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Activity networks are a powerful tool for modeling and analysis in project management,

and in many other applications, such as circuit design and parallel computing. An activity

network can be represented by a directed acyclic graph with one source node and one sink node.

The directed arcs between nodes in an activity network represent the precedence relationships

between different activities in the project. In a stochastic activity network (SAN), the arc lengths

are random variables.

This dissertation studies stochastic gradient estimators for SANs using Monte Carlo simulation,

and the application of stochastic gradient estimators to network optimization problems. A new

algorithm called Threshold Arc Criticality (TAC) for estimating the arc criticalities of stochastic

activity networks is proposed. TAC is based on the following result: given the length of all arcs in

a SAN except for the one arc of interest, that arc is on the critical path (longest path) if and only

if its length is greater than a threshold. By applying Infinitesimal Perturbation Analysis (IPA)



to TAC, an unbiased estimator of the derivative of the arc criticalities with respect to parameters

of arc length distributions can be derived. The stochastic derivative estimator can be used for

sensitivity analysis of arc criticalities via simulation.

Using TAC, a new IPA gradient estimator of the first and second moments of project

completion time (PCT) is proposed. Combining the new PCT stochastic gradient estimator with

a Taylor series approximation, a functional estimation procedure for estimating the change in

PCT moments caused by a large perturbation in an activity duration’s distribution parameter is

proposed and applied to optimization problems involving time-cost tradeoffs.

In activity networks, crashing an activity means reducing the activity’s duration (deterministic

or stochastic) by a given percentage with an associated cost. A crashing plan of a project aims

to shorten the PCT by reducing the duration of a set of activities under a limited budget. A

disruption is an event that occurs at an uncertain time. Examples of disruptions are natural

disasters, electrical outages, labor strikes, etc. For an activity network, a disruption may cause

delays in unfinished activities. Previous work formulates finding the optimal crashing plan of an

activity network under a single disruption as a two-stage stochastic mixed integer programming

problem and applies a sample average approximation technique for finding the optimal solution.

In this thesis, a new stochastic gradient estimator is derived and a gradient-based simulation

optimization algorithm is applied to the problem of optimizing crashing under disruption.
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Chapter 1: Introduction

1.1 Activity Network Representations

A project can be viewed as a collection of activities and events. An activity is any undertaking

that consumes time and resources. An event is a well-defined occurrence in time [3]. Examples

of activities are staff training, goods transportation, upgrade system, etc. Examples of events are

completion of staff training, delivery of ordered products, completion of system upgrade, etc.

The most important relationship between activities in a project is the precedence relationship:

an activity cannot start until some activities are completed. Each activity has a starting time,

duration, and completion time. A project is completed if and only if all activities in the project

are completed. The project completion time (PCT), which is also called makespan [4], is of

interest to project managers and is to be minimized. The duration of an activity is the time it

takes to finish the activity, which can be either deterministic or stochastic.

A network is used to represent the precedence relationships of activities in a project and

is called an activity network (AN). There are two modes of representations of a project using a

network: activity-on-arc representation (A-on-A) and activity-on-node representation (A-on-N)

[3]. Both of the representations use a directed acyclic graph with one source node and one sink

node to represent an activity. In this thesis, we use activity-on-arc representation for stochastic

activity networks and time-cost tradeoffs optimizations, and activity-on-node representation for
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the problem of optimal crashing of an activity network with single disruption.

1.1.1 Activity-on-arc Representation

In the activity-on-arc representation, an activity is represented by an arc in the network,

and an event is represented by a node in the network. The node (event) at the tail of a directed

arc (arrow) represents the start of the activity and the node (event) at the head node of the arrow

represents the termination of the activity. The requirement that activity i precedes activity j is

represented by having the tail node of arc (activity) i coincide with the head node of arc (activity)

j. Except for the source node and sink node, each node in the activity network must have at least

one arc entering it and one arc leaving it. In the activity-on-arc representation, arcs (activities)

and nodes (events) are indexed by nonnegative integers, and nodes are indexed in a way such

that a directed arc always leads from a smaller integer to a larger one. In the activity-on-arc

representation, dummy arcs (activities) are needed in some cases and are represented by dashed

arcs. A dummy activity has zero duration and does not represent an actual activity. An example

of an AN with activity-on-arc representation is presented in Figure 1.1.

Figure 1.1: Activity-on-arc Network Example
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In Figure 1.1, di represents the duration of activity i. Notice the difference between the

index of nodes and arcs: i indexes node i, whereas the subscript of di is the index of an arc, and

di is a numeric attribute (the duration) of the arc. In the activity-on-arc representation, we also

refer to the duration of activity i as the length of arc i (not the actual length of arcs on the graph).

The precedence relationships between activities in Figure 1.1 are: activities 3 and 4 cannot start

until activity 1 is completed; activity 5 cannot start until activities 2 and 3 are both completed.

1.1.2 Activity-on-node Representation

In the activity-on-node representation, an activity is represented by a node in the network

and an event is represented by an arc. The head node (activity) of a directed arc precedes the tail

node (activity) of the arc. Similar to the activity-on-arc representation, nodes are indexed in a

way such that a directed arc always leads from a node with smaller integer to a larger one. Notice

that in the activity-on-node representation, arcs have no index. Moreover, in the activity-on-node

representation, the source node and sink node are always dummy nodes (activities) with zero

duration and represent no activity in the project. No dummy activities are needed in the A-on-N

representation besides the source and sink node. The same example of an AN in Figure 1.1 is

shown with the A-on-N representation in Figure 1.2, i.e., Figures 1.2 and 1.1 are two different

network representations of the same project. The precedence relationship between activities

represented in Figure 1.2 is the same as of Figure 1.1. In Figure 1.2, node 0 and node 6 are

dummy nodes (activities) that represent no activities.
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Figure 1.2: Activity-on-node Network Example

1.2 Features and Variables in ANs

1.2.1 Critical Path

We define the notion of a critical path for both A-on-A and A-on-N representations of ANs.

In an activity network, a path is a route from the source node to the sink node and is represented

by indices of activities that are on the path. The length of a path equals the sum of the durations of

activities that are on the path. The path with the longest length is called the critical path, which is

not necessarily unique. The path with the longest length is critical, because its length represents

the project completion time, and decreasing the duration of activities that are on the critical path

can decrease the PCT, whereas decreasing the completion time of activities that are not on the

critical path is not helpful for decreasing the PCT.

1.2.2 Node Release Times

The concept of node release time is relevant only for A-on-A representations of ANs. The

node release time of a given node j is the earliest time that arcs (activities) whose tail node is j
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can start [2]. Since node j may have multiple incoming arcs, it cannot start until all its incoming

arcs are completed. The node release time of a given node j, denoted by Tj , is the length of the

longest path that starts from the source node and ends at node j. Using the above definition, the

node release time of the sink node is the longest path length in the activity network.

A recursive way for calculating the node release time uses the relationship that the node

release time of node j equals the maximum of the Tis that are tail node of node j’s incoming arcs

plus the length of the corresponding incoming arcs.

1.2.3 Project Completion Time

The Project Completion Time (PCT) or makespan [4] is the length of the critical path.

There are two approaches to calculate the PCT for activity networks: (1) Calculate the path

lengths for all paths and find the longest path length; (2) Use forward dynamic programming to

calculate the node release time starting from the source node; the sink node’s node release time

is the project completion time.

1.2.4 Slack Values

The slack value of an activity i is defined to be the largest amount of time that activity i

can be delayed without delaying the project completion time. Activities on the critical path have

zero slack values.
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1.2.5 Example

We illustrate the two approaches for calculating the PCT using the previous AN example of

Figure 1.1. There are three paths in this AN: {{1, 3, 5}, {2, 5}, {1, 4}} with their corresponding

path lengths {d1 + d3 + d5, d2 + d5, d1 + d4} = {12, 11, 8}. Path {1, 3, 5} is the critical path

and the PCT is 12. The node release time of nodes are given by: T1 = 0, T2 = d1 = 5,

T3 = max{d2, T2 + d3} = 11, T4 = max{T2 + d4, T3 + d5} = 12. Since node 4 is the sink node,

its node release time equals the PCT. For large-scale activity networks, the second approach is

more efficient, because identifying all paths for large-scale networks and locating the maximum

value of a long list becomes computationally impractical.

In Figure 1.2, the same project with the A-on-N representation, there are three paths in

the AN: {{0, 2, 5}, {0, 1, 3, 5, 6}, {0, 1, 4, 6}} with their corresponding path lengths {d0 + d2 +

d5, d0 + d1 + d3 + d5 + d6, d0 + d1 + d4 + d6} = {11, 12, 8}. Of course, in both representations,

the number of paths and their corresponding path lengths are the same.

1.2.6 Matrix Representation of Activity Networks

An activity network is represented as a directed acyclic graph G = (N ,A), where N =

{1, ..., n} is the set of nodes and A ⊂ {(i, j) : i, j = 1, 2, ..., n} is the set of arcs. An arc

(i, j) ∈ A means there is a directed arc starting from arc i and ending at arc j. For each node

k ∈ N , its predecessor nodes Pred(k) and successor nodes Succ(k) are defined as [4]:

Pred(k) = {i ∈ N : (i, k) ∈ A}, Succ(k) = {j ∈ N : (k, j) ∈ A}.
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To form a matrix representation of the activity networks, nodes of an AN with n nodes are indexed

in a way that Succ(k) ∈ {k + 1, ..., n}, and the activity network is represented as a n× n upper

triangular square matrix G such that:

gi,j =


1, if (i, j) ∈ A,

0, otherwise

where gi,j is the entry of the ith row and jth column of matrix G. For the A-on-A representation

network example in Figure 1.1, its structure matrix G and arc length matrix M are represented

below, where M[i,j] is the arc length of arc (i, j).

G =


0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

, M =


0 5 10 0
0 0 6 3
0 0 0 1
0 0 0 0

.

For the A-on-A representation of AN in Figure 1.2, its structure matrix G and arc lengths

vector v are represented as:

G =



0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


, M =



0
5
10
6
3
1
0


.

Notice that the structure matrix for two AN representation modes are different. For A-on-

A mode, an activity is indexed by a tuple (i, j). For A-on-N mode, an activity is indexed by an

integer i. Although in Section 1.1.1, it is mentioned that activities (arcs) in A-on-A mode are

indexed by integers, for convenience of problem formulation and programming implementation,
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in this thesis, all activities in A-on-A mode representation are indexed by tuples (i, j), where i is

the index of the tail node of the arc (activity) and j is that of the head node.

1.3 Stochastic Activity Network

Thus far, we have only discussed deterministic activity networks. In a Stochastic Activity

Network (SAN), some or all of activities durations (arc lengths) are random variables. We

assume these random variables are independently distributed with known continuous distribution

functions Fi(x). Then the project completion time becomes a random variable Y . In SANs,

whether a path is critical and whether an arc is on the critical path is not certain. Therefore, we

have two new concepts for a SAN: the criticality index of path j, denoted by Cp(j), the probability

that path j is a critical path; the criticality index of arc i, denoted by Ca(i), the probability that

arc i is on the critical path. For SANs, we are interested in estimating:

• The expectation of project completion time: E(Y )

• The distribution function of project completion time: FY (y)

• Criticality index of arcs: Ca(i)

Criticality of arcs is of interest to project managers, since decreasing the completion time of arcs

with high criticality index can decrease the PCT with high probability. In Chapter 4, criticality

index of arcs plays an important role for optimization problems in SANs.
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1.4 Generating Random SANs

To test various algorithms on a wide variety of problem settings, numerical experiments

are performed on stochastic networks with different sizes and structures. To generate stochastic

networks with different sizes and structures, we consider two random activity network generator

algorithms proposed in [5], the deletion method (DM) and the addition method (AM), both of

which are used for generating A-on-A mode ANs. The AM algorithm takes input n as the

number of nodes and m as the number of arcs, and outputs a matrix representation of a randomly

generated network with n nodes and m arcs. For example, with input n = 5, m = 8, the AM

algorithm outputs an upper triangular matrix and activity network structure, as shown in Figure

1.3.

G =


0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0



Figure 1.3: Randomly Generated AN

For a randomly generated SAN, not only is the structure of the network randomly generated;

parameters of the distributions of the arc lengths are also randomly generated. The details
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about how distribution parameters are randomly generated will be introduced in the numerical

experiments section.

1.5 Applications of SANs

Project Management. SAN was first applied to project management [3]. The mostly

commonly used project schedule techniques are project evaluation and review technique (PERT)

and critical path method (CPM) [3]. In [6], PERT was employed to quantitatively design the

emergency disposal operation procedure of deepwater drilling riser fracture failure.

Parallel Computing. SAN can also be applied to parallel computing multiprocessor algorithms

[7]. A given task is be to executed on a system. In order to use parallel computing, the task needs

to be decomposed into a set of subtasks. There are precedence relationships between subtasks.

Therefore, subtasks completion time and their precedence relationships can be represented by

SANs. The parallel computing algorithm uses SANs to determine which subtasks are computed

in parallel.

Digital circuit design. SAN can also be used to model delay in a digital combinational

logic circuit [4]. For a given digital circuit, we associate each gate with a node of an activity

network. The precedence relationship between nodes represents the signal flow graph. The delay

time of a gate represents the time it takes for the signal to get through the gate, and the critical

path length here represents the cycle time of the digital circuit. Techniques of estimating SANs

can be used for digital circuit sizing.
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1.6 Outline of Thesis

In Chap. 2, we introduce estimators for different performance measures in SANs, including

criticality index of arcs, criticality index of paths, and expected project completion times. We

propose a new arc criticality estimator called the threshold arc criticality (TAC) estimator and

compare it with existing estimators. The TAC estimator is shown to have low variance and

low computing time in numerical experiments. Chap. 3 reviews different stochastic derivative

estimation techniques that will be used in Chap. 4, including measure-based methods and sample-

based methods. Chap. 4 derives the stochastic gradient estimators for the performance measures

in Chap. 2 and also the stochastic gradient estimators of first and second moment of PCT.

Existing gradient estimators for moments of PCT cannot be extended to higher-order derivatives.

Using a technique similar to that used in deriving the TAC estimator, we propose new higher-

order stochastic gradient estimators for the first and second moments of PCT. Combining the

higher-order stochastic gradient estimators for the first and second moments of PCT, we derive

formulas that can estimate higher-order gradients for the variance of PCT. In Chap. 5, gradient-

based algorithms for solving time-cost tradeoff optimization problems in SANs are presented.

Using the higher-order gradient estimators in Chap. 4 in a Taylor series approximation, we

propose a new functional estimation of the arc criticality and gradient of expected PCT. We

also propose a new algorithm called Knapsack Ratio (KR) algorithm for solving the time-cost

tradeoff optimization problems. The KR algorithm is shown to require less computing time than

existing algorithms. In Chap. 6, optimal crashing of AN with disruptions is introduced and

solved with a new gradient-based simulation optimization algorithm. We introduce a new two-

stage stochastic programming with indicator functions formulation for crashing of AN with a

11



single disruption. Our formulation improves upon an existing two-stage mixed integer stochastic

programming formulation in two ways: (1) it can handle a more general class of disruption

problems; (2) it reduces the computational time significantly. Under our formulation, a new

stochastic gradient estimator is derived and proved to be unbiased. Using the new gradient

estimator, a heuristic gradient-based simulation optimization algorithm is proposed and shown

in numerical experiments to have significantly lower computational cost for the same statistical

performance compared to existing algorithms.

1.7 Research Contributions

We view our main research contributions as the following:

• Developed a new arc criticality estimator called threshold arc criticality (TAC) estimator

that is computationally efficient when the number of paths in the network is not too large.

• Derived higher-order stochastic gradient estimators for first and second moments of PCT in

SANs, applied to estimate changes in PCT caused by large perturbations of distributional

parameters.

• Developed a new algorithm called knapsack ratio (KR) algorithm for time-cost tradeoffs

optimization problems, which when tested on large networks takes less computation time

to find the optimal solution compared with existing algorithms.

• Proposed a new formulation for optimal crashing AN with disruptions, which can handle

more general cases compared to an existing formulation.

• Derived new unbiased stochastic gradient estimators for a two-stage stochastic programming
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problem with indicator functions.

• Developed a gradient-based optimization algorithm for optimal crashing AN with a single

disruption, which compared with existing SAA-based algorithms, has significantly lower

computational cost for comparable solutions.
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Chapter 2: SAN Performance Estimators

As mentioned in Section 1.4, the following output performance metrics are of interest to

project managers: criticality index of arcs (activities), criticality index of paths, and distribution

function of the PCT, all of which are in the form of an expectation. Therefore, Monte Carlo

simulation techniques are one approach for estimating the above. When estimating the criticality

indexes and distribution function using Monte Carlo simulations, the original estimators all

involve indicator functions, which present challenges when estimating the gradient in later chapters.

Therefore, smoothed perturbation analysis (SPA) estimators [8] are used here by conditioning on

a subset of activities’ durations.

The SPA estimators have two advantages: (1) conditioning and unconditioning can reduce

the variance of the estimator according to the law of total variance; (2) the estimator can be

smoothed (higher-order continuously differentiable) by conditioning. For the SPA estimators in

SANs, the choice of the set of activities’ durations (arcs’ lengths) to be conditioned on is key. A

good choice of the set of arcs to be conditioned on can: (1) reduce the dimension of integration;

(2) make the conditioned estimator smoother.

Sigal et al. [9] proposed a class of sets called Uniformly Directed Cutsets (UDC) whose

complement can form a best set of arcs to be conditioned on. Using UDC [1], the dimension of

the exprected value integral is reduced as much as possible and the indicator estimator becomes
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a product of known distribution functions by conditioning. The definition and a method to find a

UDC is introduced in Section 2.1.2. Then an example on how to find and use UDC is presented

in Section 2.1.3. UDC is powerful for estimating criticality of arcs and paths, and also the

distribution function of PCT in small ANs [1].

Although UDC works well for small networks, it does not work well for large and complex

ANs. Thus, Bowman [2] proposed that instead of conditioning on a subset of arc lengths, it

is better to condition on node release times. Hence, a new criticality index of arcs estimator

conditioned on node release times is proposed in [2], named conditional arc criticality (CAC)

estimator. We propose yet another set to be conditioned on: all arc lengths except for the length

of one target arc, and proposed a new arc criticality estimator conditioned on the proposed set

of arcs, named threshold arc criticality (TAC) estimator [10]. The performance of the TAC and

CAC estimators are compared in numerical experiments on randomly generated ANs of different

sizes and arc length distributions.

UDC and TAC can also be applied to estimate the distribution function of PCT.

2.1 Criticality Index of Paths

2.1.1 Criticality Index of Paths

Suppose there are np paths in the SAN and all paths are indexed by integers. The criticality

index of path i is defined to be the probability that path i is the critical path, i.e. Cp(i) = Pr(Yi ≥

Yj; 1 ≤ j ≤ np, j ̸= i), where Cp(i) denotes the criticality index of path i, Yj denotes the length

of path j. Without loss of generality, assume 1 < i < np, then Cp(i) can be calculated from the
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integral:

Cp(i) =

∫
· · ·

∫
Rm

Pr(Yi ≥ Y1, ..., Yi ≥ Yi−1, Yi ≥ Yi+1, ..., Yi ≥ Ynp

∣∣∣Xi, 1 ≤ i ≤ m)×
m∏
i=1

fi(xi) dxi,

where Xi is the arc length (activity duration) of activity i, and the Monte Carlo estimator is given

by the average over all simulated data-tuples X of:

I{Yi ≥ Y1, ..., Yi ≥ Yi−1, Yi ≥ Yi+1, ..., Yi ≥ Ynp}, (2.1)

where (2.1) is an indicator function taking value 1 if path i is a critical path and 0 otherwise.

Notice that the path length Yj is the sum of the lengths of the arcs (durations of activities)

that are on path j, i.e., Yj =
∑

i∈Pj
Xi. The event inside (2.1) contains np events, {Yi ≥ Yj}, j =

1, 2, ..., np, that are not independent since an arc (activity) can be on more than one path. Our

goal is to choose a set of arcs whose length is to be conditioned on, so that the expectation of (2.1)

reduces to a probability of independent events. To find such a set, we will present the definition

of Uniformly Directed Cutset (UDC) [1] and show that by conditioning on a subset of activities’

durations that relates to UDC, (2.1) can be expressed as a product of known distribution functions.

Also, using UDC, the integral dimension of (2.1) can be reduced.

2.1.2 Uniformly Directed Cutset

Sigal et al. [9] defines a set of arcs called a Uniformly Directed Cutset (UDC), whose

complement together with an arc in UCD forms the best subset of arcs to be conditioned on, so

that the corresponding SPA estimator has lower variance and is smoother as a function of sample
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inputs {Xi}. This section introduces the definition of UDC and how to find UDC in an AN.

The challenge in expressing (2.1) as a product of known distribution functions is that an

arc can be on more than one path in the network, which means the events inside the probability in

(2.1) may be dependent. Thus, one necessary condition of a target subset of arcs in the network

to be conditioned on is that in its complement no two arcs are on the same path. A set of arcs is

called path independent if no two arcs in the set belongs to the same path. Suppose Ψ is a set of

path-independent arcs and Ψc is its corresponding complement set. Then we have

Pr(Yi ≥ Y1, ..., Yi ≥ Yi−1, Yi ≥ Yi+1, ..., Yi ≥ Ynp

∣∣∣Ψc) =
∏
j ̸=i

Pr(Yj ≤ Yi|Ψc)

and the criticality index of path is calculated by unconditioning:

Cp(i) =

∫
· · ·

∫
Pr(Yi ≥ Y1, ..., Yi ≥ Yi−1, Yi ≥ Yi+1, ..., Yi ≥ Ynp

∣∣∣Ψc)dFΨc (2.2)

where FΨc is the joint distribution function of arcs in the set Ψc. We want the cardinality of the

path-independent set |Ψ| to be as large as possible, so that |Ψc| is as small as possible and as a

result the integration dimension of Equation (2.2) is minimized.

In [1], the path-independent set with the largest cardinality is denoted χ∗, and it was proved

that χ∗ is indeed a cutset. A cutset C of an activity network is a set of arcs that ’cut’ the set of

nodes into two sets: W containing the source node and its complement W̄ containing the sink

node, such that all paths in the network have at least one arc in C. Furthermore, Sigal et al. [1]

proved that χ∗ is also a uniform directed cutset (UDC) [1]. The definition of UDC is a cutset such

that all arcs in the cutset are oriented from W to W̄ , and such that each network path has exactly
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one arc in the cutset. Therefore, χ∗ has two important properties: (1) no two arcs in χ∗ belong

to the same path; (2) each network path has exactly one arc in χ∗. Therefore, to find the UDC

set, we only need to find the path-independent set with largest cardinalitywhich is not necessarily

unique.

Suppose we are interested in estimating the criticality index of path i. We estimate the

probability that path i is the critical path by conditioning on the complement of the UDC set in

the network χ̄∗ together with an arc in UCD that is on path i, xj . Then the conditional criticality

index of path l is denoted by Ki:

Ki = Pr(Y1 ≤ Yi, ..., Ynp ≤ Yi|χ̄∗, Xj)

And the formulation for Ki is presented in [1] as follows:

Ki =
∏

j∈χ∗,j /∈Pi

bijFj(aj)

where,

aj = min
P∈Pj

{
Yi −

∑
k∈P,k ̸=j

Xk

}
and

bij =


0,

if the UDC arc j which is on path i is

on more than one path and yi is less

than all paths containing arc j,

1, otherwise

To calculate aj , first identify the set of paths in the network that contains arc j, Pj . Then, for each
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path P in Pj , calculate the different between the length of path i and the length of P with arc j’s

length excluded, where aj is the minimum among the set of difference and b is either 0 or 1, since

by conditioning, for one of the events {Yj ≤ Yi}, all arcs in this event are being conditioned on

so that the event is not random but deterministic. Next we will present an example on how to use

UDC to calculate criticality of paths in an AN.

2.1.3 Path Criticality Example

The following is an example from [1] indicating the use of UDC in estimating the criticality

index of path. Figure 2.1 is a small network with 5 nodes and 8 arcs. Our goal is to estimate the

probability that path {2, 6, 8} is the critical path. In this example, we have the UDC set given by

χ∗ = {X2, X3, X4, X7}, and its complement χ̄∗ = {X1, X5, X6, X8}. The UDC arc that is on

path {2 − 6 − 8} is X2. There are 6 paths in the network and we name path {2, 6, 8} number 5.

The conditional path criticality of path 5, K5 is given by:

K5 = P(Y1 ≤ Y5, ..., Y6 ≤ Y5|χ̄∗, X2)

= P(Y1 ≤ Y5, ..., Y6 ≤ Y5|X1 = x1, X5 = x5, X6 = x6, X8 = x8, X2 = x2)

= P(X7 ≤ y5 − x1, X4 ≤ y5 − x1 − x5, X4 ≤ y5 − x1 − x6 − x8, x2 + x5 ≤ y5, X3 ≤ y5 − x8)

= P(x2 + x5 ≤ y5)P(X7 ≤ y5 − x1)P(X4 ≤ min{y5 − x1 − x5, y5 − x1 − x6 − x8})P(X3 ≤ y5 − x8)

= bP(X7 ≤ y5 − x1)P(X4 ≤ min{y5 − x1 − x5, y5 − x1 − x6 − x8})P(X3 ≤ y5 − x8)

where y5 = x2 + x6 + x8 and b = Pr(x2 + x5 ≤ y5). The value of b is either 0 or 1 for the reason

that both x2, x5 and y5 are fixed numbers.
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Figure 2.1: UDC Example in [1]

2.2 Criticality Index of Arcs

Criticality index of arc i is defined to be the probability that arc i is on the critical path and

denoted by Ca(i). The relationship between criticality index of arcs and paths in an AN is given

by [11]:

Ca(i) =

np∑
j=1

Cp(j)I{i ∈ Pj} (2.3)

that is, the criticality index of arc i equals to the summation of criticality indexes of all paths that

contains arc i for the reason that different paths is critical are exclusive events and arc i is on the

critical path if and only if one of the paths containing i is the critical path.

2.2.1 Indicator Arc Criticality

The criticality index of an arc is defined to be the probability that the arc is on the critical

path. Using Monte Carlo simulation to estimate the criticality of arc i, we simulate all arc length

and check whether arc i is on the critical path. And we assign 1 to output if arc i is on the critical

path and 0 otherwise. Therefore the first arc criticality estimator is called Indicator Arc Criticality
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(IAC) and is derived from the following:

Ca(i) =

∫
· · ·

∫
Rm

I{∥Pi∥ = ∥P∥} ×
m∏
i=1

fi(xi) dx1 . . . dxm (2.4)

and the IAC estimator is given by: I{∥Pi∥ = ∥P∥}. In Equation (2.4), Pi is the set of path that

contains activity i and P is the set of all paths in the AN. ∥ · ∥ here is an operator that calculates

the length of the longest path in the given set.

2.2.2 Conditional Arc Criticality

Bowman [11] states that the criticality index of arcs can be calculated using Equation (2.3).

