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With the constantly upgraded devices, the data we capture is shifting with time. Despite the

domain shifts among the images, we as humans can put aside the difference and still recognize

the content. However, these shifts are a bigger challenge for machines. It is widely known that

humans are naturally adaptive to the visual changes in the environment, without learning all over

again. However, to make machines work in the changed environment we need new annotations

from human. The fundamental question is: can we make machines as adaptive as humans?

In this thesis, we have worked towards addressing this question through advances in the

study of robust learning under domain shifts via domain adaptation. Our goal is to facilitate the

transfer of information of the machines while minimizing the need for human supervision.

To enable real systems with demonstrated robustness, the study of domain adaptation needs

to move from ideals to realities. In current domain adaptation research, there are few ideals that



are not consistent with reality: i) The assumption that domains are perfectly sliced and that

domain labels are available. ii) The assumption that the annotations from the target domain

should be treated equally as those of the source domain. iii) The assumption that the samples

of target domains are constantly accessible. In this thesis, we try to address the issue that true

domain labels are hard to obtain, the target domain labels have better ways to exploited, and that

in reality the target domain is often time-sensitive.

In the scope of problem settings, this thesis has covered the following scenarios with

practical values. Unsupervised multi-source domain adaptation, semi-supervised domain adaptation

and online domain adaptation. Three completed works are reviewed corresponding to each

problem setting. The first work proposes an adversarial learning strategy that learns a dynamic

curriculum for source samples to maximize the utility of source labels of multiple domains. The

model iteratively learns which domains or samples are best suited for aligning to the target. The

intuition is to force the adversarial agent to constantly re-measure the transferability of latent

domains over time to adversarially raise the error rate of the domain discriminator. The method

has removed the need of domain labels, yet it outperforms other methods on four well-known

benchmarks by significant margins. The second work aims to address the problem that current

methods have not effectively used the target supervision by treating source and target supervision

without distinction. The work points out that the labeled target data needs to be distinguished

from the source, and propose to explicitly decompose the task into two sub-tasks: a semi-

supervised learning task in the target domain and an unsupervised domain adaptation task across

domains. By doing so, the two sub-tasks can better leverage the corresponding supervision and

thus yield very different classifiers. The third work is proposed in the context of online privacy,

i.e. each online sample of the target domain is permanently deleted after processed. The proposed



framework utilizes the labels from the public data and predicts on the unlabeled sensitive private

data. To tackle the inevitable distribution shift from the public data to the private data, the work

proposes a novel domain adaptation algorithm that directly aims at the fundamental challenge of

this online setting–the lack of diverse source-target data pairs.
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Chapter 1: Introduction

The way we create data is changing rapidly. Where cellphones were once only a mobile

alternative to telephones, in the span of a decade, they have instead become a system that bridges

the most personal wants and needs with the ubiquitous access to the internet. Indeed, the internet

updates constantly to provide the newest feedback for every search. The result of searching “New

York City”, for example, now contains images from professional cameras, cellphones, drones,

and even vehicle mounted cameras. Despite the domain shifts among the images, we as humans

still recognize the city. However, these shifts are a much bigger challenge for machines. My

research answers the fundamental question: how can we make machines as adaptive as humans?

In this thesis, we have worked towards addressing this question through advances in the study of

robust learning under domain shifts via domain adaptation.

The majority of recent machine learning progress has been made without considering

these domain shifts [2, 3, 4, 5, 6]. Modern machine learning systems, fueled by deep neural

networks, typically require large labeled datasets to achieve good performance, where “good

performance” is usually evaluated on a held-out test dataset. This dataset is often drawn from the

same distribution as the input training dataset. However, a more representative test distribution

would contain new variations that are not the training set. For instance, a Waymo autonomous

driving system trained with road test data collected on a sunny California day, might be prone

1



Human:   New York
Machine: New York

Human: New York
Machine: ???

2000 2020 Los Angeles Vancouver

Figure 1.1: Examples of situations where machines cannot adaptive as well as humans. Left:
Images taken by drones in 2020 with varying perspectives cannot be recognized by models trained
with professional images from 2000. Right: Autonomous vehicle models trained with California
cityscape data fail to detect lane lines in a snowy scene in Canada.

to worse performance on a snowy night in Canada. Domain adaptation can enable the system to

function in Canada without abandoning the expensive data and annotations from California, as

illustrated in Figure 1.1.

To enable real systems with demonstrated robustness, the study of domain adaptation needs

to move from ideals to realities. In current domain adaptation research, there are a few unrealistic

assumptions: i) The assumption that domains are perfectly sliced and that domain labels are

available. ii) The assumption that the samples of target domains accessible. iii) The trained model

can generate invariant representations that work well on both the source and target domains. In

this thesis, we propose to mention that true domain labels are hard to obtain, and in reality the

target domain is often time-sensitive. Moreover, the best representation for the target domain is

not necessarily the best for the source domain. These challenges brought up by these unrealistic

assumptions cannot be tackled by the simple devise upon existing methods, and call for entirely

new designs. In my dissertation research we propose three approaches to the challenges.

First, we address the issue that true domain labels are hard to obtain. Currently, domain

2



adaptation benchmarks are collected based on human prior knowledge of how domains are

partitioned. For example Cartoon, Art and Photo [7]. In most domain adaptation datasets, a

specific domain is built by crawling the internet for images with the domain name as a keyword [7,

8]. We argue that this does not fully match with the concept of domain in reality. In practice,

datasets differ from each other by how they are generated rather than retrieved. A domain can

naturally contain multiple sub-domains. For example, a specific kind of camera that captures four

seasons can generate the domain Photo with four sub-domains, each representing a completely

different season. Moreover, it is hard to decide gap between domains solely based on human prior

knowledge. For example, does a lifelike painting belong to the Art domain or Photo? Therefore,

the ground truths of domain membership are hard to obtain in reality. Instead of dwelling on

these labels, we address this issue by automatically discovering the domains. For each input with

mixed domains, we partition the input by comparing their feature-level similarities. Then we use

the partitioned input for further adaptation.

Second, we address the issue that the best representation for target domain may not be

the best cross-domain representation. Many domain adaptation works are based on the goal of

generating invariant representation across domains via adversarial training [9, 10, 11, 12, 13, 14,

15, 16, 17]. However, we argue that in some cases where there is a small amount of supervision

from the target domain, the best model on the target domain may not be obtained via cross-

domain representation learning. Specifically, in semi-supervised domain adaptation, we propose

to explicitly decompose the two sources of supervision and learn two distinct classifiers whose

goals are however shared: to work well on the unlabeled target data. To this end, we pair the

labeled source data and the unlabeled target data to learn one classifier, which is essentially a

unsupervised domain adaptation (UDA) task. For the other classifier, we pair the labeled and

3



unlabeled target data, which is essentially a semi-supervised learning (SSL) task. That is, we

explicitly decompose SSDA into two well-studied tasks.

Third, we address the issue that the model usually has limited access to the target domain

in reality. In many applications, user data is private and collecting the user’s data for training

purposes is strictly forbidden [18, 19, 20, 21, 22, 23, 24]. This issue requires the model to

adapt well to the target domain in an online streaming fashion. Unlike the conventional domain

adaptation setting in which each data point can be used to adjust the model parameters many

times, in online domain adaptation the model has exactly one chance to adapt and predict before

it is deleted. Therefore at each online query, it is critical for the model to balance between

performing well on this particular query and learning a general representation on the entire target

domain. To bridge this gap, for each target query we assemble it with multiple different queries

drawn from the source distribution to alleviate the single-point bias.

Finally, we conclude the dissertation with a summary of presented works and several future

research directions.

4



Chapter 2: Metrics in Domain Adaptation

In this chapter, we discuss the metrics used in domain adaptation including: i) The metrics

that characterize the domain divergence, ii) the evaluation metrics that measure how successful

the adaptation is. We first review two distribution divergence metrics and their formulations under

domain adaptation setting. Then we review the commonly used evaluation metrics, including

evaluation with and without labeled test dataset.

2.1 Domain Divergence Metric

In order to quantatize the gap across domains, a measure of domain divergence is needed.

Currently, there are many metrics of differences, such as the Kullback-Leibler (KL) divergence,

the total variation distance, the Wasserstein metric, and the Kolmogorov Smirnoff statistic [25,

26], measuring between probability distributions or datasets.

For the methods that are developed based on domain gap metrics, the choice will often

influence the behaviour of the adaptive model. In this chapter, we will discuss two widely-used

metrics in detail apart from the most popular KL-divergence, the H-divergence and Wasserstein

distance metric.

5



2.1.1 H-Divergence

Given the source distribution S and target distribution T over the input and the output space

X × Y . If the data is generated by a marginal distribution and underlying labeling function pair

(D, h∗), then the upper bound of target risk error w.r.t. ∀h ∈ H is

RT (h) ≤ RS(h) + dH(T (x),S(x)) + β, (2.1)

where

RD(h) = Ex∽D|h(x)− h∗(x)|.

dH denotes the H-Divergence for measuring the marginal distribution similarities and β is

the optimal joint risk over the two domains. In practice, it is impossible to exactly estimate the

H-Divergence [27]. Practically, we can approximate this measure as binary classification task on

discriminating the source and the target samples, i.e. approximated by distance dA = 2(1 − 2ϵ)

(ϵ is the discrimination generalization error). Thus, theH-Divergence metric-based loss between

the domain classifier d and the feature extractor g in the context of representation learning is:

min
g

max
d

Exs∽S(x)log(d ◦ g(xs)) + Exs∽T (x)log(1− d ◦ g(xt)), (2.2)

.

6



Figure 2.1: A coverage map and the relationship of the commonly-used metrics. In this chapter,
we discuss the H-divergence and Wasserstein distance metrics in detail. Picture from H-
divergence: A Decision-theoretic Probability Discrepancy Measure [28]

2.1.2 Wasserstein Distance

The Wasserstein metric [29] is a distance measure between probability distribution on a

given metric space (M,ρ), where ρ(x, y) is a distance function for two instances x and y in the

set M . The ρ-th Wasserstein distance between two Borel probability measures [30] P and Q is

defined as:

Wρ(P,Q) = ( inf
µ∈Γ(P,Q)

∫
ρ(x, y)pdµ(x, y))1/p, (2.3)

where P,Q ∈ {P : intρ(x, y)pdP(x) < ∞,∀y ∈ M} are two probability measures on M with

finite p-th moment and Γ(P,Q) is the set of all measures on M ×M with marginals P and Q.

Wasserstein metric is one of the most widely-used in the problem of optimal transport. In
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domain adaptation, the metric is often employed to calculate the divergence between the source

and target representations in adversarial training. More formally, given an instance x ∈ Rm from

either the source or target domain, the feature extractor learns a function fg : Rm → Rd that

maps x to a representation vector with d dimensions.

Given a feature representation h = fg(x), the domain classifier learns a mapping function

fw : Rd → R that maps the feature representation to a real number with parameter θw. The

Wasserstein distance [29] between two representation distributions Phs and Pht , where hs =

fg(x
s) and ht = fg(x

t) can be computed according to:

W1(Phs ,Pht) = sup
∥fw∥L≤1

EPhs
[fw(h)]− EPht

[fw(h)]

= sup
∥fw∥L≤1

EPxs
[fw(fg(x))]− EPxt

[fw(fg(x))]. (2.4)

If the parameters of domain classifiers {fw} are all 1-Lipschitz, then Eq.2.4 can be approximated

using:

Lwd(xs, xt) =
1

ns

∑
xs∈Xs

fw(fg(x
s))− 1

nt

∑
xt∈Xt

fw(fg(x
t)). (2.5)

2.2 Evaluation Metrics

The goal of domain adaptation is to transfer information learned on a label-rich source

domain, to a target domain without labels. Directly, we can measure whether the goal is achieved
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by measuring the average classification accuracy on the test dataset of the target domain. The

higher the accuracy, the better. However, to measure the neat gain of domain adaptation, we need

to consider more. In this section, we review the evaluation metrics for adaptation.

2.2.1 Measuring the Effectiveness of Domain Adaptation Approaches

Given a source datasetDS and a target datasetDT , we independently learn three models. A

source-only model trained in a supervised learning fashion using all the labels and samples from

the source dataset. An oracle model trained in a supervised learning fashion using all the labels

and images from the target dataset. The model trained using the proposed domain adaptation

approach using all the labels and images from the source dataset, and only the images from the

target dataset. Each model has the same architecture, initialization, and is optimized to their

best performance. Then we evaluate the test dataset from the target domain by calculating mean

average precision, each result denoted as accSO, accOC and accours.

An effective adaptation from the source to the target should observe accours > accSO.

However, the observation of accours < accSO is not meaningless, it indicates that the method

might have caused negative transfer phenomenon [8]. The success of the adaptation is measured

by the gap between the proposed result and the oracle result |accCO−accours|, the lower the better.

If accours approaches accCO, it indicates that the adapted model trained without any target labels

can perform as well as supervised learning with labels, which is an ideal outcome of domain

adaptation.
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2.2.2 Evaluation Without Test Labels

For unsupervised domain adaptation, we need label-free evaluation for two reasons:

• In an unsupervised adaptation setting, we assume it is hard to obtain labels on the target

domain;

• The accuracy of models on the testset might vary, if the testset distribution slightly differs

from the entire target dataset.

In [31], a label-free accuracy estimation approach is explored. Specifically, the difference of

confidences (DoC) approach yields reliable estimates of a classifier’s performance over a variety

of shifts and model architectures.

Given an arbitrary target dataset T and a helod-out test dataset B, let F represent a model

and F (x) represent the output probabilities of F over instance x, the difference of confidences

DoC is computed via AC, which is average confidences based on a featurization F
′ of the

probabilities of the model. Since some of the distribution shifts might change the label space,

we consider the AC w.r.t. both T and B, as KB∩T :

ACT
B =

1

|B′|
∑
x∈B

max
{KB∩T }

(F (x)),

DoCB,T = ACB
T − ACT

B . (2.6)
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2.3 Conclusion

In this chapter, we discuss the metrics that measure the domain divergence. Most alignment-

based domain adaptation methods are developed based on minimizing the defined divergence

metric, in order to obtain feature representations that are invariant across domains. The representation

is often learned through adversarial learning with a domain critic. We will discuss in detail the

adversarial learning in domain adaptation in Chapter 3.
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Chapter 3: Domain-Adversarial Representation Learning

Domain-Adversarial Neural Network (DANN) [10] is one of the most popular methods

in domain adaptation using deep neural networks. The method aims to learn a representation

network that a domain critic cannot distinguish from source domain to the target domain. During

training, the model of DANN will optimize over two objectives: i) the label classification loss

over the source domain, ii) the domain classification loss on both the source and target domains.

In this chapter, we will review and discuss the general domain-adversarial learning in practice.

3.1 Domain-Adversarial Architecture and Implementation

As illustrated in Figure 3.1, a general domain-adversarial network includes a deep feature

extractorGf with parameter θf and a label predictorGy with parameter θy, which together form a

standard feed-forward architecture for supervised learning. The unsupervised domain-adversarial

(target domain without labels) is achieved by adding a domain critic (classifier) Gd which is also

connected to the feature extractor. The difference between Gd and Gy is that Gd is connected

to Gf via a gradient reversal layer (GRL) that reverse the gradient of Gd by a constant during

training.
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Figure 3.1: The architecture of domain-adversarial neural network. Picture from the work that
proposes DANN [10].

3.1.1 Gradient Reversal Layer

The “game-changer” of domain-adversarial is the gradient reverse operation, which enables

the adversarial learning by maximizes the domain critic loss, achieved using the GRL module.

The GRL module has no parameters associated with it. During the forward propagation, the

GRL acts as an identity transformation. However, during the backpropagation, the GRL takes the

gradient from the subsequent level and changes its sign, before passing it to the preceding layer.

The implementation of GRL is as simple as the following code block.

class ReverseLayerF(Function):

def forward(ctx, x, alpha):

ctx.alpha = alpha

return x.view_as(x)

def backward(ctx, grad_output):

output = grad_output.neg() * ctx.alpha

return output, None
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One important factor to facilitate the successful domain-adversarial learning is the constant

λ applied to the GRL. The annealing factor is caculated using:

λ =
2

(1 + exp−10×p)
− 1, (3.1)

where

p =
j

Jmax

p indicates percentage of iteration (current j out of total Jmax) during training. It is worth noticing

that DANN can be unstable at the early stage of training, when the network has not fitted the labels

of the source domain yet. The ramp-up factor controlled by λ serves as stabilizer, balancing the

importance between label and domain learning. An illustration of constant λ changes over 20, 000

iterations training is in Figure 3.2.

3.2 Limitations of Domain-Adversarial

One major limitation of domain-adversarial networks is that the matched data distribution

do not directly imply that the class-conditional distributions are well-matched [32, 33]. Therefore,

domain-adversarial-based methods can sometimes be hard to train, or may result in generating

ambiguous features near the task decision boundary. An illustration of the situation where

conventional domain classifier-based methods do not work well is in Figure 3.3. A possible

solution to alleviate the problem is to directly improve the domain discriminator. Conditional
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Figure 3.2: Annealing factor λ applied to GRL changes over training (20, 000 iterations for
example), plotted using Eq. 3.1.

Adversarial Domain Adaptation [13] (CDAN) explores a improved solution by pointing out

two directions: first, when the joint distribution of feature and class are non-identical across

domains, adapting only the feature representation may be insufficient. Second, when the feature

distribution is multi-modal, adapting only the feature representation may be challenging for

domain-adversarial methods. Therefore, CDAN proposes a conditional domain discriminator

conditioned on the cross-covariance of domain-specific feature representations and classifier

predictions, which further condition the domain discriminator on the uncertainty of classifier

predictions, prioritizing the discriminator on easy-to-transfer samples. Another solution proposed

is called DIRT-T [34]. The DIRT-T approach incorporates the natural gradient and guiding the

network to avoid crossing high-density data regions with its decision boundary.
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Figure 3.3: Illustration of ambiguous features near the task decision boundary generated by
domain-adversarial-based method. Picture partially from [32].

3.3 Other Min-Max Games

Apart from domain-adversarial, there are numerous methods based on the min-max games.

Maximum Classifier Discrepancy (MCD) [35] attempts to align distributions of source and target

by utilizing the task-specific decision boundaries. In their network architecture, two classifiers

(category classifier, not domain classifier) are used to perform a min-mix iterative game between

the discrepancy of the two classifiers’ outputs.

In a semi-supervised domain adaptation setting, Min-Max Entropy Approach (MME)

adversarially optimizes an adaptive few-shot model. The network is composed of a feature

encoding network, followed by a classification layer that computes the features’ similarity to

estimated prototypes, achieving adaptation by maximizing the conditional entropy of unlabeled

target data and minimizing it with respect to the feature encode alternatively.
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3.4 Conclusion

In this chapter, we discuss an important branch of domain adaptation methods – domain-

adversarial representation learning. We first review the domain-adversarial neural network

architecture by introducing each component, then we focus on the gradient reversal layer and its

implementation. We finally elaborate the limitations of this idea, and review a few strategies that

effectively alleviate the limiation.
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Chapter 4: Curriculum Manager for Multi-Source Domain Adaptation

The performance of Multi-Source Unsupervised Domain Adaptation depends significantly

on the effectiveness of transfer from labeled source domain samples. In this chapter, we proposed

an adversarial agent that learns a dynamic curriculum for source samples, called Curriculum

Manager for Source Selection (CMSS). The Curriculum Manager, an independent network module,

constantly updates the curriculum during training, and iteratively learns which domains or samples

are best suited for aligning to the target. The intuition behind this is to force the Curriculum

Manager to constantly re-measure the transferability of latent domains over time to adversarially

raise the error rate of the domain discriminator. CMSS does not require any knowledge of the

domain labels, yet it outperforms other methods on four well-known benchmarks by significant

margins. We also provide interpretable results that shed light on the proposed method.

