
Using Metareasoning on a Mobile Ground Robot to Recover from Path
Planning Failures*

Sidney L. Molnar1†, Matt Mueller2, Robert Macpherson2, Lawrence Rhoads2, and Jeffrey W. Herrmann1,2

Abstract— Autonomous mobile ground robots use global
and local path planners to determine the routes that they
should follow to achieve mission goals while avoiding obstacles.
Although many path planners have been developed, no single
one is best for all situations. This paper describes metareasoning
approaches that enable a robot to select a new path planning
algorithm when the current planning algorithm cannot find
a feasible solution. We implemented the approaches within a
ROS-based autonomy stack and conducted simulation experi-
ments to evaluate their performance in multiple scenarios. The
results show that these metareasoning approaches reduce the
frequency of failures and reduce the time required to complete
the mission.

I. INTRODUCTION

An autonomous mobile robot uses path planning to de-
termine the best way to get to a goal location [1]. Given a
graph representation of the environment, metric path plan-
ning methods (such as A*) can find the shortest path (in
this graph) to the goal. Replanning must occur when the
robot encounters a new (or previously unknown) obstacle
that makes the current path infeasible.

In practice, a path planning method might fail because
it cannot find a feasible solution, which might be due to a
problem with the algorithm (or its implementation) or an
issue with the graph representation that it is using. If the
robot has no way to recover from this failure, then it will be
unable to continue, and it cannot complete its mission.

Metareasoning, which monitors and controls a robot’s
reasoning processes, provides a way to avoid mission failure
due to path planning errors.

This paper describes two metareasoning approaches that
enable a robot to select a new path planning algorithm
when the current planning algorithm cannot find a feasible
solution. We implemented both approaches within a ROS-
based autonomy stack and conducted simulation experiments
to evaluate the performance of each metareasoning approach.
The results show that both metareasoning approaches reduce
the frequency of failures and reduce the time required to
complete the mission.

The remainder of this paper is organized as follows:
Section II reviews existing work on path planning and
metareasoning. Section III presents the metareasoning ap-
proaches that we developed. Section IV discusses the results

*This work was supported by the U.S. Army Research Laboratory (Award
W911NF2120076).

1Department of Mechanical Engineering, University of Maryland, Col-
lege Park, MD 20740, USA

2Institute for Systems Research, University of Maryland, College Park,
MD 20740, USA

†Corresponding author: Sidney L. Molnar, smolnar@umd.edu

of simulation experiments that we conducted to evaluate the
metareasoning approaches. Section V concludes the paper.

II. RELATED WORK

A. Path Planning

Robot path planning has been a popular research topic for
many years because a mobile robot needs to navigate through
an environment in order to complete its mission. Many
techniques have been developed [2], including algorithms
(such as Dijkstra’s algorithma and A*) for searching a graph
for the shortest path. Other planning approaches include
probabilistic roadmaps [3] and sampling-based search ap-
proaches such as rapidly-expanding random trees (RRT) [2]
and RRT* [4], which are useful for motion planning as well.
RRTX [5] is an asymptotically optimal algorithm for replan-
ning in dynamic environments with unpredictable obstacles;
it reuses the search graph and quickly updates it based on
new information. D* [6] and similar algorithms can repair a
path through a graph that becomes suboptimal or infeasible
due to changes in the environment.

B. Metareasoning

Metareasoning is reasoning about reasoning (or deciding
how to decide) [7], [8], [9]. Metareasoning monitors and
controls reasoning and decision-making processes. For a
robot (or other intelligent agent), this enables bounded ra-
tionality by giving the robot the ability to reason about its
own reasoning process and to consider the cost and time of
computation as it considers which action to perform next.

For the engineer who is designing a robot or intelligent
agent, using metareasoning delays some design decisions
about the reasoning system. The engineer does not have to
select and implement one algorithm which likely performs
well in some situations and poorly in others. Instead, the
engineer delegates decisions to the metareasoning approach,
which is particularly relevant to controlling path planning,
where we would like to benefit from the strengths of different
algorithms.

