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Point-set matching defines the task in computer vision of identifying a one-to-one

alignment between two sets of points. Existing techniques rely on simple relationships

between point-sets in order to efficiently find optimal correspondences between larger sets.

Modern methodology precludes application to more challenging point-set matching tasks

which benefit from interdependent modeling. This thesis addresses a gap in combinatorial

optimization literature by enhancing leading methods in both graph matching and multiple

object tracking (MOT) to more flexibly use data-driven point-set matching models. Presented

contributions are inspired by Caenorhabditis elegans, a transparent free-living roundworm

frequently studied in developmental biology and neurobiology. The C. elegans embryo,

containing around 550 cells at hatch, can be used for cell tracking studies to understand how



cell movement drives the development of specific embryonic tissues and organ functions.

The development of muscle cells complicates analyses during late-stage development, as

embryos begin twitching due to muscular activity. The sporadic twitches cause cells to move

violently and unpredictably, invalidating traditional cell tracking approaches. The embryo

possesses seam cells, a set of 20 cells which together act as fiducial markers to approximate

the coiled embryo’s body. Novel optimization algorithms and data-driven hypergraphical

models leveraging the correlated movement among seam cells are used to forward research

on C. elegans embryogenesis. We contribute two optimization algorithms applicable in

differing conditions to interdependent point-set matching. The first algorithm, Exact

Hypergraph Matching (EHGM), exactly solves the n-adic assignment problem by casting the

problem as hypergraph matching. The algorithm obtains solutions to highly interdependent

seam cell identification models. The second optimization algorithm, Multiple Hypothesis

Hypergraph Tracking (MHHT ), adapts traditional multiple hypothesis tracking with hypergraphical

data association. Results from both studies highlight improved performance over established

methods while providing adaptable optimization tools for multiple academic communities.

The canonical point-set matching task is solved efficiently under strict assumptions of

frame-to-frame transformations. Challenging situations arising from non-rigid displacements

between frames will complicate established methods. Particularly, limitations in fluorescence

microscopy paired with muscular twitching in late-stage embryonic C. elegans yield adversarial

point-set matching tasks. Seam cell identification is cast as an assignment problem; detected

cells in images are uniquely identified through a combinatorial optimization algorithm.

Existing graph matching methods are underequipped to contextualize the coiled embryonic

position in sparsely imaged samples. Both the lack of an effective point-set matching



model and an efficient algorithm for solving the resulting optimization problem limit

computationally driven solutions to identify seam cells in acquired image volumes. We

cast the n-adic problem as hypergraph matching and present an exact algorithm to solve

the resulting optimization problem. EHGM adapts the branch-and-bound paradigm to

dynamically identify a globally optimal correspondence; it is the first algorithm capable

of solving the underlying optimization problem. Our algorithm and accompanying data-

driven hypergraphical models identify seam cells more accurately than established point-set

matching methods.

The final hours of embryogenesis encompass the moments in which C. elegans assumes

motor control and begins exhibiting behavior. Rapid imaging of the seam cells provides

insight into the embryo’s movement as a proxy for behavior. However, seam cell tracking

is especially challenging due to both muscular twitching and the low dose required to

gently image the embryo without perturbing development. Current methods in MOT

rely on independent object trajectories undergoing smooth motion to effectively track

large numbers of objects. Multiple Hypothesis Tracking (MHT) is the foremost method

for challenging MOT tasks, yet the method cannot model correlated object movements.

We contribute Multiple Hypothesis Hypergraph Tracking (MHHT) as an extension of

MHT, which performs interdependent object tracking by jointly representing objects as

a hypergraph. We apply MHHT to track seam cell nuclei during late-stage embryogenesis.

Data-driven hypergraphical models more accurately track seam cells than traditional MHT

based approaches. Analysis of time-lapse embryonic postures and behavioral motifs reveal

a stereotyped developmental progression in C. elegans. Further analysis uncovers late-stage

motility defects in unc-13 mutants.
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Preface

Multidisciplinary research aims to unite faculty from different disciplines to approach

a shared academic challenge. Applied mathematics stands at the intersection of various

disciplines to bind experts together towards a shared goal. For example, statisticians are

integral across domains in the natural and social sciences to model signal and error arising

in samples. Moreover, computer scientists are becoming increasingly ubiquitous to design

computational methods and software not only to realize theoretical mathematical solutions

but to market research to their respective academic communities. Practitioners in such

roles stand to unite disparate academic communities in pursuit of biological discovery.