4.1 Introduction

Training deep neural networks requires datasets with rich annotations that are often time-

consuming to obtain. Previous proposals to mitigate this issue have ranged from unsupervised [36,

37, 38, 39, 40, 41], self-supervised [42, 43, 44, 45], to low shot learning [35, 46, 47, 48].

Unsupervised Domain Adaptation (UDA), when first introduced in [49], sheds precious insights

on how adversarial training can be utilized to get around the problem of expensive manual

18



annotations. UDA aims to preserve the performance on an unlabeled dataset (target) using a

model trained on a label-rich dataset (source) by making optimal use of the learned representations

from the source.

Intuitively, one would expect that having more labeled samples in the source domain will

be beneficial. However, having more labeled samples does not equal better transfer, since the

source will inadvertently encompass a larger variety of domains. While the goal is to learn a

common representation for both source and target in such a Multi-Source Unsupervised Domain

Adaptation (MS-UDA) setting, enforcing each source domain distribution to exactly match the

target may increase the training difficulty, and generate ambiguous representations near the decision

boundary potentially resulting in negative transfer. Moreover, for practical purposes, we would

expect the data source to be largely unconstrained, whereby neither the number of domains or

domain labels are known. A good example here would be datasets collected from the Internet

where images come from unknown but potentially a massive set of users.

To address the MS-UDA problem, we propose an adversarial agent that learns a dynamic

curriculum [50] for multiple source domains, named Curriculum Manager for Source Selection

(CMSS). More specifically, a constantly updated curriculum during training learns which domains

or samples are best suited for aligning to the target distribution. The CMSS is an independent

module from the feature network and is trained by maximizing the error of discriminator in

order to weigh the gradient reversal back to the feature network. In our proposed adversarial

interplay with the discriminator, the Curriculum Manager is forced to constantly re-measure the

transferability of latent domains across time to achieve a higher error of the discriminator. Such

a procedure of weighing the source data is modulated over the entire training. In effect, the latent

domains with different transferability to the target distribution will gradually converge to different
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Figure 4.1: Illustration of CMSS during training. All training samples are passed through the
feature network F . CMSS prefers samples with better transferability to match the target, and
re-measure the transferability at each iteration to keep up with the discriminator. At the end of
training after the majority of samples are aligned, the CMSS weights tend to be similar among
source samples.

levels of importance without any need for additional domain partitioning prior or clustering.

We attribute the following contributions to this work:

• We propose a novel adversarial method during training towards the MS-UDA problem. Our

method does not assume any knowledge of the domain labels or the number of domains.

• Our method achieves state-of-the-art in extensive experiments conducted on four well-

known benchmarks, including the large-scale DomainNet (∼ 0.6 million images).

• We obtain interpretable results that show how CMSS is in effect a form of curriculum

learning that has great effect on MS-UDA when compared to the prior art. This positively

differentiates our approach from previous state-of-the-art.

20



Proposed	Approach
Curriculum	Manager	for	Source	Selection

IWAN	
Importance	Weighted	Adversarial	Nets

DANN
Domain	Adversarial	Neural	Network

F

GRL

Cls

D

CM

Image�

Image� F

GRL

Cls

D

GRL

Cls

D** D

FImage�

dom
dom

wdom

Figure 4.2: Architecture comparison of left: DANN [49], middle: IWAN [58], and right:
proposed method. Red dotted lines indicate backward passes. (F : feature extractor, Cls:
classifier, D: domain discriminator, GRL: gradient reversal layer, CM: Curriculum Manager,
Ldom: Eq.4.1 domain loss, Lwdom: Eq.4.3 weighted domain loss)

4.2 Related Work

UDA is an actively studied area of research in machine learning and computer vision. Since

the seminal contribution of Ben-David et al. [51, 52], several techniques have been proposed for

learning representations invariant to domain shift [53, 54, 55, 56, 57]. In this section, we review

some recent methods that are most related to our work.

Multi-Source Unsupervised Domain Adaptation (MS-UDA) assumes that the source training

examples are inherently multi-modal. The source domains contain labeled samples while the

target domain contains unlabeled samples [7, 49, 59, 60, 61]. In [59], adaptation was performed

by aligning the moments of feature distributions between each source-target pair. Deep Cocktail

Network (DCTN) [62] considered the more realistic case of existence of category shift in addition

to the domain shift, and proposes a k-way domain adversarial classifier and category classifier

to generate a combined representation for the target. Because domain labels are hard to obtain

in the real world datasets, latent domain discovery [60] – a technique for alleviating the need for

explicit domain label annotation has many practical applications. Xiong et al. [63] proposed to

use square-loss mutual information based clustering with category distribution prior to infer the
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domain assignment for images. Mancini et al. [60] used a domain prediction branch to guide

domain discovery using multiple batch-norm layers.

Domain-Adversarial Training has been widely used [14, 64, 65] since Domain-Adversarial

Neural Network (DANN) [49] was proposed. The core idea is to train a discriminator network to

discriminate source features from target, and train the feature network to fool the discriminator.

Zhao et al. [61] first proposed to generalize DANN to the multi-source setting, and provides

theoretical insights on the multi-domain adversarial bounds. Maximum Classifier Discrepancy

(MCD) [35] is another powerful [59, 66, 67, 68] technique for performing adaptation in an

adversarial manner using two classifiers. The method first updates the classifiers to maximize

the discrepancy between the classifiers’ prediction on target samples, followed by minimizing

the discrepancy while updating the feature generator.

Domain Selection and Weighting: Some previous methods that employed sample selection

and sample weighing techniques for domain adaptation include [69, 70, 71]. Duan et al. [70]

proposed using a domain selection machine by leveraging a large number of loosely labeled web

images from different sources. The authors of [70] adopted a set of base classifiers to predict

labels for the target domain as well as a domain-dependent regularizer based on smoothness

assumption. Bhatt et al. [72] proposed to adapt iteratively by selecting the best sources that learn

shared representations faster. Chen et al. [64] used a hand-crafted re-weighting vector so that

the source domain label distribution is similar to the unknown target label distribution. Mancini

et al. [73] modeled the domain dependency using a graph and utilizes auxiliary metadata for

predictive domain adaptation. Zhang et al. [58] employed an extra domain classifier that gives

the probability of a sample coming from the source domain. The higher the confidence is from

such an extra classifier, the more likely it can be discriminated from the target domain, in which
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case the importance of the said sample is reduced accordingly.

Curriculum for Domain Adaptation aims at an adaptive strategy over time in order to improve

the effectiveness of domain transfer. The curriculum can be hand-crafted or learned. Shu et.

al [74] designed the curriculum by combining the classification loss and discriminator’s loss as

a weighting strategy to eliminate the corrupted samples in the source domain. Another work

with similar motivation is [40], in which Chen et. al proposed to use per-category prototype to

measure the prediction confidence of target samples. A manually designed threshold τ is utilized

to make a binary decision in selecting partial target samples for further alignment. Kurmi et. al

[75] used a curriculum-based dropout discriminator to simulate the gradual increase of sample

variance.

4.3 Preliminaries

4.3.1 Task Formulation:

In multi-source unsupervised domain adaptation (MS-UDA), we are given an input dataset

Dsrc = {(xsi , ysi )}Ns
i=1 that contains samples from multiple domains. In this chapter, we focus

on classification problems, with the set of labels ysi ∈ {1, 2, . . . , nc}, where nc is the number

of classes. Each sample xsi has an associated domain label, dsi ∈ {1, 2, . . . , S}, where S is

the number of source domains. In this work, we assume source domain label information is

not known a priori, i.e., number of source domains or source domain label per sample is not

known. In addition, given an unlabeled target dataset Dtgt = {xti}Nt
i=1, the goal of MS-UDA is

to train models using multiple source domains (Dsrc) and the target domain (Dtgt), and improve

performance on the target test set.
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4.3.2 Domain-Adversarial training:

First, we discuss the domain-adversarial training formulation from [49] that is the basis

from which we extend to MS-UDA. The core idea of domain-adversarial training is to minimize

the distributional distance between source and target feature distributions posed as an adversarial

game. The model has a feature extractor, a classifier, and a domain discriminator. The classifier

takes in feature from the feature extractor and classifies it in nc classes. The discriminator is

optimized to discriminate source features from target. The feature network, on the other hand, is

trained to fool the discriminator while at the same time achieve good classification accuracy.

More formally, let Fθ : R3×w×h → Rd denote the feature extraction network, Cϕ : Rd →

Rnc denote the classifier, and Dψ : Rd → R1 denote the domain discriminator. Here, θ, ϕ and

ψ are the parameters associated with the feature extractor, classifier, and domain discriminator

respectively. The model is trained using the following objective function:

max
ψ

min
θ,ϕ
Lcls − λLdom (4.1)

where Lcls =−
1

Ns

Ns∑
i=1

ỹi log(C(F (x
s
i )))

Ldom =− Ex∼Dsrc log(D(F (x)))− Ex∼Dtgt log(1−D(F (x)))

=− 1

Ns

Ns∑
i=1

log(D(F (xsi )))−
1

Nt

Nt∑
i=1

log
(
1−D(F (xti))

)

Lcls is is the cross-entropy loss in source domain (with ỹi being the one-hot encoding of the label

yi), and Ldom is the discriminator loss that discriminates source samples from the target. Note

that both these loss functions use samples from all source domains.
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In principle, if domain labels are available, there are two possible choices for the domain

discriminator: (1) k domain discriminators can be trained, each one discriminating one of the

source domains from the target [49], or (2) a domain discriminator can be trained as a (k+1)-way

classifier to classify input samples as either one of the source domains or target [61]. However,

in our setup, domain labels are unknown and, therefore, these formulations can not be used.

4.4 CMSS: Curriculum Manager for Source Selection

For the source domain that is inherently multi-modal, our goal is to learn a dynamic

curriculum for selecting the best-suited samples for aligning to the target feature distribution.

At the beginning of training, the Curriculum Manager is expected to prefer samples with higher

transferability for aligning with the target, i.e., source samples which have similar feature distributions

to the target sample. Once the feature distributions of these samples are aligned, our Curriculum

Manager is expected to prioritize the next round of source samples for alignment. As the training

progresses, the Curriculum Manager can learn to focus on different aspects of the feature distribution

as a proxy for better transferability. Since our approach learns a curriculum to prefer samples

from different source domains, we refer to it is Curriculum Manager for Source Selection (CMSS).

Our approach builds on the domain-adversarial training framework (described in §4.3). In

this framework, our hypothesis is that source samples that are hard for the domain discriminator

to separate from the target samples are likely the ones that have similar feature distributions. Our

CMSS leverages this and uses the discriminator loss to find source samples that should be aligned

first. The preference for source samples is represented as per-sample weights predicted by CMSS.

Since our approach is based on domain-adversarial training, weighing Ldom using these weights
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will lead to the discriminator encouraging the feature network to bring the distributions of higher

weighted source samples closer to the target samples. This signal between the discriminator and

feature extractor is achieved using the gradient reversal layer (see [49] for details).

Therefore, our proposed CMSS is trained to predict weights for source samples at each

iteration, which maximizes the error of the domain discriminator. Due to this adversarial interplay

with the discriminator, the CMSS is forced to re-estimate the preference of source samples

across training to keep up with the improving domain discriminator. The feature extractor, F ,

is optimized to learn features that are both good for classification and confuse the discriminator.

To avoid any influence from the classification task in the curriculum design, our CMSS also

has an independent feature extractor module that learns to predict weights per-sample given the

source images and domain discriminator loss.

4.4.1 Training CMSS:

The CMSS weight for every sample in the source domain, xsi , is given by wsi . We represent

this weighted distribution as D̃src. The CMSS network is represented by Gρ : Rc×w×h → R1

with parameters ρ. Given a batch of samples, xs1,x
s
2, . . .x

s
b, we first pass these samples to Gρ

to obtain an array of scores that are normalized using softmax function to obtain the resulting

weight vector. During training, the CMSS optimization objective can be written as

min
ρ

[
1

Ns

Ns∑
i=1

Gρ(x
s
i ) log(D(F (xsi )))

]
(4.2)

With the source sample weights generated by CMSS, the loss function for domain discriminator
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can be written as

Lwdom = − 1

Ns

Ns∑
i=1

Gρ(x
s
i ) log(D(F (xsi )))−

1

Nt

Nt∑
i=1

log
(
1−D(F (xti))

)
s.t.

∑
i

Gρ(x
s
i ) = Ns (4.3)

The overall optimization objective can be written as

max
ψ

min
θ,ϕ,ρ

Lcls − λLwdom (4.4)

where Lcls is the Cross-Entropy loss for source classification and Lwdom is the weighted domain

discriminator loss from Eq. (4.3), with weights obtained by optimizing Eq. (4.2). λ is the

hyperparameter in the gradient reversal layer. We follow [49] and set λ based on the following

annealing schedule: λp = 2
1+exp(−γ·p) − 1, where p is the current number of iterations divided

by the total. γ is set to 10 in all experiments as in [49]. Details of training are provided in

Algorithm 1.

4.4.2 CMSS: Theoretical Insights

We first state the classic generalization bound for domain adaptation [76, 77]. Let H be

a hypothesis space of V C-dimension d. For a given hypothsis class H, define the symmetric

difference operator as H∆H = {h(x) ⊕ h′(x)|h, h′ ∈ H}. Let Dsrc, Dtgt denote the source

and target distributions respectively, and D̂src, D̂tgt denote the empirical distribution induced by

sample of size m drawn from Dsrc, Dtgt respectively. Let ϵs (ϵt) denote the true risk on source

(target) domain, and ϵ̂s (ϵ̂t) denote the empirical risk on source (target) domain. Then, following
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Algorithm 1: Training CMSS
Input : Niter, N s

b , N t
b , ρ, ψ, θ, ϕ, γ, η

Niter is Total number of training iterations,
N s
b and N t

b : Batch size of source and target samples,
θ is the parameters of the feature extractor,
ϕ is the parameter of the classifier,
ψ is the parameter of the domain discriminator,
γ is a hyper parameter,
η is the learning rate.
for t← (1 to Niter) do

Obtain λ = 2/(1 + exp(−γ · (t/Niter)))− 1

Obtain randomly sample a source batch {(xsi , yi)}
Ns

b
i=1 ∼ Dsrc

Obtain randomly sample a target batch {xti}
Nt

b
i=1 ∼ Dtgt

Update ρ← ρ− η∇(minρ−λLwdom)
Update ψ← ψ − η∇minψ λLdom

Update θ← ϕ by θ − η∇(minθ,ϕ Lcls − λLwdom)
end

Theorem 1 of [77], with probability of at least 1− δ, ∀h ∈ H ,

ϵt(h) ≤ ϵ̂s(h) +
1

2
dH∆H(D̂src, D̂tgt) + C (4.5)

where C is a constant

C = λ+O

(√
d log(m/d) + log(1/δ)

m

)

Here, λ is the optimal combined risk (source + target risk) that can be achieved by hypothesis in

H. Let {xsi}mi=1, {xti}mi=1 be the samples in the empirical distributions D̂src and D̂tgt respectively.

Then, P (xsi ) = 1/m and P (xti) = 1/m. The empirical source risk can be written as ϵ̂s(h) =

1/m
∑

i ϵ̂xs
i
(h)

Now consider a CMSS re-weighted source distribution D̂wsrc, with P (xsi ) = wi. For D̂wsrc
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to be a valid probability mass function,
∑

iw
s
i = 1 and wsi ≥ 0. Note that D̂src and D̂wsrc share

the same samples, and only differ in weights. The generalization bound for this re-weighted

distribution can be written as

ϵt(h) ≤
∑
i

wiϵ̂xs
i
(h) +

1

2
dH∆H(D̂wsrc, D̂tgt) + C

Since the bound holds for all weight arrays w = [ws1, w
s
2 . . . w

s
m] in a simplex, we can minimize

the objective over w to get a tighter bound.

ϵt(h) ≤ min
w∈∆m

∑
i

wiϵ̂xs
i
(h) +

1

2
dH∆H(D̂wsrc, D̂tgt) + C (4.6)

The first term is the weighted risk, and the second term dH∆H(D̂wsrc, D̂tgt) is the weighted symmetric

divergence which can be realized using our weighted adversarial loss. Note that when w =

[1/m, 1/m, . . . 1/m], we get the original bound (4.5). Hence, the original bound is in the feasible

set of this optimization.

4.4.3 Relaxations.

In practice, deep neural networks are used to optimize the bounds presented above. Since

the bound (4.6) is minimized over the weight vector w, one trivial solution is to assign non-zero

weights to only a few source samples. In this case, a neural network can overfit to these source

samples, which could result in low training risk and low domain divergence. To avoid this trivial

case, we present two relaxations:

• We use the unweighted loss for the source risk (first term in the bound (4.6)).
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• For the divergence term, instead of minimizing w over all the samples, we optimize only

over mini-batches. Hence, for every mini-batch, there is at least one wi which is non-zero.

Additionally, we make weights a function of input, i.e., wi = Gρ(x
s
i ), which is realized

using a neural network. This will smooth the predictions of wi, and make the weight

network produce a soft-selection over source samples based on correlation with the target.

Note that the Gρ network discussed in the previous section satisfies these criteria.

4.5 Experimental Results

In this section, we perform an extensive evaluation of the proposed method on the following

tasks: digit classification(MNIST, MNIST-M, SVHN, Synthetic Digits, USPS), image recognition

on the large-scale DomainNet dataset (clipart, infograph, paiting, quickdraw, real, sketch), PACS[7]

(art, cartoon, photo and sketch) and Office-Caltech10 (Amazon, Caltech, Dslr, Webcam). We

compare our method with the following contemporary approaches: Domain Adversarial Neural

Network (DANN) [49], Multi-Domain Adversarial Neural Network (MDAN)[61] and two state-

of-the-art discrepancy-based approaches: Maximum Classifier Discrepancy (MCD) [35] and

Moment Matching for Multi-Source (M3SDA) [59]. We follow the protocol used in other multi-

source domain adaptation works [59, 60], where each domain is selected as the target domain

while the rest of domains are used as source domains. For Source Only and DANN experiments,

all source domains are shuffled and treated as one domain. To guarantee fairness of comparison,

we used the same model architectures, batch size and data pre-processing routines for all compared

approaches. All our experiments are implemented in PyTorch.
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Table 4.1: Results on Digits classification. The proposed CMSS achieves 90.8% accuracy.
Comparisons with MCD and M3SDA are reprinted from [59]. All experiments are based on
a 3-conv-layer backbone trained from scratch. (mt, mm, sv, sy, up: MNIST, MNIST-M, SVHN,
Synthetic Digits, UPSP)

Models
mm, sv, sy, up mt, sv, sy, up mt,mm, sy, up mt,mm, sv, up mt,mm, sv, sy

Avg→mt →mm → sv → sy → up

Source Only 92.3 ± 0.91 63.7 ± 0.83 71.5 ± 0.75 83.4 ± 0.79 90.7 ± 0.54 80.3 ± 0.76

DANN [49] 97.9 ± 0.83 70.8 ± 0.94 68.5 ± 0.85 87.3 ± 0.68 93.4 ± 0.79 83.6 ± 0.82
MDAN [61] 97.2 ± 0.98 75.7 ± 0.83 82.2 ± 0.82 85.2 ± 0.58 93.3 ± 0.48 86.7 ± 0.74
MCD [35] 96.2 ± 0.81 72.5 ± 0.67 78.8 ± 0.78 87.4 ± 0.65 95.3 ± 0.74 86.1 ± 0.64
M3SDA [59] 98.4 ± 0.68 72.8 ± 1.13 81.3 ± 0.86 89.5 ± 0.56 96.1 ± 0.81 87.6 ± 0.75

CMSS (ours) 99.0 ± 0.08 75.3 ± 0.57 88.4 ± 0.54 93.7 ± 0.21 97.7 ± 0.13 90.8 ± 0.31

4.5.1 Experiments on Digit Recognition

Following DCTN [62] and M3SDA [59], we sample 25000 images from training subset

and 9000 from testing subset of MNIST, MNIST-M, SVHN and Synthetic Digits. The entire USPS

is used since it contains only 9298 images in total.

