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Combinatorial optimization and unsupervised machine learning problems have been exten-

sively studied and are relatively well-understood. Examples of such problems that play a central

role in this work are clustering problems and problems of finding cuts in graphs. The goal of the

research presented in this dissertation is to introduce novel variants of the aforementioned prob-

lems, by generalizing their classic variants into two, not necessarily disjoint, directions. The first

direction involves incorporating fairness aspects to a problem’s specifications, and the second

involves the introduction of some form of randomness in the problem definition, e.g., stochastic

uncertainty about the problem’s parameters.

Fairness in the design of algorithms and in machine learning has received a significant

amount of attention during the last few years, mainly due to the realization that standard opti-

mization approaches can frequently lead to severely unfair outcomes, that can potentially hurt

the individuals or the groups involved in the corresponding application. As far as considerations



of fairness are concerned, in this work we begin by presenting two novel individually-fair clus-

tering models, together with algorithms with provable guarantees for them. The first such model

exploits randomness in order to provide fair solutions, while the second is purely determinis-

tic. The high-level motivation behind both of them is trying to treat similar individuals similarly.

Moving forward, we focus on a graph cut problem that captures situations of disaster containment

in a network. For this problem we introduce two novel fair variants. The first variant focuses on

demographic fairness, while the second considers a probabilistic notion of individual fairness.

Again, we give algorithms with provable guarantees for the newly introduced variants.

In the next part of this thesis we turn our attention to generalizing problems through the

introduction of stochasticity. At first, we present algorithmic results for a computational epidemi-

ology problem, whose goal is to control the stochastic diffusion of a disease in a contact network.

This problem can be interpreted as a stochastic generalization of a static graph cut problem. Fi-

nally, this dissertation also includes work on a well-known paradigm in stochastic optimization,

namely the two-stage stochastic setting with recourse. Two-stage problems capture a wide vari-

ety of applications revolving around the trade-off between provisioning and rapid response. In

this setting, we present a family of clustering problems that had not yet been studied in the lit-

erature, and for this family we show novel algorithmic techniques that provide constant factor

approximation algorithms.

We conclude the dissertation with a discussion on open problems and future research di-

rections in the general area of algorithmic fairness.
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Chapter 1: Introduction

Combinatorial optimization and unsupervised machine learning problems are fundamental

to theoretical Computer Science, they have been studied for many decades now, and therefore

they are relatively well-understood. The purpose of this thesis is to generalize a family of such

classical problems into two, not necessarily disjoint, vital directions. The first is considering fair

variants of those problems; the second involves studying stochastic generalizations of them.

The study of fairness in computer science, game theory and economics dates back many

decades. However, it is only in recent years that fairness in algorithmic design and machine

learning has received a significant amount of attention [1, 2]. This occurred mainly due to the

realization that the output of standard optimization algorithms which are used on a daily basis

can very well lead to outcomes that are highly unfair and hurtful for the individuals or the groups

involved. Examples of this include among others racial bias in Airbnb rentals [3], gender bias

in Google’s Ad Settings [4] and discrimination in housing ads on Facebook [5]. There are two

reasons why such unfortunate events occur. First, the training datasets used include implicit

biases, and hence when algorithms are trained on them, they learn to perpetuate the underlying

biases. Second, in many situations, even if the data is completely unbiased, merely optimizing an

objective function does not suffice if fairness considerations are at play. In such cases, we must

explicitly incorporate fairness constraints in our algorithm design process. Our work here tries

1



to accomplish the latter. Finally, with automated decisions becoming ubiquitous in critical areas

affecting the well-being of human lives, e.g., issuing home loans via estimating credit scores,

predicting recidivism and computing risk factors for health insurance applicants, it is evident that

the design of fair algorithms that minimize bias and discrimination is of vital importance.

Regarding the second research direction we pursue, i.e., considering stochastic variants of

classical problems, we study randomness that comes in two flavors. At first, we consider situa-

tions where the input of the problem is not deterministically known, and we only have stochastic

knowledge of it. Such cases naturally model uncertainty in the realization of the input data. In

addition, we consider variants of classical problems where the solution itself needs to be ran-

domized. In other words, we study problems where the solution needs to be a distribution over

deterministic solutions. The benefit of such randomized solutions is that they allow us to im-

pose stochastic constraints on the problem, and we will demonstrate situations where this is very

helpful, in the sense of capturing real-life scenarios. Specifically, we present examples where

such a model has the potential of introducing fairness features to the problem. This interplay of

stochasticity and fairness, with emphasis on how the latter can enforce fair outcomes, is one of

the most intriguing aspects of this work.

As for the exact families of classical problems that we are interested in generalizing, we

focus on clustering and graph-cut problems.

1.1 Brief Introduction to Clustering Problems

Clustering is one of the most popular paradigms at the intersection of combinatorial op-

timization and unsupervised machine learning. In a standard clustering problem, there is a
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set of points C and a set of locations F in a metric space characterized by a distance function

d : (C ∪F)2 7→ R≥0.1 In addition, the input also includes a positive integer k. The goal is to find

a set of centers S ⊆ F with |S| ≤ k, and subsequently construct an assignment ϕ : C 7→ S that

maps each point to one of the chosen centers, thus creating a collection of k clusters. Moreover,

the quantity that really matters for each j ∈ C, is its distance d(j, ϕ(j)) to its corresponding clus-

ter center ϕ(j). In classical clustering applications d(j, ϕ(j)) would correspond to how similar

ϕ(j) is to j, and in facility-location applications to the distance j needs to travel in order to reach

its service-provider. In general, the smaller d(j, ϕ(j)) is the happier j.

The most popular objectives in the literature (k-center, k-median, k-means) “boil down”

the large collection of values d(j, ϕ(j)), into an increasing function they try to minimize.

1. k-center objective: Minimize maxj∈C d(j, ϕ(j)).

2. k-median objective: Minimize
∑

j∈C d(j, ϕ(j)).

3. k-means objective: Minimize
∑

j∈C d(j, ϕ(j))
2.

The k-center objective can be viewed as trying to minimize the worst case scenario over all points,

while the other two can be interpreted as minimizing the average “service” points receive.

There are two distinct motivational settings for clustering problems. In the first, these

problems are used to model situations where we want to group together points that are highly

similar (assuming C = F); here the cluster centers are thought of as representative points that can

define a relatively homogeneous group and similarity is measured through the distance function

d (points that are closer together are deemed more similar). The second motivational setting

1A distance function satisfies the following properties. i) d(x,x) = 0, ii) d(x,y) = d(y,x) and 3) for every x, y, z we
have d(x, z) ≤ d(x, y) + d(y, z). The last property is known as the triangle inequality.
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comes from operations research, and specifically from facility location applications. For this

case, centers correspond to facilities that are placed in a metric, such that the clients of the set C

are served in a distance efficient way.

1.2 Brief Introduction to Graph-Cut Problems

Problems on graphs are among the most well-studied settings in combinatorial optimiza-

tion. An extremely important family of such problems are problems of finding cuts in an graph.

In such a setting, we are given a graph G = (V,E) with vertex set V and edge set E, where

each edge e ∈ E has some non-negative weight we ≥ 0. On a high level, the goal is to remove

a set of edges F ⊆ E from the graph (this set is called the cut-set or simply cut), such that

some connectivity constraints are satisfied in the residual graph GF = (V,E \ F ), and the cost

w(F )2 of the cut satisfies certain properties, e.g., it is minimized. As it will later become evident

through specific examples, graph-cuts have numerous applications in network problems, ranging

from epidemiology to computer and social networks analysis.

1.3 Formal Problem Definitions and Motivation

In this section we are going to define and motivate all problems of interest that this work

addresses. We begin by exploring two individually-fair clustering models. Then we move on

to two fair graph-cut problems. We next introduce a computational epidemiology problem that

constitutes a stochastic variant of a graph-cut problem. Finally we define a clustering problem in

the two-stage stochastic setting with recourse.

2For a vector α = (α1, α2, . . . , αk) and a subset X ⊆ {1, 2, . . . , k}, we use α(X) to denote
∑

i∈X αi
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1.3.1 Individually-Fair Clustering

The most popular notion of individual fairness in algorithmic design was introduced in

the seminal work of Dwork et al. [6], in the context of a classification problem. The high-level

fairness idea established in [6] was that similar individuals should be treated similarly. For the

classification problem studied in that paper, this meant that if two objects are similar according

to some external metric, then the distributions over labels that they receive should be statistically

close (the distribution over outcomes was naturally interpreted as the quality of service).

In order to transform the abstract concept of individual fairness introduced by Dwork et al.

[6] into a rigorous and well-defined clustering problem, one needs to answer two questions:

1. How is similarity between points defined in a clustering problem?

2. What constitutes similar treatment in a clustering setting?

Obviously, different answers to the above two questions would yield different individually-fair

clustering models. In what follows, we introduce two distinct clustering models that adhere to

the fairness paradigm of Dwork et al. [6], with each of them answering the previous questions in

its own unique manner.

1.3.1.1 Probabilistic Pairwise Fair Clustering

In this model, suppose that we are given a standard clustering input instance, which is

augmented with a value ψj,j′ ∈ [0, 1] for every pair of points j, j′ ∈ C. We assume, exactly

in the same manner as the seminal work of Dwork et al. [6], that ψ is the true metric indicating

similarity between pairs of points. Specifically, the smaller ψj,j′ is the more similar the two points

5



j and j′, with 0 indicating absolute identity and 1 complete dissimilarity.

Given the previous setup, a crucial question that needs to be answered is what can be

interpreted as unfair treatment for two similar points? To answer that, notice that in certain

applications assigning two points to different clusters implies that we are treating them differently.

To clarify this statement, think of the following potential scenario. Suppose that the two points

j, j′ correspond to students, and the task at hand is assigning students to schools (schools will be

represented by the locations F in the metric). Then, if j gets assigned to a good school while

j′ does not, j′ would arguably feel unfairly treated if it is significantly similar to j, i.e. ψj,j′ is

small. Hence, the motivation for introducing this model comes from applications where similar

treatment is defined as placing similar points in the same cluster; in other words similar points

gain utility from getting assigned to the same cluster.

However, the question about how to combat unfairness in such cases remains. Our pro-

posed solution to this is that randomization can introduce fairness. Specifically, we would seek

stochastic solutions that would cluster each pair {j, j′} apart with probability at most ψj,j′ . There-

fore, the more similar two points are, the less likely it is that they will end up in different clusters,

and thus the less likely it is that they will be treated in a different fashion.

The complete formal problem definition follows.

Definition 1.3.1 (Probabilistic Pairwise Fair Clustering - PAIRFAIRCLU). We are given a set

of points C and a set of locations F in a metric space characterized by the distance function

d : (C ∪ F)2 7→ R≥0. The input also includes a positive integer k. Furthermore, we are given

a list of pairs of points P = {e1, . . . , em}, where for every q ∈ [m] we have eq = {jq, j′q} and

jq, j
′
q ∈ C. Finally, we are also given a list of values ψ = {ψ1, . . . , ψm}, with ψq ∈ [0, 1] being

6



interpreted as the similarity score for {jq, j′q}. The goal is to find 1) a set S ⊆ F with |S| ≤ k,

and 2) a distribution D over assignments ϕ : C 7→ S, such that:

• Sampling ϕ ∼ D can be done efficiently, i.e., in polynomial time.

• The Bounded Separation Probability (BSP) constraint is satisfied:

Prϕ∼D[ϕ(jq) ̸= ϕ(j′q)] ≤ ψq for every eq ∈ P

• Some standard clustering objective function is minimized. The problem is studied under

each of the following objectives:

1. k-center: Find minimum R, such that Prϕ∼D[d(ϕ(j), j) ≤ R] = 1 for all j ∈ C

2. k-median (p = 1), k-means (p = 2): Minimize
(∑

j∈C Eϕ∼D[d(ϕ(j), j)
p]
)1/p

.

At this point, it is interesting to notice that unlike classical problems in combinatorial opti-

mization, in PAIRFAIRCLU the required solution is not a single deterministic solution, but rather

a distribution over potential solutions. Finally, since PAIRFAIRCLU generalizes already known

NP-hard problems (set all ψ values to 0 in order to get the corresponding vanilla clustering prob-

lem), we immediately get that all versions of it are NP-hard as well.

1.3.1.2 Equitable Clustering

In this clustering model, we will once again follow the paradigm of Dwork et al. [6], with

our goal being treating similar points similary. However, here we will define similarity between

points and similar treatment in a different way than what we did for PAIRFAIRCLU.

At first, we view the assignment distance d(j, ϕ(j)) as the quality of service point j re-

ceives, and hence this is the quantity that really matters for the point. As we mentioned earlier, in
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classical clustering applications d(j, ϕ(j)) would correspond to how similar ϕ(j) is to j, and in

facility-location applications to the distance j needs to travel in order to reach its service-provider.

Therefore, the smaller d(j, ϕ(j)) is, the happier the point j.

In scenarios where the points correspond to selfish agents, it is natural to assume that they

will be mindful of the quality of service other points receive. Specifically, a point j may feel that

it is being handled unfairly by a solution (S, ϕ), if d(j, ϕ(j)) is not close enough to the quality of

service a group Sj of other points enjoys. In this context, the points of Sj are exactly those which

j perceives as similar to itself, hence it arguably believes that it should obtain similar treatment

as them.

As a practical example that demonstrates the motivation behind the current model, consider

the following application in an e-commerce site, where the points of C correspond to its users.

In order to provide relevant recommendations, the website needs to choose a set S of k repre-

sentative users, and then assign each point to one of those based on a mapping ϕ : C 7→ S. The

recommendations j gets will be based on ϕ(j)’s profile, and in this case the quantity d(j, ϕ(j))

corresponds to how representative ϕ(j) is for j, and hence how suitable j’s recommendations are.

A point j may feel unfairly treated, if points that are similar to it (points j′ with small d(j, j′))

get better recommendations and consequently better service (see, e.g., the work of Datta et al. [7]

for studies on similar users receiving different types of job recommendations).

The next definition will formalize the previously described abstract notion of fairness via

two rigorous and related constraints, which we incorporate into the k-center problem. We focus

on k-center due to its numerous practical applications, but mostly because of its theoretical sim-

plicity, which allows us to explore in depth the intricacies and the combinatorial structure of this

novel notion of individually-fair clustering.
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Definition 1.3.2 (α-Equitable k-center - EQCENTER). We are given a set of points C in a metric

space characterized by the distance function d : C × C 7→ R≥0. Moreover, the input includes

a positive integer k and a value α ≥ 1. Finally, for every point j ∈ C we have a similarity

set Sj ⊆ C, denoting the group of points j perceives as comparable to itself. We also define

Rj = maxj′∈Sj
d(j, j′), and thus have Sj ⊆ {j′ ∈ C | d(j, j′) ≤ Rj}. The goal in our problems of

interest is to choose a set S ⊆ C of at most k centers, and then find an assignment ϕ : C 7→ S, such

that the k-center objective , i.e., maxj∈C d(j, ϕ(j)), is minimized. Further, we use two different

constraints to capture the notion of fairness we aim to study.

• Per-Point Fairness (PP ): When we study the problem under this constraint, we want to

make sure that for all j ∈ C with Sj ̸= ∅, we have:

d(j, ϕ(j)) ≤ α · min
j′∈Sj

d(j′, ϕ(j′)) (1.1)

Here j is satisfied if its quality of service is at most α times the “best" quality found in Sj .

Equivalently, in this case we should guarantee that for all j ∈ C we have:

d(j, ϕ(j)) ≤ α · d(j′, ϕ(j′)), ∀j′ ∈ Sj

• Aggregate Fairness (AG): Here for each j ∈ C with Sj ̸= ∅, we want to guarantee that:

d(j, ϕ(j)) ≤ α

∑
j′∈Sj

d(j′, ϕ(j′))

|Sj|
(1.2)

Hence, here j feels fairly treated if d(j, ϕ(j)) is at most α times the average quality of Sj .
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We call our problem α-Equitable k-Center, and denote it by EQCENTER. Moreover, we con-

sider it either under constraint (1.1) or under constraint (1.2). When we study it under constriant

(1.1) we refer to it as EQCENTER-PP, and similarly when we use constraint (1.2) we denote it by

EQCENTER-AG.

Constraint (1.1) provides a stronger notion of fairness, in that each point j cares explicitly

about the assignment distance of every point j′ ∈ Sj . On the other hand, constraint (1.2) is

weaker, in the sense that under it the points compromise to merely comparing their quality of

service to the average quality obtained by their similarity set. Due to this, a solution for (1.1) also

constitutes a solution for (1.2), and hence for the same instance the optimal value of EQCENTER-

AG must be no larger than that of EQCENTER-PP. This observation reveals an intriguing trade-

off between how strict we want to be in our fairness constraints, and how much we care about

the overall objective cost. This trade-off is further explored in later sections.

Finally, both variants are trivially NP-hard, since when Sj = ∅ for all j, the fairness con-

straints become redundant, and the problems reduce to k-center, which is already known to be

NP-hard [8].

Observation 1.3.3. A modeling advantage of this problem comes in the way we define similarity

between points. A common criticism for similarity defined through the values ψ as in [6], is

that pinpointing an exact similarity value in [0, 1] for every pair of points is highly impractical

[9, 10, 11]. On the other hand, constructing the similarity sets Sj required in our model is much

more straightforward and realistic.
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1.3.2 Fair Graph-Cut Problems

We begin by describing an existing problem of finding cuts in a graph. Let G = (V,E) be

an undirected graph with vertex set V and edge set E, where n = |V | and every e ∈ E has a cost

we ∈ R≥0. In addition, we are given a designated “source” vertex s ∈ V . We are concerned with

attempting to mitigate some sort of “disaster” that begins at s and infectiously spreads through

the network via the edges. This means that vertices v ∈ V that are connected to s, i.e., vertices

for which there exists an undirected s− v path in G, are at some sort of risk or disadvantage.

A natural approach to mitigate such a spread is to remove edges from G, in an attempt to

disconnect as many vertices of the graph from s as possible. Specifically, if we remove a cut-set

or simply cut F ⊆ E from the graph, we denote by prot(V,E \ F, s) the set of vertices in V that

are no longer connected to s in the residual graphGF = (V,E \F ), and hence are protected from

the infectious process. At a high-level, the edge removal strategy contains the disastrous event

within the set V \ prot(V,E \ F, s). Observe now that there is a clear trade-off between the cost

w(F ) of the cut F and | prot(V,E \ F, s)|, i.e., the more edges we remove the more vertices we

may be able to save.

The aforementioned trade-off naturally leads to the following optimization problem, which

we call Size Bounded Minimum Capacity Cut or SB-MINCC for short. Given a graph G with

source vertex s and a integer target value T > 0, we want to compute a cut F ⊆ E with the

minimum possible cost w(F ), such that at least T vertices of V are saved in GF = (V,E \ F ),

i.e. | prot(V,E \ F, s)| ≥ T . This problem is NP-hard as shown by Hayrapetyan et al. [12]. The

work of Svitkina and Tardos [13] gave a O(log2 n)-approximation algorithm for SB-MINCC,

while Hayrapetyan et al. [12], Eubank et al. [14] gave constant factor bicriteria algorithms for it,
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i.e. algorithms that provide solutions that come within a constant factor of the optimal cut cost,

but at the same time might not save at least T vertices.

Inspired by the recent interest revolving around algorithmic fairness, our goal here is to

incorporate fairness ideas in SB-MINCC, and initiate the discussion of fairness requirements

for problems of finding cuts in graphs. To the best of our knowledge, our work was the first to

combine fairness with this family of problems.

The first notion of fairness that we consider is the widely used Demographic Fairness.

The high-level idea behind this concept is that the set of elements that require “service” consists

of various subsets—say demographic groups—and the solution should equally and fairly treat

and represent each of these groups. In our case, if the vertices of the graph belong to different

groups, we would like our solution to fairly separate vertices of each of them from s. In this

way, we will avoid outcomes that completely ignore certain groups for the sake of minimizing the

objective function; for example scenarios where certain groups are disproportionately protected

while others are left completely exposed. Hence, we define the following problem.

Definition 1.3.4 (Demographically Fair Cut - DEMFAIRCUT). In addition to a graph G =

(V,E) with weights {we}e∈E and the source s ∈ V , for some integer γ ≥ 1 we are given

sets V1, V2, . . . , Vγ and values f1, f2, . . . , fγ , such that ∀h ∈ [γ]3 we have Vh ⊆ V and 0 ≤

fh ≤ 1. Note that each v ∈ V may actually belong to multiple sets Vh. Letting nh = |Vh|,

the goal is to find a cut F ⊆ E with the minimum possible w(F ), subject to the constraint that

|Vh ∩ prot(V,E \ F, s)| ≥ fh · nh for all h ∈ [γ]. In words, if each Vh is interpreted as a de-

mographic, we want the minimum cost cut under the condition that at least an fh fraction of the

points in Vh are disconnected from s (for all h).
3We use [k] to denote {1, . . . , k} for some integer k ≥ 1
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Instantiating this definition with different values of fh allows us to model a variety of

fairness scenarios. For example, setting fh = 1/2 would let us guarantee an equitable solution

that protects at least half the vertices of each Vh. Alternatively, we can set fh to be a decreasing

function of nh/n, and thus yield a solution that focuses more on protecting smaller demographics.

Moreover, notice that SB-MINCC is a special case of DEMFAIRCUT, where γ = 1 (we only have

one demographic group) and f1 = T
n

. Hence, DEMFAIRCUT is NP-hard, since SB-MINCC is

already known to be NP-hard.

The second notion of fairness we consider is called Probabilistic Individual Fairness, and

was first introduced in the context of robust clustering [15, 16]. According to it, the final solution

should not simply be just one deterministic solution, but rather a distribution D over feasible

deterministic/static solutions. Then, considering each input element individually, the probabil-

ity that it will get “good service” in a randomly drawn solution from this distribution, should

be at most some given (fairness related) parameter. Obviously, sampling from this constructed

distribution D must be achievable in polynomial time, and we call such distributions efficiently-

sampleable. Under this notion of fairness, we avoid outcomes that deterministically prevent sat-

isfactory outcomes for certain individuals, e.g., a certain individual always getting poor quality

service in the returned solutions.

Incorporating the above concept of fairness in SB-MINCC, implies that besides the global

guarantee of saving at least T vertices, we also need to provide a stochastic guarantee for each

individual vertex, ensuring it that in the final solution it will be disconnected from swith a certain

probability. For instance, ensure that each vertex gets disconnected with probability at least 1/2,

and hence no specific vertex enjoys preferential treatment. The formal definition follows.
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Definition 1.3.5 (Probabilistic Individually Fair Cut - INDFAIRCUT). In addition to a graph G =

(V,E) with weights {we}e∈E , a target T ∈ N≥0 and source s ∈ V , for each v ∈ V \ {s} we

are also given a value pv ∈ [0, 1]. The goal is to find an efficiently-sampleable distribution D

over the cuts F(B) = {F ⊆ E : w(F ) ≤ B ∧ | prot(V,E \ F, s)| ≥ T}, such that PrF∼D[v ∈

prot(V,E \ F, s)] ≥ pv for each v ∈ V \ {s}, and B is the minimum possible.

SB-MINCC is also a special case of INDFAIRCUT; we can always set pv = 0 for all

v ∈ V \ {s} and make the stochastic constraints void. Hence, INDFAIRCUT is also NP-hard.

Observation 1.3.6. In both problems, we can assume that the disastrous event starts simulta-

neously from a set of vertices S, instead of just a single designated vertex. This assumption is

without loss of generality, since S can be merged into a single vertex s (by retaining all edges

between S and V \ S), thus giving an equivalent formulation that matches ours.

1.3.2.1 Motivating Applications for Fair Cuts

Regarding demographic fairness, consider the following potential application. The vertices

of the graph V would correspond to geographic areas across the globe, and an edge (u, v) ∈ E

would denote whether or not there is underlying infrastructure, e.g., highways or airplane routes,

that can transport people between areas u and v. The disastrous event in this scenario is the spread

of a disease in a global health crisis. If an area u ∈ V is “infected”, then it is natural to assume

that neighboring areas (i.e., areas v ∈ V with (u, v) ∈ E) can also get infected if we allow

people to travel between u and v. A central planner will clearly try to break a set of connections

F ⊆ E from the infrastructure graph, such that the total cost w(F ) of these actions will be as

small as possible, while some guarantee on the number of protected areas | prot(V,E \ F, s)| is
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also satisfied. The value w(F ) can be interpreted as the economic cost of the proposed strategy

F , e.g., the lost revenue of airline companies resulting from cancelling flights.

In terms of fairness, we can think of the areas V as coming from γ different countries,

with Vh being the areas associated with country h ∈ [γ]. Then, a fair solution would not tolerate

a discrepancy in how many areas are protected across different countries. For example, a fair

approach would be to ensure that each country has at least half of its areas protected, since the

less “infected” areas each country has, the more easily it can keep its local crisis under control.

As far as individual fairness is concerned, consider a computer network facing the spread

of a computer virus. In this scenario, we want to minimize the cost of the connections removed,

such that the infectious process is kept under control and thus a certain number of users T does

not get infected. However, each individual user of the network would arguably prefer to be in

the set of protected vertices. Our notion of individual fairness as studied in INDFAIRCUT, will

ensure this in a stochastic sense, by using appropriate values pv.

1.3.3 A Computational Epidemiology Problem

With the COVID-19 pandemic and future such pandemics in mind, computational epidemi-

ology, powered by AI and efficient algorithms, has emerged as a vital discipline. There are two

major sources of uncertainty in typical applications of computational epidemiology: how the dis-

ease will unfold probabilistically (we may have a good model for this, but have limited control

over such stochasticity), and models for contact between members of a population (social-contact

networks). In the problem defined here, we take a rigorous stochastic-optimization approach to

develop approximation algorithms for epidemic control under such sources of uncertainty.
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Now we formally define our problem of interest, which we call MININFEDGE. The goal in

this problem is to mitigate the stochastic spread of a disease in a social contact-network, via the

application of a social-distancing strategy.

Suppose that we have an undirected graph G = (V,E) representing a social-contact net-

work; vertices represent people and edges represent social connections. In addition, we are given

an edge weight ce ≥ 0 for every edge e ∈ E, indicating the cost of removing the social connec-

tion e (not allowing interactions between the people corresponding to the endpoints of the edge).

Let also n = |V | and m = |E|.

We adopt the most widespread tool for modeling the spread of an epidemic in a social-

contact network, i.e., an SIR random model [17, 18]. In an SIR model of disease spread, each

node of the graph is in one of the states S (susceptible), I (infectious) or R (recovered). We

also assume that the infection simultaneously starts at a subset I0 ⊆ V . An infectious vertex

v infects each susceptible neighbor u once, independently with some known probability pe ∈

[0, 1], where e = (u, v) ∈ E. This is equivalent to the following percolation process [17, 18]:

consider a random subgraph G(p⃗) = (V,E(p⃗)) obtained from G by retaining each edge e ∈ E

independently with probability pe (and thus removing each edge with probability 1 − pe). In

particular, the probability that a set Vinf of vertices is reachable from I0 inG(p⃗) is precisely equal

to the probability that the set Vinf becomes infected during the SIR process. We will sometimes

abuse notation and let G(p⃗) also represent the distribution over subgraphs thus obtained. Without

loss of generality, we can also assume that I0 consists of a single vertex s, since adding a meta-

vertex s with probability 1 edges to all vertices in I0 yields an equivalent setting. Finally, some

of our results will only hold for a uniform probability setting in which pe = p for all e ∈ E; in

this case we denote the random graph G(p⃗) by G(p).
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A social distancing strategy corresponds to the removal of a subset F ⊆ E of edges; for

such an F , we denote by inf(V,E \ F, s) the number of vertices that are in the same connected

component as s in the residual graph GF = (V,E \ F ). For simplicity, we refer to F as a cut or

a cut-set, though it need not always induce a cut in the graph. Finally, the expected number of

infected vertices in the percolation process is easily seen to be EG(p⃗)[inf(V,E(p⃗) \ F, s)].

Given a budget B, the goal of MININFEDGE is to choose a set F ⊆ E such that:

1. c(F ) =
∑

e∈F ce ≤ B, i.e., the total cost of the set F of edges to be removed, is at most B.

2. EG(p⃗)[inf(V,E(p⃗) \ F, s)] is minimized, i.e., the expected number of infections (nodes

reachable from s when we remove the edges in F and conduct the disease percolation on

the remaining graph) is minimized.

Remark: Observe that MININFEDGE can be viewed as a stochastic generalization of the

cut problem SB-MINCC, where the randomness comes as uncertainty in the edge realization.

(α, β)-approximation: As in [12, 19], we focus on bicriteria approximation algorithms.

We say that a solution F ⊆ E is an (α, β)-approximation if c(F ) ≤ αB, and EG(p⃗)[inf(V,E(p⃗)\

F, s)] ≤ β · EG(p⃗)[inf(V,E(p⃗) \ F ∗, s)], where F ∗ is an optimal solution for the given instance.

1.3.3.1 Random Graph Models for Social-Contact Networks

It is well-recognized that with the ever-growing importance of networks and network sci-

ence, we need good random-graph models for predictive applications, simulations, testing of new

algorithms etc.: see, e.g., [20, 21].

In our context of social-contact networks, the random-graph model of Chung and Lu [22]

is particularly useful. In this model, we have a set of vertices V , and a weight wv for every node
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v ∈ V that denotes its expected degree in the graph; let wmin = minv wv and wmax = maxv wv.

The edges E of the graph are determined via the following random process. For every u, v ∈ V ,

the probability of having the (u, v) edge in E is

qu,v =
wuwv∑
r∈V wr

,

where these edges are present independently and self-loops are allowed. A natural assumption

here is wmin = O(1). A common instantiation of this model is with a power law, in which ni, the

number of nodes of weight i, satisfies ni = Θ(n/iβ), with β > 2 being a model parameter. In

our work, we are using the power law instantiation every time we consider this model.

For contact-networks, the random graphs captured by the Chung-Lu model are more real-

istic than those of the simple Erdős-Renyi model [19]. The reason for this is imposing a specified

degree sequence that models the heavy-tailed nature of real-world degree distributions.

We refer to MININFEDGE when the graph G = (V,E) is from the Chung-Lu model as

MININF-CL. The random process for constructing the graphG = (V,E) in the Chung-Lu model

should not be confused with the percolation process occurring on G during the spread of the

disease. In the case of MININF-CL, the reader can view the whole process as happening in two

steps. At first, G = (V,E) is chosen randomly according to the Chung-Lu model. Afterwards,

the disease starts its diffusion in the chosen network according to the probability vector p⃗.

1.3.4 Two-Stage Stochastic Clustering

Stochastic optimization, first introduced in the work of Beale [23] and Dantzig [24], pro-

vides a way for modeling uncertainty in the realization of the input data. Here we are inter-
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ested in a stochastic optimization paradigm known as the 2-stage recourse model [25]. This

paradigm evolves in two stages. In the first, we do not yet know the input instance we need

to work with, and we are only given access to a distribution D that describes possible realiza-

tions of future data. Given that knowledge, we take some stage-I actions and commit to an

anticipatory part of the solution x, incurring some cost c(x). In the second stage, an input in-

stance (“scenario”) A is sampled from the distributionD, and we can take some stage-II recourse

actions yA with cost fA(x, yA). If X is the set of stage-I actions and Y the set of recourse ac-

tions, the goal is to find a solution x⋆ ∈ X to minimize f(x) = c(x) + EA∼D[qA(x)], where

qA(x) = miny∈Y {fA(x, y) | (x, y) is a valid solution for A}.

To complete the description of a two-stage stochastic problem, one needs to define how

knowledge of the distribution D is represented during stage-I. There are three main models pro-

posed in the literature for that, namely the black-box model [26, 27, 28, 29, 30], the polynomial-

scenarios model [31, 32, 33, 34], and the independent-activations one [32, 35, 36]. Among the

three aforementioned models, the most general and expressive one is the black-box model. In our

work here, we are interested only in the black-box and polynomial-scenarios models. We later

present the necessary definitions in the context of the problems we study.

In what follows, we formally define the general skeleton for a number of 2-stage stochastic

clustering problems that our work aims to solve.

We are given a set of clients C and a set of facilities F , in a metric space characterized by

a distance function d. We let n = |C| and m = |F|. Our paradigm unfolds in two stages. In the

first, each i ∈ F has a cost cIi , but at that time we do not know which clients from C will need

service, and we only have a description of the distribution D that governs the arrivals of clients

later on. In the second stage, a scenario A ⊆ C is realized with probability pA according to D,
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and now each i ∈ F has a cost cAi . The clients of the realized scenario are precisely those that

will require service from the facilities of F . Using only the description of D, we can proactively

open a set of facilities FI in stage-I. Subsequently, when a scenario A arrives in stage-II, we can

augment the already constructed solution by opening some additional facilities FA.

The objective function we minimize is the maximum covering distance or radius. Let

d(j, S) = mini∈S d(i, j) for any j ∈ C and for any S ⊆ F . We then ask for FI and FA, such that

d(j, FI ∪ FA) ≤ R for every A that materializes and all j ∈ A, for the minimum R possible.

Furthermore, the expected opening cost of the returned solution is required to be at most some

given budget B, i.e., ∑
i∈FI

cIi + EA∼D

[∑
i∈FA

cAi

]
≤ B

We call this problem Two-Stage Stochastic Supplier or 2S-SUP for short.

Finally, we assume that for every j ∈ C we have PrA∼D[j ∈ A] > 0; note that if this is not

the case, then the presence of j in the input is completely redundant.

1.3.4.1 Additional Stage-I Constraints

Beyond the basic version of the problem, we also consider variants where there are addi-

tional hard constraints on the set of chosen stage-I facilities.

In Two-Stage Stochastic Matroid Supplier or 2S-MATSUP for short, the input also includes

a matroidM = (F , I), where I ⊆ 2F is the family of independent sets ofM. In this case, we

additionally require FI ∈ I. In Two-Stage Stochastic Multi-knapsack Supplier or 2S-MUSUP for

short, L additional knapsack constraints are imposed on FI . Specifically, we are given budgets

Wℓ ≥ 0 and weights f ℓ
i ≥ 0 for every i ∈ F and every integer ℓ ∈ [L], such that the stage-
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I facilities should satisfy
∑

i∈FI
f ℓ
i ≤ Wℓ for every ℓ ∈ [L]. We call a 2S-MUSUP instance

discrete, if all f ℓ
i are integers, and for such an instance we define parameter Λ =

∏L
ℓ=1Wℓ.

1.3.4.2 Modeling the Stage-I Distributional Knowledge

As mentioned earlier, to complete the description of a two-stage problem, one needs to

define how knowledge of D is represented in stage-I. The most general representation is the

black-box model, where we only have access to an oracle that can sample scenarios A according

to D. In this model, every time a scenario A is revealed, either through the oracle or through

an actual data realization, we also learn the facility-cost vector cA associated with it. We also

consider the more restricted polynomial-scenarios model, where all scenarios A, together with

their occurrence probabilities pA and their corresponding cost vectors cA, are explicitly provided.

We use the suffixes BB and Poly to distinguish these settings. For example, 2S-SUP-BB

is the previously defined 2S-SUP in the black-box model. In both settings, our algorithms must

have runtime polynomial in n,m. For the polynomial-scenarios case, the runtime should also be

polynomial in the number of explicitly provided scenarios.

1.3.4.3 Motivational Applications

To see a practical application for the problems defined in this section, consider healthcare

resource allocation, when trying to mitigate a disease outbreak through the preventive placement

of testing sites. Suppose that F corresponds to potential locations that can host a testing center

(e.g., hospitals, private clinics, university labs), C to populations that can be affected by a possible

disease outbreak, and each scenario A ∈ D to which populations suffer the outbreak. Since im-
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mediate testing is of utmost importance, a central decision maker may prepare testing sites, such

that under every scenario, each infected population has the closest possible access to a testing

center. Assembling these sites in advance, i.e., in stage-I, has multiple benefits; for example, the

necessary equipment and materials might be much cheaper and easier to obtain before the onset

of the disease. Furthermore, the choice to minimize the maximum covering distance, as opposed

to the opening cost, reflects a policy valuing societal welfare more than economic performance.

In addition, there may be further requirements for FI , irrespective of the stage-II decisions,

which cannot be directly reduced to the budget B. Such cases motivate our decision to study

extra stage-I constraints. For instance, we might have a constraint on the total number of per-

sonnel we want to occupy prior to the outbreak of the disease, assuming that facility i requires

fi people to keep it operational during the waiting period; such a scenario implies an additional

budget constraint on FI and is modeled by 2S-MUSUP. Moreover, having a stage-I partition-

matroid constraint as in 2S-MATSUP, can incorporate some notion of fairness in the decisions a

planner makes. For instance, consider the case of multiple demographic groups, each preferring

a different subset of facilities to be opened. In that situation, a partition matroid constraint will

not allow any demographic’s preferences to be over-represented in the set FI (no demographic

will get preferential treatment).

