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This dissertation addresses the coupled challenges of state estimation and trajectory op-

timization for a marine hydro-kinetic energy harvesting kite. The optimization objective is to

maximize the kite’s average mechanical power output. This work is motivated by the potential of

“pumping-mode” tethered kites to provide attractive levelized costs of electricity, especially when

cross-current motion is exploited to maximize energy harvesting. In “pumping-mode” kites, the

kite is tethered to platform carrying a motor/generator, and electricity generation is achieved by

reeling the kite out and in at high and low tether tension levels, respectively.

Marine hydro-kinetic (MHK) systems are heavily influenced by wind energy systems. In

both contexts, for instance, tethered kites can be used for electricity generation instead of station-

ary turbines. Similar to airborne wind energy (AWE) systems, the power production capacities of

MHK kites are heavily influenced by their flight trajectories. While trajectory optimization is a

well-established research area for AWE systems, it is a nascent but growing field for MHK kites.



Moreover, although both AWE and MHK kites have the potential to benefit from trajectory opti-

mization, the lessons learned from AWE systems might not be directly applicable to MHK kites,

since MHK systems are often close to neutral buoyancy whereas AWE systems are not. Finally,

there is little work in the literature that co-optimizes the spooling and cross-current trajectories

of a pumping-mode MHK kite.

The first contribution of this dissertation is to explore the simultaneous optimization of the

cross-current trajectory and the spooling motion of a pumping-mode kite using direct transcrip-

tion. While the results highlight the degree to which simultaneous optimization can be beneficial

for these systems, they also motivate the need for a solution approach that satisfies the constraints

imposed by the kite dynamics exactly, as opposed to approximately. This leads to the second

contribution of this dissertation, namely, finding an analytic solution to the inverse dynamics of

the MHK kite, i.e., mapping a desired combination of kite position, velocity, and acceleration

onto the corresponding actuation inputs. The dissertation then proceeds to its third contribution,

namely, solving the kite trajectory optimization problem based on the above exact solution of the

kite’s inverse dynamics. The resulting simulation provides more realistic optimization results.

However, all of the above work focuses on the special case where the free-stream fluid veloc-

ity is known and spatio-temporally constant. This motivates the fourth and final contribution of

this dissertation, namely, the development of an unscented Kalman filter for simultaneously es-

timating both the kite’s state and the free-stream fluid velocity. One interesting outcome of the

estimation study is the finding that simple unscented Kalman filtering is not able to estimate the

fluid velocity accurately without the direct measurement of the attitude of the kite.
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Chapter 1: Introduction

1.1 Vision and Motivation

More than half of the US population lives within 50 miles of the nation’s coast, making

marine hydro-kinetic (MHK) systems lucrative for renewable electricity generation [1]. MHK

systems are particularly attractive in regions with fast ocean currents, such as the Gulf Stream.

MHK systems convert the energy of (i) tides, (ii) waves, (iii) ocean currents, and (iv) the tem-

perature difference between surface and deep water to electricity. As listed in Table 1.1, the

annual average amount of energy that is hypothetically available from these resources, known as

the theoretical resource potential, can range from 445 to 2,640 TWh per year depending on the

resource [2]. Moreover, the technical resource potential, defined as the portion of the theoret-

ical resource potential that can be practically harvested, can range from 45 to 1,298 TWh per

year [2].

Table 1.1: Theoretical and Technical Resource Potentials of Marine Hydro-Kinetic Systems

Resource Theoretical [TWh per year] Technical [TWh per year]
Wave 1594− 2640 898− 1298
Tidal Stream 445 222− 334
River Currents 1381 120
Ocean Currents 200 45− 163

One approach for harvesting MHK energy generation is to deploy an energy harvesting
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kite. The kite is attached to a launch platform using a tether, and can be configured to operate

in one of two modes. In drag mode, the kite harvests energy using an onboard generator, and

transmits it to the launch platform through an electrified tether. Alternatively, in pumping mode,

a motor/generator on the platform periodically reels the kite out at high tension then reels it in at

low tension, thereby generating positive net power. Figure 1.1 shows an illustration of a pumping

mode MHK kite, which will be the focus of the dissertation.

Figure 1.1: Illustration of a Pumping Mode MHK Kite

Tethered kites have significant advantages compared to towered turbines. Firstly, they can

fly at cross-current speeds significantly faster than the prevailing flow, thereby generating power

an order of magnitude higher than towered turbines. Secondly, they can reach greater distance
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compared to turbines. For example, in the case aerial tethered kites are capable of reaching an

altitude of 600m. This is important, considering the fact that at such an altitude, wind typically

has five times the power density of wind at ground level [3]. As shown in Eq. (1.1), the power

generated is a function of the magnitude of the true (i.e., free stream) fluid velocity, vw, the

reference area of the kite, Aref , lift coefficient, CL, fluid density, ρ, and a multiplicative factor, F

representing the energy harvesting benefits of the specific kite configuration and trajectory [4].

P =
1

2
ρv3wArefCLF (1.1)

The literature shows that energy harvesting kites on average produce more power when

flying in a cross-current motion, as opposed to remaining stationary [4]. Cross-current motion

is defined as when the kite moves perpendicular to the free stream fluid velocity. Therefore,

maximizing power production for such kites depends on (i) optimizing the kite trajectory for a

given free stream fluid velocity and (ii) accurately estimating this fluid velocity. Maximizing the

net power output of a pumping mode MHK kite requires the simultaneous co-optimization of the

cross-current trajectory and the spooling (reel in/reel out) motion. This dissertation addresses

the interrelated challenges of: (i) the simultaneous optimization of the cross-current trajectory

and spooling motion of an MHK kite using various methods; as well as (ii) estimating the kite’s

state and free stream fluid velocity using an unscented Kalman filter. The remainder of this

chapter reviews the existing literature on these two topics, thereby motivating the dissertation’s

contributions.
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1.2 Literature Review

1.2.1 Optimization of Tethered Kites

There is a rich existing literature on the modeling, optimization, and control of tethered

kites. This literature spans both marine hydro-kinetic (MHK) and airborne wind energy system

(AWES) applications. The models have various levels of fidelity and complexity. For example,

previous research by Li et al. modeled a tethered kite as a six degree-of-freedom (dof) aircraft that

incorporated rotational pitch, roll, and yaw dynamics, and utilized a Lyapunov based controller

for the translational and rotational motions [5], [6]. Later work incorporated added mass effects to

accurately capture fluid-structure interactions [7]. Vermillion et al. also presented a 6-dof model

that was validated experimentally both in air and in water channel experiments [8], [9]. Denlinger

et al. later used the water channel experiment data to develop a 2-dof model of the tethered kite,

whose trajectory was optimized online through extremum seeking control [10]. Taking into ac-

count the kite’s added mass and inertia, Cobb et al. built a “unifoil” MHK kite model, which was

later extended to a 6-dof model [11], [12]. Canale et al. introduced a model of a pumping mode

kite and used it to optimize the kite’s trajectory through model predictive control [13], [14], [15].

Numerical optimization via a direct multiple shooting method was used by Houska and Diehl

for both a power generating and a towing kite [16], [17]. Estimating the velocity vector orienta-

tion using a target switching strategy, Wood et al. built a tracking controller for an autonomous

kite [18], [19]. Rapp et al. designed a cascaded controller complete with an aircraft, tether, and

ground station model [20], [21]. Finally, Reed et al. explored the problem of building a hier-

archical controller for a marine tethered kite in a turbulent flow environment [22], [23]. This

4



hierarchical control work reflects the growing realization in the research community of the im-

portance of different feedback control methods for ensuring the robust management of tethered

energy-harvesting kite flight, particularly given the importance of such robustness for ultimate

commercial deployment. Hierarchical feedback control is also valuable for ensuring that the true

physical control inputs for a given kite system (e.g., aileron, elevator, and rudder actuation angles,

etc.) are manipulated in a manner that tracks desired trajectories of higher-level variables (e.g.,

angle of attack, induced roll angle, etc.). This, in turn, makes it possible to focus higher-level

trajectory optimization research on simplified problem settings with higher-level actuation com-

mands: an approach that this dissertation adopts by treating the kite’s induced roll angle, angle

of attack, and tether tension as the kite’s “control inputs”. Finally, in recent years, there has been

a push to commercialize energy harvesting kites by companies including Minesto, WindLift, and

Makani [24], [25], [26].

As mentioned in Section 1.1, maximizing the net power of a pumping mode kite requires

the optimization of both the cross-current trajectory and the spooling motion. Existing work in the

literature examines important subsets of this problem, such as: (i) optimizing the spooling motion

and the trajectory separately as in [15], [27], [28]; or (ii) optimizing just the spooling motion

as in [29]; or (iii) optimizing the spooling motion and the path (as opposed to the trajectory)

simultaneously, as in [11], [30]. Different representations of system dynamics are used in these

optimization studies. For example, [30] and [31] incorporate tether dynamics into the main plant

models, whereas [32] presents a model-free optimization strategy.

A significant part of the above literature focuses on characterizing and solving the forward

kite dynamics, often with the goal of optimizing these dynamics (e.g., by optimizing the kite

trajectory). Given a kite’s position, velocity, and actuation inputs, the equations governing its

5



forward dynamics furnish its accelerations. Solving the corresponding inverse dynamics, in the

sense of being able to map a desired combination of kite position, velocity, and acceleration onto

the corresponding actuation inputs, is equally important for multiple reasons. First, knowledge of

a kite’s inverse dynamics enables easy vetting of any prescribed trajectories, i.e., determination

of whether the trajectories are feasible. Moreover, if the trajectories are not feasible, the inverse

dynamics can provide insights into why they are infeasible. Second, the solution to the inverse

kite dynamics problem is not necessarily unique, which means that solving these inverse dynam-

ics analytically provides insight into the multiplicity of possible solution arcs. Third, an analytic

solution to the inverse dynamics problem can be quite valuable for solving trajectory optimiza-

tion, online estimation, and tracking control problems, both exactly and in a computationally

tractable manner. Initial work by the author, included in this dissertation, examined the problem

of optimizing energy harvesting kite trajectories using direct transcription methods [33]. Such

optimization required the approximate solution of inverse kite dynamics. Such an approximate

inverse dynamics solution can be obtained using tools such as the DASSL solver in OpenModel-

ica [34], but adds to the computational complexity of the optimization approach. This motivates

the need for an exact analytic solution of the kite’s inverse dynamics, as presented in this disser-

tation.

1.2.2 Estimation of States and Fluid Velocity

The optimal flight trajectory of a given MHK kite depends on the surrounding free stream

fluid velocity. Initial work by the author, presented in this dissertation, examines the special

case where this velocity is both known and spatio-temporally constant [35], [36]. Other re-
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search in the literature examines trajectory optimization and/or adaptation in the presence of a

spatially and/or temporally varying flow field. For instance, work by Cobb et al. uses wind

profiles from NREL [37], [38] and the Mid-Atlantic Bight South-Atlantic Bight Regional Ocean

Model [11], [12]. The most common free stream fluid velocity modeling approach in the MHK

literature has been the use of simple fluid flow models that describe vertical flow shear, i.e.,

the change in fluid velocity with height, [39], [13], [15]. Beyond this modeling and optimiza-

tion work, there is a critical need for research on online fluid flow field estimation for tethered

energy harvesting kites. Such fluid flow estimation has been explored in towered turbine and

aircraft/unmanned aerial vehicle (UAV) literature, as discussed below, but is a relatively nascent

field for underwater kite systems, with some initial work by investigators including Leonard et

a. [40].