Research comprising this thesis was pursued from the perspective of a mathematician

bringing together biologists and optical physicists. Each discipline served a role in the

partnership. Biologists hypothesized within their niche as to the nature of the world.

The optical physicist built microscopes in which to observe the biological specimen. The

mathematician then developed computational tools to analyze and model the observed

biological data. Statistical models processed the data to yield new biological insight.

In particular, the biologists studied embryo-development of the nematode Caenorhabditis

elegans. The roundworm has reached such ubiquity across scientific domains that it is used

as a model organism for development. The relative simplicity of the worm makes it an

ideal candidate for understanding development. However, this simplicity comes with a

tradeoff. Observing the embryo as it develops is uniquely challenging due to its fragility
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and movement late in development. The biological questions of interest center about the

final stages of embryo-development in which observation becomes especially adversarial due

to twitching motions caused by muscle cells. Microscopists have developed cutting edge

microscopes and accompanying software just capable of observing the embryo in these

last hours prior to hatching. These cutting edge tools enable observation of an otherwise

unstudied phenomena. The resulting image data itself presents new concerns as they are not

fully amenable to existing methods of analysis. My role in these interdisciplinary projects

was to develop mathematical tools to analyze images of C. elegans embryos to extract

information relevant to biological research questions. Contributions from each of the three

disciplines helped yield new biological insight concerning C. elegans tissue formation and

behavioral development.
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Chapter 1: Introduction

1.1 Overview

Advancements in the natural sciences are becoming increasingly predicated on collaboration

from experts spanning multiple domains. Biologists in particular are benefiting from

the partnership with mathematicians and computer scientists. Data comprised of high

resolution images spanning multiple hours must be analyzed to extract relevant biological

information. Computational methods operating on image data have been shown to accelerate

analyses, enabling biological researchers to perform wider arrays of experiments, enabling

the discovery of richer biological phenomena [78].

Presented contributions are motivated by the nematode Caenorhabditis elegans (C.

elegans). The roundworm is studied as a model of developmental biology due to myriad

facets of the organism; Sydney Brenner, the original investigator of the roundworm, called

C. elegeans “Nature’s gift to science” in his award speech for the Nobel Prize in Medicine

[12]. The following two sections each present foundational information concerning C.

elegans biology, and foundations of microscopy. C. elegans research history and relevant

genetics are first discussed to give context to the barriers and motivate subsequent solutions.

A brief introduction to microscopy outlining two distinct approaches to observing biological

specimens are then presented.
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1.2 Caenorhabditis elegans as a Model Organism for Animal Development

In 1965, Sydney Brenner proposed the nematode Caenorhabditis elegans (C. elegans)

as a model organism for development and behavior [68]. The roundworm is often studied

as a model of nervous system development due its relatively simple anatomy, featuring a

302 cell nervous system in just 1000 cells in total [63, 77, 89]. Beyond simplicity, the worm

has many characteristics which make it amenable to laboratory studies. Riddle writes in

the seminal handbook C. elegans II, “This soil nematode offered great potential for genetic

analysis, partly because of its rapid (3-day) life cycle, small size (1.5-mm-long adult), and

ease of laboratory cultivation.” The worm can be cultivated and maintained on petri dishes

as they feed on Escherichia coli (E. coli) bacteria and produce hundreds of progeny per

cycle [68].

Contributed research concerns biological inquiry during embryogenesis, the period of

development from the one-cell stage to the embryo emerging from its eggshell. Embryogenesis

occurs over the span of approximately 16 hours [77]. C. elegans embryogenesis has been

widely studied. In particular, the complete embryonic cell lineage has been determined, i.e.,

all cells and their respective descendants from the one cell stage have been observed and

documented [77]. The lineage is invariant worm-to-worm, that is to say that the biological

codex dictating cell divisions is non-random. Moreover, the lineage was able to be derived

due to cell mitosis completing approximately halfway through embryo-development [77],

which coincides with the development of four bands of muscle cells. The 81 muscle cells

form along the exterior of the embryo and begin contracting approximately halfway through

embryogenesis [77]. The onset of muscle cells induce twitching in the embryo. Muscle
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twitching causes sporadic bouts of movement for the remainder of development.