1.4 Contributions and Outline

1.4.1 Contributions to PAIRFAIRCLU

Chapter 2 contains our results on individually fair clustering, beginning with Section 2.1

and our results on PAIRFAIRCLU. Initially, in Section 2.1.1 we demonstrate our first ever result
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on this problem, which involved a restricted setting introduced in [37].

In [37], we focus only on the k-center objective, i.e., we want to minimize maxj∈C d(j, ϕ(j)).

More importantly, in this paper we assume that the similarity metric ψ has a specific structure,

and that is for every j, j′ we have ψj,j′ =
d(j,j′)
κR

. The value κ > 0 is a user-specified parameter,

while R is set by the algorithm and it satisfies R∗
unf ≤ R ≤ 2R∗

unf ; R∗
unf is the value of the

optimal solution to the underlying k-center instance where no fairness constraints are imposed.

Looking more closely to the previous definition of ψ, there is a certain cut-off value κR, such that

only points whose pairwise distance is smaller than this can be considered similar, and the closer

the two points according to the metric space the more similar they are. Although this way of

modeling similarity is not general enough, there is still some merit to it. Interpreting the provided

metric space as a close approximation of the true similarity relation is a natural assumption for

the vast majority of clustering applications, where distance already is correlated with similarity.

Our main result from [37] follows.

Theorem 1.4.1 ([37]). When C = F , for any κ > 0 there exists an algorithm which finds S ⊆ C

with |S| ≤ k and an efficiently-sampleable distributionD over assignments ϕ : C 7→ S such that:

• Prϕ∼D[ϕ(j) ̸= ϕ(j′)] ≤ d(j,j′)
κR

for every j, j′.

• Prϕ∼D[maxj∈C d(j, ϕ(j)) = O(R log k)] ≥ 1− k1− 1
κ .

Note that because R ≤ 2R∗
unf , if we set κ to be some small constant in (0, 1), the previous

algorithm will give a solution that with high probability produces clusters of maximum radius

O(R∗
unf log k). The latter constitutes an O(log k)-approximate solution for PAIRFAIRCLU.

The idea behind the algorithm in the previous theorem is the following. Initially, we use

a vanilla approach for k-center in order to find at most k clusters. Then, we blow-up the radius
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of each cluster according to an exponential distribution, and this guarantees the final result. We

mention that this algorithm is very time efficient and thus can be used for large problem instances.

Moving on, in Section 2.1.2 we present some refined results on PAIRFAIRCLU. Compared

to our earlier work, these results capture all objective functions of interest (k-center, k-median and

k-means), provide constant factor approximations, cover the C ̸= F case, and most importantly

work for arbitrary values ψ. Our main result follows.

Theorem 1.4.2 ([38]). Let τ ∗ be the optimal value of a PAIRFAIRCLU instance for any of the

objective functions of interest, and ρ be the best approximation ratio for the vanilla version of the

problem where no fairness constraints are imposed (regular k-center, k-median, k-means). Our

algorithm chooses set Sk and constructs distribution D over assignments ϕ : C 7→ Sk, such that:

• |Sk| ≤ k and sampling a ϕ ∼ D can be done in polynomial time

• Prϕ∼D[ϕ(jq) ̸= ϕ(j′q)] ≤ 2ψq ∀eq ∈ P

• The objective function cost is at most (ρ+ 2)τ ∗

Since for all k-center, k-median and k-means there exist small constant factor approxima-

tion algorithms, the approximation ratio we achieve in the above is also constant.

The previous result relies on a two-step process. At first, we solve the vanilla/unfair version

of the problem using any known ρ-approximation algorithm, and this in return will give a set of

centers Sk. Then, we set up a Linear Program (LP) based on Sk, which models a problem of

assigning the points of C to the centers of Sk. After proving that the fractional solutions of this

LP satisfy some important structural properties, we use a randomized rounding procedure from

[39] to find an integral assignment of points to cluster centers (in other words a clustering). In

the end, the desired distribution D results from the randomness of the rounding process.
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A special case of PAIRFAIRCLU that is of some interest and has been studied before in the

literature [40, 41, 42, 43, 44, 45], occurs when all ψ values are set to 0. Then, our problem reduces

to what is known as clustering with must-link constraints. In this setting, notice that the results of

the previous theorem give true constant factor approximation algorithm for all k-center, k-median

and k-means with must-link constraints (the 2-violation is now irrelevant). For the k-median and

the k-means objectives, these were the first algorithms with theoretical guarantees. Moreover,

in Section 2.1.2 we also give a refined algorithm for k-center with must-link constraints, which

achieves a better approximation ratio of 2.

Finally, Section 2.1.3 contains experimental results from implementations of all our algo-

rithms for PAIRFAIRCLU.

1.4.2 Contributions to EQCENTER

In Section 2.2 we present our results for EQCENTER [46]. We begin by investigating the

combinatorial structure of our newly introduced fairness constraints. At first, a question that

naturally arises is for what values of the parameter α are our problems well-defined? We call a

problem well-defined if it always admits a feasible solution (S, ϕ), i.e., |S| ≤ k and ϕ satisfies

the corresponding fairness constraint for all j. Ideally, we would like our problems to admit

feasible solutions for any possible value of α. However, we give the following negative result

which indicates that absolute equity is not always achievable.

Theorem 1.4.3. For both problems EQCENTER-PP and EQCENTER-AG, there exist instances of

them with α < 2 that do not admit any feasible solution.

We then proceed to show that for α ≥ 2 there is always a feasible solution, thus settling the
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vital question about the regime of α for which our problems are well-defined.

Theorem 1.4.4. For both problems EQCENTER-PP and EQCENTER-AG, every instance of them

with α ≥ 2 always admits a feasible solution.

Given that α ≥ 2 is the range we should focus on, we proceed by studying another crucial

concept, and that is the Price of Fairness (PoF) [47, 48]. This notion is just a measure of rela-

tive loss in system efficiency, when fairness constraints are introduced. Specifically, for a given

instance of either EQCENTER-PP or EQCENTER-AG, PoF is defined as the value of the optimal

solution to our fair problem, over the value of the optimal solution to the underlying k-center in-

stance, where we drop the fairness constraints from the problem’s requirements. In other words,

PoF = (optimal fair value)/(optimal unfair value). In the vast majority of fair clustering problems

it is known that there exist instances with unbounded PoF. In line with that, we show:

Theorem 1.4.5. Both EQCENTER-PP and EQCENTER-AG have instances with unbounded PoF.

All mentioned structural results are proven for k ≥ 2. The k = 1 case is trivial, since one

can efficiently try each j as a center, see if any yields a feasible solution, and also find the optimal

one among the computed feasible solutions. On the other hand, even when k = 2 and we only

have
(|C|

2

)
+ |C| center sets to check, the number of assignments for each set of size 2 is 2|C|.

Moving forward, we provide an approximation algorithm that covers instances with α ≥ 2

for EQCENTER-PP and EQCENTER-AG. The main body of the algorithm remains the same for

the two problems, with minor differences to capture the unique characteristics of each case. The

algorithm can be viewed as operating in two phases; first chooses centers and then creates the

assignment for the points. Our process of choosing centers constitutes an extension of a result

by Khuller and Sussmann [49]. Our center-choosing procedure gives useful guarantees regarding
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the distances between the chosen centers, a feature that is crucially exploited in the assignment

phase of the algorithm, where we carefully construct the mapping ϕ. Our result is:

Theorem 1.4.6. We are given instance of either EQCENTER-PP or EQCENTER-AG, with α ≥ 2.

Let R∗ be the optimal value of this instance and let Rm = maxj∈C Rj . Our algorithm returns a

feasible solution (S, ϕ) to either problem, for which maxj∈C d(j, ϕ(j)) ≤ 5max{R∗, Rm}.

We strongly believe that in realistic applications involving selfish agents we would have

Rm = O(R∗), and hence our constructed solution will be a O(1)-approximate one. To see why

this can be true, consider the following reasoning. At first, a very common assumption used

throughout the fair clustering/classification literature [6, 37, 38, 50, 51] is that the metric distance

d already captures a notion of resemblance. For instance, recall the use-case for EQCENTER

mentioned in Section 1.3.1.2, where the goal was to build a recommendation system. There, two

users that are close under d have comparable profiles, and thus can be seen as similar. Consider

now the optimal solution for the unfair problem on our instance (C, k), and let R∗
unf be its value.

In this solution, the triangle inequality implies that a point j will never be placed in the same

cluster as some other j′ with d(j, j′) > 2R∗
unf . Hence, the optimal unconstrained/unfair solution

that can be thought of as an expert when it comes to determining similarity (it constructs the

most intra-similar clusters when distance corresponds to similarity), does not deem the two points

comparable enough to place them in the same cluster. Thus, the “advice” of the optimal unfair

solution yields Rm ≤ 2R∗
unf ≤ 2R∗ (R∗

unf ≤ 2R∗ since the unfair problem is less constrained).

Nonetheless, if a central planner is not sure whether or not Rm = O(R∗), but still wants to

enforce anO(1)-approximate outcome, there is an easy way to accomplish the latter. The planner

can first compute a lower bound Rf for R∗
unf . There are various ways for achieving this, and the
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simplest one is using the thresholding technique of Hochbaum and Shmoys [8]. Afterwards, the

planner publishes a value λ = O(Rf ), and the points construct their similarity sets Sj based on

it, i.e., they are only allowed to “envy” points within distance at most λ. Besides guaranteeing

a O(1)-approximate solution, this strategy also enjoys explainability merits. By publishing an

O(R∗
unf ) value, the planner informs the agents that even under optimal conditions this is the best

service they may receive. Hence, the points focus their attention on close neighbors that may end

up becoming their assigned centers, and thus might get better service than them.

Continuing with the description of our results for EQCENTER, we also study the PoF be-

havior of our main algorithms. Specifically, when the similarity sets satisfy certain properties,

we show that our algorithms enjoy a bounded PoF. If R∗
unf is the optimal value of the underlying

k-center instance where no fairness constraints are imposed, we prove the following.

Theorem 1.4.7. If Rj ≤ R∗
unf for all j ∈ C, a modification to our algorithm yields a solution

(S, ϕ), such that: (i) |S| ≤ 2k, (ii) both constraints (1.1) and (1.2) are simultaneously satisfied

by ϕ, and (iii) maxj∈C d(j, ϕ(j)) ≤ 5R∗
unf .

Theorem 1.4.8. When for all j ∈ C we have Sj = {j′ ∈ C : d(j, j′) ≤ Rd} for someRd = ψR∗
unf

with ψ = O(1), our algorithm for EQCENTER-AG provides a feasible solution with maximum

radius at most 5max{ψR∗
unf , R

∗
unf}.

Furthermore, we mention that all algorithms for EQCENTER that appear in Section 2.2

are purely combinatorial (e.g., do not require convex programming), and hence very efficient and

easily implementable.

Another question we study is the assignment problem for EQCENTER-PP and EQCENTER-

AG. Specifically, if we are given the optimal set of centers S∗, can we find the corresponding
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optimal assignment ϕ∗? In a vanilla clustering setting this is trivial, since assigning points to

their closest center is easily seen to yield the necessary results. However, as is the case in almost

all literature on fair clustering, in the presence of fairness constraints like (1.1) or (1.2), such

an assignment is not necessarily correct. This was actually among the first observations made

in the seminal work of Chierichetti et al. [52], which initiated the research area of fair cluster-

ing. Therefore, since from a theoretical perspective the assignment problem is fundamental in a

clustering setting and because in our case it appears highly non-trivial, we choose to address it

in order to achieve a deeper understanding of the nature of our novel fairness constraints. In the

end, we manage to show that with a slightly intricate iterative algorithm, we can indeed compute

the optimal assignment ϕ∗ in polynomial time; this result is presented in Section 2.2.3.

Finally, Section 2.2.4 shows experimental results from the implementation of our algo-

rithms for EQCENTER. An important take-home message from those simulations is that the

stronger per-point notion of fairness captured by constraint (1.1), in practice leads to solutions

with more or less the same objective function values as the solutions produced for the weaker

constraint (1.2). Hence, the use of constraint (1.1) is highly recommended.

1.4.3 Contributions to Fair Graph-Cut Problems

Chapter 3 contains our results for DEMFAIRCUT and INDFAIRCUT, which first appeared

in [53]. In terms of our contribution here, we believe that the main aspect of it lies in introducing

the first fair variants of graph-cut problems, thus initiating the discussion of fairness requirements

in such computational settings.

In Section 3.1 we present a technique that is required in our approach for solving DEM-
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FAIRCUT and INDFAIRCUT. The key insight is that we can reduce the problems on general

graphs to the same problems on trees, by using a tree embedding from [54].

In Section 3.2 we address demographic fairness. At first, we provide an O(log n) approx-

imation algorithm for DEMFAIRCUT based on dynamic programming. This algorithm runs in

polynomial time only when the number of groups γ is a constant. When γ is not a constant

and can be any arbitrary value, we develop a different algorithm based on a linear program-

ming relaxation together with a dependent randomized rounding technique. This result yields

an O
(

logn log γ
ϵ2·minh fh

)
-approximation for any ϵ > 0; however, the covering guarantee the LP-based

algorithm provides to each demographic Vh is only that at least (1− ϵ)fhnh vertices of it will be

saved (in other words the algorithm is a pseudo-approximation). Regarding the dependence of

the approximation ratio on minh fh, we believe that in realistic fairness related applications the

covering fractions fh should be relatively big, i.e., some constant fh = Ω(1), since we care about

protecting the vertices in the best way possible. Hence, the approximation ratio of our algorithm

can be thought of as O
(
logn log γ

ϵ2

)
. Finally, we show that even on tree instances DEMFAIRCUT

with arbitrary γ is actually quite hard: it cannot be approximated better than Ω(log γ). We do this

by demonstrating an approximation factor preserving reduction from SET COVER.

In Section 3.3 we provide an O(log n)-approximation algorithm for INDFAIRCUT. The

high-level approach of this result relies on the round-or-cut framework developed by Anegg et al.

[16], which we tailor in a way that suits the specific needs of our problem.

Finally, notice that since SB-MINCC is a special case of DEMFAIRCUT (with γ = 1), and

also a special case of INDFAIRCUT (when pv = 0 for all v), our dynamic programming algo-

rithm from Section 3.2 and the algorithm of Section 3.3, both provide a O(log n)-approximation

for SB-MINCC. This constitutes an improvement over the best previously known O(log2 n)-

30



approximation by Svitkina and Tardos [13].

1.4.4 Contributions to Computational Epidemiology

Chapter 4 contains all our results for MININFEDGE, which first appeared in [55]. We

begin with Section 4.1, which demonstrates an (O(1), O(1))-approximation for unit edge-cost

MININFEDGE (all edges of G have cost 1). This result is for the uniform p probability setting,

in the regime where Karger’s cut sparsification result holds [56]. Let Ĝ be a weighted graph

obtained from G by setting the weight we of each edge e ∈ E equal to p, and let ĉ denote the

weight of the minimum cut in Ĝ. Karger’s result states that if ĉ ≥ 9 lnn, then the size of every cut

in G(p) is close to the corresponding cut in Ĝ. In this case, we are able to reduce MININFEDGE

to a problem from [12], using just one random sample from G(p). However, even this restricted

setting is not trivial, this is actually the first rigorous result when the transmission probabilities in

MININFEDGE are not 1 (the p = 1 case corresponds to variants of SB-MINCC).

In Section 4.2 we present a sampling framework for MININFEDGE that utilizes the pow-

erful sample-average-approximation (SAA) approach [57, 58, 59, 60]. Specifically, we sample a

polynomial number of graphs from G(p⃗) and then formulate a linear program (LP) that describes

the empirical estimate of the optimal solution on those samples. Afterwards, we solve this LP

and provide a randomized-rounding procedure that transforms the fractional LP solution into an

integral one. Let F0 be the solution (set of edges to remove) that we compute, OPT the value

of the optimal solution, and Γ the expected number of simple paths4 in a randomly drawn graph

from G(p⃗), where the randomness also includes the random choice of G.

Three different sources of randomness/uncertainty: Our statements will refer to (com-
4“Paths" will refer throughout to simple paths: ones in which no nodes or edges are repeated.
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binations of) three distinct sources of randomness:

• Type 1: This randomness is over the random choice, if any, of our network G = (V,E)

(such as randomness resulting from choosing G according to the Chung-Lu model). If the

network G is deterministic, Type 1 is vacuous: there is no randomness.

• Type 2: This randomness arises from the choices of our randomized rounding algorithm.

• Type 3: This type of randomness refers to the random percolation/diffusion of the disease

in the given graph G, which is governed by p⃗.

Our main theorem for the SAA approach of Section 4.2 is summarized in the following,

where “log” denotes the natural logarithm.

Theorem 1.4.9. For any chosen constants ϵ > 0 and γ > 1, the following hold:

• with probability at least 1−O(n−γ), where the randomness is solely of Type 2, we have

c(F0) ≤ O(
γ

ϵ
) log n ·B

• there exists an event A with

Pr[A] ≥ 1−O( 1
n2

)−O
(Γ log n

ϵ2nγ

)

and

E[inf(V,E(p⃗) \ F0, s)
∣∣ A] ≤ (1 + ϵ) ·OPT

Here, randomness is with respect to Type 1 (if applicable), Type 2, and Type 3.
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Observe now that if Γ = poly(n), we can choose γ to be large enough, such that Pr[A] ≥

1−O(1/n2). As we show in Section 4.2 this immediately implies the following corollary.

Corollary 1.4.10. When Γ = poly(n), we have

E[inf(V,E(p⃗) \ F0, s)] ≤ (1 +O(ϵ) +O(1/n))OPT

where the randomness is with respect to Type 1 (if applicable), Type 2, and Type 3.

Given the previous corollary, in Section 4.3 we prove that a family of Chung-Lu random-

graphs satisfies the Γ = poly(n) property (recall that this model captures realistic social-contact

networks well [19, 61]). Under this property, our main result informally says that we can ap-

proximate the budget to within a factor O(log n) with high probability, and the expected number

of infected people to within a constant factor. More specifically, Section 4.3 shows a phase-

transition phenomenon as a function of the model parameter β: for β > 3 we get Γ ≤ poly(n),

while β ≤ 3 implies that Γ grows exponentially in n.

Finally, in Section 4.4 we show a slightly different SAA approach combined with a deter-

ministic rounding which gives an (O(n2/3), O(n2/3))-approximation for general graphs.

1.4.5 Contributions to Two-Stage Stochastic Clustering

In Chapter 5 we show our results on 2S-SUP and its related variants, which first appeared

in [62]. In all these problems, our ultimate goal is to devise algorithms for the black-box set-

ting, since the latter is the most general distributional model in the two-stage paradigm. As is

usual in two-stage stochastic problems, we achieve our goal in three steps. First, we develop

algorithms for the less complicated polynomial-scenarios model. Second, we sample a small
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number of scenarios from the black-box oracle and use our polynomial-scenarios algorithms to

(approximately) solve the problems on them. Finally, we extrapolate this solution to the original

black-box problem. This overall methodology is called Sample Average Approximation (SAA).

Unfortunately, standard SAA approaches [60, 63] cannot be directly applied in radius min-

imization problems. On a high level, the obstacle here is that in our problems we need to compute

the true cost of the approximate solution, something that is impossible using already existing re-

sults. Because this is a delicate technical issue, we refer the reader to Section 5.6 for an in-depth

discussion. Therefore, we had to develop a novel sampling scheme.

Brief description of our sampling framework: Since the optimal black-box radius R∗ is

always the distance between a client and a facility, there are at most nm different options for it in

any of our problems of interest. Thus, we consider each option separately, and assume for now

that we work with a specific guess R. Given this, for some N that is going to be defined later, we

sample N scenarios from the oracle, and let Q = {S1, S2, . . . , SN} be that sampled set. We then

run our polynomial-scenarios η-approximation algorithms onQ, which are guaranteed to provide

solutions that cover each client within distance ηR. Crucially, we show that if R ≥ R∗ and N is

chosen appropriately, these solutions have cost at most (1 + ϵ)B on Q, for any ϵ > 0. Hence, in

the end we keep the minimum guess for R whose cost over the samples is at most (1 + ϵ)B. For

this minimum guess R (which obviously satisfies R ≤ R∗), the polynomial-scenarios algorithm

returned a stage-I set FI , and a stage-II set FSv for each Sv ∈ Q. Our polynomial-scenarios

algorithms are also designed to satisfy two additional key properties. First, given FI and

any A /∈ Q, there is an efficient process to extend the algorithm’s output to a stage-II solution

FA with d(j, FI ∪ FA) ≤ ηR for all j ∈ A. Second, irrespective of Q, the set S of possible

black-box solutions the extension process might produce, has only exponential size as a function
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of n andm (by default, S can have size 2m|D|, and note thatD may be exponentially large or even

uncountably infinite). We call algorithms satisfying these properties efficiently generalizable.

After using the extension process to construct a solution for every A that materializes, there is

a final scenario-discarding step to our framework. Specifically, for some given α ∈ (0, 1), we

first determine a threshold value T corresponding to the ⌈α|Q|⌉th costliest scenario of Q. Then,

if for an arriving A the computed set FA has stage-II cost more than T , we perform no stage-II

openings by setting FA = ∅ (i.e., we “give up" on A). This step coupled with the bounds on |S|

ensure that the overall opening cost of our solution is at most (1 + ϵ)B. At this point, note that

discarding implies that there may exist scenarios A with d(j, FI ∪ FA) > ηR for some j ∈ A.

However, we show such scenarios occur with probability at most α, and the latter is user-specified

and thus can be made inverse polynomially small.

In Section 5.2, we present our generalization scheme. We summarize it as follows:

Theorem 1.4.11. Suppose we have an efficiently generalizable, η-approximation for the polyno-

mial scenarios variant of any of the problems we study. Let S be the set of all potential black-box

solutions its extension process may produce. Then, with O
(

1
ϵα

log
(nm|S|

γ

)
log
(
nm
γ

))
samples for

any γ, ϵ, α ∈ (0, 1), we compute a radius R and a black-box solution FI , FA for all A ∈ D:

1. FI satisfies the stage-I specific constraints of the problem (matroid or multiknapsack).

2. R ≤ R∗ and
∑

i∈FI
cIi +EA∼D[

∑
i∈FA

cAi ] ≤ (1+ϵ)B, with probability at least 1−γ. Here

R∗ is the optimal radius of the black-box variant.

3. PrA∼D[d(j, FI ∪ FA) ≤ ηR, ∀j ∈ A] ≥ 1− α, with probability at least 1− γ.

Theorem 1.4.12. We provide the following efficiently generalizable algorithms:
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• A 3-approximation for 2S-SUP-Poly with |S| ≤ (n+ 1)!.

For the black-box case, the sample complexity of Theorem 1.4.11 is Õ( n
ϵα
).

• A 5-approximation for 2S-MATSUP-Poly with |S| ≤ 2mn!.

For the black-box case, the sample complexity of Theorem 1.4.11 is Õ(m+n
ϵα

).

• A 5-approximation for discrete instances of 2S-MUSUP-Poly, with |S| ≤ 2m and runtime

poly(n,m,Λ). In the black-box case, the sample complexity of Theorem 1.4.11 is Õ(m
ϵα
).

Here, Õ() hides polylog(n,m, 1/γ) terms. The 3-approximation for 2S-SUP-Poly is pre-

sented in Section 5.3. It relies on a novel LP rounding technique, not used in clustering problems

before. Notably, its approximation ratio matches the lower bound of the non-stochastic coun-

terpart [64] (Knapsack Supplier) of 2S-SUP, something very rare in the two-stage paradigm.

The 5-approximation for 2S-MATSUP-Poly is presented in Section 5.4. It relies on solving an

auxiliary LP, whose optimal solution is guaranteed to be integral. The 5-approximation for 2S-

MUSUP-Poly is presented in Section 5.5, and is based on a reduction to a deterministic supplier

problem with outliers. Specifically, if we view stage-I as consisting of a deterministic robust

problem, stage-II is interpreted as trying to cover all outliers left over by stage-I.

1.4.5.1 Further Comments On Our Generalization Scheme

The main advantages of our generalization scheme are:

1. Unlike standard SAA approaches Swamy and Shmoys [60], Charikar et al. [63], it can

handle problems based on the maximum-radius objective function.
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2. The approximation ratio η is preserved with high probability during the generalization. By

contrast, in typical two-stage problems, the approximation ratio usually gets inflated when

generalizing the polynomial-scenarios setting to the black-box one.

3. The adaptive selection of T yields crisp bounds in terms of α, ϵ. By contrast, simpler non-

adaptive approaches (e.g., T = B
α

) would still give the same guarantees, but the dependence

of the sample bounds on α, ϵ would be worse ( 1
ϵ2α2 compared to 1

ϵα
as we achieve). This

adaptive thresholding may also be of independent interest; we conjecture that it might be

able to improve the sample complexity in the SAA analysis of Charikar et al. [63].

Remark: There is an important connection between the design of our generalization scheme

and the design of our polynomial-scenarios approximation algorithms. In any SAA approach, the

sample complexity necessarily depends on the set of possible actions over which the generaliza-

tion is performed. In Theorem 1.4.11, the sample bounds are given in terms of the cardinality

of S. Following the lines of Swamy and Shmoys [60], it may be possible to replace this de-

pendence with a notion of dimension of the underlying convex program. However, such general

bounds would lead to significantly larger complexities, consisting of very high order polynomials

of n, m. On the other hand, all of our polynomial-scenarios algorithms are carefully designed,

so that the cardinality of S itself is small. Indeed, one of the major contributions of this work is

to show that this property can still be satisfied for sophisticated approximation algorithms using

complex LP rounding. Consequently, we can use simple generalization bounds. Besides being

clear and intuitive, these lead to a much lower dependence on n,m for the sample complexity.

To our knowledge, these are the first examples of non-trivial algorithms for two-stage stochastic

problems via directly bounding the size of the solution set S.
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1.5 Literature Review

1.5.1 Fair Clustering Literature

Fair clustering has been a very active and prolific area of research in the last few years, with

a plethora of fairness notions studied. We next demonstrate a rigorous taxonomy of all concepts

of fairness in clustering, together with all related results.

1.5.1.1 Demographic Fairness Literature

The most popular and widely-studied notions of fairness in clustering revolve around De-

mographic Fairness. The high-level goal of such notions is to treat groups of points fairly, with

respect to either how other groups are being treated or with respect to the specific needs of the

group at hand. Usually, the groups of points that we are interested in are given as part of the input,

and they represent points sharing some important defining attributes. Hence, each group can be

perceived as an underlying demographic of the population. For example, we might be provided

with groups representing age, e.g., “children”, “teenagers”, “adults”, “senior citizens”. We now

present a detailed taxonomy of all concepts of demographic fairness in clustering.

Balanced Representation: This is the first fair clustering problem ever studied, and it

was introduced in the seminal work of Chierichetti et al. [52]. In that paper, the authors study a

clustering problem where the points of the metric space are partitioned into two demographics,

say red and blue points, based on some protected attribute. What is then required, is a solution

in which the fraction of red and blue points in every cluster is identical to the global fraction

of the corresponding color class across the whole dataset. Chierichetti et al. [52] study this
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problem under the k-center and k-median objectives, and provide constant factor approximation

algorithms. Huang et al. [65], Backurs et al. [66] proceeded to give scalable algorithms for this

problem. Further, this framework was later generalized to multiple demographics for the k-center

objective by Bercea et al. [67], Rösner and Schmidt [68], as well as to other clustering paradigms

such as spectral clustering [69] and correlation clustering [70].

Relaxed Notion of Balance: Here we do not require the ratio of the points of each demo-

graphic in the cluster to be exactly the same as the ratio of its points over the whole dataset. We

rather relax this condition, and ask for a ratio that is within a certain input given range. This con-

cept was simultaneously introduced by Bercea et al. [67], Bera et al. [71], Ahmadian et al. [72] in

the context of k-clustering (for all k-center, k-median, k-means objectives). This relaxed notion

allowed for small constant factor approximations for all clustering objectives. In addition, the

model of Bera et al. [71] also captures the intriguing case of overlapping demographics. Finally,

this concept was later studied for hierarchical clustering by Ahmadian et al. [73], in a stochastic

setting by Esmaeili et al. [74], and with a fairness maximization objective [75].

Fairness in Center Selection: In the context of k-clustering where k cluster centers need

to be selected, it is reasonable to impose fairness constraints on the set of selected centers. The

work of Kleindessner et al. [76], Jones et al. [77] focuses on avoiding over-representation of any

demographic group in the set of selected centers, while Thejaswi et al. [78] focus on avoiding

under-representation of any group in the chosen centers.

Proportionally Fair Clustering: In this model, we assume that every large enough group

of points is entitled to their own cluster center. Therefore, we should make sure that for every

such group of points, their assigned centers are close enough to all of them, in the sense that there

exists no other point that is closer to every point in the coalition, thus giving them an incentive
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to deviate from the current assignment. An interesting aspect of this model is that there are

no a priori given sets of points, and the fairness guarantee should simultaneously hold for every

possible subset of the dataset. This setting was introduced by Chen et al. [79], with further refined

results given by Micha and Shah [80].

Demographic Fairness in Clustering with Outliers: When clustering with outliers, we

are allowed to exclude a certain number of points from our computations, thus leaving them

“unclustered”. Being chosen as an outlier is an inherently disadvantageous event for a point.

Hence, when the dataset involves points coming from different demographic groups, we should

make sure that a fair amount of points from each such group is chosen as outliers. This model

has been studied only under the k-center objective, with [81] being the paper that introduced it.

Later on, Anegg et al. [16], Jia et al. [82] gave improved results for it.

Socially Fair k-Clustering: In many clustering applications, the quantity that really mat-

ters to each point is the distance to its assigned center. Hence, in the presence of multiple demo-

graphic groups it makes sense to consider a fairness metric that looks at the average assignment

distance of each demographic. Abbasi et al. [83], Ghadiri et al. [84] independently introduced

a model where the objective is to minimize the maximum average assignment distance over all

demographic groups. Later on, Makarychev and Vakilian [85], Goyal and Jaiswal [86], Ghadiri

et al. [87] gave improved results for this problem.

1.5.1.2 Individual Fairness Literature

The high-level goal of notions of individuals fairness is to treat each individual point fairly,

with respect to either how other individual points are being treated or with respect to the specific
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needs of the point at hand. Therefore, our attention here shifts from groups to individuals. The

seminal work of Dwork et al. [6] will help us create a taxonomy for concepts of individual

fairness in clustering. Specifically, Dwork et al. [6] introduced a notion of individual fairness

for classification, where the aim was to treat similar individuals similarly. Our categorization

makes a distinction between notions of fairness for clustering that follow the paradigm of Dwork

et al. [6], and notions that do not.

Besides our work in [37, 38, 46], clustering papers on individually-fair clustering that ad-

here to the notion of Dwork et al. [6] include Anderson et al. [50], Kar et al. [88].

Anderson et al. [50] study a similar setting as the one of PAIRFAIRCLU. Specifically,

they are looking for a set of centers S, but for all j ∈ C they require a distribution ϕj that

assigns j to each i ∈ S with probability ϕi,j . Given that, they seek solutions that minimize

the clustering objectives, while ensuring that for given pairs j, j′, their assignment distributions

are statistically similar based on some metric D that captures distributional proximity (e.g., total

variation and KL-divergence). In other words, they interpret individual fairness as guaranteeing

D(ϕj, ϕj′) ≤ ψj,j′ for all provided pairs {j, j′} with similarity value ψj,j′ . Although this work

is certainly interesting, it has a significant modeling issue. To be more precise, suppose that for

j, j′ the computed ϕj, ϕj′ are both the uniform distribution over S. Then, according to Anderson

et al. [50] a fair solution is achieved. However, the actual probability of placing j, j′ in different

clusters (hence treating them unequally) is almost 1 (if there is no correlation between ϕj and

ϕj′). On the other hand, our definition of PAIRFAIRCLU which instead asks for a distribution D

over assignments ϕ : C 7→ S, always provides meaningful results, since it bounds the quantity

that really matters, i.e., the probability of separating j and j′ in a random ϕ ∼ D.

In the work of Kar et al. [88] that also follows the paradigm of Dwork et al. [6], each point
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j has a set Sj ⊆ C of other points that are similar to it, as well as a tolerance parameter mj .

The goal is then to find solutions minimizing some clustering objective, while ensuring that each

j ∈ C will have at least mj points from Sj in the cluster it is assigned to.

Next we provide a taxonomy for notions of Individual Fairness in clustering that diverge

from the paradigm of Dwork et al. [6].

A Center in My Neighborhood: In certain applications, minimizing a global objective

on the assignment distances, e.g., the k-means objective, does not suffice in order to capture the

special needs of individual points. For instance, some points may require an assignment distance

much smaller than what other points can tolerate. Hence, it is reasonable to seek solutions where

we do not only minimize the global objective, but also try to satisfy the individual distance needs

of every point. This model was introduced in [51], and increasingly better results were given in a

subsequent series of papers [89, 90, 91].

Individual Fairness when clustering with outliers: As discussed earlier, being chosen as

an outlier is an inherently disadvantageous event for a point. Therefore, a solution that consis-

tently picks certain points as outliers can be arguably considered as biased against them. Harris

et al. [15] introduced a randomized model, where each point should not be picked as an outlier

with probability at least a certain value. Hence, in a stochastic sense this type of solution guar-

antees that every individual point has a decent chance of getting clustered. Later on, Anegg et al.

[16] gave better results for this problem. This stochastic notion of individual fairness is exactly

the one we study in INDFAIRCUT.

Proximity to the points of your cluster: Finally, Kleindessner et al. [92], Ahmadi et al.

[93] introduce an intriguing concept, that views individual fairness as ensuring that each point is

on average closer to the points in its own cluster than to the points in any other cluster.
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1.5.2 Stochastic Clustering Literature

Regarding clustering problems in the two-stage stochastic model with recourse, most prior

work has focused on Facility Location [26, 28, 29, 30, 31, 33, 94]. On similar lines, [95] studies

a stochastic k-center variant, where points arrive independently, but each point only needs to get

clustered with some given probability. Furthermore, the only distributional model that we do not

consider in our work is the independent activations one. According to it, each input element, e.g.,

in our case the clients, arrives independently with some known probability.

Finally, Harris et al. [96, 97] consider versions of classical clustering problems, where

besides the overall objective function minimization, we are also required to provide a stochastic

solution with per-point distance guarantees on expectation.

1.5.3 Vanilla Clustering Literature

Here we mention the best known results for the “unfair” variants of all clustering problems

that this work studies. For the classical k-center problem the best known approximation ratio

is 2, and there are two different algorithms achieving it [8, 98]. Moreover, this ratio of 2 is the

best-possible unless P=NP [64]. For the k-median problem, the best known approximation ratio

is 2.765 [99], while the best hardness is 1 + 2/e [100]. Finally, Ahmadian et al. [101] give a

6.357-approximation for k-means, but the best hardness result here is marginally above 1 [102].

1.5.4 Graph-Cuts and Computational Epidemiology Literature

The unfair variant of our graph-cut problems, i.e., SB-MINCC, was studied in [12, 13, 14].

These papers also considered additional versions of SB-MINCC, where the goal was to maximize
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| prot(V,E \ F, s)| (equivalently minimize |V \ prot(V,E \ F, s)|) subject to an upper bound

constraint on w(F ); note that the latter is exactly a deterministic variant of MININFEDGE, where

all transmission probabilities are 1 (the case of a highly infectious disease).

As far as MININFEDGE is concerned, there has been much work on heuristics for interven-

tions in the SIR model [20, 103, 104, 105, 106, 107]. In particular, heuristics based on degree

or centrality, e.g., [105, 106], have been shown to be quite effective in many classes of networks

(including random graphs), but these do not provide any theoretical guarantees. The work of

Sambaturu et al. [107] also explores the use of the sample average approximation method, but

unlike our results it has worst-case approximation bounds as large as O(n). We note that another

related direction of work has been on reducing the first eigenvalue, referred to as the spectral

radius, based on a characterization of the time to die out in SIS models (in which, unlike the SIR

model, an infected node switches back to state S) [108]. There has been much work on reduc-

ing the spectral radius, e.g., [109, 110, 111, 112, 113]. However, these results do not imply any

guaranteed bounds for MININFEDGE.

1.6 Pointers to the Most Important Results of the Thesis

Our best results for PAIRFAIRCLU are presented in Section 2.1.2. For EQCENTER the

important Sections are 2.2.1 and 2.2.2. The former contains the structural properties of the prob-

lem, while the latter our algorithms. Our main result for DEMFAIRCUT is presented in Section

3.2.2 and our main result for INDFAIRCUT in Section 3.3. Regarding MININFEDGE, the SAA

framework is demonstrated in 4.2, with an application to Chung-Lu graphs shown in Section 4.3.

Finally, the gist of our approach for two-stage clustering is contained in Sections 5.2, 5.3.
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Chapter 2: Addressing Individually Fair Clustering

2.1 Solving PAIRFAIRCLU

2.1.1 Some First Simple Results

In this section we present our first ever result on PAIRFAIRCLU, which appeared in [37].

For this result we are only going to focus on the k-center objective function. Recall now that in

this setting the input consists of a set of clients C, together with a distance function d : C2 7→ R≥0.