In all the experiments, the feature extractor is composed of three conv layers and two fc

layers. The entire network is trained from scratch with batch size equals 16. For each experiment,

we run the same setting five times and report the mean and standard deviation. The results are

shown in Table 4.1. The proposed method achieves an 90.8% average accuracy, outperforming

other baselines by a large margin (∼ 3% improvement on the previous state-of-the-art approach).

4.5.2 Experiments on DomainNet

Next, we evaluate our method on DomainNet [59] – a large-scale benchmark dataset used

for multi-domain adaptation. The DomainNet dataset contains samples from 6 domains: Clipart,

Infograph, Painting, Quickdraw, Real and Sketch. Each domain has 345 categories, and the

dataset has∼ 0.6 million images in total, which is the largest existing domain adaptation dataset.
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Table 4.2: Results on the DomainNet dataset. CMSS achieves 46.5% average accuracy. When
the target domain is quickdraw q, CMSS is the only one that outperforms Source Only which
indicates negative transfer has been alleviated. Source Only * is re-printed from [59], Source Only
is our implemented results. All experiments are based on ResNet-101 pre-trained on ImageNet.
(c: clipart, i: infograph, p: painting, q: quickdraw, r: real, s: sketch)

Models
i, p, q c, p, q c, i, q c, i, p c, i, p c, i, p

Avg
r, s→ c r, s→ i r, s→ p r, s→ q q, s→ r q, r→ s

Source Only* 47.6±0.52 13.0±0.41 38.1±0.45 13.3±0.39 51.9±0.85 33.7±0.54 32.9±0.54
Source Only 52.1±0.51 23.4±0.28 47.7±0.96 13.0±0.72 60.7±0.32 46.5±0.56 40.6±0.56

DANN [49] 60.6±0.42 25.8±0.34 50.4±0.51 7.7±0.68 62.0±0.66 51.7±0.19 43.0±0.46
MDAN [61] 60.3±0.41 25.0±0.43 50.3±0.36 8.2±1.92 61.5±0.46 51.3±0.58 42.8±0.69
MCD [35] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61
M3SDA [59] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6±0.64

CMSS (ours) 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.5±0.24

We use ResNet-101 pretrained on ImageNet as the feature extractor for in all our experiments.

For CMSS, we use a ResNet-18 pretrained on ImageNet. The batch size is fixed to 128. We

conduct experiments over 5 random runs, and report mean and standard deviation over the 5

runs.

The results are shown in Table 4.2. CMSS achieves 46.5% average accuracy, outperforming

other baselines by a large margin. We also note that our approach achieves the best performance

in each experimental setting. It is also worth mentioning that in the experiment when the target

domain is Quickdraw (q), our approach is the only one that outperforms Source Only baseline,

while all other compared approaches result in negative transfer (lower performance than the

source-only model). This is since quickdraw has a significant domain shift compared to all other

domains. This shows that our approach can effectively alleviate negative transfer even in such

challenging set-up.
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Table 4.3: Results on PACS

Models c, p, s→ a a, p, s→ c a, c, s→ p a, c, p→ s Avg

Source Only 74.9±0.88 72.1±0.75 94.5±0.58 64.7±1.53 76.6±0.93

DANN [49] 81.9±1.13 77.5±1.26 91.8±1.21 74.6±1.03 81.5±1.16
MDAN [61] 79.1±0.36 76.0±0.73 91.4±0.85 72.0±0.80 79.6±0.69
WBN [60] 89.9±0.28 89.7±0.56 97.4±0.84 58.0±1.51 83.8±0.80
MCD [35] 88.7±1.01 88.9±1.53 96.4±0.42 73.9±3.94 87.0±1.73
M3SDA [59] 89.3±0.42 89.9±1.00 97.3±0.31 76.7±2.86 88.3±1.15

CMSS (ours) 88.6±0.36 90.4±0.80 96.9±0.27 82.0±0.59 89.5±0.50

4.5.3 Experiments on PACS

PACS [7] is another popular benchmark for multi-source domain adaptation. It contains 4

domains: art, cartoon, photo and sketch. Images of 7 categories are collected for each domain.

There are 9991 images in total. For all experiments, we used ResNet-18 pretrained on ImageNet

as the feature extractor following [60]. For the Curriculum Manager, we use the same architecture

as the feature extractor. Batch size of 32 is used. We conduct experiments over 5 random runs,

and report mean and standard deviation over the runs. The results are shown in Table 4.3 (a:

art, c: cartoon, p: painting, s: sketch.). CMSS achieves the state-of-the-art average accuracy

of 89.5%. On the most challenging sketch (s) domain, we obtain 82.0%, outperforming other

baselines by a large margin.

4.5.4 Experiments on Office-Caltech10

The office-Caltech10 [78] dataset has 10 object categories from 4 different domains: Amazon,

Caltech, DSLR, and Webcam. For all the experiments, we use the same architecture (ResNet-101

pretrained on ImageNet) used in [59]. The experimental results are shown in Table 4.4 (A:
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Table 4.4: Results on Office-Caltech 10

Models
A,C,D A,C,W A,D,W C,D,W

Avg
→W → D → C → A

Source Only 99.0 98.3 87.8 86.1 92.8

DANN [49] 99.3 98.2 89.7 94.8 95.5
MDAN [61] 98.9 98.6 91.8 95.4 96.1
MCD [35] 99.5 99.1 91.5 92.1 95.6
M3SDA [59] 99.5 99.2 92.2 94.5 96.4

CMSS (ours) 99.6 99.3 93.7 96.0 97.2

Amazon, C: Caltech, D: Dslr, W: Webcam). CMSS achieves state-of-the-art average accuracy of

97.2%.

4.5.5 Comparison with other re-weighting methods

In this experiment, we compare CMSS with other weighing schemes proposed in the

literature. We use IWAN [58] for this purpose. IWAN, originally proposed for partial domain

adaption, reweights the samples in adversarial training using outputs of discriminator as sample

weights (Refer to Figure 4.2). CMSS, however, computes sample weights using a separate

network Gρ updated using an adversarial game. We adapt IWAN for multi-source setup and

compare it against our approach. The results are shown in Table 4.5 (abbreviations of domains

same as Table 4.2). IWAN obtained 43.1% average accuracy which is close to performance

obtained using DANN with combined source domains. For further analysis, we plot how sample

weights estimated by both approaches (plotted as mean± variance) change as training progresses

in Figure 4.3. We observe that CMSS selects weights with larger variance which demonstrates its

sample selection ability, while IWAN has weights all close to 1 (in which case, it becomes similar

to DANN). This illustrates the superiority of our sample selection method. More discussions on
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Table 4.5: Comparing re-weighting methods

Models
i, p, q c, p, q c, i, q c, i, p c, i, p c, i, p

Avg
r, s→ c r, s→ i r, s→ p r, s→ q q, s→ r q, r→ s

DANN [49] 60.6 25.8 50.4 7.7 62.0 51.7 43.0
IWAN [58] 59.1 25.2 49.7 12.9 60.4 51.4 43.1

CMSS (ours) 64.2 28.0 53.6 16.0 63.4 53.8 46.5
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Figure 4.3: Mean and variance of generated weights over time, comparing CMSS to IWAN [58]

sample selection can be found in Section 4.6.3. CMSS also achieves a faster and more stable

convergence in test accuracy compared to DANN [49] where we assume a single source domain,

which further supports the effectiveness of the learnt curriculum.

4.6 Interpretations

In this section, we are interested in understanding and visualizing the source selection

ability of our approach. We conduct two sets of experiments: (i) visualizations of the source

selection curriculum over time, and (ii) comparison of our selection mechanism with other sample

re-weighting methods.
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Figure 4.4: Interpretation results of the sample selection on DomainNet dataset using the
proposed method. In each plot, one domain is selected as the target. In each setting, predictions
of CMSS are computed for each sample of the source domains. The bars indicate how many
of these samples have weight prediction larger than a manually chosen threshold, with each bar
denoting a single source domain. Maximum number of samples are highlighted in red. Best
viewed in color

4.6.1 Visualizations of Domain Preference

We first investigate if CMSS indeed exhibits domain preference over the course of training

as claimed. For this experiment, we randomly select m = 34000 training samples from each

source domain in DomainNet and obtain the raw weights (before softmax) generated by CMSS.

Then, we calculate the number of samples in each domain passing a manually selected threshold

τ . We use the number of samples passing this threshold in each domain to indicate the domain

preference level. The larger the fraction, more weights are given to samples from the domains,

hence, higher the domain preference. Figure 4.4 shows the visualization of domain preference

for each target domain. We picked 3 different τ in each experiment for more precise observation.

We observe that CMSS does display domain preference (Clipart - Painting, Infograph - Sketch,
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Clipart QuickdrawTop Ranked Bottom Ranked Top Rank Bottom Ranked

Figure 4.5: Ranked source samples according to learnt weights (class “Clock” of DomainNet
dataset). LHS: Examples of unlabeled target domain Clipart and the Top/Bottom Ranked ∼
50 samples of the source domain composed of Infograph, Painting, Quickdraw, Real and Sketch.
RHS: Examples of unlabeled target domain Quickdraw and the Ranked samples of source domain
composed of Clipart, Infograph, Painting, Real and Sketch. Weights are obtained at inference
time using CMSS trained after 5 epochs.

epochs

Art CartoonSource: Photo Sketch

0 70

Target:Target range

Figure 4.6: t-SNE visualization of features at six different epochs during training. The shaded
region is the migrated range of target features. Dateset used is PACS with sketch as the target
domain.

Real - Clipart) that is in fact correlated with the visual similarity of the domains. An exception

is Quickdraw, where no domain preference is observed. We argue that this is because Quickdraw

has significant domain shift compared to all other domains, hence no specific domain is preferred.

However, CMSS still produces better performance on Quickdraw. While there is no domain

preference for Quickdraw, there is within-domain sample preference as illustrated in Figure 4.5.

That is, our approach chooses samples within a domain that are structurally more similar to the

target domain of interest. Hence, just visualizing aggregate domain preference does not depict

the complete picture. We will present sample-wise visualization in the next section.
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4.6.2 Beyond Domain Preference

In addition to domain preference, we are interested in taking a closer look at sample-wise

source selection. To do this, we first obtain the weights generated by CMSS for all source samples

and rank the source images according to their weights. An example is shown in Figure 4.5. For

better understanding, we visualize samples belonging to a fixed category (“Clock” in Figure 4.5).

In Figure 4.5, we find that notion of similarity discovered by CMSS is different for different

domains. When the target domain is Clipart (left panel of Figure 4.5), source samples with colors

and cartoonish shapes are ranked at the top, while samples with white background and simplistic

shapes are ranked at the bottom. When the target is Quickdraw (right panel of Figure 4.5), one

would think that CMSS will simply be selecting images with similar white background. Instead,

it prefers samples which are structurally similar to the regular rounded clock shape (as most

samples in Quickdraw are similar to these). It thus appears that structural similarity is favored in

Quickdraw, whereas color information is preferred in Clipart. This provides support that CMSS

selects samples according to ease of alignment to the target distribution, which is automatically

discovered per domain. We argue that this property of CMSS has an advantage over approaches

such as MDAN [61] which simply weighs manually partitioned domains.

4.6.3 Selection Over Time

In this section, we discuss how source selection varies as training progresses. In Figure 4.3,

we plot mean and variance of weights (output of Curriculum Manager) over training iterations.

We observe that the variance is high initially, which indicates many samples have weights away

from the mean value of 1. Samples with higher weights are preferred, while those with low
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weights contribute less to the alignment. In the later stages, the variance is very low which

indicates most of the weights are close to 1. Hence, our approach gradually adapts to increasingly

many source samples over time, naturally learning a curriculum for adaptation. In Figure 4.6,

we plot a t-SNE visualization of features at different epochs. We observe that the target domain

sketch (red) first adapts to Art (yellow), and then gradually aligns with Cartoon (green) and Photo

(blue).

4.7 Conclusion

In this chapter, we proposed Curriculum Manager for Source Selection (CMSS) that learns

a curriculum for Multi-Source Unsupervised Domain Adaptation. A curriculum is learnt that

iteratively favors source samples that align better with the target distribution over the entire

training. The curriculum learning is achieved by an adversarial interplay with the discriminator,

and achieves state-of-the-art on four benchmark datasets. We also shed light on the inner workings

of CMSS, and we hope that will pave the way for further advances to be made in this research

area.
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Chapter 5: Deep Co-Training with Task Decomposition for Semi-supervised

Domain Adaptation

Semi-supervised domain adaptation (SSDA) aims to adapt models trained from a labeled

source domain to a different but related target domain, from which unlabeled data and a small

set of labeled data are provided. Current methods that treat source and target supervision without

distinction overlook their inherent discrepancy, resulting in a source-dominated model that has

not effectively use the target supervision. In this paper, we argue that the labeled target data

needs to be distinguished for effective SSDA, and propose to explicitly decompose the SSDA

task into two sub-tasks: a semi-supervised learning (SSL) task in the target domain and an

unsupervised domain adaptation (UDA) task across domains. By doing so, the two sub-tasks

can better leverage the corresponding supervision and thus yield very different classifiers. To

integrate the strengths of the two classifiers, we apply the well established co-training framework,

in which the two classifiers exchange their high confident predictions to iteratively “teach each

other” so that both classifiers can excel in the target domain. We call our approach Deep Co-

training with Task decomposition (DECOTA). DECOTA requires no adversarial training and is

easy to implement. Moreover, DECOTA is well founded on the theoretical condition of when co-

training would succeed. As a result, DECOTA achieves state-of-the-art results on several SSDA

datasets, outperforming the prior art by a notable 4% margin on DomainNet.
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5.1 Introduction

UDASSL

Co-training

SSDA

labeled source

labeled target

classifier

unlabeled target
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Figure 5.1: Deep Co-training with Task decomposition (DECOTA). We decompose semi-
supervised domain adaptation (SSDA) into two sub-tasks: semi-supervised learning (SSL) in the
target domain, and unsupervised DA (UDA) across domains. The two sub-tasks offer different
pseudo-label confidences to the unlabeled data (light blue & light red circles), which we leverage
via co-training: exchanging their high confident predictions to teach each other.

Domain adaptation (DA) aims to adapt machine learned models from a source domain to

a related but different target domain [10, 35, 52, 79]. DA is particularly important in settings

where labeled target data is hard to obtain, but labeled source data is plentiful [8, 80, 81],

e.g., , adaptation from synthetic to real images [81, 82, 83, 84, 85] and adaptation to a new

or rare environment [56, 86, 87, 88]. Most of the existing works focus on the unsupervised

domain adaptation (UDA) setting, in which the target domain is completely unlabeled. Several

recent works, however, show that adding merely a tiny amount of target labeled data (e.g., ,

just one labeled image per class) can notably boost the performance [32, 89, 90, 91, 92, 93, 94,
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95], suggesting that this setting may be more promising for domain adaptation to succeed. In

this paper, we thus focus on the latter setting, which is referred to as semi-supervised domain

adaptation (SSDA).

Despite the seemingly nuanced difference between the two settings, methods that are effective

for SSDA and UDA can vary substantially. For instance, [32] showed that directly combining the

labeled source and labeled target data and then applying popular UDA algorithms like domain

adversarial learning [10] or entropy minimization [96] can hardly improve the performance. In

other words, the labeled target data have not been effectively used. Existing methods [32, 89, 90]

therefore propose additional objectives to strengthen the influence of labeled target data in SSDA.

Intrigued by these findings, we investigate the characteristics of SSDA further and emphasize

two fundamental challenges. First, the amount of labeled source data is much larger than that

of labeled target data. Second, the two data are inherently different in their distributions. A

single classifier learned together with both sources of supervision is thus easily dominated by

the labeled source data and is unable to take advantage of the additional labeled target data.

To resolve this issue, we propose to explicitly decompose the two sources of supervision

and learn two distinct classifiers whose goals are however shared: to classify well on the

unlabeled target data. To this end, we pair the labeled source data and the unlabeled target data to

learn one classifier, which is essentially a UDA task. For the other classifier, we pair the labeled

and unlabeled target data, which is essentially a semi-supervised learning (SSL) task. That is, we

explicitly decompose SSDA into two well-studied tasks.

For each sub-task, one may apply any existing algorithms independently. In this paper, we

however investigate the idea of learning the two classifiers jointly for two compelling reasons.

First, the two tasks share the same goal and same unlabeled data, meaning that they are correlated.
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Second, learning with distinct labeled data implies that the two classifiers will converge differently

in what types of mistakes they make and on which samples they are confident and correct,

meaning that they are complementary to each other.

We therefore propose to learn the two classifiers jointly via co-training [97, 98, 99]1, which

is arguably one of the most established algorithm for learning with multi views: in our case, two

correlating and complementary tasks. The approach is straightforward: train a separate classifier

on each task using its labeled data, and use them to create pseudo-labels for the unlabeled data.

As the two classifiers are trained with distinct supervision, they will yield different predictions.

In particular, there will be samples that only one classifier is confident about (and more likely to

be correct). By labeling these samples with the confident classifier’s predictions and adding them

to the training set of the other classifier to re-train on, the two classifiers are essentially “teaching

each other” to improve. To this end, we employ a simple pseudo-labeling-based algorithm with

deep learning, similar to [101], to train each classifier. Pseudo-labeling-based algorithms have

been shown powerful for both the UDA and SSL tasks [102, 103]. In other words, we can apply

the same algorithm for both sub-tasks, greatly simplifying our overall framework which we name

DECOTA: Deep Co-training with Task Decomposition.

We evaluate DECOTA on two benchmark datasets for SSDA: DomainNet [8] and Office-

home [104]. While very simple to implement and without any adversarial training [32, 90],

DECOTA significantly outperforms the state-of-the-art results [89, 90] on DomainNet by over

4% and is on a par with them on Office-home. We attribute this to the empirical evidence that

our task decomposition fits the theoretical condition of relaxed ϵ-expandability [98, 99], which

1We note that, co-training [97] and co-teaching [100] share similar concepts but are fundamentally different. See
5.2 for a discussion.
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is sufficient for co-training to succeed. Another strength of DECOTA is that it requires no extra

learning process like feature decomposition to create views from data [99, 105, 106]. To the best

of our knowledge, our paper is the first to enable deep learning with co-training on SSDA.

The contributions of this work are as follow. (1) We explicitly decompose the two very

different sources of supervision, labeled source and labeled target data, in SSDA. (2) We present

DECOTA, a simple deep learning based co-training approach for SSDA to jointly learn two

classifiers, one for each supervision. (3) we provide intermediate results and insights that illustrate

why DECOTA works. Specifically, we show that DECOTA satisfies the ϵ-expandability requirement

[98] of co-training. (4) Lastly, we support this work with strong empirical results that outperform

state-of-the-art.

5.2 Related Work

Unsupervised domain adaptation (UDA). UDA has been studied extensively. Many methods

[34, 107, 108] matched the feature distributions between domains by minimizing their divergence.

One mainstream approach is by domain adversarial learning [10, 14, 81, 87, 109, 110, 111, 112].

More recent works [34, 35, 36, 113] learn features based on the cluster assumption [96]: classifier

boundaries should not cross high density target data regions. For example, [35, 113] attempted

to push target features away from the boundary, using minmax training. Some other approaches

employ self-training with pseudo-labeling [114, 115, 116, 117] to progressively label unlabeled

data and use them to fine-tune the model [103, 106, 118, 119, 120, 121, 122, 123]. A few recent

methods use MIXUP [124], but mainly to augment adversarial learning based UDA approaches

(e.g., , [10]) by stabilizing the domain discriminator [111, 125] or smoothing the predictions [126,
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127]. In contrast, we apply MIXUP to create better pseudo-labeled data for co-training, without

adversarial learning.