Rapid twitching movements complicate observation of the developing embryo. Motion

blur induced by the movements causes a deterioration in image quality. Methods to

automatically lineage cells [72] or perform cell tracking [17] fail when faced with abrupt

transitions between images. Analysis of late-stage embryogenesis, i.e. the final hours

of development prior to hatching, requires methodology for addressing and mitigating

twitching. Established methods [21] concern a subset of epidermal cells know as seam

cells.

The twenty seam cells and two associated neuroblasts form in lateral pairs along

the left and right sides of the worm, resulting in eleven pairs upon hatching [77]. The Q

neuroblasts appear in the final hours of development, just prior to hatching. The pairs

of cells are named, anterior to posterior: H0, H1, H2, V1, V2, V3, V4, Q (neuroblasts),

V5, V6, and T. Each pair’s left and right cell is named accordingly; for example, H1L

and H1R comprise the H1. The seam cells and neuroblasts together describe anatomical

structure in the coiled embryo, acting as a type of “motion capture suit” outlining its body.

Identification of the seam cells and Q neuroblasts reveals the embryo’s posture. Imaging

and identifying the seam cells is a challenging task, further complicated by physical and

technological constraints in microscopy.

1.3 Electron & Fluorescence Microscopy

Microscopy describes the application of microscopes to view objects that would cannot

be seen with the human eye. Two approaches, electron microscopy and fluorescence
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microscopy, rely on similar foundational physical foundations, but have one key distinction.

Electron microscopy relies on the excitation of electrons as a source of illumination, whereas

fluorescence microscopy uses photon excitation as a means to illuminate the specimen.

Electrons have a shorter wave-length than a photon, enabling increased spatial resolution

than is possible using fluorescent methods.

Sample preparation steps for electron microscopy, including dehydration and staining,

cause death of the specimen. As a result, electron microscopes are unable to produce time-

lapse images of a single specimen. Embryogenesis can be observed across several embryos

at different points in development, but are unable to observe one embryo fully. Electron

microscopy techniques are able to achieve nanometer-scale resolution of a static sample,

as opposed to fluorescence microscopy is several hundred nanometers. 1. The connectome

of C. elegeans, describing the map of neural connections in the brain, was completed in

1986 using electron microscopy [89]. To date, C. elegans is the only organism to have its

connectome completed.

On the other hand, fluorophores are illuminated by light and provide molecular

contrast when illuminated in fluorescence microscopy. Fluorophores emit longer wavelengths

of light upon excitation via a particular wavelength, dependent on the fluorophore itself.

The fluorescent microscope provides the exciting wavelength, triggering excitation of the

fluorescent molecule which then emits a longer wavelength of light to be observed with the

microscope detector. However, not all organisms of biological interest naturally develop

fluorescent molecules. For example, the jellyfish Aequorea victoria contains a green fluorescent
1Electron microscope images of C. elegans captured by Nichol Thomson, one of Sydney Brenner’s

collaborators, inspired Brenner to pursue the worm as a model organism.
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protein (GFP) which excites under a lower frequency (blue) light. Martin Chalfie earned

the Nobel Prize in Chemistry by demonstrating that GFP could be expressed in C. elegans

cells, allowing their observation in the living animal 2 [16]. The advancement further has

enabled fluorescent imaging of live biological samples.

The delicate nature of fluorophores presents challenges in fluorescence microscopy.

Overexcitation will cause photobleaching, an event characterized by the fluorophore becoming

unresponsive and unable to fluoresce. Tempering the light dosage and imaging frequency

of the exciting laser is crucial for maintaining the fluorophore’s health. A tradeoff emerges;

one must balance the quality of the image for the quantity of images. Images with stronger

signal must be captured less frequently, whereas images of lower signal can be captured

more often. Advances in fluorescence microscopy have mitigated this tradeoff. For example,

light sheet fluorescence microscopy (LSFM) allows for gentle volumetric imaging by only

illuminating and capturing single planar portions of the sample. The technique limits

illumination to a focal plane as it is swept throughout the volumetric sample [40, 90].

Multiview lightsheet fluorescence microscopes capture orthogonal views of the sample and

use image registration methods to yield a final image of higher spatial resolution than a

single view can alone.

Advancements in genetic biology (Chalfie’s GFP, along with subsequent fluorophores)

and fluorescence microscopy (LSFM) have further enabled observation of C. elegans embryogenesis.