The idea is to first run an “unfair” k-center algorithm and then order its returned clusters

arbitrarily. Afterwards, we process each cluster sequentially according to the chosen order, and

we expand its radius by a value sampled independently from an exponential distribution. Any

point which falls within the radii of more than one of these expanded clusters is assigned to the

earliest one in the ordering.

We use Ci ⊆ C to refer to the ith cluster found by the initial “unfair” algorithm and ci to

refer to its center. Similarly, we use C ′
i to refer to the ith expanded cluster that will be part of

our fair output and c′i to refer to its center. For readability, we also refer to Ci and ci as original

and C ′
i and c′i as final. Let Ri = maxj∈Ci

d(ci, j) be the radius of Ci and R = maxiRi be the

maximum radius of any cluster found by the original clustering step. Let κ be a user-specified

constant greater than 0. The approach is summarized in Algorithm 1.
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Algorithm 1: Initial result for PAIRFAIRCLU

Step 1: Run any vanilla k-center algorithm and order its returned clusters arbitrarily
from 1 to k. Let R be the maximum distance of any point to its center;

Step 2: Let Ci be a set of points denoting cluster i. Let ci ∈ Ci be the center of Ci and
Ri be the radius of Ci;

Step 3: Treat all points including centers as “unclustered” and construct a new set of
clusters denoted by C ′

i as follows:
for i = 1 to k do

4: Sample an independent random variable xi from an exponential distribution
with parameter λ = 1/(κR). Let Xi be the realization of that random variable;

5: Construct cluster C ′
i by adding every unclustered point within radius Ri +Xi

from original center ci;
6: If ci was unclustered at the start of this iteration designate it as the center c′i of
C ′

i. Otherwise, if ci has been added to a previous cluster Ci′ , i′ < i, then choose
any other previously unclustered point in C ′

i to be the center c′i. If no such point
exists, call the cluster empty;

end

We note that in the for loop of steps 4 to 6 of Algorithm 1, the centers 1 through k are

processed in an arbitrary order. Because of this, our proofs also hold if the center are processed

in a random order or some particular order aligned with another side objective.

We first prove that Algorithm 1 satisfies the BSP constraint for every pair of points j, j′,

with ψj,j′ = d(j, j′)/(κR). At a high level, it is the memoryless property of the exponentially

distributed random variables that allows our algorithm to achieve the guarantee in Lemma 2.1.1.

Lemma 2.1.1. For any pair of points j and j′, the probability that Algorithm 1 separates j and

j′ into two separate clusters is at most d(j, j′)/(κR), where R is the maximum radius obtained

by the initial algorithm used in step 1 and κ > 0 is a user-specified constant.

Proof. For an arbitrary pair of points j, j′ ∈ C, consider the first iteration i in which at least

one of the points is added to a final cluster C ′
i. Without loss of generality, let j be the closer

point to the original center ci. If d(ci, j′) < Ri, both points will be added to C ′
i regardless of

the value of Xi and the probability of separating j and j′ is 0. Otherwise, conditioned on having
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Ri + Xi > d(ci, j) (j gets in C ′
i), the probability of separating them is the probability that the

value Ri + Xi will be smaller than d(ci, j′) (otherwise j′ will also get in C ′
i hence there will be

no separation). Therefore, we finally get:

P := Pr[j and j′ are separated by C ′
i |Ri +Xi > d(ci, j)]

= Pr[Ri +Xi ≤ d(ci, j
′) |Ri +Xi > d(ci, j)]

= 1− Pr[Ri +Xi > d(ci, j
′) |Ri +Xi > d(ci, j)]

≤ 1− Pr[Ri +Xi > d(ci, j) + d(j, j′) |Ri +Xi > d(ci, j)]

= 1− e−λd(j,j′) = 1− e−d(j,j′)/κR ≤ d(j, j′)

κR

The fourth line follows by the triangle inequality which gives d(ci, j′) ≤ d(ci, j) + d(j, j′), and

hence Pr[Ri+Xi > d(ci, j)+ d(j, j
′) |Ri+Xi > d(ci, j)] ≤ Pr[Ri+Xi > d(ci, j

′) |Ri+Xi >

d(ci, j)]. The rest of the calculations follow from properties of the exponential distribution.

We now bound the amount that the radius of any cluster will increase beyond the maximum

value R achieved by the original “unfair” algorithm from step 1 of Algorithm 1. At this point

note that any 2-approximation algorithm for the classical k-center would guarantee R ≤ 2R∗
unf ,

where R∗
unf is the optimal “unfair” radius.

Lemma 2.1.2. The maximum radius of any cluster is O(R log k) with high probability.

Proof. Since every C ′
i has radius at most Xi + R, we will upper bound the probability that there

exists a very large Xi. Via a union bounds and the properties of the exponential distribution:

Pr[∃Xi > R log k] ≤ k Pr[Xi > R log k] = ke−λR log k = ke− log k/κ = k1−1/κ
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2.1.2 More Refined Results for PAIRFAIRCLU

Here we present some refined results for PAIRFAIRCLU, which can be found in [38]. Be-

fore we proceed to our algorithms, we give some auxiliary lemmas.

2.1.2.1 An LP-Rounding Subroutine

We present an important subroutine developed by Kleinberg and Tardos [39], which we

repeatedly use in our results, and call it KT-Round. Suppose we have a set of elements V , a set

of labels L, and a set of pairs E ⊆
(
V
2

)
. Consider the following Linear Program (LP).

∑
l∈L

xl,v = 1, ∀v ∈ V (2.1)

ze,l ≥ xl,v − xl,w, ∀e = {v, w} ∈ E, ∀l ∈ L (2.2)

ze,l ≥ xl,w − xl,v, ∀e = {v, w} ∈ E, ∀l ∈ L (2.3)

ze =
1

2

∑
l∈L

ze,l, ∀e = {v, w} ∈ E (2.4)

0 ≤ xl,v, ze, ze,l ≤ 1, ∀v ∈ V, ∀e ∈ E,∀l ∈ L (2.5)

Theorem 2.1.3. [39] Given a feasible solution (x, z) of (2.1)-(2.5), there exists a randomized

rounding approach KT-Round(V, L,E, x, z), which in polynomial expected time assigns each

v ∈ V to a ϕ(v) ∈ L, such that:

1. Pr[ϕ(v) ̸= ϕ(w)] ≤ 2ze, ∀e = {v, w} ∈ E

2. Pr[ϕ(v) = l] = xl,v, ∀v ∈ V, ∀l ∈ L
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2.1.2.2 Our Main Algorithmic Result

We use k-center-BSP, k-median-BSP, k-means-BSP to denote PAIRFAIRCLU under the k-

center, k-median and k-means objectives respectively. In this section we show how to achieve

approximation algorithms with provable guarantees for all problems of interest, using a general

two-step framework. At first, let Pk denote any of the vanilla versions of the objective functions

we consider, i.e., Pk ∈ {k-center, k-median, k-means}.

To tackle a Pk-BSP instance, we begin by using on it any known ρ-approximation algo-

rithm APk
for Pk. This gives a set of locations SPk

and an assignment ϕPk
, which yield an

objective function cost of τPk
for the corresponding Pk instance. In other words, we drop the

BSP constraints from the Pk-BSP instance, and simply treat the problem as its vanilla counter-

part. Although ϕPk
may not satisfy the BSPs, we are going to use the set SPk

as our chosen

locations. The second step in our framework would then consist of constructing the appropriate

distribution over assignments. Toward that end, consider the following LP.

∑
i∈SPk

xi,j = 1 ∀j ∈ C (2.6)

ze,i ≥ xi,j − xi,j′ ∀e = {j, j′} ∈ P , ∀i ∈ SPk
(2.7)

ze,i ≥ xi,j′ − xi,j ∀e = {j, j′} ∈ P , ∀i ∈ SPk
(2.8)

ze =
1

2

∑
i∈SPk

ze,i ∀e ∈ P (2.9)

ze ≤ ψe ∀e ∈ P (2.10)

0 ≤ xi,j, ze, ze,i ≤ 1 ∀i ∈ SPk
,∀j ∈ C,∀e ∈ P (2.11)
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The variable xi,j can be interpreted as the probability of assigning point j to location i ∈

SPk
. To understand the meaning of the z variables, it is easier to think of the integral setting,

where xi,j = 1 iff j is assigned to i and 0 otherwise. In this case, ze,i is 1 for e = {j, j′} iff

exactly one of j and j′ are assigned to i. Thus, ze is 1 iff j and j′ are separated. We will later

show that in the fractional setting ze is a lower bound on the probability that j and j′ are separated.

Therefore, constraint (2.6) simply states that every point must be assigned to a center, and given

the previous discussion, (2.10) expresses the provided BSPs.

Depending on which exact objective function we optimize, we must augment LP (2.6)-

(2.11) accordingly.

• k-center: Here we assume w.l.o.g. that the optimal radius τ ∗BSP of the original k-center-

BSP instance is known. Observe that this value is always the distance between some point

and some location, and hence there are only polynomially many alternatives for it. Thus,

we execute our algorithm for each of those, and in the end keep the outcome that resulted

in a feasible solution of minimum value. Given τ ∗BSP , we add the following constraint to

the LP (2.6)-(2.11).

xi,j = 0, ∀i, j : d(i, j) > τPk
+ 2 · τ ∗BSP (2.12)

• k-median (p = 1)/k-means (p = 2): In this case, we augment the LP with the following

objective function.

min
∑
j∈C

∑
i∈SPk

xi,j · d(i, j)p (2.13)

50



Algorithm 2: Approximating Pk-BSP
(SPk

, ϕPk
)← APk

(C,F);
Solve LP (2.6)-(2.11) with (2.12) for k-center, and with (2.13) for k-median/k-means,
and get a fractional solution (x̄, z̄);
ϕ← KT-Round(C, SPk

,P , x̄, z̄);

The second step of our framework begins by solving the appropriate extended LP for each

variant of Pk, in order to acquire a fractional solution (x̄, z̄) to that LP. Finally, the distribution D

over assignments C 7→ SPk
is constructed by running KT-Round(C, SPk

,P , x̄, z̄). Notice that this

will yield an assignment ϕ ∼ D, where D results from the internal randomness of KT-Round.

Our overall approach for solving Pk-BSP is presented in Algorithm 2.

Theorem 2.1.4. Let τ ∗BSP the optimal value of the given Pk-BSP instance. Then Algorithm 2

guarantees that |SPk
| ≤ k, Prϕ∼D[ϕ(j) ̸= ϕ(j′)] ≤ 2ψq ∀eq ∈ P and

1. Pk is k-center: Prϕ∼D[d(ϕ(j), j) ≤ 2τ ∗BSP + τPk
] = 1, for all j ∈ C.

2. Pk is k-median(p = 1)/k-means(p = 2): (
∑

j∈C Eϕ∼D[d(ϕ(j), j)
p])1/p ≤ 2τ ∗BSP + τPk

.

Proof. At first, since SPk
results from running APk

, it must be the case that |SPk
| ≤ k.

Focus now on LP (2.6)-(2.11) with either (2.12) or (2.13), depending on the underlying

objective. In addition, let S∗ and D∗ be the set of locations and the distribution over assignments

C 7→ S∗, that constitute the optimal solution of Pk-BSP. Given those, let x∗i,j = Prϕ∼D∗ [ϕ(j) = i]

for all i ∈ S∗ and all j ∈ C. Moreover, for every i′ ∈ S∗ let κ(i′) = argmini∈SPk
d(i, i′) by

breaking ties arbitrarily. Finally, for all i ∈ SPk
we define N(i) = {i′ ∈ S∗ | i = κ(i′)}, and

notice that the sets N(i) form a partition of S∗.

Consider now the vectors x̂i,j =
∑

i′∈N(i) x
∗
i′,j for every i ∈ SPk

and j ∈ C, and ẑe,i =

|x̂i,j− x̂i,j′ | for every e = {j, j′} ∈ P and i ∈ SPk
. We first show that the above vectors constitute
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a feasible solution of LP (2.6)-(2.11). Initially, notice that constraints (2.7), (2.8), (2.9), (2.11)

are trivially satisfied. Regarding constraint (2.6), for any j ∈ C we have:

∑
i∈SPk

x̂i,j =
∑
i∈SPk

∑
i′∈N(i)

x∗i′,j =
∑
i′∈S∗

x∗i′,j = 1

The second equality follows because the sets N(i) induce a partition of S∗. The last equality is

due to the optimal solution D∗, S∗ satisfying
∑

i∈S∗ Prϕ∼D∗ [ϕ(j) = i] = 1.

To show satisfaction of constraint (2.10) focus on any e = {j, j′} ∈ P ′ and i ∈ SPk
. At

first, it is clear that:

ẑe,i =
∣∣∣ ∑
i′∈N(i)

(x∗i′,j − x∗i′,j′)
∣∣∣ ≤ ∑

i′∈N(i)

|x∗i′,j − x∗i′,j′ |

Therefore, we can easily upper bound ẑe as follows:

ẑe =
1

2

∑
i∈SPk

ẑe,i

≤ 1

2

∑
i∈SPk

∑
i′∈N(i)

|x∗i′,j − x∗i′,j|

≤ 1

2

∑
i′∈S∗

|x∗i′,j − x∗i′,j| (2.14)

To move one, notice that:

Pr
ϕ∼D∗

[ϕ(j) = ϕ(j′)] =
∑
i′∈S∗

Pr
ϕ∼D∗

[ϕ(j) = i′ ∧ ϕ(j′) = i′]

≤
∑
i′∈S∗

min{x∗i′,j, x∗i′,j′} (2.15)
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To relate (2.14) and (2.15) consider the following trick.

∑
i′∈S∗

min{x∗i′,j, x∗i′,j′}+
1

2

∑
i′∈S∗

|x∗i′,j − x∗i′,j′ | =

∑
i′∈S∗

(
min{x∗i′,j, x∗i′,j′}+

|x∗i′,j − x∗i′,j′ |
2

)
=

∑
i′∈S∗

x∗i′,j + x∗i′,j′

2
=

2

2
= 1 (2.16)

Finally, combining (2.14),(2.15),(2.16) we get:

ẑe ≤ 1−
∑
i′∈S∗

min{x∗i′,j, x∗i′,j′}

≤ Pr
ϕ∼D∗

[ϕ(j) ̸= ϕ(j′)] ≤ ψe

where the last inequality follows from optimality of D∗.

Now that we know that (x̂, ẑ) is a feasible solution for (2.6)-(2.11), we proceed by consid-

ering how this solution affects the objective function of each underlying problem.

k-center: The objective here is captured by the additional constraint (2.12). Hence, we

also need to show that x̂ satisfies (2.12), i.e., that for all i ∈ SPk
, j ∈ C for which d(i, j) >

τPk
+ 2 · τ ∗BSP , we have x̂i,j = 0.

Suppose for the sake of contradiction that there exists a j ∈ C and an i ∈ SPk
such that

d(i, j) > τPk
+ 2 · τ ∗BSP and x̂i,j > 0. Since x̂i,j =

∑
i′∈N(i) x

∗
i′,j , this implies that there exists

i′ ∈ N(i) with x∗i′,j > 0, which consecutively implies d(i′, j) ≤ τ ∗BSP . By the triangle inequality:

d(i, j) ≤ d(i, i′) + d(i′, j) ≤ d(i, i′) + τ ∗BSP (2.17)
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Moving forward, we get:

d(i, i′) ≤ d(i′, ϕPk
(j)) ≤ d(i′, j) + d(ϕPk

(j), j) ≤ τ ∗BSP + τPk
(2.18)

Combining (2.17),(2.18) gives the desired contradiction.

k-median(p = 1)/k-means(p = 2): Here the objective function for x̂ is given by:

(∑
j∈C

∑
i∈SPk

x̂i,jd(i, j)
p
) 1

p
=
(∑

j∈C

∑
i∈SPk

∑
i′∈N(i)

x∗i′,jd(i, j)
p
) 1

p
(2.19)

In addition, for i′ ∈ N(i) we also get:

d(i, j) ≤ d(i, i′) + d(i′, j) ≤ d(i′, ϕPk
(j)) + d(i′, j)

≤ d(i′, j) + d(ϕPk
(j), j) + d(i′, j) ≤ 2d(i′, j) + d(ϕPk

(j), j) (2.20)

Combining (2.19), (2.20) and the fact that the median and means objectives are monotone norms,

we get (2.19) ≤ A+B, where:

A =
(∑

j∈C

∑
i∈SPk

∑
i′∈N(i)

2x∗i′,jd(i
′, j)p

) 1
p
= 2
(∑

j∈C

∑
i′∈S∗

x∗i′,jd(i
′, j)p

) 1
p ≤ 2τ ∗BSP (2.21)

B =
(∑

j∈C

∑
i∈SPk

∑
i′∈N(i)

x∗i′,jd(ϕPk
(j), j)p

) 1
p
=
(∑

j∈C

d(ϕPk
(j), j)p

∑
i∈SPk

∑
i′∈N(i)

x∗i′,j

) 1
p

=
(∑

j∈C

d(ϕPk
(j), j)p

∑
i′∈S∗

x∗i′,j

) 1
p
=
(∑

j∈C

d(ϕPk
(j), j)p

) 1
p
= τPk

(2.22)

Combining (2.21), (2.22) we finally get (2.19) ≤ 2τ ∗BSP + τPk
.

Since (x̂, ẑ) is a feasible solution to the appropriate version of the assignment LP, step 2 of
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Algorithm 2 is well-defined, and thus can compute a solution (x̄, z̄) that satisfies (2.6)-(2.11) and

additionally: i)

x̄i,j = 0, ∀i, j : d(i, j) > τPk
+ 2 · τ ∗BSP (2.23)

for k-center, and ii)

(∑
j∈C

∑
i∈SPk

x̄i,jd(i, j)
p
) 1

p ≤
(∑

j∈C

∑
i∈SPk

x̂i,jd(i, j)
p
) 1

p
(2.24)

≤ 2τ ∗BSP + τPk
(2.25)

for k-median(p = 1)/k-means(p = 2).

Because (x̄, z̄) satisfies (2.6), (2.7), (2.8), (2.9), (2.11), KT-Round can be applied for V =

C, L = SPk
, E = P . Let ϕ be the assignment returned by KT-Round(C, SPk

,P , x̄, z̄), and D the

distribution representing the internal randomness of this process. From Theorem 2.1.3 we have

Prϕ∼D[ϕ(j) ̸= ϕ(j′)] ≤ 2z̄e, ∀e = {j, j′} ∈ P . Hence, for every e ∈ P we have

Pr
ϕ∼D

[ϕ(j) ̸= ϕ(j′)] ≤ 2z̄e ≤ 2ψe

because z̄ satisfies (2.10).

Regarding all the different objective functions, we have the following. For k-center, be-

cause of (2.23) and the second property of Theorem 2.1.3, we know that a point j ∈ C will never

be assigned to a location i ∈ SPk
, such that d(i, j) > τPk

+2τ ∗BSP . Therefore, Prϕ∼D[d(ϕ(j), j) ≤
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τPk
+ 2τ ∗BSP ] = 1 for all j ∈ C. As for the k-median(p = 1)/k-means(p = 2) objectives, the

second property of Theorem 2.1.3 ensures:

(∑
j∈C

Eϕ∼D[d(ϕ(j), j)
p]
)1/p

=
(∑

j∈C

∑
i∈SPk

Pr
ϕ∼D

[ϕ(j) = i] · d(i, j)p
)1/p

=
(∑

j∈C

∑
i∈SPk

x̄i,j · d(i, j)p
)1/p
≤ 2τ ∗BSP + τPk

where the last inequality follows from (2.25).

Since Pk is a less restricted version of Pk-BSP, the optimal solution value τ ∗Pk
for Pk in the

original instance where we dropped the BSPs, should satisfy τ ∗Pk
≤ τ ∗BSP . Therefore, becauseAPk

is a ρ-approximation algorithm for Pk, we get τPk
≤ ρ · τ ∗BSP . The latter implies the following.

Corollary 2.1.5. The approximation ratio achieved through Algorithm 2 is (ρ + 2) for all k-

center-BSP, k-median-BSP and k-means-BPS.

2.1.2.3 Better Algorithm for k-center with Must-Link Constraints

Since must-link constraints (ML) are a special case of BSPs, Algorithm 2 provides ap-

proximation results for the former as well (also note that due to ψp = 0 ∀p, we have no pair-

wise constraint violation when using Algorithm 2 purely for ML). However, in this section we

demonstrate how we can get improved approximation guarantees for k-center with ML con-

straints. Specifically, we provide a 3-approximation for this problem, which constitutes a clear

improvement over the 5-approximation, that comes when Algorithm 2 is executed using the best

approximation algorithm for k-center [8, 98] (approximation ratio of 2).

To begin with the description of our algorithm, recall that in the ML case we are only
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Algorithm 3: Approximating ML Constraints
C ← ∅;
S ← ∅;
Initially all C1, C2, . . . , Ct are considered uncovered;
while there exists an uncovered Cq do

Pick an uncovered Cq;
Pick an arbitrary point jq ∈ Cq;
C ← C ∪ {jq};
Cq and all neighboring cliques Cp of it are now considered covered;

end
for all jq ∈ C do

iq ← argmini∈F d(i, jq);
S ← S ∪ {iq};

end
for all j ∈ C do

Let jq ∈ C the point whose clique Cq covered j’s clique in the first while loop;
ϕ(j)← iq;

end

looking for a set of locations S and an assignment ϕ : C 7→ S, and not for a distribution over

assignments. Also, notice that the must-link relation is transitive. If for j, j′ we want ϕ(j) =

ϕ(j′), and for j′, j′′ we also require ϕ(j′) = ϕ(j′′), then ϕ(j) = ϕ(j′′) is necessary as well. Given

that, we view the input as a partition C1, C2, . . . , Ct of the points of C, where all points in Cq,

with q ∈ {1, . . . , t}, must be assigned to the same location of S. We call each part Ci of this

partition a clique. Finally, we can once more assume w.l.o.g. that the optimal radius τ ∗ is known.

Before we proceed with Algorithm 3 that demonstrates all necessary details of our approach, we

need the following definition.

Definition 2.1.6. Two cliques Cq, Cp are neighboring if d(j, j′) ≤ 2τ ∗, ∀j ∈ Cq, ∀j′ ∈ Cp.

Theorem 2.1.7. Algorithm 3 is a 3-approximation for k-center with ML constraints.

Proof. Initially, observe that the must-link constraints are satisfied. When the algorithm chooses
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a location iq based on some jq ∈ C, all the points in Cq are assigned to iq. Also, for the neigh-

boring cliques of Cq that got covered by it, their whole set of points ends up assigned to iq.

We now argue about the achieved approximation ratio. For one thing, it is clear that for

every j, j′ ∈ Cq we must have d(j, j′) ≤ 2τ ∗, and therefore Cq is a neighboring clique of itself.

For each jq ∈ C we choose a location iq such that d(iq, jq) ≤ τ ∗. Also, all points j assigned to iq

belong to neighboring cliques of Cq, and therefore d(iq, j) ≤ d(iq, jq) + d(jq, j) ≤ 3τ ∗.

Finally, we need to show that either the cardinality or the knapsack constraint on the set of

chosen locations is satisfied. Toward that end, notice that if Cq and Cp belong in the same cluster

in the optimal solution, then they are neighboring. Say i⋆ is the location they are both assigned to.

Then for all j ∈ Cq and j′ ∈ Cp we get d(j, i⋆) ≤ τ ∗ and d(j′, i⋆) ≤ τ ∗. Hence, by the triangle

inequality for all j ∈ Cq and j′ ∈ Cp we have d(j, j′) ≤ 2τ ∗.

Given the previous observation, it must be the case that for every jq ∈ C, the optimal

solution assigns it to a location i∗jq , such that for every other jq′ ∈ C we have i∗jq ̸= i∗jq′ . Therefore,

in the presence of a cardinality constraint |S| ≤ |C| =
∑

i∗jq : jq∈C
1 ≤ k.

2.1.3 Experimental Results for PAIRFAIRCLU

Here we present some experimental results, which first appeared in [38], and involve im-

plementations of both our algorithms for PAIRFAIRCLU.

We implement our algorithms in Python 3.8 and run our experiments on AMD Opteron

6272 @ 2.1 GHz with 64 cores and 512 GB 1333 MHz DDR3 memory. The first goal of

the experiments at hand is to compare our approach from [38] with the k-means algorithm

of Anderson et al. [50]; recall that this paper considers a very similar individually-fair model
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(see Section 1.5.1.2). The second goal of these experiments is to compare our k-center algo-

rithm from [38] with our earlier work from [37]. Our code is publicly available at https:

//github.com/chakrabarti/pairwise_constrained_clustering.

Datasets: We use 3 datasets from the UCI ML Repository [114]: (1) Bank-4,521 points

[115], (2) Adult-32,561 points [116], and (3) Creditcard-30,000 points [117].

Algorithms: In all of our experiments C = F . When solving PAIRFAIRCLU with the k-

means objective, we use Lloyd’s algorithm [118] in the first step of Algorithm 2, and in return we

get a set of points L. The set of chosen locations S is then constructed by getting the nearest point

in C for every point of L. This is exactly the approach used by Anderson et al. [50], whose overall

algorithm we denote by ALG-IF. To compare Algorithm 2 with ALG-IF we need a deterministic

solution in the output. To achieve the latter for ALG-IF we use independent sampling; this fixes

the assignment of each j ∈ C to some i ∈ S, based on the distribution ϕj produced by ALG-IF.

For PAIRFAIRCLU with the k-center objective, we use binary search to compute a lower bound

τ ∗C for the value of the optimal solution. We will be referring to the LP-based algorithm from [38]

as ALG-LP, and to the algorithm from [37] as ALG-F.

Fairness Constraints: We consider three similarity metrics (F1, F2, F3) for generating

the ψ values. We use F1 when addressing the k-center objective and F2, F3 for k-means. F1 is

the metric used in our simulations from [37] and F2, F3 are the metrics used in the experimental

evaluation of the algorithms of Anderson et al. [50].

F1 sets ψj,j′ to 16 · d(j, j′)/RScr if 16 · d(j, j′) ≤ RScr, where RScr is the radius given by

running the Scr algorithm [119] on the provided input.

F2 is defined in [50] so that the separation probability between a pair j,j′ is given by d(j, j′),

scaled linearly to ensure all such probabilities are in [0, 1]. Adopting the exact approach taken by
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k 4 6 8 10

Adult Alg-LP 3.65 7.95 17.57 28.83

ALG-IF 91.60 99.81 96.16 99.81

Bank Alg-LP 0.29 1.13 0.86 1.49

ALG-IF 54.87 60.52 97.04 85.36

Credit Alg-LP 1.85 15.28 20.53 31.08

ALG-IF 68.00 99.41 99.7 100.00

Table 2.1: Percentage of constraints that are violated on average for metric F2

Anderson et al. [50] when using this metric, we only consider pairwise constraints between each

j and its closest m neighbors. For our experiments, we set m = 100.

Another similarity metric used by Anderson et al. [50] is the one we call F3. For any j ∈ C,

let rj the minimum distance such that |j′ ∈ C : d(j, j′) ≤ rj| ≥ |C|/k. Then, according to F3, the

similarity value between some j and any other j′ with d(j, j′) ≤ rj , is set to d(j, j′)/rj .

Implementation Details: As performed in [37, 50], we uniformly sample N points from

each dataset and run all algorithms on those sets, while only considering a subset of the numerical

attributes and normalizing the features to have zero mean and unit variance. In our comparisons

with [50] we use N = 500, while in the comparisons with [37] N is set to 250. For the number of

clusters k, we study the values {4, 6, 8, 10} when comparing to [50], and {30, 40, 50, 60} when

comparing to [37]. Finally, to estimate the empirical separation probabilities and the underlying

objective function cost, we run 5000 trials for each randomized assignment procedure, and then

compute averages for the performance measures we are interested in.

Comparison with Anderson et al. [50]: In Tables 2.1 and 2.2, we show what percentage of

fairness constraints are violated by ALG-IF and our algorithm, for the fairness constraints induced

by F2 and F3, allowing for an ϵ = 0.05 threshold on the violation of a separation probability
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k 4 6 8 10

Adult Alg-LP 0.09 0.28 0.61 0.97

ALG-IF 8.16 6.09 7.54 9.80

Bank Alg-LP 0.02 0.18 0.35 0.56

ALG-IF 3.84 4.23 7.02 6.45

Credit Alg-LP 0.00 0.25 0.24 0.37

ALG-IF 1.01 4.05 4.66 4.07

Table 2.2: Percentage of constraints that are violated on average for metric F3

bound; we only consider a pair’s fairness constraint to be violated if the empirical probability of

them being separated exceeds that set by the fairness metric by more than ϵ. It is clear that our

algorithm outperforms ALG-IF consistently across different values of k, different datasets, and

both types of similarity defining metrics.

In order to compare the objective value achieved by both algorithms, we first compute the

average connection costs over the 5000 runs. Since the cost of the clustering returned by Lloyd’s

algorithm contributes to both ALG-LP and ALG-IF, we utilize that as an approximation of the

cost of fairness. In other words, we divide the objective value of the final solutions by the cost

of the clustering produced by Lloyd, and call this quantity cost of fairness. The corresponding

comparisons are presented in Tables 2.3, 2.4. The cost of fairness for both algorithms is very

similar, demonstrating a clear advantage of ALG-LP, since it dominates ALG-IF in the percentage

of fairness constraints violated.

Comparison with Brubach et al. [37]: Before we proceed with our analysis, we state

that the reason for choosing F1 for this set of comparisons, is that this particular metric resulted

in the best possible objective function values in our simulations from [37]. In Table 2.5 we show

what percentage of fairness constraints are violated by oALG-F and ALG-LP, using an ϵ = 0; if
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k 4 6 8 10

Adult Alg-LP 1.81 2.36 3.12 3.53

ALG-IF 1.92 2.35 3.13 3.44

Bank Alg-LP 2.30 3.34 4.07 5.13

ALG-IF 2.39 3.63 4.55 5.10

Credit Alg-LP 1.86 2.22 2.53 2.53

ALG-IF 1.84 2.18 2.49 2.50

Table 2.3: Cost of fairness for metric F2

k 4 6 8 10

Adult Alg-LP 1.12 1.18 1.23 1.22

ALG-IF 1.13 1.18 1.24 1.23

Bank Alg-LP 1.25 1.39 1.46 1.55

ALG-IF 1.32 1.63 1.70 1.91

Credit Alg-LP 1.13 1.11 1.14 1.06

ALG-IF 1.11 1.11 1.14 1.06

Table 2.4: Cost of fairness for metric F3

the empirical probability of separation of a pair exceeds the bound set by the fairness metric by

any amount, it is considered a violation. Both ALG-F and ALG-LP mostly lead to 0 violations,

with our algorithm producing a small number of violations in a few cases, which are essentially

negligible. In Table 2.6 we show the cost of the clusterings produced by ALG-F and ALG-LP,

measured in the normalized metric space by taking the average of the maximum radius of any

cluster over the 5000 runs. Our algorithm in all cases produces clusterings with significantly

smaller radii.

Runtime: The average runtime of ALG-LP over all datasets was k = 30: 140s / k = 40:

150s / k = 50: 160s / k = 60: 160s for F1, k = 4: 63s / k = 6: 20000s / k = 8: 32300s / k = 10:

41000s for F2, and k = 4: 83s / k = 6: 8400s / k = 8: 8900s / k = 10: 7600s for F3.
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k 30 40 50 60

Adult Alg-2 0.03 0.00 0.00 0.00

ALG-F 0.00 0.00 0.00 0.00

Bank Alg-2 0.00 0.04 0.06 0.07

ALG-F 0.00 0.00 0.00 0.00

Credit Alg-2 0.00 0.00 0.00 0.00

ALG-F 0.00 0.00 0.00 0.00

Table 2.5: Percentage of constraints that are violated on average for metric F1

k 30 40 50 60

Adult Alg-2 0.23 0.20 0.17 0.16

ALG-F 0.46 0.46 0.43 0.42

Bank Alg-2 0.08 0.07 0.06 0.05

ALG-F 0.17 0.15 0.14 0.13

Credit Alg-2 0.25 0.24 0.21 0.19

ALG-F 0.43 0.43 0.41 0.41

Table 2.6: Objective achieved for metric F1

2.2 Solving EQCENTER

2.2.1 Structural Properties of the Problem

The purpose of this section is to answer questions regarding the combinatorial nature of our

newly proposed fairness constraints, as studied in EQCENTER. As mentioned in the introduction,

all our results here are for k ≥ 2, since k = 1 is a trivial case.

At first, we want to investigate the range of α for which our problems always admit a feasi-

ble solution. Ideally, an α value close to 1 would be the most fair, since such a value provides the

most equitable outcomes. However, as the next theorem suggests, such a guarantee is impossible.
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Figure 2.1: Construction for m = 8. The solid lines represent a distance of 1 between the
corresponding points. The dashed lines correspond to similarity sets. For instance, the dashed
line between j1 and j9 shows that π(j1) = j9 and π(j9) = j1.

Theorem 2.2.1. For both EQCENTER-PP and EQCENTER-AG, there exist instances with α < 2

that do not admit any feasible solution.

Proof. Let m be a very large even integer, with m
2

also being an even integer. We consider 2m

points C = {j1, j2, . . . , j2m−1, j2m} in a cycle, where d(ji, ji+1) = 1 for all i ∈ [2m − 1], and

also d(j2m, j1) = 1. The rest of the distances are set to be the shortest path ones, based on those

already defined. This is a valid metric space, since it constitutes the shortest path metric resulting

from a simple cycle graph of 2m vertices.

To construct the similarity sets, we map each point j to another point π(j) ̸= j, such that

the function π : C 7→ C is one-to-one and π(π(j)) = j. Given that, the similarity set of point

j will be set to be Sj = {π(j)}. Now let C1 = {ji | i is odd} and C2 = {ji | i is even}. For
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every odd i ∈ [m], set π(ji) = ji+m and π(ji+m) = ji. In this way, because m is even, we

map every point of C1 to some other point of C1. Also, note that for every j ∈ C1 we will have

d(j, π(j)) = m. For the points ji ∈ C2, consider them in increasing order of i. If ji is not already

mapped to some other point, set π(ji) = ji+m
2

and π(ji+m
2
) = ji. This is a valid assignment

because m
2

is assumed to be an even integer. At the end of the above process, we have created a

one-to-one mapping between the points of C2, such that for every j ∈ C2 we have d(j, π(j)) = m
2

.

This concludes the description of the similarity sets. Finally, this pairing process for C1 and C2 is

possible, because both sets include an even number of points. See Figure 2.1 for an example.

To conclude the description of the input we also assume that k = 2. In addition, note that

because for all j we have |Sj| = 1, constraints (1.1) and (1.2) are equivalent and hence showing

infeasibility for this instance covers both EQCENTER-PP and EQCENTER-AG. Finally, to prove

the statement of the theorem, it suffices to show that for all possible choices of centers and all

possible corresponding assignments ϕ, there will always be a point jp for which d(jp, ϕ(jp)) ≥

2d(π(jp), ϕ(π(jp))).

At first, notice that there exists no feasible solution that uses just one center. Supposing

otherwise, let c be the only chosen center. Then there exists only one possible assignment for c,

and that is ϕ(c) = c. Hence d(c, ϕ(c)) = 0, and the constraint for π(c) will never be satisfied.

Now we will show that even solutions that pick two centers c1, c2 cannot admit any feasible

assignment. We proceed via a case analysis on d(c1, c2).

• d(c1, c2) ≤ m
3

: Because the points of C1 and C2 alternate in the metric cycle, we know

that there exists a j ∈ C1 such that d(j, c1) ≤ 1 (in the example of Figure 2.1 we might

have c1 = j2, c2 = j3 and j = j1, π(j) = j9). By the triangle inequality we also get
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d(j, c2) ≤ m
3
+ 1. As for the point π(j), we have:

d(π(j), c1) ≥ d(π(j), j)− d(j, c1) ≥ m− 1

d(π(j), c2) ≥ d(π(j), j)− d(j, c2) ≥ m− m

3
− 1 =

2m

3
− 1

From π(j)’s perspective, the best case situation regarding its fairness constraint is if π(j)

gets assigned to its closest center, and j gets assigned to its farthest one. Given all the

previous inequalities, we see that the best possible service for π(j) is 2m
3
−1, and the worst

possible service for j is m
3
+ 1. We next show that even in this ideal situation for π(j), its

fairness constraint with α < 2 will never be satisfied if m is significantly large. To see this,

note that 2m/3−1
m/3+1

is an increasing function of m and also:

lim
m→∞

( 2m
3
− 1

m
3
+ 1

)
=

2/3

1/3
= 2

Therefore, for every given α < 2, there exists an ma such that 2ma/3−1
ma/3+1

> α.

• m
3
< d(c1, c2) ≤ 2m

3
: In this case, because m is assumed to be significantly large and

because the points of C1, C2 alternate in the metric cycle, we can find a point j ∈ C1 in the

shortest path between c1 and c2, which will be approximately in the middle of the path.