Together with the UDC conditioning applied, the variance of the smoothed perturbation Monte

Carlo estimator can be further reduced. And Bowman [11] also states the drawbacks of UDC set

and Equation (2.3) in calculating the criticality index of arcs:

Bowman proposed a new criticality index estimator called Conditional Arc Criticality

(CAC) estimator conditioned on node release times in [11]. The node release time of node i

is defined to be the earliest starting time of activities with node i as its head node. The CAC

estimator is based on a fact that arc i is on the critical path if and only if two conditions are

satisfied: (1) arc i is on the longest path that start from the source node and end at the head node

of arc i; (2) head node of arc i itself is on the critical path. Figure 2.2 explains the formulation of

the CAC estimator. The CAC estimator is derived from the following:

Ca(i) =

∫
· · ·

∫
Rn

Ca(i|T1 = t1, ..., Tn = tn)× fT1,...,Tn(t1, ..., tn) dt1 . . . dtn, (2.5)
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and the CAC estimator is given by:

Ca(i|T1 = t1, ..., Tn = tn) =
fi(t∗ − ti)

∏q
j=1,j ̸=i Fj(t∗ − tj)∑q

k=1 fk(t∗ − tk)
∏q

j=1,j ̸=k Fj(t∗ − tj)
×Cn(∗|T1 = t1, ..., Tn = tn)

(2.6)

and

Cn(∗|T1 = t1, ..., Tn = tn) =

q+s∑
j=q+1

Ca(j|T1 = t1, ..., Tn = tn). (2.7)

The CAC estimator in Equation (2.6) consists of two parts, the left part as a likelihood ratio and

the right part as a summation. The left part calculates the likelihood that arc i is on the longest

path that starts from the source node and ends at the ∗ node. Arc i is on the longest path that

ends at node ∗ if and only if Xj = T∗ − Tj , when j = i and Xj < T∗ − Tj , when j ̸= i. The

right part calculates the probability that one of the arcs ejecting from the ∗ node is on the critical

path. Thus, Equation (2.6) utilizes the two sufficient and necessary conditions mentioned before

to calculate the probability that an arc is on the critical path. Equation (2.7) makes the calculation

of the CAC estimator a recursive process. And in Equation (2.6), Cn(∗) stands for the criticality

index of node, which is the probability that node ∗ is on the critical path.

One thing to notice here is that the joint density function of node release times fT1,...,Tn(t1, ..., tn)

is not known in Equation (2.5). Since we are using Monte Carlo simulation to estimate Equation

(2.5), the joint density function is not necessarily to be known in order to estimate Ca(i). At each

simulation replication, only the arc lengths of all arcs are simulated and the node release times

are then calculated based on the simulated arc lengths. The calculated node release times are

jointly distributed with density function fT1,...,Tn(t1, ..., tn).

In [2], Bowman states that one option to estimate the criticality index of arc i is to firstly
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estimating the criticality index of all paths that include arc i and then applying the formula

Ca(i) =
∑n

j=1 Cp(j)I{arc i is on path j}. When estimating Cp(j), the UDC technique is used.

And Bowman states three drawbacks of the above approach: (1) the cardinal number of a UDC set

for a large scale activity network is relatively small compared to the network size; (2) Identifying

the UDC set is computationally intensive for large scale activity networks; (3) Translation from

path criticality to arc criticality takes more time [2].

Figure 2.2: Focused Network View in [2]

2.2.3 Threshold Arc Criticality

We proposed a new arc criticality estimator called the Threshold Arc Criticality (TAC) in

[10]. The TAC estimator of arc i is conditioned on all arc lengths except for the length of arc i. It

is derived from the fact that given all the arc lengths except for arc i, arc i is on the critical path

if and only if its own length is large enough, in other words, its own arc length is greater or equal

to a threshold. The TAC is based on the following lemma from [10]:

Lemma 1. Ca(i|Xj = xj, 1 ≤ j ≤ m, j ̸= i) = Pr(Xi ≥ mi), where mi = max(∥Pi−∥ −

∥Pi∥i, 0)
∣∣∣
Xj=xj ,1≤j≤m,j ̸=i

and it is a continuous function of {xj}1≤j≤m,j ̸=i.
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Proof.

Ca(i|Xj = xj, 1 ≤ j ≤ m, j ̸= i) = P(arc i is on the critical path | Xj = xj, 1 ≤ j ≤ m, j ̸= i)

= P(∥Pi∥ = ∥P∥
∣∣∣Xj = xj, 1 ≤ j ≤ m, j ̸= i)

= P(∥Pi∥ = max(∥Pi∥, ∥Pi−∥)
∣∣∣Xj = xj, 1 ≤ j ≤ m, j ̸= i)

= P(∥Pi∥ ≥ ∥Pi−∥
∣∣∣Xj = xj, 1 ≤ j ≤ m, j ̸= i)

= P(Xi ≥ max(∥Pi−∥ − ∥Pi∥i, 0)
∣∣∣Xj = xj, 1 ≤ j ≤ m, j ̸= i)

= P(Xi ≥ mi).

Lemma 3 is based on the fact that for a realization of all Xis, if the longest path length of

all paths that do not include arc i is greater than the longest path length of all paths that include

arc i, then arc i is not on the critical path, and arc i is on the critical path otherwise. When arc i’s

length is 0 and arc i is not on the critical path, the difference of the two longest path lengths (with

arc i included and without) is the threshold such that when the length of arc i is greater than the

threshold then it is on the critical path.

The TAC estimator is given by:

F̄i(Mi) = 1− Fi(Mi)

where

Mi = max(∥Pi−∥ − ∥Pi∥i, 0). (2.8)
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In Equation (2.8), the operator ∥ · ∥i calculates the length of the longest path in a set given

that the duration of activity i is 0. Applying the TAC estimator, the criticality index of arc i is

calculated by integration:

Ca(i) =

∫
· · ·

∫
Rm−1

Ca(i|Xj = xj, 1 ≤ j ≤ m, j ̸= i)×
m∏
j=1
j ̸=i

fj(xj) dxj

=

∫
· · ·

∫
Rm−1

F̄i(Mi)×
m∏
j=1
j ̸=i

fj(xj) dxj. (2.9)

2.2.4 Algorithms for Calculating the Threshold

For large scale SANs, calculating the threshold Mi in Equation (2.8) for each simulation

replications is critical for using TAC here and the rest of chapters in this thesis. Two situations

are discussed here for calculating the threshold Mi: (1) calculate the threshold for one fixed arc;

(2) calculate the threshold for all arcs.

For situation one, algorithm 1 is used. Algorithm 1 firstly calculate the length of the longest

path that does not include arc i by assigning a very small negative number−L to the length of arc

i. Then algorithm 1 secondly calculated the length of the longest path that includes arc i using

the similar approach. Such algorithm has appeared in [12].

Algorithm 1: Calculate the Threshold for TAC
Input : Arc Length Matrix Xn×n and (i∗, j∗) the target arc coordinate.
Output: Threshold value mi∗,j∗

1 L←
∑

i,j |Xi,j|.
2 Xi∗,j∗ ← −L.
3 v0 ← Ts(Xn×n), where Ts is the node release time of the sink node.
4 Xi∗,j∗ ← L.
5 v1 ← Ts(Xn×n).
6 return max{v0 − (v1 − L), 0}.
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Algorithm 2: Calculate the Threshold for all arcs
Input : Arc Length Matrix Xn×n

Output: Threshold value matrix M
1 calculate the length of all paths in the network
2 sort all paths lengths with descending order
3 for (i, j) ∈ A do
4 for all paths including arc (i, j), find their maximum length v1
5 for all paths excluding arc (i, j), find their maximum length v0
6 M[i, j]← max{v0 − v1, 0}
7 end

As for situation 2 when calculating the threshold for all arcs in the network, algorithm 2

is applied. In algorithm 2, it firstly calculate all path lengths and sorted them with a descending

order. Then the threshold for each arcs are calculated as the difference between longest path

length including the excluding the given arc.

2.2.5 Arc Criticality Example

The example used here is the AN presented in Figure 1.1. And the realization of the random

duration of all arcs is given by: X1 = d1 = 5, X2 = d2 = 10, X3 = d3 = 6, X4 = d4 = 3, X5 =

d5 = 1. Under such realizations, the TAC estimator and the CAC estimator for arc 2 are calculated

below:

For the TAC estimator, we have P2− = {{1, 3, 5}, {1, 4}}, P2 = {{2, 5}}, so that ∥P2−∥ =

max{X1 + X3 + X5, X1 + X4} = max{5 + 6 + 1, 5 + 3} = 12, and ∥P2∥2 = 0 + X5 = 1.

Therefore, we have M2 = max(∥P2−∥ − ∥P2∥2, 0) = 11, and the TAC estimator is given by

Pr(X2 ≥ 11) = 1− F2(11).

For the CAC estimator, we have Cn(4) = 1, because the sink node is on every paths. And

we have calculated the node release times in Section 1.2.5, T1 = 0, T2 = 5, T3 = 11, T4 = 12.
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Then we have the CAC estimator given by:

Ca(5) =
f5(T4 − T3)F4(T4 − T2)

f5(T4 − T3)F4(T4 − T2) + f4(T4 − T2)F5(T4 − T3)
Cn(5)

=
f5(1)F4(7)

f5(1)F4(7) + f4(7)F5(1)

Ca(2) =
f2(T3 − T1)F3(T3 − T2)

f2(T3 − T1)F3(T3 − T2) + f3(T3 − T2)F2(T3 − T1)
Ca(5)

=
f2(11)F3(6)

f2(11)F3(6) + f3(6)F2(11)
Ca(5)

2.2.6 Numerical Result of Arc Criticality

Let C ′
a(i) denote the estimation for Ca(i) obtained from the IAC estimator, C ′′

a (i) denotes

the estimation for Ca(i) obtained from the TAC estimator, and C ′′′
a (i) denotes the estimation for

Ca(i) obtained from the CAC estimator, then for N simulation replications:

C ′
a(i) =

∑N
k=1 I

(k)
i

N
.

C ′′
a (i) =

∑N
k=1 F̄

(k)
i

N
.

C ′′′
a (i) =

∑N
k=1C

(k)
a (i|T1, ..., Tn)

N

where I
(k)
i is the IAC estimator of activity i obtained from the kth simulation replication result;

F
(k)
i is the TAC estimator of activity i obtained from the kth simulation replication result; and

C
(k)
a (i|T1, ..., Tn) is the CAC estimator of activity i obtained from the kth simulation replication

result.

The following lemma from [10] compares the variance performance of the TAC estimator

and the IAC estimator:
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Lemma 2. VAR(C ′′
a (i)) ≤ VAR(C ′

a(i)), ∀i, ∀N .

Proof. From the law of total variance, we have that

V ar(I
(k)
i ) = E[V ar(I

(k)
i |Xj, 1 ≤ j ≤ m, j ̸= i)] + V ar(E[I(k)i |Xj, 1 ≤ j ≤ m, j ̸= i])

= E[V ar(I
(k)
i |Xj, 1 ≤ j ≤ m, j ̸= i)] + V ar(F

(k)
i )

since we have that E[V ar(I
(k)
i |Xj, 1 ≤ j ≤ m, j ̸= i)] ≥ 0, we have V ar(F

(k)
i ) ≤ V ar(I

(k)
i ).

Since all simulation replications are independent, we have that

V ar(C ′′
a (i)) = V ar(

∑N
k=1 F̄

(k)
i

N
) =

V ar(F
(k)
i )

N
≤ V ar(I

(k)
i )

N
= V ar(

∑N
k=1 Ī

(k)
i

N
) = V ar(C ′

a(i))

Also, we have that VAR(C ′′′
a (i)) ≤ VAR(C ′

a(i)), ∀i, ∀N from [2]. As for the comparison

between VAR(C ′′
a (i)) and VAR(C ′′′

a (i)), no theoretical proof can be shown. Hence, numerical

experiments are used for comparing the variance performance between the CAC and TAC estimators.

The CAC and TAC estimators are tested on randomly generated activity networks of different

sizes. A network with n nodes and m arcs is firstly randomly generated using the AM algorithm

mentioned in Section 1.4. Then the distributional parameters for each arcs in the network are

randomly generated. For exponentially and normally distributed arc lengths, their mean µ are

uniformly sampled from [0.5, 15]. For a normally distributed arc length, its standard deviation

σ is generated as σ = 0.25µ. For a gamma distribution, its shape parameter k is uniformly

sampled from [0.5, 9] and scale parameter θ is uniformly sampled from [0.5, 2.5]. For a uniform

distribution, its lower bound is uniformly sampled from [0.5, 5.5] and its interval length is uniformly
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sampled from [2, 10]. For a triangle distribution with parameters a ≤ c ≤ b and a < b, a is

uniformly sampled from [1, 5], b− a is uniformly sampled from [3, 8] and c is uniformly sampled

from [a, b].

Tables 2.1 - 2.5 provide 95% confidence intervals (C.I.) for a representative randomly

selected activity, which indicates that the TAC and CAC estimators have similar accuracy.

Table 2.1: 95% C.I. of Normally Distributed Arc Criticalities (based on 200 Independent
Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.30 ± 0.04 0.80 ± 0.05 0.59 ± 0.06 0.65 ± 0.06 0.68 ± 0.05 0.80 ± 0.05
CAC 0.30 ± 0.03 0.80 ± 0.05 0.58 ± 0.05 0.65 ± 0.06 0.69 ± 0.05 0.80 ± 0.05

Table 2.2: 95% C.I. of Exponentially Distributed Arc Criticalities (based on 200 Independent
Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.42 ± 0.05 0.46 ± 0.06 0.43 ± 0.05 0.45 ± 0.06 0.78 ± 0.05 0.39 ± 0.06
CAC 0.44 ± 0.04 0.47 ± 0.06 0.43 ± 0.05 0.45 ± 0.06 0.78 ± 0.04 0.38 ± 0.06

Table 2.3: 95% C.I. of Gamma Distributed Arc Criticalities (based on 200 Independent
Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.18 ± 0.05 0.89 ± 0.03 0.24 ± 0.05 0.62 ± 0.05 0.36 ± 0.06 0.83 ± 0.05
CAC 0.18 ± 0.05 0.89 ± 0.02 0.24 ± 0.05 0.60 ± 0.06 0.34 ± 0.06 0.86 ± 0.04
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Table 2.4: 95% C.I. of Uniformly Distributed Arc Criticalities (based on 200 Independent
Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.68 ± 0.06 0.80 ± 0.03 0.74 ± 0.04 0.89 ± 0.03 0.90 ± 0.03 0.84 ± 0.05
CAC 0.67 ± 0.05 0.79 ± 0.03 0.72 ± 0.03 0.87 ± 0.03 0.89 ± 0.03 0.83 ± 0.04

Table 2.5: 95% C.I. of Triangularly Distributed Arc Criticalities (based on 200 Independent
Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.76 ± 0.04 0.55 ± 0.06 0.21 ± 0.04 0.56 ± 0.05 0.27 ± 0.05 0.34 ± 0.05
CAC 0.76 ± 0.05 0.56 ± 0.05 0.21 ± 0.04 0.54 ± 0.05 0.27 ± 0.04 0.34 ± 0.05

Table 2.6 is an aggregated version of Tables 2.1 - 2.5. For each of network size settings

in Table 2.6, three independent networks are generated. And for each networks, arc criticalities

of all arcs are estimated by the CAC and the TAC estimators for 200 simulation replications

with common seeds. The sample standard deviation of criticality estimator for each activities is

calculated. Then the averaged sample standard deviation (STD) over all activities in the AN is

calculated and used as a measure of the estimator’s variance performance for all activities in an

AN. For each randomly generated networks, the ratio of averaged STD of TAC estimator over

CAC estimator is calculated. And for each network size settings in Table 2.6, each element in the

table is the averaged ratio value of three independent networks. Table 2.6 shows that for different

AN sizes and different arc distributions, the variance performance of the TAC estimator and the

CAC estimator are very close.

Notice that by conditioning on node release times, the dimension of integration in Equation
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(2.5) is reduced significantly from Equation (2.9) for ANs with more arcs than nodes. However,

in Table 2.6, for ANs with 100 nodes and 300 arcs, the sample variance performance for the

TAC estimator and CAC estimator is very close to each other, in which case the dimension of

integration for the CAC estimator is 100 and that for the TAC estimator is 299, nearly three

times as that of the CAC estimator. The reason is that the node release times in an AN are

not independent (they are positively correlated), while the activity durations are all independent.

Therefore, although the CAC estimator reduces the dimension of integration significantly, the

sample variance of the estimator is not reduced significantly compared to that of the TAC estimator.

Table 2.6: Averaged Sample Standard Error of TAC/CAC (based on 200 Independent
Replications, elements unit 10−4)

Network Size

30 Nodes 50 Nodes 100 Nodes

Arc Distributions 60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

Exponential 120/113 83/72 93/84 70/60 71/66 52/46
Normal 60/65 52/51 46/45 26/25 49/45 29/27
Gamma 42/38 70/64 74/72 49/47 50/49 43/42
Uniform 77/74 44/40 85/86 55/52 46/44 15/13
Triangular 71/57 75/75 49/49 33/30 36/35 13/14

Table 2.7: Time Ratio of TAC/CAC (based on 200 Independent Replications, number of paths
in parentheses)

Network Size

30 Nodes 50 Nodes 100 Nodes

Arc Distributions 60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

Exponential 0.29 (42) 1.65 (391) 0.28 (64) 0.94 (247) 0.66 (245) 2.32 (956)
Normal 0.51 (50) 0.99 (162) 0.62 (73) 1.45 (561) 0.58 (123) 1.56 (832)
Gamma 0.44 (40) 0.55 (155) 0.43 (77) 0.71 (436) 0.42 (125) 1.15 (995)
Uniform 0.30 (43) 1.63 (337) 0.28 (65) 2.35 (660) 0.29 (112) 2.44 (983)
Triangular 0.45 (88) 1.04 (220) 0.29 (74) 1.12 (333) 0.38 (144) 2.58 (975)

Since activity networks are randomly generated, the number of paths of the randomly
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generated ANs cannot be easily controlled by the AM algorithm. Since we need to estimate

the criticality indexes for all activities in an AN, algorithm 2 is used for calculating the TAC

estimators. The values in Table 2.7 are the ratio of the computation time of the TAC estimator over

that of the CAC estimator. From Table 2.7, it can be concluded that for ANs with number of paths

less than 200, the TAC estimator computes faster than the CAC estimator. For networks with

number of paths greater than 200, the CAC estimator computes faster than the TAC estimator.

Algorithm 2’s time complexity is O(nplog(np)), where np is the number of paths in the AN and

from Equation (2.6), we can see that the time complexity of the CAC estimator for estimating

criticality index of all activities is O(na), where na is the number of arcs (activities) in the AN,

as a result of which, it takes more time to estimate criticality index of all activities using the

TAC estimator than using the CAC estimator when the number of paths is large. Also, since we

need to use the density and distribution function several times for each estimation using Equation

(2.6), the complexity of the density function and distribution function of arc lengths can affect

the computing speed of the CAC estimator. In Table 2.7, the time ratio for gamma distribution of

same network size and similar number of paths is smaller than other distributions.

2.3 Distribution of PCT

For projects with a deadline, the distribution function of PCT is of great interest to project

managers. Suppose the deadline is t. And we are interested in estimating Pr(Y > t). A direct

Monte Carlo estimation of Pr(Y > t) is given by:

Pr(Y > t) =

∫
· · ·

∫
Rm

I{Y > t} ×
m∏
i=1

fi(xi) dxi
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For each simulation replications, all arcs’ lengths are simulated. And the estimator is an indicator

function whose value is 1 if PCT value is greater than t and 0 otherwise. After large enough

number of simulation replications, the mean of the estimator converges to the true distribution

function value almost surely.

2.3.1 Conditional PCT Distribution Estimator

Fu [8] proposed a conditional distribution of the PCT estimator derived from

Pr(Y > t|Xj = xj, 1 ≤ j ≤ m, j ̸= i) =


1, if ∥P∥i > t

Pr(∥Pi∥ > t) otherwise,

where Pr(∥Pi∥ > t) = Pr(Xi + ∥Pi∥i > t) = Pr(Xi > t − ∥Pi∥i) = F̄i(t − ∥Pi∥i), and the

estimator is given by:

F̄i(t− ∥Pi∥i)I(∥P∥i ≤ t) + I(∥P∥i > t).

For each simulation replication, the simulated arc values are {Xj}j ̸=i. Assign 0 value to the

length of arc i, together with the simulated other arcs length, the PCT value can be calculated. If

the PCT value is greater than t, the estimator equals 0; otherwise, calculate the longest length of

all paths that include arc i, ∥Pi∥i, the estimator equals the probability that arc i’s length is greater

than t− ∥Pi∥i.
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2.3.2 UDC PCT Distribution Function Estimator

Sigal [1] and Fu [8] both use UDCs in determining the PCT distributions. Then the

conditional PCT distribution function is denoted by FY (t):

FY (t) = Pr(Y1 ≤ t, ..., Ynp ≤ t|χ̄∗).

And the formulation for F (t) is presented as follows:

FY (t) =
∏
j∈χ∗

Fj(aj)

where, aj = t− ∥Pj∥j .

2.3.3 PCT Distribution Example

Figure 2.1 is used as the example here, and the realization of arc lengths are given by:

X1 = 27, X2 = 6, X3 = 11, X4 = 10, X5 = 12, X6 = 5, X7 = 35, X8 = 9. And suppose we are

interested in estimating the probability that the PCT is greater than 50. Assume the conditioned

arcs are all arcs except for arc 1. The conditional PCT distribution estimator is calculated as:

F̄1(t− ∥P1∥1)I(∥P∥1 ≤ t) + I(∥P∥1 > t)

=F̄1(50− 35)I(35 ≤ 50) + I(35 > 50)

As for the UDC approach, we have the UDC set given by χ∗ = {X2, X3, X4, X7}, and its
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complement χ̄∗ = {X1, X5, X6, X8}. Then the UDC PCT distribution estimator is calculated as:

FY (50) = F2(50− 14)F3(50− 9)F4(50− 41)F7(50− 27)
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Chapter 3: Stochastic Gradient Estimation

The content in this chapter is based on material from [13]. In this chapter, our goal is to

estimate

dJ(θ)

dθ
,

where θ is the parameter of interest and

J(θ) = E[Y (X)] = E[Y (X1, X2, ..., XN)].

{Xi} are input random variables and Y is a measurable output function, Y : Rn → R. We will

focus on the setting where θ is a distributional parameter of the input r.v.s. The various stochastic

gradient estimation techniques are classified into two classes by their treatment of the dependence

on θ: sample path-based methods and measure-based methods. The three most popular stochastic

gradient estimation techniques are infinitesimal perturbation analysis (IPA), the likelihood ratio

(LR) method (also known as the score function method), and the weak derivative (WD) method

[14, 15, 16, 17, 18, 19].
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3.1 Measure-Based Methods

Assume the joint distribution function of X1, X2, ..., XN has a corresponding density function

f(x1, x2, ..., xN). Then express J(θ) as an integration as follows:

J(θ) = E[Y (X)] =

∫
Y (x)dFX(x)

=

∫
· · ·

∫
RN

Y (x1, x2, ..., xN)× f(x1, x2, ..., xN ; θ)
N∏
j=1

dxj.

Further assume the regularity conditions to exchange derivative and integration is satisfied, we

have

dJ(θ)

dθ
=

∫
· · ·

∫
RN

Y (x1, x2, ..., xN)×
∂f(x1, x2, ..., xN ; θ)

∂θ

N∏
j=1

dxj. (3.1)

3.1.1 Likelihood Ratio Method

The likelihood ratio (LR) method is also called the score function (SF) method [20, 21, 22].

Since we are using Monte Carlo simulation to estimate the stochastic gradients, we want to

express Equation (3.1) in the form of an expectation. Thus, a transformation of the derivative

of the density function is applied:

dJ(θ)

dθ
=

∫
· · ·

∫
RN

Y (x1, x2, ..., xN)×
∂f(x1, x2, ..., xN ; θ)

∂θ

N∏
j=1

dxj

=

∫
· · ·

∫
RN

Y (x1, x2, ..., xN)×
∂ ln(f(x1, x2, ..., xN ; θ))

∂θ
f(x1, x2, ..., xN ; θ)

N∏
j=1

dxj

=E
[
Y (X1, X2, ..., XN)×

∂ ln(f(X1, X2, ..., XN ; θ))

∂θ

]
,
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and the LR estimator is given by:

Y (X1, X2, ..., XN)×
∂ ln(f(X1, X2, ..., XN ; θ))

∂θ
.

If {Xi} are independent random variables and θ is a distributional parameter of the density

function f1 of X1 only, then the LR estimator becomes:

Y (X1, X2, ..., XN)×
∂ ln(f1(X1; θ))

∂θ
.

3.1.2 Weak Derivative Method

We assume here that {Xi} are independent random variables and θ is the distribution

parameter of X1. Then we have:

∂f(x1, x2, ..., xN ; θ)

∂θ
=

∂f1(x1; θ)

∂θ

N∏
i=2

fi(xi)

We can decompose the derivative of the density function as a constant times the difference of two

density functions f (+)
1 and f

(−)
1 :

∂f1(x1; θ)

∂θ
= c1(θ)

(
f
(+)
1 (x1; θ)− f

(−)
1 (x1; θ)

)
. (3.2)
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An example for normally distributed X1 with mean µ and variance σ2 is provided here: the

density function of X1 is given by

f1(x1;µ) =
1

σ
√
2π

exp
(
− (x1 − µ)2

2σ2

)

and the derivative of the density function of X1 with respect to µ can be expressed as,

∂f1(x1;µ)

∂µ
=
(x1 − µ)

σ3
√
2π

exp
(
− (x1 − µ)2

2σ2

)
=

1

σ
√
2π

[(x1 − µ)

σ2
exp

(
− (x1 − µ)2

2σ2

)
I(x1 > µ)

− (µ− x1)

σ2
exp

(
− (x1 − µ)2

2σ2

)
I(x1 < µ)

]
. (3.3)

Inside the bracket of Equation (3.3), the first part is of the form µ+Wei(2,
√
2σ) and the second

part is of the form µ−Wei(2,
√
2σ), and the constant term is 1√

2π
. The triple (c1(θ), f

(+)
1 , f

(−)
1 )

constitutes a weak derivative (WD) for f1, which is generally not unique. Using the weak
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derivative of f1, we can express the gradient as:

dJ(θ)

dθ
=

∫
· · ·

∫
RN

Y (x1, x2, ..., xN)×
∂f(x1, x2, ..., xN ; θ)

∂θ

N∏
j=1

dxj

=

∫
· · ·

∫
RN

Y (x1, x2, ..., xN)×
∂f1(x1; θ)

∂θ
dx1

N∏
j=2

fj(xj) dxj

=c1(θ)

∫
· · ·

∫
RN

Y (x1, x2, ..., xN)× (f
(+)
1 (x1; θ)− f

(−)
1 (x1; θ))dx1

N∏
j=2

fj(xj) dxj

=c1(θ)
(∫
· · ·

∫
RN

Y (x1, x2, ..., xN)× f
(+)
1 (x1; θ)

N∏
j=2

fj(xj)
N∏
j=1

dxj

−
∫
· · ·

∫
RN

Y (x1, x2, ..., xN)× f
(−)
1 (x1; θ)

N∏
j=2

fj(xj)
N∏
j=1

dxj

)

=c1(θ)
(
E
[
Y (X

(+)
1 , X2, ..., XN)

]
− E

[
Y (X

(−)
1 , X2, ..., XN)

])
.