Fluorescence can be selectively expressed in the seam cells and observed using light-sheet

microscopy. Despite such advancements, research progress in late-stage development is
2Chalfie also happened to work with Brenner as a post-doctoral researcher; he used electron microscopy

to study touch sensitivity in C. elegans mutants.
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stymied by embryonic twitching. Mathematical and computational contributions presented

address seam cell identification in an effort to promote relevant biological discovery. Although

methods were motivated by seam cell identification, contributed methods are applicable to

other combinatorial optimization problems and object tracking tasks.

1.4 Motivation

Presented research contributes to a lineage of biological research centered about C.

elegans. The organism has led to numerous discoveries concerning development, particularly

neurodevelopment. Many advancements were birthed with the collaboration of microscopists

and geneticists. As noted above, it was Thomson’s electron micrographs which first inspired

Brenner’s pursuit of of C. elegans. Biology has come into a renaissance under a new

collaboration with mathematicians and computer scientists, enhancing the field of computational

biology. The partnership has expanded the imagination of biologists as their imaginations

can now wander further; experiments can address more factors and the data can be both

analyzed in new ways and more efficiently parsed. The outcome is not only more, but also

higher quality scientific research being pursued.

Biological research goals addressed are at the precipice of C. elegans embryo-development.

Two major questions are pursued, both pertaining to late-stage development. The first goal

concerns understanding how cells form tissues, organs, and organ structures as the embryo

develops. The project necessitates the cataloguing of cells across time in the embryo, i.e.

building a 4D (3D + time) atlas of tissue development; muscular twitching has complicated

relevant analyses as cells cannot feasibly be imaged and tracked during twitching bouts.
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The seam cells are used as fiducial markers to mitigate embryo displacement. Identifying

the seam cells with no temporal context emerges as a challenging modeling task. The

second research project focuses directly on nervous system development, particularly on

embryonic “behavior.” How and when the nervous system forms and gains control of motor

function is not currently understood. The final hours of development contain the moments

in which a bumbling embryo matriculates into a neuronally controlled organism. Observing

behavioral development requires direct imaging and tracking of seam cells despite twitching

bouts. The seam cells together approximate the coiled embryo’s posture, analysis of time-

lapse posture transformations serves as a test-bed for understanding behavior.

Both of these research questions push the boundary of fluorescence microscopy (Chapter 1.3);

limitations in optical physics and its current application prohibit simple solutions to each

research project. The aforementioned tradeoff between image quality and frequency of

imaging leaves solutions to both projects requiring expert intervention; existing computational

methods achieve poor quality in each environment. Seam cell identification is a key step of

discovering new biological phenomena. However, the imaging paradigm of each project is

at one end of the quality-quantity tradeoff. Imaging approaches for the tissue development

project prioritize quality, as many cell nuclei within the embryo must be distinguishable

throughout late-stage development. As a result, images are captured minutes apart to

ensure health of the embryo. On the other hand, studying behavior requires a high capture

rate to observe subtle patterns of movement. Images are captured at the maximum capture

rate of the volumetric microscope, but at the expense of image quality.

Seam cell nuclei were imaged and used as an intermediate step towards the biological

discovery in each research project. More specifically, fluorescent promoters were genetically
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introduced into the embryos such that when seam cell nuclei expressed green light when

exposed to blue light. The bright spheroids appear in an otherwise dark image volume,

akin to stars in the night sky. Furthering the analogy, stars observed together in imagined

patterns form constellations. The posture is in this sense its own constellation inside the

eggshell, but the embryo’s movements cause the constellation to change shape. Posture

identification is akin to finding the same constellation (posture) as it changes shape throughout

late-stage development due to contortions and elongation. Each seam cell plays a role in

comprising the posture. Experts know a seam cell’s identity by contextualizing positions

of other visible seam cells. The posture is an abstraction of cells together forming a shape

just as a constellation is an abstraction of its comprising stars. The task in both cases is

to output a set of pairings between observed bright spheroids and seam cell identities in a

given image volume. Each seam cell is found only once per image and each imaged nucleus

belongs to a seam cell. These one-to-one constraints are common in many modeling tasks,

so much so that the field of assignment problems comprises optimization problems and

algorithms centered around solving such problems.

Assignment problems describe a type of discrete optimization problems. In particular,

they are binary integer programs with the aforementioned one-to-one constraints. They

describe the optimization problem concerning the matching of objects between two disjoint

sets. Posture identification was cast as assignment problem in which seam cell nuclei, an

observed set, were matched to seam cell identities, an abstract set. The observed nuclei

themselves can be represented as points in 3D space. Assignment problem algorithms

can be applied to pair points to seam cell identities. However, seam cell identification is

markedly different from assignment problems encountered in literature for myriad reasons
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to be described in later chapters. Assignment problems themselves can be split into two

broad categories. The key juxtaposition concerns the existence of an underlying correct

matching.

