,0(𝑥1

(𝑖))
𝑝
𝑖=0 = 𝐹(𝑥2) − 𝐹(𝑥1) +  𝐹(𝑥1) − 𝐹(𝑥0) 

                                  =  𝐹(𝑥2) − 𝐹(𝑥0) 
                                   = ∑ 𝐴2,0(𝑥2

(𝑖))
𝑝
𝑖=0  

 This equation guarantees that the sum of the attributions of 
all features will be the same regardless of the path chosen. 
However, the distribution of this total attribution amongst the 
individual features will generally be different along the direct 
straightline path vs. the piecewise path through the borrower’s 
credit history. Attribution along the borrower’s credit history 
allows the customer to receive reason codes specific to their 
unique trajectory. 

VII. CONCLUSIONS AND FUTURE WORK 

 Credit is a critical component of modern commerce, but 
credit requires trust, which does not scale due to epistemological 
limitations. These limitations can be overcome with increased 
transparency in the form of credit reporting, but increased 
reliance on the credit reporting infrastructure by merchants 
makes consumers vulnerable to CRAs. Additionally, the 
displacement of subjective in-person interviews by automated 
credit risk models has the potential to decrease unwanted bias in 
the decisioning process; however, credit risk modeling only 
delivers increased transparency and accountability for both 
sides if consumers can understand what is in their credit 
report, who compiled and used it, and why it resulted in a 
particular decision. The FCRA and ECOA as implemented in 



Regulation B codify these requirements into U.S. fair lending 
law. Therefore, explainability is not only ethically desirable in 
credit risk models, but it is a legal requirement. 

 In this paper, we sketched the industry standard approach to 
generating regulatory-compliant explanations from linear 
models. We also enumerated 3 requirements that explanations 
must meet, one of which is satisfied by monotonically 
constraining the relationships between the inputs and the output 
of the model. The other requirements necessitate a principled 
approach to variable attribution. We then showed that the 
industry standard approach to variable attribution is a special 
case of a more general technique known as integrated gradients, 
which applies to differentiable nonlinear models like neural 
networks. On these grounds, we argued that if the industry 
standard is an acceptable approach to variable attribution for 
linear models, then integrated gradients must be an acceptable 
variable attribution approach for differentiable nonlinear 
models. 

 It turns out that integrated gradients is itself a special case of 
a more general framework (i.e. – Shapley values) that 
encompasses nondifferentiable nonlinear models, as well [61]. 
This could potentially open the door to using any appropriately 
monotonically constrained machine learning approach in credit 
risk modeling. Additionally, recent work that builds on 
integrated gradients for interaction attributions [63]–[65] and 
group attributions [66] may be promising avenues for future 
research. Finally, there is much work to be done on explainable 
risk modeling that incorporates time-series information, that 
operates in dynamic ‘online’ contexts, or that relies on 
reinforcement learning agents. These latter paradigms move 
beyond the standards developed for static, cross-sectional data 
and will require significant and careful consideration. 
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APPENDIX 

A.  Derivation of IG in multivariate case 

 Let’s consider a multivariate logistic regression model with 𝑝 predictors: 

 𝑦 = 𝑓(𝒙) = 𝛽0 + ∑ 𝛽𝑖𝒙𝒊
𝑝
𝑖=1  

For an input 𝑥∗ and a baseline  𝑥′, the output at these two points are 

 𝑦∗ = 𝑓(𝒙∗) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
∗𝑝

𝑖=1  

 𝑦′ = 𝑓(𝒙′) = 𝛽0 +∑ 𝛽𝑖𝑥𝑖
′𝑝

𝑖=1  

Now the change in 𝑦 from  𝑥′ to 𝑥∗ is given by 

 𝛥𝑦 =   𝑦∗ − 𝑦′ = 𝑓(𝒙∗) − 𝑓(𝒙′)  = ∑ 𝛽𝑖(𝑥𝑖
∗ − 𝑥𝑖

′)
𝑝
𝑖=1  

Each variable contributes independently to the change in loggodds (Δ𝑦), and the 
contribution of a variable only depends on the corresponding 𝛽 and the change 



in the value of that particular variable. The total contribution is the sum of the 
contributions of all variables. So, the attribution for 𝑖𝑡ℎ  variable is given by 

Δ𝑦𝑖 = 𝛽𝑖(𝑥𝑖
∗ − 𝑥𝑖

′) 

Following the construct in the univariate case and considering 𝑚 piecewise steps 
from the baseline (𝑥𝑖

′) to the input (𝑥𝑖
∗) to approximate the attribution of the 𝑖𝑡ℎ 

variable, we can rewrite the above equation, 

 Δ𝑦𝑖 = (𝑥𝑖
∗ − 𝑥𝑖

′) × ∑
𝜕𝑓(𝑥′+

𝑘

𝑚
(𝑥∗−𝑥′))

𝜕𝑥𝑖

𝑚
𝑘=1 ×

1

𝑚
 

B. Industry Standard Attribution 

 Consider a linear model in 𝑝 variables given by the function 

 𝑦 = 𝑓(𝒙) = 𝛽0 + 𝜷 ∙ 𝒙 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=0  

Here, 𝑦 is the logodds, 𝑓 is a function of the input 𝒙, 𝛽0 is the intercept, and 𝛽𝑖 
is the coefficient of the 𝑖𝑡ℎ variable. 