Thus the WD estimator is given by

c1(θ)
(
Y (X

(+)
1 , X2, ..., XN)− Y (X

(−)
1 , X2, ..., XN)

)

where X
(+)
1 ∼ f

(+)
1 and X

(−)
1 ∼ f

(−)
1 .

3.2 Sample Path-Based Methods

3.2.1 Derivatives of Random Variables

Because the sample path (PA) estimators require the notion of derivatives of random variables,

the definition of the derivative of a random variable X is introduced here. We first construct a

family of random variables {X(θ)} parameterized by θ on a common probability space. We
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construct X(θ) ∼ F (·; θ) such that X(θ) is differentiable w.r.t θ w.p.1. Then the sample

derivative is defined as:

dX(θ;ω)

dθ
= lim

δ→0

X(θ + δ, ω)−X(θ, ω)

δ
,

where ω is a sample point in the sample space Ω. If the distribution function of X is known, we

have [23, 24]

dX(θ)

dθ
= − ∂F (X; θ)/∂θ

∂F (X; θ)/∂X
. (3.4)

3.2.2 Location and Scale Parameters

A distributional parameter θ of a random variable X ∼ F (·; θ) is said to be a location

parameter if F (x+ θ; θ) does not depend on θ; θ is said to be a scale parameter if F (xθ; θ) does

not depend on θ; θ is said to be a generalized scale parameter if F (β+xθ; θ) does not depend on

θ.

If θ is a location parameter, then dX(θ)
dθ

= 1. If θ is a scale parameter, then dX(θ)
dθ

= X
θ

. If θ

is a generalized scale parameter, then dX(θ)
dθ

= X−β
θ

.

3.2.3 Infinitesimal Perturbation Analysis

Infinitesimal perturbation analysis (IPA) method is a sample path-based method. IPA may

transform the random variables so that the random variable and its distributional parameter are

split. For example, if X ∼ N (µ, σ), X can be expressed as X = µ + σZ, where Z ∼ N (0, 1).

For random variable X with general distributions, an inverse transform method can be applied so

that X has the same distribution as F−1(U ; θ), where U ∼ U(0, 1) [25].

41



Assuming the regularity condition to exchange derivatives with integration is satisfied and

after applying the transformation to change the measure, we have:

dJ(θ)

dθ
=

∫
[0,1]N

dY (X(θ;u))

dθ
du (3.5)

where in the integrand of Equation (3.5), dY (X(θ;u))
dθ

= dY
dX

dX
dθ

, the estimation of dX(θ)
dθ

is needed,

which has been introduced in Section 3.2.1.

3.3 Finite Difference Methods

The previous three methods are direct gradient estimation methods, which utilize sample

path information and distribution functions to obtain a stochastic gradient estimator. Indirect

gradient estimation methods assume the output of the simulation comes out of a black box and

take the form of finite difference estimators.

The simplest finite difference (FD) estimator is the one-sided forward difference gradient

estimator, given by:

Y (θ + δ, ξ2)− Y (θ, ξ1)

2δ
.

A more accurate estimator is the two-sided symmetric difference estimator is given by:

Y (θ + δ, ξ2)− Y (θ − δ, ξ1)

2δ
,

where Y (·) is the sample performance function, δ is a small perturbation value, ξ1 and ξ2 are two

sample points in the sample space. For example, in SANs, Y could be the PCT of the network
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and θ could be the mean value of arc 1’s length. Then, to obtain the FD estimator, all arc lengths

are simulated with the mean of X1 equal to θ + δ, and the PCT value is calculated based on the

first simulation replication, which we denoted by y(1). Then all arc lengths are resimulated with

the mean of X1 equal to θ − δ and the PCT value is calculated based on the second simulation

replication, denoted by y(2). The FD estimator is given by y(1)−y(2)

2δ
.

One of the drawbacks of FD estimators is that they have large variance. In order to reduce

the variance of FD estimators, the common random numbers (CRN) variance reduction technique

(ξ1 = ξ2) is applied here. When applying (CRN) technique to SANs, in the first simulation

replication, all arc lengths are simulated, whereas in the second simulation replication, only the

arc that θ belongs to is resimulated and all the other arc lengths remain the same as the first

simulated values.
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Chapter 4: Stochastic Gradient in SANs

In this chapter, we are interested in estimating the stochastic gradient of the sample performance

measures introduced in Chapter 2 and moments of PCT with respect to the distribution parameters

of arc lengths. The gradient of the criticality index of arcs with respect to distribution parameters

of activities durations can help us understand how sensitive the criticality index of arc i is to its

mean duration; similarly for the gradient of expected PCT. Higher-order gradients of expected

PCT can help with functional approximation of the expected PCT as a function of distribution

parameters. In Chapter 5, it is shown that the first-order gradient of expected PCT reduces to the

arc criticality index if the distribution parameter is a location parameter.

It is obvious that the expected PCT is an increasing function of an activity’s mean duration.

However, Elmaghraby [26] notes that the variance of expected PCT is not a monotone function of

an activity’s mean duration. To better understand how variance of PCT changes when the mean

duration of an activity changes, higher-order gradient estimation of variance of PCT is important.

To estimate the gradient of the variance of PCT, we estimate the gradient of the second moment

of PCT.

For optimization problems with a differentiable objective function, gradient-based methods

are commonly used for finding the optimal solution and optimal value. Examples of such gradient-

based optimization methods are: (1) Interior-Point methods [27, 28, 29], (2) Stochastic Gradient
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Descent methods. Thus, a good stochastic gradient estimator with low variance and low complexity

is key for gradient-based optimization algorithms.

In this section, we will introduce stochastic gradient estimators for: criticality index of arcs,

first moment of PCT, second moment of PCT, and variance of PCT using the gradient estimation

techniques mentioned in Chapter 3.

4.1 Stochastic Gradient of Arc Criticalities

In this section, we are interested in estimating the following:

∂Ca(i)

∂θj

where Ca(i) is the criticality index of arc i, and θj is the distribution parameter of Xj . Ca(i)

can also be expressed as E[I{arc i is on the critical path}]. The different arc criticality estimators

in Chapter 2 correspond to different stochastic gradient estimators, because they have different

sample performance functions and different probability measures: IAC has the sample performance

function as an indicator function; TAC has the sample performance function as a complementary

distribution function; CAC has the sample performance function as a recursive formula.
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4.1.1 IPA gradient of Arc Criticalities

4.1.1.1 IPA of TAC

Assuming the regularity conditions for exchanging derivative and integral in Equation (2.9)

is satisfied, we have

∂Ca(i)

∂θj
=

∫
· · ·

∫
Rm−1

∂F̄i(Mi)

∂θj
×

m∏
j=1
j ̸=i

fj(xj) dxj. (4.1)

The IPA estimator for TAC arc criticality is from [10]:

−∂Fi(Mi)

∂θi
= −dFi(Mi)

dθi
,

−∂Fi(Mi)

∂θj
=

dFi(Mi)

dMi

dMi

dθj

=
dFi(Mi)

dMi

dmax(∥Pi−∥ − ∥Pi∥i, 0)
dMi

=
dFi(Mi)

dMi

× I{∥Pi−∥ − ∥Pi∥i ≥ 0} × (I{j ∈ P ∗
i−} − I{j ∈ P ∗

i })×
( ∂Fj(Xj)

∂θj

∂Fj(Xj)

∂Xj

)
.

Assuming the regularity conditions for exchanging derivative and integral in Equation (2.9)

n times is satisfied, the high-order derivative estimator for ∂nCa(i)
∂θni

is given by:

− ∂nFi(Mi)

∂θni
. (4.2)
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4.1.1.2 IPA of CAC

Assuming the regularity conditions for exchanging derivative and integral in Equation (2.9)

is satisfied, we have:

∂Ca(i)

∂θj
=

∫
· · ·

∫
Rn

∂Ca(i|T1 = t1, ..., Tn = tn)

∂θj
× fT1,...,Tn(t1, ..., tn) dt1 . . . dtn,

so the IPA estimator for CAC is given by:

∂Ca(i|T1, ..., Tn)

∂θi

=
∂

fi(T∗−Ti)
∏q

j=1,j ̸=i Fj(T∗−Tj)∑q
k=1 fk(T∗−Tk)

∏q
j=1,j ̸=k Fj(T∗−Tj)

× Cn(∗|T1, ..., Tn)

∂θi

=
∂

fi(T∗−Ti)
∏q

j=1,j ̸=i Fj(T∗−Tj)∑q
k=1 fk(T∗−Tk)

∏q
j=1,j ̸=k Fj(T∗−Tj)

∂θi
× Cn(∗|T1, ..., Tn)

+
fi(T∗ − Ti)

∏q
j=1,j ̸=i Fj(T∗ − Tj)∑q

k=1 fk(T∗ − Tk)
∏q

j=1,j ̸=k Fj(T∗ − Tj)
× ∂Cn(∗|T1, ..., Tn)

∂θi
. (4.3)

For the derivatives appearing in the first term of Equation (4.3) above, we have (i ̸= j):

∂fi(Ti − T∗)

∂θi
=

dfi(Ti − T∗)

d(Ti − T∗)

∂(Ti − T∗)

∂Xi

∂Xi

∂θi
+

∂fi(Ti − T∗)

∂θi
,

∂fi(Ti − T∗)

∂θj
=

dfi(Ti − T∗)

d(Ti − T∗)

∂(Ti − T∗)

∂Xj

∂Xj

∂θj
,

∂Ti

∂Xj

= I{Xj is on the longest path that ends at node i}. (4.4)

For calculating the derivatives of Fi, substitute fi with Fi for the above equations, and we
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have

∂Fi(Ti − T∗)

∂θi
=

dFi(Ti − T∗)

d(Ti − T∗)

∂(Ti − T∗)

∂Xi

∂Xi

∂θi
+

∂Fi(Ti − T∗)

∂θi
,

∂Fi(Ti − T∗)

∂θj
=

dFi(Ti − T∗)

d(Ti − T∗)

∂(Ti − T∗)

∂Xj

∂Xj

∂θj
.

4.1.2 LR Gradient of Arc Criticalities

The TAC estimator is not available for measure-based gradient estimators when the parameter

of interest belongs to Xi, i.e., when we are interested in estimating ∂Ca(i)
∂θi

. The reason LR is not

applicable for TAC is that in Equation (2.9) the joint density function is independent of θi.

The CAC estimator is also not available for measure-based gradient estimators, because the

joint density function of node release times fT1,...,Tn(t1, ..., tn) in Equation (2.5) is unknown. In

order to use measure-based gradient estimation techniques, we need information about ∂fT1,...,Tn (t1,...,tn)

∂θj
,

which is unknown.

In conclusion, both the TAC and the CAC estimators are not applicable for measure-

based gradient estimation techniques. Measure-based gradient estimation techniques are only

applicable to the IAC estimator. The LR estimator of IAC is derived from exchanging derivative

and integration of Equation (2.4)

∂Ca(i)

∂θj
=

∫
· · ·

∫
Rm

I{∥Pi∥ = ∥P∥} ×
∂
∏m

i=1 fi(xi)

∂θj
dx1 . . . dxm

=

∫
· · ·

∫
Rm

I{∥Pi∥ = ∥P∥} ×
∂ ln(fj(xj))

∂θj

m∏
i=1

fi(xi) dx1 . . . dxm
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and the LR estimator for IAC is given by:

I{∥Pi∥ = ∥P∥} ×
∂ ln(fj(xj))

∂θj
. (4.5)

4.1.3 WD gradient of Arc Criticalities

As mentioned before, the WD gradient estimation technique is only applicable for the IAC

estimator. The WD estimator for IAC ∂Ca(i)
∂θj

is given by:

c1(θj)
(
Y (X1, ..., X

(+)
j , ...., XN)− Y (X1, ..., X

(−)
j , ..., XN)

)
(4.6)

where we have X
(+)
j ∼ f

(+)
j and X

(−)
j ∼ f

(−)
j . (c1(θj), f

(+)
j , f

(−)
j ) forms a weak derivative of

the distribution of Xj . For details about weak derivatives of different distributions, please refer

to [13].

The variance of the WD estimator is given by:

Var
[
c1(θj)

(
Y (X1, ..., X

(+)
j , ...., XN)− Y (X1, ..., X

(−)
j , ..., XN)

)]
=(c1(θj))

2
(
Var

[
Y (X1, ..., X

(+)
j , ...., XN)

]
+Var

[
Y (X1, ..., X

(−)
j , ...., XN)

]
− 2Cov

[
Y (X1, ..., X

(+)
j , ...., XN), Y (X1, ..., X

(−)
j , ...., XN)

])
.

To minimize the variance of the WD estimator, we want Cov
[
Y (X1, ..., X

(+)
j , ...., XN),

Y (X1, ..., X
(−)
j , ...., XN)

]
to be as large as possible. In [30], it is shown that the WD gradient

estimator for expected PCT with all activities’ durations normally distributed outperforms IPA

and LR gradient estimators in numerical experiments of small ANs. Heidergott et al. [31] apply
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coupled phantoms in reducing the variance of the WD gradient estimator for ∂E[Y ]
∂σ

, where Y is

the PCT of an AN as a Gaussian system and σ is the standard deviation of the system.

4.1.4 Numerical Results of Gradient Estimators of Arc Criticalities

In this section, a random activity network with n nodes and m arcs is first generated using

the AM algorithm mentioned in Section 1.4. For a normally distributed arc length, its mean value

µ is uniformly sampled from [0.5,15] and its standard deviation is generated as σ = 0.333µ. For

an exponentially distributed arc length, its mean value µ is uniformly sampled from [0.5,15].

With number of nodes n and number of arcs m fixed, an activity network with all arcs

either normally distributed or exponentially distributed is randomly generated. The generated

network is random in terms of both the network structure and its arcs’ distributional parameters.

The criticality indexes of all arcs of the randomly generated network is estimated using the CAC

estimator with 1000 simulation replications. Then the set of arcs P with top 10 largest criticality

indexes of arcs are chosen as the target list of arcs. The arc criticality gradients ∂Ca(i)
∂µi

,∀i ∈ P

are estimated using different estimators with the same set of 200 simulation replications. For

each i ∈ P , the sample standard deviation (STD) of the estimator and the sample mean (gradient

estimation) of the gradient estimator are calculated.

For fixed number of nodes n and number of arcs m, the procedure in the previous paragraph

is repeated 3 times. Finally, the sample standard deviation (STD) and computing time are

averaged over 30 arcs coming from 3 independently generated SANs with same number of nodes

and number of arcs. In Tables 4.1 to 4.6, TAC stands for the IPA gradient estimator of arc

criticalities in Equation (4.2), CAC stands for the IPA gradient estimator of arc criticalities in
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Table 4.1: 95% C.I. of Gradient of Normally Distributed Arc Criticalities (based on 200
Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.032 ± 0.006 0.046 ± 0.010 0.034 ± 0.005 0.065 ± 0.007 0.037 ± 0.005 0.040 ± 0.006
CAC 0.027 ± 0.005 0.042 ± 0.007 0.033 ± 0.006 0.062 ± 0.005 0.041 ± 0.005 0.016 ± 0.006
LR 0.050 ± 0.035 0.041 ± 0.063 0.030 ± 0.030 0.086 ± 0.037 0.030 ± 0.027 0.025 ± 0.039
WDC 0.032 ± 0.007 0.036 ± 0.011 0.035 ± 0.006 0.071 ± 0.009 0.028 ± 0.014 0.036 ± 0.011
WDNC 0.023 ± 0.009 0.046 ± 0.018 0.033 ± 0.009 0.059 ± 0.012 0.031 ± 0.029 0.038 ± 0.017

Table 4.2: 95% C.I. of Gradient of Exponentially Distributed Arc Criticalities (based on 200
Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.009 ± 0.002 0.017 ± 0.002 0.003 ± 5e-4 0.065 ± 0.007 0.003 ± 4e-4 0.040 ± 0.006
CAC 0.009 ± 0.004 0.004 ± 0.004 0.006 ± 0.002 0.062 ± 0.005 0.009 ± 0.003 0.016 ± 0.006
LR 0.011 ± 0.016 0.011 ± 0.018 0.008 ± 0.008 0.086 ± 0.037 0.014 ± 0.010 0.025 ± 0.039
WDC 0.015 ± 0.009 0.010 ± 0.006 0.013 ± 0.005 0.071 ± 0.009 0.007 ± 0.004 0.028 ± 0.014
WDNC 0.020 ± 0.017 0.012 ± 0.014 0.013 ± 0.007 0.059 ± 0.012 0.018 ± 0.007 0.031 ± 0.029

Equation (4.3), LR stands for the LR estimator of arc criticalities in Equation (4.5), WDC stands

for the WD estimator of arc criticalities with common random numbers applied in Equation (4.6)

and WDC is the estimator in Equation (4.6) without common random numbers applied.

In Tables 4.1 and 4.2, for each randomly generated AN with given number of nodes

and arcs, an arc with arc criticality between 0.3 and 0.8 is randomly picked and applied with

different arc criticality estimators under 200 simulation replications. The 95% C.I. for different

arc criticality estimators are presented in Tables 4.1 and 4.2. It can be concluded that: for all

activities’ durations normally distributed or exponentially distributed, TAC, CAC, WDC and

WDNC have very close accuracy, while LR has the worst accuracy.

Tables 4.3 and 4.4 are the aggregated version of Tables 4.1 and 4.2. Instead of focusing
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Table 4.3: Averaged STD of Gradient of Normally Distributed Arc Criticalities (based on 200
Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.032 0.049 0.033 0.048 0.034 0.033
CAC 0.038 0.062 0.034 0.064 0.041 0.046
LR 1.024 1.580 1.086 1.369 0.971 1.097
WDC 0.038 0.061 0.041 0.059 0.041 0.041
WDNC 0.081 0.145 0.114 0.147 0.121 0.102

Table 4.4: Averaged STD of Gradient of Exponentially Distributed Arc Criticalities (based on
200 Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 0.014 0.022 0.012 0.018 0.015 0.015
CAC 0.018 0.027 0.021 0.023 0.025 0.020
LR 0.104 0.173 0.083 0.125 0.108 0.113
WDC 0.042 0.063 0.037 0.054 0.042 0.040
WDNC 0.081 0.146 0.064 0.106 0.098 0.100

on estimating the gradient of one arc, Tables 4.3 and 4.4 contain the averaged STD among

30 different arcs from 3 different networks with the same number of nodes and arcs, and the

sample variance performance of the TAC arc criticality gradient estimator is the lowest among the

gradient estimators across randomly generated activity networks of different sizes. The variance

of the TAC and CAC estimators are close, whereas LR has the highest variance. WDC is close

to TAC and CAC when all arcs are normally distributed, but when all arcs are exponentially

distributed, the sample variance performance of WDC is worse than that of TAC and CAC. The

averaged STD value of WDNC is about twice as that of WDC, which indicates that common

random numbers cuts the sample variance of the WD gradient estimator in half.

In Tables 4.5 to 4.6, MCT is short for the mean computation time, which is the corresponding
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Table 4.5: MCT of Gradient of Normally Distributed Arc Criticalities

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 2.11 2.22 5.29 5.35 17.26 17.17
CAC 9.71 13.48 22.55 29.19 70.43 84.11
LR 0.41 2.79 2.52 11.38 10.61 69.78
WDC 0.82 5.51 4.32 22.28 21.20 140.24
WDNC 1.78 6.73 6.86 25.33 29.75 149.36

Table 4.6: MCT of Gradient of Exponentially Distributed Arc Criticalities

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TAC 2.10 2.24 5.31 5.32 17.22 17.30
CAC 10.03 13.75 23.59 30.01 74.37 88.48
LR 0.42 2.77 2.49 11.13 10.30 71.15
WDC 0.79 5.52 4.25 21.62 20.38 142.90
WDNC 1.72 6.65 6.69 24.41 28.63 151.75

average computing time for Tables 4.3 to 4.4. Tables 4.5 to 4.6 indicate that CAC has the longest

computing time in most cases. WDC and WDNC have the longest computing time in the case of

100 nodes and 300 arcs. The performance function of LR, WDC and WDNC are both PCT, and

the time complexity for calculating PCT is O(np), where np is the number of paths in the SAN.

As a result, the time complexity of LR, WDC and WDNC are O(np). And the computing time

of WDC and WDNC is about twice as LR, because weak derivative estimators in Equation (4.6)

requires two estimates of the performance function Y .
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4.2 Stochastic Gradient of First Moment of PCT

In this section, we are interested in estimating the following:

∂E(Y )

∂θj

where Y is the project completion time (PCT), which can be expressed as:

Y (X1, ..., Xm) =
∑
i∈P ∗

Xi. (4.7)

4.2.1 IPA Conditioned on Node Release Time

The IPA gradient estimator of dE(Y )
dθj

is given by:

I{j ∈ P ∗}∂Xj

∂θj
.

Bowman [11] proposed a conditional IPA estimator for PCT conditioned on node release times,

derived from the following:

∂E(Y )

∂θj
= E

[
I{j ∈ P ∗}dXj

dθj

]
= E

[
E
[
I{j ∈ P ∗}dXj

dθj

∣∣∣T1, ..., Tn

]]
(4.8)

= E
[
Ca(i|T1, ..., Tn)

dXj

dθj

∣∣∣
Xj=Th(j)−Tt(j)

]
(4.9)
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where dXj

dθj
is the gradient of random variable Xj mentioned in Equation (3.4). And from Section

3.2.2 we have that dXj

dθj
= 1 for θj being a location parameter and dXj

dθj
=

Xj

θj
for θj being a

scale parameter. Because the mean value µ is a location parameter for normally distributed

random variables and a scale parameter for exponentially distributed random variables, Equation

(4.9) reduces to ∂E(Y )
∂θj

= Ca(i) for normally distributed arc j’s length. In Equation (4.9),

Ca(i|T1, ..., Tn) is the expression in Equation (2.6), Th(j) is the node release time of the head

node (where the arrow points at) of arc j and Tt(j) is the tail node of arc j. Thus, the IPA gradient

estimator conditioned on node release times is named NIPA and is given by:

Ca(i|T1, ..., Tn)
dXj

dθj

∣∣∣
Xj=Th(j)−Tt(j)

. (4.10)

In Equation (4.10), dXj

dθj

∣∣∣
Xj=Th(j)−Tt(j)

stands for the value of the derivative of random variable Xj

as a function of Xj when Xj = Th(j) − Tt(j). For example, when θj is a scale parameter of Xj ,

dXj

dθj

∣∣∣
Xj=Th(j)−Tt(j)

=
Th(j)−Tt(j)

θj
.
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4.2.2 IPA Conditioned on Threshold

We proposed a conditional IPA estimator for PCT conditioned on all arc lengths expect for

the one of interest in [32]. The estimator is derived from the following:

∂E(Y )

∂θj
= E

[
I{j ∈ P ∗}dXj

dθj

]
= E

[
E
[
I{j ∈ P ∗}dXj

dθj

∣∣∣Xi, i ̸= j
]]

(4.11)

=


E[Pr(Xj ≥ mj)], θj is a location parameter

E[ 1
θj

∫ +∞
mj

xfj(x) dx], θj is a scale parameter

The IPA estimator for PCT using TAC condition is named TIPA and is given by:


Pr(Xj ≥ mj), θj is a location parameter

1
θj

∫ +∞
mj

xfj(x) dx, θj is a scale parameter

(4.12)

fj(x) in Equations (4.11) and (4.12) is the density function of the duration of activity j, Xj . And

for most of commonly used random variables, the integral part of Equation (4.12) is a closed-form

function.

4.2.3 Higher-Order Stochastic Gradients of PCT

Since the IPA gradient estimator has better variance performance and faster convergence

speed compared to the LR gradient estimator, we will not use LR for estimating the higher-order
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stochastic gradient of PCT, that is estimating:

∂nE(Y )

∂θnj

where n > 1. Since estimating ∂nE(Y )
∂θnj

using CIPA requests taking higher-order derivatives of

Equation (2.6), which is very complicated, NIPA is not appropriate for estimating ∂nE(Y )
∂θnj

. Higher-

order derivative using WD estimators require additional simulation replications, so is also not

considered.

For estimating ∂nE(Y )
∂θnj

, the TIPA estimator for ∂nE(Y )
∂θnj

is given by [32]:


dn Pr(Xj≥mj)

dθnj
, θj is a location parameter

dn 1
θj

∫+∞
mj

xfj(x)

dθnj
dx, θj is a scale parameter

(4.13)

Notice that for most commonly used continuous random variables, Equation (4.13) is a closed-

form function of the threshold mj defined in Equation (2.8).

4.3 Stochastic Gradient of Second Moment of PCT

In this section, we are interested in estimating the following:

∂E(Y 2)

∂θj

where Y is the project completion time (PCT) given by Equation (4.7).

Once we have the estimator for ∂E(Y 2)
∂θj

, the stochastic gradient of the variance of PCT with
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respect to arc j’s length distribution parameter θj can be calculated as:

∂Var(Y )

∂θj
=

∂(E(Y 2)− (E(Y ))2)

∂θj

=
∂E(Y 2)

∂θj
− ∂(E(Y ))2

∂θj

=
∂E(Y 2)

∂θj
− 2E(Y )

∂E(Y )

∂θj
.

Similarly, the higher-order derivatives are given by:

∂2Var(Y )

∂θ2j
=

∂2E(Y 2)

∂θ2j
− 2

(∂E(Y )

∂θj

)2

− 2E(Y )
∂2E(Y )

∂θ2j

∂3Var(Y )

∂θ3j
=

∂3E(Y 2)

∂θ3j
− 6

∂E(Y )

∂θj

∂2E(Y )

∂θ2j
− 2E(Y )

∂3E(Y )

∂θ3j

∂4Var(Y )

∂θ4j
=

∂4E(Y 2)

∂θ4j
− 6

(∂2E(Y )

∂θ2j

)2

− 8
∂E(Y )

∂θj

∂3E(Y )

∂θ3j
− 2E(Y )

∂4E(Y )

∂θ4j
.

4.3.1 IPA Conditioned on Node Release Time

The IPA gradient estimator of dE(Y 2)
dθj

is given by:

2I{j ∈ P ∗}Y ∂Xj

∂θj
.

Bowman [11] proposed a conditional IPA estimator for PCT conditioned on node release times,

the IPA gradient estimator of second moment of PCT conditioned on node release times is derived
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from the following:

∂E(Y 2)

∂θj
= E

[
2I{j ∈ P ∗}Y dXj

dθj

]
= E

[
E
[
2I{j ∈ P ∗}Y dXj

dθj

∣∣∣T1, ..., Tn

]]
= E

[
2Ca(i|T1, ..., Tn)Tn

dXj

dθj

∣∣∣
Xj=Th(j)−Tt(j)

]
, (4.14)

where dXj

dθj
is the gradient of random variable Xj mentioned in Equation (3.4). Thus, the IPA

gradient estimator for second moment of PCT conditioned on node release times is named NIPA2

and is given by:

2TnCa(i|T1, ..., Tn)
dXj

dθj

∣∣∣
Xj=Th(j)−Tt(j)

. (4.15)

The difference between the gradient estimator of first moment of PCT in Equation (5.1) and

that of second moment of PCT in Equation (4.15) is that Equation (4.15) has one more term

2Tn. Assume that the regularity condition for exchanging derivative and expectation n times is

satisfied in Equation (5.1), then the higher order IPA gradient estimator for ∂nE(Y 2)
∂θnj

is given by

taking derivative of Equation (4.15) n − 1 times, which requires n − 1 order derivative of the

recursive formula Ca(i|T1, ..., Tn), that is very complicated and time consuming. In conclusion,

the NIPA2 estimator is not suitable for higher-order gradient estimation of the second moment of

PCT.