The first class of assignment problems is truer to the origins in the field; they are

complex tasks in which even an expert cannot reasonably deduce an optimal answer.

Logistics, resource allocation, vehicle routing, and economic planning problems all need

advanced algorithms to identify optimal decisions. For example, the travelling salesman

problem describes a canonical discrete optimization in this subfield. The problem concerns

finding an optimal (often minimum distance) tour through a set of locations. As an

example, delivery drivers start at a warehouse and have a list of locations in which to

drop off goods. The driver wants to end at the warehouse and stop at each location only

once in the fastest way possible. Assignment problem methodology is applied ubiquitously

to logistics problems to maintain efficient global supply chains. The key characteristic of

this class of problems is that the optimal answer is not known; an algorithm needs to find

the optimal answer which is then taken as the correct answer.

On the other hand, there exist problems in which a correct answer exists and the goal

is to model the task such that the optimal answer is the correct answer. If possible, the end

result is an autonomous system which can yield accurate predictions and improve efficiency

in data analysis pipelines. Point-set matching problems often fall into this category. A

human can observe a transformation among points, such as an image rotating, and match

fiducial markers between images. Tasks such as object tracking or registration have this

element of correctness to them. Posture identification fits into this category; each posture

can be confirmed by experts; the goal is to build a method which can automatically identify
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the embryo’s posture (identify all seam cells) in a given image volume.

Assignment problems of the second category can be viewed as a supervised learning

task. Point-set matching problems operate using an underlying model of correspondence.

For example, a model based upon frame-to-frame displacement is used in some multiple

object tracking (MOT) methods. This is to say that objects which are close between

frames are likely the same object; the optimum is the association which minimizes total

displacement. Models predict associations which can then be compared to expert annotations

for evaluation. Effective models then must be powerful enough to use underlying patterns,

but flexible enough to generalize to new instances. The bias-variance tradeoff comes to

mind. An appropriate model will have the necessary capacity (minimum bias) to correctly

associate points between sets while remaining as simple as possible to minimize prediction

variance. Weak models will fail to capture relevant patterns while overly complex models

will not generalize to unseen instances of the task at hand. Point-set matching models

are comprised of features which are measurements of the objects themselves. While many

features use the coordinates of the points, other features may be based on some facet of

the object’s appearance, such as shape, color, and size.

The comparison between point-set matching tasks and supervised learning is imperfect.

Assignment problem constraints are unable to be enforced in current supervised learning

optimization processes. While structured output methods exist, the uniqueness constraint

is particularly difficult to maintain [80]. Supervised learning has nonetheless been attempted

in point-set matching problems [14]. Model prediction in a typical supervised learning

process does not require further optimization. However, prediction in an assignment

problem requires solving the assignment problem. Searching the permutation space (there
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are n! permutations of a set of size n) can be computationally costly depending on the

model and approach. Seminal research unites the two fields, demonstrating a framework

for gradually updating a graphical model’s parameters and showed parametric models are

more accurate than parameter-free models [14].

Types of features used in an assignment model directly relate to the computational

burden of finding a solution. Increasingly intricate models require more computation to

solve; the steep increase in computation for complex models prohibits application to any

exceedingly challenging point-set matching task. Recent point-set matching methods in the

literature are applied on benchmark datasets which feature relatively simple transformations

[27, 96, 97]. Posture identification is notably more challenging as the embryo may entirely

reposition between images. Sudden twitching movements in the flexible embryo present

challenge even in the high capture-rate imaging paradigm. Predicting embryonic posture

is not comparable to matching points between images of a house during a slight rotation.

Posture identification as a barrier to cutting-edge biological research motivates this

writing. The problem lies at the intersection of statistics, discrete optimization, and

developmental biology motivated my contributions to the fields of combinatorial optimization

and multiple object tracking. The exploration of research questions arising in both paradigms

yielded new methods and mathematical methods while assisting in discovering new biological

phenomena.
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1.5 Research Questions

Research questions explored in the subsequent chapters are driven by the pursuit of

identifying posture in each of the two imaging approaches. Accurate posture identification

was the foremost goal in both explorations. Differences in imaging conditions led to

the adaptation of established methods in assignment problem literature to solve posture

identification in each scenario.