Semi-supervised domain learning (SSDA). SSDA attracts less attention in DA, despite its

promising scenario in balancing accuracy and labeling effort. With few labeled target data, SSDA

can quickly reshape the class boundaries to boost the accuracy [32, 90]. Many SSDA works

are proposed prior to deep learning [92, 95, 128, 129], matching features while maintaining

accuracy on labeled target data. [91, 130] employed knowledge distillation [131] to regularize

the training on labeled target data. More recent works use deep learning, and find that the

popular UDA principle of aligning feature distributions could fail to learn discriminative class

boundaries in SSDA [32]. [32] thus proposed to gradually move the class prototypes (used to

derive class boundaries) to the target domain in a minimax fashion; [90] introduced opposite

structure learning to cluster target data and scatter source data to smooth the process of learning

class boundaries. Both works [32, 90] and [89] concatenate the target labeled data with the

source data to expand the labeled data. [93] incorporates meta-learning to search for better initial

condition in domain adaptation. SSDA is also related to [132, 133], in which active learning is

incorporated to label data for improving domain adaptation.

Co-training. Co-training, a powerful semi-supervised learning (SSL) method proposed in [97],

looks at the available data with two views from which two models are trained interactively.

By adding the confident predictions of one model to the training set of the other, co-training

enables the models to “teach each other”. There were several assumptions to ensure co-training’s

effectiveness [97], which were later relaxed by [98] with the notion of ϵ-expandability. [99]

broadened the scope of co-training to a single-view setting by learning to decompose a fixed

feature representation into two artificially created views; [106] subsequently extended this framework
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to use co-training for (semi-supervised) domain adaptation2. A recent work [105] extended co-

training to deep learning models, by encouraging two models to learn different features and

behave differently on single-view data. One novelty of DECOTA is that it works with single-

view data (both the UDA and SSL tasks are looking at images) but requires no extra learning

process like feature decomposition to artificially create views from such data [99, 105, 106].

Co-training vs. co-teaching. Co-teaching [100] was proposed for learning with noisy data,

which shares a similar procedure to co-training by learning two models to filter out noisy data

for each other. There are several key differences between them and DECOTA is based on co-

training. As in [100], co-teaching is designed for supervised learning with noisy labels, while

co-training is for learning with unlabeled data by leveraging two views. DECOTA decomposes

SSDA into two tasks (two views) to leverage their difference to improve the performance — the

core concept of co-training [106]. In contrast, co-teaching does not need two views. Further,

co-teaching relies on the memorization of neural nets to select small loss samples to teach the

other classifiers, while DECOTA selects high confident ones from unlabeled data.

5.3 Deep Co-training with Task Decomposition

5.3.1 Approach Overview

Co-training strategies have traditionally been applied to data with two views, e.g., audio

and video, or webpages with HTML source and link-graph, after which a classifier is trained in

each view and they teach each other on the unlabeled data. This is the original formulation from

Blum and Mitchell [97], which is later extended to single-view data by [99] for linear models

2Similar to [32, 90], [106] simply concatenated the target labeled data with the source data to expand the labeled
data.
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Figure 5.2: The overall framework of DECOTA. It decomposes the SSDA task into SSL and
UDA tasks that exchange pseudo-labels for unlabeled target U.

and by [105] for deep neural networks. Both methods require additional objective functions or

tasks (e.g., , via generating adversarial examples [134]) to learn to create artificial views such

that co-training can be applied.

In this paper, we have however discovered that in semi-supervised domain adaptation

(SSDA), one can actually conduct co-training using single-view data (all are images) without

such an additional learning subroutine. The key is to leverage the inherent discrepancy of the

labeled data (i.e., , supervision) provided in SSDA: the labeled data from the source domain,

DS = {(si, yi)}NS
i=1, and the labeled data from the target domain, DT = {(ti, yi)}NT

i=1, which is

usually much smaller than DS . By combining each of them with the unlabeled samples from the

target domain, DU = {ui}NU
i=1, we can construct two sub-tasks in SSDA Fig. 5.2 and Fig. 5.3):

• an unsupervised domain adaptation (UDA) task that trains a model wg using DS and DU ,

• a semi-supervised learning (SSL) task that trains another model wf using DT and DU .
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Figure 5.3: Comparison among MIST, two-view MIST (i.e., , two-task MIST), and DECOTA.
The color on the circles means the labeled data: red for DT , blue for DS , and purple for both.
The arrows indicate which model provides the pseudo-labels for which model to learn from.

We learn both models by mini-batch stochastic gradient descent (SGD). At every iteration,

we sample three data sets, S = {(sb, yb)}Bb=1 from DS , T = {(tb, yb)}Bb=1 from DT , and U =

{ub}Bb=1 from DU , where B is the mini-batch size. We can then predict on U using the the two

models wg and wf , creating the pseudo-label sets U (f) and U (g) that will be used to update wf

and wg,

U (f) ={(ub, ŷb = argmax
c

p(c|ub;wg));

if max
c
p(c|ub;wg) > τ},

U (g) ={(ub, ŷb = argmax
c

p(c|ub;wf ));

if max
c
p(c|ub;wf ) > τ}, (5.1)

where ub is an unlabeled sample drawn from U , p(c|ub; ·) is the predicted probability for a class

c, and τ is the threshold for pseudo-label selection. In other words, we use one model’s (say wg)
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Algorithm 2: The DECOTA algorithm
Input : wf and wg, learning rate η, batch size B, iteration Nmax, beta distribution coefficient α,

confidence threshold τ , data DS , DT , DU ;
for n← 1 to Nmax do

Sample S = {(sb, yb)}Bb=1 from DS ,
Sample T = {(tb, yb)}Bb=1 from DT ,
Sample U = {ub}Bb=1 from DU ;
Set U (f) = ∅, U (g) = ∅;
for b← 1 to B do

if maxc p(c|ub;wg) > τ then
Update U (f) ← U (f) + {(ub, ŷb)}, ŷb = argmaxc p(c|ub;wg);

end
if maxc p(c|ub;wf ) > τ then

Update U (g) ← U (g) + {(ub, ŷb)}, ŷb = argmaxc p(c|ub;wf );
end

end

Obtain Ũ (f) = {MIXUP(U
(f)
i , Ti;α)}|U

(f)|
i=1 ;

Obtain Ũ (g) = {MIXUP(U
(g)
i , Si;α)}|U

(g)|
i=1 ;

Update wf ← wf − η
(
∇L(wf , T ) +∇L(wf , Ũ

(f))
)

;

Update wg ← wg − η
(
∇L(wg, S) +∇L(wg, Ũ

(g))
)

;

end
Output: wf and wg (for model ensemble).

high confident prediction to create pseudo-labels for ub, which is then included in U (f) that will

be used to train the other model wf . By looking at U (f) and U (g) jointly, we are indeed asking

one model to simultaneously be a teacher and a student: it provides confident pseudo-labels for

the other model to learn from, and learns from the other model’s confident pseudo-labels.

We call this approach DECOTA, which stands for Deep Co-training with Task Decomposition.

In the following, we will discuss how to improve the pseudo-label quality (i.e., , its coverage and

accuracy) for DECOTA, and provide in-depth analysis why DECOTA works.
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(a) (b)

(c) (d)

Figure 5.4: Analysis on the two-task decomposition. We use DomainNet [8] (Real to Clipart;
three-shot). (a) We show the number of test examples that both, exactly one, and none of the
models have high confidence on (in total, 18, 325). The two tasks hold unique expertise (i.e., ,
there is a 14% portion of the data that exactly one view is confident on), satisfying the condition
of co-training in Eq. (5.6). (b) We show the power of co-training: the same tasks without co-
training perform worse, indicating that the models benefit from each other. The analysis is on
DomainNet (R to C; three-shot) and we will clarify it. We further analyze pseudo-labels in (c) and
(d). For every 1K iterations (i.e., , 24K unlabeled data with possible repetition), we accumulate
the number of data that have confident (> 0.5) and correct predictions by at least one classifier.
(c) Comparison of pseudo-label quantity and quality using DECOTA vs. MIST. (d) MIST vs.
self-training (S+T+pseudo-U). It can be observed that DECOTA has the largest number of correct
pseudo-labels.

5.3.1.1 DECOTA with High-quality Pseudo-labels

The pseudo-labels acquired from each model are understandably noisy. At the beginning

of the training, this problem is especially acute, and affects the efficacy of the model as the

training progresses. Our experience shows that mitigation is necessary to handle noise in the
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Target

Source

𝜆

Figure 5.5: t-SNE visualization of S (red dots, sampled from DS) and U (blue dots, sampled
from DU ): (a) before and (b) after including MIXUP in calculating the projection; (c) t-SNE of
S, U , and MIXUP(S, U). We see a clear data transition along λ.

pseudo-labels to further enhance DECOTA, for which we follow recent works of SSL [101]

to apply MIXUP [124, 135]. MIXUP is an operation to construct virtual examples by convex

combinations. Given two labeled examples (x1, y1) and (x2, y2), we define MIXUP ((x1, y1), (x2, y2);α)

λ ∼ Beta(α, α),

x̃ = (1− λ)x1 + λx2, ỹ = (1− λ)ey1 + λey2 (5.2)

to obtain a virtual example (x̃, ỹ), where ey is a one-hot vector with the yth element being 1. λ

controls the degree of MIXUP while Beta refers to the standard beta distribution.

We perform MIXUP between labeled and pseudo-labeled data: i.e., , between samples in

U (f) and T , and between samples in U (g) and S to obtain two sets of virtual examples Ũ (f) and

Ũ (g). We then update wf and wg by SGD,

wg ← wg − η
(
∇L(wg, S) +∇L(wg, Ũ

(g))
)
, (5.3)

wf ← wf − η
(
∇L(wf , T ) +∇L(wf , Ũ

(f))
)
,
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where η is the learning rate and L is the averaged loss over examples. We use the cross-entropy

loss.

In our experiments, we have found that MIXUP can

• effectively denoise an incorrect pseudo-label by mixing it with a correct one (from S or T ).

The resulting ỹ at least contains a λ portion of correct labels;

• smoothly bridge the domain gap between U and S. This is done by interpolating between U (g)

and S. The resulting x̃ can be seen as an intermediate example between domains.

In other words, MIXUP encourages the models to behave linearly between accurately labeled

and pseudo-labeled data, which reduces the undesirable oscillations caused by noisy pseudo-

labels and stabilizes the predictions across domains. We note that, our usage of MIXUP is

fundamentally different from [111, 125, 126, 127] that employed MIXUP as auxiliary losses

to augment existing DA algorithms like [10].

We illustrate this in Fig. 5.5. A model pre-trained on DS is used to generate feature

embeddings. We then employ t-SNE [136] to perform two tasks simultaneously, namely clustering

the embedded samples as well as projecting them into a 2D space for visualization. In (a), only S

sampled fromDS and U sampled fromDU are embedded, while in (b) and (c), additional samples

from MIXUP of S and U were added to the fold to influence t-SNE’s clustering step. (b) shows

only the finally projected S and U samples afterwards while (c) shows the additional projected

MIXUP samples as a function of λ. One can easily see that MIXUP effectively closes the gap

between the source and target domain.
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5.3.2 Constraints for Effective Co-training

In DECOTA, we perform co-training via a decomposition of tasks on single-view data. To

explain further why DECOTA works, we provide analysis in this subsection on the difference

made by splitting the SSDA problem into two tasks for co-training. That is, we would like to

verify that the decomposition leads to two tasks that fit into the assumption of co-training [98].

To begin with, we train two models: one model, wS , is trained with S and Ũ (S) while the other

model, wT , is trained with T and Ũ (T ). Ũ (S) is obtained from applying wS to U for pseudo-

labels, follow by MIXUP with S. The same definition goes for Ũ (T ). Essentially, both the UDA

and SSL task prepare their own pseudo-labels independently using their respective model in a

procedure that is similar to self-training [114, 115, 116, 117].

Table 5.1: Comparing with deep co-training methods [105] for SSDA on DomainNet, 3-shot.
(See Section 5.4 for details.)

Method R to C R to P P to C C to S S to P R to S P to R Mean

Deep Co-Training [105] w/o MIXUP 73.7 67.6 73.2 63.9 66.7 64.1 79.3 69.7
Deep Co-Training [105] with MIXUP 74.2 69.1 72.3 64.1 67.9 65.1 79.4 70.3
DECOTA 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6

After training, we apply wT to the entire DU and compute for each u ∈ DU the binary

confidence indicator

hT (u) =


1 if maxc p(c|u;wT ) > τ,

0 otherwise.

(5.4)

Here, high confident examples will get a value 1, otherwise 0. We also apply wS to DU to obtain

hS(u). Denote by h̄T (u) = 1− hT (u) the not function of hT (u), we compute the following three
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indicators to summarize the entire DU

hboth :
∑
u∈DU

hT (u)hS(u),

hone :
∑
u∈DU

hT (u)h̄S(u) + h̄T (u)hS(u), (5.5)

hnone :
∑
u∈DU

h̄T (u)h̄S(u),

corresponding to the number of examples that both, exactly one, and none of the models have

high confidence on, respectively. Intuitively, if the two models are exactly the same, hone will be

0, meaning that they are either both confident or not on an example. On the contrary, if the two

models are well optimized but hold their specialties, both hone and hboth will be of high values and

hnone will be low.

We ran the study on DomainNet [8], in which we use Real as source and Clipart as target.

We consider a 126-class classification problem, in which |DS | = 70, 358, |DU | = 18, 325, and

|DT | = 378 (i.e., , a three-shot setting where each class in the target domain is given three

labeled samples). We initialize wS and wT with a ResNet [137] pre-trained on DS , and evaluate

Eq. (5.4) and Eq. (5.5) every 500 iterations (with a τ = 0.5 confidence threshold in selecting

pseudo-labels.).

Fig. 5.4 (a) shows the results. The two models do hold their specialties (i.e., , yield different

high-confident predictions). Even at the end of training, there is a 14% portion of data that one

model is confident on but not the other (the blue curve). Thus, if we can properly fuse their

specialties during training — one model provides the pseudo-labels to the data on which the

other model is uncertain — we are likely to jointly learn stronger models at the end.
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This is indeed the core idea of our co-training proposal. Theoretically, the two “views” (or,

tasks in our case) must satisfy certain conditions, e.g., , ϵ-expandability [98]. [99, 106] relaxed it

and only needed the expanding condition to hold on average in the unlabeled set, which can be

formulated as follows, using hboth, hone, and hnone

hone ≥ ϵmin(hboth, hnone). (5.6)

To satisfy Eq. (5.6), there must be sufficient examples that exactly one model is confident on so

that the two models can benefit from teaching each other. Referring to Fig. 5.4 (a) again, our

two tasks consistently hold a ϵ around 2 after the first 500 iterations (i.e., , after the models start

to learn the task-specific idiosyncrasies), suggesting the feasibility of applying co-training to our

decomposition. The power of co-training is clearly illustrated in Fig. 5.4 (b). The two models

without co-training, wT and wS , perform worse than their co-training counterparts, wf and wg

(see Section 5.3.1, Eq. (5.1), Eq. (5.3)), even using the same architecture and data.

5.3.3 Comparing to Other Co-training Approaches

With our approach outlined, it is worthwhile to contrast DECOTA with prior co-training

work in domain adaptation. In particular, DECOTA is notably different from the approach known

as Co-training for DA (CODA) [106]. While CODA also utilizes co-training for SSDA using

single-view data, it differs from DECOTA fundamentally as follow:

1. CODA takes a feature-centric view in that the two artificial views in its co-training procedure

are constructed by decomposing the feature dimensions into two mutually exclusive subsets.

DECOTA on the other hand achieves effective co-training with a two-task decomposition.
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2. The two views in CODA do not exchange high confident pseudo-labels in a mini-batch fashion

like DECOTA. Nor does CODA utilize MIXUP, which we have shown to be valuable for

SSDA. Instead, CODA explicitly conducts feature alignment by minimizing the difference

between the distributions of the source and target domains.

3. CODA trains a logistic regression classifier. In the era of deep learning, while co-training

has been used in multiple vision tasks, DECOTA is the first work in SSDA utilizing deep

learning, co-training, and mixup in a cohesive and principled fashion, achieving state of the

art performance.

Since CODA is not deep learning based, to further justify the efficacy of DECOTA, we took the

deep co-training work described in [105] that was designed for semi-supervised image recognition,

and customize it for SSDA. [105] constructs multi-views for co-training via two different adversarial

perturbations on the same image samples, after which the two networks are trained to make

different mistakes on the same adversarial examples. For fair comparison, we compare [105] both

with and without MIXUP, using the DomainNet [8] dataset. The results are given in Table 5.1.

DECOTA outperforms [105] by a margin.

5.4 Experiments

We consider the one-/three-shot settings, following [32], where each class is given one or

three labeled target examples. We train with DS , DT , and unlabeled DU . We then reveal the true

label of DU for evaluation.

Datasets. We use DomainNet [8], a large-scale benchmark dataset for domain adaptation that

has 345 classes and 6 domains. We follow [32], using a 126-class subset with 4 domains (i.e., , R:
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Table 5.2: Accuracy on DomainNet (%) for three-shot setting with 4 domains, using ResNet-34.

Method R to C R to P P to C C to S S to P R to S P to R Mean

S+T 60.8 63.6 60.8 55.6 59.5 53.3 74.5 61.2
DANN [10] 62.3 63.0 59.1 55.1 59.7 57.4 67.0 60.5
ENT [32] 67.8 67.4 62.9 50.5 61.2 58.3 79.3 63.9
MME [32] 72.1 69.2 69.7 59.0 64.7 62.2 79.0 68.0
UODA [90] 75.4 71.5 73.2 64.1 69.4 64.2 80.8 71.2
APE [89] 76.6 72.1 76.7 63.1 66.1 67.8 79.4 71.7
ELP [138] 74.9 72.1 74.4 64.3 69.7 64.9 81.0 71.6
DECOTA 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6

Table 5.3: Accuracy on Office-Home (%) for three-shot setting with 4 domains, using VGG-16.

Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
DANN [10] 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
ENT [32] 48.3 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8
MME [32] 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6
UODA [90] 57.6 83.6 67.5 77.7 54.9 61.0 77.7 55.4 76.7 73.8 61.9 78.4 68.9
APE [89] 56.0 81.0 65.2 73.7 51.4 59.3 75.0 54.4 73.7 71.4 61.7 75.1 66.5
ELP [138] 57.1 83.2 67.0 76.3 53.9 59.3 75.9 55.1 76.3 73.3 61.9 76.1 68.0
DECOTA 59.9 83.9 67.7 77.3 57.7 60.7 78.0 54.9 76.0 74.3 63.2 78.4 69.3

Real, C: Clipart, P: Painting, S: Sketch.) and report 7 different adaptation scenarios. We also use

Office-Home [104], another benchmark that contains 65 classes, with 12 adaptation scenarios

constructed from 4 domains (i.e., , R: Real world, C: Clipar t, A: Art, P: Product).