Letting γ ∈ (1
3
, 2
3
] such that d(c1, c2) = γm, we have

γm

2
− 1 ≤ d(j, c1), d(j, c2) ≤

γm

2
+ 1

(in the example of Figure 2.1 we might have c1 = j1, c2 = j5 and j = j3, π(j) = j11).
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Regarding the possible assignments for π(j) we have:

d(π(j), c1) ≥ d(j, π(j))− d(j, c1) ≥ m− γm

2
− 1 = m

(2− γ
2

)
− 1

d(π(j), c2) ≥ d(j, π(j))− d(j, c2) ≥ m− γm

2
− 1 = m

(2− γ
2

)
− 1

Again we will focus on the best case situation for π(j), which according to the previous

analysis is π(j) getting assigned to a center at distance m(2−γ)
2
− 1 from it, and j getting

assigned to a center at distance γm
2

+ 1. Therefore, we consider the ratio m(2−γ)/2−1
γm/2+1

, and

we are going to prove that even in this ideal case for π(j), its fairness constraint for α < 2

will not be satisfiable if m is sufficiently large. At first, because 2−γ
2
, γ
2
> 0 the previous

ratio will be an increasing function of m. In addition,

lim
m→∞

(m(2− γ)/2− 1

γm/2 + 1

)
=

(2− γ)/2
γ/2

=
2− γ
γ
≥ 2

The last inequality follows since 2−γ
γ

is a decreasing function, and for γ ∈ (1
3
, 2
3
] we have

2−γ
γ
∈ [2, 5). Hence, for every α < 2 there exists an mb such that mb(2−γ)/2−1

γmb/2+1
> α.

• 2m
3
< d(c1, c2) ≤ m: Because m is assumed to be significantly large and because the

points of C1, C2 alternate in the metric cycle, we can find a point j ∈ C2 in the shortest path

between c1 and c2, which will be approximately in the middle of the path. Letting γ ∈ (2
3
, 1]

such that d(c1, c2) = γm, we have γm
2
− 1 ≤ d(j, c1), d(j, c2) ≤ γm

2
+ 1 (in Figure 2.1 we

might have c1 = j2, c2 = j10 and j = j14, π(j) = j10). Consider now π(j), and without

loss of generality assume that d(π(j), c1) ≥ d(π(j), c2) (when d(π(j), c1) ≤ d(π(j), c2)

the situation is symmetric, with the roles of c1, c2 switched.).
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At first, suppose that π(j) is a point in the shortest path between c1 and c2 (in the example of

Figure 2.1 c1 = j2, c2 = j10 and j = j14 would result in that). Thus, because d(j, π(j)) =

m/2, d(π(j), c1) ≥ d(π(j), c2) and d(c1, c2) ≤ m, we can focus on the line segment

c1, j, π(j), c2, where the triangle inequality holds with equality. Here we get,

d(π(j), c2) = d(j, c2)− d(j, π(j)) ≤
γm

2
+ 1− m

2
=

(γ − 1)m

2
+ 1 ≤ 1

In addition,

d(π(j), c1) = d(j, π(j)) + d(j, c1) ≥
m

2
+
γm

2
− 1 =

(1 + γ)m

2
− 1

The second case we consider is when π(j) is not on the shortest path between c1 and c2

(in Figure 2.1 take for instance c1 = j1, c2 = j11 and hence j = j14 and π(j) = j10). In

that scenario, because d(π(j), c1) ≥ d(π(j), c2), we turn our attention to the line segment

c1, j, c2, π(j), where the triangle inequality holds with equality. Here we have

d(π(j), c2) = d(j, π(j))− d(j, c2) ≤
m

2
− γm

2
+ 1 =

(1− γ)m
2

+ 1

d(π(j), c1) = d(j, π(j)) + d(j, c1) ≥
m

2
+
γm

2
− 1 =

(1 + γ)m

2
− 1

Therefore, in every case we have the following:

d(π(j), c1) ≥
(1 + γ)m

2
− 1 and d(π(j), c2) ≤

(1− γ)m
2

+ 1 (2.26)
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Now that we have the bounds (2.26) for the assignment distance of π(j) to both centers,

we proceed with the final case analysis.

Suppose that π(j) gets assigned to c1. Then from π(j)’s perspective, the best possible

situation is if its own assignment distance is exactly (1+γ)m
2
− 1, and j gets an assignment

distance of γm
2
+1. In this case, the ratio (1+γ)m/2−1

γm/2+1
is an increasing function ofm, because

(1 + γ)/2, γ/2 > 0. In addition we have:

lim
m→∞

(1 + γ)m/2− 1

γm/2 + 1
=

1 + γ

γ
≥ 2

The last inequality is because 1+γ
γ

is a decreasing function and γ ≤ 1. Hence, for every

α < 2, there exists an mc such that (1+γ)mc/2−1
γmc/2+1

> α. Thus, even in the ideal situation for

π(j), if m is larger than mc its fairness constraint for α < 2 will be unsatisfiable.

On the other hand, suppose that π(j) gets assigned to c2. Then from j’s perspective, the best

possible situation is if it gets an assignment distance of γm
2
− 1, and π(j) has assignment

distance exactly (1−γ)m
2

+ 1. In this case, the ratio γm/2−1
(1−γ)m/2+1

is an increasing function of

m, because (1− γ)/2, γ/2 > 0. Also:

lim
m→∞

γm/2− 1

(1− γ)m/2 + 1
=

γ

1− γ
> 2

The last inequality is because γ
1−γ

is an increasing function and γ > 2/3. Hence, for every

α < 2, there exists an md such that γmd/2−1
(1−γ)md/2+1

> α. Thus, even in the ideal situation for

j, if m is larger than md, j’s fairness constraint for α < 2 will be unsatisfiable.

The analysis is exhaustive, because the maximum distance between two points in the metric is
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m. Further, we see that if we set m = 4max{ma,mb,mc,md}, then in every possible scenario

there will exist a point whose fairness constraint for α < 2 will not be satisfiable.

Moving on, we show that for α ≥ 2 there is always a feasible solution to both our prob-

lems, and hence we settle the important question of what is the smallest value of α for which

EQCENTER-PP and EQCENTER-AG are well-defined.

Lemma 2.2.2. Consider a set of points C in a metric space with distance function d, where

|C| ≥ 2. Then there exists an efficient way of finding two distinct points c1, c2 ∈ C and an

assignment ϕ : C 7→ {c1, c2}, such that for every j ∈ C we have d(c1,c2)
2
≤ d(j, ϕ(j)) ≤ d(c1, c2).

Proof. At first, choose c1, c2 to be the two points of C that are the furthest apart, i.e. (c1, c2) =

argmaxx,y∈C d(x, y). Then, for every j ∈ C set ϕ(j) = argmaxc∈{c1,c2} d(j, c). In other words,

given the chosen centers, each point is assigned to the center that is furthest from it in the metric.

Let also ϕ̄(j) be the center to which j is not assigned to. For any j ∈ C, combining the triangle

inequality and the fact that d(j, ϕ̄(j)) ≤ d(j, ϕ(j)), will give us:

d(c1, c2) ≤ d(j, ϕ(j)) + d(j, ϕ̄(j)) ≤ 2d(j, ϕ(j)) =⇒ d(c1, c2)/2 ≤ d(j, ϕ(j))

Finally, by the way we chose c1 and c2 we also get d(j, ϕ(j)) ≤ d(c1, c2).

Theorem 2.2.3. For both EQCENTER-PP and EQCENTER-AG, every instance with α ≥ 2 admits

a feasible solution.

Proof. Suppose that as an instance to either problem we are given a set of points C together with

their associated similarity sets Sj , k ≥ 2 and α ≥ 2. Since k ≥ 2, we can use Lemma 2.2.2 and

get a set of two centers {c1, c2} and an assignment function ϕ : C 7→ {c1, c2}, such that for all

70



Figure 2.2: PoF example: Lines represent distances, such that d(j1, j2) = R′, d(j2, j3) = R.

j ∈ C we have d(c1, c2)/2 ≤ d(j, ϕ(j)) ≤ d(c1, c2). In the case of constraint (1.1), for every j ∈ C

and any j′ ∈ Sj we have d(j, ϕ(j)) ≤ d(c1, c2) ≤ 2d(j′, ϕ(j′)) ≤ αd(j′, ϕ(j′)). Furthermore,

since any feasible solution for constraint (1.1) is also a feasible solution for constraint (1.2), the

proof is concluded.

Another structural notion that interests us, is that of the Price of Fairness (PoF). For a given

instance of either of our problems, PoF is the ratio of the value of the optimal solution to the

problem, over the the optimal unfair value. The latter is defined as the optimal value of the given

instance, when we drop the fairness constraint and simply solve k-center. As is the case in most

fair clustering literature, we show that in general PoF can be arbitrarily large.

Theorem 2.2.4. Both EQCENTER-PP and EQCENTER-AG have instances with unbounded PoF.

Proof. We will use the example of Figure 2.2 for both problems. Consider three points j1, j2, j3

on the line, where d(j1, j2) = R′, d(j2, j3) = R and d(j1, j3) = R′+R. Moreover, let α = 2, k =

2,Sj1 = {j2},Sj2 = {j1, j3},Sj3 = {j2}, and assume that R′ ≪ R as well as R
R′ ≫ 2.

First, note that in the absence of the fairness constraints, the optimal solution for k-center

occurs when j2 and j3 (or j1 and j3) are chosen as centers, and its corresponding value is R′.

Moving forward, we show that the optimal solution for the fair variants has value at least R

(note that the existence of such a solution is guaranteed by Theorem 2.2.3). This implies that PoF

is at least R
R′ , and since R′ ≪ R this can be arbitrarily large. We proceed with a case analysis.
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Initially, consider a solution that uses only one center. If that center is either j1 or j3, then

regardless of feasibility issues the value of the corresponding solution will be R′ + R. On the

other hand, if j2 is chosen as a center, then we will necessarily have ϕ(j1) = ϕ(j2) = ϕ(j3) = j2

as the only possible assignment. Hence, because d(j2, ϕ(j2)) = 0 and Sj1 = {j2}, no matter

what constraint we have for j1, it cannot be satisfied. Thus, j2 can never be a center on its own.

Now we consider solutions that use exactly two centers.

• Let {j1, j2} be the set of chosen centers. In this case note that d(j2, ϕ(j2)) ∈ {0, R′}. If

d(j2, ϕ(j2)) = 0, then clearly both constraints (1.1) and (1.2) for j3 cannot be satisfied. If

d(j2, ϕ(j2)) = R′, then d(j3,ϕ(j3))
d(j2,ϕ(j2))

≥ R
R′ > 2, and hence again the fairness constraints for j3

cannot be satisfied. Therefore, {j1, j2} will never be the chosen set of centers.

• Let {j2, j3} be the set of chosen centers. If we want to satisfy the fairness constraints for

j1, we should set ϕ(j2) = j3, because otherwise the assignment distance of j2 will be 0.

Having ϕ(j2) = j3 immediately implies that if there is a feasible solution for this set of

centers, its value should be at least d(j2, ϕ(j2)) = R.

• Let {j1, j3} be the set of chosen centers. To begin with, see that an assignment that leads

to a value of R′ is not possible. The only mapping that leads to such a solution is ϕ(j1) =

j1, ϕ(j2) = j1, ϕ(j3) = j3. However, this violates both constraints (1.1) and (1.2) for j2,

since all points in Sj2 will have an assignment distance of 0. Thus, because of the discrete

values of the metric space, any feasible solution using {j1, j3} as its centers should have

value at least R.
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2.2.2 Approximation Algorithms for EQCENTER-PP and EQCENTER-AG

Suppose that we are given an instance of EQCENTER with α, k ≥ 2, and we are either

solving EQCENTER-PP or EQCENTER-AG. In addition, let Rm = maxj∈C Rj and let R∗ denote

the value of the optimal solution of the corresponding problem.

In this section we provide a procedure that works under an explicitly given value R, with

R ≥ Rm. This process will either give a feasible solution (SR, ϕR) with maxj∈C d(j, ϕR(j)) ≤

5R, or an infeasibility message. The latter message indicates with absolute certainty thatR < R∗.

The aforementioned procedure suffices to guarantee the result of Theorem 1.4.6. Because

R∗ is always the distance between two points in C, the total number of possible values for it is

only polynomial, specifically at most
(|C|

2

)
. Hence, we can run the procedure for all such distances

that are at least Rm, and in the end keep (SR, ϕR) for the minimum guess R for which we did not

receive an infeasibility message. If Rm ≤ R∗, then our returned solution is guaranteed to have

value at most 5R∗, because R∗ is one of the target values we tested. On the other hand, when

Rm > R∗, the iteration with Rm as the guess cannot return and infeasibility message, and thus

it provide a solution of value at most 5Rm. As a side note, we can speed up the runtime of this

approach by using binary search over the guesses R, instead of a naive brute-force method.

Therefore, apart from the input instance, assume that we are also given a target value R

with R ≥ Rm. Our framework begins by choosing an appropriate set of centers S. The full

details of this step are presented in Algorithm 4. Besides choosing this set S, Algorithm 4 also

creates a partition P1, P2, . . . PT of S for some T ≤ |C|, and returns sets Gc ⊆ C for every c ∈ S.

Initially, all point of C are considered uncovered (U = C). The algorithm works by trying to

expand the current set of centers Pt as much as possible, via finding a new center that is currently
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Algorithm 4: Choosing an initial set of centers
S ← ∅, U ← C, P0 ← ∅, t← 0;
while U ̸= ∅ do

Q← {c ∈ U | ∃c′ ∈ Pt such that d(c, c′) ≤ 3R};
if Q ̸= ∅ then

Choose a point c ∈ Q;
Pt ← Pt ∪ {c};
S ← S ∪ {c};
Gc ← {j ∈ U | d(j, c) ≤ 2R};
U ← U \Gc;

else
Choose an arbitrary c ∈ U ;
t← t+ 1;
Pt ← {c};
S ← S ∪ {c};
Gc ← {j ∈ U | d(j, c) ≤ 2R};
U ← U \Gc;

end
end
Return the set S, the partition P1, P2, . . . Pt of S, and the sets Gc for every c ∈ S;

uncovered and is within distance 3R from some center already placed in Pt. If no such point

exists, then we never deal with Pt again, and we move on to create Pt+1 by choosing an arbitrary

uncovered point as the first center for it. In additional, every time a center c is chosen, it covers

all uncovered points that are within distance 2R from it, and these points constitute the set Gc.

This process is repeated until all points get covered, i.e., until the set U becomes empty.

For every c ∈ S, let t(c) be the index of the partition set c belongs to, i.e., c ∈ Pt(c). We

also define SI = {c ∈ S : |Pt(c)| = 1} and SN = S \ SI . We interpret the centers of SI as being

isolated, since for each c ∈ SI its corresponding partition set contains only c, i.e., Pt(c) = {c}.

On the other hand, the centers of SN are non-isolated, in the sense of having |Pt(c)| > 1 for each

c ∈ SN . In addition, for every point j ∈ C, let ρ(j) the center of S that covered j, i.e., j ∈ Gρ(j).

Note that d(j, ρ(j)) ≤ 2R. Finally, let CI = {j ∈ C : ρ(j) ∈ SI} and CN = C \ CI , where CI are
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the points that got covered by isolated centers, and CN the points covered by non-isolated centers.

Observation 2.2.5. For every distinct c, c′ ∈ S we have d(c, c′) > 2R.

Observation 2.2.6. For every c ∈ SN , there exists a different c′ ∈ SN with d(c, c′) ≤ 3R.

Observation 2.2.7. The sets Gc for all c ∈ S, induce a partition of C.

The previous observations follow trivially from the definition of Algorithm 4. However,

Observation 2.2.6 is of particular importance, since it will allow us to carefully control the assign-

ment distances of points later on, in a way that would satisfy the underlying fairness constraints.

Lemma 2.2.8. For any c ∈ SI , we have d(j, j′) > R for all j ∈ Gc and all j′ ∈ C \Gc.

Proof. Focus on such a c ∈ SI , and for the sake of contradiction assume that there exists a j ∈ Gc

and a j′ ∈ C \Gc for which d(j, j′) ≤ R. Let c′ ̸= c the center of S with c′ = ρ(j′).

At first, suppose that during the execution of Algorithm 4 c entered S before c′. Having

|Pt(c)| = 1 means that when Pt(c) = {c}, the algorithm tried to find a point in U within distance

3R from c but failed. However, at that time j′ was still in U , because j′ ∈ Gc′ and c′ entered S

after c. In addition d(j′, c) ≤ d(j, j′) + d(j, c) ≤ 3R, and thus we reached a contradiction.

Now assume that c′ entered S before c. This implies that t(c′) < t(c), because |Pt(c)| = 1.

When the algorithm stopped expanding Pt(c′), there was not any point of U within distance 3R

from a center of Pt(c′). However, at that moment j was still in U , because j ∈ Gc and t(c′) < t(c).

In addition d(j, c′) ≤ d(j, j′) + d(j′, c′) ≤ 3R, and so we once again reach a contradiction.

By using Lemma 2.2.8 and the fact that R ≥ Rm, we immediately get the following.

Corollary 2.2.9. For every c ∈ SI , we have Sj ⊆ Gc ⊆ CI for all j ∈ Gc.
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Corollary 2.2.10. For every j ∈ CN , we have Sj ∩ CI = ∅.

In words, Corollary 2.2.9 says that the similarity set of a point j ∈ CI is completely con-

tained in Gρ(j), where of course ρ(j) ∈ SI and Gρ(j) ⊆ CI . Similarly, Corollary 2.2.10 says that

the similarity set of a point j ∈ CN is completely contained in CN .

After computing the set of centers S, our approach proceeds by constructing the appropriate

assignment function. This will occur in two steps. The first step takes care of the points in CI , by

choosing a new set of centers S ′
I ⊆ CI , and by constructing an assignment ϕI : CI 7→ S ′

I . The

second step handles the points of CN via a mapping ϕN : CN 7→ SN . This is well-defined, since

CI ∩ CN = ∅. Note now that due to Corollary 2.2.9, the fairness constraint of a point j ∈ CI is

only affected by ϕI , since Sj ⊆ Gρ(j) ⊆ CI and CI ∩ CN = ∅. Similarly, due to Corollary 2.2.10,

the fairness constraint of a j ∈ CN is only affected by ϕN , since Sj ⊆ CN and CI ∩CN = ∅. Thus,

we can study the satisfaction of fairness constraints separately on CI for ϕI , and on CN for ϕN .

Algorithm 5 demonstrates the details of the first assignment step. The algorithm operates

by trying to “guess” if the optimal solution uses exactly one center inside each Gc for c ∈ SI . If

it does, so will our algorithm. If not, then our approach will open exactly two centers, and will

subsequently construct an assignment that will satisfy the appropriate fairness constraint.

Lemma 2.2.11. After the execution of Algorithm 5, for every j ∈ CI we have that the constructed

assignment ϕI will 1) satisfy j’s fairness constraint, and 2) guarantee d(j, ϕI(j)) ≤ 4R.

Proof. At first, due to Observation 2.2.7, Algorithm 5 sets the value ϕI(j) for each j ∈ CI exactly

once. In addition, we know that for every j ∈ CI , all points of Sj will have their assignment set

in the same iteration of Algorithm 5, since ρ(j) ∈ SI and by Corollary 2.2.9 we have Sj ⊆ Gρ(j).

For a point j ∈ CI , when ρ(j) is considered by Algorithm 5 there are two possible scenarios.
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Algorithm 5: Assignment for the points of CI
S ′
I ← ∅;

for every c ∈ SI do
Check if there exists any j ∈ Gc, such that assigning all points of Gc to j would
result in the appropriate fairness constraint being satisfied for each j′ ∈ Gc. Note
that checking this feasibility condition is possible due to Corollary 2.2.9. If there
existed such a j, set S ′

I ← S ′
I ∪ {j} and ϕI(j

′)← j for all j′ ∈ Gc;
If you could not find such a j, use the algorithm of Lemma 2.2.2 on the points of
Gc. This will return two points c1, c2 ∈ Gc and an assignment ϕ : Gc 7→ {c1, c2}.
Then set S ′

I ← S ′
I ∪ {c1, c2} and ϕI(j

′)← ϕ(j′) for all j′ ∈ Gc;
end
Return S ′

I and ϕI ;

In the first we have |S ′
I ∩ Gρ(j)| = 1. If that happens, all points of Gρ(j) are assigned to the only

point of S ′
I ∩ Gρ(j), and we are also sure that the fairness constraint of all of them is satisfied.

Otherwise, we have |S ′
I ∩ Gρ(j)| = 2, as a result of running the algorithm of Lemma 2.2.2 on

Gρ(j). By using the assignment guarantees of that algorithm, it is easy to see that the fairness

constraints for all j′ ∈ Gρ(j) will again be satisfied. Hence, in both cases the corresponding

fairness constraint is satisfied for j.

Thus, d(j, ϕI(j)) ≤ d(j, ρ(j))+d(ϕI(j), ρ(j)) ≤ 4R, since ϕI(j) ∈ Gρ(j) in each case.

Lemma 2.2.12. If R ≥ R∗, then after the execution of Algorithm 5 we have |S ′
I |+ |SN | ≤ k.

Proof. Let S∗ be the optimal set of centers, and ϕ∗ the corresponding optimal assignment. The

following two statements rely on the fact that R ≥ R∗. First, by Observation 2.2.5 note that for

two distinct points c, c′ ∈ SN we must have ϕ∗(c) ̸= ϕ∗(c′). Second, due to Lemma 2.2.8 we also

have ϕ∗(c) /∈ CI for every c ∈ SN . The two previous statements imply |SN | ≤ |S∗ \ CI |.

Now focus on S∗ ∩ CI , and see that |S∗ ∩ CI | =
∑

c∈SI
|S∗ ∩Gc| due to Observation 2.2.7

and the definition of CI . Further, due to Lemma 2.2.8 and the fact that R ≥ R∗, we have that

|S∗ ∩Gc| ≥ 1 for every c ∈ SI . If |S∗ ∩Gc| = 1, then we know that the optimal solution assigns
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all points ofGc to the unique point of S∗∩Gc. This assignment is obviously feasible, and thus the

first part of Algorithm 5 can identify it and guarantee |S ′
I ∩Gc| = 1. Otherwise, if |S∗∩Gc| ≥ 2,

then Algorithm 5 ensures that |S ′
I ∩Gc| ≤ 2. Therefore, we get

|S ′
I | =

∑
c∈SI

|S ′
I ∩Gc| ≤

∑
c∈SI

|S∗ ∩Gc| = |S∗ ∩ CI |

Putting everything together yields

|S ′
I |+ |SN | ≤ |S∗ ∩ CI |+ |S∗ \ CI | = |S∗| ≤ k

Using the contrapositive of Lemma 2.2.12, we see that if |S ′
I | + |SN | > k then R < R∗,

and hence we can safely return as our answer an infeasibility message.

Before we proceed to the second step of our assignment process, we need some extra

notation. For each c ∈ SN define H1
c = {j ∈ CN | d(j, c) ≤ R} and H2

c = Gc \
(⋃

c′∈SN
H1

c′

)
.

Combining Observation 2.2.5, Observation 2.2.7 and the way we constructed the sets H1
c , H

2
c , it

is easy to see that for each j ∈ CN exactly one of the following two cases will hold.

• The point j belongs to exactly one H1
c for some c ∈ SN . In addition, j clearly does not

belong to any setH2
c′ for c′ ∈ SN . In this case, we call j a type-1 point, and we set π(j) = c.

• The point j belongs to H2
ρ(j). In addition, j does not belong to any H1

c for c ∈ SN , and it

does not belong to anyH2
c with c ̸= ρ(j). Here we call j a type-2 point, and set π(j) = ρ(j).

Further, let C1N = {j ∈ CN | j is a type-1 point} and C2N = {j ∈ CN | j is a type-2 point}.

Therefore, C1N ∩ C2N = ∅ and C1N ∪ C2N = CN . Finally, the definition of a type-2 point implies:
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Algorithm 6: Assignment for the points of CN
for every j ∈ CN do

if j ∈ C1N then
ϕN(j)← argminc∈(SN\{π(j)}) d(j, c) ; // Case (A)

end
if j ∈ C2N then

if ∃c ∈ (SN \ {π(j)}) : d(j, c) ≤ 2R then
ϕN(j)← argmaxc′∈SN :d(j,c′)≤2R d(j, c

′) ; // Case (B)

else
ϕN(j)← argminc′∈(SN\{π(j)}) d(j, c

′) ; // Case (C)

end
end

end
Return the assignment ϕN : CN 7→ SN ;

Observation 2.2.13. For all j ∈ C2N , we have d(j, π(j)) ≤ 2R and d(j, c) > R for all c ∈ SN .

The distinction between type-1 and type-2 points is necessary for satisfying the fairness

constraints. Notice that by construction of SN type-1 points are more “privilleged”, since they

have an available center within distance at most R from them. On the other hand, type-2 points

do not have such an advantage. Thus, the assignment process should be aware of this discrepancy,

so it can favor type-2 points in a controlled way that will satisfy everyone’s fairness constraint.

Algorithm 6 demonstrates the full details of constructing the assignment ϕN : CN 7→ SN .

The high-level intuition behind it follows. At first, we try to provide each point j with an as-

signment distance in the range [R, 5R], something that is possible due to Observation 2.2.6.

However, since α might be less than 5, we are very careful in how we handle the assignment of

similar points. The latter is achieved by considering type-1 and type-2 points independently, in a

manner that is aware of where the potential similar points of each type may be.

Lemma 2.2.14. For any point j ∈ CN we have:

• d(j, π(j)) ≤ R < d(j, ϕN(j)) ≤ 4R, if j gets assigned to ϕN(j) through Case (A).
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• R < d(j, π(j)) ≤ d(j, ϕN(j)) ≤ 2R, if j gets assigned to ϕN(j) through Case (B).

• d(j, π(j)) ≤ 2R < d(j, ϕN(j)) ≤ 5R, if j gets assigned to ϕN(j) through Case (C).

Proof. In Case (A) d(j, π(j)) ≤ R since j ∈ H1
π(j). Also, due to Observation 2.2.5 there does not

exist any point in SN \ {π(j)} that is within distance at most R from j, and hence d(j, ϕN(j)) >

R ≥ d(j, π(j)). In addition, Observation 2.2.6 ensures that there exists a c ∈ SN \ {π(j)} such

that d(π(j), c) ≤ 3R. Therefore, d(j, ϕN(j)) ≤ d(j, c) ≤ d(j, π(j)) + d(π(j), c) ≤ 4R.

The assignment guarantee for Case (B) follows trivially from Observation 2.2.13, and the

way the algorithm operates in that situation.

In Case (C) we have d(j, c) > 2R ≥ d(j, π(j)) for all c ∈ SN \ {π(j)}. Also, Observation

2.2.6 ensures that there exists a c′ ∈ SN \ {π(j)} such that d(π(j), c′) ≤ 3R. Hence

d(j, ϕN(j)) ≤ d(j, c′) ≤ d(j, π(j)) + d(π(j), c′) ≤ 5R

where d(j, π(j)) ≤ 2R follows from Observation 2.2.13.

Lemma 2.2.14 immediately gives an upper bound of 5R for the maximum assignment

distance. However, it is the rest of the inequalities shown there that allow us to prove satisfaction

of the fairness constraints by ϕN . This is achieved in the following Lemma.

Lemma 2.2.15. For all j ∈ CN , we have d(j, ϕN(j)) ≤ α · d(j′, ϕN(j
′)) for all j′ ∈ Sj .

Proof. Consider some j ∈ CN and some j′ ∈ Sj . The proof of the statement will be based on an

exhaustive case analysis. Before we proceed, we mention two inequalities that we will repeatedly

use. At first, d(j, j′) ≤ d(j′, ϕN(j
′)), because d(j, j′) ≤ Rm ≤ R and by Lemma 2.2.14 we have

d(j′, ϕN(j
′)) > R. Moreover, d(j′, π(j′)) ≤ d(j′, ϕN(j

′)), again by using Lemma 2.2.14.
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• Suppose that j is a type-1 point and j′ is also a type-1 point.

At first let π(j) ̸= π(j′). Then j can potentially be assigned to π(j′), and therefore we have

d(j, ϕN(j)) ≤ d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ 2d(j′, ϕN(j
′)) ≤ α · d(j′, ϕN(j

′)).

Now let π(j) = π(j′). Because j′ is a type-1 point and gets assigned according to Case (A),

we know that ϕN(j
′) ̸= π(j), Hence j can potentially be assigned to ϕN(j

′). Therefore,

d(j, ϕN(j)) ≤ d(j, ϕN(j
′)) ≤ d(j, j′) + d(j′, ϕN(j

′)) ≤ 2d(j′, ϕN(j
′)) ≤ α · d(j′, ϕN(j

′)).

• Suppose that j is a type-1 point and j′ is a type-2 point.

At first assume j′ received its assignment via Case (C). Then, by Lemma 2.2.14 we know

that d(j′, ϕN(j
′)) > 2R. In addition, again by Lemma 2.2.14, we have d(j, ϕN(j)) ≤ 4R.

Thus, d(j, ϕN(j)) ≤ 2d(j′, ϕN(j
′)) ≤ α · d(j′, ϕN(j

′)).

Now assume that j′ received its assignment through Case (B). Therefore, there exists c ∈

S \ {π(j′)} with d(j′, c) ≤ 2R. By the way Case (B) works and Observation 2.2.13, we

also have d(j′, ϕN(j
′)) ≥ max(d(j′, π(j′)), d(j′, c)). Let us now see what happens when

π(j′) = π(j). Then c ̸= π(j), and thus j can potentially be assigned to c. Therefore,

d(j, ϕN(j)) ≤ d(j, c) ≤ d(j, j′) + d(j′, c) ≤ d(j, j′) + d(j′, ϕN(j
′)) ≤ 2d(j′, ϕN(j

′)) ≤

α · d(j′, ϕN(j
′)). On the other hand, if π(j′) ̸= π(j), then j can potentially get assigned to

π(j′), and thus have d(j, ϕN(j)) ≤ d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ α · d(j′, ϕN(j
′)).

• Suppose j is a type-2 point, and also gets its assignment via Case (B). By Lemma 2.2.14

we have d(j, ϕN(j)) ≤ 2R and d(j′, ϕN(j
′)) > R. The statement follows since α ≥ 2.

• Suppose that j is a type-2 point, j′ is a type-1 point, and j gets its assignment via Case (C).

At first, assume that ϕN(j
′) ̸= π(j). In this case j can potentially get assigned to ϕN(j

′),
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and d(j, ϕN(j)) ≤ d(j, ϕN(j
′)) ≤ d(j, j′) + d(j′, ϕN(j

′)) ≤ α · d(j′, ϕN(j
′)).

Now assume that ϕN(j
′) = π(j). Because j′ is a type-1 points and so ϕN(j

′) ̸= π(j′), we

can infer that π(j) ̸= π(j′). Also, d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ 2R. However, the

latter contradicts the assumption that j got its assignment according to Case (C). Therefore,

we know that ϕN(j
′) ̸= π(j) necessarily.

• Suppose that both j, j′ are type-2 points, and j gets its assignment via Case (C).

At first, assume π(j′) ̸= π(j). Then j can potentially get assigned to π(j′), and therefore

d(j, ϕN(j)) ≤ d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ 2d(j′, ϕN(j
′)) ≤ α · d(j′, ϕN(j

′)).

Now let π(j′) = π(j). To begin with, assume that there exists a c ∈ S \ {π(j)} such that

d(j′, c) ≤ 2R. Moreover, because c ̸= π(j), j can potentially get assigned to c, and thus

d(j, ϕN(j)) ≤ d(j, c) ≤ d(j, j′) + d(j′, c) ≤ d(j, j′) + d(j′, ϕN(j
′)) ≤ α · d(j′, ϕN(j

′)).

To get d(j′, c) ≤ d(j′, ϕN(j
′)) we simply used the way Case (B) works. Finally, suppose

that ∀c ∈ S \{π(j)} we have d(j′, c) > 2R. Then ϕN(j
′) ̸= π(j) and j can get assigned to

ϕN(j
′). Thus, d(j, ϕN(j)) ≤ d(j, ϕN(j

′)) ≤ d(j, j′) + d(j′, ϕN(j
′)) ≤ α · d(j, ϕN(j

′))

Combining Lemmas 2.2.14 and 2.2.15 we get the following.

Lemma 2.2.16. After the execution of Algorithm 6, for every j ∈ CN we have that the constructed

assignment ϕN will 1) satisfy j’s fairness constraint, and 2) guarantee d(j, ϕN(j)) ≤ 5R.

Combining Lemmas 2.2.11, 2.2.16 and 2.2.12 with the fact that the number of centers used

is |S ′
I | + |SN |, we see that we provide a procedure that for a guess R ≥ Rm works as follows.

It either returns a solution with maximum assignment distance 5R, or returns an infeasibility

message indicating R < R∗. As mentioned earlier, this concludes the proof of Theorem 1.4.6.
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2.2.2.1 Cases with Bounded PoF

As we have already shown in Theorem 2.2.4, the Price of Fairness for both variants of

EQCENTER we consider, can in general be unbounded. However, we are going to demonstrate

that when the similarity sets Sj satisfy certain properties, slight modifications to our algorithms

can provide guarantees with bounded PoF. Specifically, the objective function value provided by

the algorithm will be comparable to the optimal unfair value, up to some constant factor.

For the given instance of EQCENTER, letR∗
unf be the value of the optimal k-center solution

for this instance. Alternatively, to define R∗
unf we drop the fairness constraints from the model’s

requirements, and simply focus on the optimal value of the underlying vanilla clustering problem.

The first scenario we study is when for all j ∈ C we have Rj ≤ R∗
unf , and consequently

Rm ≤ R∗
unf . Consider now the following modification to our main algorithm, which consists of

only changing Algorithm 5, and thus the construction of S ′
I and ϕI . If for some c ∈ SI we have

|Gc| = 1, then we use c as a center and set ϕI(c) = c. If for some c ∈ SI we have |Gc| ≥ 2, then

we immediately use the procedure of Lemma 2.2.2 in order to choose centers, without checking

if only one point of Gc can yield a feasible solution. This modification yields Theorem 1.4.7.

Proof of Theorem 1.4.7. At first, note that because Rm ≤ R∗
unf , the guess R∗

unf will be among

the ones we test. For the iteration of R∗
unf , Lemmas 2.2.11 and 2.2.16 will clearly hold, thus

ensuring that the returned solution has value 5R∗
unf , and the constructed assignment satisfies all

fairness constraints. The only thing left to analyze is the number of centers we end up using

in the iteration of R∗
unf . Note that by Observation 2.2.5 and the fact that the optimal unfair

solution uses at most k centers, we immediately get |SI |+ |SN | ≤ k. On the other hand, observe

that the number of centers we use is in the worst case 2|SI | + |SN |, and therefore at most 2k.

83



Finally, to conclude the proof, we just need to make sure that for a radius guess that resulted in

|SI |+ |SN | > k, we return an infeasibility message.

Although the result of Theorem 1.4.7 is interesting in the sense of showing a scenario with

bounded PoF, it is not a true approximation algorithm, because we end up violating the number

of chosen centers by a multiplicative factor of 2. We now demonstrate another case, where we

achieve a true feasible solution to EQCENTER-AG, that additionally enjoys a bounded PoF.

In this scenario, any two points are similar iff their distance is at most some value Rd,

where Rd ≤ R∗
unf . Our algorithm here is actually identical to the one presented in the previous

subsection, and the difficulty in proving Theorem 1.4.8 for it lies only on the analysis.

Proof of Theorem 1.4.8. At first, note that becauseRd ≤ R∗
unf , the guessR∗

unf will be among the

ones we test. For the iteration of R∗
unf , Lemma 2.2.16 clearly holds. We will show that Lemma

2.2.11 will hold as well, and furthermore that Algorithm 5 will always pick just one center in

each Gc for c ∈ SI . This will immediately imply that the returned solution has value at most

5R∗
unf , all constraints (1.2) are satisfied, and the centers we end up using are exactly |SI |+ |SN |.

Finally, note that by Observation 2.2.5 and the fact that the optimal unfair solution uses at most

k centers, we will also have |SI |+ |SN | ≤ k.

Therefore, all we need to show is that for every c ∈ SI , Algorithm 5 is able to find exactly

one center that satisfies constraint (1.2) for all j ∈ Gc (recall that Sj ⊆ Gc). To do that, we

prove that there exists an x ∈ Gc, such that that for all j ∈ Gc we have
∑

j′∈Sj
d(j, j′) ≤∑

j′∈Sj
d(j′, x). This suffices to prove the desired statement. To see why, assume that we make

x the chosen center of Gc, and assign all points of Gc to it. Then for any point j ∈ Gc and any

j′ ∈ Sj we have d(j, x) ≤ d(j, j′) + d(j′, x) by the triangle inequality. Summing over all j′ ∈ Sj
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and using the defining property of x gives:

d(j, x) ≤ 1

|Sj|
∑
j′∈Sj

d(j, j′) +
1

|Sj|
∑
j′∈Sj

d(j′, x)

≤ 2

|Sj|
∑
j′∈Sj

d(j′, x)

≤ α

|Sj|
∑
j′∈Sj

d(j′, x)

The above inequality implies the satisfaction of (1.2) for point j.

