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Abstract

The term Procedural Content Generation (PCG) refers to the (semi-)automatic
generation of game content by algorithmic means, and its methods are becoming
increasingly popular in game-oriented research and industry. A special class of
these methods, which is commonly known as search-based PCG, treats the given
task as an optimisation problem. Such problems are predominantly tackled by
evolutionary algorithms.

We will demonstrate in this paper that obtaining more information about
the defined optimisation problem can substantially improve our understanding
of how to approach the generation of content. To do so, we present and discuss
three efficient analysis tools, namely diagonal walks, the estimation of high-level
properties, as well as problem similarity measures. We discuss the purpose of
each of the considered methods in the context of PCG and provide guidelines for
the interpretation of the results received. This way we aim to provide methods
for the comparison of PCG approaches and eventually, increase the quality and
practicality of generated content in industry.

Keywords: Optimisation, Search-Based Procedural Content Generation,
Exploratory Landscape Analysis, Mario Level Generation

∗Corresponding author
Email address: vanessa@modl.ai (Vanessa Volz)

Preprint submitted to Applied Soft Computing February 17, 2023

ar
X

iv
:2

30
2.

08
47

9v
1 

 [
cs

.A
I]

  1
6 

Fe
b 

20
23



1. Introduction

Search-based procedural content generation is a very popular approach for
generating various types of content for games, such as levels (for example for
Super Mario Bros., see Figure 1) and weapons [1]. They work by formulating
the generation process as an optimisation problem, where the task is to identify
content that fulfils a given objective best. According to [1], in order to define
this optimisation problem, the following three components need to be specified:
(1) a suitable representation / search space for the content that can be searched
(more details in Section 3.1) by (2) an (optimisation) algorithm, which in turn
is guided by (3) a suitable fitness function (more details in Section 3.2). Most
previous publications on search-based PCG focus on one aspect of the problem
definition and treat the remaining components as given [2], which limits our
understanding of the problem as a whole.

Of course, focusing only on one component allows more in-depth analyses
and streamlined discussions. However, taking a more holistic and application-
agnostic approach to analysing search-based PCG systems instead comes with
several potential benefits. This means that all interconnections between the
different components of a PCG system are accounted for in the analysis. For
example, a better understanding of the fitness landscape, which is a product
of representation and fitness function, can allow to select a suitable search al-
gorithm [3–7]. This selection is important as, according to the no free lunch
theorem [8], no single algorithm can perform well on all types of problems. As-
pects such as noise levels, number of local and global optima, or the landscape’s
ruggedness should be considered when selecting an algorithm [4, 9–11]. In addi-
tion, knowledge about global optima can help to assess the success of the PCG
approach and the potential for further optimisation.

This information is not only helpful for the selection of an optimisation
algorithm, but can also be utilised in order to choose the best representation and
fitness function possible. For example, if the dimension of the representation
is variable, information about the scalability of the PCG approach can help

Figure 1: Exemplary (underground) level of Super Mario Bros.
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to determine the smallest (i.e. lowest dimensional) representation that still
offers sufficient detail and variety. Usually, the smaller the representation, the
easier it is to find fit solutions. In addition, the content is usually intended
to fulfil objectives around abstract game-related concepts, such as, e.g., game
difficulty. These concepts, however, can usually be expressed and implemented
in several ways, for example using different Artificial Intelligence (AI) game-
playing agents for simulation. These different implementations might not create
fitness landscapes of the same type, and consequently influence the attainable
content.

Finally, a more extensive analysis of search-based PCG applications from
the standpoint of optimisation algorithms also produces information on the ro-
bustness of the proposed approach. In this context, robustness is especially im-
portant with regards to the reliability of a content generator to produce similar
content and thus fulfil expectations, for example regarding its playability. Fur-
ther, different training examples and initialisation procedures could be tested to
investigate the applicability of a given PCG algorithm to different games. This
is especially true if all three components, i.e., representation, fitness function
and search algorithm can be varied. Results from this type of analysis also
facilitate comparisons between different content generators.

Research in evolutionary computation has been applying several methods of
analysis for understanding and improving the behaviour of optimisation algo-
rithms for several years [12, 13]. In this paper, we

1. present and discuss how one can apply several of these landscape analysis
methods to (search-based) PCG;

2. summarise how the gained insights can – and should – be used to evaluate
and improve PCGs; and

3. demonstrate the methods’ applicability by means of an exemplary use case
in which we analyse generated Mario levels.

In order to keep the paper concise, the methods we discuss in more detail
in this paper are all intended for the analysis of fitness landscapes of black-
box problems, independent of the applied optimisation algorithm. This type of
analysis is often a first step and especially relevant for PCG approaches due to
the lack of suitable existing information helpful for selecting an optimiser.

We are further only describing the proposed methods in the context of con-
tinuous search spaces, since that is the type of problem we have chosen as an
example application. All the required concepts also exist for optimisation prob-
lems with non-continuous search spaces, however, and are thus transferable.

Our contribution in this paper is thus a vision and tutorial to study
optimisation problems in search-based PCG from the perspective of
systematic analysis tools. To support our vision, we further provide exem-
plary results for a benchmark called GBEA (Game Benchmark for Evolutionary
Algorithms [14]), which is based on PCG applications. We are able to demon-
strate that the analysis we propose is useful to strengthen the interpretability
and thus usefulness of the aforementioned benchmark.
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Methods to analyse problem landscapes in search-based PCG

Estimation of high-level properties

⇒ Make informed choices of PCG
components and parameters

⇒ Make informed choices of
suitable optimisation algorithms

⇒ Investigate hypotheses

⇒ Find difficulties (plateaus, ...)
⇒ Estimate objective ranges
⇒ Discover discontinuities
⇒ Compare problems
⇒ Formulate hypotheses

⇒ Find suitable cheaper problem
replacements

⇒ Transfer existing learnings
⇒ Analyse robustness of PCG approach
⇒ Identify archetypes of PCG problems

Diagonal walks Problem similarity measures

Figure 2: Overview of the proposed methods and their purpose in the context of PCG.
Diagonal walks are described in Section 4, the estimation of structural high-level properties
in Section 5, and problem similarity measures in Section 6.