4.3.2 IPA Conditioned on Threshold

The IPA estimator for second moment of PCT conditioned on all arc lengths expect for the

one of interest is similar to that of the first-moment estimator. The estimator is derived from the
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following:

∂E(Y 2)

∂θj
= E

[
2I{j ∈ P ∗}Y dXj

dθj

]
= E

[
E
[
2I{j ∈ P ∗}Y dXj

dθj

∣∣∣Xi, i ̸= j
]]

=


2E[

∫ +∞
mj

(x+ aj)fj(x) dx], θj is a location parameter

2E[ 1
θj

∫ +∞
mj

x(x+ aj)fj(x) dx], θj is a scale parameter

where aj = ∥P∥j , which is the length of the critical path given all arc lengths under the condition

that the length of arc j is 0, and fj(x) is the density function of the duration of activity j, Xj . The

IPA estimator for the second moment of PCT using TAC condition is named TIPA2 and is given

by: 
2
∫ +∞
mj

(x+ aj)fj(x) dx, θj is a location parameter,

2
θj

∫ +∞
mj

x(x+ aj)fj(x) dx, θj is a scale parameter.

(4.16)

Assume the estimator in Equation (4.16) is n − 1 times continuous differentiable. Then the IPA

gradient estimator conditioned on TAC condition for ∂nE(Y 2)
∂θnj

is given by:


2
∫ +∞
mj

(x+ aj)
∂n−1fj(x)

∂θn−1
j

dx, θj is a location parameter,

2
θj

∫ +∞
mj

x(x+ aj)
∂n−1fj(x)

∂θn−1
j

dx, θj is a scale parameter.

(4.17)

Notice that for most commonly used continuous random variables, Equation (4.17) is a closed-

form function of the threshold mj defined in Equation (2.8).
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Chapter 5: Applications of Gradient Estimators in SANs

In this chapter, we first introduce how the gradient estimator in Section 4.2.3 can be applied

in estimating the change in expected PCT when the mean duration of one activity is changed by

a given amount. Then, using the estimation of change of expected PCT, an algorithm is proposed

for solving an optimization problem in SANs called time-cost tradeoffs problem.

Bowman [11] proposed a simulation-based optimization problem of crashing the mean

duration of activities called the time-cost trade-off problem. Kim et al. [4] concentrate on the

problem of minimizing a quantile of the PCT subject to constraints on circuit design variables.

Goh [33] proposed a robust programming algorithm for minimizing the expected PCT when the

distributions of the activity durations are not known. We improved the heuristic optimization

algorithm in [11] using the SPA estimator of expected PCT. The content in this chapter is based

on material from [32].

5.1 Estimating the Change of Expected Project Completion Time

Cho and Yum [34] claimed that ∂E(Y )
∂µi

cannot serve as an accurate estimate for change in

E(Y ) due to a discrete change in the mean duration of activity i, µi. For example, if the original

value of activity 1’s mean duration µ1 is 25, then using ∂E(Y )
∂µ1

to estimate the amount of change

of E(Y ) when µ1 is decreased by 5, keeping all the other activity mean durations unchanged, is
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not accurate.

The goal is to estimate:

∆iE[Y ](δ) = E[Y ]
∣∣∣
µi=µ
− E[Y ]

∣∣∣
µi=µ−δ

, for δ ≥ 0.

Cho and Yum [34] consider:

∆iE[Y ](δ) =

∫ µ

µ−δ

Ci(x)dx, (5.1)

where Ci(x) is a function with input of arc i’s mean duration and output of criticality index of arc

i. In [34], it is assumed that all activities are normally distributed and the parameter of interest is

the mean duration of activity i. An explanation of Equation (5.1) is given by:

∆iE[Y ](δ) = E[Y ]
∣∣∣
µi=µ
− E[Y ]

∣∣∣
µi=µ−δ

=

∫ µ

µ−δ

∂E[Y ]

∂µi

dx =

∫ µ

µ−δ

Ci(x)dx. (5.2)

Equation (4.15) follows from the mean duration µi being a location parameter for normal

distributions, and Bowman [11] proved that for location parameters, ∂E[Y ]
∂µi

= Ci(x). Then, to

find a functional approximation of Ci(x), Cho and Yum [34] proposed using logistic regression

to fit Ci(x), because Ci(x) is a S shaped curve. Numerical experiments indicated that their logit

fitting approach underestimates ∆iE[Y ](δ) when σi/µi is large, where µi and σi are the mean

and standard deviation of normally distributed Xi.

We propose using a Taylor series approximation to fit Ci(x) locally, assuming Ci(x) is
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N -times continuously differentiable,

Ci(x) ≈
N∑
k=0

1

k!
C

(k)
i (µ)(x− µ)k, (5.3)

where C
(k)
i (µ) is the kth order derivative of function Ci(x) at activity i’s original mean duration

µ, which can be estimated using the IPA estimator in Equation (4.2). As for the case θi is a scale

parameter rather than a location parameter, we have the expectation version of Equation (5.3)

given by:

∂E[Y ]

∂µi

≈
N∑
k=0

1

k!

∂k+1E[Y ]

∂µk+1
i

(µ)(x− µ)k. (5.4)

Using Equation (5.4), we have that Equation (5.2) becomes:

∆iE[Y ](δ) = E[Y ]
∣∣∣
µi=µ
− E[Y ]

∣∣∣
µi=µ−δ

=

∫ µ

µ−δ

∂E[Y ]

∂µi

dx

≈
∫ µ

µ−δ

N∑
k=0

1

k!

∂k+1E[Y ]

∂µk+1
i

(µ)(x− µ)kdx

=
N∑
k=0

1

(k + 1)!

∂k+1E[Y ]

∂µk+1
i

(µ)(x− µ)k+1
∣∣∣µ
µ−δ

=
N∑
k=0

(−1)k+1

(k + 1)!

∂k+1E[Y ]

∂µk+1
i

(µ)δk+1. (5.5)

Notice that Equation (5.5) works not only for the distribution parameter being the mean, but also

works for other distributional parameters. In [34], they also claimed that using direct Monte

Carlo simulation (MCS) to fit a logistic regression requires several thousands of runs to estimate

Ci(x) at different x values. Hence, they proposed using Taguchi Orthogonal Array experiment to
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reduce the number of simulation replications. Using the TAC estimator, we can solve this issue

with an easy and efficient approach. Since mi in Equation (2.8) does not depend on Xi, and

therefore not on µi, no new simulation replications are needed for estimating Ci(x) at a new x

value.

5.2 Estimating the Criticality Curve

As mentioned in Section 5.1, to fit a logistic regression model for Ci(x), we need to

estimate the Ca(i) value when the mean duration of activity i takes different discrete values

while the parameters of other arc length remain unchanged. For estimating arc criticality using

the TAC estimator, calculating the threshold mi is important. The following algorithm presents

an efficient way of calculating the TAC threshold for one activity of interest.

When estimating the criticality curve using TAC, Algorithm 1 is helpful. Suppose we

are interested in estimating the criticality curve at 10 different values. The following procedure

explains the advantage of the TAC estimator:

1. Simulate all arc lengths.

2. Calculate threshold mi.

3. Calculate estimator for Ci(x), EST ← F̄i(mi).

When estimating Ci(x) at different x values, steps 1 and 2 only need to be run once, and for

different x values, redo step 3 with the distribution parameter of Fi(x) changed. This property is

called Sample Performance Invariance (SPI), because estimating the gradient at different parameter

values does not depend on the simulated samples. This property is advantageous for all measure-
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based gradient estimation methods, such as the Likelihood Ratio (LR) method and the weak

derivatives method. Sample path-based gradient estimation methods such as IPA do not generally

possess this property, but for the TAC estimator, the IPA estimator also possesses the SPI property,

so we can estimate the function of Ci(x) more efficiently.

5.3 Optimization of Time-cost tradeoff Problem

Bowman [11] formulated a nonlinear programming problem called the time-cost tradeoff

optimization problem, where the objective function is the expected PCT of a stochastic activity

network. The cost of reducing one unit of mean duration of activity i is bi, and the total budget

is B. The upper and lower bounds of the mean duration of activity i are given by ui and li, i.e.,

li ≤ µi ≤ ui. Assume
∑

i bi(ui − li) > B and there are m arcs in the activity network. Then we

have an optimization problem with nonlinear objective function and linear constraints given by:

min
β

E[Y ] (5.6)

s.t.
m∑
i=1

biβi ≤ B (5.6a)

βi ≤ ui − li, ∀i ∈ {1, ...,m} (5.6b)

−βi ≤ 0, ∀i ∈ {1, ...,m} (5.6c)

where βi is the amount of decreasing of θi (distribution parameter of the duration of activity

i, usually is the mean) and Y is the PCT. In [11], Bowman claimed that the KKT condition

[29] for Problem (5.6) is a necessary and sufficient condition for a local optimum solution and

derived a heuristic algorithm for finding the local optimum solution satisfying the local KKT
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condition. Here, we will show that the KKT condition of Problem (5.6) is indeed a necessary

and sufficient condition for a global optimum solution by proving that the expected PCT as the

objective function in Problem (5.6) is a convex function of β. For proving the convexity of the

objective function in in Problem (5.6), the following Theorem is presented:

Theorem 1. Let X = (X1, X2, ..., Xm) be a random vector with Xi independent random variables

with known invertible distribution functions Fi(·; θi), f : Rm → R be a convex function, A a real

matrix and b a real vector, θ = (θ1, θ2, ..., θm), where θi is the distribution parameter of Xi. If θi

is either a location or scale parameter of Xi for all i, then E[f(AX + b)] is a convex function of

θ.

Proof. Proof of Theorem 1. First consider location parameter θi of Xi, where i is fixed. The

distribution function of Xi is given by Fi(x; θi), for x0 fixed, by definition of location parameter

θi, we have, Fi(x0 + θ′; θ′) = Fi(x0 + θ′′; θ′′) = y, where θ′ ̸= θ′′ are two different values

of θi. Then we have F−1
i (y; θ′) = x0 + θ′ and F−1

i (y; θ′′) = x0 + θ′′. Hence, F−1
i (y; θ′′) =

F−1
i (y; θ′)− θ′ + θ′′.

By the probability integral transform theorem [35], we have Xi(θi)
d
=F−1

i (Yi; θi), where

Yi
i.i.d∼ U(0, 1), let θ′ = θ0 fixed, for any value of θi, we have Xi(θi)

d
=Zi(θi) = F−1

i (Yi; θi) =

F−1
i (Yi; θ0) − θ0 + θi, then Xi(θi) is equal in distribution to a new random variable Zi(θi) that

can be expressed as a linear function of θi.

Similarly, if θi is a scale parameter of Xi, by definition of a scale parameter, we have

Fi(x0θ
′; θ′) = Fi(x0θ

′′; θ′′) = y, and F−1
i (y; θ′) = x0θ

′, F−1
i (y; θ′′) = x0θ

′′. Hence, F−1
i (y; θ′′) =

F−1
i (y;θ′)

θ′
θ′′. Therefore, Xi(θi)

d
=Zi(θi) =

F−1
i (Yi;θ0)

θ0
θi, where θ0 is a constant and Yi

i.i.d∼ U(0, 1).

Hence, we have that Xi(θi) is equal in distribution to a new random variable Zi(θi) that can be
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expressed as a linear function of θi.

In conclusion, if θi is either a location or scale parameter of Xi for all i, then X =

(X1, X2, ..., Xm)
d
=Z = (Z1, Z2, ..., Zm), where Z is a linear mapping of θ. Since the composition

of convex and linear mappings is convex, and expectation preserves convexity [29], EX [f(AX +

b)] = EZ [f(AZ + b)] is a convex function of θ.

Bowman [11] states that constraint (5.6a) can be replaced by equality constraint
∑m

i=1 biβi =

B, because E[Y ] is a decreasing function of βi for all i. Hence, we replace the constraint (5.6a)

with
∑m

i=1 biβi = B and derive the KKT conditions as follows:

m∑
i=1

biβi = B

βi ≥ 0, ∀i ∈ {1, 2, ...,m}

λb
i ≥ 0, ∀i ∈ {1, 2, ...,m}

λc
i ≥ 0, ∀i ∈ {1, 2, ...,m}

λb
i(βi − (ui − li)) = 0, ∀i ∈ {1, 2, ...,m}

λc
iβi = 0, ∀i ∈ {1, 2, ...,m}

∇E[Y ] + ν∇(
m∑
i=1

biβi −B) = 0

From the KKT conditions, we have that the necessary and sufficient condition for β to be the
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global minimum solution of Problem (5.6) is given by:

m∑
i=1

biβi = B

βi ≥ 0, ∀i ∈ {1, 2, ...,m}

∂E[Y ]

∂βi

=
∂E[Y ]

∂βj

, ∀i, j ∈ {k|0 < βk < uk − lk, k = 1, 2, ...,m} (5.7)

The heuristic algorithm proposed in [11] has two stages: in stage 1, at each step, the algorithm

decreases the mean duration time of the activity that has the largest ∂E[T ]
∂βi

/bi by aB/bi, where a is

the fraction of budget to be used, e.g., a = 0.01; in stage 2, the algorithm redistributes the budget

between activity i that has the largest ∂E[T ]
∂βi

/bi value and activity j that has the smallest ∂E[T ]
∂βi

/bi

value among activities whose decision variables are not at their boundaries (strictly between 0

and upperbound).

Using the proposed Taylor series approximation method in Equation (5.5), we propose a

new heuristic algorithm called the Knapsack Ratio (KR) algorithm [32] for solving the time-

cost tradeoff optimization problem. In the following algorithm, θ0i stands for the original mean

duration of activity i. The KR algorithm is given below:

In Algorithm 3, N is the number of simulation replications, α and t are real numbers

strictly between 0 and 1, θ is the vector of distribution parameters of all activities’ duration

in the AN. Ca(i) is the criticality index of activity i and is estimated using the TAC estimator

in Equation (2.8). ∆iE(Y )(δi) is defined and estimated using the Taylor series approximation

method in Equation (5.5). In Algorithm 3, we assumes that at each step, a chosen activity’s mean

duration will be decreased by a fixed amount. The optimal solution of the optimization problem
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Algorithm 3: Knapsack Ratio (KR) Algorithm for Time-cost tradeoffs Problem
Input : N , α, t, θ
Output: θ

1 G← {i|Ca(i) ≥ t, i ∈ {1, 2, ..., na}}
2 θ0 ← θ
3 while B > 0 do
4 δi ← α ∗ (θ0i − li)
5 E ← {i|li < θi < ui, i ∈ G}
6 j ← argmax

i∈E
{∆iE(Y )(δi)

δi
/bi}

7 θi ← θi −min(biδi, B)/bi
8 B ← B −min(biδi, B)

9 end

is approximated by the optimal solution of a knapsack integer programming problem when α is

small enough, e.g., α = 0.01.

5.4 Numerical Experiments Results

In this section, stochastic activity networks with fixed numbers of nodes and arcs are

randomly generated using the algorithm presented in [5]. All arc lengths in the randomly generated

network are either normally distributed or exponentially distributed. For normally distributed

activities, their mean durations are generated uniformly between 0.5 and 50, and their standard

deviations are generated uniformly between 0.1 and 1 times their mean durations. For exponentially

distributed activities, their mean durations are generated uniformly between 0.5 and 50.

For following experiments, we will use direct Monte Carlo simulation with common random

numbers (DMCCR). Suppose we use Monte Carlo simulation with N simulation replications to

estimate E(Y ) or Ca(i) when a stochastic network and all activities’ distribution parameters are

given. Then one of the activity’s distribution parameter θi is changed and we need to re-estimate

performance functions like E(Y ) and Ca(i). Instead of simulating all activities’ lengths again,
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DMCCR only re-simulates activity i’s length N times and replaces the old simulated Xi values

while keeping all other simulated Xj, j ̸= i, values unchanged. DMCCR can save computational

time and reduce variance when only a small set of activities’ parameters are changed.

5.4.1 Numerical Results of Estimation of Criticality Curve

With the number of arcs and number of nodes fixed, a random network with all arcs

independently distributed is generated. The criticality index of a given activity i is mainly affected

by two factors: the number of paths that includes activity i and the mean duration of activity i. In

extreme cases, if activity i is on all paths, then Ci(x) = 1,∀x, and if the mean duration of activity

i is sufficiently large, then Ca(i) is very close to 1. For activities with very small criticality index

values, we are less interested in fitting their criticality curves, because decreasing their mean

duration has negligible effect on the expected project completion time. For activities that are on

most of the paths, we are also less interested in fitting their criticality curves, because changes in

their mean duration has negligible effect on their criticality indexes. Therefore, for each SAN,

we randomly choose an activity i such that Ca(i) > 0.5 andRi < 0.6.

After the network structure and distribution parameters are randomly generated, and the

arc of interest is chosen, for a chosen arc i with original mean duration µ, 30 mean duration

values ranging from 0.1µ to 1.5µ with stepsize 1.4µ/30 are considered. For each mean duration

value x, N = 1000 simulation replications are run for estimating Ci(x) and its corresponding

sample standard deviation is computed. The mean of the sample standard deviations across the

30 different x values is also calculated, called the Mean Standard Deviation (MSD). To compare

the TAC and CAC estimators [2], ratios of their MSD and computation time are computed.
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Algorithm 1 is used for calculating the TAC estimator, and DMCCR is applied for estimating

the CAC estimator. From Table 5.1, we can see that the variance performance of the TAC

estimator and the CAC estimator in estimating the criticality curve for both normally distributed

and exponentially distributed activity times are close to each other. From Table 5.2, we can see

that the computational time for the CAC estimator is about 100 times that of using the TAC

estimator. Thus, considering variance performance and computing speed, the TAC estimator is

preferred over the CAC estimator in estimating the criticality curve.

Table 5.1: Criticality Curve Estimation MSD Ratio of CAC/TAC (unit 10−3)

Network Size

30 Nodes 50 Nodes 100 Nodes

Arc Distributions 60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

Normal 9/12 10/11 12/14 10/13 12/11 12/13
Exponential 10/13 11/14 12/13 9/13 11/13 10/11

Table 5.2: Criticality Curve Estimation Time Ratio of CAC/TAC

Network Size

30 Nodes 50 Nodes 100 Nodes

Arc Distributions 60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

Normal 73.8 93.1 95.9 123.7 108.0 126.7
Exponential 88.2 102.6 85.9 96.9 86.2 90.1

Figure 5.1 depicts a representative criticality curve plot of a chosen activity i in a randomly

generated SAN with normally distributed activities of size 20 nodes and 50 arcs, where 30

different criticality values are obtained using the same method as in the experiments in Tables

5.1 - 5.2. For logit curve fitting, we first do a logistic regression on 30 sample points estimated

by the TAC estimator and have the estimation for coefficients of the Logit function, then plot the

curve of the Logit function. For TAC and CAC, we first estimate 30 different criticality values,
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then join the 30 points with a smooth curve. Figure 5.1 indicates that the Logit curve fit of the

criticality curve deviates from the other two, especially for lower values of µi.

Figure 5.1: Criticality Curve of Normally Distributed SAN with 20 Nodes and 50 Arcs.

5.4.2 Estimation of Change of Mean Completion Time

We consider three approaches for estimating ∆iE[Y ](δ): direct Monte Carlo simulation

with common random numbers (DMCCR); Logit model approximation (LGT); Taylor series

approximation (TSA). The experiment first generates a random network with given numbers

of arcs and nodes, and then chooses an activity as in Section 6.1, i.e., an activity i such that

Ca(i) > 0.5 and Ri < 0.6. In the following experiments, δ = αµ, where µ is the original mean

duration of the activity of interest and α takes two values: α = 10% and α = 20%. For the

TSA method, N = 3 in Equation (5.5). For each method, N = 1000 simulation replications are

run for estimating ∆iE[Y ](δ) once. For each methods and network, ∆iE[T ](δ) is estimated 100

times to compute the sample mean and sample standard error.

In Tables 5.3 - 5.6, the first three rows are the 95% confidence intervals (C.I.) of the three

methods on the 100 macro replications. And the last three rows are the total computation time

of the three methods. For each column, an activity network with given number of nodes, number
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of arcs, and arc distributions is first generated. From Tables 5.3 - 5.6 we can conclude that both

TSA and LGT method have better variance performance than the DMCCR method. The variance

performance of TSA and LGT are indistinguishable. In Tables 5.3 - 5.4, all three methods have

close estimated mean values. But in Tables 5.5 - 5.6, LGT underestimates ∆iE[Y ](δ), as is

mentioned in [34]. As for computing speed, TSA and DMCCR are faster than LGT, and TSA

and DMCCR have similar computing speed. In conclusion, in terms of variance performance and

computing speed, the TSA method is the best among all three different methods.

Table 5.3: Normal Distribution Mean Completion Time with 10% Change (95% C.I. based on
100 Macro Replications, STD in parentheses)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 2.22 ± 0.006 3.85 ± 0.006 4.15 ± 0.004 3.39 ± 0.004 4.77 ± 0.004 3.52 ± 0.006
LGT C.I. 2.22 ± 0.006 3.86 ± 0.006 4.15 ± 0.004 3.4 ± 0.004 4.78 ± 0.004 3.52 ± 0.006
DMCCR C.I. 2.19 ± 0.19 3.91 ± 0.22 4.25 ± 0.18 3.35 ± 0.27 4.82 ± 0.16 3.68 ± 0.24
TSA Time 1.32 (0.06) 1.33 (0.07) 2.87 (0.18) 2.87 (0.13) 9.21 (0.33) 9.30 (0.39)
LGT Time 3.20 (0.13) 3.20 (0.14) 4.69 (0.22) 4.71 (0.23) 10.87 (0.35) 10.97 (0.41)
DMCCR Time 1.21 (0.06) 1.22 (0.07) 2.76 (0.17) 2.74 (0.14) 9.06 (0.33) 9.09 (0.37)

Table 5.4: Normal Distribution Mean Completion Time with 20% Change (95% C.I. based on
100 Macro Replications, STD in parentheses)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 4.25 ± 0.01 7.6 ± 0.014 8.27 ± 0.01 6.74 ± 0.006 9.5 ± 0.008 6.98 ± 0.01
LGT C.I. 4.24 ± 0.01 7.63 ± 0.014 8.28 ± 0.01 6.75 ± 0.006 9.52 ± 0.008 6.99 ± 0.01
DMCCR C.I. 4.36 ± 0.19 7.78 ± 0.24 8.31 ± 0.18 6.77 ± 0.31 9.5 ± 0.16 7.11 ± 0.19
TSA Time 1.27 (0.04) 1.25 (0.05) 2.76 (0.21) 2.80 (0.11) 9.00 (0.51) 9.04 (0.66)
LGT Time 3.04 (0.07) 3.02 (0.11) 4.51 (0.29) 4.61 (0.25) 10.68 (0.65) 10.73 (0.80)
DMCCR Time 1.15 (0.02) 1.15 (0.05) 2.66 (0.19) 2.68 (0.13) 8.89 (0.52) 8.93 (0.68)
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Table 5.5: Exponential Distribution Mean Completion Time with 10% Change (95% C.I. based
on 100 Macro Replications, STD in parentheses)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 2.42 ± 0.008 3.73 ± 0.008 4.05 ± 0.006 2.88 ± 0.008 4.63 ± 0.006 3.0 ± 0.004
LGT C.I. 1.28 ± 0.008 3.19 ± 0.01 3.81 ± 0.008 2.41 ± 0.008 4.3 ± 0.008 2.46 ± 0.01
DMCCR C.I. 2.6 ± 0.26 3.66 ± 0.34 3.95 ± 0.36 2.96 ± 0.29 4.34 ± 0.34 3.09 ± 0.27
TSA Time 1.19 (0.08) 1.21 (0.12) 2.73 (0.22) 2.76 (0.15) 9.08 (0.74) 9.15 (0.62)
LGT Time 1.26 (0.09) 1.27 (0.13) 2.80 (0.24) 2.83 (0.13) 9.14 (0.68) 9.18 (0.62)
DMCCR Time 1.17 (0.08) 1.19 (0.13) 2.71 (0.22) 2.73 (0.13) 9.05 (0.68) 9.16 (0.63)

Table 5.6: Exponential Distribution Mean Completion Time with 20% Change (95% C.I. based
on 100 Macro Replications, STD in parentheses)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

TSA C.I. 4.68 ± 0.018 7.4 ± 0.018 8.07 ± 0.012 5.71 ± 0.014 9.21 ± 0.012 5.91 ± 0.016
LGT C.I. 2.42 ± 0.018 6.33 ± 0.024 7.6 ± 0.018 4.79 ± 0.018 8.58 ± 0.016 4.85 ± 0.02
DMCCR C.I. 4.75 ± 0.23 7.31 ± 0.31 8.24 ± 0.35 5.58 ± 0.25 9.15 ± 0.38 5.78 ± 0.27
TSA Time 1.16 (0.02) 1.16 (0.10) 2.64 (0.15) 2.68 (0.18) 8.87 (0.65) 8.87 (0.15)
LGT Time 1.23 (0.02) 1.23 (0.09) 2.70 (0.16) 2.75 (0.18) 8.95 (0.66) 8.95 (0.15)
DMCCR Time 1.14 (0.01) 1.15 (0.09) 2.63 (0.15) 2.66 (0.18) 8.85 (0.66) 8.87 (0.13)

5.4.3 Numerical Experiments of Optimization of Time-Cost Tradeoffs

In this section, the DMCCR is not applied, i.e., whenever µi is changed, all arc lengths are

re-simulated. The DMCCR is not applied here for two reasons: (1) the number of simulation

replications N = 1000 is too small to get an accurate estimate using DMCCR for the case when

several µis are changed one by one; (2) for large enough N , e.g., N = 10000, the time complexity

of evaluating the ratio is relatively large compared to that of extra simulation runs without using

the DMCCR. For each randomly generated SAN, the KR algorithm and Bowman’s algorithm

[11] are compared for finding the optimal solution of time-cost tradeoff problems described in
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Problem (5.6). The parameter settings are: µ0
i is the original mean duration of activity i, costs

ai are uniformly generated between 1 and 20, ui = µ0
i , li = 0.2 ∗ µ0

i , criticality lower bound

t = 0.001, budget B = 0.2
∑

ai(ui − li). The parameter settings for the KR algorithm are:

number of simulation replications N = 1000, decreasing step α = 0.2, and criticality lower

bound t = 0.001, Taylor series approach is used in step 6 of the KR algorithm with N = 2 in

Equation (5.5). The parameter setting for Bowman’s algorithm are: simulation replication for

phase 1 and phase 2 are N1 = N2 = 1000, step of decreasing for phase 1 and phase 2 are

A1 = A2 = 0.1*Budget, upper limit of iteration times for phase 2 is M = 20. After finding the

solutions using the two different algorithms, 10,000 simulation replications are run for estimating

the mean and standard deviation of project completion time under the parameter settings obtained

through two algorithms. In Tables 5.7 - 5.8, the first two rows are the 95% confidence interval

(C.I.) of project completion time under the optimized parameters obtained by the KR algorithm

and Bowman’s algorithm. The third row is the 95% C.I. for the project completion time before

decreasing any mean duration. Rows 4 and 5 are the computation times for the optimization using

the two methods.