For the sake of contradiction, assume now that for all x ∈ Gc there exists a point j ∈ Gc

such that
∑

j′∈Sj
d(j, j′) >

∑
j′∈Sj

d(j′, x). Based on this, we can create a dependency graph,

where every point of Gc is a vertex, and there is a directed edge from x to j if
∑

j′∈Sj
d(j, j′) >∑

j′∈Sj
d(j′, x). The assumption for the contradiction implies that this dependency graph will

contain a directed cycle x1, x2, . . . , xr, for which we have
∑

j′∈Sxt
d(xt, j

′) >
∑

j′∈Sxt
d(j′, xt−1)

for all t ∈ [2, r + 1], assuming that xr+1 = x1. If we add all the above inequalities we get

r+1∑
t=2

∑
j′∈Sxt

d(j′, xt) >
r+1∑
t=2

∑
j′∈Sxt

d(j′, xt−1)

Now focus on any single j′, and see that its contribution in the LHS of the above inequality is

A =
∑

t:j′∈Sxt
d(j′, xt), and in the RHS is B =

∑
t:j′∈Sxt

d(j′, xt−1). We argue that A > B is

impossible, and thus reach a contradiction. IfA > B, we can first subtract from bothA andB the

common terms appearing in the sums. Then, in what is left of A we will only have terms d(j′, xt)

being added, for j′ ∈ Sxt . In what is left of B we will only have terms d(j′, xt−1) being added,

but for which j′ /∈ Sxt−1 . Note also that the number of leftover terms is the same in both A and
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B. Since the similarity radius is the same for all points, for any two points z, y ∈ Gc, we have

d(j′, z) < d(j′, y) when j′ ∈ Sz and j′ /∈ Sy. Hence we reached the desired contradiction.

2.2.3 Solving the Assignment Problem

In this section we address the assignment problem for EQCENTER. Specifically, for an

instance with α, k ≥ 2, if we are given the set of centers S∗ used in the optimal solution, can

we efficiently find the optimal assignment ϕ∗ : C 7→ S∗? In other words, if R∗ is the value of

the optimal solution, we want to compute ϕ∗ such that 1) ϕ∗ satisfies the appropriate fairness

constraint for all clients, and 2) for every j ∈ C we have d(j, ϕ∗(j)) ≤ R∗. In what follows, we

demonstrate in full detail a procedure that achieves this for EQCENTER-PP. A similar process

can handle EQCENTER-AG, but for the sake of avoiding repeating the same arguments, we are

only going to sketch the latter.

Before we proceed with our assignment algorithm for EQCENTER-PP, note that without

loss of generality we can always assume that the optimal value R∗ is known. This is because

there are only polynomially many options for it, and thus we can efficiently guess the optimal

one. Our process is presented in Algorithm 7, and it works iteratively. The high-level idea is

that it always maintains an assignment of value at most R∗, and in each iteration it corrects one

violated fairness constraint. As we show later, a polynomial number of iterations suffices in order

to reach a feasible assignment.

Lemma 2.2.17. Every time the condition of the while loop in Algorithm 7 is checked, we have

d(ϕ(j), j) ≥ d(ϕ∗(j), j) for every j ∈ C.

Proof. We are going to prove this via induction. For the first time we check the condition, the
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Algorithm 7: Solving the assignment problem for EQCENTER-PP
For every j ∈ C set ϕ(j)← argmaxi∈S∗:d(i,j)≤R∗ d(i, j);
while there exists a j ∈ C with a j′ ∈ Sj such that d(j, ϕ(j)) > αd(j′, ϕ(j′) do

Find such a pair j ∈ C and j′ ∈ Sj;
Let ∆j,j′ = {i ∈ S∗ : d(i, j) < d(j, ϕ(j)) and d(i, j) ≤ αd(j′, ϕ(j′))};
Set ϕ(j)← argmaxi∈∆j,j′

d(i, j);
end
Return ϕ;

statement is obviously true by the way we initialized the mapping ϕ before the start of the loop,

and the fact that d(j, ϕ∗(j)) ≤ R∗ for all j ∈ C.

Consider now the tth time we check the condition, for which by the inductive hypothesis

the statement of the lemma holds. If at that time no violated fairness constraint is found, then we

are done. Hence, we need to focus on the case where the main body of the while loop is executed,

and show that after the changes that occur in ϕ, the statement will still be satisfied for the (t+1)th

time we will check the condition.

Let jt be the client chosen at that iteration, with j′t ∈ Sjt the client with d(jt, ϕ(jt)) >

αd(j′t, ϕ(j
′
t)). By the inductive hypothesis we have d(j′t, ϕ(j

′
t)) ≥ d(j′t, ϕ

∗(j′t)). Combining

the two previous inequalities gives d(jt, ϕ(jt)) > αd(j′t, ϕ
∗(j′t)). Now because the optimal

assignment satisfies d(jt, ϕ∗(jt)) ≤ αd(j′t, ϕ
∗(j′t)), we finally get d(jt, ϕ(jt)) > d(jt, ϕ

∗(jt)).

In addition, we have d(jt, ϕ∗(jt)) ≤ αd(j′t, ϕ
∗(j′t)) ≤ αd(j′t, ϕ(j

′
t)). Therefore, we see that

ϕ∗(jt) ∈ ∆jt,j′t
. Let now ϕ′(jt) be the updated assignment for jt after the end of the iteration.

From the way we update the assignment for jt and the fact that ϕ∗(jt) ∈ ∆jt,j′t
, we infer that

d(ϕ′(jt), jt) ≥ d(ϕ∗(jt), jt).

Theorem 2.2.18. Algorithm 7 terminates within |C|·|S∗| iterations, with assignment ϕ satisfying:

1) d(j, ϕ(j)) ≤ R∗ for every j ∈ C, and 2) d(j, ϕ(j)) ≤ αd(j′, ϕ(j′) for all j ∈ C and j′ ∈ Sj .
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Proof. From the condition of the while loop we know that when the algorithm terminates, the

fairness constraints will be satisfied by the mapping ϕ. Also, because we never assign a point to

a center that is further than R∗ from it, we know that ϕ achieves the optimal value.

Now we are going to count the total possible number of iterations. We do that by consider-

ing how many times we changed the assignment of every single client j, i.e., how many times an

iteration tried to fix one of j’s violated constraints. By Lemma 2.2.17, we see that for any j the

minimum possible assignment distance we can provide to it is d(j, ϕ∗(j)). Observe that if at any

moment d(j, ϕ(j)) = d(j, ϕ∗(j)), then Lemma 2.2.17 guarantees that j’s assignment will never

change again. This is because for every j′ ∈ Sj we always have d(j′, ϕ(j′)) ≥ d(j′, ϕ∗(j′)), and

thus using the properties of the optimal assignment we get

d(j, ϕ(j)) = d(j, ϕ∗(j)) ≤ αd(j′, ϕ∗(j′)) ≤ αd(j′, ϕ(j′))

On the other hand, if at some point d(j, ϕ(j)) > d(j, ϕ∗(j)) then one of j’s fairness con-

straints might be violated, and hence we might end up using an iteration to fix it. In this case, let

j′ ∈ Sj the client causing the problematic situation. Note that Lemma 2.2.17 and the properties

of the optimal solution ensure that d(jt, ϕ∗(jt)) ≤ αd(j′t, ϕ
∗(j′t)) ≤ αd(j′t, ϕ(j

′
t)). Thus, for this

iteration ϕ∗(j) ∈ ∆j,j′ , and the new assignment distance of j will be strictly smaller than the one

it had at the beginning of the iteration. Thus, j can be chosen in at most |S∗| iterations.

The assignment procedure for EQCENTER-AG is almost identical to Algorithm 7, with the

only difference being that we should look instead for violated constraints (1.2). In addition, the

analysis of that algorithm remains identical to that of Algorithm 7.
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2.2.4 Experimental Evaluation for EQCENTER

We implemented all algorithms in Python 3.8 and ran our experiments on Intel Xeon (Ivy

Bridge) E3-12 @ 2.4 GHz with 20 cores and 96 GB 1200 MHz DDR4 memory. Our code is

publicly available: https://github.com/chakrabarti/equitable_clustering.

Datasets: We used 5 datasets from the UCI Machine Learning Repository [114], namely:

(1) Bank-4,521 points [115], (2) Adult-32,561 points [116], (3) Creditcard-30,000 points [117],

(4) Census1990-2,458,285 points [120] and (5) Diabetes-101,766 points [121]. From Adult,

Creditcard, Census and Diabetes we uniformly subsampled 25, 000 points, and performed our

experiments with respect to those sampled sets. In order to construct the distances between

points, we removed non-numeric features, standardized each of the remaining features, took the

Euclidean distances between these modified points, and then normalized the distances to be in

[0, 1] for each dataset (by dividing the distances for a given dataset by the maximum distance

between any two points).

Algorithms: We first implemented the two versions of the algorithm of Theorem 1.4.6, one

solving EQCENTER-AG and the other EQCENTER-PP. We call Alg-AG the variant solving EQ-

CENTER-AG, and Alg-PP the variant solving EQCENTER-PP. Furthermore, we implemented the

algorithm of Theorem 1.4.7 and we refer to this as Pseudo-PoF-Alg. Finally, as baselines we used

our own implementations of two “unfair” k-center algorithms, specifically the 2-approximation

of Hochbaum and Shmoys [8] and the 2-approximation of Gonzalez [98].

Range of k and value of fairness parameter α: We ran all of our experiments for every

value of k in {2, 4, 8, 16, 32, 64, 128}, and in all our simulations we set α = 2 for constraints

(1.1) and (1.2). We did not test any other value for α, since in practice α > 2 is unsuitable if
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reasonably strong fairness considerations are at play.

Constructing the similarity sets: For each combination of dataset and value of k that we

are interested in, we need to construct the similarity sets Sj , such that they Rm = O(R∗
unf ) (refer

to Section 1.4.2 for a discussion on why such a condition is realistic). Our first step in doing

so, was utilizing the filtering procedure from [8], which for a given instance (combination of a

dataset and a value k) returns a value Rf . If R∗
unf is the value of the optimal “unfair” k-center

solution for the instance, the aforementioned filtering guarantees that Rf ≤ R∗
unf . Then, for each

point j we drew Rj uniformly at random from [0, 2Rf ], and then set Sj = {j′ | d(j, j′) ≤ Rj}.

There were two reasons for constructing the sets Sj in this way. At first, this approach guarantees

the realisticRm = O(R∗
unf ) condition. Second, this approach forces non-uniformity in the values

of Rj , and thus we are able to test our algorithms in the most general setting (for instance the

uniform setting described in Theorem 1.4.8 is more restricted and less realistic).

Evaluated Metrics: Let S be the set of chosen centers and ϕ : C 7→ S the corresponding

assignment function, that constituted the solution we got when we ran some particular algorithm

on some problem instance. The quantities we evaluate are:

• Maximum assignment distance (maxj∈C d(j, ϕ(j)): This is the actual objective function

value of the returned solution.

• Satisfaction of constraint (1.1): Here for each j we define fPP
j = maxj′∈Sj

d(j,ϕ(j))
d(j′,ϕ(j′))

.

• Satisfaction of constraint (1.2): Here for each j we define fAG
j =

|Sj |d(j,ϕ(j))∑
j′∈Sj

d(j′,ϕ(j′))
.

We now present our results that involve running all 5 mentioned algorithms on the Adult

dataset. The corresponding plots for the other four datasets can be found in Appendix A, and they

exhibit the exact behavior as the ones displayed here. Further, the maximum runtime encountered
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Figure 2.3: Adult: Maximum assignment distance for all algorithms

in all our simulations was approximately 30 minutes (running Alg-PP on Census1990), and the

bottleneck in all executions was computing the pairwise distances and not running the algorithms.

In Figure 2.3 we present the maximum assignment distance as a function of k for all algo-

rithms. At first, we observe that even our algorithms with no PoF guarantees, i.e., Alg-PP and

Alg-AG, perform very well in terms of an empirical PoF with respect to the baseline solutions.

In addition, we want to compare the objective values of Alg-PP and Alg-AG. Recall that since

a solution to EQCENTER-PP also constitutes a solution to EQCENTER-AG, we are theoretically

expecting Alg-AG to perform better. However, we see that in practice there is no clear-cut win-

ner, and hence the use of Alg-PP is highly recommended, since the notion of fairness guaranteed

by that algorithm is much stronger.

In Figure 2.4 we demonstrate how all algorithms perform in terms of the fairness con-

91



(a) (b) (c)

Figure 2.4: Adult: Satisfaction of fairness constraints

straints.1 Figure 2.4a shows maxj f
PP
j as a function of k for our two algorithms for EQCENTER-

PP, i.e., Alg-PP and Pseudo-PoF-Alg. Here we see that as the theory suggests, our algorithms

always satisfy constraint (1.1) and have maxj f
PP
j ≤ 2. On the other hand, Figure 2.4b shows

maxj f
PP
j as a function of k for the baselines. Here we see that the baselines are far from satisfy-

ing constraint (1.1), and specifically that there exist points that are treated very unfairly. Finally,

Figure 2.4c shows maxj f
AG
j as a function of k for all algorithms that can be potentially used

for EQCENTER-AG. Here we see that our algorithms again satisfy the corresponding constraint

(1.2), and furthermore have a better maxj f
AG
j value compared to the baselines. Finally, in the

AG case the baselines seem to perform much better compared to the PP case, and this is reason-

able because the notion of fairness described by (1.2) is much weaker. Nonetheless, in most cases

the baselines are not able to satisfy (1.2).

In Figures 2.5a and 2.5b we are interested in the percentage of points for which baselines do

not satisfy the appropriate fairness constraint. Specifically, Figure 2.5a demonstrates that for the

stronger notion of PP-fairness, a substantial percentage of points gets unfair treatment (fPP
j > 2).

1In these plots, for the two baseline algorithms we excluded points with fPP
j = +∞ or fAG

j = +∞ in the
computation of maxj f

PP
j and maxj f

AG
j . In other words, we were very lenient with the two baselines.
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(a) (b) (c)

Figure 2.5: Adult: Amount of constraint violation

On the other hand, for the weaker (1.2), the baselines do much better. Nonetheless, even if one

is interested only in the weaker AG concept of fairness, they should not use the baselines. Even

one unfairly treated point goes against the very nature of individual fairness.

Finally, in Figure 2.5c we see by how much Pseudo-PoF-Alg violates the constraint |S| ≤ k

on the set of chosen centers (recall that in theory Pseudo-PoF-Alg yields |S| ≤ 2k). Here we plot

the ratio of the number of centers used by the algorithm over the given value k, and see that in

practice Pseudo-PoF-Alg does not actually incur any violation.
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Chapter 3: Addressing the Fair Cuts Problems

3.1 Reduction to Tree Instances

Here we show how both DEMFAIRCUT and INDFAIRCUT can be effectively reduced to

solving an appropriate problem on a tree instance. To do this, we use the following lemma.

Lemma 3.1.1. [54] For any undirected graph G = (V,E) with edge costs we ≥ 0, we can

efficiently construct a collection of trees T1 = (V,E1), T2 = (V,E2), . . . , Tk = (V,Ek) with tree

Ti having an edge-cost function wi : Ei 7→ R≥0, and find non-negative multipliers (λ1, . . . , λk),

such that
∑k

i=1 λi = 1 and k = poly(|V |). Moreover, for any S ⊆ V let δ(S) denote the set of

edges in E with exactly one endpoint in S, and δi(S) denote the set of edges in Ei with exactly

one endpoint in S. Then, for every S ⊆ V we have:

1. w(δ(S)) ≤ wi(δi(S)) for every i ∈ [k]

2.
∑k

i=1 λiw
i(δi(S)) ≤ O(log n)w(δ(S))

Definition 3.1.2. We call an algorithm for DEMFAIRCUT (ρ, α)-bicriteria, if for any given prob-

lem instance I = {V,E, s, w, V1, . . . , Vγ, f⃗} with optimal value OPTI , it returns a solution F

such that 1) w(F ) ≤ ρOPTI , and 2) | prot(V,E \ F, s) ∩ Vh| ≥ αfhnh, ∀h ∈ [γ].

Lemma 3.1.3. If we have a (ρ, α)-bicriteria algorithm for DEMFAIRCUT in trees, we can get a

(ρ ·O(log n), α)-bicriteria algorithm for DEMFAIRCUT in general graphs.
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Proof. If I = {V,E, s, w, V1, . . . , Vγ, f⃗} is the general instance, we first apply the result of

Lemma 3.1.1 in order to get a collection of trees T1 = (V,E1), . . . , Tk = (V,Ek), where each

tree Ti has an associated edge weight function wi. We then use the given algorithm and solve

DEMFAIRCUT in each tree instance Ii = {V,Ei, s, w
i, V1, . . . , Vγ, f⃗}, and get a solution Fi ⊆ Ei

in return. For the solution Fi we compute for Ii, let Xi = prot(V,Ei \ Fi, s), and note that the

properties of the algorithm ensure |Xi ∩ Vh| ≥ αfhnh, ∀h ∈ [γ].

After running the algorithm in each tree, let Tm be the tree with m = argminiw(δ(Xi)).

We then set our solution for the general graph to be δ(Xm). This means that in our general

solutionXm ⊆ prot(V,E \δ(Xm), s). Combining this observation with the fact that |Xm∩Vh| ≥

αfhnh for all h ∈ [γ], implies that in the general graph solution we again satisfy all demographic

constraints up to an α fraction. We now only have to reason about the cost of δ(Xm).

Let X∗ be the set of vertices not connected to s in the optimal solution of I. If OPT is the

value of the latter, thenw(δ(X∗)) ≤ OPT . Also, sinceX∗ satisfies all γ demographic constraints

exactly, the set δi(X∗) is a feasible solution for Ii, and OPTIi ≤ wi(δi(X
∗)). Since δi(Xi) ⊆ Fi:

wi(δi(Xi)) ≤ ρ ·OPTIi

≤ ρ · wi(δi(X
∗)) (3.1)

Using the definition of m and the first property of the trees from Lemma 3.1.1 gives

w(δ(Xm)) ≤
k∑

i=1

λiw(δ(Xi))

≤
k∑

i=1

λiw
i(δi(Xi)) (3.2)
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Combining (3.1), (3.2) and the second property of Lemma 3.1.1 yields

w(δ(Xm)) ≤ ρ

k∑
i=1

λiw
i(δi(X

∗))

≤ ρO(log n)w(δ(X∗)) ≤ ρO(log n)OPT

Our approach for tackling INDFAIRCUT uses as a black-box an algorithm for a new prob-

lem, which we call AUXCUT and we formally define below. In order to get an algorithm for

general instances of AUXCUT, we again use a reduction to trees.

AUXCUT: We are given an undirected graph G = (V,E), a designated vertex s ∈ V , a budget

B > 0, and a target value T ∈ N≥0. In addition, each e ∈ E has a weight we ≥ 0, and each

vertex v ∈ V \ {s} has a value av ≥ 0. The goal is to find a cut F with w(F ) ≤ B and

| prot(V,E \ F, s)| ≥ T , that maximizes a(prot(V,E \ F, s)).

Definition 3.1.4. We say that an algorithm is (1, 1, ρ)-bicriteria for AUXCUT, if for any given

instance I = (V,E,B, T, w, s, a) of the problem with optimal value OPTI , it returns F ⊂ E,

such that 1) w(F ) ≤ ρB, 2) | prot(V,E \ F, s)| ≥ T and 3) a(prot(V,E \ F, s)) ≥ OPTI .

Lemma 3.1.5. If we have a (1, 1, ρ)-bicriteria algorithm for AUXCUT in tree instances, we can

devise a (1, 1, ρ ·O(log n))-bicriteria algorithm for AUXCUT in general graphs.

Proof. Let I = (V,E,B, T, w, s, a) be an instance of AUXCUT for a general graph. We first

apply the result of Lemma 3.1.1 in order to get a collection of trees Ti = (V,Ei) with edge-weight

functionswi. Then, for each such tree we create an instance Ii = (V,Ei, B ·O(log n), T, wi, s, a),

and we use the given bicriteria algorithm to solve AUXCUT on it. Let Fi ⊆ Ei the solution we

get for Ii, and for notational convenience let again Xi = prot(V,Ei \ Fi, s). After that, we find
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the tree Tm with m = argmaxi a(Xi), and we set our solution for the general graph to be δ(Xm).

This means that in our general solution we again get Xm ⊆ prot(V,E \ δ(Xm), s).

At first, because of the properties of the algorithm used on Ii, we have |Xm| ≥ T , and

therefore even in our solution for the general graph we end up saving at least T vertices.

Furthermore, because δi(Xi) ⊆ Fi, the properties of the algorithm give wi(δi(Xi)) ≤

ρ ·O(log n) ·B for every i. From the first property in Lemma 3.1.1 we thus get

w(δ(Xm)) ≤ wm(δm(Xm))

≤ ρ ·O(log n) ·B

To conclude we need to show that a(Xm) ≥ OPTI , where OPTI the value of the optimal

solution of I. Let also X∗ be the set of vertices disconnected from s in the optimal solution of

I. Since X∗ is the optimal such set of vertices, we have |X∗| ≥ T and w(δ(X∗)) ≤ B. Let

m∗ = argminiw
i(δi(X

∗)). The definition of m∗ and the second property of Lemma 3.1.1 give

wm∗
(δm∗(X∗)) ≤

k∑
i=1

λiw
i(δi(X

∗))

≤ O(log n)w(δ(X∗))

≤ B ·O(log n)

Hence δm∗(X∗) is feasible for Im∗ (recall that |X∗| ≥ T ), and since the given algorithm is a

(1, 1, ρ)-bicriteria we get

a(Xm) ≥ a(Xm∗) ≥ OPTIm∗ ≥ a(X∗) = OPTI
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3.2 Solving DEMFAIRCUT

In this section we tackle DEMFAIRCUT and present two algorithms for it. The first works

for a constant γ, and is an O(log n)-approximation. The second addresses the case of an arbitrary

γ, and for any ϵ > 0 it is an
(
O
(

logn log γ
ϵ2·minh fh

)
, 1− ϵ)-bicriteria one.

3.2.1 Solving DEMFAIRCUT for γ = O(1)

Given Lemma 3.1.3, we can focus on only solving the problem in tree instances. Specif-

ically, we show that when γ = O(1) the problem in trees can be solved optimally via dynamic

programming. Without loss of generality, we can also assume that the given tree is rooted at s

and it is binary. For details on why this assumption is safe to use, we refer the reader to Lemma

15.18 from [122]. Before we describe our approach we need some additional notation. For a

vertex v, let ϕh(v) = 1 if v ∈ Vh and 0 otherwise.

Our dynamic programming algorithm is based on a table M , where M [v, k1, k2, . . . , kγ]

represents the minimum cost of a cut in the subtree rooted at v, so that there are exactly kh nodes

from Vh that are connected to v. Let vr be the right child of v, and let vℓ be the left child of v.

Observe that the optimal either cuts neither of the edges from v to its children, just the left edge,

just the right edge, or both. So, we set M [v, k1, k2, . . . , kγ] to the minimum of the following:

1. min
{
M [vℓ, k

ℓ
1, k

ℓ
2, . . . , k

ℓ
γ] +M [ur, k

r
1, k

r
2, . . . , k

r
γ] : k

ℓ
h + krh + ϕh(v) = kh ∀h ∈ [γ]

}
2. min

{
w(v,vℓ) +M [vr, k

′
1, k

′
2, . . . , k

′
γ] : k

′
h + ϕh(v) = kh ∀h ∈ [γ]

}
3. min

{
w(v,vr) +M [vℓ, k

′
1, k

′
2, . . . , k

′
γ] : k

′
h + ϕh(v) = kh ∀h ∈ [γ]

}
4. w(v,vr) + w(v,vℓ) if kh = ϕh(v) for all h ∈ [γ], +∞ otherwise.
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The first case above corresponds to cutting neither of the edges (v, vr), (v, vℓ), the second to

cutting only (v, vℓ), the third to cutting only (v, vr), and the fourth to cutting both.

To fill in M , we begin by initializing M [v, ϕ1(v), ϕ2(v), . . . , ϕγ(v)] = 0 for all leaves v of

the tree, and set all other table entries to +∞. Then we proceed by filling the table bottom-up.

There are at most O(nγ+1) table entries, and to compute each one we need to access at most 2nγ

other ones. Thus, the total runtime is O(n2γ+1). Finally, in order to find the optimal cut, we look

for the minimum entry M [s, k1, . . . , kγ], such that kh ≤ (1− fh)nh for all h ∈ [γ].

Theorem 3.2.1. When γ is a constant, we have an optimal dynamic programming algorithm for

DEMFAIRCUT in trees, running in time O(n2γ+1).

Combining Theorem 3.2.1 with Lemma 3.1.3, our approach achieves the following.

Theorem 3.2.2. For γ = O(1), we give a O(log n)-approximation algorithm for DEMFAIRCUT.

3.2.2 Solving DEMFAIRCUT for an Arbitrary γ

Given Lemma 3.1.3, we again focus on instances I = {V,E, s, w, V1, . . . , Vγ, f⃗}, where

the underlying graph T = (V,E) is a tree. Moreover, we can assume without loss of generality

that the tree is rooted at s. Before we proceed with the description of our algorithm, we need

some more notation. For every v ∈ V let P (s, v) ⊆ E be the unique path from s to v in the

tree, and ℓ(v) = |P (s, v)|. In addition, for every e = (u, v) ∈ E let Pe = P (s, r(e)), with

r(e) = argminz∈{u,v} ℓ(z). In words, Pe contains the edges of the path that starts from s and
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finishes just before reaching e. The following LP is then a valid relaxation of our problem.

min
∑
e∈E

we · xe (3.3)

yv =
∑

e∈P (s,v)

xe ∀v ∈ V (3.4)

∑
v∈Vh

yv ≥ fh · nh ∀h ∈ [γ] (3.5)

0 ≤ yv, xe ≤ 1 ∀v ∈ V, e ∈ E (3.6)

In the integral version of LP (3.3)-(3.6), xe = 1 iff edge e is included in the cut. Now

notice that because the underlying graph is a tree and the edge weights are non-negative, for any

v ∈ V the optimal solution would not choose more than one edge from P (s, v). Therefore, by

constraints (3.4) and (3.6) we see that yv = 1 iff v is separated from s in the optimal outcome.

Consequently, constraint (3.5) naturally captures the demographic covering requirements.

Our approach begins by solving LP (3.3)-(3.6) in order to get a fractional solution x, y. We

then apply the following dependent randomized rounding scheme. We consider the edges of the

tree in non-decreasing order of |Pe|, and for an edge e for which no other edge in Pe is already

chosen for the cut, we remove it with probability xe/(1− x(Pe)) if x(Pe) < 1. The latter action

makes sense because for every e′ ∈ Pe we have |Pe′| < |Pe|, and hence e′ is considered before e

in the given ordering. Further, if an edge e is chosen to be placed in the cut, then all v ∈ V with

e ∈ P (s, v) are now disconnected from s. In addition, observe that due to the dependent nature

of this process, no path P (s, v) will have more than one edge of it in the solution.

Algorithm 8 demonstrates all necessary details of the rounding, with Xe being an indicator

random variable denoting whether or not e is included in the solution, and Yv an indicator random

100



Algorithm 8: Randomized Rounding for LP (3.3)-(3.6)
For every e ∈ E set Xe ← 0, and for all v ∈ V set Yv ← 0;
for all e ∈ E in non-decreasing order of |Pe| do

if x(Pe) < 1 and Xe′ = 0 for all e′ ∈ Pe then
Set Xe ← 1 with probability xe/(1− x(Pe));
if Xe = 1 then

Set Yv ← 1 for all {v ∈ V : e ∈ P (s, v)};
end

end
end

variable that is 1 iff v is disconnected from s in the final outcome.

Lemma 3.2.3. When we decide to include e ∈ E in the cut, we do so with a valid probability.

Proof. Let e = (u, v), and without loss of generality assume l(u) < l(v). This means that

Pe = P (s, u) and P (s, v) = P (s, u) ∪ {e}. In addition, to consider a randomized decision for e

we should also have x(Pe) < 1. Using constraints (3.4) and (3.6) for v we get:

xe +
∑
e′∈Pe

xe′ ≤ 1 =⇒ xe
1− x(Pe)

≤ 1

Lemma 3.2.4. For every e ∈ E and v ∈ V , we have Pr[Xe = 1] = xe and Pr[Yv = 1] = yv.

Proof. Let us begin with an e ∈ E for which we never made a random decision because x(Pe) ≥

1, and hence Xe = 0. If e = (u, v) with l(u) < l(v), then Pe = P (s, u) and P (s, v) = P (s, u) ∪

{e}. Because of constraints (3.4) and (3.6) for u we first get x(Pe) = 1. Therefore, constraints

(3.4) and (3.6) applied this time for v yield xe = 0, which indeed gives Pr[Xe = 1] = xe.

Now let us consider an edge e with x(Pe) < 1. Because for each e′ ∈ Pe we have Pe′ ⊂ Pe,

we also get x(Pe′) < 1. The latter means that for all other edges in Pe a random decision

potentially takes place. Furthermore, analysis of the algorithm’s actions shows that Pr[Xe = 1]
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is equal to

Pr[Xe = 1 | Xe′ = 0 ∀e′ ∈ Pe] · Pr[Xe′ = 0 ∀e′ ∈ Pe]

=
xe

1−
∑

e′∈Pe
xe′

∏
e′∈Pe

(
1− xe′

1−
∑

e′′∈Pe′
xe′′

)
(3.7)

Let e1, . . . , em the edges of Pe in increasing order of |Pej |. Then because Pej = {ej′ | j′ < j},

expression (3.7) can be rewritten as a telescopic product of fractions:

xe
1−

∑m
j=1 xej

m∏
j=1

(
1−

xej

1−
∑j−1

i=1 xei

)
= xe

As for a vertex v ∈ V , we have Pr[Yv = 1] = Pr[∃e ∈ P (s, v) : Xe = 1] because there

is a unique path from s to it. Moreover, since our rounding will never put more than one edges

of P (s, v) in the cut, for all S ⊆ P (s, v) with |S| ≥ 2 we get Pr[Xe = 1,∀e ∈ S] = 0. Hence,

by the inclusion-exclusion principle Pr[∃e ∈ P (s, v) : Xe = 1] =
∑

e∈P (s,v) Pr[Xe = 1] =∑
e∈P (s,v) xe = yv, where the last equality follows from constraint (3.4).

We will now analyze the satisfaction of the coverage constraints for the different demo-

graphics. If Sh is the number of vertices from Vh that are not connected to s in the solution, we

see that Sh =
∑

v∈Vh
Yv. Using Lemma 3.2.4 and constraint (3.5) gives E[Sh] ≥ fhnh. We thus

need to calculate how much can Sh deviate from E[Sh]. For that we need the next two lemmas.

Lemma 3.2.5. [123] Let Z1, . . . , Zm be Bernoulli random variables, where Pr[Zi = 1] = zi for

all i ∈ [m]. Let Γ the dependency graph on the Zi. For i ̸= j, Zi and Zj are dependent if there

exists an edge between them in Γ, and we denote that as i ∼ j. Let also Z =
∑m

i=1 Zi, µ = E[Z],
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∆ =
∑

{i,j}:i∼j Pr[Zi = Zj = 1], δi =
∑

j∼i zj and δ = maxi δi. Then for any ϵ ∈ [0, 1]

Pr[Z ≤ (1− ϵ)µ] ≤ exp
(
−min

( ϵ2 · µ2

8∆ + 2µ
,
ϵ · µ
6δ

))

Lemma 3.2.6. For all m ∈ N>0 and any sequence of non-negative numbers a1, a2, . . . we have

m−1∑
i=1

(m− i)ai ≤ m

m∑
i=1

ai

Proof. We prove the statement via induction on m. For m = 1 it is trivial. Suppose that the

lemma holds up to some m = k. We then prove it for m = k + 1:

k+1−1∑
i=1

(k + 1− i)ai =
k∑

i=1

(
(k − i)ai + ai

)
=

k∑
i=1

(k − i)ai +
k∑

i=1

ai

=
k−1∑
i=1

(k − i)ai +
k∑

i=1

ai

≤ k
k∑

i=1

ai +
k∑

i=1

ai

≤ (k + 1)
k∑

i=1

ai

≤ (k + 1)
k+1∑
i=1

ai

The first inequality uses the inductive hypothesis, while the last the fact that ak+1 ≥ 0.

Lemma 3.2.7. For all h ∈ [γ] and any ϵ ∈ [0, 1], we have Pr[Sh ≤ (1− ϵ)E[Sh]] ≤ e
−ϵ2·fh

10 .

Proof. Due to Lemma 3.2.4, the variables Yv for v ∈ Vh are Bernoulli with Pr[Yv = 1] = yv.
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Because of the tree structure they are also to some extent dependent. Our goal here is to apply

Lemma 3.2.5 for Sh, and towards that end we need to upper bound the dependency factors δ,∆.

Since we do not know exactly the underlying dependency graph Γ, in what follows we assume

that all pairs Yv, Yv′ are dependent. We begin by bounding the parameter ∆ of Lemma 3.2.5.

∆ ≤
∑

{v,v′}∈Vh

Pr[Yv = Yv′ = 1]

≤
∑

{v,v′}∈Vh

min(Pr[Yv = 1],Pr[Yv′ = 1])

=
∑

{v,v′}∈Vh

min(yv, yv′)

Now let a1, a2, ..., anh
be the values yv for all v ∈ Vh in non-decreasing order. Then we have:

∑
{v,v′}∈Vh

min(yv, yv′) =

nh−1∑
i=1

(nh − i)ai ≤ nh

nh∑
i=1

ai = nh · E[Sh]

To get the first inequality we used Lemma 3.2.6. Therefore, we get ∆ ≤ nh · E[Sh]. Moreover,

a straightforward upper bound for each δv is δv ≤
∑

u∈Vh
yu = E[Sh]. Thus, δ ≤ E[Sh]. Finally,

we also need bounds for the following two quantities, where µ = E[Sh]:

ϵ2 · µ2

8∆ + 2µ
≥ ϵ2 · µ2

8µ · nh + 2µ
=

ϵ2 · µ
8nh + 2

≥ ϵ2 · nh · fh
8nh + 2

≥ ϵ2 · fh
10

ϵ · µ
6δ
≥ ϵ · µ

6µ
=
ϵ

6

Since ϵ
6
≥ ϵ2·fh

10
for any ϵ, fh ∈ [0, 1], Lemma 3.2.5 gives the desired bound.
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To conclude, suppose that for some β ≥ 2, we repeat Algorithm 8 independently N =

10 log γβ

ϵ2·minh fh
times, and in each run t of it (with t ∈ [N ]) we compute a set of edges Ft that are

chosen to be removed. Our final solution is set to be F =
⋃

t Ft. Then we have the following.

Theorem 3.2.8. For DEMFAIRCUT in trees and any ϵ ∈ (0, 1), we give a
(
O
(

log γ
ϵ2 minh fh

)
, 1− ϵ

)
bicriteria algorithm that runs in expected polynomial time.

Proof. Focus on a specific h, and let St
h the random variable denoting the number of nodes of Vh

separated from s in (V,E \ Ft). By Lemma 3.2.7 and the independent nature of the runs:

Pr
[
St
h ≤ (1− ϵ)E[St

h], ∀t
]
≤ e

−ϵ2·N·fh
10 ≤ 1

γβ

Thus, because E[St
h] ≥ fhnh for all t, we have

Pr
[∣∣Vh ∩ prot(V,E \ F, s)

∣∣ ≥ (1− ϵ)fhnh

]
≥ Pr

[
∃t : St

h > (1− ϵ)E[St
h]
]
≥ 1− 1

γβ

A union bound over all demographics would finally give

Pr
[∣∣Vh ∩ prot(V,E \ F, s)

∣∣ ≥ (1− ϵ)fhnh, ∀h ∈ [γ]
]
≥ 1− 1

γβ−1

By Lemma 3.2.4, in each run an edge e gets removed with probability xe. Hence, with a

union bound over all runs, the probability that e gets removed is at mostNxe. Therefore, the total

expected cost of our algorithm is N
∑

e∈E wexe, and since LP (3.3)-(3.6) is a valid relaxation of

the problem, we immediately get the desired approximation ratio on expectation. By Markov’s

inequality we can further prove that with probability at most 1
c
, we get a final cut of cost more
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than cN
∑

e∈E wexe for some constant c > 1.

Thus, with constant probability our algorithm satisfies both the ratio of O( log γ
ϵ2 minh fh

), and

the 1 − ϵ approximate satisfaction of the demographic constraints (specifically we fail to satisfy

both of the above with probability at most 1/γβ−1 +1/c). Hence, repeating the whole process an

expected logarithmic number of times, guarantees that we hit both targets deterministically.

By combining Theorem 3.2.8 and Lemma 3.1.3, our approach achieves the following.

Theorem 3.2.9. For any given constant ϵ > 0, we provide a
(
O
(

logn log γ
ϵ2·minh fh

)
, 1− ϵ

)
-bicriteria

algorithm for DEMFAIRCUT, which also runs in expected polynomial time.