Due to this flexibility, metareasoning can improve perfor-
mance. For example, the SATzilla program, created to solve
propositional satisfiability (SAT) problems, used algorithm
selection (an important metareasoning approach) to win gold
medals in the 2007 and 2009 SAT competitions [10]; more-
over, “the solvers contributing most to SATzilla were often
not the overall best-performing solvers, but instead solvers
that exploit novel solution strategies to solve instances that
would remain unsolved without them.” Algorithm selection
has been used in numerous settings, including multi-agent



search [11], combinatorial and continuous optimization [12],
[13], [14], [15], and CPU thermal management [16].

Rabiee et al. [17] proposed an approach to competence-
aware path planning. A competence-aware agent can manage
risk by assessing the probability of a failure and taking
actions to avoid future failures. Their path planning approach
uses introspective perception to estimate the likelihood of
failures due to degraded perception and then generates low-
risk paths by solving a stochastic shortest path problem.

Svegliato et al. [18] proposed a safety metareasoning
system that is designed to reduce the likelihood that a robot
will be perform an unsafe act (such as driving into a crevice).
The approach includes safety processes that monitor different
risks and suggest adjustments to the task reasoning process
(e.g., so that the robot’s path moves away from a crevice).
Simulation results showed that the approach reduced the
frequency of safety concerns.

For a UAV that needs to fly quickly through a forest,
Jarin-Lipschitz et al. [19] described a path planning approach
that used metareasoning to adjust dispersion, a key planning
parameter. The planning module uses a minimum-dispersion-
based motion primitive planner to determine the trajectories
that vehicle should follow. The value of the dispersion
parameter affects the graph and the quality of the path that
the local planner creates. The meta-level used three rules
that changed the dispersion value in response to planner
performance.

Our approach does have some similarities with that of
Svegliato et al. [20], who described a metareasoning ap-
proach (called introspection) that interrupts an autonomous
vehicle’s regular reasoning process whenever an exception
handler indicates that an abnormal situation is occurring
(e.g., a garbage truck blocking a two-lane road). It then
invokes a different decision process that is appropriate for
that abnormal situation. The approach presented here is also
a type of introspection, but this approach modifies the regular
reasoning process (instead of interrupting it). Unlike the
approach by Jarin-Lipschitz et al., which adjusts a parameter
value when path planning fails, our approach selects a new
path planning algorithm to respond to a failure.

Although algorithm selection can be viewed as an op-
timization problem, a metareasoning approach that needs
to solve a complex problem will add substantial overhead
and might delay the reasoning processes. Thus, we were
interested in simpler approaches that can quickly select
a planning algorithm when necessary to overcome a path
planning failure. This paper describes a study that adds to
our knowledge of metareasoning by presenting novel metar-
easoning approaches that have low overhead and presenting
results that describe their benefits.

III. APPROACH

A. Autonomy Stack

This research focused on the ARL Ground Autonomy
Stack [21], which can be used to create autonomous mo-
bile ground robots. This autonomy stack uses the Robot
Operating System (ROS) and includes algorithms for image

processing, simultaneous localization and mapping (SLAM),
path planning, navigation, and controlling the robot’s ve-
locity. Each of these algorithms uses a network of nodes
and topics that communicate by publishing and subscribing
to messages that initiate callback functions to influence the
robot’s actions.

The autonomy stack currently includes four global path
planners and three local path planners that were added by
ARL researchers and their collaborators. (We did not create
or modify these planners.)

The global path planners find a path from the robot’s
current location to the goal location within a relatively static
map. The SBPL global path planner constructs a graph using
motion primitives and uses A* to find the best path to
the goal location along that graph [22]. The RDGP global
path planner constructs a path from the start location to the
goal location by finding a fixed number of points evenly
spaced along the line segment between those locations’ 3D
coordinates; the target pose at each point is the same as the
target pose at the goal location. The GLS global path planner
uses a generalized lazy search [23]. The EASL global path
planner uses an efficiently adaptive state lattice and searches
with RRT* [24].