Table 5.7: Normal Distribution Optimal Project Completion Time Estimation (95% C.I. based
on 10,000 Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

KR 181.7 ± 0.74 239 ± 0.78 211.1 ± 0.8 232.3 ± 0.71 237.8 ± 0.74 253.4 ± 0.74
Bowman 183.1 ± 0.74 239.5 ± 0.78 210.7 ± 0.82 233 ± 0.68 238.1 ± 0.76 257 ± 0.74
Original 301.7 ± 0.84 391.7 ± 0.92 409.3 ± 1.02 405.9 ± 0.91 427.2 ± 0.98 474.8 ± 0.84
KR Time 65 199 127 371 692 2806
Bowman Time 128 286 543 795 1949 3942
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Table 5.8: Exponential Distribution Optimal Project Completion Time Estimation (95% C.I.
based on 10,000 Independent Replications)

Network Size

30 Nodes 50 Nodes 100 Nodes

60 Arcs 90 Arcs 100 Arcs 150 Arcs 200 Arcs 300 Arcs

KR 209.8 ± 1.08 278.3 ± 1.32 235.9 ± 1.19 291.1 ± 1.25 287.8 ± 1.2 318.9 ± 1.08
Bowman 208.6 ± 1.07 275.8 ± 1.29 232.3 ± 1.13 291.4 ± 1.22 288.4 ± 1.18 320.1 ± 1.07
Original 347.3 ± 1.7 460.8 ± 2.03 458.8 ± 2.02 499.9 ± 2.09 500.6 ± 1.95 595.9 ± 1.7
KR Time 22 177 82 248 567 2760
Bowman Time 70 209 315 450 2549 5148

From Tables 5.7 - 5.8, we can see that the KR algorithm is better than Bowman’s algorithm

in terms of computing speed, especially for large complex networks. However, in some cases, the

KR algorithm’s solution has a worse (larger) objective value compared with Bowman’s algorithm’s

solution, although in most cases the difference is relatively small compared to the original objective

function value. By decreasing α and t, we believe that the KR algorithm will converge to the

global optimal solution.

5.5 Future Research

Future research will focus on the local functional estimation of the variance of PCT using

the higher-order gradient estimator in Section 4.3. The higher-order gradient estimator in Section

4.3 and its application in estimating the change of variance of PCT due to large perturbation of

distribution parameters in the SAN will be tested on randomly generated ANs. By changing the

objective function of the time-cost tradeoffs problem to a linear combination of expected PCT

and variance of PCT, we can decrease uncertainty of the PCT by choosing the optimal decision

variables.

The PERT distribution [36] has been widely used in project management. Sensitivity
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analysis and time-cost tradeoffs optimization problems will be tested on SANs with activity

durations PERT distributed.

Theorem 1 only consider the case where the distribution parameters in SANs are either

location or scale parameters. Future work will focus on expanding Theorem 1 to the case that the

parameter of interest is neither a location nor a scale parameter, for example, characterizing tail

behavior in heavy-tailed distributions.
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Chapter 6: Optimal Crashing AN with Single Disruption

6.1 Problem Background

6.1.1 Crashing ANs

Crashing an activity means reducing the duration of the activity at some cost. Crashing an

activity network means reducing the PCT by crashing some activities in the network. Generally,

there are multiple crashing options. For example, let activity 1 be drilling a tunnel that has a fixed

duration of 1000 hours, and suppose there are two options for crashing activity 1: option 1 is

to have overtime work to reduce the duration by 0.05 percent for every extra working hour; and

option 2 is to use new materials that can reduce the duration by 1 percent for every ton of new

material used. The cost of overtime work is $5K/hr and the cost of new material is $200K/ton.

Assume a limit of 200 overtime working hours by law and 15 tons of new material. Let d1 to

denote the duration of activity 1; e11 = 0.0005 denotes the ratio of duration deduction per overtime

working hour applied; e21 = 0.01 denotes the ratio of duration deduction per ton of new material

applied; b11 = 5 denotes the cost of one overtime working hour; b21 = 200 denotes per ton price

of new material; θ11 denotes the amount of overtime hour spent and θ21 denotes the tons of new

material used. We also define the upper bound for overtime hours and new materials usage given

by θ̄11 = 200 and θ̄21 = 15.
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Now the project manager has $500K available for reducing the duration of activity 1,

among which $300K is allocated to option 1 (overtime work) and $200K is allocated to option

2 (new material). Then, the amount of overtime working hour is θ11 = 300/5 = 60 hours and

the tons of new material used is θ21 = 200/200 = 1 ton, which result in a total reduction for

activity 1 of 1000(θ11e
1
1 + θ21e

2
1) = 40 hours, so that the duration of activity 1 after crashing is

1000(1− (θ11e
1
1 + θ21e

2
1)) = 960 hours.

6.1.2 Disruptions

A stochastic disruption is an event that may occur at any time during the project and results

in a change—typically a significant change—in the system’s parameters [37]. Examples of

disruption are: Hurricane, Earthquake, Electrical Outage, Pandemic, Manual Strike, etc. When a

disruption happens before the completion of a project, it will affect (delay) some of the activities

in the project. We assume that a disruption can delay the duration of activities that start after the

disruption and does not change the duration of activities that start on and before the disruption.

For example, a project has 5 activities and their starting times are given by t1 = t2 = 0,

t3 = t4 = 5, t5 = 11, their durations are given by d1 = 5, d2 = 10, d3 = 6, d4 = 3, d5 = 1.

If a disruption occurs at time 3, it will delay activities 3, 4, and 5 by X3 = 50, X4 = 30, and

X5 = 150 respectively, so that the new durations for activities 3, 4, and 5 that have not started

becomes d3 + X3 = 56, d4 + X4 = 34, and d5 + X5 = 151. The disruption occurrence time

denoted by H is assumed to be continuous random variable with known distribution and support

[0,+∞). The delays associated with each activity caused by the disruption are denoted by {Xi}

and are independent continuous random variables with known distributions and support [0,+∞).
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It is also assumed that H and {Xi} are mutually independent. But when a disruption occurs, the

realizations of all delays {Xi} are known. For example, we estimate the damage of a hurricane

after its occurrence.

6.1.3 Crashing of ANs with a Single Disruption

Crashing an activity network with a single disruption is addressed by Yang and Morton

in [37]. For the example provided in Section 6.1.1, if activity 1 started after the occurrence of

the disruption (say, a hurricane), its duration is no longer 1000 hours. Due to the effect of the

hurricane, its duration is delayed by X1 = 2000 hours, so that the new duration of activity 1

is d1 + X1 = 3000 hours. For the same crashing budget allocation plan provided in Section

6.1.1, we have the duration of activity 1 after crashing given by (d1 +X1)(1− (θ11e
1
1 + θ21e

2
1)) =

3000 ∗ 0.94 = 2820.

For the project provided in Figures 1.1 and 1.2, we have the durations of activities given

by d1 = 5, d2 = 10, d3 = 6, d4 = 3, d5 = 1, and we have the starting time of activities

given by t1 = t2 = 0, t3 = t4 = 5, t5 = 11 (here we assume all activities start immediately

whenever feasible). Assume there is only one crashing option for each activity in Figure 1.2.

For the crashing and cost parameters, assume that e1i = b1i = 1, θ̄1i = 0.5,∀i ∈ {1, 2, 3, 4, 5}.

The budget is 2 and the crashing decision variables are θ11 = 0.5, θ12 = 0.5, θ13 = 0.5, θ14 = 0,

θ15 = 0.5, and the PCT after crashing is 6. When the disruption occurred at time 3, the durations

of activities 1 and 2 are unchanged, while the durations of activities 3, 4, and 5 are delayed by

X3 = 50, X4 = 30, and X5 = 150 such that their new durations are given by d3 + X3 = 56,

d4 + X4 = 34, and d5 + X5 = 151. Due to contract and other issues, the budget and resources
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are spent at the beginning of the activities and cannot be recalled once the activity started. Under

such restriction, when the disruption happen at 3, the value of θ11 and θ12 cannot be changed, and

we can only reallocate the rest of the budget (2-0.5-0.5=1) among activities 3, 4, and 5, which

have not yet started. The original values of θ13, θ14 and θ15 are not optimal, given the new durations

of activities 3, 4 and 5. Thus, we change the crashing decision variable of activities 3, 4, and 5 to

θ̃13 = 0.5, θ̃14 = 0 and θ̃15 = 0.5 to minimize the PCT.

The above example shows the minimization of PCT based on the remaining budget under

one scenario of H and random delays in the sample space. Our goal is to find a set of initial

crashing decision variables that minimize the expected PCT when the random disruption and

delays are taken into account.

6.2 Problem Formulation

We now present three different formulations for the problem in Section 6.1: a Stochastic

Programming (SP) formulation [38], a Mixed Integer Formulation proposed by Yang and Morton

[37], and a Piecewise Linear formulation [38]. We will show in Sections 6.3 and 6.4 that our SP

formulation can be used for a gradient descent method and in Section 6.6 that our SP formulation

can handle more situations.

6.2.1 Stochastic Programming Formulation

Before introducing the SP formulation of the optimal crashing of AN with single disruption,

the linear programming (LP) formulation of crashing ANs without disruption is first introduced

here. Materials of this section are from [38].
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6.2.1.1 Linear Programming Formulation of Optimal Crashing of ANs

In the A-on-N representation mode, the starting time of activities must satisfy the following

condition: for any directed arcs in the AN, the starting time of the head node of the arc is greater

than or equal to the summation of the starting time of the tail node of the arc and the duration of

the tail node. The LP formulation of the project in Figure 1.2 is provided below:

z∗ = min
θ

t6 (6.1)

s.t. t6 − t5 ≥ (1− θ5)d5

t6 − t4 ≥ (1− θ4)d4

t5 − t3 ≥ (1− θ3)d3

t5 − t2 ≥ (1− θ2)d2

t4 − t1 ≥ (1− θ1)d1

t3 − t1 ≥ (1− θ1)d1

θ1 + θ2 + θ3 + θ4 + θ5 ≤ B

0 ≤ θi ≤ 0.5 ∀i ∈ N

ti ≥ 0 ∀i ∈ N

In Problem (6.1), ti denotes the starting time of activity i, di denotes the duration of activity i and

θi denotes the amount of crashing option applied to activity i. The decision variables in Problem

(6.1) are {t1, t2, t3, t4, t5, t6, θ1, θ2, θ3, θ4, θ5}. For illustrative simplicity, we assume that there is

only one option for each activity and ei = bi = 1,∀i ∈ N = {1, 2, 3, 4, 5}. The first 6 constraints
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indicate that an activity cannot start until all of the activities it precedes are completed. The

objective function is the starting time of the dummy sink node, which is the PCT. Notice that the

starting time of the source dummy node t0 does not appear in the constraints, because constraints

including t0 are included in the last constraint.

6.2.1.2 Example of LP Formulation of Crashing AN with Disruption

Recall the example provided in Section 6.1.3, when a disruption happens at time 3, it

changed the duration of some activities and caused a redistribution of the remainder of the budget

based on the new durations. Thus, the LP formulation of the example provided in Section 6.1.3

is given below:

min t̃6 (6.2)

s.t. t̃6 − t̃5 ≥ (d5 +X5)(1− e5θ̃5) (Type I)

t̃6 − t4 ≥ (d4 +X4)(1− e4θ̃4) (Type II)

t̃5 − t3 ≥ (d3 +X3)(1− e3θ̃3) (Type II)

t̃5 − t2 ≥ d2(1− e2θ2) (Type III)

θ1 + θ2 + θ̃3 + θ̃4 + θ̃5 ≤ 1

0 ≤ θ̃3, θ̃4, θ̃5 ≤ 1

t̃3, t̃4, t̃5, t̃6 ≥ 0

In Problem (6.2), the decision variables are {t̃5, t̃6, θ̃3, θ̃4, θ̃5}, and {t2, t3, t4, θ1, θ2} are not decision

variables in Problem (6.2), but are feasible solutions from Problem (6.1). Notice that the starting
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times of activities 3, 4, 5, and 6 are uncertain, because they depend on the choice of the redistributed

crashing decision variables θ̃3, θ̃4, and θ̃5.

6.2.1.3 Stochastic Programming Formulation

From Sections 6.2.1.1 and 6.2.1.2, it is clear that our problem is a two-stage stochastic

programming problem. The general formulation is provided below. The first-stage problem is

given by:

z∗ = min
t,θ

g(t,θ) (6.3)

s.t. tk − ti ≥ di(1−
∑
j∈Ji

ejiθ
j
i ) ∀(i, k) ∈ A (6.3a)

∑
i∈I

∑
j∈Ji

bjiθ
j
i ≤ B (6.3b)

∑
j∈Ji

θji ≤ 1 ∀i ∈ N (6.3c)

0 ≤ θji ≤ θ̄ji ∀j ∈ Ji, i ∈ N (6.3d)

ti ≥ 0 ∀i ∈ N (6.3e)

In Problem (6.3), t and θ are the vector form of activity starting times and crashing decision

variables for all options of all activities. (t,θ) are the decision variables of Problem (6.3). A is

the set of all arcs in the AN,N is the set of nodes in the AN, and Ji is the set of crashing options

for activity i. Also g(t,θ) is defined as:

g(t,θ) = EX,H [f(t,θ,X, H)] (6.4)
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where f(t,θ,X, H) is a function of activity starting times and crashing decision variables from

the first-stage problem, and the realization of the random delay and disruption occurrence, defined

by the output as the optimal value of the second-stage problem given below:

f(t,θ,X, H) = min tND
I{qND

≤ H}+ t̃ND
I{qND

> H} (6.5)

s.t. tkI{qk ≤ H}+ t̃kI{qk > H} − (tiI{qi ≤ H}+ t̃iI{qi > H})

≥ (XiI{ti > H}+ di)

(1−
∑
j∈Ji

eji (θ
j
i I{ti ≤ H}+ θ̃ji I{ti > H})) ∀(i, k) ∈ A

(6.5a)∑
i∈N

∑
j∈Ji

bji (θ
j
i I{ti ≤ H}+ θ̃ji I{ti > H}) ≤ B (6.5b)

∑
j∈Ji

(θji I{ti ≤ H}+ θ̃ji I{ti > H}) ≤ 1 ∀i ∈ N

(6.5c)

0 ≤ θji I{ti ≤ H}+ θ̃ji I{ti > H} ≤ θ̄ji ∀i ∈ N , j ∈ Ji

(6.5d)

tiI{qi ≤ H}+ t̃iI{qi > H} ≥ 0 ∀i ∈ N

(6.5e)

In Problem (6.5), qk = max
i∈pred(k)

{ti}, qk is the node starting time the predecessor nodes of

node k that has the largest node (activity) starting time, where predecessor is defined in Section

1.2.6. In the second-stage Problem (6.5), all variables with a tilde are decision variables for the

second-stage problem and for variables without a tilde, they are either input of the function (first-
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stage decision variables) or parameters. In the second-stage Problem (6.5), the set of constraints

Table 6.1: Four Types of Second-stage Constraints

Types Constraint Range of H

Type I t̃k − t̃i ≥ (Xi + di)(1−
∑

j∈Ji
eji θ̃

j
i ) H < qi

Type II t̃k − ti ≥ (Xi + di)(1−
∑

j∈Ji
eji θ̃

j
i ) qi ≤ H < ti

Type III t̃k − ti ≥ di(1−
∑

j∈Ji
ejiθ

j
i ) ti ≤ H < qk

Type IV tk − ti ≥ di(1−
∑

j∈Ji
ejiθ

j
i ) qk ≤ H

in (6.5a) are classified into four mutually exclusive classes listed in Table 6.1. Notice that Type IV

is not included in the second-stage Problem (6.5a), because all variables in Type IV are first-stage

variables. Thus, for H fixed, each constraint in (6.5a) only belongs to one of the first three types

in Table 6.1. Given (t,θ) and H , we denote the set of activities in the second-stage Problem (6.5)

that belongs to Type i in Table 6.1 as AH
i , the set of activities with stochastic delayed durations

as NH
1 , and the set of activities with fixed durations as NH

2 . Then, we have that
4
∪
i=1
AH

i = A,

AH
i ∩ AH

j = ∅,∀i ̸= j and NH
1 ∪ NH

2 = N , NH
i ∩ NH

j = ∅. Examples of three types of

constraints are provided in Problem (6.2).

6.2.1.4 Further Formulation of the Two-stage SP Problem

Recall that the formulation in Section 6.2.1.3 has two sets of decision variables: the starting

time of activities t and the amount of crashing for each options of all activities θ. From the

constraints in first-stage Problem (6.3), we know that t and θ are not independent. Because

we want to apply gradient based optimization, it is desirable to have the set of decision variables

independent. As a result, the decision variable t is expressed as a function of θ and an independent

non-negative auxiliary variable ϵ. We express two equivalent formulas for calculating the activity
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starting time t:

t(θ, ϵ)[k] = max
i∈pred(k)

{
di(1−

∑
j∈Ji

ejiθ
j
i ) + t(θ, ϵ)[i]

}
+ ϵk, ∀k ∈ N , (6.6a)

t(θ, ϵ)[k] = max
P∈Pk

{ ∑
i∈P−{k}

di(1−
∑
j∈Ji

ejiθ
j
i ) + ϵi

}
+ ϵk, ∀k ∈ N . (6.6b)

In Equations (6.6a) and (6.6b), t(θ, ϵ) is a vector whose kth element is the starting time of activity

k, denoted by t(θ, ϵ)[k]. We always have that t(θ, ϵ)[0] = 0, d0 = 0 and ϵ0 = 0. Equation (6.6a)

is a recursive formula for calculating activity starting times, while Equation (6.6b) is another

formula for calculating activity starting times. For any feasible solution (t1,θ1), there exists ϵ1

such that t(θ1, ϵ1) = t1, and vice versa. Hence, using the formulation of t(θ, ϵ), we can transform

Problem (6.3) into an equivalent problem:

z∗ = min
θ,ϵ

g(t(θ, ϵ),θ) (6.7)

s.t.
∑
i∈N

∑
j∈Ji

bjiθ
j
i ≤ B (6.7a)

∑
j∈Ji

θji ≤ 1 ∀i ∈ N (6.7b)

0 ≤ θji ≤ θ̄ji ∀i ∈ N , j ∈ Ji (6.7c)

ϵi ≥ 0 ∀i ∈ N (6.7d)

Notice that in Problem (6.7) all constraints involving t are eliminated, because t(θ, ϵ) automatically

satisfies constraints (6.3a) and (6.3e). As a consequence, Equation (6.4) becomes:

g(t(θ, ϵ),θ) = EX,H [f(t(θ, ϵ),θ,X, H)] (6.4b)
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and the second-stage Problem (6.5) becomes:

f(t(θ, ϵ),θ,X, H) = min t(θ, ϵ)[ND]I{t(θ, ϵ)[N ′
D] ≤ H}+ t̃ND

I{t(θ, ϵ)[N ′
D] > H} (6.8)

s.t. t(θ, ϵ)[k]I{t(θ, ϵ)[k′] ≤ H}+ t̃kI{t(θ, ϵ)[k′] > H}

− (t(θ, ϵ)[i]I{t(θ, ϵ)[i′] ≤ H}+ t̃iI{t(θ, ϵ)[i′] > H})

≥ (XiI{t(θ, ϵ)[i] > H}+ di)
(
1−

∑
j∈Ji

eji (θ
j
i I{t(θ, ϵ)[i] ≤ H}

+ θ̃ji I{t(θ, ϵ)[i] > H})
)

∀(i, k) ∈ A (6.8a)∑
i∈N

∑
j∈Ji

bji (θ
j
i I{t(θ, ϵ)[i] ≤ H}+ θ̃ji I{t(θ, ϵ)[i] > H}) ≤ B

(6.8b)∑
j∈Ji

(θji I{t(θ, ϵ)[i] ≤ H}+ θ̃ji I{t(θ, ϵ)[i] > H}) ≤ 1 ∀i ∈ N

(6.8c)

0 ≤ θji I{t(θ, ϵ)[i] ≤ H}+ θ̃ji I{t(θ, ϵ)[i] > H} ≤ θ̄ji ∀i ∈ N , j ∈ Ji

(6.8d)

t(θ, ϵ)[i]I{t(θ, ϵ)[i′] ≤ H}+ t̃iI{t(θ, ϵ)[i′] > H} ≥ 0 ∀i ∈ N

(6.8e)

In Problem (6.8), k′ = argmax
i∈pred(k)

ti, i.e., k′ is the index of the predecessor node of node k that

has the largest starting time, similarly for i′. (θ, ϵ) are the first-stage decision variables from

Problem (6.8), and X is a realization of the random delays of durations of activities and H is the

occurrence time of the disruption. The SP problem formulated by (6.7) and (6.8) is equivalent

to the formulation (6.3) and (6.5). Notice that the two-stage stochastic programming problem is
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different from the commonly used two-stage SP in [39, 40], in the sense that indicator functions

are included.

Recall that in Section 5.3, we mentioned that the inequality constraint on the budget can

be replaced an equality constraint. The same can be done for constraint (6.7a) in Problem (6.7).

However, it is not trivial to check the validity for that reason that g(t(θ, ϵ),θ) is not a decreasing

function of θi for all i. Thus, the following Theorem is provided to validate the exchange of

inequality with equality in constraint (6.7a).

We define a new first-stage problem with its optimal value as a function of budget B:

z(B) = min
θ,ϵ

g(t(θ, ϵ),θ) (6.7S)

s.t.
∑
i∈N

∑
j∈Ji

bjiθ
j
i = B (6.7S.a)

∑
j∈Ji

θji ≤ 1 ∀i ∈ N (6.7S.b)

0 ≤ θji ≤ θ̄ji ∀i ∈ N , j ∈ Ji (6.7S.c)

ϵi ≥ 0 ∀i ∈ N (6.7S.d)

Theorem 2. z(B) is a decreasing function of B.

Proof. Proof of Theorem 2. We first present Algorithm 4 for allocating extra budget δ > 0.

Notice that in Problem (6.8), the index sets AH
i , i = 1, 2, 3, 4 and NH

i , i = 1, 2 all depend

on (θ, ϵ, H). Let Ω be the sample space of (X, H), OH
k = {(i, j)|i ∈ NH

k , j ∈ Ji}. Let

B̄ =
∑

i∈N
∑

j∈Ji b
j
i θ̄

j
i , for any B′ ∈ [0, B̄] and δ ∈ [0, B̄ − B′] fixed, we want to show that

z(B′) ≤ z(B′ + δ). For B = B′, its associated optimal solution is (θ∗, ϵ∗). Notice the difference
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Algorithm 4: Allocate Extra Budget
Input : θ∗,ϵ∗,δ
Output: θ

1 n← 0
2 θ← θ∗

3 ϵ← ϵ∗

4 while δ > 0 do
5 in ← argmax

i
{t(θ, ϵ)[i]|∃j ∈ Ji, θ

j
i < θ̄ji and

∑
j∈Ji θ

j
i < 1}

6 jn ← argmax
j
{bjin|θ

j
in
< θ̄jin}

7 δn ← min{θ̄jnin − θjnin ,
δ

bjnin
, 1−

∑
j∈Jin ,j ̸=jn

θji }

8 θjnin ← θjnin + δn
9 ϵi ← 0, ∀i ∈ {i|t(θ, ϵ)[i] > t(θ, ϵ)[in]}

10 θ(n) ← θ; ϵ(n) ← ϵ; δ ← δ − δn
11 n← n+ 1

12 end

between Problem (6.7S) and Problem (5.6): the objective function is (5.6) is a decreasing function

of each coordinate decision variables, which is not true for Problem (6.7S); increasing a crashing

decision variable in (6.7S) may increase the objective function. As a result, we need a way to

allocate the extra budget so that the objective function decreases, and Algorithm 4 provides a way

of allocating the extra budget. Assume we have δ extra budget to allocate, we allocate δ based on

the Algorithm 4:

Assume when Algorithm 4 stops, n = m ≥ 1 and θ(k) is the θ value after kth iteration of

Algorithm 4. Next we will show that the above algorithm will generate a new crashing decision

variable θ(m) such that g(t(θ(m), ϵ∗),θ(m)) ≤ g(t(θ∗, ϵ∗),θ∗) and
∑

i∈N
∑

j∈Ji b
j
iθ

j(m)
i = B + δ,

where {θj(m)
i } are elements of θ(m).

Let k = 0, for each (X, H) ∈ Ω, we have

f(t(θ(0), ϵ(0)),θ(0),X, H)
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= inf
0≤θ̃ji≤θ̄ji ,∀(i,j)∈O

H
1 (θ(0),ϵ(0))∑

j∈Ji
θ̃ji≤1,∀i∈NH

1 (θ(0),ϵ(0))∑
θ̃ji

(i,j)∈OH
1 (θ(0),ϵ(0))

≤B+δ0−
∑

θ
j(0)
i

(i,j)∈OH
2 (θ(0),ϵ(0))

max
P∈PND

{ ∑
i∈P∩NH

2 (θ(0),ϵ(0))

(
di(1−

∑
j∈Ji

ejiθ
j(0)
i ) + ϵ

(0)
i

)

+
∑

i∈P∩NH
1 (θ(0),ϵ(0))

(di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i )

}
(T2.a)

= inf
0≤θ̃ji≤θ̄ji ,∀(i,j)∈O

H
1 (θ(0),ϵ(0))∑

j∈Ji
θ̃ji≤1,∀i∈NH

1 (θ(0),ϵ(0))∑
θ̃ji

(i,j)∈OH
1 (θ(0),ϵ(0))

≤B−
∑

θj∗i
(i,j)∈OH

2 (θ(0),ϵ(0))

max
P∈PND

{ ∑
i∈P∩NH

2 (θ∗,ϵ∗)

(
di(1−

∑
j∈Ji

ejiθ
j(0)
i ) + ϵ

(0)
i

)
+

∑
i∈P∩NH

1 (θ(0),ϵ(0))

(di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i ) +

∑
i∈P∩(NH

2 (θ(0),ϵ(0))−NH
2 (θ∗,ϵ∗))

(
di(1−

∑
j∈Ji

ejiθ
j(0)
i ) + ϵ

(0)
i

)}

(T2.b)

= inf
0≤θ̃ji≤θ̄ji ,∀(i,j)∈O

H
1 (θ(0),ϵ(0))∑

j∈Ji
θ̃ji≤1,∀i∈NH

1 (θ(0),ϵ(0))∑
θ̃ji

(i,j)∈OH
1 (θ(0),ϵ(0))

≤B−
∑

θj∗i
(i,j)∈OH

2 (θ(0),ϵ(0))

max
P∈PND

{ ∑
i∈P∩NH

2 (θ∗,ϵ∗)

(
di(1−

∑
j∈Ji

ejiθ
j(0)
i ) + ϵ

(0)
i

)
+

∑
i∈P∩NH

1 (θ(0),ϵ(0))

(di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i ) +

∑
i∈P∩(NH

2 (θ(0),ϵ(0))−NH
2 (θ∗,ϵ∗))

di(1−
∑
j∈Ji

ejiθ
j(0)
i )

}

(T2.c)

≤ inf
0≤θ̃ji≤θ̄ji ,∀(i,j)∈O

H
1 (θ∗,ϵ∗)∑

j∈Ji
θ̃ji≤1,∀i∈NH

1 (θ∗,ϵ∗)∑
θ̃ji

(i,j)∈OH
1 (θ∗,ϵ∗)

≤B−
∑

θj∗i
(i,j)∈OH

2 (θ∗,ϵ∗)

max
P∈PND

{ ∑
i∈P∩NH

2 (θ∗,ϵ∗)

(
di(1−

∑
j∈Ji

ejiθ
j∗
i ) + ϵ∗i

)
+

∑
i∈P∩NH

1 (θ(0),ϵ(0))

(di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i ) +

∑
i∈P∩(NH

2 (θ(0),ϵ(0))−NH
2 (θ∗,ϵ∗))

(di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i )

}

(T2.d)

= inf
0≤θ̃ji≤θ̄ji ,∀(i,j)∈O

H
1 (θ∗,ϵ∗)∑

j∈Ji
θ̃ji≤1,∀i∈NH

1 (θ∗,ϵ∗)∑
θ̃ji

(i,j)∈OH
1 (θ∗,ϵ∗)

≤B−
∑

θj∗i
(i,j)∈OH

2 (θ∗,ϵ∗)

max
P∈PND

{ ∑
i∈P∩NH

2 (θ∗,ϵ∗)

(
di(1−

∑
j∈Ji

ejiθ
j∗
i ) + ϵ∗i

)
+
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∑
i∈P∩NH

1 (θ∗,ϵ∗)

(di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i )

}
(T2.e)

=f(t(θ∗, ϵ∗),θ∗,X, H).