In the following, we first give some background information, starting with
related work on landscape analysis as well as search-based PCG in Section 2.
We also specifically survey research that is intended to obtain more information
on PCG approaches and identify a definite lack of such work. The general
experimental setup for the experiments conducted in the following sections is
provided in Section 3. In the second part of the paper, we propose several
analysis tools and demonstrate their usefulness using an exemplary problem
from the GBEA benchmark. Tools that are discussed are diagonal walks in
Section 4, the estimation of structural high-level properties in Section 5, and
problem similarity measures in Section 6. Each of these sections contains a short
explanation of the method in question, followed by a description of its purpose
in the context of PCG. An overview of the discussed tools and their purpose
in PCG is given in Figure 2. We then demonstrate each tool’s applicability by
applying it to our example. Each section is concluded by a short discussion of
the respective method’s suitability, strengths and weaknesses. We conclude the
paper in Section 7 with a summary of our concrete findings. Finally, we discuss
our vision of using optimisation analysis tools to improve PCG research in the
future.

2. Related Work

In the following, we give an overview of related work. We start with an
overview of Exploratory Landscape Analysis, which we use as an example of
current approaches to understanding fitness landscapes in black-box optimi-
sation problems. Next, we conduct a brief survey of the state-of-the-art of
search-based PCG, focusing specifically on work that analyses the optimisation
problems in PCG in more detail.

2.1. Exploratory Landscape Analysis

Exploratory Landscape Analysis (ELA), sometimes also called fitness land-
scape analysis, stands for a sophisticated method that employs automatically
computable (mainly numerical) values to extract representative information

4



from a problem’s landscape [10, 11, 15]. These numbers, the so-called fea-
tures, can be used to derive more tangible properties of the landscapes, such
as whether they are rugged [16], possess an underlying funnel structure [17], or
contain plateaus [10]. As they provide cheap and explicitly measurable surro-
gates for these (hardly quantifiable) high-level properties, automatically com-
putable landscape features enable more sophisticated analyses on the problems
at hand such as examining the underlying problem spaces [18–21], characterising
algorithmic search behavior [22, 23] as well as selecting and configuring well-
performing optimisation algorithms ([4–6, 24, 25] and [7, 26, 27], respectively).
Note that in order to save valuable resources, features are ideally computed on
a very small set of sampled points [17, 28].

Over the decades, a plethora of features have been proposed, which makes
a detailed discussion in this work infeasible. Instead, we refer the interested
readers to [3, 5, 11, 29] for comprehensive overviews of recent works on this
topic. For now, we only provide two features to give an example of typical
features:

1. the coefficient of determination R2 ∈ [0, 1] (i.e., the quality) of a quadratic
model that has been fitted to the sampled data [10], and

2. the ratio between (i) the average distance of the sample points to their
respective nearest neighbour, and (ii) the average distance to their nearest
better neighbour (i.e., the nearest neighbour among all observations with
a better fitness value) [17].

Both features are useful when trying to distinguish between rather unimodal
functions (R2 ≈ 1) and random landscapes that rather look like an egg box
(R2 ≈ 0).

2.2. Search-based Procedural Content Generation

The (semi-)automatic generation of game content through algorithmic means
is commonly referred to as procedural content generation (PCG) [30]. Various
approaches to PCG exist, but an especially popular subset is dubbed search-
based PCG [1, 31]. In the corresponding approaches, some notion of fitness
is required to evaluate generated content. The “fittest” content can then be
discovered by exploring the content-representing search space, for which the
fitness values are given by the fitness function. Most commonly, the search
is performed by evolutionary algorithms, likely due to their ability to handle
black-box fitness functions [1, 32].

As in any optimisation problem, the difficulty of finding good content in
search-based PCG depends on the structural challenges posed by the fitness
landscape (i.e., the combination of representation and fitness function), as well
as the search algorithm operating on it. However, previous work on the analysis
of search-based PCG as optimisation problems often lacks a holistic approach.

For example, numerous publications address the difficulty of finding suitable
representations for game content. Novel representations for different subsets
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of game content are proposed regularly (see [33] for an overview). One often
addressed challenge of representations is the dimension of the search space [31],
as the chosen representation is required to map to relatively complex content
(e.g. a whole level). Still, if the dimension is reduced too much, the variety
of valid content might be limited, resulting in less interesting gameplay. Other
properties of representations that are often addressed are the locality [31] and
the scarcity of valid solutions [34, pp. 93–95]. In [35], finding good representa-
tions is identified as an open problem. Recent efforts have been targeting the
creation of such rich search spaces for game content [36]1. Building on this,
newer efforts have been aimed at transforming these search spaces to facilitate
exploration of interesting parts of the search space [37].

The problem of defining fitness functions, however, is usually addressed sep-
arately from the choice of representation. This is because finding an automatic
evaluation function for generated content without feedback from human play-
ers is an ill-posed problem, as subjective human perception needs to be ex-
pressed and formalised [31]. For this reason, numerous fitness functions have
been proposed in literature, especially for heavily researched games, such as
board- [38] and platform games [39]. Several (largely agreeing) attempts have
also been made in order to characterise these evaluation functions [34, pp. 122–
125], [1, 31, 35].

Existing evaluation approaches of both components (fitness function and
representation) largely revolve around exploratory assessment of generated con-
tent, especially by visualising its variety – for example via expressive range
analysis [2]. The improvement of the search algorithm’s fitness over iterations
is usually reported as well, but this only offers limited interpretability if the
fitness landscape is unknown.

It is therefore indispensable to analyse the fitness landscapes of search-based
PCG. However, related work in this area is sparse. There are a few publications
where search spaces are characterised based on the performance of search algo-
rithms. For example, in [40], several versions of an evolutionary algorithm are
used to optimise landscape automata based on two fitness functions. The study,
however, focuses on identifying good parameters for the evolutionary algorithms
and for the representation, instead of executing a landscape analysis. Never-
theless, this type of analysis allowed the authors to characterise the landscape
as multimodal, i.e., containing multiple local and/or global optima [41]. An-
other publication [42] uses a similar approach in order to describe the available
gameplay to a beginner in a popular trading card game. The fitness function of
evolving decks was shown to be jagged (i.e., it showed small local irregularities)
and in their experiments, but the results are mainly anecdotal and tied to the
optimisation approach

The only formal landscape analysis of search-based PCG we were able to find
is based on a specific representation for maze levels, called apoptotic cellular
automata [43]. The study is based on a survey of fitness landscape analysis

1Brief video explanation: https://www.youtube.com/watch?v=NObqDuPuk7Q
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methods [44], which were adapted appropriately for application in this context.
The authors find that the fitness landscape is rugose, i.e., it possesses a multitude
of local optima and large plateaus with low fitness. Based on their analysis, the
authors see a similarity to Shekel’s foxhole function [45].