The local path planners determine the best way for the
robot to move along the global path using information
from its immediate environment, allowing the robot to
navigate around dynamic and recently-discovered obstacles.
The local plan operates independently to the waypoint goal.
The NLOPT local path planner uses parameterized con-
trol functions, formulates the optimal control problem as
a nonlinear optimization problem, and solves that problem
numerically [25]. The MPPI local path planner uses a version
of model predictive control to make path planning decisions
quickly [26]. The RHMPC local path planner creates a fine-
grained graph of the region around the robot and uses A* to
find the best path to the next waypoint along that graph [27].

B. Path Planning Failures

Path planners can sometimes fail for several reasons. For
instance, different path planning algorithms become more or
less successful as a result of environmental factors. If a path
planner is being used in an environment that is not conducive
to its functionality, then the algorithm will likely struggle to
find feasible solutions that allow the robot to navigate over
the terrain and around the obstacles. The second reason a
path planner might fail is when an algorithm uses a predictive
heuristic function that is unaware of future obstacles in the
path. As the ground robot comes across a new obstacle, the
planning algorithm might not have enough time to find a new
plan before the ground robot collides with the new obstacle.

Figure 1 shows an example of a simulated robot that is
stuck behind some trees in a forest and unable to correct
its path planning algorithm to find a way out of its current
position, which is surrounded by many obstacles. Because of
the path planning failure, the robot cannot complete its mis-
sion. Motivated by such undesirable events, we investigated
whether metareasoning can overcome path planning failures.



Fig. 1. Simulated robot stuck behind a cluster of trees, where its planner
is unable to create a feasible path.

C. Metareasoning Approaches

After studying the autonomy stack and how the global
and local path planners operate within that structure, we
developed two metareasoning approaches that “switch” from
one planner to another when a path planning failure occurs.

Parallel Approach. The “parallel” approach uses three
local path planners (NLOPT, MPPI, and RHMPC) and one
global path planner (EASL). The autonomy stack starts
ROS nodes for all three local path planners, and they run
continuously during the mission. The metareasoning node
decides which local planner is “active” and informs the
multiplexer node. That node receives information from all
three local planners but transmits only the output of the active
local planner to the navigation manager. The outputs from
the other local planners are not used. Initially, the active local
planner is NLOPT. A path planning failure occurs if one of
the following events occurs: the active planner sends a stuck
message, the navigation manager cancels the active local
planner, or the robot has not moved for three seconds. When
a failure occurs, the metareasoning node makes another local
planner active. In particular, if NLOPT was active, then the
new active local planner will be MPPI; if MPPI was active,
then the new active local planner will be RHMPC; if RHMPC
was active, then the new active local planner will be NLOPT.
In addition, the metareasoner node checks the status of the
local planner nodes as more than one local planner might
be failed. If the new active local planner is failed, then
the remaining local planner becomes the active one. If all
three local planners fail, then the robot cannot complete its
mission. Figure 2 exemplifies the logic used for the parallel
approach.

Sequential Approach. The “sequential” approach uses a
predetermined sequence of global and local planner com-
binations. When the metareasoning node receives a stuck
or error message produced by one of the planners, it calls
the next planner combination through a new launch file. By
launching new planner nodes under the same name as the old

Fig. 2. Parallel metareasoning logic.

planner nodes, the original nodes are automatically killed and
replaced by the new nodes. Figure 3 demonstrates the logic
used for the sequential approach.

Fig. 3. Sequential metareasoning logic.

Four global planners (SBPL, GLS, EASL, and RDGP) and
two local planners (NLOPT and MPPI) were used in the
sequential approach. We first tested these combinations in
three simulation scenarios. For each run of the simulation, we
recorded whether the robot failed to reach the goal location
(a mission failure) or (if it was successful) the time needed to
reach the goal. The “success rate” is the number of successes
divided by the number of runs. The “time to success” is the
average time for successful runs.