Light Detection and Ranging (LIDAR) systems have been widely used in the literature to

measure different aspects of the wind field for a singular wind turbine and for wind farms. There

is a robust field of literature that looks into flow field estimation based on LiDAR measurements.

In [41], Kapp et al. presented an algorithm that produces wind field parameter estimates using

a single scanning, hub based, continuous wave Light Detection and Ranging (LiDAR) device.

The parameters were: averaged streamwise wind speed, linear horizontal and vertical shear, and

averaged horizontal and vertical stream direction. The paper assumed that the wind speed in

a two-dimensional measurement plane upwind the turbine is perfectly measurable. Using two

wind speeds in this plane, a wind vector projection was calculated, which is then used to estimate

the parameters. Tower and Jones in [42] used Unscented Kalman Filtering to estimate the wind

field upstream of the turbine. In this work, a dual-beam LiDAR measured the radial velocity of

the true wind field at regularly spaced ranges and discrete time instants. Since the Unscented
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Kalman Filter requires a wind model, the paper derived a low-fidelity simplified model from the

Navier-Stokes equation. The state variables for the above model were the radial and azimuthal

wind velocities.

The above approaches deal with estimating the wind flow for individual turbines. A rich

literature in estimating the wind flow in a wind farm has also been developed. Doekemeijer et

al. [43], designed a state estimator using Ensemble Kalman Filtering to reconstruct the states of a

flow model described in [44]. The model used is of medium fidelity and is based on an unsteady

two-dimensional Navier Stokes equation that has been discretized temporally and spatially. It

predicts the 2D velocity vectors and pressure terms over a predefined grid in a wind farm at hub

height at discrete time instants. It relies on actuator disk theory to model interactions between

turbines and their surrounding flow. The state variables of the model were the two-dimensional

flow velocity vector terms and the pressure at hub height. The measurements for the model

were a subset of the state vector: the longitudinal and lateral flow velocity at a small number

of points in the wind field. Previously, the authors had used Ensemble Kalman Filtering and

Approximate Kalman Filtering to build an estimator that would reconstruct the states based on the

same model [45]. The overarching goal of both these studies was to build a close-loop dynamic-

model based controller for the wind farm.

The above methods deployed in wind turbines cannot be used to estimate the fluid speed

for marine hydro-kinetic kites, mainly because of the reliance on LIDARs, which cannot be used

underwater. The literature on unmanned aerial vehicles and aircraft, however, shows that it is

possible to estimate fluid flow without the use of LIDARs. Wind flow estimation techniques

in the field of unmanned aerial vehicles (UAVs) and aircraft can be categorized as employing:

(i) graphical methods employing the velocity triangle vector [46], [47], [48], [49], (ii) constant
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wind models plus Kalman filtering [48], [50], (iii) time varying wind models without Kalman

filtering [51], and (iv) time varying wind models with Kalman filtering [52]. All four methods

require the knowledge of the ground speed of an aircraft or UAV from radar or GPS. However,

since GPS sensors are not usable underwater, these methods cannot be used to estimate the fluid

speed of a marine hydro-kinetic kite.

1.2.3 Open Challenges and Contribution

The above review shows that there is a rich existing literature in the areas of AWES and/or

MHK kite trajectory optimization, state estimation, and surrounding flow field estimation. How-

ever, multiple challenges remain relatively unexplored, including the four main challenges ad-

dressed in the next four chapters of this dissertation, respectively. First, the literature shows

extensive efforts in the area of both AWES and MHK kite trajectory optimization. However, to

the best of the authors’ knowledge, pumping system trajectory co-optimization (i.e., the simul-

taneous optimization of spooling and cross-current motions) remains unexplored in the MHK

literature. Moreover, insights from AWE system co-optimization may not be directly translatable

to the MHK literature due to the contrast between MHK kites (which are typically close to neutral

buoyancy) versus AWE kites (which are often heavier than air). Second, there is need for an an-

alytic solution to the inverse dynamics of a tethered MHK kite. Such a solution can enable more

computationally efficient trajectory optimization, state estimation, and tracking control. Third,

there is a need to examine the MHK kite trajectory optimization problem using the above analytic

solution of its inverse dynamics, in order to ensure accurate optimization results. Fourth, there

is a need for online algorithms to estimate the state and surrounding flow field for a given MHK
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kite. Each of these problems is a focus of a contribution of this dissertation, as discussed in the

next four chapters.
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Chapter 2: Co-optimization of the Spooling Motion and Cross-Current Trajec-

tory of an Energy Harvesting Marine Hydro-kinetic Kite using Di-

rect Transcription

2.1 Overview

This chapter addresses the challenge of simultaneously optimizing the spooling motion

and cross-current trajectory of a tethered MHK kite. The co-optimization work in this chapter is

adapted from a peer-reviewed publication by the dissertation’s author [33]. This co-optimization

work builds on a simple physics-based kite model developed in a peer-reviewed publication by

Dr. Miguel Alvarez, in collaboration with this dissertation’s author [34]. The chapter presents

this physics-based model, the direct transcription algorithm used for co-optimization, and finally

a discussion of the co-optimization results.

The work in this chapter is motivated by the potential of tethered kites to provide attrac-

tive levelized costs of electricity, especially when cross-current motion is exploited in order to

maximize energy harvesting. The literature explores trajectory optimization for tethered energy

harvesting, for both airborne and marine hydro-kinetic energy systems. However, as explained

in the previous chapter, the simultaneous co-optimization of both the spooling and cross-current

trajectories of a marine hydro-kinetic kite remains relatively unexplored. The chapter formulates
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this co-optimization problem using a 3 degree-of-freedom kite model, coupled with an inelastic

tether. A Fourier series expansion is then used for solving this co-optimization problem, and

the key features of the resulting optimal trajectory are analyzed. Significant energy harvesting

is achieved through co-optimization, approaching theoretical maximum power for cross-current

systems.

2.2 Equations of Motion

The kite model used in this chapter approximates the kite’s tether as a massless, drag-free

straight-line kinematic connector between the kite and the launch platform. Previous work by

Alvarez et al. suggests that this is a reasonable approximation, compared to an alternative model

that uses a PDE representation to capture the dynamics of the tether’s distributed inertia and

compliance [34]. The kite is modeled with the following assumptions:

1. The kite’s motion can be controlled through the manipulation of its angle of attack, induced

roll angle, and the magnitude of the tether tension force.

2. The kite is neutrally buoyant, i.e., there is zero net impact of gravitational and buoyancy

forces on the kite.

The first assumption enables the modeling of the kite as a point mass in three dimensions.

Building such a point mass model implicitly assumes the presence of lower-level controllers

capable of manipulating the kite’s rotational dynamics to achieve the desired angle of attack and

induced roll angle. This implicit assumption is reasonable if the kite’s rotational dynamics are

controllable and its closed-loop attitude dynamics are sufficiently fast compared to the desired

12



rates of change of its angle of attack and induced roll angle. The second assumption implies

that the most important forces acting on the kite are tether tension and hydrodynamic forces such

as lift, drag, and the side force. The remainder of this chapter ignores the side force acting on

the kite, implicitly assuming that the kite’s yaw dynamics induce a fast and stable weathercock

effect.

In order to model the system, two coordinate systems are defined: (i) an inertial Cartesian

coordinate system with the origin at the tether anchor point and (ii) a traditional “wind frame”

coordinate system. The anchor point is assumed to be sufficiently deep underwater to the point

where the kite remains fully submerged throughout its trajectory. The position r⃗ and velocity V⃗

of the kite are defined in the inertial xyz frame, as follows.

r⃗ = xı̂+ yĵ + zk̂ (2.1)

V⃗ = ẋı̂+ ẏĵ + żk̂ (2.2)

A unit vector, êr, is defined in the direction of the kite position:

êr =
r⃗

∥r⃗∥
(2.3)

It is assumed that the free-stream water velocity vector, V⃗w is in the x-direction of the iner-

tial frame. The apparent velocity that the kite experiences, V⃗rel, is then defined as the difference

between the kite and fluid velocities.
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V⃗w = uw ı̂ (2.4)

V⃗rel = (ẋ− uw )̂ı+ ẏĵ + żk̂ (2.5)

The second coordinate system is the fluid or “wind” frame. The x-direction in this fluid

frame, x̂w, is defined as the unit vector in the direction of the apparent velocity. Moreover, the

y-direction, ŷw, is chosen to be orthogonal to both x̂w and êr: a well-posed definition as long as

the apparent fluid velocity is not parallel to the tether. Finally, the unit vector ẑw is chosen to

create a Cartesian fluid frame.

x̂w =
V⃗rel

∥V⃗rel∥
(2.6)

ẑw =
x̂w × êr

∥x̂w × êr∥
(2.7)

ŷw =
ẑw × x̂w

∥ẑw × x̂w∥
(2.8)

The tension force, T⃗ , and drag force, D⃗, act along and in the opposite direction to the unit

vectors êr and x̂w, respectively. The lift force, L⃗, is always perpendicular to the drag force and

therefore lies in a plane perpendicular to x̂w. Therefore, these forces can be expressed as follows:
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L⃗ =
1

2
ρCL(α)A∥V⃗rel∥2(cos ϕ̃ŷw + sin ϕ̃ẑw) (2.9)

D⃗ = −1

2
ρCD(α)A∥V⃗rel∥2x̂w (2.10)

T⃗ = T êr (2.11)

where ρ, CL, CD, α, A, and ϕ̃ are, respectively, the water density, the lift coefficient, the drag

coefficient, the angle of attack, the wing area, and the induced kite roll angle with respect to

the ŷw unit vector. The density of water and the area of the kite are 1000kg/m3 and, 10m2

respectively. The drag and lift coefficients are computed for a representative MHK kite geometry

using the curve fits in Equation (2.12) and (2.13), where the angle of attack, α is assumed to be in

degrees and the values of a, b, p1, p2, andp3 are 3.123×10−2, 6.675×10−2, 1.221e×10−4, 5.309×

10−4, and 0.01 respectively.

Cl = 2(αa+ b) (2.12)

Cd = 2(α2p1 + αp2 + p3) (2.13)

Therefore, the total force acting on the kite is

F⃗total = L⃗+ T⃗ + D⃗ (2.14)
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Taking ϕ̃, α, and T as input variables, the kite’s state equations can be written as in Equa-

tion (2.15). The mass of kite, m, is 1000kg.

d

dt



x

y

z

u

v

w



=



u

v

w

1
m
F⃗total · ı̂

1
m
F⃗total · ĵ

1
m
F⃗total · k̂



(2.15)

Since, the tether tension can be controlled by through spooling, the optimization problem is

effectively a spool rate control problem.