Unfortunately, the results are difficult to generalise. The problem in the
study uses a specific, non-standard representation, while in search-based PCG,
continuous representations are usually preferred [31]. In addition, only a single
fitness function is investigated. As evidenced by taxonomies and surveys [35],
there is a variety of fitness functions, which will likely produce very different
landscapes.

In this paper, we extend previous work in several ways. We analyse a problem
with a more common representation, in conjunction with several (28) fitness
functions.

Some literature can also be found on analysing the landscapes of games from
the perspective of a game-playing agent. A recent example of this type of work
is [46], where various games are characterised based on graph representations
of playthroughs. The authors propose to use the resulting representation to be
able to compare different games and to facilitate the understanding of game
agents. In contrast, in this paper, we compare different problems in search-
based PCG to facilitate the understanding of PCG algorithms. The results and
representations are thus unfortunately not transferable.

3. Example Application MarioGAN

Super Mario Bros., or Mario for short, is a classic platform game (“plat-
former”) and has been targeted by various research efforts, including compe-
titions and publications on game AI [47], as well as procedural generation of
levels [48]. A survey of several fitness functions that have been used in previous
research can be found in [39].

As is clear from several surveys, a multitude of level generators for Mario
[48] and similar platformers exist. However, as described in the previous section,
the search landscapes of the corresponding generators have not been analysed
in detail. Several publications address different aspects of the problem, such as
fitness functions [39] or search space [36]. As we are not aware of any holistic
analyses of optimisation problems related to Mario level generation, we are us-
ing this application as an example to demonstrate the methodology we propose
in this paper. We thus select a previously published search-based PCG ap-
proach (dubbed MarioGAN [36]) that has certain representative characteristics,
i.e., the representation is a continuous vector [31] and suitable for evolutionary
algorithms [1, 32].

3.1. Search Space

For our analysis, we use the level generator proposed in [36], which we will
call MarioGAN in the following. The generator is a neural network that takes
an input vector with values between −1 and 1 and produces 13 matrices of size
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Generator argmax

Latent Vector

28× 14× 13

Generated Level

Figure 3: A schematic representation of the level generation process using MarioGAN.

28 × 14. The search space is thus bounded and continuous even though the
representation of the levels is discrete. The size of the input vector just depends
on the structure of the neural network and can be chosen arbitrarily. These are
translated to 28 × 14-dimensional Mario levels using a binary encoding of 13
different tile types. A visualisation can be found in Figure 3. The generator
is trained using an adversarial approach (Generative Adversarial Networks -
GANs) as suggested in [49, 50] and is trained on Super Mario Bros. original
levels contained in the video game level corpus [51].

Using this approach, generators for different input space dimensions can be
trained. This allows us to analyse the scaling behaviour of the executed search
algorithms. Furthermore, the levels are generated within milliseconds, resulting
in practical experiments in terms of computational resources.

3.2. Fitness Functions

For our analysis, we are using the fitness functions proposed in the game-
benchmark for evolutionary algorithms described in [14]. These functions are
based on the state of the art of platformer evaluation [39] and selected to produce
diverse fitness landscapes. A short description of the measures computed for
the functions along with their original sources is found below and a more formal
definition with more details on how they are transformed into minimisation
problems can be found in Appendix A:
enemyDistribution: Horizontal distribution of enemies across the level. The

more enemies are grouped together, the more difficult it is to evade them.
Measured as standard deviation of the enemies’ x-axis coordinates [39].

positionDistribution: Vertical distribution of platforms across the level. Plat-
forms at various different heights typically seem interesting to a player.
Measured as standard deviation of y-axis coordinates of tiles one can stand
on [39].

decorationFrequency: Amount of non-standard tiles in the level, i.e., tiles
that make the level interesting. Measured as fraction of pretty tiles :=
{Tube, Enemy, Destructible Block, Question Mark Block, or Bullet Bill
Shooter Column} [39].
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Figure 4: Exemplary overworld (left) and underground (right) levels.

negativeSpace: Amount of empty space in the level. This characterises the
way the player moves through the level. Measured as the fraction of tiles
one cannot stand on [52].

leniency: A quantification of how easy it is to pass the level. Measured as
weighted sum of subjective leniency of tiles as defined in [53].

basicFitness: Difficulty for an AI to pass the level (according to the score used
in the MarioAI championships [47]). Measured as a linear combination of
several performance-related aspects, such as the distance of the level that
was covered and the amount of collected coins.

airTime: Describes how much the AI agent jumped to pass through the level.
Jumping is the main mechanic in Mario, so a level should require a consid-
erable amount of it. Measured as the ratio between time in the air divided
by time spent on the level. If the level is not completed, a penalty value
is returned instead [36].

timeTaken: Time required by the AI to navigate through the level – longer
times likely involve some backtracking or other challenging parts. Mea-
sured as the ratio between time taken and total time allowed for the level.
If the level is not completed, a penalty value is returned instead [36].

3.3. Optimisation Problems

Our set of MarioGAN optimisation problems is defined by combining the
search space (Section 3.1) with the fitness functions (Section 3.2). Note that,
without loss of generality, all problems have been turned into minimisation prob-
lems. In addition, several variations of each problem are provided to investigate
different questions, resulting in a total of 28 problems listed in Table 1. Only
variations resulting in functions with interesting and diverse fitness landscapes
are included in the benchmark. These variations are:

• AI: Two different AIs (Baumgarten’s A* and Scared [47]) are implemented
to simulate player behaviour for functions that require it.

• Training levels: GANs are trained separately on two disjoint sets of Mario
levels, overworld (o) and underground (u) (see the images in Figure 4).

• Concatenation: Multiple level segments generated by a GAN can be con-
catenated (c) to create a longer level.

Instances of each problem (as defined in [54]) are created by varying the
random seed used to initialise the training of the generators. In this paper we
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Table 1: Overview and characterisation of the 28 fitness functions in the Mario suite (m1 −
m28). A* refers to the winner of the first MarioAI gameplay competition [47], which is
based on an A* algorithm. Scared refers to ScaredAgent, one of the default agents within the
MarioAI competition framework, which tries to avoid all obstacles and enemies by jumping.
Letters [o] and [u] specify the training levels used and [c] whether level segments need to be
concatenated.