We selected the five combinations that had the best time to
success and used those for one metareasoning policy, which
will be known as the Sequential TS policy (Table I). We
also selected the five combinations that had the best success
rate and used those for a second metareasoning policy, which
will be known as the Sequential SR policy (Table II). Within
each policy, we sequenced the planner combinations from
best performance to worst performance.



TABLE I
THE SEQUENTIAL TS (TIME-TO-SUCCESS) METAREASONING POLICY

Call Order Planner Combination (global-local) Average Time To Success (s)

1 EASL-NLOPT 179.46
2 EASL-MPPI 195.04
3 RDGP-MPPI 212.95
4 GLS-MPPI 239.58
5 GLS-NLOPT 240.63

TABLE II
THE SEQUENTIAL SR (SUCCESS RATE) METAREASONING POLICY

Call Order Planner Combination (global-local) Average Success Rate (%)

1 GLS-MPPI 70
2 EASL-MPPI 68
3 EASL-NLOPT 63
4 GLS-NLOPT 53
5 SBPL-MPPI 38

D. Testing

To evaluate the metareasoning approaches, we used the
Unity simulation engine to simulate the behavior of a mobile
ground robot (a Clearpath Warthog) that was controlled by
the autonomy stack while completing a mission to move from
a start location to a goal location via a series of waypoints
in a simulation scenario.

We prepared three simulation scenarios. In each one, the
robot was given a goal location. In the least challenging
scenario, known as “Market Loop” (Figure 4), the robot
was given more waypoints to guide the path planning; in
the intermediate scenario, known as “Market Loop (Hard)”
(Figure 5), only two waypoints were given. In the most
challenging scenario, known as “Forest Run” (Figure 6),
the robot was given some waypoints, but they led the robot
through a hilly area with many trees. In each of the figures,
the waypoints are given as indigo circles. The red line
connecting the waypoints indicate the robot’s expected path.

Fig. 4. Market Loop: the least challenging scenario.

IV. RESULTS

A. Performance of Algorithms

The various individual global-local path planner combi-
nations were tested first. Each combination was tested 20
times for each of the three scenarios, except for the EASL-
NLOPT and EASL-MPPI planner combinations which were

Fig. 5. Market Loop (Hard): the intermediate scenario.

Fig. 6. Forest Run: the most challenging scenario.

tested 30 times for each course. The average performance
metrics with regard to time to success and success rates for
each combination are listed in Table III and IV respectively.

The Sequential SR and Sequential TS metareasoning poli-
cies were also tested over each scenario 20 times apiece,
while the parallel metareasoning policy was tested 30 times
for each scenario. Tables III and IV show the performance
metrics for each of the metareasoning policies with regard
to time-to-success and success rate respectively.

Figures 7, 8, and 9 show the spread of time-to-success
results for the Market Loop, Market Loop (Hard) and Forest
Run scenarios respectively. Figure 10 shows success rate
results for each planner combination and metareasoning
policy with respect to each scenario.



TABLE III
AVERAGE TIME TO SUCCESS (SECONDS) FOR EACH PLANNER

COMBINATION AND METAREASONING POLICY (HIGHLIGHTED CELLS

ARE THE BEST FOR EACH SCENARIO)

Planner Combinations Market Market (Hard) Forest Average (All)

GLS-MPPI 250.36 209.41 258.97 239.58
GLS-NLOPT 250.88 232.39 238.61 240.63
SBPL-MPPI 260.26 N/A 265.47 262.86

SBPL-NLOPT 319.03 N/A 221.35 270.19
RDGP-MPPI 212.95 N/A N/A 212.95
EASL-MPPI 199.88 165.65 219.58 195.04

EASL-NLOPT 169.90 165.82 202.65 179.46

Metareasoning Policy Market Market (Hard) Forest Average (All)

Sequential TS 169.19 215.68 258.37 214.41
Sequential SR 190.04 161.30 174.63 175.63