2.3 Optimization Approach

Based on the state equations presented in Section 2.2, the optimization statement can be

written as follows:

min J =
1

tf − ti


−
∫ tf
ti
Pmechdt∫ tf

ti
( ˙̃ϕ2 + α̇2 + ξ̇2)dt

 (2.16)

subject to the kite’s state-space model as a dynamic constraint, with the following added con-
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straints:

X⃗ti = X⃗tf (2.17)

Pmech = T⃗ T V⃗ (2.18)

T = Tmin + (Tmax − Tmin)
eξ

1 + eξ
(2.19)

This is a classical multi-objective, or Pareto, trajectory optimization problem statement,

with a vector of two potentially competing optimization objectives. The first objective is to

maximize the time-averaged value of Pmech, the mechanical power produced at every instant in

time over the course of the spooling cycle. Averaging is performed over one time period, where

ti is the initial time and tf is the final time. One time period is defined as the total time taken

for the kite to reel in and reel out once. Equation (2.17) therefore ensures the periodicity of the

states, with X⃗t representing the state vector at any time t. Optimization proceeds with respect to

the time histories of the state and control input variables, as well as the time period, tf−ti. Tether

tension, T , is one of the kite system’s control input variables. However, a sigmoidal nonlinear

coordinate transformation is used for expressing this tension as a function of a new, fictitious

control input variable ξ. This makes it possible to force the tether tension to remain between two

bounds: a lower bound Tmin that prevents undesirable tether slack, and an upper bound Tmax

that prevents undesirable mechanical failure. The second optimization objective is the sum of

the mean square rates of change of the kite’s three actuation/control inputs. Penalizing the time

rates of change of the three inputs to the kite dynamics model is important for achieving a smooth

motion trajectory. From a mathematical perspective, one consequence of this rate penalty is that

the true control input variables are now the rate variables, ˙̃ϕ, α̇, and ξ̇.

17



Figure 2.1: Power Maximization Algorithm

Figure 2.1 provides a high-level representation of the process used for solving the above

optimization problem. The key idea behind this process is to utilize a series expansion method to

convert the problem into a nonlinear program. Since this is a periodic optimal control problem,

we use truncated Fourier series to represent the state and control input trajectories, as shown

below:

X⃗ =
a⃗ (0)

2
+

3∑
n=1

[
a⃗ (n) cos

2πn

Tperiod
+ b⃗ (n) sin

2πn

Tperiod

]
(2.20)

U⃗ =
c⃗ (0)

2
+

3∑
n=1

[
c⃗ (n) cos

2πn

Tperiod
+ d⃗ (n) sin

2πn

Tperiod

]
(2.21)
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In the above Fourier expansions, the vectors X⃗ and U⃗ represent the state and input vectors

of a new state-space system model driven by the rate variables, ˙̃ϕ, α̇, and ξ̇. The vectors a⃗(n),

b⃗(n), c⃗(n), and d⃗(n) are expansion coefficients corresponding to the nth harmonic of the Fourier

expansion. The period of the Fourier series is Tperiod = tf−ti, and optimization is performed over

three harmonics for simplicity. This Fourier expansion approach allows for the optimization of

the initial kite position and velocity, as part of trajectory optimization. Thus, the set of optimiza-

tion variables now consists of the coefficient vectors a⃗(n), b⃗(n), c⃗(n), and d⃗(n) and the period

Tperiod. These optimization variables cannot be chosen freely, one reason being that collectively,

the state and control input trajectories must satisfy the underlying state-space model’s dynamics.

One possible remedy to this challenge is to define a “discrepancy cost” reflecting inconsistencies

between the state and control trajectory Fourier expansions. Specifically, as shown in Figure 2.1,

one can use the kite’s equations of motion to compute the force, F⃗req(t), required for the perfect

instantaneous achievement of the Fourier expansion of the kite state trajectory at every instant in

time. One can also use the kite’s equations of motion to compute the net force, F⃗net(t), that would

act on the kite at every instant in time if the Fourier expansions of both the state and control input

trajectories were simultaneously implemented. The L2 norm of the discrepancy between these

two force vectors can then provide a quantification of constraint violation, as shown below:

Jdiscrepancy = ||F⃗req(t)− F⃗net(t)||22 (2.22)

Given the above definition, this chapter solves the kite trajectory optimization problem as

a multi-objective problem where a penalty on the discrepancy cost in Equation (2.22) is used
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in order to enforce constraint satisfaction. Doing so converts the chapter’s constrained opti-

mization problem into an unconstrained problem with a constraint violation penalty, consistent

with penalty-based approaches to constrained nonlinear programming. The chapter uses a linear

scalarization approach to convert the problem’s two competing objectives (namely, maximizing

power and minimizing the rates of change of the input variables) into a single aggregate objec-

tive. This aggregate objective is a weighted sum of the two individual objectives, with the weights

both being equal to unity throughout the remainder of the chapter. The nonlinearity of the kite’s

dynamics causes this trajectory optimization problem to be non-convex. A particle swarm algo-

rithm is used for the initial exploration of the optimization space. This is followed by the use of

the Nelder-Meade simplex algorithm for the local refinement of the particle swarm solution.

2.4 Results

This section presents simulation results showing that the chapter’s optimization algorithm

paired with the 3-DOF MHK kite model is successful in maximizing mechanical power. Per

Loyd’s calculation in [4], a kite of the area considered in this study is theoretically capable of

producing 83.9kW of power in cross-current reel-out flight, assuming a free-stream flow speed

of 1m/s. The corresponding optimal steady reel-out speed is 1
3
m/s. It should be noted that this

21.3kW is quite optimistic for a number of reasons, including the fact that a practical kite cannot

be reeled out indefinitely and cannot achieve purely cross-current motion.

The following observations can be made from the simulation results:
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Figure 2.2: Position of Kite with Time

1. The optimizer successfully furnishes a smooth kite trajectory with a fairly short time period

of approximately 10.5 seconds, as shown in Figure 2.2.

2. The optimal spooling trajectory is very simple, consisting of a spool-out episode followed
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by a spool-in episode, as evident from the plot of radial kite distance, r, from the origin in

Figure 2.2.

3. The average tether reel-out rate in Figure 2.3 is close to the ideal theoretical value of 1
3
m/s

predicted by Loyd.

4. The contrast between the kite’s velocities in the x, y, and z directions, visible in Figure 2.3,

highlights the degree to which the kite exploits the energy harvesting benefits of cross-

current motion. The kite’s velocity in both the y and z directions is very substantial, even

as its velocity in x direction remains small.
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Figure 2.3: Velocity of Kite with Time

5. The trajectory shape as seen in Figure 2.4 is not a figure-8, as is common in literature.

Since the kite is neutrally buoyant, the safety benefits of a figure-8 trajectory where the

kite always “tacks” upwards are not critical, and not reflected in the optimization problem
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formulation. The optimal trajectory, when projected onto the yz plane, can be intuitively

approximated as a set of concentric circles. This trajectory reflects the optimization prob-

lem’s emphasis on minimizing the rate of change of the induced kite roll angle, ϕ̃. We

also notice that the the radius of curvature at instant of time is very tight. This is due to

the significant unmodeled variation in relative velocity across the wingspan and potentially

unrealistic yaw rates. The first cause leads to errors in lift modeling and unmodeled local

stall at different points along the wingspan.

Figure 2.4: Optimized Path Shape

6. The induced roll angle ϕ̃ never changes sign during the periodic kite trajectory, as shown

in Figure 2.5. The magnitude of this roll angle is most substantial during reel in, when a

sharp increase in the roll angle causes the tether tension and lift vectors to be misaligned,

thereby enabling low-tension reel-in.
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Figure 2.5: Roll Angle of the Kite with Time

7. As Figure 2.6 shows, the kite’s lift-to-drag ratio attains a maximum value at an angle of

attack close to 5 degrees. The optimal trajectory exploits this as follows. During reel-out,

it achieves an angle of attack of approximately 4 degrees, as shown in Figure 2.7, thereby

attaining a lift-to-drag ratio close to the maximum achievable ratio. This allows lift, and

therefore tether tension, to be maximized. In contrast, during reel-in, a negative angle of

attack is used in order to minimize lift, thereby minimizing tension.
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Figure 2.7: Angle of Attack of the Kite with Time

8. Tether tension is high during reel-out and low during reel-in, thanks to the above fluctua-

tions in angle of attack with time. Moreover, the resulting lift force is used more heavily for
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turning during reel-in compared to reel-out, thanks to the above fluctuations in the induced

roll angle with time. The kite manipulates its attitude to exploit lift for power generation

during reel-out and for turning during reel-in.
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Figure 2.8: Tether Tension of the Kite with Time

9. The above trajectory furnishes substantial power during reel-out and consumes much less

power during reel-in, as shown in Figure 2.9.
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Figure 2.9: Power Trajectory of the Kite with Time

2.5 Discussion and Conclusions

It has been widely noted that AWE systems produce more power on average during cross-

current motion than stationary flight. This chapter highlights the fact that this is true for MHK

systems as well. Moreover, the chapter’s results highlight the degree to which trajectory co-

optimization can be beneficial for these systems. It is particularly important to note the manner

in which variables describing the kite’s cross-current motion (such as its angle of attack and

induced roll angle) are coordinated with its spooling motion in order to facilitate optimal energy

harvesting.

Beyond the optimization work in this chapter, the performance of practical MHK systems

is likely to be further constrained by actuator dynamics, lower-level controllers for the system’s

actuators, unmodeled fluid-structure interactions, and tether dynamics. Analyzing these effects,

both in simulation and experimentally, is an important potential future direction for MHK kite
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research. One important potential future research question, for instance, is how much the results

of this optimization study change when added fluid mass effects are modeled. Another impor-

tant potential future research question is whether accounting for tether slack, perhaps through

a switching model of tether dynamics, can alter the optimization results in this chapter signifi-

cantly. Finally, the fact that the optimization results in this chapter rely on the use of a penalty

function to approximate the kite’s dynamics raises an important question, namely: can this chap-

ter’s optimization study be repeated using an exact solution of the kite’s dynamics? To address

this question, the next chapter of this dissertation presents an analytic solution of the inverse

kite dynamics, thereby enabling a more accurate subsequent optimization study in the following

chapter.
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Chapter 3: An Analytic Solution to the Inverse Dynamics of an Energy Har-

vesting Tethered Kite

3.1 Overview

This chapter presents and discusses an analytic solution to the inverse dynamics of a teth-

ered MHK kite. The work in this chapter is adapted from a peer-reviewed journal article by the

author [35]. The intent of this work is to enable the optimization of MHK kite trajectories without

requiring the use of penalty functions to approximate the underlying kite dynamics.