Implementation details. We implement using Pytorch [139]. We follow [32] to use ResNet-34

[137] on DomainNet and VGG-16 [140] on Office-Home. We also provide ResNet-34 results

on Office-Home in order to fairly compare with [89] in supplementary. The networks are pre-

trained on ImageNet [141, 142]. We follow [32, 143] to replace the last linear layer with a

K-way cosine classifier (e.g., , K = 126 for DomainNet) and train it at a fixed temperature (0.05

in all our experiments). We initialize wf with a model first fine-tuned on DS , and initialize wg

with a model first fine-tuned on DS and then fine-tuned on DT . We do so to encourage the two
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Table 5.4: Ablation Study (three shots). (a)-(b): comparison of MIST and DECOTA and the
vanilla ensemble of two independently trained MIST; (c): comparison of Two-view MIST
(without co-training) and DECOTA; (d) comparison of MIST and S+T+pseudo-U without
MIXUP; (e) each model of DECOTA on the source domain test data, comparing to supervised
training on source (S), average of DomainNet. All accuracy in (%).

(a) Comparing MIST, Vanilla-Ensemble of two MIST (with different initialization), and DECOTA on
DomainNet

Method R to C R to P P to C C to S S to P R to S P to R Mean

MIST 78.1 75.2 76.7 68.3 72.6 71.5 79.8 74.6
Vanilla-Ensemble 79.7 75.0 77.2 68.4 72.1 70.8 79.7 74.7
DECOTA 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6

(b) Comparing MIST, Vanilla-Ensemble of two MIST (with different initialization), and DECOTA on
Office-Home

Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

MIST 54.7 81.2 64.0 69.4 51.7 58.8 69.1 47.6 70.6 65.3 60.8 73.8 63.9
Vanilla-Ensemble 56.1 81.8 63.4 72.9 54.1 55.1 74.2 49.5 72.1 67.4 55.2 75.6 64.7
DECOTA 59.9 83.9 67.7 77.3 57.7 60.7 78.0 54.9 76.0 74.3 63.2 78.4 69.3

(c) Comparing the decomposed tasks trained independently to using DECOTA

Method Task R to C R to P P to C C to S S to P R to S P to R Mean

Decomposed tasks
(without co-training)

wf 72.1 65.7 71.8 61.0 63.0 59.9 75.9 67.0
wg 76.3 72.2 70.3 63.7 69.4 66.9 76.1 70.7

Ensemble 77.3 72.0 75.1 65.7 69.3 66.1 78.7 72.0

DECOTA

wf 80.1 74.6 78.6 68.4 72.5 71.2 81.1 75.2
wg 80.0 74.5 78.4 68.3 72.2 71.3 80.6 75.0

Ensemble 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6

(d) Comparing MIST and the S+T+pseudo-U with no MIXUP on DomainNet

Method R to C R to P P to C C to S S to P R to S P to R Mean

S+T+pseudo-U 70.0 67.2 68.3 57.2 61.1 58.7 71.2 65.6
MIST 78.1 75.2 76.7 68.3 72.6 71.5 79.8 74.6

(e) Accuracy on source domain

wf wg DECOTA S

65.3 98.2 93.5 98.8
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Figure 5.6: Number (dashed, left) and accuracy (solid, right) of pseudo-labels on DomainNet
three-shot setting, Real to Clipart.

models to be different at the beginning. At each iteration, we sample three mini-batches S ⊂ DS ,

T ⊂ DT , and U ⊂ DU of equal sizes B = 24 (cf. Section 5.3.1.1). We set the confidence

threshold τ = 0.5, and beta distribution coefficient α = 1.0. We use SGD with momentum

of 0.9 and an initial learning rate of 0.001, following [32]. We train for 50K/10K iterations on

DomainNet/Office-Home. We note that, DECOTA does not increase the training time since at

each iteration, it only updates and learns from the pseudo-labels of the current mini-batch of

unlabeled data, not the entire unlabeled data.

Baselines. We compare to four state-of-the-art SSDA approaches, MME [32], UODA [90],

APE [89], and ELP [138]. We also compare to S+T, a model trained with DS and DT , without

using DU . Additionally, we compare to DANN [10] (domain adversarial learning) and ENT [96]

(entropy minimization), both of which are important prior work on UDA. We modify them such

that DS and DT are used jointly to train the classifier, following [32]. We denote by S the model

trained only with the source data DS .

Variants of our approach. We consider variants of our approach for extensive ablation studies.
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Figure 5.7: DECOTA’s sensitivity to pseudo-label threshold τ on DomainNet three-shot setting,
Real to Clipart.

We first introduce a model we called MIXUP Self-Training (MIST). MIST is trained as follows

w ← w − η∇L(w, S) +∇L(w, T ) (5.7)

+∇L(w, Ũ (w)
S ) +∇L(w, Ũ (w)

T )),

where Ũ (w)
S and Ũ (w)

T are pseudo-labels obtained from w, followed by MIXUP with S and T ,

respectively. MIST basically lumps all the pseudo and hard labeled samples together during

training, and is intended for comparing with the effect of co-training. S+T+pseudo-U is the

model trained with self-training, but without MIXUP. Two-view MIST is the direct ensemble

of independently trained models, one for each view, using MIST (cf. Section 5.3.2). Vanilla-

Ensemble is the ensemble model by combining two MIST trained on DS , DT , and DU but with

different initialization. For all the variants that train only one model, we initialize it with a pre-

trained model fine-tuned on DS and then fine-tuned on DT . Otherwise, we initialize the two

models in the same way as DECOTA. We note that, for any methods that involve two models, we
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Figure 5.8: DECOTA’s sensitivity to the Beta distribution coefficient α on DomainNet three-shot
setting, Real to Clipart.

perform ensemble on their output probability.

Main results. We summarize the comparison with baselines in Table 5.2 and Table 5.3. We

mainly report the three-shot results and leave the one-shot results in the supplementary material.

DECOTA outperforms other methods by a large margin on DomainNet, and outperforms all

methods on Office-Home (mean). The smaller gain on Office-Home may be due to its smaller

data size and limited scenes. DomainNet is larger and more diverse; the significant improvement

on it is a stronger indicator of the effectiveness of our algorithm.

We further provide detailed analysis on DECOTA. We mainly report the DomainNet three-

shot results. Other detailed results can be found in the supplementary material.

Task decomposition. We first compare DECOTA to MIST. As shown in Table 5.4 (a)-(b),

DECOTA outperforms MIST by 1% on DomainNet and 5% on Office-Home on the three-shot

setup. Fig. 5.4 (c) further shows the number of pseudo-labels involved in model training (those

with confidence larger than τ = 0.5). We see that DECOTA always generates more pseudo-
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Figure 5.9: t-SNE visualization of pseudo-labels assigned by wf and wg in DECOTA (see text
for details).

label data with a higher accuracy than MIST (also in Fig. 5.4 (b)), justifying our claim that the

decomposition helps keep DS’s and DT ’s specialties, producing high confident predictions on

more unlabeled data as a result.

Co-training. We compare DECOTA to two-view MIST. Both methods decompose the data

into a SSL and a UDA task. The difference is in how the pseudo-label set was generated (cf.

Eq. (5.1)): Two-view MIST constructs each set independently (cf. Section 5.3.2). DECOTA

outperforms two-view MIST by a margin, not only on ensemble, but also on each view alone,

justifying the effectiveness of two models exchanging their specialties to benefit each other. As

in Table 5.4 (c), each model of DECOTA outperforms MIST.

MIXUP. We examine the importance of MIXUP. Specifically, we compare MIST and S+T+pseudo-

U. The second model trains in the same way as MIST, except that it does not apply MIXUP. On

DomainNet (3-shot), MIST outperforms S+T+pseudo-U by 9% on average. We attribute this

difference to the denoising effect by MIXUP: MIXUP is performed after the pseudo-label set is
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defined, so it does not directly affect the number of pseudo-labels, but the quality. We further

calculate the number of correctly assigned pseudo-labels along training, as shown in Fig. 5.4

(d). With MIXUP, the correct pseudo-label pool boosts consistently. In contrast, S+T+pseudo-

U reinforces itself with wrongly assigned pseudo-labels; the percentage thus remains constantly

low. Comparison results are shown in Table 5.4 (d).

Comparison to vanilla model ensemble. Since DECOTA combines wf and wg in making

predictions, for a fair comparison we train two MIST models (both use DS + DT + DU ),

each with different initialization, and perform model ensemble. As shown in Table 5.4 (a)-(b),

DECOTA outperforms this vanilla model ensemble, especially on Office-Home, suggesting that

our improvement does not simply come from model ensemble, but from co-training.

On the “two-classifier-convergence” problem [144]. DECOTA is based on co-training and thus

does not suffer the problem. This is shown in Table 5.4 (a, b): MIST and Vanilla-Ensemble are

based on self-training and DECOTA outperformed them. Even at the end of training when two

classifiers have similar accuracy (see Table 5.4 (c)), combining them still boosts the accuracy:

i.e., , they make different predictions.

Results on the source domain. While wf and wg have similar accuracy on DU , the fact that

wf does not learn from DS suggest their difference in classifying source domain data. We verify

this in Table 5.4 (e), where we apply each model individually on a hold-out set from the source

domain (provided by DomainNet). We see that wg clearly dominates wf . Its accuracy is even

on a par with a model trained only on DS , showing one advantage of DECOTA— the model can

keep its discriminative ability on the source domain.

Main results on the one-shot setting. We report the comparison with baselines in the one-shot

setting on DomainNet in Table 5.5 and Office-Home in Table 5.6. DECOTA outperforms the
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Table 5.5: Accuracy on DomainNet (%) for the one-shot setting with four domains, using ResNet-
34.

Method R to C R to P P to C C to S S to P R to S P to R Mean

S+T 58.1 61.8 57.7 51.5 55.4 49.1 73.1 58.1
DANN [10] 61.2 62.3 56.4 54.0 57.9 55.9 65.6 59.0
ENT [32] 60.0 60.2 54.9 48.3 55.8 49.4 74.4 57.6
MME [32] 69.5 68.1 64.4 56.7 62.0 59.2 76.9 65.3
UODA [90] 72.7 70.3 69.8 60.5 66.4 62.7 77.3 68.5
APE [89] 70.4 70.8 72.9 56.7 64.5 63.0 76.6 67.6
ELP [138] 72.8 70.8 72.0 59.6 66.7 63.3 77.8 69.0
DECOTA 79.1 74.9 76.9 65.1 72.0 69.7 79.6 73.9

Table 5.6: Accuracy on Office-Home (%) for the one-shot setting with four domains, using VGG-
16.

Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

S+T 39.5 75.3 61.2 71.6 37.0 52.0 63.6 37.5 69.5 64.5 51.4 65.9 57.4
DANN [10] 52.0 75.7 62.7 72.7 45.9 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0
ENT [32] 23.7 77.5 64.0 74.6 21.3 44.6 66.0 22.4 70.6 62.1 25.1 67.7 51.6
MME [32] 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7
UODA [90] 49.6 79.8 66.1 75.4 45.5 58.8 72.5 43.3 73.3 70.5 59.3 72.1 63.9
ELP [138] 49.2 79.7 65.5 75.3 46.7 56.3 69.0 46.1 72.4 68.2 67.4 71.6 63.1
DECOTA 47.2 80.3 64.6 75.5 47.2 56.6 71.1 42.5 73.1 71.0 57.8 72.9 63.3

state-of-the-art methods by 4.9% on DomainNet (ResNet-34), while performs slightly worse

than [90] by 0.6% on Office-Home (VGG-16). Nevertheless, DECOTA attains the highest

accuracy on 5 adaptation scenarios of Office-Home in the one-shot setting.

Office-Home results on other backbones We report the comparison with baselines on Office-

Home using a ResNet-34 backbone in Table 5.7, following [89]3. DECOTA attains the state-of-

the-art result.

Results on Office-31 We report the comparison with available baseline results on Office-31 [146]

in Table 5.8, using ResNet-34 backbone. Following [32], two adaptation scenarios are compared

3Most existing papers only reported Office-Home results using VGG-16. We followed [89] to further report
ResNet-34. Some algorithms reported in Table 5.3 are missing in Table 5.7 since they do not release code.
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Table 5.7: Accuracy on Office-Home (%) for the three-shot setting with four domains, using
ResNet-34.

Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

S+T 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2
DANN [10] 57.3 75.5 65.2 69.2 51.8 56.6 68.3 54.7 73.8 67.1 55.1 67.5 63.5
ENT [32] 62.6 85.7 70.2 79.9 60.5 63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
MME [32] 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
APE [89] 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
DECOTA 70.4 87.7 74.0 82.1 68.0 69.9 81.8 64.0 80.5 79.0 68.0 83.2 75.7

Table 5.8: SSDA results on Office-31, on two scenarios (following [32]).

Method
Webcam (W) to Amazon (A) DSLR (D) to Amazon (A)

1-shot 3-shot 1-shot 3-shot

S+T 69.2 73.2 68.2 73.3
DANN [10] 69.3 75.4 70.4 74.6
ENT [32] 69.1 75.4 72.1 75.1
MME [32] 73.1 76.3 73.6 77.6
Ours 76.0 76.8 74.2 78.3

(Webcam to Amazon, DSLR to Amazon). Our approach DECOTA consistently outperforms the

compared methods.

Larger-shot results We provide 10,20,50-shot SSDA results on DomainNet in Table 5.9. We

randomly select and add additional samples per class from the target domain to the target labeled

pool. As a semi-supervised setting, we compared with both domain adaptation (DA) and semi-

supervised learning (SSL) baselines [145]. The implementation details are the same as those of

1,3-shot. DECOTA improves along with more shots and can outperform baselines.

Numbers and accuracy of pseudo-labels We showed the number of total and correct pseudo-

labels by the two classifiers of DECOTA along the training iterations in Fig. 5.4(c). The analysis

is on DomainNet three-shot setting, from Real to Clipart. Concretely, for every 1K iterations (i.e.,

, 24K unlabeled data), we accumulated the number of unlabeled data that have confident (with
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Table 5.9: Results on DomainNet at 10, 20, 50-shot, using ResNet-34. We tune hyper-parameters
for SSL methods similarly to DA methods.

R to C R to P P to C C to S S to P R to S P to R Mean

n-shot→ 10 20 50 10 20 50 10 20 50 10 20 50 10 20 50 10 20 50 10 20 50 10 20 50

S+T 69.1 72.4 77.5 67.3 70.2 73.4 68.2 72.5 77.7 62.9 67.3 71.8 64.8 67.9 72.6 61.3 65.5 70.2 78.0 79.3 82.2 67.4 70.7 75.1
DANN [10] 66.2 68.0 71.1 65.1 67.1 69.0 62.4 64.5 68.2 60.0 62.4 66.8 61.3 63.8 67.6 61.4 63.2 66.9 71.6 74.7 78.1 64.0 66.2 69.7
ENT [32] 77.9 80.0 83.0 72.3 74.9 77.7 77.5 79.1 82.3 66.3 70.1 75.0 66.3 71.0 75.7 63.9 68.3 74.6 81.2 82.9 84.5 72.2 75.2 79.0
MME [32] 77.0 78.5 80.9 71.9 74.0 76.4 75.6 76.9 80.4 65.9 68.6 72.5 68.6 70.9 74.4 66.7 69.7 72.7 80.8 82.2 83.3 72.4 74.4 77.2

Mixup [124] 73.4 79.5 83.1 68.3 72.2 75.4 75.0 79.5 83.1 63.7 69.4 75.0 68.5 72.4 76.2 62.9 69.9 75.0 78.8 82.3 84.7 70.1 75.0 78.9
FixMatch [145] 76.6 79.5 82.3 73.0 74.7 76.4 75.8 79.4 83.3 70.1 73.1 76.9 71.3 73.3 77.0 68.7 71.6 74.2 79.7 81.9 84.2 73.6 76.2 79.2

DECOTA 81.8 82.6 85.0 75.1 76.6 78.7 81.3 81.7 84.5 73.7 75.3 78.0 73.4 75.7 77.7 73.7 75.5 77.8 80.7 80.1 83.9 77.1 78.2 80.8

Table 5.10: Comparison between DECOTA and MIST: test accuracy on DomainNet and Office-
Home dataset (%).

(a) DomainNet

Setting Method R to C R to P P to C C to S S to P R to S P to R Mean

1-shot
MIST 74.8 73.6 74.5 65.0 72.0 67.0 77.6 72.1

DECOTA 79.1 74.9 76.9 65.1 72.0 69.7 79.6 73.9

3-shot
MIST 78.1 75.2 76.7 68.3 72.6 71.5 79.8 74.6

DECOTA 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6

(b) Office-Home

Setting Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

1-shot
MIST 42.7 77.5 62.9 73.1 39.4 54.8 67.1 40.0 66.9 67.9 56.8 69.4 59.9

DECOTA 47.2 80.3 64.6 75.5 47.2 56.6 71.1 42.5 73.1 71.0 57.8 72.9 63.3

3-shot
MIST 54.7 81.2 64.0 69.4 51.7 58.8 69.1 47.6 70.6 65.3 60.8 73.8 63.9

DECOTA 59.9 83.9 67.7 77.3 57.7 60.7 78.0 54.9 76.0 74.3 63.2 78.4 69.3

confidence > τ = 0.5) and correct predictions by at least one classifier. We further plot them

independently for each classifier (i.e., , wf and wg) in Fig. 5.6. The accuracy of pseudo-labels

remains stable (i.e., , the number of confident and correct predictions divided by the number of

confident predictions) but the number increases along training.

Task decomposition We report the comparison of DECOTA and MIST on DomainNet and

Office-Home in all the adaptation scenarios. As shown in Table 5.10, DECOTA outperform

MIST on all the setting by 1 ∼ 2% on DomainNet and 3 ∼ 5% on Office-Home, which

further confirms the effectiveness of task decomposition — explicitly considering the discrepancy

between the two sources of supervision — in DECOTA.
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Table 5.11: Comparison between DECOTA and one-direction teaching: accuracy on
DomainNet (%) three-shot setting.

Method R to C R to P P to C C to S S to P R to S P to R Mean

wf teaching 73.8 67.2 73.7 63.1 65.9 61.7 78.2 69.1
wg teaching 77.5 74.5 74.2 64.8 71.6 69.0 79.0 72.9
DECOTA 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6

Table 5.12: Comparison on the source domain test data of DomainNet (%). Here we compare the
two-task models of DECOTA in the three-shot setting to the source-only model (S).

Method R to C R to P P to C C to S S to P R to S P to R Mean

wf 55.2 68.2 43.8 59.5 50.8 56.9 61.0 56.3
wg 97.2 97.1 99.3 98.7 98.9 96.8 99.4 98.2
S 98.1 98.2 99.5 98.9 99.2 98.2 99.6 98.8

One-direction training We further consider another variant of DECOTA named one-direction

teaching, in which only one task teaches the other. Instead of co-training, we use either wf or wg

to generate pseudo-labels for both tasks4, while keeping the other setups the same as DECOTA.

This study is designed to measure the complementary specialties of the two tasks. As shown in

Table 5.11, the performance drops notably by using one-direction teaching. The results suggest

that the two tasks provide unique expertise and complement each other, instead of one dominating

the other.

Results on the source domain We report the results on the source domain test set using wf

and wg of DECOTA on DomainNet (three-shot) in Table 5.12. While wf and wg have similar

accuracy on the target domain test set, the fact that wf does not learn from DS suggests their

difference in classifying source domain data. Table 5.12 confirms this: we see that wg clearly

dominates wf . Its accuracy is even on a par with a model trained only on DS , showing one

advantage of DECOTA— the model can keep its discriminative ability on the source domain.

4That is, one-direction teaching constructs both pseudo-label sets, i.e., , U (f) and U (g) in Equation 5.1 of the
main text, by the same model (we hence have two versions, wf teaching or wg teaching).
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Sensitivity to the confidence threshold τ We investigate DECOTA’s sensitivity to the confidence

threshold τ for assigning pseudo-labels (cf. Eq. (5.1) and Eq. (5.4)). As shown in Fig. 5.7, the

variance in accuracy is small when τ ≤ 0.7. The accuracy drops notably when τ ≥ 0.9. We

surmise that it is due to too few pseudo-labeled data are picked under a high threshold.