Parallel 181.81 170.01 193.58 181.80

TABLE IV
SUCCESS RATE (%) FOR EACH PLANNER COMBINATION AND

METAREASONING POLICY (THE HIGHLIGHTED CELLS ARE THE BEST

FOR EACH SCENARIO)

Planner Combinations Market Market (Hard) Forest Average (All)

GLS-MPPI 75 85 50 70
GLS-NLOPT 80 65 15 53
SBPL-MPPI 75 0 40 38

SBPL-NLOPT 30 0 5 12
RDGP-MPPI 80 0 0 27
EASL-MPPI 70 83 50 68

EASL-NLOPT 83 77 30 63

Metareasoning Policy Market Market (Hard) Forest Average (All)

Sequential TS 95 85 50 77
Sequential SR 85 80 40 68

Parallel 90 100 80 90

Fig. 7. Box plots showing time-to-success results for each planner
combination and metareasoning policy in the Market Loop scenario.

For the time-to-success metric, the EASL-NLOPT planner
combination outperformed all other stand-alone planner com-
binations in the Market Loop and Forest Run scenario, falling
just short of the EASL-MPPI planner combination in the
Market Loop (Hard) scenario by less than 0.2 seconds. The
EASL-NLOPT planner combination also had the best overall
time-to-success average of any other planner combination.

For the success rate metric, the GLS-MPPI planner com-
bination outperformed all other planner combinations for
the Market Loop (Hard) and Forest Run scenarios, tying
the EASL-MPPI planner combination at 50% for Forest

Fig. 8. Box plots showing time-to-success results for each planner
combination and metareasoning policy in the Market Loop (Hard) scenario.

Fig. 9. Box plots showing time-to-success results for each planner
combination and metareasoning policy in the Forest Run scenario.

Fig. 10. Success rates for planner combinations and metareasoning policies
in each of the scenarios.



Run. The EASL-NLOPT planner combination outperformed
the other planner combinations only in the Market Loop
scenario. The best overall performance for success rate
in all three scenarios was again the GLS-MPPI planner
combination.

In the Market Loop scenario, using the Sequential TS
metareasoning policy led to time-to-success performance that
was better than all seven planner combinations, but it did
not improve time-to-success for three of the planner combi-
nations in the Market Loop (Hard) and any of the planner
combinations Forest Run scenarios. Using the Sequential TS
metareasoning policy led to a better success rate than any
planner combination in the Market Loop scenario. Its success
rate was better than six planner combinations in the Market
Loop (Hard) scenario, and its success rate was better than
five planner combinations in the Forest Run scenario.

Using the Sequential SR metareasoning policy led to
time-to-success performance that was better than six of the
planner combinations in the Market Loop scenario. Its time-
to-success performance was better than all seven planner
combinations in the Market Loop (Hard) scenario and the
Forest Run scenario. Using the Sequential SR metareasoning
policy led to a better success rate than any planner combi-
nation in the Market Loop scenario and five of the planner
combinations in the Market Loop (Hard) scenario. Its success
rate was better than four of the planner combinations in the
Forest Run scenario.

Using the Parallel metareasoning policy led to time-to-
success performance that was better than six of the planner
combinations in the Market Loop scenario. Its time-to-
success performance was better than five planner combi-
nations in the Market Loop (Hard) scenario, and its time-
to-success performance was better than all seven planner
combinations in the Forest Run scenario. For all three
scenarios, using the Parallel metareasoning policy led to a
better success rate than any planner combination.

For the time-to-success performance metric, the Sequen-
tial TS metareasoning policy outperformed the other two
metareasoning policies in the Market Loop scenario. The
Sequential SR metareasoning policy outperformed the other
two policies for time-to-success performance in the Market
Loop (Hard) and Forest Run scenarios. The Sequential SR
metareasoning policy performed best overall in terms of
time-to-success.

For the success rate performance metric, the Parallel
metareasoning policy outperformed the two sequential poli-
cies for the Market Loop (Hard) and Forest Run scenarios.
The Sequential TS metareasoning policy outperformed the
other two policies for success-rate performance in the Market
Loop scenario. The Parallel metareasoning policy performed
best overall in terms of success rate.