The literature for both AWES and MHK kites focuses on characterizing and solving the

forward kite dynamics, often with the goal of optimizing these dynamics (e.g., by optimizing the

kite trajectory). Given a kite’s position, velocity, and actuation inputs, the equations governing its

forward dynamics furnish its accelerations. Solving the corresponding inverse dynamics, in the

sense of being able to map a desired combination of kite position, velocity, and acceleration onto

the corresponding actuation inputs, is equally important for multiple reasons. First, knowledge of

a kite’s inverse dynamics enables easy vetting of any prescribed trajectories, i.e., determination of

whether the trajectories are feasible. Moreover, if the trajectories are not feasible, the inverse dy-

namics can provide insights into why they are infeasible. Second, the solution to the inverse kite

dynamics problem is not necessarily unique, which means that solving these inverse dynamics
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analytically provides insight into the multiplicity of possible solution arcs. Third, an analytic so-

lution to the inverse dynamics problem can be quite valuable for solving trajectory optimization,

online estimation, and tracking control problems, both exactly and in a computationally tractable

manner. Previous work by the author examined the problem of optimizing energy harvesting kite

trajectories using direct transcription methods [33]. In the absence of the analytic inverse dynam-

ics solution approach presented here, such optimization may require the approximate solution of

inverse kite dynamics. Such an approximate inverse dynamics solution can be obtained using

tools such as the DASSL solver in OpenModelica [34], but adds to the computational complexity

of the optimization approach. The approach presented in this chapter improves computational

tractability and accuracy by solving the inverse kite dynamics exactly in terms of the roots of a

fourth-order polynomial.To the best of the author’s knowledge, the problem of obtaining an an-

alytic solution to the inverse kite dynamics problem remains relatively unexplored. The goal of

this chapter is to solve this inverse dynamics problem, under reasonable modeling assumptions,

for translational kite motion.

3.2 Analytic Solution to the Inverse Dynamics

Given the forward dynamics model in Section 2.2, the desired solution for the inverse

dynamics can be obtained as follows. We begin by noting the classical definition of the “inverse

dynamics” problem, as the problem of determining the actuation inputs required for achieving

a desired motion trajectory. This implies that the motion trajectory, expressed in terms of kite

position, velocity, and acceleration versus time, is assumed to be given when solving inverse

dynamics problems. The solution of the inverse dynamics therefore requires the joint resolution
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of the kite’s kinematics and kinetics. First, given the kite’s position, velocity, the free-stream

fluid velocity, and the tether tip orientation, one can compute the unit vectors x̂w, ŷw, and ẑw, as

defined in Section 2.2. Second, because the tether tip orientation vector, êr, is orthogonal to ẑw

by definition of ẑw, it follows that the component of êr along ẑw must be zero. With this in mind,

one can write êr as follows:

êr = µx̂w + γŷw (3.1)

where the constants µ and γ can be defined as:

µ = êr · x̂w (3.2)

γ = ∥êr − µx̂w∥ = êr · ŷw (3.3)

Third, the net force required for achieving the desired kite acceleration, F⃗total, can be com-

puted by multiplying the kite’s mass with its desired acceleration:

F⃗total = m
˙⃗
V (3.4)

Fourth, the required “fluid plus tether force”, F⃗ , is defined as follows:
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F⃗ = F⃗total − E⃗ = L⃗+ T⃗ + D⃗ (3.5)

Fifth, projecting the above force onto the fluid, or wind, coordinate frame gives the forces

f0, f1, and f2 below:

f0 = F⃗ · x̂w = −β(p1α2 + p2α + p3)− Tµ (3.6)

f1 = F⃗ · ŷw = β(aα + b)cos(ϕ̃)− Tγ (3.7)

f2 = F⃗ · ẑw = β(aα + b)sin(ϕ̃) (3.8)

where the expressions for the tether tension, lift, and drag forces plus the kite lift/drag coefficients

have already been substituted into the above equation, and where β is equal to twice the fluid’s

dynamic pressure times the effective area, A, as shown below:

β = ρA∥V⃗rel∥2 (3.9)

Next, since both Equation (3.6) and Equation (3.7) are linear in T , it can be eliminated, and

the resulting Equation can be squared in order to obtain an expression for cos2(ϕ̃):
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f1 −
γ

µ
f0 = β(aα + b)cosϕ̃+

γ

µ
β(p1α

2 + p2α + p3) (3.10)

(f1 −
γ

µ
f0)− (

γ

µ
β(p1α

2 + p2α + p3)) = β(aα + b)cosϕ̃ (3.11)

[(f1 −
γ

µ
f0)− (

γ

µ
β(p1α

2 + p2α + p3))]
2 = β2(aα + b)2cos2ϕ̃ (3.12)

Next, utilizing the trigonometric identity that the sum of the squares of the sine and cosine

of an angle equals unity, and adding Equation (3.12) to the square of Equation (3.8), the following

fourth order equation is obtained:

[(
γ

µ
f0 − f1)−

γ

µ
β(p1α

2 + p2α + p3)]
2 + f 2

2 = β2(aα + b)2 (3.13)

Equation (3.13) can finally be solved for α. The resulting values of α can then be substituted

in Equation (3.6) to solve for T . Moreover, Equation (3.7) and Equation (3.8) can be used to solve

for cos(ϕ̃) and sin(ϕ̃), respectively, which makes it possible to uniquely determine ϕ̃.

The above procedure makes it possible to solve the kite’s inverse dynamics analytically in

terms of the roots of a fourth-order polynomial in α. The existence of four potential solutions

for the kite’s inverse dynamics is an interesting outcome of this work. This multiplicity of so-

lutions can be explained as follows. First, the ratio of L
D

represents a particular force direction,

and because the lift and drag coefficients are affine and quadratic functions of α, respectively, a

particular ratio of L
D

can be achieved using either a relatively high or relatively low combination

of values of lift, drag, and α. Second, each solution for α has a symmetric counterpart where the
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kite flies “upside down”, rolling by 180 degrees and simultaneously switching to a new value of

α that recovers the original lift and drag forces. Therefore, there are two causes of multiplicity of

inverse dynamics solutions (high/low angle of attack multiplicity and symmetry), with each cause

creating a multiplicity of 2, and with both causes combined therefore creating a multiplicity of 4.

Once the solution to the above inverse dynamics is obtained, one can easily compute other

quantities, including the orientation of the kite’s body coordinate frame. To show this, we first

note that when the angle of attack is zero, the three coordinate axes of the kite’s body frame will

be parallel to the relative wind velocity direction, x̂w, the lift force direction, cos(ϕ̃)ŷw+sin(ϕ̃)ẑw,

and the cross product of these two directions, − sin(ϕ̃)ŷw+cos(ϕ̃)ẑw, respectively. Given an angle

of attack α plus the fact that our earlier assumption of “weathercocking” translates to a sideslip

angle of zero, the three coordinate vectors describing the kite’s body frame must therefore equal:

1. A vector x̂w cos(α) + sin(α)[cos(ϕ̃)ŷw + sin(ϕ̃)ẑw], pointing in the aft-forward direction.

2. A vector −x̂w sin(α) + cos(α)[cos(ϕ̃)ŷw + sin(ϕ̃)ẑw], pointing upwards from the kite’s

body.

3. A third vector, − sin(ϕ̃)ŷw + cos(ϕ̃)ẑw, pointing in the port-starboard direction.

Together, the above three directions define the kite’s body coordinate frame, and make it

possible to compute additional variables such as the kite’s Euler angles using standard formulas

from the literature [53].

3.2.1 Geometric Force Balance

To see the above sources of multiplicity more clearly, consider the free-body diagram of

the kite in the body coordinate frame (Figure 3.1). Moreover, let L and D represent the scalar
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values of the lift and drag forces, respectively. This leads to the following definitions:

L = β(aα + b), D = β(p1α
2 + p2α + p3) (3.14)

In the above definitions, the scalar lift force, L, can be either positive or negative depending on the

value of α. The scalar value of the drag force, D, is a positive quantity, but it acts along the −x̂w

direction vector. The tether force T acts along the unit vector −êr, which has projections µ and γ

onto the xw and yw axes, respectively. The lift force L acts in the ywzw plane. Its ẑw component

is f2 in Equation (3.8), and the remaining component is Lcos(ϕ̃) along ŷw as in Equation (2.9).

Once we consider the added forces f1 and f2, we can study the force balances.

−D − f0 = Tµ (3.15)

Lcos(ϕ̃)− f1 = Tγ (3.16)

f2 = Lsin(ϕ̃) (3.17)

The tension force T must balance the other forces on the kite. So the projection of the

tension onto the x axis Tµ must match −D − f0, as shown in Equation (3.15), which matches

Equation (3.6). Similarly, the tension projected onto the yw axis Tγ must match the Lcos(ϕ̃)

component of lift minus f1 as shown in Equation (3.16), which is Equation (3.7). Finally, the zw

component of lift must match f2 Equation (3.17) which matches Equation (3.8).

Given the above definitions, one can rewrite Equation (3.8) and Equation (3.10) as follows:
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f2 = Lsin(ϕ̃) (3.18)

f1 −
γ

µ
f0 = Lcosϕ̃+

γ

µ
D (3.19)

-xw

f2

µ  
γ  

-f0

-f
1

TL
co

sϕ
  

ê r
L

D

yw

-zw

-ϕ

Figure 3.1: Body forces diagram.

Based on the above two equations, one can construct a right-angle “lift force triangle”, where the

sides of the triangle represent L, Lsin(ϕ̃), and Lcos(ϕ̃), as shown in Figure 3.2.

In the lift force triangle (Figure 3.2), the length of the opposite edge, f2, is not a func-
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Figure 3.2: Lift force triangle

tion of α. However, the lengths of the adjacent edge and hypotenuse are both depend on α.

Equation (3.13) essentially states Pythagoras’ theorem for this triangle. Because of the quadratic

dependence of D on α, two fundamentally distinct groups of solutions can arise for angle of at-

tack, as discussed above: a low-α solution pair and a high-α solution pair. The remainder of this

chapter examines three special cases of the above lift force triangle that help shed more light on

the multiplicity of solutions for α.

3.2.2 Special Case #1: Zero Force Requirements

Consider the scenario where the net hydrodynamic plus tether force needed for kite motion

is zero, i.e., f0 = f1 = f2 = 0. In this case, assuming ϕ̃ = 0 (and noting that ϕ̃ = 180 degrees

is also a plausible scenario), the lift force triangle collapses to a straight line segment, where the

lengths of the hypotenuse and adjacent edge must be equal, i.e.,
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L = −γ
µ
D (3.20)
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Figure 3.3: Impact of angle of attack on lift-to-drag ratio

The above equation can be interpreted as projecting the lift and drag forces onto an axis

normal to the tether, and requiring the net force along this axis to be zero. Moreover, this equation

can be interpreted as requiring a specific value for the lift-to-drag ratio. Figure 3.3 plots the kite’s

lift-to-drag ratio versus angle of attack. A unique value of α corresponds to the peak (positive

or negative) lift-to-drag ratio. For all lift-to-drag ratios smaller in magnitude than this peak, it is

mathematically possible to find two values of α satisfying Equation (3.20). Moreover, for each

of these pairs of L and D, a symmetric counterpart exists where the kite flies “upside down” by

switching between ϕ̃ = 0 and ϕ̃ = 180 degrees. This explains the potential for four solutions for

α.
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3.2.3 Special Case #2

Consider the special case where the required force f2 equals zero, but f0 and f1 can be

nonzero. We assume f2 = 0 implies ϕ̃ = 0 via Equation (3.17). Note that ϕ̃ = ±180 degrees

is also a plausible scenario, but would change the sign of lift. In this case, the lift force triangle

collapses to a straight line where the hypotenuse and adjacent lengths must be equal, i.e.,

L = f1 −
γ

µ
(f0 +D) ⇒ µ(L− f1) = −γ(D + fo) (3.21)

Equation (3.21) has an interesting geometric interpretation. The terms L − f1 and D + f0

represent the components of the lift and drag forces that remain once the required values of f1

and f0 have been achieved, respectively. Once again, these components must add up to a force

that aligns with the kite’s tether, similar to special case # 1. Once again, this leads to a quadratic

Equation in terms of angle of attack, α, with up to two potentially distinct solutions. Moreover,

symmetric inverted counterparts exist to these solutions, corresponding to |ϕ̃| ≥ 90 degrees.