3.2.2.1 Hardness of DEMFAIRCUT with Arbitrary γ

Here we show that even in tree instances, DEMFAIRCUT with arbitrary γ is hard. Specifi-

cally, we use an approximation preserving reduction from SET COVER.

SET COVER: We are given a universe of elements U and m sets {S1, S2, . . . , Sm}, where Si ⊆ U

for every i ∈ [m]. The goal is to find C ⊆ [m], such that
⋃

i∈C Si = U and |C| is minimized.

Theorem 3.2.10 ([124]). It is NP-hard to approximate Set Cover instances of universe size n and

m ≤ poly(n) sets within a factor better than lnn.

Theorem 3.2.11. It is NP-hard to approximate DEMFAIRCUT with arbitrary γ on tree instances

within a factor better than ln γ.

Proof. Suppose that we are given an instance of SET COVER. We create an instance of DEM-

FAIRCUT as follows. For every set Si we create a vertex vi. For every element e ∈ U we create

a demographic group Ve = {vi | e ∈ Si}. We set the covering requirement of the group Ve to
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be 1/|Ve|, i.e., we want our solution to protect at least |Ve| · (1/|Ve|) = 1 vertex from each Ve.

Finally, we add the designated vertex s to the graph, and create edges (s, vi) for every vi. Note

that the resulting graph is a tree.

Now consider the optimal SET COVER solutionC∗. We claim that the set of edges {(s, vi) | i ∈

C∗} is a feasible solution for the constructed instance of DEMFAIRCUT. Take any demographic

Ve for e ∈ U . Because C∗ is a feasible SET COVER solution, it contains at least one Sj with

e ∈ Sj . Therefore, we are going to include the edge (s, vj) to our graph solution, and the vertex

vj from the group Ve is going to be protected. Finally, see that |C∗| = |{(s, vi) | i ∈ C∗}|, and

hence the cost of the optimal solution for the DEMFAIRCUT instance, say F ∗, is at most |C∗|.

Now we argue that any solution F to the DEMFAIRCUT instance yields a feasible solution

CF for the SET COVER instance with |F | = |CF |. Simply take CF = {i ∈ [m] | (s, vi) ∈ F}.

It is clear that |F | = |CF |. Now consider each e ∈ U . Since F is feasible for DEMFAIRCUT, at

least one vertex vi ∈ Ve will be separated from s, and thus (s, vi) ∈ F . Hence for that vertex vi

we have e ∈ Si by construction. Therefore, e is covered by CF .

Suppose now that for some ϵ > 0 we have an (1 − ϵ) ln γ-approximation algorithm for

DEMFAIRCUT on trees. Then given an instance of SET COVER, we first construct the instance

of DEMFAIRCUT given by the above reduction and then run the given algorithm on that instance

to get a solution F . Then, as discussed, we construct the corresponding Set Cover solution CF ,

with |F | = |CF |. By all the previous arguments we have

|CF | = |F | ≤ ((1− ϵ) ln γ)|F ∗| ≤ ((1− ϵ) ln |U |)|C∗|

This contradicts Theorem 3.2.10.
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At a high-level, the previous theorem says that the best we can achieve for DEMFAIRCUT

in trees is an approximation ratio of Ω(log γ). Trivially this implies the following corollary.

Corollary 3.2.12. Unless P=NP, the best approximation ratio we can achieve for general in-

stances of DEMFAIRCUT with arbitrary γ is Ω(log γ).

3.3 Solving INDFAIRCUT

The purpose of this section is to provide an algorithm for INDFAIRCUT. We begin by giv-

ing a dynamic programming bicriteria algorithm for AUXCUT on tree instances, which according

to Lemma 3.1.5 implies an algorithm for AUXCUT in general graphs. Subsequently, we show

how the general graph algorithm can be incorporated in the round-or-cut framework of Anegg

et al. [16], and in this way we get as our final result a O(log n)-approximation for INDFAIRCUT.

At this point, we have to mention that the LP-based approach of Section 3.2.2 can also be

applied here (by adding the extra constraint yv ≥ pv in LP (3.3)-(3.6)), yielding the same ap-

proximation ratio of O(log n). However, such an approach would unavoidably lead to a bicriteria

algorithm, since it will produce a solution that saves at least (1− ϵ)T vertices. On the other hand,

the algorithm we present in what follows is a true approximation for INDFAIRCUT.

3.3.1 A (1, 1, O(log n) + ϵ)-Bicriteria Algorithm for AUXCUT

Suppose that we have an instance I = (V,E,B, T, s, w, a) of AUXCUT. Given the reduc-

tion of Lemma 3.1.5, we can focus on the case of G = (V,E) being a tree. We now present a

dynamic programming bicriteria algorithm for AUXCUT in trees.

Without loss of generality, we can assume that the tree is rooted at s and is binary (see
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Lemma 15.18 from [122]). Our algorithm tries to find a cut F ⊆ E that minimizes a(V \

prot(V,E \ F, s)) subject to w(F ) ≤ B and | prot(V,E \ F, s)| ≥ T . Note that when we can

compute a solution of optimal value to this minimization problem, minimizing a(V \prot(V,E \

F, s)) is equivalent to maximizing a(prot(V,E \ F, s)). Therefore, the version of the problem

we solve here is equivalent to the definition of AUXCUT as given in Section 3.1.

Our approach relies on a table A. For every v ∈ V let Tv ⊆ V and Ev ⊆ E be the vertices

and the edges of the subtree that is rooted at v (with v included in Tv). Then, the entry A[v,W, k]

would represent the minimum possible a(Tv \ prot(Tv, Ev \ Fv, v)), for any cut Fv ⊆ Ev with

w(Fv) = W and |Tv \ prot(Tv, Ev \Fv, v)| = k (see that the vertices of Tv connected to v in this

cut are those in Tv \ prot(Tv, Ev \Fv, v)). Let also vr be the right child of v, and let vℓ be the left

child of v. The optimal solution of I either cuts none of the edges from v to its children, just the

left edge, just the right edge, or both edges. So we just have to set A[v,W, k] to the minimum of

the following four cases:

1. min
{
A[vℓ,Wℓ, kℓ] + A[vr,Wr, kr] + av : Wℓ +Wr = W and kℓ + kr + 1 = k

}
2. A[vr,W − w(v,vℓ), k − 1] + av if W ≥ w(v,vℓ) and k > 1,+∞ otherwise

3. A[vℓ,W − w(v,vr), k − 1] + av if W ≥ w(v,vr) and k > 1,+∞ otherwise

4. av if w(v,vℓ) + w(v,vr) = W and k = 1, +∞ otherwise

The first case above corresponds to cutting neither of the edges (v, vr), (v, vℓ), the second

to cutting only (v, vℓ), the third to cutting only (v, vr), and the fourth to cutting both.

To fill in A, we begin by initializing A[v, 0, 1] = av for all leaves v of the tree, and all other

entries to +∞. Then we proceed by filling the table bottom-up. Assuming that the edge weights
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are integers, we see that A has n2B entries, and in order to fill each of them, we need access to at

most 2nB other entries. Hence, in total our approach requires O(n3B2) time. Finally, in order to

find the optimal cut, we look for the minimum entryA[s,W, k], such thatW ≤ B and k ≤ n−T .

Corollary 3.3.1. When the edge weights are integers and B = poly(n), we can efficiently find

an optimal solution of AUXCUT in tree instances.

To make sure the edge weights are integers and B is polynomially bounded, we use a

standard discretization trick before running the dynamic program [13]. Specifically, for any

ϵ > 0, let λ = ⌈m/ϵ⌉
B

, where m = |E|. Then for each edge e ∈ E create a new weight w′
e =

⌊λwe⌋. Also, set B′ = λW = ⌈m/ϵ⌉. Notice now that all new edge weights are integers and

that B′ is polynomial in n. Further, using these new values we create a new instance I ′ =

(V,E,B′, T, s, w′, a) of AUXCUT. It is easy to see that if there is a solution of edge-cost B for

I, then this solution has edge-cost B′ in I ′. In addition, for every solution of I ′ whose edge-cost

is at most B′, its edge-cost in I is at most (1 + ϵ)B. Combining this with Corollary 3.3.1 gives:

Corollary 3.3.2. Our approach provides a (1, 1, 1+ ϵ)-bicriteria for AUXCUT in tree instances.

Theorem 3.3.3. Our approach provides a (1, 1, O(log n)+ ϵ)-bicriteria algorithm for AUXCUT.

3.3.2 A Round-or-Cut Solution for INDFAIRCUT

Suppose we are given an instance I = (V,E, T, s, w, p⃗) of INDFAIRCUT with optimal

value OPTI . For any value B ≥ 0, let F(B) = {F ⊆ E : w(F ) ≤ B and | prot(V,E \ F, s)| ≥

T}. In the rest of the section we demonstrate a process, which given I, a target value B and

ϵ > 0, operates as follows. It either returns an efficiently-sampleable distribution D over the cuts
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in the setF((O(log n)+ϵ)B) such that PrF∼D[v ∈ prot(V,E\F, s)] ≥ pv for every v ∈ V \{s},

or returns “INFEASIBLE”. If the latter happens, then it is guaranteed that B < OPTI .

Using the above process in a bisection search with step (1 + ϵ) over the range [0, w(E)],

we can efficiently compute a value B′ ≤ (1 + ϵ)OPTI , such that the process will not re-

turn “INFEASIBLE” for B′. This actually yields an efficiently-sampleable distribution over

F((O(log n) + ϵ)B′) that satisfies the stochastic constraints for all vertices. Hence, we get:

Theorem 3.3.4. For any ϵ > 0 and instance I with optimal value OPTI , we construct an effi-

ciently sampleable distribution D over F(O(log n+ ϵ)OPTI), such that PrF∼D[v ∈ prot(V,E \

F, s)] ≥ pv for every v ∈ V \ {s}. Moreover, the runtime of our approach is poly(n1/ϵ).

Therefore, since for our final result the aforementioned process is all that is required, we

start describing its details. Notice now that for a given target value B, we are basically interested

in verifying whether or not there is a feasible solution to I with edge-cost at most B. Hence,

consider the following exponential-sized linear program, which we call PLP(B).

PLP(B)

min 0∑
F∈F(B):

v∈prot(V,E\F,s)

xF ≥ pv ∀v ∈ V \ {s}

∑
F∈F(B)

xF = 1

0 ≤ xF ≤ 1 ∀F ∈ F(B)

DLP(B)

max
∑

v∈V \{s}

pv · yv − µ

∑
v∈prot(V,E\F,s)

yv ≤ µ ∀F ∈ F(B)

0 ≤ yv ∀v ∈ V

µ ∈ R

If we interpret xF as the probability of choosing the solution F , we see that B yields

a feasible solution iff PLP(B) is feasible. This is because the first LP constraint captures the
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fairness requirements, and the second LP constraint the fact that the resulting solution should be

a distribution over F(B). In addition, if PLP(B) is feasible, then there are only n values xF with

xF > 0 (see Lemma 9 in [125]), and hence the resulting distribution is efficiently-sampleable.

Another important observation is that if PLP(B) is feasible, then clearly its optimal value is 0.

However, since solving PLP(B) is not doable in polynomial time, we focus on its dual,

which we call DLP(B) and we present next to the primal LP.

Here note that DLP(B) is always feasible (e.g., set all variables to 0), and by LP dual-

ity DLP(B) has an optimal value of 0 iff PLP(B) is feasible. Moreover, it is easy to see that

DLP(B) is scale-invariant. In other words, if it has a feasible solution (y′, µ′) with strictly posi-

tive objective value, then we can reason that DLP(B) is unbounded, because (ty′, tµ′) will also

be feasible for any t > 0. Consider now the following polytope that contains all feasible solutions

of DLP(B) of objective value at least 1.

Q(B) =
{
(y, µ) ∈ Rn−1

≥0 × R :
∑

v∈V \{s}

pvyv ≥ µ+ 1 ∧ y(prot(V,E \ F, s)) ≤ µ, ∀F ∈ F(B)
}

Based on the previous discussion we make the following very crucial observation.

Observation 3.3.5. PLP(B) is feasible iff Q(B) = ∅.

Using the algorithm of Section 3.3.1 we prove the following vital theorem.

Theorem 3.3.6. There exists a poly-time algorithm that given a point (y, µ) ∈ Rn−1
≥0 ×R satisfying∑

v∈V \{s} pv ·yv ≥ µ+1, it either verifies that (y, µ) ∈ Q(B), or outputs a set F ∈ F((O(log n)+

ϵ)B) such that
∑

v∈prot(V,E\F,s) yv > µ.

Proof. We begin by constructing an instance Iaux = (V,E,B, T, s, w, y) of AUXCUT, where the

vertex weights correspond to the y values. Then, we run the algorithm of Section 3.3.1 on Iaux.
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Suppose now that F ⊆ E is the solution returned by the algorithm, for which by Theorem 3.3.3

we have w(F ) ≤ (O(log n)+ ϵ)B and | prot(V,E \F, s)| ≥ T . If y(prot(V,E \F, s)) > µ, then

we return F as our answer, because we are guaranteed to have F ∈ F((O(log n)+ϵ)B). If on the

other hand y(prot(V,E\F, s)) ≤ µ, then all F ′ ∈ F(B) have y(prot(V,E\F ′, s)) ≤ µ, because

the properties of the Section 3.3.1 algorithm ensure that y(prot(V,E \ F, s)) ≥ y(prot(V,E \

F ′, s)). The latter immediately indicates that (y, µ) ∈ Q(B).

Given the existence of an algorithm like the one described in Theorem 3.3.6, Anegg et al.

[16] prove that with a round-or-cut approach we can either show thatQ(B) ̸= ∅ or thatQ((O(log n)+

ϵ)B) = ∅. If Q(B) ̸= ∅, then by Observation 3.3.5 we can infer B < OPTI′ and return “IN-

FEASIBLE”. If on the other hand Q((O(log n) + ϵ)B) = ∅, then again by Observation 3.3.5 we

know that PLP((O(log n) + ϵ)B) is feasible. Furthermore, in the latter case the framework of

Anegg et al. [16] provides a set F ′ ⊆ F((O(log n) + ϵ)B) with polynomial size, for which the

following (poly-sized) LP is feasible.

min 0∑
F∈F ′:

v∈prot(V,E\F,s)

xF ≥ pv ∀v ∈ V \ {s}

∑
F∈F ′

xF = 1

0 ≤ xF ≤ 1 ∀F ∈ F ′

Finally, since the above can be efficiently solved, we obtain an efficiently-sampleable distribution

D over F((O(log n) + ϵ)B), such that PrF∼D[v ∈ prot(V,E \ F, s)] ≥ pv for all v ∈ V \ {s}.

113



Chapter 4: Mitigating the Stochastic Spread of A Disease

4.1 MININFEDGE with Unit Edge-Costs and Uniform Probabilities

In this section we are going to consider a special case of MININFEDGE. Specifically, we

assume that the edge costs of the network G = (V,E) are all 1, i.e., ce = 1 for all e ∈ E.

Moreover, we will work under the uniform transimission probability setting.

For a random graphG(p) = (V,E(p)) and any F ⊆ E, let F (p) = F ∩E(p) be the random

cut corresponding to F in G(p). Let also cmin be the size of the smalletst cut in G. We are going

to use a cut sparsification result of Karger [56].

Theorem 4.1.1. ([56]) Let ϵ =
√

3(d+2)(lnn)
cmin·p for some d > 0. If ϵ ≤ 1 then with probability at

least 1−O(1/nd), we have
∣∣|F (p)| − EG(p)[|F (p)|]

∣∣ ≤ ϵEG(p)[|F (p)|] for every F ⊆ E.

Observation 4.1.2. When cmin · p ≥ 9 lnn, the statement of Theorem 4.1.1 holds with high

probability, i.e., with probability at least 1−O(1/n).

Observation 4.1.2 basically determines the regime where the results of this section hold.

However, notice that cmin · p ≥ 9 lnn is actually a realistic assumption, since for most real-life

scenarios the transmission probability will be some constant, and the size of the minimum cut in

G can very well be Ω(lnn).

To tackle MININFEDGE in the current setting, we are going to reduce it to a problem
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from [12], namely the MINIMUM-SIZE BOUNDED-CAPACITY CUT problem (MinSBCC). In

this problem, we are given a graph G = (V,E), a source vertex s ∈ V , and a budget B. We

are then asked to find a set F ⊆ E of at most at most B edges, which minimizes the number of

nodes in the same component as s in GF = (V,E \ F ), i.e., inf(V,E \ F, s); this problem can

be interpreted as the dual of SB-MINCC. The main result of Hayrapetyan et al. [12] follows.

Theorem 4.1.3. For any λ ∈ (0, 1), there exists a polytime ( 1
λ
, 1
1−λ

)-approximation algorithm for

MinSBCC: it finds a cut of size at most 1
λ
B, in which the number of nodes in the same component

as s in the resulting subgraph is at most 1
1−λ

times the value of the optimal solution with size B.

Our approach for solving MININFEDGE goes as follows. At first, we sample a graph

H = (V,E ′) from G(p). Then, we create an instance of MinSBCC, where the graph under

consideration is H , the source vertex is s, and the budget is γBp for a small constant γ which

we set later. Finally, we run the ( 1
λ
, 1
1−λ

)-approximation of Hayrapetyan et al. [12] on the created

instance of MinSBCC, and get a solution F ′ ⊆ E ′. Let now S be all the vertices that are in the

same connected component as s in HF ′ = (V,E ′ \ F ′). Our returned solution for the original

instance of MININFEDGE is F̄ = {{u, v} ∈ E : u ∈ S, v ̸∈ S}.

Lemma 4.1.4. When the assumption of Observation 4.1.2 holds, |F̄ | ≤ γ
(1−ϵ)λ

B with probability

at least 1−O(1/n), where ϵ is as in Theorem 4.1.1 and ϵ ∈ (0, 1).

Proof. Notice that the vertices that are in the same connected as s in (V,E \ F̄ ), are exactly those

that are connected to s in (V,E ′ \ F ′). Therefore, the random cut corresponding to F̄ in G(p) is

F ′, i.e., F ′ = F̄ (p). Hence, EG(p)[F
′] = EG(p)[F̄ (p)] = p|F̄ |. Thus, using Theorem 4.1.1, we
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have that with probability at least 1−O(1/n):

∣∣|F ′| − p|F̄ |
∣∣ ≤ ϵp|F̄ | =⇒ |F ′| ≥ (1− ϵ)p|F̄ |

Since |F ′| ≤ γBp
λ

(we ran the algorithm of Theorem 4.1.3 with budget γBp), we get

γBp

λ
≥ |F ′| ≥ (1− ϵ)|F̄ |p

with probability at least 1−O( 1
n
). Rearranging terms implies |F̄ | ≤ γ

(1−ϵ)λ
B.

Lemma 4.1.5. |S| ≤ γ
1−λ

OPT with probability at least 1 − 2
γ

, where OPT is the value of the

optimal solution (the expected number of nodes infected).

Proof. Let F ∗ denote the optimal solution (so |F ∗| ≤ B), and let F̂ = F ∗ ∩ E ′ be a random

variable denoting the edges of F ∗ that are present in E ′. Let also SF̂ be the random variable

denoting the nodes that are in the same connected component as s in (V,E ′ \ F̂ ). We say that

there was a “success” in the process of sampling H if the following two conditions are satisfied:

1) |F̂ | ≤ γBp and 2) |SF̂ | ≤ γ ·OPT . If either condition is false we say that there was a “failure”.

Suppose that there was a success. Then the first condition implies that F̂ was a feasible

solution for the MinSBCC instance (since its size was within the given budget), and hence |S| ≤

1
1−λ
|SF̂ |. Then the second condition implies |S| ≤ γ

1−λ
OPT as desired.

Finally, we need to show that the probability of success is at least 1 − 2
γ

, or equivalently

that the probability of failure is at most 2
γ

. Clearly EG(p)[|F̂ |] = p|F ∗| ≤ pB, so by Markov’s

inequality Pr[|F̂ | > γBp] ≤ 1
γ

. Similarly, E[|SF̂ |] = OPT by definition of OPT , and so by

Markov Pr[|SF̂ | > γ ·OPT ] ≤ 1
γ

. A union bound yields a failure probability of at most 2
γ

.
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Theorem 4.1.6. There exists an (O(1), O(1))-approximation for MININFEDGE that works with

high probability, as long as the assumption of Observation 4.1.2 holds.

Proof. If we set γ to be a large enough constant, e.g., larger than 4, then with probability at least

1/2−O(1/n) we return a solution F̄ which violates the budget by at most O(1) (Lemma 4.1.4),

and the size of the connected component in (V,E \ F̄ ) which contains s is at most O(1) · OPT

(Lemma 4.1.5). Clearly this implies that EG(p)[inf(V,E(p) \ F̄ , s)] is also at most O(1) ·OPT .

Thus, our algorithm gives the bounds in Theorem 4.1.6 with constant probability. By repeating

this process O(log n) times and taking the best single solution, this algorithm can be made to

work with high probability (at least 1-O(1/n)).

4.2 The SAA Path-Dependent Framework for Arbitrary Networks

Consider a general instance of MININFEDGE. For a suitable number N = poly(n,m) that

is going to be set later, we simulate the disease-percolation process on G independently N times.

In other words, we independently sample N graphs Gj = (V,Ej), where j ∈ [N ] and Ej ⊆ E is

the subset of edges acquired in the jth simulation (or sample), when each edge e ∈ E is retained

with probability pe. The heart of our approach is then to show how these “typical” samples Gj

can guide us towards computing a provably-good solution for our given percolation model.

We start by presenting the linear program LP (4.1)-(4.4). This LP models an “empirical”

solution to the problem, when the diffusion process can only result in the graphs Gj , and each

of these graphs materializes with probability 1/N . We use P(s, v,Gj) to denote the set of paths

from s to v in the graph Gj , and [k] to denote the set {1, 2, . . . , k} for any positive integer k.

For the integral version of our LP, xe is the indicator variable for removing edge e, and yvj
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the indicator for vertex v not becoming reachable from s in Gj after our edge-removal. Then,

constraint (4.2) makes sure that v is disconnected from s in Gj iff for every path of P(s, v,Gj)

at least one edge of the path has been removed. Constraint (4.3) captures the budget constraint,

and the objective function (4.1) measures exactly the expected number of infections, when each

Gj appears with probability 1/N . Finally, in order to be able to efficiently solve the system, the

{0, 1}–variables are relaxed to lie in [0, 1].

min
1

N

∑
j∈[N ]

∑
v∈V

(1− yvj) such that (4.1)

∑
e∈P

xe ≥ yvj, ∀j ∈ [N ], ∀v ∈ V, ∀P ∈ P(s, v,Gj) (4.2)

∑
e∈E

cexe ≤ B (4.3)

xe, yvj ∈ [0, 1], for all j ∈ [N ], v ∈ V, e ∈ E (4.4)

Our algorithm involves the following steps:

1. Solve LP (4.1)-(4.4), and let x, y be the optimal fractional solution. This solution can be

computed in polynomial time via the ellipsoid method, with a separation oracle that checks

if the shortest-path distance from s to v in Gj (with edge weights xe) is less than yvj [126].

2. For a user-specified constant ϵ ∈ (0, 1), define the following sets for the sake of analysis:

S(j) = {v ∈ V : yvj ≥ ϵ} for every j ∈ [N ], and Phit = ∪j ∪v∈S(j) P(s, v,Gj).

3. Let F0 denote the set of edges which will constitute our returned solution. For some con-
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stant γ that will be defined later, put each edge e ∈ E independently in F0, with probability

x′e = min
{(γ + 5)xe log n

ϵ
, 1
}

For any fixed F ⊆ E, we define random variables h(Gj, F ) and h(G,F ), where the ran-

domness here is over the choice of the Gj’s, i.e., the randomness is of Type 3. Let h(Gj, F ) =

inf(V,Ej \ F, s) and h(G,F ) = 1
N

∑N
j=1 h(Gj, F ); the former represents the number of infec-

tions in the j-th sample if F are the edges to be removed, and the latter represents the average

number of infections over the N sampled graphs if again F is the set of edges removed.

For the small user-defined constant ϵ > 0, we now choose N = 3n
ϵ2
log
(
n2 · 2m+1

)
and

present a simple concentration result in Lemma 4.2.1; note that for this choice we have N =

poly(n,m) and hence our algorithm runs in polynomial time.

Lemma 4.2.1. For the chosen value N = 3n
ϵ2
log
(
n2 · 2m+1

)
, with probability at least 1− 1

n2 , we

have h(G,F ) ∈
[
(1−ϵ)E[h(G,F )], (1+ϵ)E[h(G,F )]

]
for all sets F ⊆ E. The expectation here

is over randomness of Type 3, and specifically over the random sampling of the N graphs Gj .

Proof. For a fixed set F , the quantities h(Gj, F ) are independent. Further, let Xj =
h(Gj ,F )

n
∈

[0, 1] and X =
∑N

j=1Xj . Note that X = N
n
h(G,F ). Using a simple Chernoff bound yields:

Pr
[
X /∈

[
(1− ϵ)E[X], (1 + ϵ)E[X]

]]
≤ 2e−

ϵ2E[X]
3

= 2e−
ϵ2N·E[h(G,F )]

3n

≤ 1

n22m

To get the last inequality we use the definition ofN , and the fact that E[h(G,F )] ≥ 1 (since there
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is always at least one infection, namely the node s). Finally, since X = N
n
h(G,F ), we have:

Pr
[
h(G,F ) /∈

[
(1− ϵ)E[h(G,F )], (1 + ϵ)E[h(G,F )]

]]
≤ 1

n22m

Because the number of subsets F is 2m, a union bound over them concludes the proof.

Let F ∗ = argminF E[h(G,F )], where the expectation is over the random sampling of the

graphs Gj (Type 3 randomness). Since for every F we have E[h(Gj, F )] = EG(p⃗)[inf(V,E(p⃗) \

F, s)] for all Gj , and E[h(G,F )] = 1
N

∑
j E[h(Gj, F )], we see that F ∗ is actually the optimal

edge set for MININFEDGE. Also, we define the random variable F̂ = argminF h(G,F ), denot-

ing the optimal integral solution of LP (4.1)-(4.4); F̂ is actually the optimal empirical solution for

the sampled set of graphs. Recall now that F0 is the subset of edges computed by our LP round-

ing algorithm, and recall the parameter Γ from Section 1.4.4, indicating the expected number of

paths in a randomly-drawn graph (with randomness being of types 1 and 3).

Proof. (Theorem 1.4.9) Showing the first part of the theorem is easy. Since each edge e is

removed (independently) with probability x′e, the expected cost of the removed edges is

E[c(F0)] ≤
∑
e

cex
′
e

≤ (γ + 5) log n

ϵ

∑
e

cexe

≤ ((γ + 5) log n)B

ϵ

where the last inequality follows from constraint (4.3). Next, we can assume w.l.o.g. that B = 1.

To do so, we first hard-wire xe = 0 for all edges e with ce > B, thus ignoring these edges in our
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edge-removal problem. Then, we uniformly scale all remaining ce’s and the budget by a factor of

1/B. Using a standard Chernoff bound will give:

Pr
[
c(F0) ≥ (6(γ + 5) log n)/ϵ

]
≤ O(1/nγ)

We next prove the second part of the theorem. The event A that is a function of the ran-

domness of types 1, 2, and 3 is the conjunction of the following three events:

• A1: For each P ∈ Phit, there exists an edge e ∈ P , such that e ∈ F0.

• A2: h(G,F ∗) ≤ (1 + ϵ)E[h(G,F ∗)].

• A3: h(G,F0) ≥ (1− ϵ)E[h(G,F0)].

We first show that E[inf(V,E(p⃗) \ F0, s)
∣∣ A] ≤ (1 +O(ϵ))OPT , and then lower-bound Pr[A].

Let us first condition onA. Consider any j ∈ [N ]. By A1 and the definition of the set Phit,

the only vertices in (V,Ej \F0) that are reachable from s can be those in V \S(j); these vertices

are exactly the ones getting infected in the j-th sample. Further, by definition we have yvj < ϵ

for every v ∈ V \ S(j). Therefore, the empirical number of infections over all the samples is:

h(G,F0) ≤
1

N

∑
j∈[N ]

∑
v ̸∈S(j)

1

≤ 1

N

∑
j∈[N ]

∑
v ̸∈S(j)

1− yvj
1− ϵ

≤ h(G, F̂ )

1− ϵ
≤ h(G,F ∗)

1− ϵ
(4.5)

The second inequality above follows because the LP value is a lower bound on h(G, F̂ ), and the
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last inequality follows since F̂ minimizes h(G,F ). (4.5) and the definitions of A2, A3 yield

E[h(G,F0)] ≤
h(G,F0)

1− ϵ

≤ h(G,F ∗)

(1− ϵ)2

≤ (1 + ϵ)

(1− ϵ)2
E[h(G,F ∗)]

= (1 +O(ϵ))E[h(G,F ∗)]

To conclude the proof we need to lower-bound Pr[A]. First, Lemma 4.2.1 shows that each

of A2 and A3 holds with probability at least 1− 1/n2. Let us consider A1 next.

Let B be a random variable denoting the number of paths over all the samples Gj . Since Γ

is the expected number of paths in a single graph, linearity of expectation gives

E[B] = ΓN = O(
n3Γ

ϵ2
)

since m = O(n2). Thus, by using Markov’s inequality we have

Pr[B = Ω(
n5Γ

ϵ2
)] ≤ O(1/n2) =⇒ Pr[B = O(

n5Γ

ϵ2
)] ≥ 1−O(1/n2)

The randomness in the previous statements is of types 1 and 3.

Consider now a path P ∈ Phit. If there exists an e ∈ P such that x′e = 1, then this path is

broken. Hence, assume that for all e ∈ P we have x′e < 1. By the definition of the paths in Phit

we also have
∑

e∈P x
′
e ≥ (γ + 5) log n. Therefore, keeping in mind that we choose the edges of
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F0 independently, the probability that all edges of the path P survive is at most

∏
e∈P

(1− x′e) ≤ e−
∑

e∈P x′
e ≤ e−(γ+5) logn ≤ n−(γ+5)

In the end, a union bound over all P ∈ Phit gives:

Pr[A1|B] ≥ 1− B
nγ+5

Combining everything gives Pr[A1] ≥ (1−O( Γ
ϵ2nγ ))(1−O( 1

n2 )) = 1−O( Γ
ϵ2nγ )−O( 1

n2 ). Hence,

putting down all the lower bounds for A1,A2 and A3 yields Pr[A] ≥ 1−O( Γ
ϵ2nγ )−O( 1

n2 ).

Corollary 4.2.2. When Γ = poly(n), E[inf(V,E(p⃗) \ F0, s)] ≤ (1 + O(ϵ) + O(1/n))OPT ,

where the randomness is with respect to Type 1 (if applicable), Type 2, and Type 3.

Proof. When Γ = poly(n), we set γ large enough such that O( Γ
ϵ2nγ ) = O( 1

n2 ). Using Theorem

1.4.9 we then have:

E[inf(V,E(p⃗) \ F0, s)] = E[inf(V,E(p⃗) \ F0, s)|A] Pr[A] + E[inf(V,E(p⃗) \ F0, s)|Ā] Pr[Ā]

≤ (1 +O(ϵ))OPT + nO(1/n2) (4.6)

≤ (1 +O(ϵ) +O(1/n))OPT

To get the first inequality we use the simply upper bound of E[inf(V,E(p⃗) \ F0, s)|Ā] ≤ n, and

for the last one we use the fact that 1 ≤ OPT (s is always infected).

123



4.3 Counting Paths in the Chung-Lu Random Graph Model

Recall the random graph model of Chung and Lu [22]. Here we are given vertices V , where

each vertex v ∈ V comes with a positive integer wv indicating its expected degree in the graph.

For every pair of vertices u and v, the edge (u, v) is independently included in the graph with

probability

qu,v = wuwv/
∑
r∈V

wr

Furthermore, we consider a power-law model, in which ni, the number of nodes of weight i,

satisfies ni = Θ(n/iβ), where β > 2 is a given parameter. Finally, recall that wmax = maxv wv,

wmin = minv wv, and a common assumption in this random graph setting is that wmin = O(1).

Take now any random graph G = (V,E) that is produced by the above model. In that

graph, we assume that a disease percolation process takes place, and this process is governed by

some probability vector p⃗. We are interested in bounding the expected number of paths Γ inG(p⃗),

where the randomness of Γ is obviously of both Types 1 and 3. To do so, we start by analyzing

the expected number of paths of length k in G, where the randomness here is only of Type 1. In

what follows, we are using ℓk to denote the latter quantity.

Our first result is showing that when β > 3, we have ℓk ≤ poly(n, 2k). Furthermore, if

pe ≤ c0 for all e ∈ E, where c0 is a universal positive constant, we demonstrate how to utilize the

bound on ℓk and eventually give a polynomial bound on Γ.

In addition, when β < 3 we provide a negative result, indicating that our SAA framework

from Section 4.2 cannot be utilized for this case, as no polynomial bound on Γ can be guaranteed.

By an abuse of notation, we will let m denote the expected number (not actual number) of
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edges in the graph G. Trivially, m =
∑

v∈V wv/2. Since β > 2, m can also be expressed as:

m = Θ(
∑
i

i · ni)

= Θ
(∫ wmax

wmin

n

zβ−1
dz
)
= Θ

( n

wβ−2
min

)
(4.7)

The following lemma is required for counting paths.

Lemma 4.3.1. Fix some length k, and suppose that we are given a positive integer D ≥ wmin.

Let S(D, k) .= {(a(wmin), a(wmin+1), . . . , a(D)) : (∀i, a(i) ∈ Z≥0) and
∑

i a(i) = k}1. Then,

ℓk ≤ n ·
(
2kk!

mk

)
·

∑
a∈S(wmax,k)

wmax∏
i=wmin

((
ni

a(i)

)
· i2a(i)

)
.

Proof. We say that a vertex v is in class i if wv = i. Fix now a vertex v0. We will next upper

bound how many different paths of length k can start from v0. We can construct such a possible

path P = (v0, u1, . . . , uk) as follows:

1. Pick a vector a = (a(wmin), a(wmin + 1), . . . , a(wmax)) from S(wmax, k). This will give

us the selection of how many vertices from each degree class we should pick, such that in

total we have chosen k vertices for P .

2. For the chosen a, pick a(i) vertices from each degree class i, where wmin ≤ i ≤ wmax.

This is possible only if a(i) ≤ ni for each class i. However, since we are only comput-

ing an upper bound, we will assume that such a selection is always possible. Notice that

there may be some additional double counting, because we may end up choosing v0 again.

1S(D, k) can be interpreted as the set of all vectors x ∈ ZD−wmin+1
≥0 with ℓ1 norm equal to k. Our notation can

be thought of as re-indexing x, so that the numbering starts at wmin instead of 1, and then finishes at D.
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Nonetheless, as we are only concerned with an upper bound, we will again permit such

“unecessary” cases in our counting.

3. Choose the positions of the chosen k vertices among the indices {1, 2, . . . , k} of the path

P to be constructed (k! possibilities).

Overall, based on the 3 cases above, the number of paths starting from v0 can be at most:

k!
∑

a∈S(wmax,k)

wmax∏
i=wmin

(
ni

a(i)

)
(4.8)

Let d0 be the class of v0. Suppose we complete the three steps above and let (d0, d1, . . . , dk)

be the ordered degree sequence obtained for the vertices in P , when the chosen vector was a. The

probability of such a path materializing in the edge selection phase is

k−1∏
i=0

(
didi+1∑

v wv

)
=

2k

mk

wmax∏
i=wmin

i2a(i) (4.9)

Combining (4.8) and (4.9), the expected number of length k paths starting at v0 is at most

(
2kk!

mk

)
·

∑
a∈S(wmax,k)

wmax∏
i=wmin

((
ni

a(i)

)
· i2a(i)

)
(4.10)

Summing this bound over all possible starting vertices results in the claim of the Lemma.

4.3.1 A Positive Result When β > 3

We begin this section with a couple of important technical lemmas, and then move on to

our final result regarding the expected number of paths in a randomly drawn graph.
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Lemma 4.3.2. Let S(D, k) be as in Lemma 4.3.1, and N(D, k)
.
=
∑

a∈S(D,k)

∏D
i=wmin

1
ic1a(i)·a(i)!

for some constant c1 > 1. Then N(D, k) ≤ 1
k!
·
∏D

i=wmin+1

(
1 + 1

ic1

)k.

Proof. We prove by induction on D the stronger statement (A), which will imply the Lemma.

∀k, N(D, k) ≤ 1

k!
·

D∏
i=wmin+1

(
1 +

1

ic1

)k

(A)

The base case D = wmin is easy; notice that S(wmin, k) = {(k)}, and hence we have

N(wmin, k) =
1

w
c1k
min·k!

≤ 1
k!

. The inequality above follows since c1 > 1.

We complete the proof by strong induction. Suppose D > wmin. Elementary calculations

and the definition of N(·, ·) reveal the following recurrence when D > wmin

N(D, k) =
k∑

j=0

(
N(D − 1, k − j) · 1

Dc1j · j!