Fitness Measure AI o u oc uc

enemyDistribution - m1 m2

positionDistribution - m3 m4

decorationFrequency - m5 m6

negativeSpace - m7 m8

leniency - m9 m10

basicFitness A* m11 m12 m13 m14
Scared m15 m16

airTime A* m17 m18 m19 m20
Scared m21 m22

timeTaken A* m23 m24 m25 m26
Scared m27 m28

consider seven instances for each MarioGAN problem.

4. Diagonal Walks

In the following, as well as in the two upcoming sections, different methods
for analysing PCG approaches are discussed in detail (they are also presented
in Figure 5). We start with the most basic method, diagonal walks, which are
a simple tool for a first analysis of optimisation problems.

4.1. Method Description

According to [15, 44], landscape walks are a useful tool for landscape analysis.
Following the example from [14], we perform a type of landscape walks called
diagonal walks through a random point. We generate a random anchor point
that represents a valid solution and a random vector representing a direction.
Together, they define a line through the search space that is limited by the search
space boundaries. Then, we “walk” on this line from one end to the other in
equidistant steps passing through the anchor point. As the randomly chosen
directions are generally not axis-aligned, this means that all variable values are
changed concurrently. Because the position and the direction of such walks are
random, the number of available steps differs from walk to walk, the anchor
point is not necessarily at the center of the walk and the starting and ending
points of the walk are not necessarily on the search space boundary. These walks
are repeated several times by using different directions for the same anchor point
in order to put the different walks into context of each other. Furthermore, to
increase coverage, this procedure should be repeated with various anchor points.
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For each GBEA problem f , repeat a number of times:
1. Choose a random anchor point in the search space
2. Repeat a number of times:

2.1 Choose random direction
2.2 Evaluate equidistant points along the straight

line defined by the anchor point and the chosen
direction

Diagonal walks

For each high-level property p:
1. Train classifier(s) on BBOB problems using

ELA features
2. Use classifier(s) to predict property p based on

ELA features of GBEA problems

Estimation of high-level properties

1. Compute ELA features on GBEA problems
2. Compute ELA features on other problems (optional)
3. Use t-SNE on normalized ELA features to visualize

problems in 2-D

Problem similarity measures

Latin hypercube sampling

xi
search
space

Solution evaluation

f(xi)

flacco
97 ELA
features

Compute ELA features for problem f

ELA features for
BBOB problems

Hand-annotated
property p for

BBOB problems

ML
algorithm

Feature
selection

Classifier

Train a classifier for high-level property p

ELA features
for problem f

Classifier Property p

Predict high-level property p for problem f

Figure 5: Pseudocode for diagonal walks, estimation of high-level properties and problem
similarity measures on the left hand side with additional explanation of the nontrivial steps
on the right hand side. The derivation of ELA features (red) and classifiers (blue) is highlighted
in the right hand part as well as their utilisation in the whole figure.

In our example, we perform diagonal walks with a single anchor point and
three different directions. In their visualisations (see Figure 6), the x-axis shows
the number of steps along the diagonal line (with the anchor point being posi-
tioned at x = 0), and the y-axis depicts the corresponding function values. To
enable a direct comparison of different optimisation problems, we use the same
anchor point and directions throughout our analysis in this paper.

4.2. Purpose in Context of PCG

As complex game content must be presented in a way that is comprehensi-
ble for evolutionary algorithms, the genotype-phenotype mappings used in the
context of search-based PCGs are often very complex. In addition, the selected
genotype might require the definition of non-standard variation operators in
order to ensure that all generated content is valid.

For this reason, it is helpful to gain insights into how an algorithm explores
the space of the generatable content. Diagonal walks are an effective tool to
achieve this purpose. While they certainly do not provide a holistic picture,
these walks can still serve as early indicators of difficulties that the search al-
gorithm may face, such as the existence of plateaus or many narrow basins of
attraction (multi-modality). If such issues are discovered, different options for
representation and variation operators can be explored. Otherwise, a suitable
optimisation approach can be chosen by considering the expected difficulties.
For example, restarts are a common approach for handling multi-modal land-
scapes.
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(a) negativeSpace overworld (m7) (b) negativeSpace underground (m8)
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(c) basicFitness A* overworld (m11) (d) basicFitness Scared overworld (m15)

Figure 6: Diagonal walks for (the first instance of) different fitness functions. Their problem
IDs (see Table 1) are given in brackets. The different colours indicate separate walks through
the same anchor point (black dot, centered at x = 0). The x-axes show the number of steps
taken in each direction from the anchor point, whereas the y-axes show the respective fitness
values.

Furthermore, it is usually difficult to judge what is a comparatively good
fitness value. Diagonal walks are a useful tool for a rough approximation of the
achieved value ranges. Also helpful in this regards are statistics on the distribu-
tion of fitness values from random samples of the search space. Diagonal walks,
however, give an impression of the relative positions of the sample solutions in
the search area. This can help to identify whether the fitness landscapes contain
discontinuities in objective space or whole areas with good objective values.

An additional important benefit of diagonal walks comes from the fact that
many approaches rely on simulation-based measures computed during play-
throughs with AI players [55, Appendix A]. Thus, comparing the fitness values
computed from different AI simulations at the same points (i.e., same gener-
ated content) can give first insights into differences and similarities of player
behaviours. This analysis is especially meaningful if diagonal walks from AI
playthroughs are compared with corresponding human ones.

4.3. MarioGAN Results

4.3.1. Analysis

The diagonal walks for some representative problems in MarioGAN can be
found in Figure 6. Several interesting observations can be made based on these
plots. For example, the genotype-phenotype mapping as described in Section 3.1
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maps a continuous latent space to a discrete level. Steps in the search space thus
translate to the addition, removal, or swapping of one tile in a level to another.
If a fitness function (such as negativeSpace) is computed directly on the level
encoding, we would thus expect a step-like landscape with small steps indicating
when tiles change. Exactly this behaviour can be observed in Figure 6 (a) and
6 (b). Although the size of the steps differs for different instances and areas of
the search space, it is present for all problems with representation-based fitness
functions (m1-m10).

Despite being based on the same genotype-phenotype mapping, steps can not
be observed when using simulation-based fitness functions (problems m11-m28).
This is likely because changing a single tile in the level does not necessarily
result in different agent behaviour. As such, the fitness measure basicFitness
(i.e., the performance of the AI) as depicted in Figure 6 (c) and (d), for example,
does not necessarily change if a platform is added that can not be reached by
Mario. However, the addition of a single enemy can significantly affect player
behaviour and thus the resulting score.