We can directly solve for α via the quadratic formula by substituting for L and D with

Equation (3.14) into Equation (3.21). This yields a quadratic in α which can potentially furnish

as many as two real solutions,

µ (β(αa+ b)− f1) = −γ
(
β(α2p1 + αp2 + p3) + f0

)
(3.22)

µ

γ
(αa+ b) +

1

β
(f0 −

µ

γ
f1) = −(α2p1 + αp2 + p3) (3.23)

α2p1 + α(p2 +
µ

γ
a) +

(
p3 +

µ

γ
b+

1

β
f0 −

µ

γ
f1)

)
= 0 (3.24)
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3.2.4 Special Case #3

Finally, consider the special case of a non-cambered kite wind. In such a case, one can

reasonably assume that zero lift is achieved at a zero angle of attack, meaning that b = 0 in

Equation (3.13) [54]. Moreover, one can reasonably assume that drag is minimum at zero lift,

meaning that p2 = 0 in the above equation [54]. The fourth-order Equation for α then simplifies

to:

[(
γ

µ
f0 − f1)−

γ

µ
β(p1α

2 + p3)]
2 + f 2

2 = β2(aα)2 (3.25)

This is a quadratic Equation in terms of α2, meaning that for every value of α, there is in-

deed a symmetric counterpart solution where the sign of the angle of attack is flipped. Moreover,

at least for some kite maneuvers, there will exist a solution with a higher angle of attack and a

solution with a lower angle of attack, which explains the multiplicity of solutions for α.

3.3 Simulation Example

This section presents a simulation example highlighting the proposed inverse dynamics

approach. The example builds on lessons learned in previous work by the authors, focusing on

energy harvesting using tethered MHK kites [33]. One lesson from this previous work is that

MHK kites can harvest significant amounts of energy by flying cross-current in circular patterns

while reeling in and out at low and high tension levels, respectively. This represents an alternative

to the more common approach in the literature, where cross-current flight trajectories often have
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figure-8 shapes.

The specific trajectory examined in this section has a spatially uniform and temporally

constant water flow speed of 1 m/s along the positive x-direction of the base frame. The kite flies

in perfect circular cross-current patterns in the base frame’s yz-plane, while reeling in and out

periodically along the base frame’s x-axis. The trajectory has a 125-second time period, and is

described by the equations below:

ω =
2π

125
(3.26)

x = 100 + 10 sinωt (3.27)

y = 25 sin (5ωt) (3.28)

z = 25 cos (5ωt) (3.29)

The above equations translate into the 3-dimensional trajectory shape shown in Figure 3.4.
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Figure 3.4: Prescribed Path Shape

Following the procedure outlined earlier in this chapter, four inverse dynamics solutions

were obtained for the above trajectory. Each solution is characterized by a different set of tra-

jectories for angle of attack, α, induced roll angle, ϕ̃, and tether tension, T . Figure 3.5 shows

the four solution trajectories for the angle of attack, α. These trajectories are all mathematically

plausible. Moreover, all of these solution arcs satisfy the required values for the forces f0, f1, and

f2 at every instant in time, as shown in Figure 3.6. The errors between the required and solved

f0, f1, and f2 are very close to 0 (within numerical noise), given that the inverse dynamics is

being solved exactly. Interestingly, the solution trajectories in Figure 3.5 are symmetric around

α = −b/a, the angle of attack corresponding to zero lift. However, not all of these trajectories are

physically reasonable. For instance, the large-α solutions are likely to result in kite stall. More-

over, the solutions corresponding to negative values of α represent an “upside down” kite flight

configuration. With this in mind, the remainder of this section focuses on the smallest positive
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solution trajectory for α, shown in Figure 3.5b.
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(b) Final solution chosen for α

Figure 3.5: Angle of Attack Solutions (degree)
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(b) Required and solved solution arcs of f1(N)
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(c) Required and solved solution arcs of f2(N)

Figure 3.6: Desired trajectories of the forces (a) f0(N), (b) f1(N), and (c) f2(N)
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(b) Final solution chosen for ϕ̃

Figure 3.7: Roll Angle Solutions (degree)

Figure 3.7a shows the four solutions for roll angle, ϕ̃ corresponding to the four solutions

for α. Both angles are plotted in degrees. Two of the solutions correspond to an upside-down

kite configuration, but the solution associated with the selected trajectory for α is associated
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with small positive roll angles, as shown in Figure 3.7b. Interestingly, only a small roll angle

magnitude is required versus time, reflecting the degree to which fast cross-current flight enables

the achievement of significant flight path curvatures with only a small need for banking, or roll.

Figure 3.8 shows the four solution histories for tether tension versus time, corresponding

to the four solutions for α. The inverse dynamics solution approach presented in this paper does

not preclude negative tension solutions. However, such solutions would automatically imply

trajectory infeasibility for tethered kite systems. All four solution arcs correspond to positive

tension histories, implying that all four arcs are feasible in this case, at least from a tethered

system’s perspective. The solution arc corresponding to the selected history of α is shown in

Figure 3.8b. Interestingly, this solution achieves high values of tension towards the beginning and

end of the time period, when the kite is being reeled out in the x-direction. This is desirable from

an energy harvesting perspective, and it also points to the following important insight. Optimizing

the translational trajectory of the kite, as represented by x(t), y(t), and z(t), may not be sufficient

for optimal energy harvesting. One should also optimize the choice of control input solution arc

that generates maximum power for this given trajectory.
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Figure 3.8: Tension Magnitude Solutions (N)
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3.4 Conclusion

While the modeling, control, and optimization of tethered kites have been explored in great

detail, this chapter presents the first analytic solution of the inverse dynamics of the underlying

kites. This analytic solution is useful for gaining fundamental insights and facilitating tractability

in trajectory optimization, tracking, estimation, and control. The next chapter in this dissertation

includes the use of the inverse dynamics solution for precise trajectory optimization and kite

control. Finally, the framework presented in this chapter can potentially be extended to account

for important effects such as tether curvature, provided models of those effects are available.
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Chapter 4: Co-optimization of the Spooling Motion and Cross-Current Trajec-

tories using Inverse Dynamics Analysis

4.1 Overview

This chapter addresses the challenge of simultaneously optimizing the spooling motion and

cross-current trajectory of MHK kite using the inverse dynamics solution obtained in Chapter 3.

This optimization is performed using a Fourier expansion of the kite’s state trajectories over time

that transforms the trajectory optimization problem into a non-linear program [55], [56]. The

work in this chapter has been submitted for review to a peer-reviewed journal [36].

4.2 Optimization Approach

The model used in the optimization remained the same as in Chapter 2. However, the

optimization statement now is:

min J =
1

tf − ti

∫ tf

ti

(−wpPmech + Jrate + Jα + JT + Jϕ)dt (4.1)
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subject to the kite dynamics plus the constraints:

X⃗ti = X⃗tf (4.2)

Pmech = T⃗ T V⃗ (4.3)

The value of the Pareto weight, wp, and the definitions of Jrate, Jα, JT , and Jϕ are as follows:

wp = 2500 (4.4)

Jrate = 104(α̇2 + Ṫ 2 + ϕ̇2) (4.5)

Jα =

1010(20− α) if α > 20◦

1010(α + 5) if α < −5◦

 (4.6)

JT =

1010(105 − T ) if T > 105N

1010(T ) if T < 0N

 (4.7)

Jϕ =

1020(|ϕ| − 1
2
π) if |ϕ| > 1

2
πrad

0

 (4.8)

The above optimization statement has two objectives:

1. To maximize average mechanical power produced over one time period, defined as the time

taken for the kite to spool in and out once. Here ti is the initial time, and tf is the final time.

2. To maintain a smooth motion trajectory by penalizing the time rate of change of the three

control inputs.

3. To ensure that the control inputs do not surpass reasonable minimum and maximum bounds.
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Since this is a periodic optimal control problem, Equation (4.2) ensures periodicity of the

states, with X⃗t being the state at any time instant. The state variables of this kite model are the

position and velocity of the kite in the base frame. They are approximated as truncated Fourier

series because of periodicity.

X⃗ =
a⃗ (0)

2
+

3∑
n=1

[
a⃗ (n) cos

2πn

Tperiod
+ b⃗ (n) sin

2πn

Tperiod

]
(4.9)

Similar to Chapter 2, the vectors a⃗(n) and b⃗(n) are expansion coefficients corresponding

to the nth harmonic of the Fourier expansion. In this work, n is chosen to be 3 for simplicity.

The period of the Fourier series is Tperiod = tf − ti. Expressing the state as a Fourier expansion

allows for the optimization of the initial kite position and velocity, as part of trajectory optimiza-

tion. Thus, the coefficient vectors a⃗(n), b⃗(n), and the time period Tperiod become the optimization

variables. These optimization variables must satisfy the state dynamics. In the author’s previous

work, this was solved by representing both the states and the control inputs as Fourier series, and

then imposing a penalty on the discrepancy between the kite forces produced by the assumed

control input trajectories versus the forces required for achieving the desired state trajectories. In

contrast, this chapter uses an analytic solution of the inverse dynamics, allowing one to solve the

trajectory optimization exactly. Since the kite’s dynamics are non-linear, the trajectory optimiza-

tion problem is therefore non-convex. Similar to [33] and Chapter 2, a particle swarm algorithm

is used for the initial exploration of the optimization space, followed by the use of the Nelder-

Meade simplex algorithm for the local refinement of the particle swarm solution. Figure 4.1

shows the high level representation of the optimization approach.
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Figure 4.1: Power Maximization Algorithm

.

The numerical solution of the above optimization problem depends on the number of har-

monics used in the underlying Fourier series expansion. Using higher harmonics leads to only a

small increase in the power production. For example, as seen in Figure 4.2, while the Pareto cost

decreases by 25.69% from n = 4 to n = 5, the power production only increases by 1.65%. From

n = 3 to n = 4, the Pareto Cost decreases by 2.65% and power production increases by 6.31%.