Analysis on the Beta distribution coefficient α Fig. 5.8 shows DECOTA’s sensitivity to the

MIXUP hyper-parameter α in Eq. (5.2): α is the coefficient of the Beta distribution, which

influences the sampled value of λ, an indicator of the “propotion” in the MIXUP algorithm. We

report DECOTA’s result on DomainNet three-shot setting, adapting from Real to Clipart. The

best performance is achieved by α = 1.0, equivalent to a uniform distribution of λ ∈ [0, 1]. This

result is consistent with our hypothesis that MIXUP connects the source and target domains with

interpolated feature spaces in-between.

Training time DECOTA does not increase the training time much for two reasons. First, at each

iteration (i.e., , mini-batch), it only updates and learns from the pseudo-labels of the current

mini-batch of unlabeled data, not the entire unlabeled data. Second, assigning pseudo-labels only

requires a forward pass of the mini-batch, just like most domain adaptation algorithms normally

do to compute training losses. The only difference is that DECOTA trains two classifiers and

needs to perform the forward pass of unlabeled data twice.

t-SNE visualizations on DECOTA tasks We visualize DS , DT , and the DU pseudo-labels by

each task of DECOTA in Fig. 5.9. For clarity, we select two classes for illustration. The

colors blue and red represent the two classes; the shapes circle and cross represent data from

DT (labeled target data) and DS (labeled source data), respectively. The colors light blue and

light red represent the pseudo-labels of each class on DU , in which the shape circle indicates that

the pseudo-labels are provided by wf (learned with DT ) and the shape cross indicates that the
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pseudo-labels are provided by wg (learned with DS). The visualization is based on DomainNet

three-shot setting, from Real to Clipart, trained for 10, 000 iterations. We see that wf tends

to assign pseudo-labels to unlabeled data whose features are closer to DT ; wg tends to assign

pseudo-labels to unlabeled data whose features are closer to DS . Such a behavior is aligned with

the seminal work of semi-supervised learning by [147].

5.5 Conclusion

We introduce DECOTA, a simple yet effective approach for semi-supervised domain adaptation

(SSDA). Our key contribution is the novel insight that the two sources of supervisions (i.e., ,

the labeled target and labeled source data) are inherent different and should not be combined

directly. DECOTA thus explicitly decomposes SSDA into two tasks (i.e., , views), a semi-

supervised learning task and an unsupervised domain adaptation task, in which each supervision

can be better leveraged. To encourage knowledge sharing and integration between the two tasks,

we employ co-training, a well-established technique that allows for distinct views to learn from

each other. We provided empirical evidence that the two tasks satisfy the theoretical condition

of co-training, which makes DECOTA well founded, simple (without adversarial learning), and

superior in performance.
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Chapter 6: Online Adaptation for Cross-domain Streaming Data

In the context of online privacy, many methods propose complex privacy and security

preserving measures to protect sensitive data. In this chapter we argue that: not storing any

sensitive data is the best form of security. Thus we propose an online framework that “burns

after reading”, i.e. each online sample is immediately deleted after it is processed. Meanwhile,

we tackle the inevitable distribution shift between the labeled public data and unlabeled private

data as a problem of unsupervised domain adaptation. Specifically, we propose a novel algorithm

that aims at the most fundamental challenge of the online adaptation setting–the lack of diverse

source-target data pairs. Therefore, we design a Cross-Domain Bootstrapping approach, called

CRODOBO, to increase the combined diversity across domains. Further, to fully exploit the

valuable discrepancies among the diverse combinations, we employ the training strategy of multiple

learners with co-supervision. CRODOBO achieves state-of-the-art online performance on four

domain adaptation benchmarks.

6.1 Introduction

With the onslaught of the pandemic, the internet has become an even more ubiquitous

presence in all of our lives. Living in an enormous web connecting us to each other, we now face

a new reality: it is very hard to escape one’s past on the Internet since every photo, status update,
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Figure 6.1: The data-flow of the proposed Burn After Reading framework at one iteration. The
iteration contains a training and a test phase. In training phase, the model takes labeled data from
the public source domain, and the current unlabeled target data from the private target domain.
The model updates based on the adaptation loss and then moves to test phase. After prediction,
the current target data is permanently deleted from the target domain. Each target data is (1)
trained (2) tested (3) deleted. Best viewed in color.

and tweet lives forever in the cloud [19, 148]. Moreover, recommender systems that actively

explore the user data [149, 150] for data-driven algorithms have brought controversy that the

right to privacy is more important than the convenience. Fortunately, we have the Right to Be

Forgotten (RTBF), which gives individuals the right to ask organizations to delete their personal

data. Recently, many solutions [151, 152] have been proposed that try to preserve privacy in

the context of deep learning, mostly focused on the Federated Learning [153, 154]. Federated

Learning allows asynchronous update of multiple nodes, in which sensitive data is stored only

on a few specific nodes. However, recent studies [155, 156, 157] show that private training data

can be leaked through the gradients sharing mechanism deployed in distributed models. In this

chapter, we argue that: not storing any sensitive data is the best form of security.

The best form of security requires us to delete the user data after use, which necessitates

an online framework. However, existing online learning frameworks [158, 159] cannot meet

this need without addressing the distribution shift from public data, i.e. source domain, to the
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private user data, i.e. target domain. Therefore, in this chapter we propose an online domain

adaptation framework in which the target domain streaming data is deleted immediately after

adapted. We name the framework “Burn After Reading”, as illustrated in Figure 6.1. The

task that is seemingly an extended setting of unsupervised domain adaptation (UDA), however,

cannot simply be solved by the online implementation of the offline UDA methods. We explain

the reason with a comprehensive analysis of the existing domain adaptation methods. To begin

with, existing offline UDA methods rely heavily on the rich combinations of cross-domain mini-

batches that gradually adjust the model for adaptation [8, 15, 16, 34, 35, 36, 112, 160], which the

online streaming setting cannot afford to provide. In particular, many domain adversarial-based

methods [9, 11, 12, 161] depend on a slowly annealing adversarial mechanism that requires

discriminating large number of source-target pairs to achieve the adaptation. Recently, state-

of-the-art offline methods [37, 162, 163] show promising results by exploiting target-oriented

clustering, which requires an offline access to the entire target domain. Therefore, the online

UDA task needs new solutions to succeed at scarcity of the data from target domain.

We aim straight at the most fundamental challenge of the online task—the lack of diverse

cross-domain data pairs—and propose a novel algorithm based on cross-domain bootstrapping

for online domain adaptation. At each online query, we increase the data diversity across domains

by bootstrapping the source domain to form diverse combinations with the current target query.

To fully exploit the valuable discrepancies among the diverse combinations, we train a set of

independent learners to preserve the differences. Inspired by [164], we later integrate the knowledge

of learners by exchanging their predicted pseudo-labels on the current target query to co-supervise

the learning on the target domain, but without sharing the weights to maintain the learners’

divergence. We obtain more accurate prediction on the current target query by an average
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ensemble of the diverse expertise of all the learners. We call it CRODOBO: Cross-Domain

Bootstrapping for online domain adaptation, an overview of CRODOBO pipeline is shown in

Figure 6.3.

We conduct extensive evaluations on our method, including the classic UDA benchmark

VisDA-C [165], a practical medical imaging benchmark COVID-DA [166] and the large-scale

distribution shift benchmark WILDS [167] subset Camelyon. Moreover, we propose a new

adaptation scenario in this chapter from Fashion-MNIST [1] to DeepFashion [168]. On all the

benchmarks, our method outperforms the state-of-the-art UDA methods that are eligible for the

online setting. Further, without the reuse of any target sample, our method achieves comparable

performance to the offline setting. We summarize the contributions as follows.

• To our best knowledge, we are the first to propose an online domain adaptation framework

to implement the right to be forgotten.

• We study the fundamental drawback of the online setting compared to offline–the lack of

data diversity, and designed a novel online domain adaptation method that improves, and

exploits the data diversity.

• Our proposed algorithm achieves new state-of-the-art online results on four challenging

benchmarks.

• Although designed for online setting, our method yields comparable performance to the

offline setting, suggesting that it is a superior choice even just for time efficiency.
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6.2 Related Work

The Right to Be Forgotten [18, 19, 20, 21, 22], also referred to as right to vanish, right to

erasure and courtesy vanishing, is the right given to each individual to ask organizations to

delete their personal data. RTBF is part of the General Data Protection Regulation (GDPR). As

a legal document, the GDPR outlines the specific circumstances under which the right applies

in Article 17 GDPR 1. The first item is: The personal data is no longer necessary for the

purpose an organization originally collected or processed it. Yet, the exercise of this right

has become a thorny issue in applications. Politou et al. [24] discussed that the technical

challenges of aligning modern systems and processes with the GDPR provisions are numerous

and in most cases insurmountable. In [23] they specifically examined the implications of erasure

requests on current backup systems and highlight a number of challenges pertained to the widely

known backup standards, data retention policies, backup mediums, search services, and ERP

systems [169]. In the context of machine learning, Villaronga et al. [18] addressed that the core

issue of the AI and Right to Be Forgotten problem is the dearth of interdisciplinary scholarship

supporting privacy law and regulation. Graves et al. [170] proposed three defense mechanisms

against a general threat model to enable deep neural networks to forget sensitive data while

maintaining model efficacy. In this paper, we focus on how to obtain model efficacy while erasing

data online to protect the user’s right to be forgotten.

Online Adaptation to Shifting Domains was first investigated in Signal Processing [171] and

later studied in Natural Language Processing [172] and Vision tasks [173, 174, 175, 176, 177,

178, 179, 180]. Jain et al. [174] assumed the original classifier output a continuous number

1Article 17 GDPR - Right to be forgotten https://gdpr.eu/article-17-right-to-be-forgotten/
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of which a threshold gives the class, and reclassify points near the original boundary using

a Gaussian process regression scheme. The procedure is presented as a Viola-Jones cascade

of classifiers. Moon et al. [179] proposed a four-stage method by assuming a transformation

matrix between the source subspace and the mean-target subspace embedded in the Grassmann

manifold. The method is designed for handcrafted features. In the context of deep neural network,

we argue that one transformation matrix might not be sufficient to describe the correlation between

source and target deep representations [181]. Taufique et al. [182] approached the task by

selectively mixing the online target samples with those that were saved in a buffer. Without a

further discussion of which samples can be saved in the buffer, we find this method limited in the

exercise of the right to be forgotten.

Active Domain Adaptation [183, 184, 185, 186, 187, 188, 189, 190] also benefits the online

learning of shifting domains. It bears a different setting: the target domain can actively acquire

labeled data online. Rai et al. [183] presented an algorithm that harnessed the source domain data

to learn a initializer hypothesis, which is later used for active learning on the target domain. Ma

et al. [185] allowed a small budget of target data for the categories that appeared only in target

domain and presented an algorithm that jointly trains two sub-networks of different learning

strategies. Chen et al. [187] proposed an algorithm that can adaptively deal with interleaving

spans of inputs from different domains by a tight trade-off that depends on the duration and

dimensionality of the hidden domains.

Test-Time Domain Adaptation [191, 192, 193] is another related task. Similar to the “burn after

reading”, test-time DA also aims at a fast adaptation to the target samples. Differently, test-time

DA is motivated by the unavailability of the source domain [192], which is a variant of source-free

domain adaptation [162]. Thus, it is based on a continual setting. Meanwhile, test-time domain
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adaptation does not require target samples being deleted after training, although Wang et al. [192]

and Sun et al. [193] both discussed the extension to an online setting in the experiments. Without

the access to source samples, Varsavsky et al. [191] leverages a combination of adversarial

learning and consistency under augmentation. Sun et al. [193] exploits the self-supervision

with auxiliary rotation prediction. In this paper, we compare with test-time DA with a devised

continual version of our method in the supplementary.

Ensemble Methods for Online Learning [194, 195, 196] such as bagging and boosting have

shown advantages handling concept drift [197] and class imbalance, which are common challenges

in the online learning task. Barros et al. [195] proposed to modify Oza and Russell’s Online

Boosting [198] based on heuristic modifications. They investigated the effects of weakening the

requirements to allow the experts to vote and changing the concept drift detection method, and

proposed an improved approach of boosting-like online learning ensemble. MinKu et al. [196]

addressed the importance of ensemble diversity to improve accuracy in changing environments

and proposed the measurement of ensemble diversity. Han et al. [199] proposed a regularization

for online tracking with a subset of branches in the neural network that are randomly selected.

Although online learning and online domain adaptation share similar streaming form of data

input, we argue that the two tasks face fundamentally different challenges. For online learning,

the challenge is to select the most trustworthy supervisions from the streaming data by differentiating

the informative vs. misleading data points, also known as the stability-plasticity dilemma [200].

For online domain adaptation, the streaming data of target domain naturally comes unlabeled,

and the challenge is the scarcity of supervision. Thus the goal is how to maximize the utilization

of the supervision from a different but related labeled source domain.
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6.3 Approach

In this section, we introduce the proposed method for “Burn After Reading” framework,

in which the samples from the public source domain are fully accessible, while only one/a batch

of the target samples is available at each iteration. The model “reads” the current target data,

updates, then predicts, after which the target data is deleted permanently from the target domain.

In Sec 6.3.1 we describe the difference between online and the offline setting. In Sec 6.3.2,

we first introduce the cross-domain bootstrapping strategy and the theoretical insights behind.

Then we describe the details of the co-supervision. The input includes the labeled data from a

public source domain with labels, and a private target domain without labels. During training, the

samples from the public source domain are fully accessible, while only one/a batch of the target

samples is available at each iteration. The model “reads” the current target data, updates, then

predicts, after which the target data is deleted permanently from the target domain. The process

is repeated along the target streaming data until it is finished.

6.3.1 Offline vs. Online

Given the labeled source data DS = {(si, yi)}NS
i=1 drawn from the source distribution

ps(x, y), and the unlabeled target data DT = {ti}NT
i=1 drawn from the target distribution pt(x, y),

where NS and NT represent the number of source and target samples, both offline and online

adaptation aim at learning a classifier that make accurate predictions onDT . The offline adaptation

assumes access to every data point in both DS and DT , synchronous [10, 15, 34, 35] or domain-

wise asynchronous [162]. The inference on DT happens after the model is trained on both DS

and DT entirely. Differently for online adaptation, we assume the access to the entire DS , while
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the data from DT arrives in a streaming data of random mini-batches {Tj = {tb}Bb=1}
MT
j=1. B is

the batch size and MT is the total number of target batches. Each mini-batch T is first adapted,

tested and then erased from DT without replacement, as shown in Figure 6.1 and 6.3. We refer

each online batch of target data as a target query.

The fundamental challenge of our online task is the limited access to the training data at

each inference query, compared to the offline task. For generality, we can assume there are 103

source and target batches, respectively. In an offline setting, the model is tested after training on

at most 106 combinations of source-target data pairs, while in an online setting, an one-stream

model can see at most 103 + 500 combinations at the 500-th query. Undoubtedly, the online

adaptation faces a significantly compromised data diversity. The training process of our task

suffers from two major drawbacks: (I) The model is prone to underfitting on target domain due

to the lack of seen target samples, especially at the early stage of training. (II) Due to the deletion

of previous data, the model lacks the diverse combinations of source-target data pairs that enable

the deep network to find the optimal cross-domain classifier [201].

The goal of the proposed method is to minimize the two drawbacks of the online setting.

We first propose to increase the data diversity by cross-domain bootstrapping, and we preserve the

discrepancy in independently trained learners. Then we fully exploit the valuable discrepancies

of these learners by exchanging their expertise on the current target query to co-supervise each

other.
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Figure 6.2: Illustration of computing co-supervision loss (ℓz→k
t in Eq. 6.4), taking ℓ→1

t for
example. The co-supervision for learner 1 is from the other K-1 learners. The current target
data is repeatedly paired with each bootstrapped source data to improve data diversity. Each
learner takes a unique data combination and generates pseudo-label ŷk of the current target data.
Then ℓ→1

t receives co-supervision averagely from the pseudo-labels {ŷ2, ŷ3, ..., ŷK}.

6.3.2 Proposed Method

6.3.2.1 Cross-domain Bootstrapping for Data Diversity

The diversity of cross-domain data pairs is crucial for most prior offline methods [8, 10,

35] to succeed. Since the target samples cannot be reused in the online setting, we propose to

increase the data diversity across domains by bootstrapping the source domain to form diverse

combinations with the current target domain query, as shown in Figure 6.2. Specifically, for

each target query Tj , we randomly select a set of K mini-batches {Skj = {(sb)Bb=1}}Kk=1 of the

same size from the source domain with replacement. Correspondingly, we define a set of K base

learners {wk}Kk=1. At each iteration, a learner wk makes prediction for query Tj after trained on
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{Tj, Skj }, and updates via

wk ← wk − η
(
∇L(wk, {Tj, Skj })

)
,

pkj = p
(
c|Tj;wk

)
, (6.1)

where η is the learning rate, c is the number of classes, pkj is the predicted probability by the

k-th learner, and L(, ) is the objective function. The predicted class for Tj is the average of K

predictions of the base learners. We justify our design choice from the perspective of uncertainty

estimation in the following discussion.

Theoretical Insights As mentioned in Section 6.3.1, we aim at the best estimation of the current

target query. We first consider a single learner situation. At the j-th query, the learner faces a

fundamental trade-off: by minimizing the uncertainty of the j-th query, the learner can attain

the best current estimation. Yet the risk of fully exploring the uncertainty is to spoil the existing

knowledge from the previous j-1 target domain queries. However, if we don’t treat the uncertainty,

the single observation on j-th query is less informative for current query estimation. Confronting

the dilemma, we should not ignore that the uncertainty captures the variability of a learner’s

posterior belief which can be resolved through statistical analysis of the appropriate data [202].

This gives us hope for a more accurate model via uncertainty estimation. One popular suggestion

for resolving uncertainty is to use Dropout [113, 203, 204] sampling, where individual neurons

are independently set to zero with a probability. As a sampling method on the neurons, Dropout

works in a similar form of bagging [205, 206] of multiple decision trees. It might equally reduce

the overall noise of the network regardless of domain shift but it does not address the problem of

our task, which is the lack of diverse cross-domain combinations.
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Alternatively, we employ another pragmatic approach Bootstrap for uncertainty estimation

on the target domain that offsets the source dominance. With the scarcity of target samples,

we propose to bootstrap source-target data pairs for a more balanced cross-domain simulation.

At high-level, the bootstrap simulates multiple realizations of a specific target query given the

diversity of source samples. Specifically, the bootstrapped source approximate a distribution

over the current query Tj via the bootstrap.

The bootstrapping brings multi-view observations on a single target query by two means.

First, given K sampling subsets from DS , let F be the ideal estimate of Tj , F̂ be the practical

estimate of the dataset, and F̂∗ be the estimate from a bootstrapped source paired with the target

query, F̂∗ = K−1
∑K

k=1 F̂∗
k will be the average of the multi-view K estimates. Second, besides

the learnable parameters, the Batch-Normalization layers of K learners generate result in a set of

different means and variances {µk, σk}Kk=1 that serve as K different initializations that affects the

learning of F̂∗.

6.3.2.2 Exploit the Discrepancies via Co-supervision

After the independent learners have preserved the valuable discrepancies of cross-domain

pairs, the question now is how to fully exploit the discrepancies to improve the online predictions

on the target queries. On one hand, we want to integrate the learners’ expertise into one better

prediction on the current target query, on the other we hope to maintain their differences. Inspired

by [164], we train theK learners jointly by exchanging their knowledge on the target domain as a

form of co-supervision. Specifically, the K learners are trained independently with bootstrapped

source supervision, but they exchange the pseudo-labels generated for target queries. We followed
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Figure 6.3: The full pipeline of the proposed CRODOBO K=2 method at j-th iteration. Only one
target query j is currently available from target domain in this iteration. We bootstrap the source
domain and combine with the current j-th query. The learners wu (k=1) and wv (k=2) exchange
the generated pseudo-labels ŷuj and ŷvj as co-supervision. Each learner is updated by a supervised
loss ℓs on source data, a self-supervised loss ℓself on the target data and a co-supervised loss ℓt.
The test result is recorded by averaging the predictions of both learners. Once tested, query j is
immediately deleted.

the FixMatch [145] to compute pseudo-labels on the target domain. We first consider K=2 for

simplicity, we denote the learners as wu for k = 1 and wv for k = 2, respectively.