The size of these effects also depends on the agent used for simulations. This
can be seen when comparing the scores that A* and the ScaredAgent received
for the same levels as shown in Figure 6 (c) and (d), respectively. The naive
ScaredAgent is more sensitive to changes, producing a widely varying perfor-
mance. While the basicFitness still varies significantly for the A* agent overall,
the variation per step is much smaller. Still, the lack of smoothness in both
functions should be a large concern when picking an optimisation algorithm.
Problems like the ones discussed above with a low locality are difficult for stan-
dard evolutionary algorithms [56], for example.

Another observation is that the achieved fitness values for negativeSpace
tend to be lower for underground levels (m8) than overworld levels (m7). This
is expected, as underground levels mimic tunnels in dungeons and are therefore
capped by ceilings. We have visually verified that this is indeed the case for
the generated levels (see Figure 4). Through further experiments – for which a
detailed description would exceed the scope of this paper – we were also able to
demonstrate the observed tendency empirically.

4.3.2. Interpretation

Based on the above analysis, it seems that evolutionary algorithms are well
suited for optimising problems m1-m10 with representation-based fitness func-
tions, as locality assumptions are fulfilled. This seems to indicate that the
chosen genotype-phenotype mapping is suitable for the generated content.

However, problems with simulation-based fitness functions show landscapes
with large local variations. This might require the development and application
of techniques that are suited to handle such variations appropriately. In addi-
tion, the cause for these large variations should be investigated in more detail.
One possible explanation for the variations is the noise in the fitness evaluations
that is not taken into account, caused either by the AI or the physics engine.

The large differences between fitness landscapes for different AI players also
demonstrate how sensitive content evaluations react to the actual AI implemen-
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tation used for the simulation. This illustrates the potential pitfalls of evaluating
games content exclusively automatically, as discussed in [57]. Instead, it sug-
gests that experiments using simulation-based fitness functions should at least
be repeated with different AIs. Ideally, these AI agents resemble different player
types in order to ensure diverse and meaningful behaviour [58].

4.4. Concluding Remarks

Diagonal walks enable an investigation of how small changes in search space
are reflected in objective space. Resulting observations of course only correspond
to the selected random point and directions, and cannot offer reliable insights
into global problem properties.

Still, this approach offers an efficient way to (visually) inspect characteristics
of a high-dimensional space. Diagonal walks are easy to generate and interpret
without the need for in-depth knowledge of evolutionary algorithms. They can
thus serve as a standard method for sanity checking of PCG approaches. Since
the number of samples required for this type of analysis is small, it is suitable
for the often expensive fitness evaluations required for PCG. Furthermore, di-
agonal walks and their visualisation can serve as inspiration for the definition of
hypotheses about fitness landscapes that can be tested with more sophisticated
methods.

5. Estimation of High-Level Properties

If aimed at the general global structure of a fitness landscape, the aforemen-
tioned hypotheses can usually be formulated using high-level properties such
as multi-modality, i.e., the (non-)existence of multiple optima. These proper-
ties are a way of describing fitness landscapes and are often used as a basis for
determining suitable algorithms for black-box functions. Here, we propose to
train a classifier for such properties using ELA features as input. That is, we
draw a small sample of points in the optimisation problem’s search space (e.g.,
using a Latin hypercube design or random uniform sampling) and compute the
corresponding fitness values [28, 59]. Subsequently, the fitness landscape of the
particular optimisation problem is characterised by means of various numerical
summary statistics – called ELA features [4, 9, 11] – that are computed based
on the sampled points.

5.1. Method Description

Our method, outlined in Figure 5, is based on previous work by [10], in
which various high-level properties of problem landscapes, such as (their degree
of) multi-modality and global structure, were discussed. The authors further
(manually) labelled the 24 artificial test functions from the well-known Black-
Box Optimization Benchmark (BBOB) [60] with the defined high-level proper-
ties.

We use this data – i.e., the levels of the high-level properties (e.g., none,
low, medium or high degree of multimodality) – as outcome or class labels when
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training classifiers for a total of eight2 high-level properties. As input, each
classification model (one per high-level property) takes a large set of cheap but
informative ELA features. For our experiments we considered all 97 features
– like the coefficient of determination R2 that was mentioned in Section 2.1 as
an exemplary ELA feature – from the following nine feature sets: dispersion,
level set, meta model, y-distribution, angle, information content, nearest better
clustering, basic, and principal component analysis [10, 15, 17, 61, 62]. A de-
tailed, yet compact description of the considered feature sets can be found in
the most-recent survey on ELA [11].

Our experiments are based on all 24 test problems from BBOB and rely on
samples of 500 points that were created by means of a latin hypercube design
(on the corresponding 10-dimensional search space [−5, 5]10). For each of the
problems, we then computed the aforementioned 97 ELA features using the
R-package flacco [11, 63]. In order to capture the general characteristics of
a BBOB problem and not traits that are specific to one of its instances3, we
considered (the first) five problem instances per problem.

Once we had generated appropriately labelled data, we trained a variety of
classification models (classification trees [64], random forests [65], support vector
machines [66] and gradient boosting models [67]) – all of which have proven to
be suitable candidates in the context of feature-based studies (see, e.g., [5, 68])
– to find strong classifiers for each of the different high-level properties. To
reduce noise as well as redundancy among the features and thereby improve
the quality of the models, each classifier was trained using different greedy
(floating forward-backward and backward-forward selection, respectively) and
stochastic (evolutionary algorithms with plus-strategy, population size µ = 10,
and λ ∈ {5, 50} offspring) automated feature selection strategies as presented
in [5]. All models were evaluated using leave-one-function-out cross-validation.
This allows a fair comparison of the models and reduces the risk of overfitting.

In the end, we obtained at least one well-performing classification model per
high-level property, capable of predicting the respective attribute(s) based on
a set of ELA features as input. These classifiers can be applied to any black-
box function, as long as an appropriate number of samples can be computed.
Despite performing well, model predictions are no guarantees and rely on several
assumptions. Still, they can serve as sophisticated and computationally efficient
guesses for high-level properties of black-box functions.