Equation (T2.a) is the piecewise linear form of f(t(θ(0), ϵ(0)),θ(0),X, H). At each iteration of

Algorithm 4, one of θji is increased to its upper bound. By increasing θji , the duration of activity

i is decreased, as a result reducing the starting time of some of the activities that originally start

after activity i. Hence, after the first iteration of Algorithm 4, for a fixed disruption occurrence

time H , the set of activities starts after H is getting smaller, i.e., NH
1 (θ(0), ϵ(0)) is smaller than

NH
1 (θ∗, ϵ∗). We also have the following:

NH
1 (θ(0), ϵ(0)) ∪NH

2 (θ(0), ϵ(0)) = NH
1 (θ∗, ϵ∗) ∪NH

2 (θ∗, ϵ∗) = N ,

NH
1 (θ(0), ϵ(0)) ⊂ NH

1 (θ∗, ϵ∗)

⇒NH
2 (θ∗, ϵ∗) ⊂ NH

2 (θ(0), ϵ(0)),

NH
1 (θ∗, ϵ∗)−NH

1 (θ(0), ϵ(0)) = NH
2 (θ(0), ϵ(0))−NH

2 (θ∗, ϵ∗)

⇒IH2 (θ(0), ϵ(0)) = NH
2 (θ∗, ϵ∗) ∪ (NH

2 (θ(0), ϵ(0))−NH
2 (θ∗, ϵ∗)),

NH
1 (θ∗, ϵ∗) = NH

1 (θ(0), ϵ(0)) ∪ (NH
2 (θ(0), ϵ(0))−NH

2 (θ∗, ϵ∗)), (T2.f)

⇒OH
2 (θ

(0), ϵ(0)) = OH
2 (θ

∗, ϵ∗) ∪ (OH
2 (θ

(0), ϵ(0))−OH
2 (θ

∗, ϵ∗)),

OH
1 (θ

∗, ϵ∗) = OH
1 (θ

(0), ϵ(0)) ∪ (OH
2 (θ

(0), ϵ(0))−OH
2 (θ

∗, ϵ∗)). (T2.g)

From (T2.a) to (T2.b) is a result of decomposing NH
1 (θ(0), ϵ(0)) into two parts using Equation

(T2.f). Based on the choice of in in Algorithm 4, for all activities starting after activity in, their

corresponding ϵi all equal to 0 and their crashing parameters {θji } all at their maximum. Also,
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we have

ti(θ
∗, ϵ∗) > ti0(θ

∗, ϵ∗), ∀i ∈ P ∩ (NH
2 (θ(0), ϵ(0))−NH

2 (θ∗, ϵ∗))

⇒ϵ
(0)
i = 0, θ̃ji ≤ θ

j(0)
i , ∀(i, j) ∈ OH

2 (θ
(0), ϵ(0))−OH

2 (θ
∗, ϵ∗) (T2.h)

⇒di(1−
∑
j∈Ji

ejiθ
j(0)
i ) ≤ (di +Xi)(1−

∑
j∈Ji

eji θ̃
j
i ), ∀i ∈ P ∩ (NH

2 (θ(0), ϵ(0))−NH
2 (θ∗, ϵ∗)),

(T2.i)

it is clear that (T2.b) equals to (T2.c). For every feasible solution of the minimization problem

(T2.d), {θ̃ji }(i,j)∈OH
1 (θ∗,ϵ∗), we have

∑
θ̃ji

(i,j)∈OH
1 (θ∗,ϵ∗)

≤ B −
∑

θj∗i
(i,j)∈OH

2 (θ∗,ϵ∗)

⇒
∑

θ̃ji
(i,j)∈OH

1 (θ(0),ϵ(0))

≤ B −
∑

θj∗i
(i,j)∈OH

2 (θ∗,ϵ∗)

−
∑

θ̃ji
(i,j)∈OH

2 (θ(0),ϵ(0))−OH
2 (θ∗,ϵ∗)

⇒
∑

θ̃ji
(i,j)∈OH

1 (θ(0),ϵ(0))

≤ B −
∑

θj∗i
(i,j)∈OH

2 (θ∗,ϵ∗)

−
∑

θ
j(0)
i

(i,j)∈OH
2 (θ(0),ϵ(0))−OH

2 (θ∗,ϵ∗)

⇒
∑

θ̃ji
(i,j)∈OH

1 (θ(0),ϵ(0))

≤ B −
∑

θj∗i
(i,j)∈OH

2 (θ∗,ϵ∗)

−
∑

θj∗i
(i,j)∈OH

2 (θ(0),ϵ(0))−OH
2 (θ∗,ϵ∗)

⇒
∑

θ̃ji
(i,j)∈OH

1 (θ(0),ϵ(0))

≤ B −
∑

θ
j(0)
i

(i,j)∈OH
2 (θ(0),ϵ(0))

, (T2.j)

(T2.j) shows that for each feasible solutions of the minimization Problem (T2.d), it is also feasible

in Problem (T2.c), i.e., the feasible region of Problem (T2.d) is smaller than or equal to that of

Problem (T2.c). From (T2.i), we also have that for each element in the Max function (for each

path in the network), its corresponding value (its path length) of (T2.d) is smaller than or equal

to that of (T2.c). In conclusion, we have checked the validity from (T2.c) to (T2.d).
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Repeat (T2.a) to (T2.e) for {(θ(k), ϵ(k))}mk=1, then we have

∀(X, H) ∈ Ω,∀1 ≤ k ≤ m, f(t(θ(k), ϵ(k)),θ(k),X, H) ≤ f(t(θ(k−1), ϵ(k−1)),θ(k−1),X, H)

∀(X, H) ∈ Ω, f(t(θ(0), ϵ(0)),θ(0),X, H) ≤ f(t(θ∗, ϵ∗),θ∗,X, H)

⇒∀(X, H) ∈ Ω, f(t(θ(m), ϵ(m)),θ(m),X, H) ≤ f(t(θ∗, ϵ∗),θ∗,X, H)

⇒EX,H [f(t(θ(m), ϵ(m)),θ(m),X, H)] ≤ EX,H [f(t(θ∗, ϵ∗),θ∗,X, H)]

⇒g(t(θ(m), ϵ(m)),θ) ≤ g(t(θ∗, ϵ∗),θ)

⇒z(B + δ) ≤ z(B)

In conclusion, z(B) is a decreasing function of B.

Applying Theorem 2, Problems (6.7S) and (6.7) are equivalent. Then, our final two-stage

stochastic programming formulation with indicator functions included is given by Problem (6.7S)

and (6.8).
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6.2.2 Mixed Integer Formulation

Yang and Morton provided a discrete mixed integer version of formulation of Problem (6.3)

and (6.5) in [37]. The problem is given below:

z∗ = min
t,θ

p0tND
+
∑
ω∈Ω

pωfω(t,θ) (6.9)

s.t. tk − ti ≥ di(1−
∑
j∈Ji

ejiθ
j
i ) ∀(i, k) ∈ A (6.9a)

∑
i∈N

∑
j∈Ji

bjiθ
j
i ≤ B (6.9b)

∑
j∈Ji

θji ≤ 1 ∀i ∈ N (6.9c)

0 ≤ θji ≤ θ̄ji ∀i ∈ N , j ∈ Ji (6.9d)

ti ≥ 0 ∀i ∈ N (6.9e)

And the second-stage problem corresponding to Problem (6.5) is given by:

fω (̂t, θ̂) = min
t̂,θ̂

tND
(6.10)

s.t. Hω +MGi ≥ ti ∀i ∈ N (6.10a)

Hω −M(1−Gi) ≤ ti ∀i ∈ N (6.10b)

ti +M ′Gi ≥ t̂i ∀i ∈ N (6.10c)

ti −M ′Gi ≥ t̂i ∀i ∈ N (6.10d)

θji + θ̄jiGi ≥ θ̂ji ∀i ∈ N , j ∈ Ji (6.10e)

θji − θ̄jiGi ≤ θ̂ji ∀i ∈ N , j ∈ Ji (6.10f)
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tk − ti ≥ di +Xω
i Gi

−
∑
j∈Ji

die
j
iθ

j
i −

∑
j∈Ji

Xω
i e

j
iz

j
i ∀(i, k) ∈ A (6.10g)

∑
i∈I

∑
j∈Ji

bjiθ
j
i ≤ B (6.10h)

∑
j∈Ji

θji ≤ 1 ∀i ∈ N (6.10i)

zji ≤ θ̄jiGi ∀i ∈ N , j ∈ Ji (6.10j)

zji ≤ θji ∀i ∈ N , j ∈ Ji (6.10k)

zji ≤ θji + θ̄ji (Gi − 1) ∀i ∈ N , j ∈ Ji (6.10l)

ti ≥ 0 ∀i ∈ N (6.10m)

ti ≥ HωGi ∀i ∈ N (6.10n)

0 ≤ θji ≤ θ̄ji ∀i ∈ N , j ∈ Ji (6.10o)

0 ≤ zji ≤ 1 ∀i ∈ N , j ∈ Ji (6.10p)

Gi ∈ {0, 1} ∀i ∈ N , (6.10q)

where in Problem (6.10), p0 is the probability that disruption will not happen, ω is a scenario in

the sample space of stochastic duration delays X and disruption occurrence H . In Problem (6.10),

{t̂i} are first stage variables and {ti} are second stage variables, Gi equals 1 if activity i starts

after the disruption occurrence and equals 0 otherwise. M and M ′ are constants, sufficiently large

positive numbers. Constraints (6.10c) - (6.10f) guarantee that for activities not affected by the

disruption (start before the disruption), their starting time and crashing decision equal the first-

stage decision values in Problem (6.8). Constraint (6.10n) restricts the second-stage starting time

96



of activities to be no later than the disruption occurrence time. For each activity i, its duration

becomes (di+XiGi)(1−
∑

j∈Ji e
j
iθ

j
i ), which expands to the right hand side of constraint (6.10g).

Notice that (di+XiGi)(1−
∑

j∈Ji e
j
iθ

j
i ) contains bilinear terms {Giθ

j
i }, which are linearized using

variable zji , and constraints (6.10j) - (6.10l).

Yang and Morton [37] also provide an extensive formulation of the two-stage stochastic

mixed integer programming, which is presented below:

z∗ = min
t,θ

p0tND
+
∑
ω∈Ω

pωfω(t,θ) (6.11)

s.t. tk − ti ≥ di(1−
∑
j∈Ji

ejiθ
j
i ) ∀(i, k) ∈ A (6.11a)

∑
i∈N

∑
j∈Ji

bjiθ
j
i ≤ B (6.11b)

∑
j∈Ji

θji ≤ 1 ∀i ∈ N (6.11c)

Hω +MGω
i ≥ ti ∀i ∈ N , ω ∈ Ω (6.11d)

Hω −M(1−Gω
i ) ≤ ti ∀i ∈ N , ω ∈ Ω (6.10e)

tωi +M ′Gω
i ≥ ti ∀i ∈ N , ω ∈ Ω (6.10f)

tωi −M ′Gω
i ≤ ti ∀i ∈ N , ω ∈ Ω (6.10g)

θjωi + θ̄jiG
ω
i ≥ θji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.10h)

θjωi − θ̄jiG
ω
i ≥ θji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.10i)

tωk − tωi ≥ di +Xω
i G

ω
i

−
∑
j∈Ji

die
j
iθ

jω
i −

∑
j∈Ji

Xω
i e

j
iz

jω
i ∀(i, k) ∈ A, ω ∈ Ω (6.11j)

∑
i∈N

∑
j∈Ji

bjiθ
jω
i ≤ B ∀ω ∈ Ω (6.11k)
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∑
j∈Ji

θjωi ≤ 1 ∀i ∈ N , ω ∈ Ω (6.11l)

zjωi ≤ θ̄jiG
ω
i ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.11m)

zjωi ≤ θji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.11n)

zjωi ≤ θji + θ̄ji (G
ω
i − 1) ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.11o)

ti ≥ 0 ∀i ∈ N (6.11p)

tωi ≥ HωGω
i ∀i ∈ N , ω ∈ Ω (6.11q)

0 ≤ θji ≤ θ̄ji ∀i ∈ N , j ∈ Ji (6.11r)

0 ≤ θjωi ≤ θ̄ji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.11s)

0 ≤ zjωi ≤ 1 ∀i ∈ N , j ∈ Ji (6.11t)

Gω
i ∈ {0, 1} ∀i ∈ N , ω ∈ Ω. (6.11u)

Notice that in the formulation (6.11), it is assumed that the sample space of stochastic delay

of activities’ durations and disruption occurrence has a finite number of elements, where ω

in Problem (6.11) stands for a scenario in the sample space. Then Problem (6.11) can be

solved using Sample Average Approximation (SAA). Yang and Morton proved that Problem

(6.11) is NP-hard even with a single disruption scenario that occurs with probability one at

time zero [37]. As a result, they formulate the problem as a two-stage stochastic mixed integer

programming problem using (6.9) and (6.10) and develop a branch-and-cut decomposition SAA

based algorithm to solve (6.9) and (6.10) [37].
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6.2.3 Difference between SP and Mixed Integer Formulations

The two-stage stochastic programming formulation in (6.3) and (6.5) is different from the

two-stage mixed integer formulation in (6.9) and (6.10) in two ways: (1) Yang and Morton’s [37]

formulation assumes the event that disruption will not happen has a positive probability, not just

that the support of the density function of disruption occurrence time is from 0 to positive infinity;

our formulation in Section 6.2.1 does not have this assumption; (2) The criterion determining the

starting time of activity i a first-stage or second-stage decision variable in two formulations are

different. In Yang and Morton’s [37] two-stage mixed integer formulation, the criterion is whether

or not: activity i starts before the disruption. While in our formulation, the criterion is whether

or not: all of activity i’s predecessor nodes (activities) start before the disruption.

For the first difference between the two formulations, the objective function of Problem

(6.7S) can be adjusted by adding one more term to accommodate the difference. That is, the

objective function in Problem (6.3) is adjusted to:

p0tND
+ (1− p0)EX,H [f(t,θ,X, H)]

For the second difference, our formulation in Problem (6.5) can be changed to accommodate
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Problem (6.10) and is provided by

f(t,θ,X, H) = min tND
I{tND

≤ H}+ t̃ND
I{tND

> H} (6.5A)

s.t. tkI{tk ≤ H}+ t̃kI{tk > H} − (tiI{ti ≤ H}+ t̃iI{ti > H})

≥ (XiI{ti > H}+ di)

(1−
∑
j∈Ji

eji (θ
j
i I{ti ≤ H}+ θ̃ji I{ti > H})) ∀(i, k) ∈ A

(6.5A.a)∑
i∈N

∑
j∈Ji

bji (θ
j
i I{ti ≤ H}+ θ̃ji I{ti > H}) ≤ B (6.5A.b)

∑
j∈Ji

(θji I{ti ≤ H}+ θ̃ji I{ti > H}) ≤ 1 ∀i ∈ N

(6.5A.c)

0 ≤ θji I{ti ≤ H}+ θ̃ji I{ti > H} ≤ θ̄ji ∀i ∈ N , j ∈ Ji

(6.5A.d)

tiI{ti ≤ H}+ t̃iI{ti > H} ≥ I{ti > H}H ∀i ∈ N .

(6.5A.e)

The difference between Problem (6.5A) and Problem (6.5) is that in (6.5A), all {qi} are replaced

by {ti}, and the RHS of constraint (6.5e) becomes I{ti > H}H in constraint (6.5A.e). Although

Problem (6.5A) is equivalent to Problem (6.5), we prefer Problem (6.5) over Problem (6.5A),

because in the next section, we need f(t,θ,X, H) to not depend on H once the interval in which

H falls is known, and the term I{ti > H}H in constraint (6.5A.e) precludes this.
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6.2.4 Piecewise Linear Formulation

The piecewise linear formulation takes advantage of the fact that PCT is the maximum

of all path lengths in the AN. Notice that there are also constraints about the budget, crashing

decision variables bounds, etc. We have seen the piecewise linear formulation in the proof of

Theorem 2. The piecewise linear formulation is given by:

g(t(θ, ϵ),θ)

=inf
E1

EX,H

[
inf
E2

max
P∈PND

{∑
i∈P

(XiI{t(θ, ϵ)[i′] > H}+ di)
(
1−

∑
j∈Ji

eji (θ
j
i I{t(θ, ϵ)[i′] ≤ H}

+ θ̃ji I{t(θ, ϵ)[i′] > H})
)}]

(6.12)

where E1 denotes constraints (6.7a) - (6.7d) and E2 denotes constraints (6.8b) - (6.8d).

6.3 Stochastic Gradient Estimation

The materials in Sections 6.3 - 6.7 are from [38]. In the next section, we develop a

simulation optimization algorithm that is based on a stochastic gradient estimated by Monte Carlo

simulation. A simulation-based approach to two-stage stochastic programming with recourse was

first proposed by [41]. In this section, we need to derive an unbiased stochastic gradient estimator

for the gradient of g(t(θ, ϵ),θ), the objective function in Problem (6.7S). The difference between

two-stage stochastic programming with recourse [39, 40] and the problem setting in this paper is

that there are indicator functions of the first-stage variables in the second-stage problem in our

problem formulation. In our formulation, whether a variable belongs to the first stage or second
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stage depends on the independent random event called the disruption. The indicator function

increases the complexity of the problem and also creates new technical challenges in deriving a

stochastic gradient estimator. There are two challenges in deriving an unbiased gradient estimator

for g(t(θ, ϵ),θ): (1) function inside the expectation f(t(θ, ϵ),θ,X, H) does not have a closed

form; moreover, if we express f(t(θ, ϵ),θ,X, H) in the piecewise linear form in Section 6.2.4,

the derivative variable appears both in the feasible region and objective function; (2) There are

indicator functions in f(t(θ, ϵ),θ,X, H) in all formulations. As for the first challenge, Shipario

et al. [41] proposed a gradient-based algorithm for solving stochastic programming problems.

As for the second challenge, in Section 6.3.1, we [38] propose an unbiased estimator of the

stochastic gradient by pushing the first-stage variables out of the indicator function and moving it

into the measure of the disruption. Using the unbiased stochastic gradient estimator and KKT

condition, we propose a gradient-based simulation optimization algorithm for the two-stage

stochastic mixed integer programming problem with constraints. Our estimator and algorithm

can be extended to more generalized multi-stage stochastic programming problems with indicator

functions included in both the objective function and constraints.

6.3.1 Conditional Expectation and Gradient

The key to estimate the stochastic gradient ∇g(t(θ, ϵ),θ) is to estimate the stochastic

gradient of Equation (6.4b): ∇EX,H [f(t(θ, ϵ),θ,X, H)]. Notice that the constraints in Problem

(6.8) all include indicator functions of disruption happening time H and first stage variable (θ, ϵ).

Thus, we will estimate ∇EX,H [f(t(θ, ϵ),θ,X, H)] by conditioning on H . For a given fixed set

of crashing decision θ and ϵ, the activity starting times of all activities without disruption can be
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calculated using Equations (6.6a) or (6.6b). The activity starting times are denoted by (vector)

t(θ, ϵ) = [t0, t1, t2, ..., tND
]. Reorder the element of t(θ, ϵ) in ascending order so that t(k)(θ, ϵ)

is the kth smallest element of t. We define the event E(m) = {t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)}

for 1 ≤ m ≤ ND − 1, and E(ND) = {t(ND−1)(θ, ϵ) < H}. By conditioning on E(m) and

unconditioning, we rewrite Equation (6.4b) as:

g(t(θ, ϵ),θ) =
ND∑
m=0

E[f(t(θ, ϵ),θ,X, H)|E(m)]P(E(m)) (6.4c)

and for θji and ϵi such that g(t(θ, ϵ),θ) is differentiable, the gradient of g(t(θ, ϵ),θ) is calculated

as:

∂g(t(θ, ϵ),θ)
∂θji

=

ND∑
m=1

{
∂E[f(t(θ, ϵ),θ,X, H)|E(m)]

∂θji
P(E(m))

+ E[f(t(θ, ϵ),θ,X, H)|E(m)]
(
fH(t

(m)(θ, ϵ))
∂t(m)(θ, ϵ)

∂θji
− fH(t

(m−1)(θ, ϵ))
∂t(m−1)(θ, ϵ)

∂θji

)}
,

(6.13a)

∂g(t(θ, ϵ),θ)
∂ϵi

=

ND∑
m=1

{
∂E[f(t(θ, ϵ),θ,X, H)|E(m)]

∂ϵi
P(E(m))

+ E[f(t(θ, ϵ),θ,X, H)|E(m)]
(
fH(t

(m)(θ, ϵ))
∂t(m)(θ, ϵ)

∂ϵi
− fH(t

(m−1)(θ, ϵ))
∂t(m−1)(θ, ϵ)

∂ϵi

)}
.

(6.13b)

Notice that Equations (6.13a) and (6.13b) are valid for a given feasible θji and ϵi if small perturbation

of θji and ϵi does not change the order of elements of t(θ, ϵ), which is true if there are no ties
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in t(θ, ϵ). If there are ties in t(θ, ϵ), only a one-sided gradient exists for Equation (6.13a) and

(6.13b). To make Equation (6.13a) valid for estimating the one sided gradient ∂g(t(θ,ϵ),θ)
∂θj−i

, the

elements in t(θ, ϵ) that have the same value need to be ordered in a way such that t(θ, ϵ)[n] ≤

t(θ, ϵ)[m], if ∂t(θ,ϵ)[n]

θj−i
≤ ∂t(θ,ϵ)[m]

θj−i
, the same for ∂g(t(θ,ϵ),θ)

∂θj+i
, ∂g(t(θ,ϵ),θ)

∂ϵ+i
, and ∂g(t(θ,ϵ),θ)

∂ϵ−i
. In Equations

(6.13a) and (6.13b), there are three parts requiring Monte Carlo simulation to estimate:

∂E[f(t(θ, ϵ),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]
∂θji

, (6.14a)

∂E[f(t(θ, ϵ),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]
∂ϵi

, (6.14b)

and

E[f(t(θ, ϵ),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]. (6.15)

6.3.2 Stochastic Gradient Estimator

Conditioning on t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ), we have that Problem (6.8) becomes:

f(t(θ, ϵ),θ,X, H) = min t̃ND
(P.0)

s.t. t̃k − t̃i ≥ (di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i ) ∀(i, k) ∈ AH

1 (P.0a)

t̃k − t(θ, ϵ)[i] ≥ (di +Xi)(1−
∑
j∈Ji

eji θ̃
j
i ) ∀(i, k) ∈ AH

2 (P.0b)

t̃k − t(θ, ϵ)[i] ≥ di(1−
∑
j∈Ji

ejiθ
j
i ) ∀(i, k) ∈ AH

3 (P.0c)

∑
i∈IH1

∑
j∈Ji

bji θ̃
j
i +

∑
i∈NH

2

∑
j∈Ji

bjiθ
j
i ≤ B (P.0d)
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∑
j∈Ji

θ̃ji ≤ 1 ∀i ∈ NH
1 (P.0e)

θ̃ji ≤ θ̄ji ∀i ∈ NH
1 ,∀j ∈ Ji

(P.0f)

θ̃ji ≥ 0 ∀i ∈ NH
1 ,∀j ∈ Ji

(P.0g)

t̃i ≥ 0 ∀i ∈ NH
1 (P.0h)

Transforming Problem (P.0) into canonical form, we have:

−max − t̃ND
(P.1)

s.t. − t̃k + t̃i − (di +Xi)
∑
j∈Ji

eji θ̃
j
i ≤ −di −Xi ∀(i, k) ∈ AH

1 (P.1a)

− t̃k − (di +Xi)
∑
j∈Ji

eji θ̃
j
i ≤ −t(θ, ϵ)[i] − di −Xi ∀(i, k) ∈ AH

2 (P.1b)

− t̃k ≤ −t(θ, ϵ)[i] + di
∑
j∈Ji

ejiθ
j
i − di ∀(i, k) ∈ AH

3 (P.1c)

∑
i∈NH

1

∑
j∈Ji

bji θ̃
j
i ≤ B −

∑
i∈NH

2

∑
j∈Ji

bjiθ
j
i (P.1d)

∑
j∈Ji

θ̃ji ≤ 1 ∀i ∈ NH
1 (P.1e)

θ̃ji ≤ θ̄ji ∀i ∈ NH
1 ,∀j ∈ Ji (P.1f)

θ̃ji ≥ 0 ∀i ∈ NH
1 , ∀j ∈ Ji (P.1g)

t̃i ≥ 0 ∀i ∈ NH
1 (P.1h)
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Assuming the regularity conditions for exchanging derivative and expectation are satisfied for

Equations (6.14a) and (6.14b), our next goal is to estimate:

∂f(t(θ, ϵ),θ,X, H)

∂θji
and

∂f(t(θ, ϵ),θ,X, H)

∂ϵi
(6.16)

given that t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ). Although under the condition that t(m−1)(θ, ϵ) < H ≤

t(m)(θ, ϵ), we do not have a closed form for the function f(t(θ, ϵ),θ,X, H), we can still estimate

its derivative. Notice that f(t(θ, ϵ),θ,X, H) in Problem (P.1) is a function whose output is the

optimal value of a linear programming and whose input are the parameters of the RHS of the

constraints of the LP. From [42], the sensitivity analysis of RHS of LP constraints, we have that

for a small perturbation of the RHS of a constraint of in an LP problem, its optimal solution’s

change equals the perturbation times its corresponding shadow price.