For a baseline 𝒙′ and an input 𝒙∗, the attribution for the 𝑖𝑡ℎ variable is defined as 

Δ𝑦𝑖 = 𝛽𝑖 ∗ (𝑥𝑖
∗ − 𝑥𝑖

′) 

C. Completeness 

 The completeness axiom states that the attributions add up to the difference 
between the output at the input ( 𝒙∗ ) and at the baseline (𝒙′)  [59]. 
Mathematically, 

 𝑓(𝒙∗) −  𝑓(𝒙′) = ∑ 𝐴𝑖
𝑝
𝑖=0  

where 𝐴𝑖 is the attribution for the 𝑖𝑡ℎ  variable. For Industry Standard Attribution 
above 

𝐴𝑖 = 𝛽𝑖 ∗ (𝑥𝑖
∗ − 𝑥𝑖

′) 

So, completeness requires 

 𝑓(𝒙∗) −  𝑓(𝒙′) = ∑ 𝛽𝑖 ∗ (𝑥𝑖
∗ − 𝑥𝑖

′)
𝑝
𝑖=0  

From the definition of the linear model above we get, 

 𝑓(𝒙∗) =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖
∗𝑝

𝑖=0   

 𝑓(𝒙′) =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖
′𝑝

𝑖=0   

So, 

 𝑓(𝒙∗) −  𝑓(𝒙′) =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖
∗𝑝

𝑖=0 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖
′𝑝

𝑖=0  

                = ∑ 𝛽𝑖(𝑥𝑖
∗ −  𝑥𝑖

′)
𝑝
𝑖=0 = ∑ 𝐴𝑖

𝑝
𝑖=0  

D. Sensitivity(b) 

The axiom states that if the model output does not depend on a variable, 

then the attribution for that variable should always be zero [59]. In other words, 

if for any change in variable 𝑥𝑖, the output 𝑓(𝒙) does not change, the attribution 

Δ𝑦𝑖 = 𝛽𝑖 ∗ (𝑥𝑖
∗ − 𝑥𝑖

′) should be equal to zero. 

We can rewrite the linear model definition as follows, 

 𝑓(𝒙) = 𝛽0 + ∑ 𝛽𝑖𝒙𝑖
𝑝
𝑖=0,𝑖≠𝑟 + 𝛽𝑟 ∙ 𝒙𝑟 

Let’s say the 𝑟𝑡ℎ variable does not have any effect on the output 𝑦. So, changing 

the value of the 𝑟𝑡ℎ  variable from 𝑥𝑟
∗ to 𝑥𝑟

′  will not change the value of the 

function 𝑓. 

 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=0,𝑖≠𝑟 + 𝛽𝑟 ∙ 𝑥𝑟

∗ = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=0,𝑖≠𝑟 + 𝛽𝑟 ∙ 𝑥𝑟

′  

𝛽𝑟𝑥𝑟
∗ − 𝛽𝑟𝑥𝑟

′ = 0 

𝛽𝑟(𝑥𝑟
∗ − 𝑥𝑟

′) = 0 

Since (𝑥𝑟
∗ − 𝑥𝑟

′) ≠ 0, 𝛽𝑟 must be zero. Since the attribution for the 𝑟𝑡ℎ variable 

is defined as 𝛽𝑟 ∗ (𝑥𝑟
∗ − 𝑥𝑟

′), the attribution will always be zero. 

E. Linearity 

The linearity axiom states that if a model (derived model) is a linear 
combination of two or more models (source models), then the attributions of 

the derived model should also be a linear combination of the attributions of the 

source models [59]. Let’s consider the following two models, 

 𝑓(𝒙) =  𝛽𝑓0 + ∑ 𝛽𝑓𝑖𝑥𝑖
𝑝
𝑖=0  

 𝑔(𝒙) =  𝛽𝑔0 + ∑ 𝛽𝑔𝑖𝑥𝑖
𝑝
𝑖=0  

For a baseline 𝑥′ and an input 𝑥∗ the attributions of the above two models can 

be given by 

 𝑓(𝒙∗) − 𝑓(𝒙′) =  ∑ 𝛽𝑓𝑖(𝑥𝑖
∗ − 𝑥𝑖

′)
𝑝
𝑖=0  

 𝑔(𝒙∗) − 𝑔(𝒙′) =  ∑ 𝛽𝑔𝑖(𝑥𝑖
∗ − 𝑥𝑖

′)
𝑝
𝑖=0  

Let’s consider a model ℎ(𝑥), which is a linear combination of 𝑓 and 𝑔 such that 

                      ℎ(𝒙) = 𝑎 ∗ 𝑓(𝒙) + 𝑏 ∗ 𝑔(𝒙) 
                 = 𝑎 ∗ (𝛽𝑓0 + ∑ 𝛽𝑓𝑖𝑥𝑖

𝑝
𝑖=0 ) + 𝑏 ∗ (𝛽𝑔0 + ∑ 𝛽𝑔𝑖𝑥𝑖

𝑝
𝑖=0 ) 