5.2. Purpose in Context of PCG

As most search-based PCG approaches employ complex genotype-phenotype
mappings as well as simulation-based fitness functions, they must usually be con-
sidered as black boxes. In order to make informed decisions about the choice

2As all but one BBOB problem were said to be without plateaus, we removed this property,
and instead considered the funnel characteristic from [17].

3Each instance is a translated, rotated and/or shifted version of its original function.
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Figure 7: Predicted high-level properties for all seven instances of each of the 28 MarioGAN
problems. According to our models, all 196 instances are supposedly non-separable and
possess highly homogeneous search spaces.

of the different PCG components (representation, fitness function, optimisa-
tion algorithm), it is thus crucial to obtain some information on the high-level
properties of the resulting fitness landscapes. For example, if the high-level
properties indicate a highly multi-modal landscape, restarts of the evolutionary
algorithm should be considered.

While diagonal walks (see Section 4) provide a basic way of approaching this
lack of information, they can only offer insights into small slices of the complete
landscape. Depending on how heterogeneous the landscape is, the information
gathered from diagonal walks cannot be generalised to the entire landscape. A
data-driven method, such as the classifiers proposed in this section, can provide
information on whichever area of the landscape is sampled. It can thus be used
as a way to investigate hypotheses formulated based on domain knowledge or
initial observations.

5.3. MarioGAN Results

5.3.1. Analysis

The heatmap in Figure 7 illustrates the predictions for six (of all eight con-
sidered) high-level properties by previously trained classifiers for all MarioGAN
problems. The rows indicate the problems (m1 to m28), whereas the columns
subdividing each high-level property heading correspond to the seven instances
per problem (see Section 3.3).

An immediately noticeable observation is that the high-level properties seem
to be relatively similar across all the different MarioGAN problems. Two prop-
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erties are not even shown because they were constant across all problems: none
of the problems are separable (i.e., they cannot be broken down into smaller sub-
problems), and they all have a very homogeneous search space. However, when
looking more closely, it is noticeable that for the agent-based problems (m11-
m28) the attributes of the high-level properties are mostly consistent, whereas
the characteristics of the representation-based problems display partly consid-
erable differences. For instance, problems based on the fitness measures ene-
myDistribution (m1, m2) and leniency (m9 and m10) show no differences along
the different search space dimensions as well as some evidence of a global struc-
ture, while all other problems indicate a moderate degree of variable scaling
without signs of a funnel or global structure. Another characteristic we ob-
served are the differences between over- and underworld levels for the remain-
ing representation-based problems: The overworld problems (m3, m5 and m7)
apparently exhibit a higher degree of multimodality as well as a stronger global
to local optima contrast compared to their underground counterparts (m4, m6

and m8). Summarising across all 196 problems, we seem to be dealing with
problems that mostly:

(1) behave differently in the different dimensions of the search space (variable
scaling : medium) and are non-separable (separability : none), i.e., different
dimensions of the search space cannot be treated separately;

(2) have no obvious global trends (funnel : none, global structure: none, global
to local optima contrast : low) that could be utilised e.g., by estimation of
distribution algorithms, such as the Covariance Matrix Adaption Evolu-
tion Strategy (CMA-ES) [69];

(3) have attraction basins of varying sizes (basin space homogeneity : none/low);
(4) have a relatively high number of local optima (multimodality : high).

Based on these results, we conclude that most of these problems are likely
difficult to tackle. This largely aligns with the diagonal walk results discussed
in Section 4.3.

5.3.2. Interpretation

Early results on the optimisation problems indicate that a majority of these
problems are indeed difficult to tackle, thus validating the estimations from the
classifier. For MarioGAN problems, for instance, random search has even shown
to be competitive with a wide range of evolutionary algorithms [55].

This result suggests that the genotype-phenotype mapping used for all prob-
lems should be reconsidered, as the problems, independent of fitness function
and training set, have mostly similar high-level properties. However, the goal of
PCG approaches is usually not to identify a single best sample of content, but
several ideally diverse examples of sufficient quality. Finding a global optimum
is thus not the main priority in PCG. The same is also true for multi-modal
problems, as well as optimisation in real-world contexts in general.

It should thus be investigated whether the competitive performance of ran-
dom search can be explained by the abundance of suitable generated levels,
which would result in very flat fitness landscapes. In this case, this rich rep-
resentation should be kept and instead of applying sophisticated algorithms,
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simple samplers could suffice to identify suitable levels quickly. The same con-
cerns naturally also arise for problems with similar fitness landscapes, which
many problems in real-world applications might have. This should thus be a
topic for futher investigation.

5.4. Concluding Remarks

The approach considered in this section compresses the information of all 97
landscape features into eight high-level properties. ELA features are intended
for data-driven analyses, and the trained models are helpful to gain general in-
sights based on them. In contrast to the previously discussed diagonal walks,
the whole search space is considered and thus, global properties can be assigned
with reasonable confidence. Obviously, the quality of the resulting classification
(of the attribute values within each of these properties) strongly depends on (a)
the appropriateness of the selected classification model, and (b) the representa-
tiveness of the sampled points. Moreover, it should be noted that depending on
the complexity of the considered classifier(s), it can be (1) expensive to train a
separate classifier (per property), and (2) hard to explain its decisions.

In consequence, the reliance on high-level properties has several issues. They
describe complex abstract concepts which require a certain amount of existing
familiarity with such properties in order to be interpretable by a user. They
also inadvertently shape and thus limit the way in which problems are described.
The accuracy of the classifier also depends, on the one hand, on the quality of
the training data, which must be manually labelled with appropriate high-level
properties, and, on the other hand, it is influenced by the similarity between
the training data and the data of the test problem(s).

This method is thus suitable only for advanced users. For beginners, other,
more intuitive methods are needed to characterise the properties of a given
problem.

6. Problem Similarity Measures

Another way of characterising problems is to describe them by their sim-
ilarity to others. Similarity can provide intuition and thus avoid reliance on
complex abstract concepts such as high-level properties discussed in the pre-
vious section. In addition, similarity information can also be useful to decide
whether findings from different problems are applicable in a new context.

6.1. Method Description

ELA features (see Section 5) provide a way of characterising and ranking
different optimisation problems numerically, and thus constitute a great basis
for measuring similarity. They are, however, designed to work as input for data-
driven modelling and hence should not be interpreted in isolation. We propose to
use dimensionality reduction approaches to capture similarities recorded in ELA
features (see Figure 5). Here, we specifically consider t-distributed Stochastic
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Neighbourhood Embedding (t-SNE) [70] as a tool for finding a low-dimensional,
visualisable representation of the problems – and their (dis)similarities.