)
(4.11)

Recurrence (4.11) and the induction hypothesis yield

N(D, k) ≤
k∑

j=0

(
1

Dc1j · j!
· 1

(k − j)!

D−1∏
i=wmin+1

(
1 +

1

ic1

)k−j
)

≤
k∑

j=0

(
1

Dc1j · j!
· 1

(k − j)!

D−1∏
i=wmin+1

(
1 +

1

ic1

)k
)

=

(
D−1∏

i=wmin+1

(
1 +

1

ic1

)k
)

k∑
j=0

(
1

Dc1j · j!
· 1

(k − j)!

)

=
1

k!
·

(
D−1∏

i=wmin+1

(
1 +

1

ic1

)k
)
·

k∑
j=0

((
k

j

)
· 1

Dc1j

)

=
1

k!
·

(
D∏

i=wmin+1

(
1 +

1

ic1

)k
)
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The last inequality above follows from the binomial sum
∑k

j=0

((
k
j

)
· 1
Dc1j

)
= (1+1/Dc1)k.

Lemma 4.3.3. Suppose β = 2 + c1 for some constant c1 > 1. Then, for all k, ℓk ≤ poly(n, 2k).

Proof. Before we proceed to our main arguments, we make some useful observations and give

a bit more notation. At first, using (4.7) and the assumption that wmin = O(1), we see that

n
m

= O(1). Furthermore, because ni = Θ( n
iβ
) for every i ∈ [wmin, wmax], let λ be a universal

constant such that ni ≤ λn
iβ

for every i. Using Lemma 4.3.1 we get

ℓk ≤ n ·
(
2kk!

mk

)
·

∑
a∈S(wmax,k)

wmax∏
i=wmin

(
n
a(i)
i

a(i)!
· i2a(i)

)

≤ n ·
(
2kk!

mk

)
·

∑
a∈S(wmax,k)

wmax∏
i=wmin

(
(λn/i2+c1)a(i)

a(i)!
· i2a(i)

)

≤ n · k! ·
(
λn

m

)k

·
∑

a∈S(wmax,k)

wmax∏
i=wmin

(
(1/i2+c1)a(i)

a(i)!
· i2a(i)

)

= n · k! ·
(
λn

m

)k

·
∑

a∈S(wmax,k)

wmax∏
i=wmin

1

ic1a(i) · a(i)!

= poly(n, 2k) · k! ·N(wmax, k).

Using the bound on N(D, k) from Lemma 4.3.2, we have

ℓk ≤ poly(n, 2k) ·
∞∏

i=wmin+1

(
1 +

1

ic1

)k

≤ poly(n, 2k) ·
∞∏

i=wmin+1

e
k

ic1

= poly(n, 2k) · ek·
∑

i>wmin

1
ic1

≤ poly(n, 2k)

The last inequality follows because
∑

i>wmin
(1/ic1) = O(1) when c1 > 1.

128



Corollary 4.3.4. LetG be a graph drawn from the Chung-Lu distribution with power law weights,

with parameter β = 2 + c1 for some constant c1 > 1. Then there is a constant c0 > 0 that de-

pends only on c1, such that the following holds: if the probability pe of retaining edge e during

the disease percolation process satisfies pe ≤ c0 for any e, then the expected number Γ of paths

in G(p⃗) is upper-bounded by poly(n). (This expectation is over randomness of types 1 and 3.)

Proof. From Lemma 4.3.3, we have ℓk ≤ poly(n, 2k); let C be a constant such that ℓk ≤ nC2Ck

for all k. We choose c0 = 2−C . Then, when pe ≤ c0 for every e, the probability that a given path

of length k survives in G(p⃗) is at most ck0. Therefore, the expected number of paths in G(p⃗) is

Γ ≤
∑
k

ℓkc
k
0 ≤

∑
k

nC(c02
C)k ≤ nC+1

Combining Corollaries 4.3.4 and 4.2.2, we get a bicriteria approximation for MININF-CL.

4.3.2 A Negative Result When β < 3

We now consider the case β < 3 and show an interesting contrast to Lemma 4.3.3.

Lemma 4.3.5. When β = 2 + c0 for some c0 < 1, there might exist k with ℓk = ω(poly(n, 2k)).

Proof. In the proof of Lemma 4.3.1 we gave an upper bound for ℓk. However, the double counting

or the unnecessary cases we involved in our counting can only account for low-order terms. In

other words, we can assume

ℓk = Θ

n · (2kk!

mk

)
·

∑
a∈S(wmax,k)

wmax∏
i=wmin

((
ni

a(i)

)
· i2a(i)

) (4.12)

Consider the case where wmin = 1 and wmax = k, and just take the one sequence a =
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(1, 1, . . . , 1). Furthermore, because ni = Θ( n
iβ
) for every i ∈ [wmin, wmax], let λ be a universal

constant such that ni ≥ λn
iβ

for every i. Since a(i) = 1 for all i here, the quantity inside the Θ

notation in (4.12), which we denote by Q, can be lower-bounded as follows

Q ≥ n ·
(
2kk!

mk

)
·

wmax∏
i=wmin

(
ni · i2

)
≥ n ·

(
2kk!

mk

)
·

k∏
i=1

(
(λn/iβ) · i2

)
= n ·

(
2kλknkk!

mk

)
·

k∏
i=1

i−c0

= n ·
(
2kλknk

mk

)
· (k!)1−c0

= poly(n, 2k) · (k!)1−c0

Because c0 < 1, we have that (k!)1−c0 grows faster than poly(2k). Hence, Q = ω(poly(n, 2k))

and consequently ℓk = ω(poly(n, 2k)).

Using reasoning similar to that used in Corollary 4.3.4, we see that Lemma 4.3.5 im-

plies that under this stochastic regime, our proof approach cannot provide meaningful results

for MININF-CL. Thus we see a phase transition for the expected number of paths of any length

k: from at least (k!)Ω(1) to poly(n, 2k) at β = 3. It is an open question what happens when β = 3.

4.4 A Deterministic Rounding SAA Approach

In this section we revisit the SAA approach of Section 4.2, and instead of a randomized

rounding, we apply a simple deterministic rounding scheme. The advantage of the latter is that

the success probability of the algorithm no longer relies on the value Γ. However, this comes at
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the expense of much worse bicriteria factors.

Once again we are going to independently sample N = 3n
ϵ2
log
(
n2 · 2m+1

)
graphs Gj =

(V,Ej) fromG(p⃗), and then construct LP (4.1)-(4.4). Let (x, y) be the optimal fractional solution

of the LP. In this case, our returned solution will be F0 = {e ∈ E : xe ≥ 1
4n2/3}. Before we

proceed with our analysis, let us recall some important notation from Section 4.2. For any fixed

F ⊆ E, h(Gj, F ) = inf(V,Ej \ F, s) and h(G,F ) = 1
N

∑N
j=1 h(Gj, F ). Finally, F ∗ denotes

the optimal edge set for the given instance of MININFEDGE, and F̂ denotes the optimal integral

solution of LP (4.1)-(4.4).

Theorem 4.4.1. Whp, F0 is an (O(n2/3), O(n2/3))-approximation for MININFEDGE.

Proof. To begin with, by the definition of F0 and constraint (4.3), we have

∑
e∈F0

ce ≤ 4n2/3
∑
e∈F0

cexe ≤ 4n2/3B

Moving forward, note that by Lemma 4.2.1, we have h(G,F ∗) ≤ (1 + ϵ)E[h(G,F ∗)]

and h(G,F0) ≥ (1 − ϵ)E[h(G,F0)] with probability at least 1 − O(1/n2). If we show that

h(G,F0) ≤ 2n2/3h(G, F̂ ), then we are done. This is because:

E[h(G,F0)] ≤
h(G,F0)

1− ϵ

≤ 2n2/3

1− ϵ
h(G, F̂ )

≤ 2n2/3

1− ϵ
h(G,F ∗)

≤ 2(1 + ϵ)n2/3

1− ϵ
E[h(G,F ∗)]
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At first, suppose h(G, F̂ ) > n1/3. Since h(Gj, F0) ≤ n ≤ n2/3h(G, F̂ ) for any j,

h(G,F0) ≤ 2n2/3h(G, F̂ ) follows trivially through the definition of h(G,F0).

Next, suppose h(G, F̂ ) ≤ n1/3. This implies

1

N

∑
j∈[N ]

∑
v∈V

(1− yvj) ≤ h(G, F̂ ) ≤ n1/3

because the optimal LP-value is a lower bound for h(G, F̂ ). Let now A′ = {j ∈ [N ] :
∑

v∈V (1−

yjv) ≤ n2/3} and A′′ = [N ] \ A′ = {j ∈ [N ] :
∑

v∈V (1 − yvj) > n2/3}. The upper bound of

the optimal fractional solution value then gives |A′′| ≤ N/n1/3. Consider now any j ∈ A′, and

let v be a node such that 1− yvj ≤ 1/2. We will argue below that for any path P ∈ P(s, v,Gj),

there exists an edge e ∈ P such that e ∈ F0. This means that if v is infected in (V,Ej \ F0), then

1− yvj > 1/2, and so h(Gj, F0) ≤
∑

v 2(1− yvj). Hence,

h(G,F0) =
1

N

∑
j∈A′

h(Gj, F0) +
1

N

∑
j∈A′′

h(Gj, F0)

≤ 1

N

∑
j∈A′

∑
v∈V

2(1− yvj) +
n|A′′|
N

≤ 1

N

∑
j∈[N ]

∑
v∈V

2(1− yvj) + n2/3

≤ 1

N

∑
j∈[N ]

∑
v∈V

2(1− yvj) + n2/3h(G, F̂ )

≤ (2 + n2/3)h(G, F̂ )

≤ 2n2/3h(G, F̂ )

where the third inequality follows because h(Gj, F̂ ) ≥ 1, and thus h(G, F̂ ) ≥ 1.
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Finally, we prove that for any j ∈ A′, and any v such that 1 − yvj ≤ 1/2, it must be the

case that for each P ∈ P(s, v,Gj) we have P ∩ F0 ̸= ∅. Let P = (v0, v1, . . . , vr) with v0 = s

be such a path of P(s, v,Gj). First, suppose |P | = r ≤ 2n2/3. Then, constraint (4.2) yields∑
e∈P xe ≥ 1/2, and hence there exists e ∈ P with xe ≥ 1/(2|P |) ≥ 1/(4n2/3), which implies

e ∈ F0. Next, suppose |P | > 2n2/3. Let P ′ = (v0, v1, . . . , vk) be the prefix of P of length

k = 2n2/3. We will show that P ′ ∩ F0 ̸= ∅, which implies P ∩ F0 ̸= ∅. By definition of A′,

we have
∑k

i=0(1 − yvij) ≤ n2/3. Since k = 2n2/3, there exists some 1 ≤ ℓ ≤ k such that

1 − yvℓj ≤ 1/2, or yvℓj ≥ 1/2. Constraint (4.2) applied for vℓ and the path (v0, v1, . . . , vℓ) gives∑ℓ−1
i=0 x(vi,vi+1) ≥ yvℓj ≥ 1/2, and thus there exists an edge (vi, vi+1) ∈ P ′ with x(vi,vi+1) ≥ 1

2ℓ
≥

1
2k
≥ 1

4n2/3 , which means that (vi, vi+1) ∈ F0.
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Chapter 5: Addressing Two-Stage Stochastic Clustering

5.1 Notation and Important Subroutines

For k ∈ N, we use [k] to denote {1, 2, . . . , k}. Also, for a vector α = (α1, α2, . . . , αk)

and a subset X ⊆ [k], we use α(X) to denote
∑

i∈X αi. For a client j and R ≥ 0, we define

Gj,R = {i ∈ F : d(i, j) ≤ R} as the ball of radius R around j, iIj,R = argmini∈Gj,R
cIi as the

cheapest stage-I facility in that ball, and iAj,R = argmini∈Gj,R
cAi as the cheapest stage-II facility

under scenario A in the ball.

We repeatedly use a key subroutine named GreedyCluster() and shown in Algorithm 9. Its

input is a set of clients Q, a target radius R, and an ordering function g : Q 7→ R. Its output is

a set H ⊆ Q along with a mapping π : Q 7→ H . The goal of this subroutine is to sparsify the

given input Q, by greedily choosing a set of representative clients H .

Algorithm 9: GreedyCluster(Q, R, g)
H ← ∅;
for each j ∈ Q in non-increasing order of g(j) do

H ← H ∪ {j};
for each j′ ∈ Q with Gj,R ∩Gj′,R ̸= ∅ do

π(j′)← j,Q ← Q \ {j′};
end

end
Return (H, π) ;

The next observation follows trivially from the way Algorithm 9 operates.
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Observation 5.1.1. For the outcome (H, π) = GreedyCluster(Q, R, g) of Algorithm 9, the fol-

lowing two properties hold:

1. For all j, j′ ∈ H with j ̸= j′, we have Gj,R ∩Gj′,R = ∅.

2. For all j ∈ Q with j′ = π(j), we have Gj,R ∩Gj′,R ̸= ∅, d(j, j′) ≤ 2R, and g(j′) ≥ g(j).

5.2 Generalizing to the Black-Box Setting

Let P be any of the two-stage problems we consider, with polynomial-scenarios variant P-

Poly and black-box variantP-BB. Moreover, suppose that we have an η-approximation algorithm

AlgP forP-Poly, which we intend to use to solveP-BB. Before we proceed to our generalization

scheme, we present some important definitions and assumptions.

As a starting point, assume that we are given a fixed radius demand R; we later discuss

how to optimize over this. Hence, we will be denoting a P-BB problem instance by the tuple

I = (C,F ,MI , c
I , B,R), where C is the set of clients, F the set of facilities i, each with stage-I

cost cIi ,MI ⊆ 2F the set of legal stage-I openings (representing the stage-I specific constraints

of P), B the budget, and R the given covering demand. In addition, there is an underlying

distribution D, where each scenario A ∈ D appears with some unknown probability pA. Our

only means of access to D is via a sampling oracle. Finally, when a scenario A ∈ D is revealed,

we also learn the corresponding facility costs cAi .

Definition 5.2.1. We define a strategy s to be a tuple (F s
I , F

s
A | A ∈ D) of facility sets, where A

ranges overD. The set F s
I represents the facilities the strategy s opens in stage-I, and F s

A denotes

the facilities s opens in stage-II, when the arriving scenario is A. In other words, a strategy is a

just potential (not necessarily feasible) solution for P-BB.
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Assumption 5.2.2. For any strategy s and A ∈ D, the value cA(F s
A) has a continuous CDF. We

can assume this w.l.o.g.; we simply add a dummy facility id in the input, and for all s and A ∈ D,

we include id in the original F s
A. Then, cAid is set to be some infinitesimal smooth noise. Also, B

andMI can trivially be extended to account for id. Finally, the assumption implies that for any

finite set of scenarios Q, the values cA(F s
A) for all A ∈ Q are distinct with probability 1.

We say that a given instance I is feasible for P-BB, if there exists a strategy s∗ satisfying:

F s∗

I ∈MI , cI(F s∗

I ) +
∑
A∈D

pAc
A(F s∗

A ) ≤ B, ∀j ∈ A ∈ D d(j, F s∗

I ∪ F s∗

A ) ≤ R

For P-Poly, consider an instance J = (C,F ,MI , Q, q⃗, c⃗, B,R), where C,F ,MI , B,R are

as in the P-BB setting, Q is the set of provided scenarios, c⃗ the vector of stage-I and stage-II

explicitly given costs, and q⃗ the vector of occurrence probabilities qA of each A ∈ Q. We say that

the instance J is feasible for P-Poly, if there exist sets FI ⊆ F and FA ⊆ F for every A ∈ Q:

FI ∈MI , cI(FI) +
∑
A∈Q

qAc
A(FA) ≤ B, ∀j ∈ A ∈ Q d(j, FI ∪ FA) ≤ R

We also write F for the overall collection of sets FI and FA : A ∈ Q.

Definition 5.2.3. An algorithm AlgP is a valid η-approximation algorithm for P-Poly, if given

any problem instance J = (C,F ,MI , Q, q⃗, c⃗, B,R), one of the following holds:

A1 If J is feasible for P-Poly, then AlgP returns a collection of sets F with FI ∈ MI ,

cI(FI) +
∑

A∈Q qAc
A(FA) ≤ B and ∀j ∈ A ∈ Q d(j, FI ∪ FA) ≤ ηR.

A2 If J is not feasible for P-Poly, then the algorithm either returns “INFEASIBLE”, or returns

a collection of sets F satisfying the properties presented in A1.
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Definition 5.2.4. A valid η-approximation algorithm AlgP for P-Poly is efficiently generaliz-

able, if for every instance J = (C,F ,MI , Q, q⃗, c⃗, B,R) for which it returns a solution F , there

is an efficient procedure that implicitly extends this to a strategy s̄, and satisfies:

S1 Given any A ∈ D, it returns a set F s̄
A ⊆ F , with d(j, F s̄

I ∪ F s̄
A) ≤ ηR for all j ∈ A.

S2 F s̄
I = FI and F s̄

A = FA for every A ∈ Q.

S3 Given J, let S be the set of all possible strategies that are potentially achievable using the

extension procedure for any set Q. Then |S| ≤ tP(n,m) for some function tP(n,m), with

log(tP(n,m)) = poly(n,m).

Note that property S3 is not trivial, since by default |S| ≤ 2m|D|, and |D| can be exponentially

large or even uncountably infinite.

The first step of our generalization is based on sampling a set Q of scenarios from D, and

then applying the efficiently-generalizable AlgP on Q. When running the latter, we also increase

the available budget to (1 + ϵ)B, for some ϵ > 0. The purpose of this step is to verify whether or

not the given instance of P-BB is feasible, and to achieve this we may have to repeat the step a

polynomial number of times. See Algorithm 10 for the full details.

If Algorithm 10 returns “INFEASIBLE”, then our approach would deem that I is not feasi-

ble for P-BB. Otherwise, let F be the solution returned by AlgP at the last “successfull” iteration

of the while loop. Because AlgP is efficiently-generalizable, we can apply its extension proce-

dure to any arriving scenario, and therefore implicitly construct a strategy s̄. By the properties of

AlgP and S2, S1, we have F s̄
I ∈MI and d(j, F s̄

I ∪ F s̄
A) ≤ ηR for every A ∈ D and j ∈ A.

However, we are not yet done. The second step of our generalization framework consists of
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Algorithm 10: Determining Feasibility for P-BB.
Input: Parameters ϵ, γ, α ∈ (0, 1), N ≥ 1 and a P-BB instance

I = (C,F ,MI , c
I , B,R).

If ∃j ∈ C : d(j,F) > R then return “INFEASIBLE" ; // Points not sampled

for h = 1, . . . ,
⌈
log 13

12
(1/γ)

⌉
do

Draw N independent samples from the oracle, obtaining set Q = {S1, . . . , SN};
Let c⃗ the vector containing cI and the stage-II facility-cost vectors of all Sv ∈ Q;
For every Sv ∈ Q set qSv ← 1/N ;
if AlgP(C,F ,MI , Q, q⃗, c⃗, (1 + ϵ)B,R) returns F then

Let T be the ⌈αN⌉th largest value of cSv(FSv) among all scenarios in Q;
Return (F, T );

end
end
Return “INFEASIBLE";

slightly modifying the strategy s̄. For that reason, we use the value T returned by Algorithm 10,

which corresponds to the ⌈αN⌉th largest value cSv(F s̄
Sv
) among all Sv ∈ Q, with Q the sampled

set in the last iteration of the while loop (F s̄
Sv

= FSv by S2). Note here that Assumption 5.2.2

ensures that the choice of T is well-defined.

If now an arriving scenario A has cA(F s̄
A) > T , we will perform no stage-II opening. This

modification eventually constructs a new strategy ŝ, with F ŝ
I = F s̄

I , F ŝ
A = ∅ when cA(F s̄

A) > T ,

and F ŝ
A = F s̄

A if cA(F s̄
A) ≤ T . The latter strategy will determine our final opening actions, and

hence we need to analyze its opening cost C(ŝ) over D, and the probability with which it does

not return an η-approximate solution. Regarding the latter, note that when F ŝ
A ̸= F s̄

A, we can no

longer guarantee an approximation ratio of η as implied by property S1 for s̄.

The next concentration lemma is crucial in our calculations, and it can be seen as an im-

proved variant of Markov’s inequality.

Lemma 5.2.5. [127] Let X1, . . . , XK be non-negative independent random variables, with ex-

pectations µ1, . . . , µK , where µk ≤ 1 for all k. Let X =
∑K

k=1Xi, and let µ =
∑K

k=1 µi = E[X].
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Then for all δ > 0 we have Pr[X < µ+ δ] ≥ min{ δ
1+δ

, 1
13
}.

Lemma 5.2.6. If instance I is feasible for P-BB and N ≥ 1/ϵ, then with probability at least

1− γ Algorithm 10 does not terminate with “INFEASIBLE".

Proof. By rescaling, we assume w.l.o.g. that B = 1. Also, observe that the cost of any strategy

s over D can be expressed as

C(s) = cI(F s
I ) +

∑
A∈D

pAc
A(F s

A)

For any specific execution of the while loop in Algorithm 10, let Y s
v be the second-stage cost of

s on sample Sv. Finally, for a fixed s the random variables Y s
v are independent, and the empirical

cost of s on Q can be expressed as

Ĉ(s) = cI(F s
I ) +

1

N

N∑
v=1

Y s
v

If I is feasible, then there exists strategy s⋆ with F s⋆

I ∈MI and d(j, F s⋆

I ∪F s⋆

A ) ≤ R for all

A ∈ Q and j ∈ A. We will also show that Ĉ(s⋆) ≤ (1+ϵ)B with probability at least 1/13. In this

case, the restriction of s⋆ toQ verifies that (C,F ,MI , Q, q⃗, c⃗, (1+ϵ)B,R) is feasible for P-Poly.

Thus, since AlgP is a valid η-approximation for P-Poly, it will not return “INFEASIBLE”.

As s∗ is feasible for I we have C(s⋆) ≤ B, implying E[Y s⋆

v ] =
∑

A∈D pA · cA(F s⋆

A ) ≤ B =

1 for all samples v. By Lemma 5.2.5 with δ = ϵBN , this yields

Pr
[ N∑

v=1

Y s⋆

v < E
[ N∑

v=1

Y s⋆

v

]
+ ϵBN

]
≥ min

{ ϵBN

1 + ϵBN
,
1

13

}
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When N ≥ B
ϵ
= 1

ϵ
, we see that ϵBN/(1 + ϵBN) ≥ 1/13. Hence, with probability at least 1/13

we have
∑N

v=1 Y
s⋆

v < E[
∑N

v=1 Y
s⋆

v ] + ϵBN , in which case Ĉ(s∗) ≤ (1 + ϵ)B as shown below:

Ĉ(s⋆) = cI(F s⋆

I ) +
1

N

N∑
v=1

Y s⋆

v

≤ cI(F s⋆

I ) +
1

N

N∑
v=1

E[Y s⋆

v ] + ϵB

≤ cI(F s⋆

I ) +
∑
A∈D

pA · cA(F s⋆

A ) + ϵB

≤ (1 + ϵ)B

So each iteration terminates successfully with probability at least 1/13. To bring the error prob-

ability down to at most γ, we repeat the process for
⌈
log 13

12
(1/γ)

⌉
iterations.

Let T be the event that Algorithm 10 terminates without returning “INFEASIBLE”, and

Th the event that AlgP found a solution F at the hth iteration of the while loop. We denote by

Invalid the event that Algorithm 10 returns an invalid output; specifically, if T occurs, Invalid is

the event of having C(ŝ) > (1 + 2ϵ)B, otherwise it is the event of mistakenly deciding that I

is not feasible. Let now Qh be the set of scenarios sampled at the hth iteration of Algorithm 10,

and for any strategy s let T h
s be the ⌈αN⌉th largest value cSv(F s

Sv
) among all Sv ∈ Qh. We then

denote by Eh the event that for all s ∈ S, we have PrA∼D[c
A(F s

A) > T h
s ] ≥ α

4
. Finally, note that

due to S3 the set S is deterministically given in the event Eh.

The two following lemmas are standard Chernoff bounds.

Lemma 5.2.7. Let X1, X2, . . . , XK be independent random variables with Xk ∈ [0, 1] for all k.

For X =
∑K

k=1Xk with µ = E[X] and any δ > 0, we have Pr[X ≤ (1− δ)µ] ≤ e
−µδ2

2 .
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Lemma 5.2.8. Let X1, X2, . . . , XK be independent Bernoulli random variables with parameter

p. Let X =
∑K

k=1Xk the corresponding binomial random variable. If for the realization of X

we have X = qK, then for any δ > 0 we have Pr[p < q − δ] ≤ e−Kδ2/2p

Lemma 5.2.9. For γ, α ∈ (0, 1) and N = O
(

1
α
log( tP (n,m)

γ
)
)

, Pr[Ēh] ≤ γ/(log 13
12
( 1
γ
) + 1).

Proof. Focus on a specific iteration h. Consider a strategy s ∈ S, and for each Sv ∈ Qh let Xv be

an indicator random variable that is 1 iff cSv(F s
Sv
) > T h

s . Also letX =
∑N

v=1Xv, and note that by

Assumption 5.2.2 we haveX = ⌈αN⌉−1. This implies that the empirical probability of scenarios

with stage-II cost more than T h
s is qhs = (⌈αN⌉ − 1)/N . Finally, let phs = PrA∼D[c

A(F s
A) > T h

s ].

If phs ≥ α then we immediately get Pr[phs < α/4] = 0. Therefore, assume that phs < α. If

N ≥ 4/α then we have:

qhs −
α

2
=
⌈αN⌉ − 1

N
− α

2
≥ αN − 1

N
− α

2
=
α

2
− 1

N
≥ α

2
− α

4
=
α

4

Hence, if phs ≥ qhs − α
2

and N ≥ 4/α, we get phs ≥ α
4

. Using Lemma 5.2.8 with phs < α, δ = α/2

and N = 8
α
log
(

tP (n,m)
γ

(log 13
12
( 1
γ
) + 1)

)
≥ 4/α yields the following:

Pr[phs <
α

4
] ≤ Pr[phs < qhs − α/2]

≤ e
−
(

tP (n,m)

γ
(log 13

12
( 1
γ
)+1)

)
=

γ

tP(n,m)(log 13
12
(1/γ) + 1)

A union bound over all s ∈ S and property S3 will finally give Pr[Ēh] ≤ γ/(log 13
12
( 1
γ
) + 1).

Theorem 5.2.10. For any ϵ, γ, α ∈ (0, 1) andN = O
(

1
ϵα

log( tP (n,m)
γ

)
)

, we get Pr[Invalid] ≤ 3γ.
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Proof. Using the definition of the Invalid event and Lemmas 5.2.6, 5.2.9 we get the following.

Pr[Invalid] = Pr[Invalid | T̄ ] Pr[T̄ ] + Pr[Invalid | T ] Pr[T ] ≤ γ +
∑
h

Pr[Invalid ∧ Th]

= γ +
∑
h

(
Pr[Invalid ∧ Th | Eh] Pr[Eh] + Pr[Invalid ∧ Th | Ēh] Pr[Ēh]

)
≤ 2γ +

∑
h

Pr[Invalid ∧ Th ∧ Eh] (5.1)

For each s ∈ S, let ts be value such that PrA∼D[c
A(F s

A) > ts] =
α
4

. Note that the existence

of ts is guaranteed by Assumption 5.2.2. Further, for each s ∈ S, A ∈ D, define c̃A(F s
A) to

be cA(F s
A) if cA(F s

A) ≤ ts, and 0 otherwise. In addition, for an iteration h let Y s
v,h be a random

variable denoting the second-stage c̃ cost of s for the v-th sample of h, and Zs
v,h be an indicator

random variable that is 1 iff the original second-stage cost of s on the v-th sample of h is greater

than ts. We use the following cost functions:

Ĉh(s) = cI(F s
I ) +

1

N

N∑
v=1

Y s
v,h +

ts
N

N∑
v=1

Zs
v,h and C̃(s) = cI(F s

I ) +
∑
A∈D

pA · c̃A(F s
A)

Also, if ps = PrA∼D[c
A(F s

A) > ts], then E[Ĉh(s)] = C̃(s) + psts. Finally, let ĈII
h (s) = Ĉh(s)−

cI(F s
I ) and C̃II(s) = C̃(s)− cI(F s

I ).

Now observe that if Invalid∧Th∧Eh occurs, then there must exist some s ∈ S with Ĉh(s) ≤

(1+ ϵ)B and C̃(s) > (1+ 2ϵ)B. Specifically we have Ĉh(s̄) ≤ (1+ ϵ)B and C̃(s̄) > (1+ 2ϵ)B.

To see why Ĉh(s̄) ≤ (1+ ϵ)B is true, note than under this event AlgP finds a solution in iteration

h. The empirical cost of this solution (which corresponds to a restriction of s̄) is at most (1+ϵ)B,

and the pruning based on the value ts can only decrease this cost. Regarding C̃(s̄) > (1 + 2ϵ)B,
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under Invalid ∧ Th ∧ Eh we at first have C(ŝ) > (1 + 2ϵ)B. In addition, C̃(s̄) ≤ C(ŝ), because

by the definitions of ts and Eh we have ts ≥ T h
s . Hence, we upper bound the probability of

Invalid ∧ Th ∧ Eh as follows:

Pr[Invalid ∧ Th ∧ Eh] ≤ Pr[∃s ∈ S : Ĉh(s) ≤ (1 + ϵ)B ∧ C̃(s) > (1 + 2ϵ)B]

≤ Pr[∃s ∈ S : Ĉh(s) ≤ (1 + ϵ)B ∧ C̃(s) + psts > (1 + 2ϵ)B + psts]

≤ Pr[∃s ∈ S : Ĉh(s) ≤ (1 + ϵ)B ∧ E[Ĉh(s)] > (1 + 2ϵ)B + psts]

≤ Pr[∃s ∈ S : ĈII
h (s) ≤ (1− δs)E[ĈII

h (s)]]

≤
∑
s∈S

Pr
[
ĈII

h (s) ≤ (1− δs)E[ĈII
h (s)]

]
=
∑
s∈S

Pr
[
N · ĈII

h (s)/ts ≤ (1− δs)N · E[ĈII
h (s)]/ts

]
(5.2)

In the above we defined δs such that δs ≥ ϵ+psts
1+2ϵ+psts

, and also we made use of B = 1 and

E[Ĉh(s)] = C̃(s) + psts > 1 + 2ϵ+ psts. Applying Lemma 5.2.7 gives

Pr[N · ĈII
h (s)/ts ≤ (1− δs)N · E[ĈII

h (s)]/ts] ≤ e
−N(ϵ+psts)

2

2ts(1+2ϵ+psts) (5.3)

We now focus on the quantity (ϵ+psts)2

2ts(1+2ϵ+psts)
, and consider two distinct cases for psts.

• Suppose psts ≥ ϵ. Then:

(ϵ+ psts)
2

2ts(1 + 2ϵ+ psts)
≥ p2st

2
s

2ts(1 + 3psts)
≥ ps

2

psts
1 + 3psts

≥ ϵ · ps
2(1 + 3ϵ)

where the last inequality follows because x/(1 + 3x) is increasing and in our case x ≥ ϵ.
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• Suppose psts < ϵ. Then:

(ϵ+ psts)
2

2ts(1 + 2ϵ+ psts)
≥ ϵ2

2ts(1 + 3ϵ)
≥ ϵ · ps

2(1 + 3ϵ)

where in the last inequality we used the fact that in this case ts < ϵ/ps.

Therefore, by definition of ps, we have (ϵ+psts)2

2ts(1+2ϵ+psts)
≥ ϵ·α

8(1+3ϵ)
in every case. Plugging that in

(5.3), (5.2), and setting N = 8(1+ϵ)
ϵα

log
(

tP (n,m)
γ

(log 13
12
( 1
γ
) + 1)

)
gives Pr[Invalid ∧ Th ∧ Eh] ≤

γ/(log 13
12
( 1
γ
) + 1). Finally, using this in (5.1) gives an error probability of at most 3γ.

Theorem 5.2.11. For any γ, α ∈ (0, 1) and N = O
(

1
α
log( tP (n,m)

γ
)
)

, the solution strategy ŝ

satisfies PrA∼D[d(j, F
ŝ
I ∪ F ŝ

A) ≤ ηR, ∀j ∈ A] ≥ 1− 2α with probability at least 1− γ.

Proof. Consider some iteration h and strategy s ∈ S. Let

phs = Pr
A∼D

[cA(F s
A) > T h

s ]

We define Bh
s to be the event of having pTh

s
> 2α. Suppose that phs > α, otherwise Bh

s cannot

occur. Let Xv an indicator random variable that is 1 iff s has stage-II cost larger than T h
s in the

v-th sample. Also, let X =
∑N

v=1Xv, and recall that X = ⌈αN⌉ − 1 ≤ αN . Moreover, we have

E[X] = phsN and notice that 2X > E[X] implies phs < 2α. Using Lemma 5.2.7 with δ = 1/2 we

get Pr[X ≤ E[X]/2] ≤ e−phsN/8. Because phs > α, setting

N =
8

α
log(

tP(n,m)

γ
(log 13

12
(
1

γ
) + 1))

and using a union bound gives
∑

h

∑
s∈S Pr[Bh

s ] ≤ γ.
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Finally, by optimizing over the radius, we get our main generalization result that does not

only work for a fix radius guess R.

Theorem 5.2.12. Assume we have an efficiently generalizable η-approximation algorithm for

P-Poly. Then, using O
(

1
ϵα

log(nm·tP (n,m)
γ

) log nm
γ

)
samples, we obtain a strategy ŝ and a radius

R, such that with probability at least 1 − O(γ) the following hold: (i) C(ŝ) ≤ (1 + 2ϵ)B, (ii)

F ŝ
I ∈ MI; (iii) R ≤ R∗, where R∗ is the optimal radius for the given P-BB instance; (iv)

PrA∼D[d(j, F
ŝ
I ∪ F ŝ

A) ≤ ηR, ∀j ∈ A] ≥ 1− 2α.

Proof. Because R∗ is the distance between some facility and some client, there are at most nm

alternatives for it. Thus, we can run Algorithm 10 for all possible nm target radius values, using

error parameter γ′ = γ
nm

. We then return the smallest radius that did not yield “INFEASIBLE”.

By a union bound over all radius choices, the probability of the Invalid event in any of them is at

most 3γ. Thus, with probability at least 1 − 3γ, the chosen radius R satisfies R ≤ R∗, and the

opening cost of the corresponding strategy is at most (1+2ϵ)B. Finally, for the returned strategy

Theorem 5.2.11 holds as well, and the sample bound accounts for all iteration of Algorithm 10.

Additionally, we do not need fresh samples for each radius guess R; we can draw an ap-

propriate number of samples N upfront, and test all guesses in “parallel” with the same data.

In light of Theorem 5.2.12 and the generic search step for the radius R, we assume for

all our P-poly problems that a target radius R is given explicitly. We conclude with some

final remarks. At first, S3 guaranteesN = poly(n,m, 1
ϵ
, 1
α
, log 1

γ
). Also, the probability 2α of not

returning an η-approximate solution can be made inverse polynomially small, without affecting

the polynomial nature of the sample complexity.
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5.3 Solving 2S-SUP-Poly

In this section we tackle 2S-SUP-BB, by first designing a 3-approximation algorithm for

2S-SUP-Poly and then proving that the latter is efficiently generalizable.

5.3.1 A 3-Approximation Algorithm for 2S-SUP-Poly

We are given a list of scenariosQ together with their occurrence probabilities pA and second

stage facility-cost vectors cA, a target radius R, and let Gj = Gj,R, iIj = iIj,R, iAj = iAj,R for every

j ∈ C and A ∈ Q. Consider LP (5.4)-(5.6).

∑
i∈F

yIi · cIi +
∑
A∈Q

pA
∑
i∈F

yAi · cAi ≤ B (5.4)

∑
i∈Gj

(yIi + yAi ) ≥ 1, ∀j ∈ A ∈ Q (5.5)

0 ≤ yIi , y
A
i ≤ 1 (5.6)

Constraint (5.4) captures the total expected cost, and constraint (5.5) the fact that for all A ∈ Q,

every j ∈ A must have an open facility within distance R from it. In addition, note that if the

LP is infeasible, then there cannot be a solution of radius at most R for the given 2S-SUP-Poly

instance. The rounding algorithm appears in Algorithm 11.

Theorem 5.3.1. For any scenario A ∈ Q and every j ∈ A, we have d(j, F ℓ∗
I ∪ F ℓ∗

A ) ≤ 3R.

Proof. Focus on someA ∈ Q. Recall that d(j, πI(j)) ≤ 2R and d(j, πA(j)) ≤ 2R for any j ∈ A.