Now the attribution of the variables in the model ℎ can be given by, 

 𝑎 ∗ (𝛽𝑓0 + ∑ 𝛽𝑓𝑖𝑥𝑖
∗𝑝

𝑖=0 ) + 𝑏 ∗ (𝛽𝑔0 + ∑ 𝛽𝑔𝑖𝑥𝑖
∗𝑝

𝑖=0 ) −  𝑎 ∗ (𝛽𝑓0 +

 ∑ 𝛽𝑓𝑖𝑥𝑖
′𝑝

𝑖=0 ) − 𝑏 ∗ (𝛽𝑔0 + ∑ 𝛽𝑔𝑖𝑥𝑖
′𝑝

𝑖=0 ) 

        = 𝑎 ∗ (∑ 𝛽𝑓𝑖𝑥𝑖
∗𝑝

𝑖=0 − ∑ 𝛽𝑓𝑖𝑥𝑖
′𝑝

𝑖=0 ) + 𝑏 ∗ (∑ 𝛽𝑔𝑖𝑥𝑖
∗𝑝

𝑖=0 − ∑ 𝛽𝑔𝑖𝑥𝑖
′𝑝

𝑖=0 ) 

        = 𝑎 ∗ ∑ 𝛽𝑓𝑖 ∗ (𝑥𝑖
∗𝑝

𝑖=0 − 𝑥𝑖
′) +  𝑏 ∗  ∑ 𝛽𝑔𝑖(𝑥𝑖

∗ − 𝑥𝑖
′)

𝑝
𝑖=0   

Clearly the attribution of each variable of ℎ  is a linear combination of the 
attribution of the corresponding variables of 𝑓 and 𝑔. 

F. Implementation Invariance 

 Two models are functionally equivalent if their outputs are equal for all 
inputs, despite having very different implementations. Implementation 
invariance axiom states that the attribution should be identical for functionally 
equivalent model [59]. Let’s consider the following two models, 

𝑓(𝒙) =  𝛽𝑓0 + 𝜷𝑓 ∙ 𝒙 

𝑔(𝒙) =  𝛽𝑔0 + 𝜷𝑓 ∙ 𝒙 

If 𝑓(𝒙) = 𝑔(𝒙), ∀𝒙, then then the two networks are functionally equivalent and 

𝛽𝑓0 + 𝜷𝑓 ∙ 𝒙 = 𝛽𝑔0 + 𝜷𝑔 ∙ 𝒙 

𝜷𝑓 = 𝜷𝑔 

Thus, if two linear models are functionally equivalent, they must be the same 
model, and, therefore, their attributions must be identical. 

G. Symmetry-preserving 

 If swapping two variables does not have any impact on the output of a 
function then these variables are called symmetric with respect to the function. 
For example, if for all values of 𝑥1 and 𝑥2, 𝑓(𝑥1, 𝑥2) = 𝑓(𝑥2, 𝑥1), then 𝑥1 and 
𝑥2 are symmetric with respect to f. The symmetry-preserving axiom states that 
“if for all inputs that have identical values for symmetric variables and baselines 
that have identical values for symmetric variables, the symmetric variables 
receive identical attributions” [59]. 

Let’s consider two symmetric variables 𝑥1 and 𝑥2 with respect to the log odds 
𝑓(𝒙) 

𝑓(𝑥1, 𝑥2) = 𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2 
𝑓(𝑥2, 𝑥1) = 𝛽0 + 𝛽1 ∙ 𝑥2 + 𝛽2 ∙ 𝑥1  

Now, 

𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2 =  𝛽0 + 𝛽1 ∙ 𝑥2 + 𝛽2 ∙ 𝑥1 
 𝛽1(𝑥1 − 𝑥2) − 𝛽2(𝑥1 − 𝑥2) = 0 

              (𝛽1 − 𝛽2)(𝑥1 − 𝑥2) = 0 

Since  𝑥1 and 𝑥2 are symmetric with respect to 𝑓 for all values of 𝑥1 and 𝑥2, 𝛽1 
must also be equal to 𝛽2. 

Now the attributions for the variable 𝑥1 is 

𝛽1 ∗ (𝑥1
∗ − 𝑥1

′) 

and the attributions for the variable 𝑥2 is 

𝛽2 ∗ (𝑥2
∗ − 𝑥2

′ ) 

Since the coefficients are equal, input is identical, and the baseline is identical. 
So, the attribution for each symmetry preserving variable is identical. 
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