As a preparatory step, ELA features are computed for all problems under
analysis as described in Section 5.1. This allows a comparison between the prob-
lems under investigation. In addition, it is useful to also compute ELA features
for other (well-known) problems that can serve as baselines for comparison.
Ideally, these problems are well understood and diverse, so that the analysed
problems can be characterised by their similarity to the baselines. Good candi-
dates are artificial optimisation problems from benchmarks such as BBOB [60].

Next, some pre-processing of the data is required. Features with constant
values across all problems need to be removed from the data. Given that many
features are of different magnitude – and as we have no intention of interpreting
any of them at this point – all feature vectors are normalised to ensure a more
homogeneously scaled data set.

Finally, the dimensionality reduction method t-SNE [70] is applied to the
(normalised) feature data. The resulting representation can be used as a basis
for investigating the similarities between problems further.

6.2. Purpose in Context of PCG

As discussed above, the ability to measure similarity can help in identifying
problems that can serve as a suitable (i.e., comparable) test bed for the original
problem. This can be helpful for the selection of suitable optimisation algorithms
or even for tuning their hyper-parameters. Such a test bed is especially beneficial
if it is much cheaper to evaluate than the original problem - which is often quite
expensive in simulation-based PCG evaluations.

It might even be possible to identify problems that are similar enough to
be able to act as a proxy for the original problem. This could for example be
used as a way to identify interesting areas in the search space without having
to evaluate the expensive problem.

Similarity measures are also helpful for comparisons of different versions of
the same problem. The effects of modifying the representation within a PCG
algorithm, for example, could be tracked this way. Conversely, it can also be
used to verify the similarity of the optimisation problems encountered when
applying a given PCG approach to different games. If the problems are indeed
similar, we can reasonably expect that the problem landscapes exhibit similar
characteristics. In this case, similarity can thus be used as a measure of the
robustness of the PCG approach.

Finally, given a sufficient amount of suitable data from different search-based
PCG approaches is collected, similarity measures in combination with clustering
methods could be used to identify archetypes of PCG problems. This discovery
would facilitate the generalisation of PCG approaches and make their outcomes
more predictable. This would in turn improve their applicability in industry.
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Figure 8: Low-dimensional representation of all considered problems from BBOB (24 functions
× 5 instances, shown in purple), MarioGAN (28 functions (see Table 1) × 7 instances, green)
and Shekel (8 functions × 5 instances, yellow). The mapping was created by applying t-SNE
to the corresponding normalised ELA feature vectors.

6.3. MarioGAN Results

6.3.1. Analysis

For the analysis, we re-use the ELA features computed for MarioGAN (see
Section 5.3). As baselines, we selected the 10-D problems from the BBOB
benchmark [60] and a collection of 40 10-D instances that were generated using
Shekel’s foxhole function4 [45]. In previous work, the foxhole function with its
large plateaus and small spikes was identified to be potentially similar to a PCG
approach based on cellular automata [45]. Based on the results from the diagonal
walk analysis described in Section 4.3, foxhole functions do indeed seem like a
good candidate for similarity based on their known landscape characteristics.

Figure 8 provides a two-dimensional representation of the high-dimensional
feature data (of all 356 considered problem instances) using t-SNE. The prob-
lems from MarioGAN (shown in green) form a mostly homogeneous group and
do not have any spatial overlap with any of the other benchmark problems. On
the other hand, the foxhole functions (yellow) form two groups, which are sep-

4Eight problems generated with different numbers of peaks (3, 5, 7, 10, 20, 30, 40 and
50). To create five instances each, locations and widths of the peaks were sampled random
uniformly from [0, 10]10 and [0, 1], respectively.
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arated by a large cluster of BBOB problems (purple). According to this plot,
the three different problem sets are not similar and we thus determine that the
findings from [43] do not generalise to MarioGAN.

Analysing the MarioGAN problems in more detail, it seems that different
instances from the same problem (indicated by the same problem IDs) tend
to be similar. It also seems that problems m1-m10 with the representation-
based fitness functions concentrate on the bottom of the visualisation. They can
thus be considered more similar to each other than the agent-based problems.
And although this finding was expected, and could have been observed in the
heatmap of high-level properties (see Section 5.3), the approach considered here
is able to show this effect more clearly.

6.3.2. Interpretation

This result supports the assumption that the different instances of each
problem are actually reasonably similar. It can thus be argued that the results
of MarioGAN will be robust to different initialisations of the training process.

Furthermore, the Mario problems do not resemble any of the artificial prob-
lems we compared them against. In consequence, optimisation algorithms that
perform well on e.g., BBOB functions won’t necessarily perform well in search-
based PCG approaches such as Mario level generation.

This finding reinforces the need for more systematic analyses of PCG prob-
lems. It might even require specifically suited optimisation algorithms to handle
these specific fitness landscapes. A first step towards collecting suitable data for
further investigations was made with the proposal of the GBEA [14], which con-
tains PCG approaches for two different game-based applications. However, in
order to allow for more general conclusions, further applications will be needed.

6.4. Concluding Remarks

The characterisation of the fitness landscapes determined by dimensionality
reduction of the ELA features as proposed here seems to offer a good trade-
off between intuitive interpretability and the ability to gain insight into the
fitness landscapes on a global level. However, it should be noted that thorough
hypothesis testing is required to confirm the findings of the visual analysis.

We here suggested the usage of t-SNE, as it preserves the local proximity
of similar observations instead of just the structure among dissimilar points.
This is mainly achieved by minimising the Kullback-Leibler divergence between
the (probability mass of the) observations from the high- and low-dimensional
spaces [70]. Nonetheless, t-SNE is no silver bullet for dimensionality reduction
as it also comes with drawbacks: (1) the initial low-dimensional sample created
by t-SNE is stochastic and as such, its final result will differ (slightly) every time,
(2) one can not simply add a new instance to an existing plot, instead one has
to re-run the entire divergence optimisation procedure, (3) it does not allow for
statements regarding the proportion of explained variance (in contrast to classi-
cal dimensionality reduction approaches like principal component analysis), and
(4) it is computationally much more expensive than its competitors.
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7. Summary and Future Work

In this paper, we demonstrate how tools designed for the systematic anal-
ysis of optimisation problems can be employed to understand more about the
interaction of the different components (representation, fitness function, search
algorithm) of search-based PCG approaches. We further argue how the derived
insights can be used to evaluate and improve these three approaches. This
discussion is on the one hand executed on a general level, and on the other
hand demonstrated with a level generator for Mario. These results are the basis
for our conclusions on the suitability of the different tools we review. Within
this study, we focus on analysis tools intended to identify suitable optimisation
algorithms.