Increasing the number of Fourier coefficients also increases the computation time, and therefore,

in the remainder of this chapter, n = 3 was chosen. In the above comparison between different

orders of the Fourier expansion, the initial condition for each previous value of n was used to run

the Nelder-Meade simplex algorithm to get the values of power and Pareto cost.
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Figure 4.2: Comparison of Pareto Cost and Power with Different Number of Fourier Coefficients

The results of this chapter’s numerical optimization also depend on the chosen value of the

Pareto scalarization weight. An analysis of different Pareto weights shows that the increase in

power and reduction in Pareto cost is minimal with higher Pareto weight. Therefore, wp = 2500

is a reasonable choice for the subsequent simulation study.
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Figure 4.3: Comparison of Pareto Cost and Power with Different Pareto Weights

4.3 Results

This section presents simulation results showing that the optimization algorithm that in-

corporates the inverse dynamics solution and the 3-DOF kite model, successfully furnishes a

trajectory with desirable power production. A kite of similar area would theoretically produce a

maximum of 83.9kW of power during steady state reel-out [4]. The optimization algorithm was

able to produce an average power of 21.3kW within one time period, consistent with the authors’

previous work that approximated the kite’s dynamics during optimization instead of solving them

exactly [33]. This is important because it provides more confidence in the feasibility of achieving

such a level of average power. Figure 4.4 further shows that the kite consumed very little power

during reel-in, never exceeding 3kW. Moreover, during reel-out, the kite was able to produce

instantaneous power much higher than the steady state theoretical limit, reaching almost 60kW.

Therefore, the kite was able to achieve a Loyd factor, defined as the ratio of the generated power
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to the theoretical power, of 25.38%.
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Figure 4.4: Power Produced by the Kite

The kite followed a simple trajectory of a short reel-out and reel-in episode, before being

reeled-out for a longer period of time, as shown in Figure 4.5. It is assumed that the kite’s anchor

point is sufficiently underwater such that the kite does not rise above the surface as it traverses

this trajectory.
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Figure 4.5: Position of the Kite

The full trajectory, as seen in Figure 4.6, is similar to results obtained in [33] in that the

optimal path shape is once again not figure-8, and can be approximated as a sequence of circles

in the yz-plane. The non-figure-8 path shape eliminates the need for switching the direction of

57



induced roll, which is attractive from the perspective of minimizing the rates of change of various

actuation inputs. Moreover, this shape is acceptable due to the fact the kite is neutrally buoyant,

and therefore does not need to exploit the potential safety benefits of a figure-8 trajectory where

the kite turns upwards (as opposed to downwards) when it turns. As seen again, the radius of

curvature is still pretty tight and that can attributed to the same reasons as mentioned in Chapter 2:

(i) the variation in relative velocity across the wing span and (ii) potentially unrealistic yaw rate.

Figure 4.6: Optimized Path Shape

As shown in Figure 4.7, the velocity of the kite in the yz-plane is larger than in the x-

direction, thereby showing that the kite is exploiting cross-current motion substantially. The

speed with which the kite reels in and out, ṙ, does not always equal the speed of the kite parallel

to the free-stream velocity, ẋ. This implies that the kite achieves a non-trivial portion of its reel-

in/out motion by traveling either towards or away from the origin in the yz-plane. Such in-plane

reel-in/out motion is intuitively attractive because it minimizes the total distance required for kite

operation parallel to the free-stream fluid velocity. According to [4], the optimal velocity for the
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kite to produce maximum power should be 1
3

of the free stream velocity, which in this case is

1
3
ms−1. The kite’s transient reel-out speeds are slightly higher, enabling higher levels of power

generation during transient reel-out.
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Figure 4.7: Velocity of the Kite
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During spool-out, the angle of attack reaches a relatively high value, ensuring a high lift-to-

drag ratio, as shown in Figure 4.8a and Figure 4.8b. This also ensures that the during spool-out,

the tension is at a maximum, as seen in Figure 4.9. During spool-in, the angle of attack becomes

negative, and the tether tension at the corresponding time reaches its minimum value.
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Figure 4.9: Tether Tension

The roll angle does not change sign during the duration of the trajectory, and reaches a

maximum value during spool-in, as shown in Figure 4.10. This causes the tether tension and lift

vector to be misaligned, and thereby ensures low tension spool-in.
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Figure 4.10: Roll Angle
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The above results are appealing for at least four reasons. First, from a fundamental per-

spective, the results represent the first optimization study where both spooling and cross-current

motion were co-optimized using direct transcription, with an underlying analytic solution of the

inverse kite dynamics. Second, from a practical perspective, the results furnish a kite trajectory

that confirms the attainability of significant energy harvesting through cross-current motion, con-

firming earlier findings by the author based on an approximate solution of the kite dynamics.

Third, the results provide new insights into the shape of the optimal kite trajectory. In particular,

they highlight the degree to which circular trajectories can potentially provide energy harvesting

benefits similar to those seen in the literature with figure-8 trajectories. Moreover, they highlight

the degree to which kite reeling motion can take place, at least partially, in plane, as opposed to in

alignment with the free-stream fluid velocity. This is particularly attractive from the perspective

of multi-kite spacing in a farm of kites, where the smaller the total distance taken up by each kite

in the free-stream fluid direction, the greater the potential for maximizing effective overall farm

power density.

4.4 Conclusion

This chapter presents the first effort to solve the co-optimization problem along with the in-

verse dynamics of the kite analytically. The simulation study highlights how the inverse dynamics

can provide useful insights into the trajectory optimization, and the degree to which cross-current

trajectory optimization are beneficial for MHK systems. Future work can take into account the

actuator dynamics, lower-level controllers, tether dynamics, added/entrained mass, and other

fluid-structure interaction effects.
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Chapter 5: Free Stream Velocity Estimation using Unscented Kalman Filter

5.1 Overview

The previous chapters in this dissertation assume that the free stream fluid velocity is both

known and spatio-temporally constant at a rate of 1ms−1 in the inertial x-direction. However,

this is not a realistic assumption. As mentioned in Section 1.2.2, several of the methods typically

used for the fluid flow estimation are not suitable for use underwater. This chapter uses the

MATLAB implementation of the unscented Kalman filter to estimate both the kite’s state and the

free stream fluid velocity. This is a combined state and disturbance estimation problem, where

estimating the kite’s state serves as a precursor to the critical goal of free stream fluid velocity

estimation. In this estimation study, we assume we can measure the tether length, the azimuth

and elevation angles, the Euler angles, and the relative velocity in the body frame. We estimate

the Euler angles, the kite’s inertial position and velocity, and the free stream fluid velocity. The

rest of the chapter is organized as follows: Section 5.2 introduces the state space model used

for estimation; Section 5.4 discusses the simulation results; Section 5.5 uses Fisher information

analysis to analyze the results; finally, Section 5.6 provides a pathway for future work1.

1The work in this chapter is currently in preparation for submission as a peer-reviewed publication.
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5.2 Equations of Motion

The kite model presented in this section makes similar assumptions regarding the kite’s

tether as previous chapters, i.e., the kite’s tether is a massless, drag-free straight light kinematic

constraint. This assumption has been examined in previous work done by Alvarez et al. [34].

Two coordinate frames are used to model the kite system: i an inertial reference frame and ii a

body frame (as opposed to the wind frame used in earlier chapters). The position r⃗ and velocity

V⃗ of the kite, and the fluid velocity, are defined in the inertial frame, as shown in the previous

chapters.

The body axes are normally aligned (x′, y′, z′), forward, right, and down. The “forward”

axis is aligned with the longitudinal reference line of the kite, and the right and down axes are

defined such that the down direction is in the kite’s plane of symmetry. In this chapter, any vector

described in the body frame will be denoted with a prime. Three Euler angles are defined to

transform an inertial axis vector to a body axis vector. The Euler angles follow a classical 3-2-1

sequence, [53]. Therefore, starting from the reference system, the sequence of rotations is:

1. Right-handed rotation about the z-axis, or positive ψ (compass heading/yaw)

2. Right-handed rotation about the new y-axis, or positive θ (pitch)

3. Right-handed rotation about the new x-axis, or positive ϕ (roll)

5.2.1 State Variables

There are 12 state variables: the three Euler angles, the position of the kite in the inertial

frame, the velocity in the inertial frame, and the wind velocity vector in the inertial frame. This
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choice of state variables reflects the following important decisions and choices regarding the un-

derlying unscented Kalman filtering problem. First, incorporating the three components of the

free stream fluid velocity (or “wind velocity”) as fictitious state variables allows the unscented

Kalman filter to simultaneously estimate the kite’s state and external wind disturbance, thereby

furnishing a fluid velocity estimator. Second, the use of Euler angles to describe the kite’s atti-

tude simplifies the unscented Kalman filtering problem by eliminating the need for constrained

estimation (in contrast to the use of quaternion parameters, where a constraint on the magnitude

of the quaternion vector must be enforced at every instant in time). This simplification comes

at a price, namely, the well-known vulnerability of Euler angle-based attitude representations to

the Euler singularity: an issue that can be resolved by reverting to a quaternion parameter-based

representation of kite attitude. Finally, the inclusion of kite velocity in the state vector, coupled

with the exclusion of kite angular velocity from the same state vector, reflects a decision to per-

form estimation based on a combination of translational kinematics, rotational kinematics, and

translational dynamics. With these decisions in mind, the state vector is given by:
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x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12



=



ψ

θ

ϕ

xkite

ykite

zkite

ukite

vkite

wkite

uwind

vwind

wwind



(5.1)

5.2.2 Input Variables

The input variables are: the angular velocity vector in the body frame, and the measured

acceleration vector in the body frame. These quantities do not necessarily represent physical

actuation inputs to the tethered kite. Rather, they represent quantities that are assumed in this

chapter to be measurable (using, say, an onboard inertial measurement unit), and can be employed

as input variables in a kite plant model for the purposes of unscented Kalman filter-based state

estimation. The prime indicates that the measurements are in the body frame, where p′, q′, and r′

are the roll, pitch, and yaw rate components of the angular velocity respectively. This furnishes

the input vector below:

66





u1

u2

u3

u4

u5

u6



=



p′

q′

r′

u̇′kite

v̇′kite

ẇ′
kite



(5.2)

5.2.3 Output variables

To implement an unscented Kalman filter, one needs to define a set of underlying output

equations. The output variables represented by these equations are physical quantities that are

assumed to be directly measured, and potentially useful for kite state estimation. We start with

the bare minimum of output equations. First, we assume that the velocity of the kite relative to the

surrounding fluid, V⃗ ′
rel, can be measured in the kite’s body frame. At least two different possible

sets of sensors potentially enable such measurement, namely, either: (i) a set of 3 orthogonal

Pitot tubes or (ii) a Pitot tube pointing along the kite’s x-axis, plus an angle of attack sensor, plus

a side-slip angle sensor (the latter sensor is not needed if the assumption of zero side-slip holds

true). Regardless of how they are measured, the three components of the body frame relative

velocity will constitute our first three output equations. In the base frame, the relative velocity is

defined as the difference between the kite and the fluid velocity. This leads to the three output

equations below:
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V⃗ ′
rel = R


ukite − uwind

vkite − vwind

wkite − wwind

 (5.3)


y1

y2

y3

 = R


x7 − x10

x8 − x11

x9 − x12

 (5.4)

The second set of output equations will pertain to the azimuth and elevation angles of the kite

relative to its base station. We will assume that these angles can be measured by line angle

sensors attached to the kite’s tether, which we assume to be a straight-line kinematic constraint.

Tether curvature can be substantial in practical MHK systems, as shown by Leonard et al. [40].