Overall, although no metareasoning policy dominated the
other metareasoning policies in all cases on both performance
metrics, adding metareasoning did improve the robot’s per-
formance. Thus, these results suggest that engineers consider
metareasoning to overcome the limitations of using fixed
planning algorithms.

V. CONCLUSION

This paper presented two metareasoning approaches for
controlling the global and local path planners that operate
in an autonomy stack for a mobile ground robot. Both
approaches react to path planning failures by selecting a
new planner. The parallel approach runs a single global
planner and three local planners simultaneously, and its
metareasoning node determines which local planner’s output
is used by the autonomy stack’s navigation manager. The
sequential approach starts a single planner combination (a
global planner and a local planner) but stops this and starts
a different combination when a failure occurs.

The results of simulation testing show that both metarea-
soning approaches were successful at reducing the frequency
of mission failures and time needed to complete the mission
on the scenarios that we considered. The parallel metareason-
ing policy increased the frequency of mission success more
than the sequential policies that we tested.

One disadvantage of the parallel metareasoning approach
is that it requires more changes to the autonomy stack.
Additional nodes are needed to run the local planners and
to filter the planners’ output so that the navigation manager
uses only the output of the currently active local planner.
The sequential metareasoning approach requires adding only
the metareasoning node, which monitors the existing ROS
topics and stops and starts the appropriate ROS nodes when
needed. Unlike the parallel metareasoning approach, which
is running a global planner and multiple local planners
simultaneously, the sequential metareasoning approach runs
one global planner and one local planner, which should
reduce the computational burden of the autonomy stack.
Our future work will include quantifying the computational
resources required.

Future work should consider other sequences of planners
and using a parallel approach with multiple global planners
(not only local planners). This work took the existing global
and local planners as given; we did not consider adding new
planners to the autonomy stack, although there might be
other algorithms that can perform better than the existing
global and local planners. Including better planners might
reduce the need for metareasoning (because they fail less
often) or improve the performance of the metareasoning
approaches. In addition, it might be productive to develop
and test a competence-aware path planning approach [17]
to predict path planning failures and plan paths that avoid
locations where path planning failures are more likely.

Ultimately, we envision developing metareasoning ap-
proaches that can optimize all of the reasoning processes in
the autonomy stack subject to the limits of the computational
resources that are available on the robot.

ACKNOWLEDGMENT

The authors appreciate the suggestions and assistance
provided by Kevin Carey, Siddharth Gopal, Eashwar Sathya-
murthy, and our collaborators at the Army Research Labo-
ratory.



REFERENCES

[1] Robin Murphy. Introduction to AI Robots. The MIT Press, 2019.
[2] Steven M. LaValle. Planning Algorithms. Cambridge University Press,

2006.
[3] L Kavraki, P Svestka, J Latombe, and MH Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[4] S Karaman and E Frazzoli. Sampling-based algorithms for opti-
mal motion planning. International Journal of Robotics Research,
30(7):846–894, 2011.

[5] M Otte and E Frazzoli. RRT-X: Asymptotically optimal single-query
sampling-based motion planning with quick replanning. International
Journal of Robotics Research, 35(7):797–822, 2016.

[6] A Stentz. The focussed D* algorithm for real-time replanning. In
International Joint Conference on Artificial Intelligence, Montreal,
Canada, page 1652–1659, 1995.

[7] Michael T. Cox and Anita Raja. Metareasoning: Thinking about
Thinking. MIT Press, Cambridge, Massachusetts, 2011.

[8] Stuart Russell and Eric Wefald. Do the Right Thing: Studies in Limited
Rationality. MIT Press, Cambridge, MA, USA, 1991.

[9] Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial
Intelligence, 49(1):361–395, 1991.

[10] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
Evaluating component solver contributions to portfolio-based algo-
rithm selectors. In International Conference on Theory and Appli-
cations of Satisfiability Testing. Springer, Berlin, 2012.