We first discussed diagonal walks, which are an easy way of gathering in-
terpretable information on the fitness landscapes in specific areas of the search
space. Their disadvantage is their locality and their therefore very limited per-
spective regarding global properties of a given optimisation problem.

Next, we investigated a machine learning-based method that is capable of
estimating these high-level properties based on a suitably small number of sam-
ples of a PCG problem. Besides potential issues incurred through classification
errors, the main downside of this tool is the required familiarity with the high-
level properties used to characterise the problems. While this method can thus
potentially provide very detailed insights, it is particularly suitable for advanced
users. Moreover, feature-based approaches also highly depend on the quality of
the sampled points, which includes their amount and distribution, as they are
fundamental for the feature computation – which in turn forms the basis for
various further investigations.

As a compromise between the very simple diagonal walks and the rather chal-
lenging identification of high-level properties, we studied another data-driven –
yet more intuitively interpretable – method capable of recording an optimisa-
tion problem’s global properties. We proposed using the similarity to archetypal
baseline functions as a way to gain insights into black-box optimisation problems
and employed the distance in a learned latent space as distance measure.

In consequence, the appropriate analysis tool thus needs to be chosen based
on the given circumstances and the user’s existing expertise. However, as
demonstrated in this paper, a simple experiment with diagonal walks can al-
ready achieve interesting insights and serve as a baseline and sanity check for
any work on search-based procedural content generation. Unfortunately, and
despite the simplicity of the diagonal walks, even such approaches are rarely
performed in related works.

We tested all the tools on an example application of MarioGAN, a content
generator for Mario levels based on generative adversarial networks. Our main
finding is that it is likely that the problems will prove difficult to optimise for
standard evolutionary approaches. We plan to investigate this further by em-
ploying different analysis tools for additional insights from different perspectives
in the future. Further, we will validate our assumption by comparing multiple
optimisation algorithms on these problems.
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Within this paper, we focused on a specific type of analysis and only dis-
cussed three selected analysis tools. This was necessary to allow for sufficient
depth in our study and to demonstrate the suitability of the tools on a specific
PCG-based use case. However, there exists a wide range of other appropriate
tools for systematic analysis of PCG problems with varying degrees of complex-
ity. Examples include the analysis of noise in fitness functions, as well as plots of
the Empirical Cumulative Distribution Function (ECDF) for the visualisation
of optimisation performance over time [12, 13].

In the future, we plan to employ such additional tools to gather more in-
formation on PCG problems, starting with the ones that are already part of
the game-based benchmark GBEA [14]. Combining observations that were pro-
duced with different tools promises further insights into these complex problems.

Further down the line, we hope to encourage a best practice for making
data from different systematic analyses of PCG problems publicly available.
Such a dataset would be an invaluable resource in order to conduct research
on the robustness and generalisability of search-based PCG approaches. This
would allow for a much wider adaptation of such methods in the games industry
as the expected performance could then be estimated before implementation.
Decision makers in a practical context would thus be able to operate with more
information and choose appropriate tools.
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Appendix A. Function definitions

We formally define here the functions from Section 3.2 that are implemented
in the MarioGAN benchmark used for the analysis in the paper. Note that they
are all mapped to a minimisation problem via transformation and scaled to fit
into a value range of [0, 1] in order to better fit into the benchmarking framework
which requires strict limits. In many cases, reaching one or both limits of the
fitness value range is unrealistic for any meaningful game level.

enemyDistribution [39]: 1−

√
1

N

∑N
i=1(xi − µ)

msd
, where N is the number of

enemies in the level, xi is the x-axis coordinate of the i-th enemy, msd is
the largest standard deviation possible given the width of the level and
µ = 1

N

∑N
i=1 xi.
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positionDistribution [39]: 1−

√
1

N

∑N
i=1(yi − µ)

msd
, where N is the number

of tiles in the level that a player can stand on, yi is the y-axis coordinate
of the i-th such tile, msd is the largest standard deviation possible given
the height of the level and µ = 1

N

∑N
i=1 yi.

decorationFrequency [39]: 1− npt
ntot

, where npt is the number of pretty tiles

in the level and ntot the total number of tiles. Pretty tiles are pretty tiles
:= {Tube, Enemy, Destructible Block, Question Mark Block, or Bullet
Bill Shooter Column}

negativeSpace [52]: 1 − nst
ntot

, where nst is the number of tiles in the level

that the player can stand on and ntot the total number of tiles.

leniency [53]: 1
2

(
v

ntot
+ 1
)

, where v =
∑

i∈P ni −
∑

i∈N ni −
ngaps

2
− dgaps

where P contains question blocks with power ups, and N contains bullet
bill shooter stations, piranha plant tubes, and all enemy types and ni is
the number of tiles of type i. Further, ngaps is the number of gaps the
player has to jump over and dgaps the average length of all gaps in the
level.
The maximum value for v

ntot
is 1 in the unrealistic case that

∑
i∈P ni =

ntot and
∑

i∈N ni = 0 and ngaps = 0, so all tiles in the level are power
ups. Conversely, the minimum value for v is −1, if

∑
i∈N ni = ntot and∑

i∈P ni = 0, so all tiles are of a type contained in N . Gaps can be
neglected here because each gap would reduce the computed value by
height. Therefore, the resulting value of the above formula is between 0
and 1.

basicFitness [47]: v+0.04
1.26 , where v = (dlevel−tlevel+ncoins+Iwon∗5000)/5000,

dlevel is the length of the level passed, tlevel is the time spent on the level,
ncoins is the number of gained coins and Iwon = 1 if the level was com-
pleted and 0 otherwise. The constants used for normalisation have been
determined via experimentation.

airTime [36]:

{
tg
ttot

, if won

1, otherwise
, where tg is the number of game ticks spent

on the ground and ttot the total number of game ticks played.

timeTaken [36]:

{
1− ttot

tmax
, if won

1, otherwise
, where ttot is the time spent on the

level and tmax is the total allotted time to finish the level.
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