Given the current target query Tj , the loss function L consists a supervised loss term ℓs

from the source domain with the bootstrapped samples, and a self-supervised loss term ℓt from

the target domain with pseudo-labels ŷb from the peer learner, as illustrated in Figure 6.3. We

denote the cross-entropy between two probability distributions asH(; ). Thus, the co-supervision

objective ℓt is obtained via:

ℓv→u
t = B−1

B∑
b=1

⊮ (pvb ≥ τ)H
(
ŷvb ; p(c|t̃b;wu)

)
,

ℓu→v
t = B−1

B∑
b=1

⊮ (pub ≥ τ)H
(
ŷub ; p(c|t̃b;wv)

)
, (6.2)
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Algorithm 3: The CRODOBOalgorithm
Input : Number of learners K, learners {wk}Kk=1, learning rate η, number of target

queries NT , confidence threshold τ , batch size B, transform F , data DS , DT ,
number of class c;

for j ← 1 to NT do
Given Tj = {tb}Bb=1 from DT , {t̃b} = {F (tb)},
Sample Skj from DS , repeat K times;
for k ← 1 to K do

Update wk ← wk − η∇ℓks ,
Obtain pseudo-labels {ŷkb }Bb=1 = {argmaxc(p(c|tb;wk) > τ)}Bb=1;

end
for k ← 1 to K do

for b← 1 to B do
Obtain {ℓz→k

t }K−1
z=1 = {1 (pzb ≥ τ)H

(
ŷkb ; p

k
b̃

)
}K−1
z=1 ,

Obtain ℓself = ℓent + λℓdiv;
end

end
Update wk ← wk − η( 1

K−1

∑K−1
z=1 ∇ℓz→k

t +∇ℓself)

Output ŷtest = argmaxc
1

K−1

∑K
k=1 p(c|Tj;wk).

end

pub and pvb are the predicted probabilities of tb by wu and wv, respectively. τ is the threshold for

pseudo-label selection, and t̃b is a strongly-augmented version of tb using Randaugment [207].

However, we note that RandAug is a technique only employed to increase data diversity, but is

not required for CRODOBO. We denote the version without any augmentation as CRODOBO,

and we denote the version with RandAug as CRODOBO+.

To further exploit the supervision from the limited target query, from pub and pvb we compute

a self-supervised loss ℓself = ℓent + λℓdiv, in which ℓent is standard entropy and ℓdiv is a balancing

term for class-diversity, λ is a weighting factor. The ℓself is widely used in prior domain adaptation
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works [16, 32, 162]. Finally, we update the learners by

wu ← wu − η(∇ℓs(wu, Suj ) +∇ℓv→u
t +∇ℓself(w

u, Tj)),

wv ← wv − η(∇ℓs(wv, Svj ) +∇ℓu→v
t +∇ℓself(w

v, Tj)). (6.3)

An algorithm table is illustrated in Algorithm 3.

For K > 2, each learner wk is updated with the co-supervision from the other K − 1

learners (Figure 6.2), weighted by 1/(K − 1) for each ℓz→k
t (z is the learner’s index other than

k). We update wk by

wk ← wk − η(∇ℓs(wk, Suj ) +
1

K − 1

K−1∑
z=1

∇ℓz→k
t +∇ℓself(w

k, Tj)). (6.4)

6.4 Experiments

We consider two metrics for evaluating online domain adaptation methods: online average

accuracy and one-pass accuracy. The online average is an overall estimate of the streaming

effectiveness. The one-pass accuracy measures after training on the finite-sample how much

the online model has deviated from the beginning [208]. A one-pass accuracy much lower

than online average indicates that the model might have overfitted to the fresh queries, but

compromised its generalization ability to the early queries.

Dataset. We use VisDA-C [165], a classic benchmark adapting from synthetic images to real.

We followed the data split used in prior offline settings [35, 162, 165]. We also use COVID-

DA [166], adapting the CT images diagnosis from common pneumonia to the novel disease.
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This is a typical scenario where online domain adaptation is valuable in practice. When a novel

disease breaks out, without any prior knowledge, one has to exploit a different but correlated

domain to assist the diagnosis of the new pandemic in a time-sensitive manner. We also evaluate

on a large-scale medical dataset Camelyon17 from the WILDS [167], a histopathology image

datasets with patient population shift from source to the target. Camelyon17 has 455k samples

of breast cancer patients from 5 hospitals. Another practical scenario is the online fashion

where the user-generated content (UGC) might be time-sensitive and cannot be saved for training

purposes. Due to the lack of cross-domain fashion prediction dataset, we propose to evaluate

adapting from Fashion-MNIST [1]-to-DeepFashion [168] category prediction branch. We select

6 fashion categories shared between the two datasets, and design the task as adapting from

36, 000 grayscale samples of Fashion-MNIST to 200, 486 real-world commercial samples from

DeepFashion.

Implementation details. We implement using Pytorch [139]. We follow [162, 163] to use

ResNet-101 [137] on VisDA-C pretrained on ImageNet [141, 142]. We follow [166] to use

pretrained ResNet-18 [137] on COVID-DA. We follow the leader-board on WILDS challenge [167] 2

to use DenseNet-121 [209] on Camelyon17 with random initialization, we use the official WILDS

codebase (v1.1.0) for data split and evaluation. We use pretrained ResNet-101 [137] on Fashion-

MNIST-to-DeepFashion. Our target query batch-size and bootstrapped source batch-size are both

set as 64. The confidence threshold τ = 0.95 and diversity weight λ = 0.4 are fixed throughout

the experiments. Our method is not sensitive to hyperparameters, the results are reported in

supplementary.

Baselines. We compare CRODOBO without data augmentation and CRODOBO+ with RandAug

2 https://wilds.stanford.edu/leaderboard/

85

https://wilds.stanford.edu/leaderboard/


VisDA-C
TargetSource

Figure 6.4: Results of online adaptation from synthetic source domain to real target domain
on VisDA-C [165] with “Burn After Reading”. The x-axis is the online streaming timestep.
Each query contains 64 samples. Each approach takes the same randomly perturbed sequence of
target queries. Source-Only is in green, the proposed CRODOBO is in blue. Smoothed with 1-D
uniform filter with length=5. Best viewed in color.

Table 6.1: Accuracy on VisDA-C (%) using ResNet-101. In the online setting, individual class
reports accuracy after one-pass, one-pass is the class average. Best offline (italic bold), best
online (bold).

Methods (Syn→ Real) plane bike bus car horse knife motor person plant skate train truck Online One-pass Per-Class Acc.

Offline

Source-Only 67.7 27.4 50.0 61.7 69.5 13.7 85.9 11.5 64.4 34.4 84.2 19.2 - - 49.1
DAN [107] 84.4 50.9 68.4 66.8 82.0 17.0 82.3 22.0 73.3 47.4 81.2 18.3 - - 57.8
CORAL [210] 94.7 46.8 78.0 62.4 86.5 70.1 90.4 73.5 84.2 34.9 87.7 24.9 - - 69.5
DANN [10] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 - - 57.4
ENT [32] 88.6 29.5 82.5 75.8 88.7 16.0 93.2 63.4 94.2 40.1 87.3 12.1 - - 64.3
MDD [160] 89.2 58.9 70.5 54.5 71.1 42.9 78.8 22.5 68.6 54.7 88.6 15.4 - - 59.6
CDAN [13] 89.4 40.3 74.6 65.2 81.5 62.2 90.1 69.3 73.3 58.6 84.8 19.1 - - 67.4
SHOT [162] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 - - 82.9
ATDOC-NA [163] 95.3 84.7 82.4 75.6 95.8 97.7 88.7 76.6 94.0 91.7 91.5 61.9 - - 86.3

Online

Source-Only 73.3 6.5 44.9 67.8 58.6 5.7 67.2 18.3 47.7 19.2 84.1 9.3 46.7 41.9 -
DAN [107] 87.7 45.9 69.9 70.9 77.4 17.7 80.7 18.6 79.9 29.9 82.7 16.6 57.8 56.5 -
CORAL [210] 94.7 51.0 79.6 63.2 88.2 69.4 91.1 73.1 87.7 41.8 88.4 24.2 66.7 71.0 -
DANN [10] 84.5 39.2 70.2 60.4 77.1 28.6 90.9 20.5 67.7 39.9 89.8 10.5 49.0 56.6 -
ENT [32] 87.1 14.8 87.9 71.9 87.8 98.9 90.3 0.0 5.2 15.0 80.4 0.2 55.8 53.3 -
MDD [160] 95.1 52.2 87.9 57.9 90.3 94.8 88.4 45.7 76.2 50.5 77.7 25.7 60.4 70.1 -
CDAN [13] 88.5 44.3 74.3 68.4 80.3 60.2 89.9 69.9 74.3 57.1 84.8 13.9 62.3 67.1 -

CRODOBO 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4 84.0 -

with eight state-of-the-art domain adaptation approaches, including DAN [107], CORAL [210],

DANN [10], ENT [32, 96], MDD [160], CDAN [13], SHOT [162] and ATDOC [163]. ATDOC

has multiple variants of the auxiliary regularizer, we compared with the Neighborhood Aggregation

(ATDOC-NA) with the best performance in [163]. Among the compared approaches, SHOT

and ATDOC-NA require a memory module that collects and stores information of all the target

samples, thus only apply the offline setting. For the other six approaches, we compare both
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WILDS-Camelyon17 COVID-DA

Figure 6.5: Results of online accuracy on WILDS-Camelyon17 [167] with hospital patient
population shift, and COVID-DA [166] adapting from common pneumonia to COVID-19
medical images with “Burn After Reading”. Source-Only is in green, the proposed CRODOBO is
the solid blue line. Smoothed with 1-D uniform filter with length=5 for WILDS-Camelyon17.

offline and online results. Each offline model is trained for 10 epochs. Each online model is

trained batch-by-batch for 1 epoch, during which the online test results are recorded after each

model update. All the online baselines take the same randomly-perturbed target queries to make

a fair comparison. The results of CRODOBO and CRODOBO+ reported in Table 6.1-6.4 have 2

learners (i.e. K=2), the results with K ≥ 3 are reported in Table 6.7.

Main results. We summarize the results on VisDA-C [165] in Table 6.1, and plot the online

results in Figure 6.4 We follow [37, 162, 163, 165] to provide the VisDA-C one-pass accuracy in

class average. In Table 6.1: Online, the proposed CRODOBO largely outperforms other baselines.

Without augmentation, our method outperforms the second by 11.5%. Our online result is on

par with the state-of-the-art offline performance ATDOC-NA [162], outperforming many other

offline baselines.

Comparing across the offline and online setting, the Source-Only baseline drops 2.4% in the

online average and 7.2% in the one-pass accuracy, which indicates that the data diversity is also

important in domain generalization. We observe that ENT [32], which is an entropy regularizer on

the posterior probabilities of the unlabeled target samples, has a noticeable performance drop in

the online setting, and illustrates more obvious imbalanced results over the categories (superior at
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class “knife” but poor at “person” and “truck”). We consider it a typical example of bad objective

choice for the online setting when the dataset is imbalanced. Without sufficient rounds to provide

data diversity, entropy minimization might easily overfit the current target query. The 2.5% drop

Table 6.2: Offline and online accuracy (%) on COVID-DA [166], adaptation from pneumonia to
Covid. All the baselines use ResNet-18 as the backbone. COVID-DA* is the method proposed
in [166] along with dataset.

Methods (Pneumonia→ Covid) Online One-pass Offline

Offline & Online

Source-Only 83.6 82.0 88.9
DAN [107] 84.4 85.7 87.7
CORAL [210] 67.6 45.4 65.4
DANN [10] 83.0 87.1 87.7
ENT [32] 84.3 87.3 89.8
MDD [160] 83.2 86.2 81.0
CDAN [13] 83.0 86.4 86.3
SHOT [162] - - 93.2
ATDOC-NA [163] - - 98.1
COVID-DA* [166] - - 98.1

CRODOBO (ours) 95.0 97.1 -
CRODOBO+(ours) 96.5 97.1 -

Table 6.3: Accuracy on WILDS-Camelyon17 [167] (%) using DenseNet-121. Domain
Generalization results are reprinted from WILDS leaderboard (see Footnote 2).

Methods (Hospital 1,2,3→ Hospital 5) Online One-pass Offline

ERM [167] - - 70.3
Group DRO [167] - - 68.4

Domain IRM [167] - - 64.2
Generalization FISH [211] - - 74.7

Offline & Online

Source-Only 71.7 60.1 63.6
DAN [107] 76.3 78.0 69.0
CORAL [210] 66.0 87.1 85.0
DANN [10] 76.4 81.4 86.7
ENT [32] 83.1 82.3 87.5
MDD [160] 77.8 52.5 63.7
CDAN [13] 62.7 60.1 58.5
SHOT [162] - - 73.8
ATDOC-NA [163] - - 86.3

CRODOBO (ours) 87.5 89.2 -
CRODOBO+(ours) 89.2 91.9 -
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Fashion-MNIST to DeepFashion
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Figure 6.6: Results of online adaptation from Fashion-MNIST [1]to DeepFashion [168] with
“Burn After Reading”. Smoothed with 1-D uniform filter with length=10.

in one-pass from online further confirmed the model has deviated from the beginning.

Results on two medical imaging datasets COVID-DA [166] and WILDS-Camelyon17 [167] are

respectively summarized in Table 6.2 and Table 6.3.The online streaming accuracy is presented

in Figure 6.5. COVID-DA* is the method proposed along with the dataset in [166], which is a

domain adversarial-based multi-classifier approach with focal loss regularization. Our method

outperforms the other approaches on COVID-DA regarding the online and one-pass metric, and

achieves competitive performance against the best offline accuracy. On the large-scale benchmark

WILDS-Camelyon17, our CRODOBO is on par the the best offline result, and CRODOBO+

outperforms the offline results by 1.7%, which validates the effectiveness of the approach. The

good performance on larger number of target queries indicates that CRODOBO can well exploit

the underlying information from the target domain. Similar observations are made on the large-

scale Fashion benchmark [1, 168]. Meanwhile, we reprint Domain Generalization results from

the WILDS leaderboard for reference.

Results on large-scale Fashion dataset, from Fashion-MNIST [1] to DeepFashion [168] category

prediction branch, is summarized in Table 6.4. We provide the online results in Figure 6.6.

To the best of our knowledge, we are the first to report results on this meaningful adaptation

scenario. The offline Source-Only merely achieves 23.1% accuracy, only 6.5% gain on the basis

of the probability of guessing, which indicates the benchmark is challenging. The sharp drop of
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Table 6.4: Accuracy on Fashion-MNIST [1] to DeepFashion [168] (%) using ResNet-101.

Methods (F-MNIST→ DeepFashion) Online One-pass Offline

Offline & Online

Source-Only 22.7 15.8 23.1
DAN [107] 40.7 42.0 32.7
CORAL [210] 40.4 40.7 39.6
DANN [10] 35.6 26.5 40.5
ENT [32] 31.9 31.2 31.1
MDD [160] 36.5 38.0 39.0
CDAN [13] 45.4 47.6 47.2
SHOT [162] - - 42.3
ATDOC-NA [163] - - 47.4

CRODOBO 49.1 46.3 -

performance from Source-Only online accuracy to one-pass accuracy (-6.8%) indicates the large

domain gap, and how easy the model is dominated by the source domain supervision. Similar

observation is made on WILDS-Camelyon17 Source-Only results(-11.6% from online to one-

pass), this usually happens when the source domain is less challenging than the target domain,

and the distribution of the two domains are far from each other. Faced with this challenging

benchmark, CRODOBO improves the online performance to a remarkable 49.1%, outperforming

the best result in the offline setting. Our one-pass accuracy is slightly shy compared to CDAN [13],

but is better in online metric.

Prior Online UDA approaches. In this chapter, we propose a novel cross-domain framework to

Table 6.5: Ablation study of cross-domain bootstrapping on four datasets (%). VisDA-C one-pass
accuracy is in per-class. Number of learners K = 2 in both w/ CRODOBO and w/o CRODOBO

.

Method/Dataset VisDA-C COVID-DA Camelyon17 Fashion

Online
w/o CroDoBo 78.5 94.4 86.2 42.3
w/ CroDoBo 79.4 96.5 89.2 49.1

One-pass
w/o CroDoBo 84.0 97.1 89.4 39.9
w/ CroDoBo 84.0 97.1 91.9 46.3
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implement the right to be forgotten. However, we do not claim to have proposed the task of online

unsupervised domain adaptation, which has existed before the emergence of deep learning [172,

174, 179]. The recent works are mostly engineered for a specific downstream task [175, 176,

180, 212, 213] that lacks generality. Yet, we try to compare to a more general but unpublished

approach CONDA [182] despite its limited availability. The setting of CONDA is different from

our approach. It allows a memory module that selectively buffers target queries in which the

model can re-access previous target samples. As a result, CONDA is less challenging compared

to “burn after reading”. Meanwhile, CONDA has a continual setting, in which the model is

pretrained on the source domain and then adapted to the target domain. Without any available

Table 6.6: Ablation study on the objectives on target domain on VisDA-C (%). T is the
sharpening temperature in the MixMatch [101].

Method Online One-pass

default (w/o CRODOBO, τ=0.95, λ=0.4) 78.5 (-) 84.0 (-)
w/o ℓent 63.7(↓) 53.1(↓)
w/o ℓdiv 72.6(↓) 73.0(↓)
replace ℓent + ℓdiv w/ Pseudo-labeling [114] (τ=0.95) 70.2(↓) 70.0(↓)
replace ℓent + ℓdiv w/ MixMatch [101] (T=0.5) 73.0(↓) 75.3(↓)
replace ℓt w/ MixMatch [101] (T=0.5) 76.3(↓) 81.5(↓)
use Randaug [207] on ℓent, ℓdiv 77.6(↓) 83.7(↓)

Table 6.7: Accuracy on VisDA-C (%) using ResNet-101 with different number of learners K,
and comparing the computation speed reported using 2 NVIDIA-P6000 GPUs.

CRODOBO+ plane bike bus car horse knife motor person plant skate train truck Online One-pass samples/sec

K = 2 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4 84.0 25
K = 3 95.0 85.6 84.2 73.3 94.4 95.7 88.5 82.2 94.4 83.4 89.3 36.6 79.2 83.5 16
K = 4 95.5 85.0 85.0 76.1 95.3 96.0 92.7 81.8 92.7 88.9 86.8 37.3 81.3 84.4 12
K = 5 96.3 82.3 86.7 83.0 93.7 95.6 91.6 83.2 96.3 87.0 85.2 43.0 82.0 85.3 10

Table 6.8: Accuracy on VisDA-C (%) with Multi-Source CRODOBO+.

Methods (ResNet-101) plane bike bus car horse knife motor person plant skate train truck Online Class Avg.

Multi-Source CRODOBO+ 96.2 85.4 90.8 79.7 96.6 94.6 93.3 87.5 96.3 92.4 90.2 50.6 84.0 87.8
CRODOBO+ K=2 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4 84.0
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Figure 6.7: Qualitative results of a randomly selected target query (size 24). We compare
CRODOBO with two essential baselines Source-Only and CDAN [13]. We represent the
bootstrapped source samples (top two rows under each benchmark), target samples (third row
under each benchmark), and the prediction result of each target sample. Best viewed in color.

source code from CONDA [182], we employ the same backbone in [182], HR-Net [214], to

make a fair comparison. We devise CRODOBOto a continual setting to make it comparable.