Posture identification for the tissue development project was investigated as a supervised

learning oriented assignment problem with intent to create a framework for other challenging

object identification tasks. Established methods for point-set matching were unable to

be generalized to highly interdependent features nor were they able to guarantee exact

solutions [27, 96]. The pursuit of automatic seam cell identification would require stronger

models capable of describing relationships between cells. Semi-automatic posture identification

stood as a secondary goal if the task could not be reliably performed automatically.

The higher capture rate data yielded a different set of concerns. Posture tracking

was able to use locations at the preceding frame to better guide identification. Similarities

between problems encouraged design of an interdependent tracking paradigm. Here, we

investigated the efficacy of correlated object movement into multiple object tracking methods.

Established methods were more easily applicable to behavioral analysis data, but two

notable facets complicated posture tracking. First, the rapid image capture rate is offset

by a low laser dose at each image, yielding images in which seam cell nuclei were not

easily detectable. Additionally, aforementioned muscular twitching causes random bouts

of motion. The adversarial tracking landscape was balanced by the correlated seam cell
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motion.

1.6 The n-adic assignment problem

Assignment problems were integral to explored research questions and contributions.

The combinatorial optimization problems are defined by their carefully constructed constraints.

They are formulated as binary integer programs with one-to-one constraints to ensure

solutions represent a valid “matching” of objects between sets. The objective formulation

directly describes relationships between objects. For example, the linear assignment problem

encodes independent object-to-object relationships while being solvable in worst-case polynomial

time [35, 39]. Higher order assignment problems such as the quadratic, cubic, or quartic

assignment problems areNP-complete [70]. As a result, published methods mostly concern

heuristic methods applied to lower order forms. The highest degree assignment problem,

the n-adic assignment problem, had not yet been solved. The more general n1 to n2

(n1 ≤ n2 rectangular assignment problem will be explored. The permutation matrix space

Π is expanded to the assignment matrix space X :

X = {X ∈ {0, 1}n1×n2 : ∀j,
n1∑
i=1

xij ≤ 1,∀i
n2∑

j=1
xij = 1}

While the linear assignment problem uses a cost matrix, and the quadratic assignment

problem a 4D cost tensor, the n1-adic assignment problem requires a degree 2n1 tensor to

store dissimilarities arising from a full n1 to n1 assignment: (l1, l2, . . . , ln1) 7→ (l′1, l′2, l′3, . . . , l′n1).

The n1-adic assignment problem is cast as hypergraph matching. The number of vertices

aligned by the most comprehensive hyperedge defines the degree of a hypergraph. Maximum
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degree hypergraphs with hyperedges composed of all n1 vertices yield the most comprehensive

point-set matching function possible. Then, for a given assignment matrix X ∈ X ,

the hypergraph matching objective can be expressed using n1 dissimilarity tensors of

dimension 2, 4, . . . , 2d, . . . , 2n1, each measuring dissimilarity between degree d hyperedges,

respectively. Define Z(d) as the tensor mapping the dissimilarity for the degree d hyperedges.

The hypergraph matching objective is expressed in Eq 3.2.

f (X|Z(1),Z(2), . . . ,Z(n1)) =
n1∑

l1=1

n2∑
l′1=1

Z(1)
l1l′1
xl1l′1

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

Z(2)
l1l′1l2l′2

xl1l′1
xl2l′2

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

n1∑
l3=l2+1

n2∑
l′3=1

Z(3)
l1l′1l2l′2l3l′3

xl1l′1
xl2l′2

xl3l′3
+ ...

+
n1∑

l1=1

n2∑
l′1=1

...
n1∑

ln1=ln1−1+1

n2∑
l′n1=1

Z(n1)
l1l′1...ln1 l′n1

xl1l′1
. . . xln1 l′n1

Hypergraph matching allows for the modeling of intricate point-set matching problems

through high multiplicity assignment objective function formulations. The Z(d) dissimilarity

terms measure degree d hyperedge dissimilarity comprising d simultaneous vertex assignments.