[11] Estefany Carrillo, Suyash Yeotikar, Sharan Nayak, Mohamed
Khalid M. Jaffar, Shapour Azarm, Jeffrey W. Herrmann, Michael Otte,
and Huan Xu. Communication-aware multi-agent metareasoning for
decentralized task allocation. IEEE Access, 9:98712–98730, 2021.

[12] Lars Kotthoff. Algorithm Selection for Combinatorial Search Prob-
lems: A Survey, page 149–190. Springer International Publishing,
2016.

[13] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empiri-
cal hardness models: Methodology and a case study on combinatorial
auctions. Journal of the ACM, 56(4):1–52, 2009.

[14] Mario A. Muñoz, Michael Kirley, and Saman K. Halgamuge. A Meta-
learning Prediction Model of Algorithm Performance for Continuous
Optimization Problems, volume 7491 of Lecture Notes in Computer
Science, page 226–235. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012.

[15] Mario A. Muñoz, Yuan Sun, Michael Kirley, and Saman K. Hal-
gamuge. Algorithm selection for black-box continuous optimization
problems: A survey on methods and challenges. Information Sciences,
317:224–245, 2015.

[16] Michael Dawson and Jeffrey W. Herrmann. Metareasoning approaches
for thermal management during image processing. In Proceedings of
the ASME 2022 International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, St.
Louis, Missouri, 2022.

[17] Sadegh Rabiee, Connor Basich, Kyle Hollins Wray, Shlomo Zilber-
stein, and Joydeep Biswas. Competence-aware path planning via
introspective perception. IEEE Robotics and Automation Letters,
7(2):3218–3225, 2022.

[18] Justin Svegliato, Connor Basich, Sandhya Saisubramanian, and
Shlomo Zilberstein. Metareasoning for safe decision making in
autonomous systems. In 2022 IEEE International Conference on
Robotics and Automation (ICRA), 2022.

[19] Laura Jarin-Lipschitz, Xu Liu, Yuezhan Tao, and Vijay Kumar. Ex-
periments in adaptive replanning for fast autonomous flight in forests.
In 2022 IEEE International Conference on Robotics and Automation
(ICRA), 2022.

[20] Justin Svegliato, Kyle Hollins Wray, Stefan J Witwicki, Joydeep
Biswas, and Shlomo Zilberstein. Belief space metareasoning for
exception recovery. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1224–1229. IEEE, 2019.

[21] U.S. Army. SARA CRA overview. https://www.arl.army.mil/
business/collaborative-alliances/current-cras/sara-cra/sara-overview/.

[22] Maxim Likhachev. Search-based planning with motion primi-
tives. https://www.cs.cmu.edu/˜maxim/files/tutorials/ robschooltuto-
rial oct10.pdf.

[23] Aditya Mandalika, Sanjiban Choudhury, Oren Salzman, and Sid-
dhartha Srinivasa. Generalized lazy search for robot motion planning:



Interleaving search and edge evaluation via event-based toggles. In
Proceedings of the International Conference on Automated Planning
and Scheduling, volume 29, pages 745–753, 2019.

[24] Benned Hedegaard, Ethan Fahnestock, Jacob Arkin, Ashwin Menon,
and Thomas M. Howard. Discrete optimization of adaptive state
lattices for iterative motion planning on unmanned ground vehicles.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5764–5771, 2021.

[25] Thomas M Howard and Alonzo Kelly. Optimal rough terrain trajectory
generation for wheeled mobile robots. The International Journal of
Robotics Research, 26(2):141–166, 2007.

[26] Nolan Wagener, Ching-An Cheng, Jacob Sacks, and Byron Boots. An
online learning approach to model predictive control. In Robotics:
Science and Systems 2019, 2019.

[27] Thomas M. Howard, Colin J. Green, and Alonzo Kelly. Receding
horizon model-predictive control for mobile robot navigation of intri-
cate paths. In A. Howard et al. (Eds.): Field and Service Robotics 7,
pages 69–78, 2010.