In situations where the kite’s tether can no longer be approximated by a straight line kinematic

constraints, corrections for tether curvature may be needed in order to infer the kite’s azimuth

and elevation angles from line angle sensor measurements. Developing algorithms to make such

corrections is an important open question for future research. Regardless of how kite azimuth

and elevation angle are measured, estimated, and/or corrected, the equations below define these

two output quantities for the purpose of unscented Kalman filtering:
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β = arctan
xkite
ykite

(5.5)

ϵ = arctan
zkite
ykite

(5.6)

It is also assumed that the kite’s Euler angles can be measured, making them the third set

of output variables. The fourth and last set of output equations will be the tether length, l, which

may potentially be measured using a kite platform-based tether release encoder, leading to the

final output equation below:

l =
√
x24 + x25 + x26 (5.7)

Altogether, the above equations define a total of 9 output variables for the purpose of kite

state estimation, namely: three components of kite velocity relative to the surrounding fluid, the

kite’s azimuth and elevation angles as seen from its platform, the kite’s Euler angles, and finally

the total released tether length. Measuring all 9 of these output variables is possible and plausible,

but may potentially be challenging. For example, a modern inertial measurement unit (IMU) may

be able to infer the kite’s orientation by detecting the earth’s local magnetic field (using a mag-

netometer) and the direction of the acceleration of gravity (using an accelerometer). However,

an important question arises regarding whether it is possible to estimate the kite’s state variables

without needing such IMU-based attitude measurements. One goal of this chapter is to compare

the kite state estimation accuracy levels achieved with versus without direct measurements of kite
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attitude.

5.2.4 Rotation Matrix

The above output equations contain a rotation matrix, R, relating the kite’s body frame to

the inertial reference frame. Coordinate frame rotations are often described as a yaw-pitch-roll

sequence, starting from the reference system. The rotation matrix for the particular sequence

assumed in this chapter is is:

Rψ =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (5.8)

Rθ =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (5.9)

Rϕ =


1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)

 (5.10)

R = RϕRθRψ (5.11)
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5.2.5 Relation between Euler angles and angular velocity

To construct an unscented Kalman filter based on the above choices of kite state, input, and

output variables, one must first write down the state and output equations in the underlying kite

model. The kite’s output equations are already listed in the above discussion. This section focuses

on delineating three of the kite’s state equations - namely, the state equations corresponding to

the kite’s rotational kinematics. Specifically, the state equations for the Euler angles with the

angular velocity components as the inputs are:


ϕ̇

θ̇

ψ̇

 =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ




p′

q′

r′

 (5.12)

ψ̇ = q′
sinϕ

cos θ
+ r′

cosϕ

cos θ
(5.13)

θ̇ = q′ cosϕ− r′ sinϕ (5.14)

ϕ̇ = p′ + (q′ sinϕ+ r′ cosϕ) tan θ (5.15)

5.2.6 Remaining state equations

Beyond the above equations describing the kite’s rotational kinematics, 9 more state equa-

tions are needed in order for the kite’s state-space model to be complete. The state equations

for the kite’s velocity in the inertial frame can be written in terms of the kite’s measured (i.e.,
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“input”) accelerations in the body frame plus the rotation matrix R, as shown below:

u̇kite = RT u̇′kite (5.16)

v̇kite = RT v̇′kite (5.17)

ẇkite = RT ẇ′
kite (5.18)

Moreover, three state equations for the position of the kite in the inertial frame can simply

be expressed in terms of its inertial velocity components:

ẋkite = ukite (5.19)

ẏkite = vkite (5.20)

żkite = wkite (5.21)

Three state equations remain - namely, those pertaining to the free stream fluid velocity

components in the inertial frame of reference. Writing these state equations down is essentially

an exercise in creating a local “wind model”, or “fluid model”, in the physical neighborhood of

the kite. From a control-theoretic perspective, this is an exercise in writing down a “disturbance

model” for the purpose of combined state and disturbance estimation. Perhaps the simplest dis-

turbance modeling approach in the literature, often employed in the context of Kalman filtering,

is to assume the rate of change of the disturbance to be zero, thereby assuming the disturbance

to be constant but unknown. This assumption leads to the final three state equations below, with
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the understanding that more sophisticated disturbance models can be used if higher estimation

fidelity is desired:

u̇wind = 0 (5.22)

v̇wind = 0 (5.23)

ẇwind = 0 (5.24)

5.3 Estimation Algorithm Settings

We used MATLAB’s built-in unscented Kalman filter (UKF) to perform state estimation

for the above model, including free stream velocity estimation. In order to do so, one needs

to provide the estimator with initial guesses of the state, output, and input variables, as well

as estimates of the measurement and process noise co-variance matrices. The UKF algorithm

assumes that the measured kite outputs and the dynamics of the kite are corrupted by zero mean,

white, and Gaussian measurement and process noise signals, respectively.

The true values of the kite model’s output variables, at every instant in time, can be com-

puted using Equations 5.3, 5.5, 5.6, and 5.7. This computation requires perfect knowledge of

the state and input variables at every instant in time. These true state and input values, at every

instant in time, are obtained from the simulation study in Chapter 4, together with Equations 5.1

and 5.2. This creates a simulation study where the true initial values of the state, input, and output

variables are given by the three tables below. These true initial conditions are treated by the UKF

algorithm as unknown.
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States Initial Value Units
ψ 1.533 rad
θ -1.424 rad
ϕ 3.0511 rad
xkite 276.06 m
ykite 25.105 m
zkite 39.496 m
ukite 0.9953 ms−1

vkite 0.5371 ms−1

wkite -3.655 ms−1

ufluid 1 ms−1

vfluid 0 ms−1

wfluid 0 ms−1

Table 5.1: True Initial State Values

Outputs Initial Value Units
ψ 1.5334 rad
θ -1.424 rad
ϕ 3.051 rad
l 280.007 m
β 0.0906 rad
ϵ 0.1421 rad
u′rel -3.537 ms−1

v′rel -0.1207 ms−1

w′
rel 1.0572 ms−1

Table 5.2: True Initial Outputs

To run the UKF algorithm, one must provide guesses/estimates of the initial values of the

state, input, and output variables. These assumed initial values should be sufficiently different

from the true values to enable testing the UKF algorithm’s convergence and estimation perfor-

mance. Tables 5.4, 5.5, and 5.6 provide the initial estimates of the state, output, and input vari-

ables, respectively, that are used throughout the remainder of this chapter’s simulation studies.

One goal of the simulation studies is to examine the degree to which the discrepancies between

these initial estimates and the true initial conditions of the kite diminish with time. A second goal

is to examine the degree to which this estimation performance depends on the ability to measure
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Inputs Initial Value Units
p′ -0.1339 rad s−1

q′ 0.1644 rad s−1

r′ 0.0263 rad s−1

u̇′kite -0.0173 ms−2

v̇′kite 0.0781 ms−2

ẇ′
kite -0.5843 ms−2

Table 5.3: True Initial Input Values

the kite’s attitude (i.e., its Euler angles) versus time. A third goal is to examine the degree to

which this estimation performance depends on the magnitudes of the process and measurement

noise signals.

States Initial Value Units
ψ 5 rad
θ 0.5 rad
ϕ 1.5 rad
xkite 250 m
ykite 50 m
zkite 100 m
ukite 0.5 ms−1

vkite 1.5 ms−1

wkite 0.01 ms−1

ufluid 2 ms−1

vfluid 1 ms−1

wfluid 1 ms−1

Table 5.4: Initial Estimate of the States

Throughout the remainder of this chapter, the process and measurement noise signals are

assumed to have diagonal covariance matrices. One goal of this work is to analyze the degree

to which the magnitudes of the diagonal elements of these matrices affect the performance of

the UKF algorithm. Towards this goal, assumed nominal values of the diagonal elements of the

measurement and process noise covariance matrices are given below, in Tables 5.7 and 5.8. Our

UKF simulation studies below can be categorized into “high covariance” and “low covariance”
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Outputs Initial Value Units
ψ 0.01 rad
θ 0.01 rad
ϕ 0.01 rad
l 120 m
β 0.1 rad
ϵ 0.1 rad
u′rel 0 ms−1

v′rel 0 ms−1

w′
rel 0 ms−1

Table 5.5: Initial Estimate of the Outputs

Inputs Initial Value Units
p′ 0.1 rad s−1

q′ 0.1 rad s−1

r′ 0.1 rad s−1

u̇′kite 1 ms−2

v̇′kite 1 ms−2

ẇ′
kite 1 ms−2

Table 5.6: Initial Estimate of the Inputs

cases. In the “high covariance” case, the tabulated process and measurement noise covariance

are used for both UKF design and simulation-based UKF validation. In the “low covariance”

case, the tabulated process and measurement covariance are used for UKF design, without any

modifications. However, when the UKF algorithm’s performance is simulated, the simulated

process and measurement noise signals have covariance that are six orders of magnitude (i.e.,

1, 000, 000 times) smaller than the tabulated values. This is a very significant reduction in process

and measurement covariance, representing a scenario where the noise processes affecting the

UKF algorithm are almost nonexistent.
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Outputs Covariance
ψ 0.01
θ 0.01
ϕ 0.01
l 1
β 0.004
ϵ 0.004
u′rel 0.04
v′rel 0.04
w′
rel 0.04

Table 5.7: Measurement Noise Covariance

States Covariance
ψ 0.01
θ 0.01
ϕ 0.01
xkite 0.25
ykite 0.25
zkite 0.25
ukite 0.25
vkite 0.25
wkite 0.25
ufluid 0.3
vfluid 0.3
wfluid 0.3

Table 5.8: Process Noise Covariance

5.4 Results

This section provides three sets of simulation results. The first set of results shows the

performance of the unscented Kalman filter without attitude measurement, assuming low process

and measurement noise covariance. The second set of results shows estimation performance

with attitude measurement, assuming low process and measurement noise covariance. Finally,

the third set of results shows estimation performance with attitude measurement, assuming high

process and measurement noise covariance.
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5.4.1 Estimation Results without Attitude Measurement

The following results show that without the measurement of attitude, there are significant

discrepancies between the estimated and true value of the kite’s state variables, as well as the free

stream fluid velocity. We begin by noting that in the presence of low process and measurement

noise covariance, the kite’s position in the inertial frame is estimated with good accuracy, as

shown in Fig. 5.1. This makes intuitive sense, considering the fact that kite position can be

inferred directly from measurements of the tether length, kite azimuth angle, and kite elevation

angle.

In the absence of direct measurement of the kite’s attitude, the UKF fails to converge to ac-

ceptable Euler angle estimates in this simulation study, as shown in Fig. 5.2. Intuitively, errors in

estimating the kite’s Euler angles have the potential to translate to errors in inferring its accelera-

tions in the inertial frame of reference from measurements of its accelerations in the body frame

of reference. This, in turn, has the potential to result in substantial errors in estimating the kite’s

inertial velocity and position vectors.The fact that the kite’s position is essentially known from

measurements of tether length, kite azimuth, and kite elevation, therefore provides an intuitively

plausible pathway for making feedback corrections to the kite’s Euler angle estimates. Unfortu-

nately, simulating the UKF algorithm for low process and measurement noise covariance values

shows that the algorithm is unable to converge to the kite’s correct attitude. Errors in attitude

estimation cause the kite’s velocity estimation accuracy to also be poor, as evident from Fig. 5.3.