Notice that ∂t(θ,ϵ)[k]
∂θji

may not exist if there are ties of the length of paths that start from

source node and end at node k, i.e., two paths in Pk have the same length and activity i only

appears on one path. As a result of that, only the following two one-sided gradient always exist

∂f(t(θ, ϵ),θ,X, H)

∂θj±i
and

∂f(t(θ, ϵ),θ,X, H)

∂ϵ±i
. (6.17)

Notice that for a given m ≥ 1, when t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ), f(t(θ, ϵ),θ,X, H) does not

depend on H . Also notice that there is only one element in AH
2 . For m fixed and t(m−1)(θ, ϵ) <
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H ≤ t(m)(θ, ϵ), we have the gradient estimators of (6.17) given by:

∂f(t(θ, ϵ),θ,X, H)

∂θj±i
=

∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∂t(θ, ϵ)[i′]
∂θj±i

y∗nt(i′,k′) −
∑

(i′,k′)∈AH
3

i′=i

die
j
iy

∗
nt(i′,k′) + bjiy

∗
Nc
,

(6.18A)

∂f(t(θ, ϵ),θ,X, H)

∂ϵ±i
=

∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∂t(θ, ϵ)[i′]
∂ϵ±i

y∗nt(i′,k′), (6.18B)

where nt is a mapping such that nt(i, j) is the constraint number in (P.1a) and (P.1b) that corresponds

to arc (i, j), Nc is the constraint numbers associated with (P.1c) in Problem (P.1), and y∗nt(i,j)
and

y∗Nc
are the optimal solutions of the dual problem of (P.1) corresponding to the nt(i, j)

th and

N th
c constraints. Next we provide a theorem showing the unbiasedness of the above gradient

estimators.

Theorem 3.

∂E[f(t(θ, ϵ),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]

∂θj±i

=E
[∂f(t(θ, ϵ),θ,X, H)

∂θj±i

∣∣∣t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)
]
,

∂E[f(t(θ, ϵ),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]

∂ϵ±i

=E
[∂f(t(θ, ϵ),θ,X, H)

∂ϵ±i

∣∣∣t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)
]
,

where ∂f(t(θ,ϵ),θ,X,H)

∂θj±i
and ∂f(t(θ,ϵ),θ,X,H)

∂ϵ±i
are given by Equations (6.18A) and (6.18B).
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6.3.3 Proof of Unbiased Gradient Estimator

Two lemmas are first presented and prepared for the proof of Theorem 3. Recall from the

previous section that yi is the dual variable that corresponds to the ith constraint of Problem (P.1).

In Problem (P.1), let N1 = |AH
1 |, N2 = |AH

2 | and N3 = |AH
3 |. Also create a mapping nt such

that nt(i, j) is the constraint number in (P.1a) and (P.1b) that corresponds to arc (i, j). Before the

proof of unbiasedness, we first present two lemmas, Lemma 3 and Lemma 4. Lemma 3 states

that for any feasible solutions of the dual problem of (P.1), the first N1 +N2 +N3 dual variables

are all less than or equal to 1.

Lemma 3. yi ≤ 1, ∀1 ≤ i ≤ N1 +N2 +N3.

Proof. Proof of Lemma 3. The dual constraints for all columns of the LHS of Problem (P.1) that

includes {t̃i} are given by:

∑
(i,ND)∈∪3

m=1AH
m

ynt(i,ND) ≤ 1, (L.2a)

∑
(i,j)∈∪3

m=2AH
m

ynt(i,j) ≤
∑

(j,k)∈AH
1

ynt(j,k), ∀j ∈ {i|(i, k) ∈ AH
1 }, (L.2b)

Constraint (L.2b) indicates that for each activity in the network whose starting time is affected

(delayed) by the disruption, the sum of the dual variable of their incoming arcs are no larger

than the sum of outcoming arcs. Constraint (L.2a) indicates that the sum of dual variables of the

incoming arcs of the sink node is no larger than 1. Since all dual variables are non-negative, we

have that the first N1 +N2 +N3 dual variables of problem (P.1) are all between 0 and 1.
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Next we provide Lemma 4 stating that the optimal Nc = (N1+N2+N3+1)th dual variable

(the dual variable corresponding to the budget constraint) is bounded by an integrable function

of X. Before the proof of Lemma 4, we first create two mappings nd and ne such that activity i is

the nd(i)
th constraint in (P.1d) and option j of activity i is the ne(i, j)

th constraint in (P.1e).

Lemma 4. y∗Nc
≤ hc(X), E[hc(X)] < +∞.

Proof. Proof of Lemma 4. Let OH
1 = {(i, j)|i ∈ NH

1 , j ∈ Ji} and Nd = |NH
1 |. The constraints

of the dual problem of (P.1) that corresponding to {θ̃ji } are given by:

− (di +Xi)e
j
i

∑
(i,k)∈AH

1 ∪AH
2

ynt(i,k) + bjiyNc + yNc+nd(i) + yNc+Nd+ne(i,j) ≥ 0, ∀(i, j) ∈ OH
1

⇔yNc ≥
1

bji

(
(di +Xi)e

j
i

∑
(i,k)∈AH

1 ∪AH
2

ynt(i,k) − yNc+nd(i) − yNc+Nd+ne(i,j)

)
, ∀(i, j) ∈ OH

1

⇔yNc ≥ max
(i,j)∈OH

1

{ 1

bji

(
(di +Xi)e

j
i

∑
(i,k)∈AH

1 ∪AH
2

ynt(i,k) − yNc+nd(i) − yNc+Nd+ne(i,j)

)}

since the RHS of constraint (P.1d) is positive, the optimal dual solution y∗nc
that minimized the

dual objective function satisfies the following inequalities:

y∗nc
= max

(
max

(i,j)∈OH
1

{ 1

bji

(
(di +Xi)e

j
i

∑
(i,k)∈AH

1 ∪AH
2

y∗nt(i,k) − y∗Nc+2+nd(i)
− y∗Nc+2+Nd+ne(i,j)

)}
, 0
)

≤ max
(i,j)∈OH

1

{ 1

bji
(di +Xi)e

j
i

∑
(i,k)∈AH

1 ∪AH
2

y∗nt(i,k)

}

≤ max
(i,j)∈OH

1

{ |AH
1 |+ |AH

2 |
bji

(di +Xi)e
j
i

}
≤

∑
(i,j)∈OH

1

{ |AH
1 |+ |AH

2 |
bji

(di +Xi)e
j
i

}
= hc(X)
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It is obvious that E(hc(X)) < +∞ under the assumption that {Xi} have finite first moments.

Next is the proof for Theorem 3.

Proof. Proof of Theorem 3. Without loss of generality, we only prove the first case of Theorem

3. For (i, j) and X fixed, and t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ), there exists N > 0, such that when

n > N , we have:

n|f(t(θ, ϵ),θ,X, H)− f(t(θ −∆1, ϵ),θ −∆1,X, H)|

=n
∣∣∣ ∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

(t(θ, ϵ)[i′] − t(θ −∆1, ϵ)[i′])y
∗
nt(i′,k′) −

∑
(i′,k′)∈AH

3

1

n
I{i′ = i}diejiy∗nt(i′,k′) +

1

n
bjiy

∗
nc

∣∣∣
≤

∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∣∣∣ejiy∗nt(i′,k′)

∣∣∣+ ∑
(i′,k′)∈AH

3

|I{i′ = i}diejiy∗nt(i′,k′)|+ |b
j
iy

∗
nc
|

≤(|AH
1 |+ |AH

2 |+ |AH
3 |di)e

j
i + bjihc(X) = hP (X),

and similarly, we also have

n|f(t(θ, ϵ),θ,X, H)− f(t(θ, ϵ−∆2),θ,X, H)|

=n
∑

(i′,k′)∈AH
2 ∪AH

3
i′>i

∣∣∣(t(θ, ϵ)[i′] − t(θ, ϵ−∆2)[i′])y
∗
nt(i′,k′)

∣∣∣
≤(|AH

1 |+ |AH
2 |)

∣∣∣ejiy∗nt(i′,k′)

∣∣∣ = (|AH
1 |+ |AH

2 |)e
j
i ,

where ∆1 = [0, ..., 1
n
, ..., 0], a vector whose elements are all zero except for the element corresponding

to θji and ∆2 = [0, ..., 1
n
, ..., 0], a vector whose elements are all zero except for ith element.
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Let EX|Hm [·] = E[·|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]. Since E[|hP (X)|] < +∞, as a result of

Lebesgue Dominated Convergence theorem [43], we have

lim
n→+∞

nE[f(t(θ, ϵ),θ,X, H)− f(t(θ −∆1, ϵ),θ −∆1,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]

=EX|Hm

[
lim

n→+∞
n
( ∑

(i′,k′)∈AH
2 ∪AH

3
i′>i

(t(θ, ϵ)[i′] − t(θ −∆1, ϵ)[i′])y
∗
nt(i′,k′)−

∑
(i′,k′)∈AH

3

1

n
I{i′ = i}diejiy∗nt(i′,k′) +

1

n
bjiy

∗
nc

)]

=EX|Hm

[ ∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∂t(θ, ϵ)[i′]
∂θj−i

y∗nt(i′,k′) −
∑

(i′,k′)∈AH
3

I{i′ = i}diejiy∗nt(i′,k′) + bjiy
∗
Nc

]
,

and

lim
n→+∞

nE[f(t(θ, ϵ),θ,X, H)− f(t(θ, ϵ−∆2),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]

=EX|Hm

[
lim

n→+∞
n

∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

(
(t(θ, ϵ)[i′] − t(θ, ϵ−∆2)[i′])y

∗
nt(i′,k′)

)]

=EX|Hm

[ ∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∂t(θ, ϵ)[i′]
∂θj−i

y∗nb

]
,
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which are equivalent to

∂E[f(t(θ, ϵ),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]

∂θj−i

=E
[∂f(t(θ, ϵ),θ,X, H)

∂θj−i

∣∣∣t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)
]
,

∂E[f(t(θ, ϵ),θ,X, H)|t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)]

∂ϵ−i

=E
[∂f(t(θ, ϵ),θ,X, H)

∂ϵ−i

∣∣∣t(m−1)(θ, ϵ) < H ≤ t(m)(θ, ϵ)
]
,

and similarly, we also have the same results for right hand side derivatives.

6.4 Stochastic Gradient-Based Optimization

Notice that Problem (6.7S) is an optimization problem with objective function differentiable

almost everywhere whose domain is open and with linear constraints. Let ND = |N |, P =

{(i, j)|i ∈ N , j ∈ Ji}, NP = |{(i, j)|i ∈ N , j ∈ Ji}|, and nS(i, j) is the number of ordered

element in P . The KKT condition for Problem (6.7S) is given by

∑
j∈Ji

θji − 1 ≤ 0, ∀i ∈ N

θji − θ̄ji ≤ 0, ∀i ∈ N , j ∈ Ji

−θji ≤ 0, ∀i ∈ N , j ∈ Ji

−ϵi ≤ 0, ∀i ∈ N∑
i∈N

∑
j∈Ji

bjiθ
j
i = B
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λi ≥ 0, i = 1, ..., 2(ND +NP )

λi(
∑
j∈Ji

θji − 1) = 0, i = 1, 2, ..., ND

(θji − θ̄ji )λND+nS(i,j) = 0, ∀i ∈ N , j ∈ Ji

θjiλND+NP+nS(i,j) = 0, ∀i ∈ N , j ∈ Ji

ϵiλ2ND+NP+i = 0, i = 1, ..., ND

together with the gradient condition

∇g(t(θ, ϵ),θ) +
ND∑
i=1

λi∇(
∑
j∈Ji

θji − 1) +
∑

(i,j)∈P

λND+nS(i,j)∇(θ
j
i − θ̄ji )

−
∑

(i,j)∈P

λND+NP+nS(i,j)∇θ
j
i −

ND∑
i=1

λ2ND+NP+i∇ϵi + ν∇(
∑
i∈N

∑
j∈Ji

bjiθ
j
i −B) = 0.

From the KKT condition, we have that a feasible and differentiable (θ, ϵ) and its dual

optimal solution (λ, ν) satisfy the KKT condition if and only if: (1) For all θj1i1 and θj2i2 nonzero

and can be increased, ∂g(t(θ,ϵ),θ)
∂θ

j1
i1

= ∂g(t(θ,ϵ),θ)
∂θ

j2
i2

; (2) For all ϵ > 0, ∂g(t(θ,ϵ),θ)
∂ϵi

= λ2ND+NP+i. The

KKT condition is a necessary and sufficient condition for a stationary point. And if the objective

is convex, every stationary point is a global optimum, and as a result the KKT condition is a

necessary and sufficient condition for an optimal solution [29] . However, the objective function

g(t(θ, ϵ),θ) in Problem (6.7S) is not convex. A nonconvex example is provided in Figure 6.1.

Figure 6.1 is an activity network with three activities and three nodes. The duration of each

activities are provided on the graph as d1 = 5, d2 = 25 and d3 = 2. The disruption occurrence

time H follows uniform distribution H ∼ U(3 − 0.001, 3 + 0.001). The delay of activity 3 is

X3 = 10, 000 with probability 1. The per unit crashing all equal 1, i.e., e1 = e2 = e3 = 1,
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Figure 6.1: Nonconvex Activity Network

and the unit cost are all equal to 1, b1 = b2 = b3 = 1. The crashing upper bounds are given by

θ̄1 = θ̄2 = θ̄3 = 0.5. The total budget is B = 0.5. The probability that disruption will not happen

is p = 0.1 and α = 0.9. We have two crashing decisions (θ(1), ϵ(1)) and (θ(2), ϵ(2)) given by:

θ(1) = [0.41, 0.02, 0.07]

θ(2) = [0.3, 0.01, 0.19]

αθ(1) + (1− α)θ(2) = [0.399, 0.019, 0.082]

ϵ(1) = ϵ(2) = 0

and the objective function for this example is given by:

g(t(θ, ϵ),θ) =p ∗max{(1− θ1)d1 + (1− θ2)d2, (1− θ3)d3}+

(1− p)
(
max{(1− θ1)d1 + (1− θ2)d2, (1− θ3)d3}P(H ≥ (1− θ1)d1)

+ inf
θ1+θ2+θ̃3=B

{max{(1− θ1)d1 + (1− θ2)d2, (1− θ̃3)(d3 +X3)}}P(H < (1− θ1)d1)
)
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Then we have

g(t(θ(1), ϵ(1)),θ(1))

=0.01 ∗ 24.5 + 0.99 ∗ 24.5 = 24.5

g(t(θ(2), ϵ(2)),θ(2))

=0.01 ∗ 24.75 + 0.99 ∗ 9304.81 = 9212.0094

g(t(αθ(1) + (1− α)θ(2), αϵ(1) + (1− α)ϵ(2)), αθ(1) + (1− α)θ(2))

=0.01 ∗ 24.525 + 0.99 ∗ 9184.841 = 9093.23784

αg(t(θ(1), ϵ(1)),θ(1)) + (1− α)g(t(θ(2), ϵ(2)),θ(2))

=0.9 ∗ 24.5 + 0.1 ∗ 9212.0094 = 943.25094,

as a result of which we have

g(t(αθ(1) + (1− α)θ(2), αϵ(1) + (1− α)ϵ(2)), αθ(1) + (1− α)θ(2))

>αg(t(θ(1), ϵ(1)),θ(1)) + (1− α)g(t(θ(2), ϵ(2)),θ(2)).

In conclusion, g(t(θ, ϵ),θ) is not convex. Since we have unbiased estimators for one-sided

gradients of the objective function of Problem (6.7S), a heuristic gradient-based algorithm for

solving Problem (6.7S) is proposed in Algorithms 5 and 6. In Algorithms 5 and 6,O = {(i, j)|i ∈

N , j ∈ Ji}. The gradients in Algorithm 5 are estimated by Monte Carlo simulation with N1

simulation replications and the gradients in Algorithm 6 are estimated by Monte Carlo simulation

with N2 simulation. For phase 1, at each step, we choose the option with largest gradient descend
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and increase the crashing option parameter by a given amount. Phase 1 stops when the budget is

exhausted. For phase 2, at each step, we choose the option that decreases the objective function

the most and the option that decreases the objective function the least among all the options that

are not at their boundaries. And we redistribute the budget among the previous two options by

a given amount. At each step of phase 2, a decreasing of the objective function is guaranteed.

Phase 2 stops after M iterations, where M is a positive integer inputed as a hyper-parameter.

Algorithm 5: Phase 1 Optimization
Input : N1, α1, λ
Output: θ

1 θ← 0
2 ϵ← 0
3 while B > 0 do
4 (i,j)← argmin

(i,j)∈O
θji<θ̄ji

{∂g(t(θ,ϵ),θ)
∂θj+i

/bji}

5 δji ← α1θ̄
j
i

6 θji ← θji + min(bjiδ
j
i , b

j
i (1−

∑
k∈Ji,k ̸=j θ

k
i ), B)/bji

7 B← B −min(bjiδ
j
i , b

j
i (1−

∑
k∈Ji,k ̸=j θ

k
i ), B)

8 ϵi ← max{0, ϵi − λ∂g(t(θ,ϵ),θ)
∂ϵ+i

}
9 end
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Algorithm 6: Phase 2 Optimization
Input : N2, Nd, M , θ
Output: θ

1 δd ← B
Nd

2 n← 0
3 while n < M do
4 (i1, j1)← argmin

(i,j)∈O
0<θji<θ̄ji

{∂g(t(θ,ϵ),θ)
∂θj−i

/bji}

5 (i2, j2)← argmax
(i,j)∈O
0<θji<θ̄ji

{∂g(t(θ,ϵ),θ)
∂θj−i

/bji}

6 δb ← min(δd, b
j2
i2
θj2i2 , b

j1
i1
(1−

∑
k∈Ji1 ,l ̸=j1

θki1))

7 θj1i1 ← θj1i1 + δb/b
j1
i1

8 θj2i2 ← θj2i2 − δb/b
j2
i2

9 ϵi ← max{0, ϵi − λ∂g(t(θ,ϵ),θ)
∂ϵ+i

}
10 n← n+ 1

11 end

6.5 Numerical Experiments

Both algorithm2 in [37], called SAA, and our gradient-based algorithm, called SGD, are

tested on five acvitity networks named case 11, 14, 19, 19a and 35, where all except case 19a are

from [37]. Experimental data and AN structures of the five ANs are provided in Appendix B.

The disruption occurrence time follows a log-normal distribution. All activity random delays are

independent exponentially distributed with known mean values. The probability that H = +∞

is 0.1, where H = +∞ means the disruption will not happen.

For the SGD algorithm, in order to find the appropriate batch sizes N1 and N2 (number

of simulation replications) for estimating the gradient, the SGD algorithm is tested on four ANs

named case 11, 14, 19 and 19a with the value of N1 = N2 equal to 1, 5, 10, 20, 50 and 100.

For each batch size N1 = N2, the SGD algorithm is run 20 times to give 20 independent
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Figure 6.2: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 11 Activities (based on 20 runs) of different SGD batch sizes

Figure 6.3: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 14 Activities (based on 20 runs) of different SGD batch sizes

optimal solutions that are tested on 5000 fixed randomly generated samples and calculated by

Equation (6.4c). For the AN with 35 activities, the choices of N1 = N2 are 1, 5, 10 and 20.

Boxplots of the estimated objective function values are provided in Figures 6.2 - 6.6, from which

we can conclude that increasing the batch size can make the estimated objective solution more

stable (corresponding minimum objective values close to each other for different runs). For case

19b, increasing the batch size decreases the sample variance and range of the upper bound but

increases the median of it. It is believed that for case 19b the SGD algorithm finally converge to
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Figure 6.4: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 19 Activities (based on 20 runs) of different SGD batch sizes

Figure 6.5: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 19a Activities (based on 20 runs) of different SGD batch sizes

a local minimum instead of the global minimum. Thus, we conclude that for the SGD algorithm,

larger batch size is not necessarily better, as small batch size allows more randomness of the

descent direction and can avoid converging to the local optimum. Also, for both SAA and SGD

algorithm, in order to achieve a better solution, it is necessary to have multiple independent runs

of the same algorithm and have their output solutions tested on the simulated objective function

value performance instead of having a single run. From Figures 6.2 - 6.6 we can also conclude

that a batch size of 10 is good enough for case 35, a batch size of 20 is good enough for case 14
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Figure 6.6: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 35 Activities (based on 20 runs) of different SGD batch sizes

and 19b, and a batch size of 50 is good enough for case 11 and 19.

Figure 6.7: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 11 Activities (based on 20 runs with 50 batch size)

Figures 6.7 - 6.11 are the comparison between the SAA and SGD algorithm in finding

the optimal solution for the five AN examples. For each network, the SAA algorithm is run 20

times with 500 simulation replications each used to estimate the optimal solution. The hyper-

parameters are the same as in [37]. The computation hardware for SAA is Intel Xeon CPU with

30 cores (each core 3.1 Ghz) and 120GB RAM. The computation hardware for SGD is Intel

Core i5-8279U CPU with 4 cores (each core 2.4 Ghz) and 8GB RAM. The SAA algorithm is
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Figure 6.8: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 14 Activities (based on 20 runs with 20 batch size)

Figure 6.9: Boxplots (with red line the median) of Estimated Minimum Objective Function Value
for Activity Network with 19 Activities (based on 20 runs with 50 batch size)

constructed using version 0.18.0 of the JuMP package [44] on the Julia platform using the code

provided by Yang [37]. The SGD algorithm is constructed using version 3.6 of Python. All linear

programming problems are solved by version 8.0.1 of Gurobi [45]. For the SAA algorithm, each

node is solved by 6 cores and we allow at most 5 nodes to be solved simultaneously, so that the

maximum of cores used at any time is 30 [37]. For the SGD algorithm, only a single core is

used, and no parallel computing is applied. SGD is run 20 times with N1 = 100, α1 = 0.5, N2 =

100, Nd = 10 ∗B,M = 20. For both SAA and SGD, we have 20 independent optimal solutions.
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Figure 6.10: Boxplots (with red line the median) of Estimated Minimum Objective Function
Value for Activity Network with 19a Activities (based on 20 runs with 20 batch size)

Figure 6.11: Boxplots (with red line the median) of Estimated Minimum Objective Function
Value for Activity Network with 35 Activities (based on 20 runs with 10 batch size)

For each method, the optimal solutions are tested on 5000 fixed randomly generated samples and

calculated by Equation (6.4c), then 20 objective function sample means are calculated and used

as an approximation of the true expected project completion time (PCT). In Figures 6.7 to 6.11,

the left-hand side boxplot is the boxplot of 20 optimal values of SAA algorithm and right-hand

side boxplot is the boxplot of 20 optimal values of the SGD algorithm. Except for Figure 6.10,

SGD produces a tighter boxplot with lower mean compared with SAA. As for Figure 6.10 of case

19a, SAA produces a tighter boxplot with lower mean.
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Table 6.2: 95% Confidence Interval for Upper Bound of Optimal Value (based on 20 runs)

Algorithm 11 Activities 14 Activities 19 Activities 19a Activities 35 Activities

SGD 286.8 ± 0.25 2580.7 ± 29.84 357.4 ± 0.07 779.7 ± 8.37 1061.1 ± 0.37
SAA 288.2 ± 3.74 2588.7 ± 49.30 357.6 ± 5.72 778.8 ± 8.08 1067.4 ± 9.64

Table 6.3: Paired-t test p-value (based on 20 runs)

11 Activities 14 Activities 19 Activities 19a Activities 35 Activities

p-value 5.6e-3 0.16 0.69 0.50 2.23e-5

Table 6.2 is the 95 % confidence interval of the heuristic optimal value (upper bound of the

optimal value) estimated by the SGD and SAA algorithms. Table 6.3 contains the p-values of

the paired t-test between the 20 upper bounds produced by the SGD and SAA algorithms. From

Tables 6.2 and 6.3, we can conclude that the SGD algorithm produces an upper bound of the

optimal value with lower mean and tighter C.I. compared to the SAA algorithm.

Table 6.4: Averaged Computing Time (in seconds, over 20 runs, standard deviation in
parentheses)

Algorithm 11 Activities 14 Activities 19 Activities 19a Activities 35 Activities

SGD 12 (1.3) 14 (0.2) 60 (1.3) 142 (2.3) 580 (23.8)
SAA 53 (25.2) 685 (221.9) 850 (218.3) 116 (36.5) 230 (83.8)

Table 6.4 provides the averaged computing time of SAA and SGD algorithms. The computing

times are measured in seconds. Notice that the SGD algorithm has two versions, Activity-on-

Node (A-on-N) version (Algorithms 5 and 6) and Activity-on-Arc (A-on-A) version (Algorithms

7 and 8). The A-on-A algorithm is based on the A-on-A representation of ANs, whose details

are presented in Appendix A. The A-on-A algorithm is applied for cases 11, 14 and 19, and the

A-on-N algorithm is applied for cases 19b and 35. For an AN, the A-on-A algorithm is preferred

if its A-on-A representation is simpler (takes less number of nodes and arcs to present) than its
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A-on-N representation, vice versa.

Table 6.5: Memory Consumption (over 10 runs, in GB)

Algorithm 11 Activities 14 Activities 19 Activities 19a Activities 35 Activities

SGD 0.08 0.08 0.08 0.08 0.09
SAA 22 46 45 27 27

Notice that the AN structure of cases 19a and 35 in Figures B.7 and B.8 are different from

cases 11, 14, and 19 in Figures B.2 - B.6. An AN is called dense if the ratio of number of arcs

and number of nodes is large [5]. For an AN with A-on-N representation, we define the depth of

an AN to be the number of nodes on the path with the most nodes and define the breadth of an

AN to be the largest number of activities that are in progress at the same time during the course

of the project. Cases 19a and 35 are very dense networks. Moreover, cases 19a and 35 have

small depth and large breadth. Cases 19a and 35 are neural network-like ANs. Due to the parallel

nature of the SAA algorithm, the SAA algorithm is good at dense ANs with small depth and

large breadth in terms of computing time. Also notice that the SAA algorithm’s computing speed

depends on the fixed durations and distributional parameters of the random delays a lot. When

a permutation between the data within Tables B.4 and B.5 is applied, with the structure of the

ANs unchanged, the averaged computing time for case 19a and 35 is about 7 times of the time in

Table 6.4 whereas the computing time for the SGD algorithm varies little for different duration

and distribution parameters. It can be concluded that the SGD algorithm outperforms the SAA

algorithm in computing speed for cases 11, 14 and 19 whose AN’s structure have large depth and

small breadth. And the SAA algorithm outperforms the SGD algorithm in computing speed for

cases 19a and 35, whose AN’s structure are dense and have small depth and large breadth.

Table 6.5 is the RAM usage for 10 runs of the SGD and SAA algorithms. Due to the
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parallel computing nature of the SAA algorithm, its RAM usage is proportional to the computing

time (more runs more RAM used). As for the SGD algorithm, its RAM usage is independent of

the number of runs. Since the SGD algorithm only use single core, its RAM usage is significantly

smaller than that of the SAA algorithm, which can be concluded from Table 6.5.

In conclusion, the SGD algorithm produces an upper bound of the optimal value with lower

mean and tight C.I. with little RAM usage. The SGD algorithm is faster than the SAA algorithm

for non-dense ANs with large depth and small breadth. The SAA algorithm is faster than the

SGD algorithm for dense ANs with small depth and large breadth. The SGD may converge to a

local optimum if the batch size is too large; choosing a smaller batch size and have multiple runs

can alleviate this issue. Both the SAA and SGD algorithms require multiple runs to find the best

solution.

6.6 Extensions

In this section, we extend our formulation and gradient-based algorithm to more general

situations:

• The disruption affects activities that have yet to complete.

• When a disruption occurs prior to the complete of an activity, the delay it causes is proportional

to the remaining time for completing the activity based on its original duration.

• Multiple disruptions occur during the course of the project.

• The nominal duration of activities are random variables.