For j ∈ HA the statement is clearly true, because either GπI(j) ∩ F ℓ∗
I ̸= ∅ or Gj ∩ F ℓ∗

A ̸= ∅. So

consider some j ∈ A \ HA. If GπA(j) ∩ F ℓ∗
A ̸= ∅, then any facility i ∈ GπA(j) ∩ F ℓ∗

A will be
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Algorithm 11: Correlated LP-Rounding Algorithm for 2S-SUP-Poly
Solve LP (5.4)-(5.6) to get a feasible solution yI , yA : A ∈ Q;
if no feasible LP solution exists then

Return “INFEASIBLE”;
end
(HI , π

I)← GreedyCluster(C, R, gI), where gI(j) = yI(Gj) ;
for each scenario A ∈ Q do

(HA, π
A)← GreedyCluster(A,R, gA), where gA(j) = −yI(GπI(j)) ;

end
Order the clients of HI as j1, j2, . . . , jh such that yI(Gj1) ≤ yI(Gj2) ≤ · · · ≤ yI(Gjh);
Consider a new “dummy” client jh+1 with yI(Gjh+1

) > yI(Gjℓ) for all ℓ ∈ [h];
for all integers ℓ = 1, 2, . . . , h+ 1 do

F ℓ
I ← {iIjk | jk ∈ HI and yI(Gjk) ≥ yI(Gjℓ)};

for each A ∈ Q do
F ℓ
A ← {iAj | j ∈ HA and F ℓ

I ∩GπI(j) = ∅};
end
Sℓ ← cI(F ℓ

I ) +
∑

A∈Q pA · cA(F ℓ
A);

end
Return F ℓ∗

I , F ℓ∗
A : A ∈ Q such that ℓ∗ = argminℓ Sℓ;

within distance 3R from j. If on the other hand GπA(j) ∩ F ℓ∗
A = ∅, then our algorithm guarantees

GπI(πA(j)) ∩ F ℓ∗
I ̸= ∅. Further, the stage-II greedy clustering yields

gA(πA(j)) ≥ gA(j) =⇒ yI(GπI(j)) ≥ yI(GπI(πA(j)))

Therefore, from the way we formed F ℓ∗
I and the fact that GπI(πA(j)) ∩ F ℓ∗

I ̸= ∅, we infer that

GπI(j) ∩ F ℓ∗
I ̸= ∅. The latter ensures that d(j, GπI(j) ∩ F ℓ∗

I ) ≤ 3R.

Theorem 5.3.2. The opening cost Sℓ∗ of Algorithm 11 is at most B.

Proof. Consider the following process to generate a random solution: we draw a random variable

β uniformly from [0, 1], and then set F β
I = {iIj | j ∈ HI and yI(Gj) ≥ β}, F β

A = {iAj | j ∈

HA and FI ∩GπI(j) = ∅} for all A ∈ Q. For each possible draw for β, the resulting sets F β
I , F

β
A

correspond to sets F ℓ
I , F

ℓ
A for some integer ℓ ∈ [h + 1]. Hence, in order to show the existence of
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ℓ with Sℓ ≤ B, it suffices to show Eβ∼[0,1][c
I(F β

I ) +
∑

A∈Q pA · cA(F
β
A)] ≤ B.

We start by calculating the probability of opening a given facility iIj with j ∈ HI in stage-

I. This will occur only if β ≤ yI(Gj), and so Pr[iIj is opened at stage-I] ≤ min(yI(Gj), 1).

Therefore, due to Gj ∩Gj′ = ∅ for all distinct j, j′ ∈ HI , we get:

Eβ∼[0,1][c
I(F β

I )] ≤
∑
j∈HI

cIiIj
· yI(Gj)

≤
∑
i∈F

yIi · cIi (5.7)

Moreover, for any j ∈ HA and any A ∈ Q we have Pr[iAj is opened at stage-II | A] = 1 −

min(yI(GπI(j)), 1) ≤ 1−min(yI(Gj), 1) ≤ yA(Gj). The first inequality results from the greedy

clustering of stage-I that gives yI(GπI(j)) ≥ yI(Gj), and the second follows from (5.5). Thus,

due to Gj ∩Gj′ = ∅ for all distinct j, j′ ∈ HA, we get:

Eβ∼[0,1][c
A(F β

A)] ≤
∑
j∈HA

cAiAj
· yA(Gj)

≤
∑
i∈F

yAi · cAi (5.8)

Combining (5.7), (5.8), (5.4) gives Eβ∼[0,1][c
I(F β

I )] +
∑

A∈Q pA · Eβ∼[0,1][c
A(F β

A)] ≤ B.

5.3.2 Generalizing to the Black-Box Setting

To show that Algorithm 11 fits the framework of Section 5.2, we must show that it is

efficiently generalizable as in Definition 5.2.4. For one thing, it is obvious that Algorithm 11

satisfies the properties of Definition 5.2.3, and therefore is a valid 3-approximation. Hence, we
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Algorithm 12: Generalization Procedure for 2S-SUP-Poly
Input: Returned sets FI , FA : A ∈ Q and inner execution details of Algorithm 11
Let s̄ the strategy we will define, and for the stage-I actions set F s̄

I ← FI ;
Suppose scenario A ∈ D arrived in the second stage;
For every j ∈ A set g(j)← −yI(GπI(j)), where yI , πI are the LP solution vector and
stage-I mapping computed in Algorithm 11;
(HA, π

A)← GreedyCluster(A,R, g);
F s̄
A ← {iAj | j ∈ HA and FI ∩GπI(j) = ∅};

only need a process to efficiently extend its output to any arriving scenario A ∈ D, where D the

black-box distribution. This is demonstrated in Algorithm 12, which mimics the stage-II actions

of Algorithm 11. Here we crucially exploit the fact that the stage-II decisions of Algorithm 11

only depend on information from the LP about stage-I variables.

Since Algorithm 12 exactly imitates the stage-II actions of Algorithm 11, it is easy to see

that property S2 is satisfied. Further, the arguments in Theorem 5.3.1 would still apply, and

eventually guarantee d(j, F s̄
I ∪ F s̄

A) ≤ 3R for all j ∈ A and any A ∈ D, thus verifying property

S1. We only need to prove S3. Let SK the set of strategies achievable via Algorithm 12.

Lemma 5.3.3. Algorithm 11 satisfies property S3 with |SK | ≤ (n+ 1)!.

Proof. The constructed final strategy is determined by 1) the sorted order of yI(Gj) for all j ∈ C,

and 2) a minimum threshold ℓ′ such that Gjℓ′
∩ FI ̸= ∅ with jℓ′ ∈ HI . Given those, we know

exactly what HI and HA for every A ∈ D will be, as well as FI and FA for every A ∈ D. The set

of all such options is independent of Q. Since there are n! orderings for the yI(Gj) values, and

the parameter ℓ′ takes at most n+ 1 values, |SK | ≤ (n+ 1)!.
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5.4 Solving 2S-MATSUP-Poly

We begin with a 5-approximation algorithm for 2S-MATSUP-Poly, and then show that it is

also efficiently generalizable so that we get results for 2S-MATSUP-BB.

5.4.1 A 5-Approximation Algorithm for 2S-MATSUP-Poly

We are given R, and a list of scenarios Q with their probabilities pA and cost vectors cA.

Also, let rM be the rank function of the input matroidM = (F , I). We again use the notation

Gj = Gj,R, and iAj = iAj,R for every j ∈ C and A ∈ Q. Consider LP (5.9)-(5.12).

∑
i∈F

yIi · cIi +
∑
A∈Q

pA
∑
i∈F

yAi · cAi ≤ B (5.9)

∑
i∈Gj

(yIi + yAi ) ≥ 1, ∀j ∈ A ∈ Q (5.10)

∑
i∈U

yIi ≤ rM(U), ∀U ⊆ F (5.11)

0 ≤ yIi , y
A
i ≤ 1 (5.12)

Compared to LP (5.4)-(5.6), the only difference lies in constraint (5.11), which exactly rep-

resents the stage-I matroid requirement. Hence, it is a valid relaxation for the problem. Although

the LP has an exponential number of constraints, it can be solved in polynomial time via the

Ellipsoid algorithm, with a separation oracle based on minimizing a submodular function [128].

Assuming LP feasibility, our algorithm (presented in full detail in Algorithm 13), begins

with two greedy clustering steps, one for each stage, that produce sets HI , HA : A ∈ Q with

corresponding mappings πI and πA. We then set up and solve the auxiliary LP shown in (5.13)-
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Algorithm 13: Rounding Algorithm for 2S-MATSUP-Poly
Solve LP (5.9)-(5.12) to get a feasible solution yI , yA for all A ∈ Q;
if no feasible LP solution exists then

Return “INFEASIBLE”;
end
(HI , π

I)← GreedyCluster(C, R, gI) where gI(j) = yI(Gj) ;
Let gII : C 7→ [n] be some fixed and given bijective mapping;
for each scenario A ∈ Q do

(HA, π
A)← GreedyCluster(A,R, gII) ;

end
Solve LP (5.13)-(5.16) and get an optimal integral solution z∗, which will satisfy
z∗i ∈ {0, 1} for all i ∈ F ;
FI ← {i ∈ F | z∗i = 1};
FA ← {iAj ∈ F | j ∈ HA and GπI(j) ∩ FI = ∅} for every A ∈ Q.

(5.16), and use this solution to determine sets FI and FA.

minimize
∑
i∈F

zi · cIi +
∑
A∈Q

pA
∑
j∈HA

cAiAj
(1− z(GπI(j))) (5.13)

subject to z(Gj) ≤ 1, ∀j ∈ HI (5.14)

z(U) ≤ rM(U), ∀U ⊆ F (5.15)

0 ≤ zi ≤ 1 (5.16)

Lemma 5.4.1. If LP (5.9)-(5.12) is feasible, then the optimal solution z∗ of the auxiliary LP

(5.13)-(5.16) has objective function value at most B, and is integral (z∗i ∈ {0, 1} for all i ∈ F).

Proof. Solution z∗ is integral since the LP (5.13)-(5.16) is the intersection of two matroid poly-

topes, namely, the polytope correspondind to M, and a partition matroid polytope over all Gj

with j ∈ HI . (Recall that sets Gj for j ∈ HI are pairwise disjoint.)

Now let yI , yA be a feasible solution of (5.9)-(5.12). For all j ∈ HI with yI(Gj) ≤ 1, set

zi = yIi for all i ∈ Gj . For all j ∈ HI with yI(Gj) > 1, set zi = yIi /y
I(Gj) for all i ∈ Gj . For the
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rest of the facilities set zi = 0. This solution obviously satisfies (5.14). Also, because yI satisfies

(5.11) and zi ≤ yIi for all i, we know that z satisfies (5.15) too. Finally, regarding the objective:

∑
i∈F

zi · cIi ≤
∑
i∈F

yi · cIi (5.17)

For the second-stage cost we then get:

∑
A∈Q

pA
∑
j∈HA

cAiAj
(1− z(GπI(j))) ≤

∑
A∈Q

pA
∑
j∈HA:

yI(G
πI (j)

)≤1

cAiAj
(1− yI(GπI(j)))

≤
∑
A∈Q

pA
∑
j∈HA:

yI(G
πI (j)

)≤1

cAiAj
(1− yI(Gj))

≤
∑
A∈Q

pA
∑
j∈HA:

yI(G
πI (j)

)≤1

cAiAj
yA(Gj)

≤
∑
A∈Q

pA
∑
i∈F

yAi c
A
i (5.18)

The second line follows from the stage-I greedy clustering, which ensures yI(GπI(j)) ≥ yI(Gj)

for all j ∈ C. The last line is due to (5.10), and the fact that for all A ∈ Q and all distinct

j, j′ ∈ HA we have Gj ∩ Gj′ = ∅. Finally, combining (5.9), (5.17) and (5.18) proves that the

opening cost of the returned solution is at most B.

Theorem 5.4.2. For the sets FI , FA : A ∈ Q that constitute the solution returned by Algorithm

13 the following three properties hold: (i) FI ∈ I, (ii) cI(FI) +
∑

A∈Q pAc
A(FA) ≤ B, and (iii)

d(j, FI ∪ FA) ≤ 5R for all j ∈ A ∈ Q.

Proof. (i) is obvious since z∗ satisfies constraint (5.15). For (ii), the opening cost of the solution
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Algorithm 14: Generalization Procedure for 2S-MATSUP-Poly
Input: Returned sets FI , FA : A ∈ Q and inner execution details of Algorithm 13
Let s̄ the strategy we will define, and for the stage-I actions set F s̄

I ← FI ;
Suppose scenario A ∈ D arrived in the second stage;
Let πI the stage-I mapping and gII the bijective function, both used in Algorithm 13;
Set (HA, π

A)← GreedyCluster(A,R, gII);
Open the set F s̄

A = {iAj | j ∈ HA and FI ∩GπI(j) = ∅};

coincides with the value of the objective (5.13) for z∗, and hence by Lemma 5.4.1 it is at most B.

For (iii), consider A ∈ Q, and recall that d(j, πI(j)) ≤ 2R and d(j, πA(j)) ≤ 2R for any

j ∈ A. For j ∈ HA the bound (iii) holds, because either GπI(j) ∩ FI ̸= ∅ or Gj ∩ FA ̸= ∅. So

suppose that j ∈ A \HA. If GπA(j) ∩ FA ̸= ∅, then any facility i ∈ GπA(j) ∩ FA will be within

distance 3R from j. If on the other hand GπA(j) ∩ FA = ∅, then there exists i ∈ GπI(πA(j)) ∩ FI .

Therefore, the triangle inequality in this case yields

d(i, j) ≤ d(i, πI(πA(j))) + d(πI(πA(j)), πA(j)) + d(πA(j), j) ≤ 5R

5.4.2 Generalizing to the Black-Box Setting

It is clear that Algorithm 13 satisfies Definition 5.2.3, and thus is a valid 5-approximation.

Consider now Algorithm 14 to efficiently extend its output to any arriving scenario A ∈ D.

Since Algorithm 14 exactly imitates the stage-II actions of Algorithm 13, it is easy to see that

property S2 is satisfied. Furthermore, the arguments in Theorem 5.4.2 would still go through, and

eventually guarantee d(j, F s̄
I ∪ F s̄

A) ≤ 5R for all j ∈ A and any A ∈ D, thus verifying property

S1. To conclude, we need to prove S3. Let SM the set of strategies achievable via Algorithm 14.

Lemma 5.4.3. Algorithm 13 satisfies property S3 with |SM | = 2m · n!.

Proof. Since gII can be thought of as part of the input, s̄ depends only on 1) the set FI returned
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by Algorithm 13, and 2) the sorted order of yI(Gj) for all j ∈ C, which ultimately dictates the

mapping πI . Given those, we can determine the stage-II openings for every possible scenario

A ∈ D. These options do not depend on scenarios Q. The total number of possible outcomes for

FI is 2m, and the total number of orderings for the clients of C is n!. Hence, |SM | = 2m · n!.

5.5 Solving 2S-MUSUP-Poly

To tackle this, we construct an efficiently generalizable algorithm for 2S-SUP-Poly, via an

intriguing reduction to a non-stochastic clustering problem with outliers. Specifically, if we view

stage-I as consisting of a deterministic robust problem, stage-II can be interpreted as covering all

outliers left over by stage-I. Formally, we use the following robust supplier problem:

Definition 5.5.1 (Robust Weighted Multi-Knapsack-Supplier). We are given a set of clients C and

a set of facilitiesF , in a metric space with distance function d. The input also includes parameters

V,R ∈ R≥0, and for every client j ∈ C an associated weight vj ∈ R≥0. In addition, we have the

same types of multi-knapsack constraints as in 2S-MuSup: there are L in total budgets Wℓ, and

every facility i ∈ F has costs f ℓ
i for ℓ ∈ [L]. The goal is to choose a set of facilities S ⊆ F , such

that
∑

j∈C:d(j,S)>R vj ≤ V and f ℓ(S) ≤ Wℓ for every ℓ ∈ [L]. Clients j with d(j, S) > R are

called outliers. An instance of this problem is called discrete, if the values f ℓ
i are all integers.

We first show that any ρ-approximation algorithm for Robust Weighted Multi-Knapsack-

Supplier can be used in order to get an efficiently generalizable (ρ+2)-approximation algorithm

for 2S-MUSUP-Poly. In addition, we argue that already existing work [129, 130] gives a 3-

approximation for discrete instances of Robust Weighted Multi-Knapsack-Supplier, thus lead-

ing to an efficiently generalizable 5-approximation for discrete instances of 2S-MUSUP-Poly.
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5.5.1 Reducing 2S-MUSUP-Poly to Robust Weighted Multi-Knapsack-Sup

We first suppose that the costs cIi are polynomially bounded integers; this restriction will

be removed when we generalize to the black-box setting. Once more, let Q be a set of provided

scenarios, R a target radius, and Gj = Gj,R, iAj = iAj,R for all j ∈ C and A ∈ Q. Furthermore,

suppose that we have a ρ-approximation RW for Robust Weighted Multi-Knapsack-Supplier.

For a feasible instance I′ of the latter problem, RW returns a solution S satisfying all knapsack

constraints and also
∑

j∈C:d(j,S)>ρR vj ≤ V . Otherwise, it either returns “INFEASIBLE”, or again

a solution with the previous properties.

If the provided instance I of 2S-MUSUP-Poly is feasible, the first step in tackling the

problem is figuring out the portion of the budget, say BI , that is used in the first stage of a

feasible solution. Since the costs cIi are polynomially bounded integers, we can guess BI in

polynomial time through solving the problem for all different alternatives for it. So from this

point on, assume w.l.o.g. that we have the correct BI , and also let BII = B −BI .

Algorithm 15 shows how to use RW to approximate 2S-MUSUP-Poly. It begins with

greedy clustering steps for each A, and given HA, πA it constructs an instance I′ of Robust

Weighted Multi-Knapsack-Supplier as follows. C, F , d, andR are the same for both problems.

For all j ∈ C we set

vj =
∑

A∈Q:j∈HA

pA · cAiAj

and also V = BII . Finally, the instance I′ has L′ = L + 1 knapsack constraints, where the first

L are the stage-I constraints of 2S-MUSUP-Poly (f ℓ(S) ≤ Wℓ), and the last is cI(S) ≤ BI .

Lemma 5.5.2. If the original 2S-MUSUP-Poly instance I is feasible, then the Robust Weighted
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Algorithm 15: Approximation Algorithm for 2S-MUSUP-Poly
Let gII : C 7→ [n] be some fixed and given bijective mapping;
for each scenario A ∈ Q do

(HA, π
A)← GreedyCluster(A,R, gII);

end
Construct instance I′ of Robust Weighted Multi-Knapsack-Supplier as discussed;
if RW (I′) = “INFEASIBLE” then

Return “INFEASIBLE”;
end
FI ← RW (I′); // Stage-I facilities
for each scenario A ∈ Q do

FA ← {iAj | j ∈ HA with d(j, FI) > ρR}; // Stage-II facilities
end

Multi-Knapsack-Supplier instance I′ is also feasible.

Proof. Consider some feasible solution F ⋆
I , F

∗
A for 2S-MUSUP-Poly. We claim that F ⋆

I is a valid

solution for I′. It clearly satisfies the L knapsack constraints of the form f ℓ(F ∗
I ) ≤ Wℓ, and if our

guess BI is the right one, it also satisfies cI(F ⋆
I ) ≤ BI . Now, for any A ∈ Q, any client j ∈ HA

with d(j, F ⋆
I ) > R must be covered by some facility xAj ∈ Gj ∩ F ⋆

A. Since BII is the stage-II

portion of the budget used by F ⋆
I , F

∗
A and Gj′ ∩Gj′′ = ∅ for all distinct j′, j′′ ∈ HA, we have:

BII ≥
∑
A

pA
∑
i∈F ⋆

A

cAi

≥
∑
A

pA
∑
j∈HA:

d(j,F ⋆
I )>R

cAxA
j

≥
∑
A

pA
∑
j∈HA:

d(j,F ⋆
I )>R

cAiAj

=
∑
j∈C:

d(j,F ⋆
I )>R

vj

This implies that S = F ⋆
I satisfies the constraint

∑
j:d(j,S)>R vj ≤ BII of instance I′.
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Theorem 5.5.3. Algorithm 15 is a valid (ρ+ 2)-approximation for 2S-MUSUP-Poly.

Proof. First of all, Lemma 5.5.2 guarantees that if the given instance of 2S-MUSUP-Poly is

feasible, we will get a solution FI , FA. By specification of RW , cI(FI) ≤ BI and f ℓ(FI) ≤ Wℓ

for every ℓ. The stage-II cost CII of this solution is given by:

CII =
∑
A

pA
∑
j∈HA:

d(j,FI)>ρR

cAiAj

=
∑
j∈C:

d(j,FI)>ρR

vj

≤ BII ,

where the last inequality follows because FI is the output of RW (I′).

Consider now a j ∈ A for some A ∈ Q. The distance of j to its closest facility will be at

most d(πA(j), FI ∪ FA) + d(j, πA(j)). Since πA(j) ∈ HA, there will either be a stage-I open

facility within distance ρR from it, or we perform a stage-II opening in Gπ(j), which results in a

covering distance of at most R. Also, by the greedy clustering step, we have d(j, πA(j)) ≤ 2R.

So in the end we get d(j, FI ∪ FA) ≤ (ρ+ 2)R.

By combining Algorithm 15 with existing 3-approximations for Robust Weighted Multi-

Knapsack-Supplier, we get the following result:

Theorem 5.5.4. There is a 5-approximation algorithm for discrete instances of 2S-MUSUP-Poly,

where additionally all cIi are polynomially bounded integers. The runtime of it is poly(n,m,Λ).

Proof. The results of Chakrabarty and Negahbani [129] give a 3-approximation for discrete in-

stances of Robust Weighted Multi-Knapsack-Supplier, when vj = 1 for all j. The work of
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Algorithm 16: Generalization Procedure for 2S-MUSUP-Poly
Input: Returned sets FI , FA : A ∈ Q and inner execution details of Algorithm 15
Let s̄ the strategy we will define, and for the stage-I actions set F s̄

I ← FI ;
Suppose scenaio A arrived in the second stage;
(HA, π

A)← GreedyCluster(A,R, gII), where gII the bijective function used in
Algorithm 15;

Open the set F s̄
A ← {iAj | j ∈ HA and d(j, FI) > ρR};

Pietracaprina et al. [130] extends this to allow arbitrary vj values. Note that by our assumption

that the values cI are polynomially bounded integers, the instance I′ is discrete, and hence the

algorithm of Pietracaprina et al. [130] can be utilized in Algorithm 15 and give a 5-approximation

for 2S-MUSUP-Poly. Finally, given the results in [129, 130], the runtime of the whole process

will be poly(n,m,Λ).

5.5.2 Generalizing to the Black-Box Setting

Since the algorithm of Section 5.5.1 is a valid (ρ + 2)-approximation one, we only need

to demonstrate an extension procedure for it. Hence, consider the process shown in Algorithm

16, which efficiently extends the output of the previous polynomial-scenarios algorithm to any

arriving scenario A ∈ D.

Because Algorithm 16 exactly mimics the stage-II actions of Algorithm 15, it is easy to see

that property S2 is satisfied. Moreover, the arguments of Theorem 5.5.3 would still be applicable

and ensure d(j, FI ∪FA) ≤ (ρ+2)R for every j ∈ A and A ∈ D, thus guaranteeing property S1.

To conclude, we again only need to prove property S3. Let SMK the set of strategies achievable

via Algorithm 16. We show the following.

Lemma 5.5.5. Algorithm 15 satisfies property S3 with |SMK | = 2m.

Proof. The returned final strategy depends solely on the set FI . Given that, we can exactly
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determine all possible stage-II openings, since every HA for A ∈ D can be computed using the

fixed function gII . There are 2m choices for FI , and therefore |SMK | = 2m. Finally, it is easy to

see that the set SMK is independent of Q .

Our algorithm for 2S-MUSUP-Poly requires the values cIi to be polynomially bounded

integers. As we show next, this assumption can be removed by a standard rescaling trick:

Theorem 5.5.6. Suppose that the cIi are arbitrary numbers. Through a standard cost-quantization

technique that works for any ϵ ∈ (0, 1), Algorithm 15 can be modified to give a solution FI , FA :

A ∈ Q for 2S-MUSUP-Poly, where d(j, FI ∪ FA) ≤ (ρ + 2)R for all A ∈ Q, j ∈ A, and also

cI(FI) +
∑

A∈Q pAc
A(FA) ≤ (1 + ϵ)B.

Proof. For convenience, let us assume thatB = 1, and suppose that all facilities have cIi ≤ B = 1

(as otherwise they can never be opened). Given some ϵ > 0, let us define q = ϵ/m, and form new

costs by c̃Ii = ⌈cIi /q⌉, c̃Ai = cAi /q, B
′ = B(1 + ϵ)/q. The costs c̃Ii are at most ⌈1/q⌉, and hence

are polynomially-bounded integers. Therefore, the reduction of Section 5.5.1 can be applied.

Suppose now that FI , FA is a solution to the original instance of 2S-MUSUP-Poly, with

opening cost at most B. For the modified cost of this solution we then have:

c̃I(FI) +
∑
A

pAc̃
A(FA) ≤

(
cI(FI) +

∑
A

pAc
A(FA)

)
/q +

∑
i∈F

1

≤ B/q +m ≤ B′

Thus, FI , FA is also a solution to the modified instance, implying that the latter is feasible. Hence,

consider any solution F̃I , F̃A to the modified instance, that we would get after running Algorithm
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15 with the new costs; its opening cost in the original instance is

cI(F̃I) +
∑
A

pAc
A(F̃A) ≤ qc̃I(F̃I) + q

∑
A

pAc̃
A(F̃A)

≤ qB′

= B(1 + ϵ)

Therefore, since F̃I , F̃A is a (ρ+ 2)-approximate solution, we get the desired result.

Note that applying our generalization framework on this solution would make the overall

cost over D be at most (1 +O(ϵ))(1 + ϵ)B = (1 +O(ϵ))B, which implies that in the black-box

setting we do not need the initial assumption for the costs cIi .

5.5.3 Connections to 2S-MATSUP-Poly

Suppose we define our non-stochastic robust problem as having one knapsack and one

matroid constraint, instead of L knapsack constraints. Then the reduction of Section 5.5.1 would

yield a (ρ+2)-approximation for 2S-MATSUP-Poly in the exact same manner, where ρ the ratio

of the algorithm used to solve the corresponding deterministic outliers problem.

A result of Chakrabarty and Negahbani [129, Theorem 16] gives a 3-approximation for this

outliers problem, which in turn would give a 5-approximation for 2S-MATSUP-Poly. However,

the algorithm obtained in this way would be randomized (its solution may not be a valid one),

would only work for polynomially bounded values vj , and would also be significantly more

complex than the algorithm of Section 5.4.
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5.6 Applying the Standard SAA Method in Supplier Problems

Consider the standard two-stage stochastic setting. In the first stage, we are allowed to

take some proactive actions and commit to an anticipatory part of the solution x, which will

incur some cost c(x). In the second stage, a scenario A is sampled from the distribution D, and

we can take some stage-II recourse actions yA with cost fA(x, yA). If X is the set of stage-I

actions and Y the set of recourse actions, the goal is to find a solution x⋆ ∈ X to minimize

f(x) = c(x) +EA∼D[qA(x)], where qA(x) = miny∈Y {fA(x, y) | (x, y) is a valid solution for A}.

5.6.1 The Standard SAA Method:

Consider minimizing f(x) in the black-box model. If S is a set of scenarios sampled from

the black-box oracle, let f̂(x) = c(x) +
(∑

A∈S qA(x)
)
/|S| be the empirical estimate of f(x).

Also, let x∗ and x̄ be the minimizers of f(x) and f̂(x) respectively.

The work Swamy and Shmoys [60] shows that if f(x) is modeled as a convex program,

then for any ϵ, γ ∈ (0, 1) and with |S| = poly(n,m, λ, ϵ, 1/γ), we have f(x̄) ≤ (1 + ϵ)f(x∗)

with probability at least 1 − γ (λ is the maximum multiplicative factor by which an element’s

cost is increased in stage-II). An alternate proof of this appeared in [63], which also covered the

case of f(x) being an integer program. Moreover, Charikar et al. [63] prove that if x̄ is an α-

approximate minimizer of f̂(x), then a slight modification to their sampling approach still gives

f(x̄) ≤ (α + ϵ)f(x∗) with probability at least 1− γ.

The result of Charikar et al. [63] further implies that the black-box model can be effectively

reduced to the polynomial-scenarios one, via the following process. Assuming that f(x) corre-

sponds to the integer program modeling our problem, first find an α-approximate minimizer x̄ of
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f̂(x), and treat x̄ as the stage-I actions. Then, given any arriving A, re-solve the problem using

any known ρ-approximation algorithm for the non-stochastic counterpart, with x̄ as a fixed part

of the solution. This process eventually leads to an overall approximation ratio of αρ+ ϵ.

5.6.2 Roadblocks for the Standard SAA Analysis in Supplier Problems

A natural way to fit the problems we studied here within existing SAA frameworks, is to

first assume knowledge of the optimal radius R∗ and then use the opening cost as the objective

function fR∗(x), by turning the radius requirement into a simple covering constraint. In other

words, set fR∗(x) = cI(x) +EA∼D[qA,R∗(x)] with qA,R∗(x) = miny{cA(y) | (x, y) covers all j ∈

A within distance R∗}. Note that fR∗(x) may represent both the convex and the integer program

corresponding to the underlying problem.

To avoid any overhead in the approximation ratio (from re-solving the problem in stage-

II as suggested by the approach of Charikar et al. [63]), one should apply SAA to the function

fR∗(x) corresponding to the convex program describing the problem (the roadblock described

here trivially extends to the case of fR∗(x) being an integer function as well). If there exists a

rounding that turns the empirical minimizer x̄R∗ into a solution that covers each client within

distance αR∗, while also having an opening cost of at most fR∗(x̄R∗), we get the desired result

because fR∗(x̄R∗) ≤ (1 + ϵ)fR∗(x∗R∗) and fR∗(x∗R∗) ≤ B. With slight modifications, all our

polynomial-scenarios algorithms can be interpreted as such rounding procedures.

Nonetheless, we still have to identify a good guess for R∗, and this constitutes an un-

avoidable roadblock in applying standard SAA in supplier problems. Since R∗ is one of nm

alternative options, one can test each of those individually. Hence, assume we work with some
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guessR, and define the corresponding cost functions fR, f̂R with minimizers x∗R, x̄R respectively.

Observe that R is a good guess iff fR(x∗R) ≤ (1 + O(ϵ))B, since in this way vanilla SAA com-

bined with our rounding procedures yields an opening cost of fR(x̄R) ≤ (1 + ϵ)fR(x
∗
R), and

minimizing over the radius is just a matter of finding the minimum good guess. However, be-

cause fR(x) is not efficiently computable, the only way to test if R is a good guess, is through

f̂R(x). Unfortunately, empirically estimating fR(x) within an (1 + ϵ) factor may require a super-

polynomial number of samples [57]. The reason for this is the existence of scenarios with high

stage-II cost appearing with small probability, which drastically increase the variance of f̂R(x).

On a high level, the obstacle in supplier problems stems from the need to not only find a

minimizer x̄R, but also compute its corresponding value fR(x̄R). This makes it impossible to

know which guesses R are good, and consequently there is no way to optimize over the radius.

Finally, note that if the stage-II cost of every scenario is polynomially bounded, the variance

of f̂R(x) is also polynomial, and standard SAA arguments would go through without difficulties

(everything can easily handled with standard Chernof/Hoeffding bound). However, this assump-

tion is much stronger than what is typically used for the two-stage stochastic model.
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Chapter 6: Conclusions and Future Work

The goal of the research presented in this dissertation was to generalize classical computa-

tional problems, e.g., clustering and graph-cut problems, along two directions, and then provide

algorithms with provable guarantees for the novel variants.

The first direction involved incorporating considerations of fairness in our problems of

interest. Towards that goal, in the context of k-clustering, we introduced two new notions of

fairness, one yielding PAIRFAIRCLU [37, 38] and the other one yielding EQCENTER [46]. Fur-

thermore, we proposed the first ever fair graph-cut problems [53], by incorporating two already

established concepts of fairness into SB-MINCC [13]; when considering demographic fairness

this resulted in DEMFAIRCUT, and when considering probabilistic individual fairness that gave

rise to INDFAIRCUT. For all the previously mentioned problems we provided approximation

algorithms with theoretical guarantees.

As for the second research direction that we followed, that was incorporating elements of

stochasticity in classical problems. A first step towards this was studying PAIRFAIRCLU, where

we experimented with how randomness can guarantee fairness. In addition, motivated by ways

to prevent or mitigate the spread of a contagious disease, we studied MININFEDGE and 2S-SUP.

The former can be interpreted as a stochastic graph-cut problem, while the latter is a two-stage

stochastic generalization of a clustering/facility-location setting.

164



6.1 Future Work

Regarding PAIRFAIRCLU, recall that our results from [37] only work for a specific notion

of similarity. On the other hand, our result from [38] can handle arbitrary similarity functions,

however its is only a pseudo-approximation result. This is because the BSP constraints are vio-

lated by a multiplicative factor of 2. The important open question here is can we devise a true

approximation algorithm for PAIRFAIRCLU?

As for EQCENTER, an interesting direction is considering k-median (or k-means) under

our newly introduced constraints (1.2), (1.1). Since the feasibility result for α ≥ 2 holds for all

k-clustering objectives, we know that the previous question is actually well-defined.

Moving on to our fair cut problems and specifically to DEMFAIRCUT, the question of

whether or not there exists a true approximation for it when γ is not a constant, remains open;

recall that in our algorithm there is an (1− ϵ) multiplicative violation in the covering constraints.

Another potential direction is breaching the gap between the approximation factor of O(log n ·

log γ) that we give for general γ, and the lower bound of log γ shown in Corollary 3.2.12.

Despite the fundamental nature of MININFEDGE, its computational complexity remained

open for the p < 1 setting. A number of heuristics have been proposed, and rigorous algorithms

are only known for very special random graphs. In our work we presented the first rigorous

approximation results for this problem for certain classes of instances; however, even these turn

out to be quite challenging, and require adapting the cut sparsification and sample-average ap-

proximation techniques in a non-trivial manner. Our work raises several interesting questions.

First, it would be interesting to extend the result based on Karger’s cut sparsification technique

to the non-uniform probability setting. Second, it would be interesting to extend our work to

165



other realistic random models of social-contact networks, and to also identify what reasonable

assumptions on deterministic network models would guarantee efficient solutions.

In the two-stage stochastic problems studied here, the goal was to minimize the maximum

assignment distance for all points, subject to a stochastic budget constraint. Our intention is

to study the same setting again, but this time under a different objective function, and more

specifically the k-median one. That is, we would like to minimize

∑
A

pA
∑
j∈A

d(j, FI ∪ FA)

where as usual d(j, S) = mini∈S d(i, j).

Besides open questions pertaining to the problems already studied in this work, there are

two more intriguing avenues of future research that we would like to mention.

Making the study of fairness an interdisciplinary area: Incorporating considerations of

fairness in computational problems is not an issue that should be taken lightly by researchers, and

this is obviously because of the profound impact automated decision making has in our everyday

lives. There exist studies showing that computational approaches which were developed so that

they satisfy fairness constraints, ended up causing more harm to the corresponding marginalized

groups [131, 132]. This is clearly not because the researchers who developed these approaches

had ill intentions. We rather believe that such instances occur because the nature of fairness

considerations is too delicate for computer scientists alone to be able to address them. Therefore,

computer scientists developing “fair” algorithms should work hand in hand with people from

social sciences, civil rights groups, and of course the stakeholders; it is those that get affected by

our solutions that truly appreciate their consequences.
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Combining fairness and explainability: An emerging discipline in machine learning is

explainability; the search of solutions that do not only efficiently optimize some goal, but are

also easily explainable to non-expert stakeholders. A canonical example demonstrating the sig-

nificance of this area, can be found when considering banks using ML systems to come up with

loan approvals. In such cases, the bank should be able to explain to an applicant why they were

not approved for a loan. Hence, an ML approach that produces solutions that are too obscure and

complicated cannot be helpful towards such a goal. A very intriguing research direction revolving

around such issues is combining fairness with explainability. Specifically, using concepts of fair-

ness that are easily accessible/explainable to non-experts. For instance, is a stochasticity-based

fairness concept really explainable and convincing to someone with no knowledge of statistics?
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Appendix A: Additional Experimental Results for EQCENTER

Experimental results for Bank:

Figure A.1: Bank: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure A.2: Bank: Satisfaction of fairness constraints

(a) (b) (c)

Figure A.3: Bank: Amount of constraint violation
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Experimental results for Creditcard:

Figure A.4: Credit: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure A.5: Credit: Satisfaction of fairness constraints

(a) (b) (c)

Figure A.6: Credit: Amount of constraint violation
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Experimental results for Census1990:

Figure A.7: Census: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure A.8: Census: Satisfaction of fairness constraints

(a) (b) (c)

Figure A.9: Census: Amount of constraint violation
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Experimental results for Diabetes:

Figure A.10: Diabetes: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure A.11: Diabetes: Satisfaction of fairness constraints

(a) (b) (c)

Figure A.12: Diabetes: Amount of constraint violation
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