However, the fact that kite position is related to kite velocity via integration with respect to time,

coupled with the fact that such integration is essentially a low-pass operator in the frequency

domain, causes kite position estimates to be good even while kite velocity estimates are less than
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ideal. Because of the significant errors in estimating kite attitude and velocity, free stream fluid

velocity estimates are quite poor in this scenario, as shown in Fig. 5.4. Significant fluctuations are

seen in estimated free stream fluid velocity, even though the true fluid velocity does not fluctuate

in this study. The former fluctuations can be at least partially traced to inaccuracies in kite atti-

tude estimation, since the kite is only able to measure its velocity relative to the fluid in the body

frame, as opposed to the inertial frame of reference. Thus, even with accuracy body frame rela-

tive velocity measurements, the accuracy of inertial frame relative (and fluid) velocity estimation

can suffer if kite attitude is not known accurately.

5.4.2 Estimation Simulation with Attitude Measurement: Low Noise Covari-

ance Case

This section examines the performance of the UKF algorithm in the scenario where kite

attitude is measured directly. The simulation study in this section assumes low process and

measurement noise covariance. The high noise covariance case is examined in the following

section. The results of this section’s simulation show that when kite attitude is measured, UKF

estimation accuracy improves substantially across the board, especially free stream fluid velocity

estimation accuracy. As shown in Fig. 5.5, once the UKF algorithm has access to low-noise kite

attitude measurements, it has no difficulty generating its own accurate Euler angle trajectories

matching these measurements. Moreover, as in the previous simulation study, the availability of

direct measurements of tether length, kite azimuth angle, and kite elevation angle provides an

intuitive explanation for the very high kite position estimation accuracy seen in Fig. 5.6. Given

these accurate estimates of kite attitude and position, kite velocity estimates are quite accurate,
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as shown in Fig. 5.7, leading to good free stream fluid velocity estimation accuracy, as shown in

Fig. 5.8.

5.4.3 Estimation Simulation with Attitude Measurement: High Noise Covari-

ance Case

Incorporating higher values of process and measurement noise covariance in the simulation-

based validation of the UKF algorithm does not fundamentally alter the results of the previous

section. Estimation accuracy continues to be attractive, across the board, provided the kite’s

attitude is measured directly. Specifically, kite attitude estimation accuracy continues to be rea-

sonable, as shown in Fig. 5.9. Moreover, kite position estimation accuracy continues to be reason-

able, as shown in Fig. 5.10. Noisy kite velocity estimates are generated by the UKF algorithm, as

shown in Fig. 5.11, but these noisy estimates do track the true kite velocity trajectory well. Simi-

larly, noisy estimates of free stream fluid velocity are generated by the UKF algorithm, as shown

in Fig. 5.12, but on average these estimates do track the true free stream fluid velocity well. This

suggests the possibility of using additional signal processing (e.g., moving average filtering, etc.)

to attenuate the noise in free stream velocity estimation. One high-level insight from both this

simulation cases and the preceding two simulation cases is that the availability of attitude mea-

surements appears to improve UKF estimation accuracy substantially. This motivates the next

section of this chapter, which focuses on quantifying the best achievable estimation accuracy for

the given kite dynamics model, using the tool of Fisher information analysis.

For the high noise covariance case, plotting the rate of change of Euler angles, show that

for our study we are not facing any Euler singularities.
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Figure 5.13: Rate of Change of Euler Angles

5.5 Fisher Information Analysis

The fact that the availability of kite attitude measurements can improve UKF estimation

performance substantially raises the question of whether this improvement is a fundamental prop-

erty of the kite model, a property of the specific UKF algorithm used in this chapter, or both. To

address this question, this section performs classical Fisher information analysis on the kite’s

dynamic model. A simplified Fisher analysis is performed that accounts for output measurement

noise, but neglects process noise for simplicity. Fisher analysis then proceeds as follows:

• First, the kite model is simulated from the true initial state, for the true kite input trajectory,

to generate nominal histories of the kite’s output variables.

• Second, the above simulation is repeated for a small perturbation in the initial condition

for one of the kite’s state variables, to generate perturbed output histories. The difference

between each perturbed output’s history and the corresponding nominal output history,
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divided by the initial state perturbation, generates a sensitivity vector associated with that

particular combination of output variable and initial condition.

• Third, each output sensitivity vector from the above step is divided by the square root of

the corresponding measurement noise variance (i.e., diagonal element of the measurement

noise covariance matrix). This is essentially a normalization step.

• Fourth, the scaled/normalized output sensitivity vectors corresponding to a given initial

state perturbation are stacked to form a single column vector. If the number of output

variables is no and the number of time instants in the simulation study is nt, the end result

is a column vector with no × nt elements.

• Fifth, the above stacked sensitivity vectors are collected into a sensitivity matrix, S where

each column of the matrix corresponds to a perturbation in the initial value of a given state

variable. Since the kite has ns = 12 state variables, the matrix S has no × nt rows and ns

columns.

• Sixth, the product STS is computed to generate (a numerical approximation of) the Fisher

information matrix, F.

• Seventh, the inverse of the Fisher information matrix is computer, furnishing the corre-

sponding Cramér-Rao matrix.

Table 5.9 shows the values of the square roots of the diagonal elements of the above

Cramér-Rao matrix, both for the case where attitude measurements are not available and for

the case where those measurements are available. To interpret these results, recall that Fisher

information analysis is an elementary tool from estimation theory for assessing the accuracy with
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which a given estimation problem can be solved [57]. More specifically, the Fisher informa-

tion matrix represents a local quantification, in an unknown parameter space, of the information

associated with noisy measurements of the outputs used for parameter estimation. In the con-

text of this particular work, the above Fisher analysis quantifies the information associated with

the problem of estimating the initial values of the kite’s state variables. Estimating the kite’s

initial states makes it possible to propagate the resulting estimates forward in time, using the

kite’s dynamic model. Hence, quantifying the information associated with the kite’s initial states

helps shed light on the accuracy with which one may be able to estimate the kite’s state at sub-

sequent moments in time. The Cramér-Rao theorem states that, for any unbiased estimator, the

best achievable state estimation covariance equals the inverse of the Fisher information matrix,

assuming this inverse exists. Therefore, the square roots of the diagonal terms of this inverse,

as tabulated below, represent the best achievable standard deviations associated with initial kite

state estimation. It is important to note that for nonlinear estimation problems, the above Fisher

analysis provides a local approximation of the best achievable estimation accuracy levels.

Examining Table 5.9 in light of the above discussion reveals that the availability of direct

attitude measurements reduces the best achievable attitude angle estimation errors by a factor of

4 or more. Intuitively, it makes sense for the direct measurement of attitude angles, even with

measurement noise, to enable significant improvements in attitude estimation accuracy. Posi-

tion estimation accuracy does not improve significantly when direct attitude measurements are

available, which also makes sense considering the fact that kite position can be inferred directly

from tether length, kite azimuth, and kite elevation measurements. Interestingly, improvements

in the best achievable kite and free stream fluid velocity estimates, when they exist, are seen to

be relatively small from this Fisher analysis. This raises the possibility that perhaps other esti-
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mation algorithms, beyond the UKF algorithm explored in this work, may be able to lessen the

accuracy penalty associated with the absence of direct attitude measurement. The exploration of

this question is left open as a topic for potential future research.

States Attitude Not Measured Attitude Measured
ψ 0.0452 0.01093
θ 0.0115 0.00181
ϕ 0.04569 0.0105
xkite 0.2308 0.1888
ykite 1.325 1.315
zkite 1.659 1.536
ukite 0.0176 0.0049
vkite 0.0406 0.01609
wkite 0.02013 0.01664
ufluid 0.0126 0.0117
vfluid 0.016 0.0189
wfluid 0.0238 0.0203

Table 5.9: Standard Deviation of States With & Without Attitude Measurement

5.6 Conclusion

This chapter provides an approach for estimating the kite’s state and free stream fluid veloc-

ity online, instead of assuming the latter to be spatio-temporally constant. The proposed estima-

tor can be included with a controller for real time tracking and estimation. While the unscented

Kalman filter provide accurate state and disturbance estimates when kite attitude is measured di-

rectly, future work will focus on building a more sophisticated estimation algorithm for estimating

fluid velocity without measuring the attitude.Moreover, future work will focus on incorporating

the estimator into onboard algorithms for real time trajectory optimization.
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Figure 5.1: Estimated and True Values of Inertial Kite Position
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Figure 5.2: Estimated and True Values of Euler Angles
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Figure 5.3: Estimated and True Values of Inertial Kite Velocity
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Figure 5.4: Estimated and True Values of Free Stream Velocity
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Figure 5.5: Estimated and True Values of Euler Angles
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Figure 5.6: Estimated and True Values of Inertial Kite Position
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Figure 5.7: Estimated and True Values of Inertial Kite Velocity
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Figure 5.12: Estimated and True Values of Free Stream Velocity
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Chapter 6: Conclusion

6.1 Summary

The goal of this dissertation is to provide the scientific community with algorithms for

MHK kite trajectory optimization and state estimation. The dissertation presents four research

contributions towards this overarching goal:

1. A direct transcription-based algorithm for nonlinear MHK kite trajectory optimization.

2. An analytic solution to the inverse dynamics of the kite model.

3. Trajectory optimization using the above inverse dynamics solution, eliminating the need

for the use of penalty functions to approximate the inverse dynamics as part of direct

transcription-based trajectory optimization.

4. Estimation of the kite’s state and fluid velocity, modeled as a disturbance.

More specifically, Chapter 2 co-optimizes the spooling motion and the cross-current trajec-

tory of the kite by approximating the states and inputs as truncated Fourier series, and imposing

a penalty to implement the kite dynamics. To improve computational tractability and accuracy of

future optimization, we develop a solution to the inverse dynamics of the kite model in Chapter 3.

One interesting outcome from this study is the existence of multiple potential solution arcs: an
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outcome that has intuitive graphical explanations for multiple special case scenarios. In Chap-

ter 4 we use the inverse dynamics solution to carry on the optimization work, without needing a

penalty function to approximate the kite’s inverse dynamics. This results in greater accuracy by

bypassing the need to impose a penalty function to ensure the dynamics. In all these chapters, we

assume that the free stream fluid velocity is known and spatio-temporally constant. Therefore, in

Chapter 5 we utilize unscented Kalman filtering to estimate the free stream fluid velocity plus the

kite’s state variables. The results provide insights into what we need and need not measure for

the estimation algorithm to work properly.

6.2 Future Work

Based on the results presented in this dissertation, future work can include:

• Formulating a more advanced estimation algorithm to estimate the fluid velocity without

measuring the kite Euler angles.

• Optimizing the trajectory online by incorporating the estimation algorithm into a real-time

optimization framework.

• Doing trajectory optimization using other methods, such as, Pontryagin’s minimum princi-

ple.

• Building a higher fidelity model for the optimization and including added/entrained mass,

tether drag, the possibility of a slack tether, etc.

• Building a model of a MHK kite farm and repeating the optimization and estimation work

at the farm level.
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