125



6.6.1 Unfinished Activities

The problem formulation in Section 6.2 assumes that activities that have already started

are not affected by the disruption, even if they haven’t finished, i.e., the disruption only affects

activities that have not started [37]. In this section, we assume that the disruption affects all

unfinished activities. Yang and Morton [37] proposed the following formulation to relax this

assumption:

z∗ = min
t,θ

p0tND
+
∑
ω∈Ω

pωfω(t,θ) (6.19)

s.t. tk − ti ≥ dk(1−
∑
j∈Ji

ejiθ
j
i ) ∀(i, k) ∈ A (6.19a)

∑
i∈N

∑
j∈Ji

bjiθ
j
i ≤ B (6.19b)

∑
j∈Ji

θji ≤ 1 ∀i ∈ N (6.19c)

Hω +MGω
i ≥ ti ∀i ∈ N , ω ∈ Ω (6.19d)

Hω −M(1−Gω
i ) ≤ ti ∀i ∈ N , ω ∈ Ω (6.19e)

tωi +M ′Gω
i ≥ ti ∀i ∈ N , ω ∈ Ω (6.19f)

tωi −M ′Gω
i ≤ ti ∀i ∈ N , ω ∈ Ω (6.19g)

θjωi + θ̄jiG
ω
i ≥ θji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.19h)

θjωi − θ̄jiG
ω
i ≥ θji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.19i)

tωk − tωi ≥ dk +Xω
k G

ω
k

−
∑
j∈Jk

dke
j
kθ

jω
k −

∑
j∈Jk

Xω
k e

j
kz

jω
k ∀(i, k) ∈ A, ω ∈ Ω (6.19j)
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∑
i∈N

∑
j∈Ji

bjiθ
jω
i ≤ B ∀ω ∈ Ω (6.19k)

∑
j∈Ji

θjωi ≤ 1 ∀i ∈ N , ω ∈ Ω (6.19l)

zjωi ≤ θ̄jiG
ω
i ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.19m)

zjωi ≤ θji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.19n)

zjωi ≤ θji + θ̄ji (G
ω
i − 1) ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.19o)

ti ≥ 0 ∀i ∈ N (6.19p)

tωi ≥ HωGω
i ∀i ∈ N , ω ∈ Ω (6.19q)

0 ≤ θji ≤ θ̄ji ∀i ∈ N , j ∈ Ji (6.19r)

0 ≤ θjωi ≤ θ̄ji ∀i ∈ N , j ∈ Ji, ω ∈ Ω (6.19s)

0 ≤ zjωi ≤ 1 ∀i ∈ N , j ∈ Ji (6.19t)

Gω
i ∈ {0, 1} ∀i ∈ N , ω ∈ Ω. (6.19u)

The difference between Problem (6.19) and Problem (6.11) is: (1) In Problem (6.19), ti denotes

the completion (finish) time of activity i instead of the starting time of activity i; (2) In constraints

(6.19a) and (6.19i), if node i precedes k, then the difference between the finish time of activity

k and i is no less than the duration of activity k after crashing. Formulation (6.19) assumes

that the crashing decisions can be adjusted before the activity ends, which seems unrealistic

for most real-world applications. For example, if the disruption happens near the very end of

completion of activity i, one would expect that adjusting the crashing decision shouldn’t decrease

the total duration of activity i, only the remaining time. We do not make this assumption, and our
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corresponding new amended formulation is given by

f(θ, ϵ,X, H) = min t(θ, ϵ)[ND]I{t(θ, ϵ)[N ′
D] + dN ′

D
≤ H}+ t̃ND

I{t(θ, ϵ)[N ′
D] + dN ′

D
> H}

(6.20)

s.t. t(θ, ϵ)[k]I{t(θ, ϵ)[k′] + dk′ ≤ H}+ t̃kI{t(θ, ϵ)[k′] + dk′ > H}

− (t(θ, ϵ)[i]I{t(θ, ϵ)[i′] + di′ ≤ H}+ t̃iI{t(θ, ϵ)[i′] + di′ > H})

≥ (XiI{t(θ, ϵ)[i] + di > H}+ di)
(
1−

∑
j∈Ji

eji (θ
j
i I{t(θ, ϵ)[i] ≤ H}

+ θ̃ji I{t(θ, ϵ)[i] > H})
)

∀(i, k) ∈ A (6.20a)∑
i∈N

∑
j∈Ji

bji (θ
j
i I{t(θ, ϵ)[i] + di ≤ H}+ θ̃ji I{t(θ, ϵ)[i] + di > H}) ≤ B

(6.20b)∑
j∈Ji

(θji I{t(θ, ϵ)[i] + di ≤ H}+ θ̃ji I{t(θ, ϵ)[i] + di > H}) ≤ 1 ∀i ∈ N

(6.20c)

0 ≤ θji I{t(θ, ϵ)[i] + di ≤ H}+ θ̃ji I{t(θ, ϵ)[i] + di > H} ≤ θ̄ji ∀i ∈ N , j ∈ Ji

(6.20d)

t(θ, ϵ)[i]I{t(θ, ϵ)[i′] + di′ ≤ H}+ t̃iI{t(θ, ϵ)[i′] + di′ > H} ≥ 0 ∀i ∈ N

(6.20e)

In Problem (6.20), t(θ, ϵ)[k] still denotes the starting time of activity k, but k′ = argmax
i∈pred(k)

(ti +

di), i.e., k′ is the index of the predecessor node of node k with the largest completion time.

Note that in constraint (6.20a), the crashing decision of activity i can be revised if and only

if it starts after the disruption. The activities’ completion times are denoted by ν(θ, ϵ) =
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[ν0, ν1, ν2, ..., νND
], where νi = ti + di. Reorder the element of ν(θ, ϵ) in ascending order so

that ν(k)(θ, ϵ) is the kth smallest element of ν. We define the event E(m) = {ν(m−1)(θ, ϵ) <

H ≤ ν(m)(θ, ϵ)} for 1 ≤ m ≤ ND − 1, and E(ND) = {ν(ND−1)(θ, ϵ) < H}. By conditioning on

E(m) and unconditioning, we rewrite Equation (6.4b) as:

g(t(θ, ϵ),θ) =
ND∑
m=0

E[f(t(θ, ϵ),θ,X, H)|E(m)]P(E(m))

The gradient estimator and proof of unbiasedness are similar to Sections 6.3.2 and 6.3.3 and

hence omitted here.

6.6.2 Proportional Duration Delay

Under the settings up to now, a disruption occurring near the end of an activity causes the

same delay as if it occurred at the start of the activity, whereas an alternative is to have the delay

proportional to the remaining duration. This can be handled by replacing each {Xi} in Problem

(6.20) by

di −max(min(ti + di −H, di), 0)

di
Xi,

but now f(θ, ϵ,X, H) in Problem (6.20) depends on H , given that H is in E(m). As long as

all the indicator functions in Problem (6.20) do not depend on H , given that H is in E(m), the

gradient estimators in Section 6.3 still work.
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6.6.3 Multiple Disruptions

In the problem setting of [37], it is assumed that there can be at most a single disruption

during the course of the project, which is reasonable when the disruptions are rare events, such as

hurricanes, labor strikes, etc. However, in real applications, disruptions with high frequency can

also cause delays for projects, for example, rainy days, floods, high temperature, which can occur

multiple times during the course of the project. Our model can be adjusted to handle multiple

disruptions. Assume {Hi} is the set of occurrence time of different disruptions, whose joint

distribution is known. Then Problem (6.5) can be adjusted to:

f(t,θ,X, {Hi}) = min tND

nE∏
n=1

I{qND
≤ Hn}+ t̃ND

nE∏
n=1

I{qND
> Hn} (6.21)

s.t. tk

nE∏
n=1

I{qk ≤ Hn}+ t̃k

nE∏
n=1

I{qk > Hn}

− (ti

nE∏
n=1

I{qi ≤ Hn}+ t̃i

nE∏
n=1

I{qi > Hn})

≥ (di +

nE∑
n=1

Xn
i I{ti > Hn})

(1−
∑
j∈Ji

eji (θ
j
i

nE∏
n=1

I{ti ≤ Hn}+ θ̃ji

nE∏
n=1

I{ti > Hn})) ∀(i, k) ∈ A

(6.21a)∑
i∈N

∑
j∈Ji

bji (θ
j
i

nE∏
n=1

I{ti ≤ Hn}+ θ̃ji

nE∏
n=1

I{ti > Hn}) ≤ B (6.21b)

∑
j∈Ji

(θji

nE∏
n=1

I{ti ≤ Hn}+ θ̃ji

nE∏
n=1

I{ti > Hn}) ≤ 1 ∀i ∈ N

(6.21c)
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0 ≤ θji

nE∏
n=1

I{ti ≤ Hn}+ θ̃ji

nE∏
n=1

I{ti > Hn} ≤ θ̄ji ∀i ∈ N , j ∈ Ji

(6.21d)

ti

nE∏
n=1

I{qi ≤ Hn}+ t̃i

nE∏
n=1

I{qi > Hn} ≥ 0 ∀i ∈ N

(6.21e)

In constraint (6.21a), Xn
i is the random delay of activity i caused by disruption n. At the begining

of Section 6.3.1, we partition the positive real line into ND +1 intervals and define event E(m) as

H falls into the mth interval. Similarly, we can partition the R+n space into (ND + 1)nE disjoint

sets and define event E(m) as {Hn} falls into the mth partition. Then Equation (6.4c) can be

reformulated as:

g(t(θ, ϵ),θ) =
N

nE
D∑

m=0

E[f(t(θ, ϵ),θ,X, H)|E(m)]P(E(m)),

and the corresponding one-sided gradient estimators are similar to Section 6.3.

6.6.4 Random Durations of Activities

In previous sections, it is assumed that the duration of activities are deterministic if no

disruption happened or disruptions happened after the completion of the project. Our formulation

in (6.7S) and (6.8) can be adjusted to handle the setting where activity durations are continuous

random variables instead of deterministic. To adjust our model, first redefine Equation (6.4b) as

g(t(θ, ϵ,D),θ) = EX,H,D[f(t(θ, ϵ,D),θ,X, H,D)] (6.22)
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and the second-stage Problem (6.8) becomes:

f(θ, ϵ,X, H,D) = min t(θ, ϵ,D)[ND]I{t(θ, ϵ,D)[N ′
D] ≤ H}+ t̃ND

I{t(θ, ϵ,D)[N ′
D] > H}

(6.23)

s.t. t(θ, ϵ,D)[k]I{t(θ, ϵ,D)[k′] ≤ H}+ t̃kI{t(θ, ϵ,D)[k′] > H}

− (t(θ, ϵ,D)[i]I{t(θ, ϵ,D)[i′] ≤ H}+ t̃iI{t(θ, ϵ,D)[i′] > H})

≥ (XiI{t(θ, ϵ,D)[i] > H}+Di)
(
1−

∑
j∈Ji

eji (θ
j
i I{t(θ, ϵ,D)[i] ≤ H}

+ θ̃ji I{t(θ, ϵ,D)[i] > H})
)

∀(i, k) ∈ A (6.23a)∑
i∈N

∑
j∈Ji

bji (θ
j
i I{t(θ, ϵ,D)[i] ≤ H}+ θ̃ji I{t(θ, ϵ,D)[i] > H}) ≤ B

(6.23b)∑
j∈Ji

(θji I{t(θ, ϵ,D)[i] ≤ H}+ θ̃ji I{t(θ, ϵ,D)[i] > H}) ≤ 1 ∀i ∈ N

(6.23c)

0 ≤ θji I{t(θ, ϵ,D)[i] ≤ H}+ θ̃ji I{t(θ, ϵ,D)[i] > H} ≤ θ̄ji ∀i ∈ N , j ∈ Ji

(6.23d)

t(θ, ϵ,D)[i]I{t(θ, ϵ,D)[i′] ≤ H}+ t̃iI{t(θ, ϵ,D)[i′] > H} ≥ 0 ∀i ∈ N ,

(6.23e)
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where {Di} are independently distributed continuous random variables and D is the vector representation

of {Di}. Further rewrite Equation (6.4b) as

g(t(θ, ϵ,D),θ) =EX,H,D[f(t(θ, ϵ,D),θ,X, H,D)]

=

ND∑
m=0

ED[EX[f(t(θ, ϵ,D),θ,X, H,D)|E(m)]P(E(m))]

=

ND∑
m=0

ED,X[f
(m)(t(θ, ϵ,D),θ,X, H,D)P(E(m))]

where f (m)(t(θ, ϵ,D),θ,X, H,D) is the function in Problem (6.23), given that H is in E(m).

Then we have the adjusted gradient estimators given by

∂f(t(θ, ϵ,D),θ,X, H,D)

∂θj±i
=

∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∂t(θ, ϵ,D)[i′]

∂θj±i
y∗nt(i′,k′) −

∑
(i′,k′)∈AH

3
i′=i

Die
j
iy

∗
nt(i′,k′) + bjiy

∗
Nc

(6.24A)

∂f(t(θ, ϵ),θ,X, H,D)

∂ϵ±i
=

∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∂t(θ, ϵ,D)[i′]

∂ϵ±i
y∗nt(i′,k′) (6.24B)

The unbiasedness proof for estimators (6.24A) and (6.24B) is similar to Theorem 1 and is omitted

here.

Finally, notice that our formulation can handle not only the situations in Sections 6.6.1,

6.6.2, 6.6.3 and 6.6.4 separately, but also any combination of those cases, as well.
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6.7 Future Research

Future research will focus on analyzing the extension cases in Section 6.6, both theoretically

and empirically via numerical experiments. In Section 6.6.3, the complexity of the algorithm is

NP-hard due to the exponentially increased number of partitions of the disruptions occurrence

sample space. Future work will focus on reducing the time complexity of the multiple disruptions

setting and applying parallel computing to accelerate computing speed. Finally, it would be

interesting to apply the algorithms proposed to some real world business cases (e.g., deep water

drilling, disaster and pandemic management).
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Appendix A: Activity-on-Arc (A-on-A) Formulation

In this section, we will use the A-on-A representation to reformulate the two-stage stochastic

programming problem in Section 6.2.1 and derive its stochastic gradient estimator based on the

new formulation. The materials in this section are from [38]. The the A-on-A version stochastic

gradient descent algorithm is provided. Finally, the difference between the A-on-A formulation

and the A-on-N formulation is provided.

A.1 Linear Programming Formulation

The activity on arc LP formulation of Problem 6.1 is given by:

z∗ = min
θ

t4 (A.0)

s.t. t4 − t3 ≥ (1− θ34)d34 (A.0a)

t4 − t2 ≥ (1− θ24)d24 (A.0b)

t3 − t2 ≥ (1− θ23)d23 (A.0c)

t3 − t1 ≥ (1− θ13)d13 (A.0d)

t2 − t1 ≥ (1− θ12)d12 (A.0e)

θ12 + θ13 + θ23 + θ24 + θ34 ≤ B (A.0f)

135



ti ≥ 0 ∀i ∈ {1, 2, 3, 4} (A.0g)

The difference between the A-on-N and A-on-A formulations of our two-stage stochastic programming

problem is that Problem 6.7 and 6.8 are substituted by the A-on-A LP formulation. Also, for the

same problem setting, A-on-A and A-on-N formulations are equivalent if and only if the θ in

Equations (6.6a) and (6.6b) is a zero vector.

A.2 A-on-A Two-Stage Formulation

Notations will be used in this section are given by:

Xik = delay of duration of arc (i, k) created by the disruption

dik = fixed duration of activity (i, k)

tk = the node release time of node k

Jik = the set of crashing option for activity (i, k)

bjik = per unit cost of the jth crashing option of activity (i, k)

ejik = ratio of decreasing of activity (i, k)’s duration per unit jth crashing option applied

θjik = amount of jth option of activity (i, k)

θ̄jik = upper bound of jth option of activity (i, k)

pred(k) = {i|(i, k) ∈ A}

succ(k) = {i|(k, i) ∈ A}

pk = max
i∈pred(k)

{ti}
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t(θ)[k] = node release time of node k

t(θ)[k′] = max
i∈pred(k)

{t(θ)[i]}

The two-stage A-on-A formulation is given by:

z∗ = min
θ

g(t(θ),θ) (A.1)

s.t.
∑
j∈Jik

∑
(i,k)∈A

bjikθ
j
ik ≤ B (A.1a)

∑
j∈Jik

θjik ≤ 1 ∀(i, k) ∈ A (A.1b)

0 ≤ θjik ≤ θ̄jik ∀j ∈ Jik,∀(i, k) ∈ A (A.1c)

and its second-stage formulation given by:

f(t(θ),θ,X, H) = min t(θ)[ND]I{t(θ)[N ′
D] ≤ H}+ t̃ND

I{t(θ)[N ′
D] > H} (A.2)

s.t. t(θ)[k]I{t(θ)[k′] ≤ H}+ t̃kI{t(θ)[k′] > H}

− (t(θ)[i]I{t(θ)[i′] ≤ H}+ t̃iI{t(θ)[i′] > H})

≥ (XikI{t(θ)[i] > H}+ dik)

(1−
∑
j∈Jik

ejik(θ
j
ikI{t(θ)[i] ≤ H}+ θ̃jikI{t(θ)[i] > H})) ∀(i, k) ∈ A

(A.2a)∑
j∈Jik

∑
(i,k)∈A

bjik(θ
j
ikI{t(θ)[i] ≤ H}+ θ̃jikI{t(θ)[i] > H}) ≤ B
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∑
j∈Jik

(θjikI{t(θ)[i] ≤ H}+ θ̃jikI{t(θ)[i] > H}) ≤ 1 ∀(i, k) ∈ A

0 ≤ θjikI{t(θ)[i] ≤ H}+ θ̃jikI{t(θ)[i] > H} ≤ θ̄jik ∀j ∈ Jik,∀(i, k) ∈ A

t(θ)[i]I{t(θ)[i′] ≤ H}+ t̃iI{t(θ)[i′] > H} ≥ 0 ∀i ∈ {0, 1, ..., ND}

where we have

g(t(θ),θ) = EX,H [f(t(θ),θ,X, H)]

and t(θ) as a vector is defined to be as below, whose elements are given by two equivalent

formulations:

t(θ)[k] = max
i∈pred(k)

{
dik(1−

∑
j∈Jik

ejikθ
j
ik) + t(θ)[i]

}
, ∀2 ≤ k ≤ ND (A.3a)

t(θ)[k] = max
P∈Pk

{ ∑
(i1,i2)∈P

di1i2(1−
∑

j∈Ji1i2

eji1i2θ
j
i1i2

)
}
, ∀2 ≤ k ≤ ND (A.3b)

Similarly to Table 6.1 in Section 6.2.1.3, for a given realization of H , the disruption occurrence

time, we classify constraint (A.2a) into four mutually exclusive classes in Table A.1.

Table A.1: Four Types of Second Stage Constraints

Types Constraint Range of H

Type I t̃k − t̃i ≥ (Xik + dik)(1−
∑

j∈Jik
ejikθ̃

j
ik) H < pi

Type II t̃k − ti ≥ (Xik + dik)(1−
∑

j∈Jik
ejikθ̃

j
ik) pi ≤ H < ti

Type III t̃k − ti ≥ dik(1−
∑

j∈Jik
ejikθ

j
ik) ti ≤ H < pk

Type IV tk − ti ≥ dik(1−
∑

j∈Jik
ejikθ

j
ik) H ≥ pk
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A.3 A-on-A Stochastic Gradient Estimator

Similarly to Section 6.3.1, for a given fixed set of crashing parameter θ, the node release

time of all nodes without disruption T can be calculated as T = t(θ), where T = [t1, t2, ..., tND
].

Reorder the element of T in ascending order so that t(k) is the kth order element. By conditioning

on t(m−1) < H ≤ t(m) and unconditioning, we have the equivalent formulation of Equations

(6.4c) and (6.13a) given by:

g(t(θ),θ) =
ND∑
m=1

E[f(t(θ, ϵ),θ,X, H)|E(m)]P(E(m)) (A.4)

and

∂g(t(θ, ϵ),θ)
∂θjik

=

ND∑
m=1

{
∂E[f(t(θ),θ,X, H)|E(m)]

∂θjik
P(E(m))

+ E[f(t(θ),θ,X, H)|E(m)]
(
fH(t

(m)(θ))
∂t(m)(θ)

∂θjik
− fH(t

(m−1)(θ))
∂t(m−1)(θ)

∂θjik

)}
. (A.5)

And the stochastic gradient estimators are given by:

∂f(t(θ),θ,X, H)

∂θj±ik
=

∑
(i′,k′)∈AH

2 ∪AH
3

i′>i

∂t(θ)[i′]

∂θj±ik
y∗nt(i′,k′) − I{(i, k) ∈ AH

3 }dike
j
iky

∗
nt(i,k) + bjiky

∗
NG

.

(A.6)
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where nt(i
′, k′) is the line number correspond to activity (i′, k′) in constraint (A.2a) and NG is

the line number corresponding to the budget constraint. Proof of the unbiasness of the estimator

in Equation (A.6) is very similar to Theorem 1 and is omitted here.

A.4 A-on-A Gradient Descent Algorithm

The stochastic gradient descent algorithm based on the estimator in Equation (A.6) is given

by Algorithm 7 and 8 below:

Algorithm 7: Phase 1 Optimization
1 θ ← 0
2 while B > 0 do
3 (i, j)← argmin

(i,k,j)∈O
θjik<θ̄jik

{∂g(t(θ),θ)
∂θj+ik

/bjik}

4 δjik ← α1θ̄
j
ik

5 θjik ← θjik + min(bjikδ
j
ik, b

j
ik(1−

∑
n∈Ji,n̸=j θ

n
ik), B)/bjik

6 B ← B −min(bjikδ
j
ik, b

j
ik(1−

∑
n∈Ji,n̸=j θ

n
ik), B)

7 end

Algorithm 8: Phase 2 Optimization
1 δd ← B

Nd
; n← 0

2 while n < M do
3 (i1, k1, j1)← argmin

(i,k,j)∈O
0<θjik<θ̄jik

{∂g(t(θ),θ)
∂θj−ik

/bjik}

4 (i2, k2, j2)← argmax
(i,k,j)∈O
0<θjik<θ̄jik

{∂g(t(θ),θ)
∂θj−ik

/bjik}

5 δb ← min(δd, b
j2
i2k2

θj2i2k2 , b
j1
i1k1

(1−
∑

n∈Ji1k1 ,n̸=j1
θni1k1))

6 θj1i1k1 ← θj1i1k1 + δb/b
j1
i1k1

7 θj2i2k2 ← θj2i2k2 − δb/b
j2
i2k2

8 n← n+ 1

9 end

where we have O = {(i, k, j)|j ∈ Jik, (i, k) ∈ A}. Algorithm 8 takes algorithm 7’s output
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as input. The only difference between the A-on-N Algorithm (Algorithm 5 and 6) and the A-on-

A Algorithm (Algorithm 7 and 8) is that no iterations of ϵ is required, because we assume that ϵ

is a zero vector.

A.5 Difference between the Two Formulations

Notice that the A-on-A formulation and the A-on-N formulation are equivalent if and only

if for the optimal solution we have that ϵ∗ = 0. The advantage of the A-on-A formulation is

that for ANs whose A-on-A representation have less nodes and arcs compared to its A-on-N

representation, the A-on-A algorithm compute faster than the A-on-N algorithm, which is the

reason why for cases 11, 14 and 19 in Section 6.5, the A-on-A algorithm is used. Since we

cannot check the condition that ϵ∗ = 0, we can run Algorithm 6 a few times only for iteration of

ϵ with input the optimal solution calculated by the A-on-A algorithm.
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Appendix B: Experimental Data for Chapter 6

B.1 Optimal Crashing Activity Networks

The experimental data of Section 6.5 are from [37] and [38] and provided here. For all

test cases, we assume there is only one possible crashing option for each activity. The option

consumes 1 unit of resource and has effectiveness parameter e1i = 0.5 for all i ∈ N . The

probability that the disruption will not occur is p0 = 0.1. The disruption occurrence time H

follows a lognormal distribution with parameters µ and σ, where the mode is eµ−σ2 . The random

delays {Xi} are independent and follow an exponential distribution with mean µi. The values

of duration di and mean delay µi are shown in Tables B.1 - B.5. Figures B.1 - B.8 give the AN

structure. The crashing budget B and lognormal distribution parameters are as follows:

• Case 11: B = 3, µ = ln 6, σ = 0.5

• Case 14: B = 4, µ = ln 35, σ = 0.5

• Case 19: B = 4, µ = ln 8, σ = 0.5

• Case 19a: B = 4, µ = ln 8, σ = 0.5

• Case 35: B = 8, µ = ln 4, σ = 0.3

142



Figure B.1: Activity Network with 11 Activities (A-on-A)

Figure B.2: Activity Network with 11 Activities (A-on-N)
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Table B.1: Activity Duration di and the Mean of Disruption Magnitude µi for Case 11

Activity di µi Activity di µi

1 10 10−5 7 7.3 1
2 2 4 8 4.9 50
3 10 2 9 11.1 40
4 12 30 10 3.5 40
5 3 1500 11 9.9 5
6 10 1

Figure B.3: Activity Network with 14 Activities (A-on-A)

Figure B.4: Activity Network with 14 Activities (A-on-N)
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Table B.2: Activity Duration di and the Mean of Disruption Magnitude µi for Case 14

Activity di µi Activity di µi

1 5 10−5 8 49 4000
2 30 5 9 40 4000
3 25 40000 10 30 3000
4 20 40000 11 45 4000
5 15 1500 12 25 5
6 24 20000 13 21 5
7 30 20000 14 5 5

Figure B.5: Activity Network with 19 Activities (A-on-A)
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Figure B.6: Activity Network with 19 Activities (A-on-N)

Table B.3: Activity Duration di and the Mean of Disruption Magnitude µi for Case 19

Activity di µi Activity di µi

1 2.5 400 11 6 50
2 2.1 200 12 0.001 40
3 10 1000 13 12 1000
4 5 10 14 1 50
5 6 40 15 1.5 10
6 4.5 300 16 0.001 300
7 8.1 2 17 8 100
8 6.1 100 18 18 300
9 10 100 19 35 300
10 6 50
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Figure B.7: Activity Network with 19a Activities

Table B.4: Activity Duration di and the Mean of Disruption Magnitude µi for Case 19a

Activity di µi Activity di µi

1 5 10 11 6 400
2 10 100 12 4.5 300
3 18 300 13 12 1000
4 35 300 14 1.5 10
5 6 50 15 2.1 200
6 6 50 16 8.1 2
7 2.5 400 17 6.1 100
8 8 20 18 0.001 40
9 10 1000 19 0.001 300
10 1 50

147



Figure B.8: Activity Network with 35 Activities

148



Table B.5: Activity Duration di and the Mean of Disruption Magnitude µi for Case 35

Activity di µi Activity di µi Activity di µi

1 9 10 13 5 200 25 1 300
2 7 40 14 2 10 26 4 400
3 3 30 15 5 400 27 3 200
4 4 100 16 2 10 28 4 1000
5 6 50 17 10 10 29 10 300
6 3 10 18 4 2000 30 7 500
7 10 10 19 8 10 31 2 200
8 4 20 20 8 500 32 9 100
9 3 10 21 1 500 33 7 100
10 6 1000 22 5 500 34 1 100
11 9 10 23 2 10 35 7 200
12 8 500 24 7 10
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