Without simultaneous access to the source domain, cross-domain bootstrapping is not an option.

So we employ the objectives on the target domain, we call it Continual CRODOBO. The results

are in Table 6.9. We observe that, without any buffer mechanism or re-access to the previous

queries, the continual CRODOBO still outperforms ConDA [182]. As mentioned in Section 6.2,

we compare to another related task–Test-Time Domain Adaptation [192, 193]. We have analyzed

the differences of the setting of Test-Time DA in Section 6.2, and here we provide the results of
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Tent [192] compared with the Continual CRODOBO in Table 6.10. We observe that our proposed

method largely outperforms Tent on VisDA-C.

Streaming Randomness As mentioned in the Section 6.3.2, in the online setting, each model

takes the same target sequence for fair comparison. The target sequence is randomly-perturbed

using the a fixed randomseed. Here, we discuss whether the model will be influenced by different

random sequential orders. We perturb the original target sequence (arranged in the categorical

order) using 5 different random seeds, and report the results of each seed on VisDA-C [165] and

the large-scale Fashion-MNIST-to-DeepFashion [168] benchmark. We compare the randomness

using CDAN [13] and CRODOBO. We choose CDAN [13] since it is a benchmark adversarial

approach, essentially different from the proposed approach. The results are in Table 6.11. We

observe that on VisDA-C the variance among different sequential orders is rather small (<

0.25). On the more challenging Fashion benchmark, the variance of CRODOBO is larger but

manageable (< 2.0). We analyze that CRODOBO relies more on the target-oriented supervision

(see Section 6.3.2) than CDAN [13], which makes it more sensitive towards the changes of the

target samples. This is a drawback of CRODOBO that we will try to address in the future work. To

conclude, the randomness in forming the order of target queries will not be a factor that influences

the evaluation of the online model effectiveness.

Other Pseudo-labeling Approaches as Co-supervision The co-supervision in the proposed

method can be replaced with any other pseudo-labeling approaches. One can simply replace

the term on either/both {wu, wv} to achieve better performance. We replace on either/both

learners with another popular semi-supervised approach MixMatch [101] and report the results

in Table 6.12. We observe that FixMatch [145] provides better co-supervision and the online

performance drops ∼8% when replaced with MixMatch.
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Table 6.9: Accuracy on VisDA-C (%) using HR-Net.

Methods (Syn→ Real) plane bike bus car horse knife motor person plant skate train truck Online One-pass

ConDA [182] 97.0 90.4 80.9 50.0 95.2 95.7 80.3 81.9 94.9 94.2 91.1 63.9 N/P 84.6
Continual CRODOBO (Ours) 96.5 85.2 82.3 47.3 98.0 96.1 89.6 79.2 94.9 95.7 90.4 66.5 80.0 85.1
CRODOBO (Ours) 94.8 86.0 90.7 80.3 97.1 99.1 93.1 85.0 88.2 89.6 90.9 47.1 82.9 86.8

Table 6.10: Comparisons to Tent on VisDA-C using ResNet-101.

Methods (ResNet-101) plane bike bus car horse knife motor person plant skate train truck Online One-pass

Tent [192] 85.2 44.3 79.4 50.0 78.1 52.7 83.0 43.5 65.0 53.1 81.4 30.1 62.1 -
Continual CRODOBO (Ours) 93.3 75.8 83.6 70.6 92.8 21.8 86.5 80.5 86.6 90.0 79.6 43.6 74.0 75.4

Table 6.11: Online accuracy (%) on five different perturbations of target sequence on VisDA-
C [165] and Fashion-MNIST [1]-to-DeepFashion [168].

VisDA-C

Methods rand 0 rand 1 rand 2 rand 3 rand 4 mean var

CDAN [13] 62.3 61.0 61.9 61.6 61.9 61.7 0.21
CRODOBO 79.4 78.6 79.6 79.2 79.4 79.2 0.15

Fashion-MNIST-to-DeepFashion

Methods rand 0 rand 1 rand 2 rand 3 rand 4 mean var
CDAN [13] 45.4 47.4 46.7 46.3 46.2 46.4 0.54
CRODOBO 49.1 48.9 46.3 46.5 48.9 47.9 1.99

Table 6.12: Replacing main paper Eq.3 with other pseudo-labeling methods(%) on VisDA-C.

Methods (Syn→ Real) plane bike bus car horse knife motor person plant skate train truck Online

wu: MixMatch [101] wv: FixMatch [145] 93.2 80.9 85.6 67.1 94.1 10.3 88.4 77.9 92.3 91.9 85.7 35.9 74.3
wu, wv: MixMatch [101] 94.7 83.3 81.0 62.4 90.7 13.8 84.8 78.7 95.6 94.6 82.9 45.4 71.6
CRODOBO 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4

Table 6.13: Performance sensitivity (%) to hyperparameter λ (weight for diversity loss) on
VisDA-C [165], τ=0.95.

Metric/λ 0.1 0.4 0.5 0.8 1.0 mean var

Online 74.9 79.4 78.7 78.5 78.4 78.0 3.1
One-pass 80.2 84.0 83.4 83.6 83.5 82.9 2.4

Table 6.14: Performance sensitivity (%) to hyperparameter τ (confidence threshold for pseudo-
label selection in main paper Eq.2 on VisDA-C [165], λ=0.4.

Metric/τ 0.5 0.6 0.7 0.8 0.9 0.95 mean var

Online 75.0 76.7 77.3 77.9 78.4 79.4 77.5 2.3
One-pass 80.9 81.7 82.6 82.8 83.4 84.0 82.7 2.0
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Sensitivity to Diversity Weight "

Figure 6.8: Results of online accuracy w.r.t. sensitivity to hyperparameter λ for the diversity term
on VisDA-C [165] using ResNet-101.

Hyperparameters We have two hyperparameters in the proposed approach: λ for weighing the

term ℓdiv and τ for the pseudo-label selection. We used λ=0.4 and τ=0.95 in all our experiments,

here we report results on more settings of these hyperparameters. The results of λ={0.1, 0.4,

0.5, 0.8, 1.0} are shown in Table 6.13. As the results suggest, CRODOBO is not sensitive to

hyperparameter λ. We observe similar performance of the model when λ is larger than 0.4.

The sensitivity to τ is shown in Table 6.14. When τ is smaller, more samples in each

target query are selected as pseudo-labels to co-supervise the peer learner. However, the quality

of these pseudo-labels is compromised since the model is less confident about the prediction.

Thus, the co-supervision is less accurate to depend on. We observe the performance drop when

the threshold τ is smaller than 0.6. Therefore, we suggest a larger threhold τ to achieve a more

effective model. The online accuracy of the above settings are shown in Figure 6.8 and Figure 6.9.

Network Architecture. We follow the network architecture in [162, 163], a feature backbone

followed by a bottleneck layer with dimension=256, and a Linear layer as the output layer. For

the experiments on VisDA-C [165], COVID-DA [166] and Fashion-MNIST-to-DeepFashion [1,

168], the feature backbone is pretrained on ImageNet [141]. For the WILDS-Camelyon17 benchmark,

we followed the leaderboard to use a randomly initialized DenseNet-121 [209]. We use Adam [215]

95



Sensitivity to Threshold  !

Figure 6.9: Results of online accuracy w.r.t. sensitivity to hyperparameter τ for pseudo-label
threshold on VisDA-C [165] using ResNet-101.

Table 6.15: Ablation study of RandAug and the multiple forward of each target query on VisDA-
C and Fashion dataset.

Dataset
VisDA-C Fashion

No Aug RandAug+multiple use of target No Aug RandAug+multiple use of target

DAN [107] 57.8 68.4 40.7 45.2
CORAL [210] 66.7 72.1 40.4 37.1
DANN [10] 49.0 49.9 35.6 37.2
ENT [32] 55.8 46.1 31.9 31.3
MDD [160] 60.4 67.0 36.5 39.0
CDAN [13] 62.3 62.8 45.4 41.0

CRODOBO K=2 (Ours) 77.9 79.4 47.6 49.1

with with an initial learning rate of 8e-4. The query size in our experiments is set as 64. We have

not observed any major performance change using different batch-size. Results are reported

based on an average of 5 runs.

Ablation study. We conduct ablation study on the impact of cross-domain bootstrapping in

Table 6.5. Following Table 6.1, we provide the VisDA-C one-pass accuracy in class average.

This study is to evaluate whether the improvement is introduced by cross-domain bootstrapping

or simply the strong baseline with the objectives on the target domain (see Section 6.3.2.2). Thus,

we devise a baseline by removing only the cross-domain bootstrapping, called w/o CRODOBO.

The baseline model has one learner that is optimized by minimizing the objective ℓs + ℓt +

ℓent + λℓdiv, where ℓt = B−1
∑B

b=1 ⊮ (pb ≥ τ)H
(
ŷb; p(c|t̃b;w)

)
, which is Eq. (6.2) without

96



exchanging the pseudo-labels. In Table 6.5, we observe that w/ CRODOBO is consistently better

than w/o in the online average accuracy on all the datasets. Regarding one-pass accuracy, the

effectiveness of cross-domain bootstrapping is unapparent on smaller datasets VisDA-C and

COVID-DA, yet clearly outperforms w/o on large-scale WILDS-Camelyon17 and Fashion-MNIST-

to-DeepFashion.

We further conduct ablation study on the objective terms (see Section 6.3.2.2) and report

the results in Table 6.6. To eliminate the benefit of cross-domain boosting, our default setting

is the model w/o CRODOBO. We leave out ℓent and observe significant performance drop.

Without ℓdiv, the performance decrease slight in the online metric, but far more sharply on the

one-pass metric (which is calculated per-class). We analyze that the diversity term is important

for imbalanced dataset like VisDA-C to achieve high class-average accuracy. We also report the

results by replacing ℓent and ℓdiv with Pseudo-labeling [114]. We replace either {ℓent, ℓdiv} or ℓt

with MixMatch, and observe decent performance when employed together with {ℓent, ℓdiv} (see

Table 6.6 row6). The RandAugment [207] on the entropy and diversity terms does not enhance

the performance.

Number of Learners K ≥ 3. We report the results of CRODOBO with varying number of

learners K ∈ {2, 3, 4, 5} on VisDA-C in Table 6.7. We observe that when K=3 the performance

is consistent with K=2. However, from K=4 the performance is improved with more learners

with discrepancies. This observation reflects the effectiveness to exploit the discrepant learners

via bootstrapping and co-supervision. The choice of K is a trade-off between computation cost

and performance. We find that K=2 is sufficient to yield state-of-the-art performance in most

times, thus is a better choice considering its computation efficiency.

Multi-Source CRODOBO. Since the proposed method exploits the learners’ discrepancy, a
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natural extension of the proposed method is to use multiple source to obtain more discrepant co-

supervisions. We experimented on VisDA-C with one learner taking from an additional source

domain from the Youtube Bounding Box dataset [165]. For fair comparison, we randomly

select a subset of the source samples to have equal total number of source samples for both

multi-source and single-source settings. The results are reported in Table 6.8. Multi-Source

CRODOBO improves the class average accuracy to a remarkable 87.8%. The result further

validates the effectiveness to increase data diversity.

As clarified in Section 6.3.2, RandAug is only employed to increase the data diversity, and

is not required for the proposed method. We note that the use of RandAug and the multiple use of

each target query in the proposed method might lead to confusion. To better evaluate the proposed

method, besides providing CRODOBO without any augmentation, here we further provide the

augmented baseline results, and with multiple use of each target query with two strong and two

weak augmented versions. We search the best performing hyperparameters for each method

using grid-search. We observe that (Table 6.15) either CRODOBO or CRODOBO+ outperforms

the compared baselines.

6.5 Conclusion

In the context of the the right to be forgotten, we propose an online domain adaptation

framework in which the target data is erased immediately after prediction. A novel online UDA

algorithm is proposed to tackle the lack of data diversity, which is a fundamental drawback of

the online setting. The proposed method achieves state-of-the-art online results and comparable

results to the offline domain adaptation approaches. We would like to extend CRODOBO to more
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tasks like semantic segmentation [216, 217].
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Chapter 7: Conclusion and Future Research

7.1 Summary

In this dissertation, we presented the several techniques for handling practical out-of-

distribution shifts in deep learning systems via the problem of domain adaptation. We reviewed

the background and necessary preliminaries for domain adaptation. We presented approaches

in three scenarios in domain adaptation. We presented a curriculum-based adversarial learning

approach for multi-source domain adaptation. We showed the effectiveness of using an adversarial

agent with experiments, and illustrate the visualizations of how the agent works during training.

We also presented a semi-supervised domain adaptation approach that optimize the utility of

target ground-truths, via the deep co-training of the two created subtasks. In the end, we presented

a practical setting for online domain adaptation that aims at privacy preservation, and an approach

that aims to increase the data diversity via source bootstrapping.

7.2 Conclusions

Through studying representation learning under distribution shifts, in recent years we have

witnessed an evolution of related tasks and methods. We first conclude our observations on the

recent changes in domain adaptation, and then we share our analysis on how it is connected to a
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series of different but related fields.

First, the domain adaptation methods have evolved from the conventional objective which

aims to enclose the distribution divergence, to a non-conservative objective which aims at the

unsupervised learning of the structure of merely the target domain. Is is not hard to understand

why in-domain supervisions are superior to across-domain supervisions. Therefore, if we have

effective ways to explore the unlabeled target domain, source domain are less worth exploring.

Consequently, we have observed less instance weighting-based techniques that try to maximize

the utility of the source domain. In fact, many recent state-of-the-art techniques on domain

adaptation benefit from the unsupervised and semi-supervised approaches [32, 162, 164, 192,

218]. Many direct extensions from the semi-supervised techniques to the domain adaptation

setting have been successful. The mean teacher learning model [219], domain adaptation via Mix-

Up [111], contrastive learning [220], self-training [221] and co-teaching [164]. The recent re-use

of the infomax objective and deep clustering has enabled source-free domain adaptation [162],

in which the source domain is merely used to initialize the network. We observe that the thriving

unsupervised learning techniques have result in the recent shift in the field of domain adaptation,

and will continue to lead in the near future.

Second, we observe similar phenomenon in the related fields like continual learning, also

known as life-long learning. Apart from the effectiveness of the replay-based methods [222] to

alleviate the catastrophic forgetting, recent continual learning also benefit from unsupervised

and semi-supervised learning techniques such as the contrastive learning [223] and pseudo-

labeling [224]. Similarly in the filed of federated learning, which also relies on knowledge

transfer, we observe a success applying knowledge distillation [225, 226, 227] and constrastive

learning [228]. In brief, we observe that the unique challenge of these tasks have been well
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explored initially, and there are more opportunities exploring the representation learning techniques

in combination with the specific constraints of a task in the near future.

Third, we observe a common need for robustness and privacy in domain adaptation, continual

learning and federated learning, which indicates the progress of these fields towards practicality.

In domain adaptation, we used to assume the source and target data share the same classes, which

may not be realistic. Recently, efforts have been made to relax this assumption. Partial domain

adaptation [65] adapts from a larger source categories to the target sub-set categories. Open-set

and universal [229] domain adaptation further relaxes this constraints as long as source and target

domain share classes. In [226], the i.i.d. assumption for federated learning is relaxed. In [230],

the privacy constraint has been escalated to individual device for a single person. In brief, in the

context of neural network, we need flexibility. We need to enable our models to embrace changes

and the differences in personalized needs.

In conclusion, the efficient exploration of one of these tasks requires horizontal comparison

of the other related tasks, as well as guidance from the “upstream” tasks. In recent years, the

development of new methods, new settings is rather rapid. To keep up, one also needs to keep

rethinking what is in need for a task besides what yields the state-of-the-art performance.

7.3 Future Research Directions

Label-free Evaluation with Distribution Shift: Unsupervised domain adaptation assumes a

label-rich source domain and a label-scarce target domain. Current methods that assume labels

are available on the target domain at test-time, are not realistic in practice. Moreover, if there is

a small bunch of target labels available, they are better exploited as supervision during training
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than being used as test labels. The label-free accuracy estimation is desirable in many practical

situations, especially when the target distribution is constantly changing with time. However,

this direction has not drawn much attention currently. Hence, it is of interest to develop better

label-free evaluation metrics that enables better flexibility of domain adaptation in practice.

Test-time Domain Adaptation: Many domain adaptation works have underestimated the importance

of time efficiency in domain adaptation. Instead, to be competitive in performance and to achieve

state-of-the-art, many approaches were established based on tens of thousands of iterations. In

reality, the target domain is without labels not just because of annotation budget limit, time is

another important factor. In the problem of test-time domain adaptation, one can adapt from the

model weights trained on the source domain to the target data at test time. Although the current

approaches yield relatively poor performance to win the time efficiency, it is worth exploring

due to its value in practice. Unfortunately, this direction has not drawn as much attention as the

conventional domain adaptation settings. Hence, it is of interest to improve the test-time domain

adaptation approaches, especially to explore better approaches that balance time, performance

and data availability.

Noisy-label Learning: Noisy-label learning or noisy training, a seemingly different problem

from domain adaptation, is actually related in many less obvious ways. In domain adaptation,

the major mission is to alleviate the lack of annotation of the target domain. In noisy-label

learning, the mission is similar: to alleviate the effect of bad annotations of a dataset, which

can be the target domain as well. Like many domain adaptation works, noisy-label learning

approaches are also interested in finding “trustworthy” samples that can serve as anchor points

during training. The main difference is that most noisy-label learning settings don’t assume a

cross-domain scenario, which is worth considering: can we use an auxiliary dataset with clean
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labels but with domain shift, to help clean a poorly annotated dataset. In reality, since there are

many publicly available datasets with good annotations, this is often possible. Hence, it is of

interest to explore the possibility of noisy-label learning under distribution shift.
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Pérez. Advent: Adversarial entropy minimization for domain adaptation in semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2517–2526, 2019.

[17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In ICCV, 2017.

[18] Eduard Fosch Villaronga, Peter Kieseberg, and Tiffany Li. Humans forget, machines
remember: Artificial intelligence and the right to be forgotten. Computer Law & Security
Review, 34(2):304–313, 2018.

[19] Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing data deletion
in the context of the right to be forgotten. Advances in Cryptology–EUROCRYPT 2020,
12106:373, 2020.

[20] Ugo Pagallo and Massimo Durante. Human rights and the right to be forgotten. In Human
Rights, Digital Society and the Law, pages 197–208. Routledge, 2019.

[21] Noam Tirosh. Reconsidering the ‘right to be forgotten’–memory rights and the right to
memory in the new media era. Media, Culture & Society, 39(5):644–660, 2017.

[22] Kristie Byrum. The European Right to be Forgotten: The First Amendment Enemy.
Rowman & Littlefield, 2018.

106



[23] Eugenia Politou, Alexandra Michota, Efthimios Alepis, Matthias Pocs, and Constantinos
Patsakis. Backups and the right to be forgotten in the gdpr: An uneasy relationship.
Computer Law & Security Review, 34(6):1247–1257, 2018.

[24] Eugenia Politou, Efthimios Alepis, Maria Virvou, and Constantinos Patsakis. The “right to
be forgotten” in the gdpr: Implementation challenges and potential solutions. In Privacy
and Data Protection Challenges in the Distributed Era, pages 41–68. Springer, 2022.

[25] MM Hassan Mahmud. On universal transfer learning. Theoretical Computer Science,
410(19):1826–1846, 2009.

[26] MTCAJ Thomas and A Thomas Joy. Elements of information theory. Wiley-Interscience,
2006.

[27] Changjian Shui, Qi Chen, Jun Wen, Fan Zhou, Christian Gagné, and Boyu Wang. Beyond
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