The range in assignment problem objective complexity from d=1 to d=n1 trades off model

capacity for increased computation. The traditional linear assignment problem (d=1) is

solvable in polynomial time [39], but treats points between sets independently. Existing

graphical methods (d=2) and hypergraphical methods (d>2) rely on approximate searches

and do not generalize to high degree formulations of Eq 3.2. We explore a method to find

globally optimal solutions to hypergraph matching problems of arbitrary degree, allowing

for the modeling of intricate point-set matching tasks.
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1.7 Contributions

Contributions encompass both specialized tools for posture identification and posture

tracking as well as general methodology for underlying optimization problems. Effective

applied mathematics research lies somewhere between each endpoint; new methods ought

to solve the inspiring problem but also be flexible enough to be applied elsewhere (a macro-

level bias-variance tradeoff). Mathematical methodology built with a rigorous foundation

is malleable and can be adjusted for applications other then how it was originally intended.

Chapter 3 explores the modeling and solving of the n1-adic assignment problem,

i.e. solving an assignment problem in which all objects between sets interact. The task

was phrased as hypergraph matching where the hypergraph features a degree n1 hyperedge.

Existing branch-and-bound techniques were adapted to exactly solve the resulting assignment

problem. The contributed branching algorithm, Exact Hypergraph Matching (EHGM),

exactly solves the n1-adic assignment problem. The algorithm is the first in the field to

do so. EHGM was used in conjunction with biologically inspired hypergraphical models to

identify posture in low temporal resolution imaging. Presented methods improved posture

identification accuracy over existing graphical methods while also acting as a frame/.work

for approaching similarly challenging point-set matching tasks.

High spatial resolution is necessary for tracking nuclei of other cells in late-stage

development. Posture identification enables a change of basis from the coiled (”twisted”)

to the straightened (“untwisted”) space. The posture-based remapping removes variation

in cell positioning attributable to the embryo moving, leaving only the movement within the

embryo. Chapter 2 describes the untwisting process, and proposes a semi-automatic cell
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tracking interface. Tracking inter-embryo cell movement was modeled as a multiple object

tracking task. Results show traditional methods accurately tracked cells when detections

were accurate; however, densely packed nuclei were difficult to distinguish reliably. An

iterative tracking paradigm was built into a graphical user interface (GUI) for users to

semi-automatically track cell nuclei.

Chapter 2 explores the posture tracking problem. The rapid image capture rate

requires a low dose of light when capturing each image to avoid photobleaching. The low

spatial resolution, high temporal resolution volumetric images of seam cell nuclei served

as input to track posture frame-to-frame over the last five hours of embryo-development.

The task was modeled as a multiple object tracking (MOT) problem. Multiple hypothesis

tracking (MHT), a leading method in the field, was augmented via hypergraphical modeling

to more accurately track posture despite sporadic bouts of twitching and imperfect detections.

Multiple hypothesis hypergraph tracking (MHHT) was inspired by posture tracking, but is

applicable to other MOT problems featuring interdependence between objects.

A subsequent analysis of posture transformations revealed patterns of emergent behavior

in the embryo. Mutants lacking a certain gene failed to express mature behavior. The

posture libraries were posited as a corpus for exploration of behavior while contributed

methods enable the curation of further behavioral data.

Contributions across both posture identification and posture tracking can best be

summarized as the development and application of interdependent assignment problem

models and accompanying algorithms. The mathematical rigor of the methods allows

further tuning, adaptation, and application to not only other tracking problems but other

combinatorial optimization problems.
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Chapter 2: Mathematical Preliminaries

Presented contributions can be summarized as methods to perform object identification,

specifically cell identification in time-lapse fluorescence microscopy images. Assignment

problems comprise the mathematical foundation of object identification. Then, multiple

object tracking (MOT) methods use these optimization frameworks to solve the real-world

scenario of maintaining information about a unique set of objects in a discrete-time sequence

of images. However, the cell nuclei themselves must first be detected in such image sets. The

aforementioned tradeoffs in fluorescence microscopy (Chapter 1.3) can make the problem

notably challenging, presenting a powerful initial barrier to performing MOT in fluorescence

microscopy images. A review of methods to perform object detection as well as an overview

of MOT will follow a lengthy exposition of assignment problems.

2.1 Assignment Problems

Assignment problems describe how to align objects within one set to objects of

another. This scenario is ubiquitous in day-to-day life. The marriage problem is a canonical

example; young men and young women are to be matched in a way which yields the

most marriages. Another application concerns the matching of employees to roles within

a company. Generally, let sets U and V each be of size n. An assignment defines a
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bijective mapping of between sets; assignments are often expressed as permutations ϕ of

the first n natural numbers: 1, 2, . . . , n, where object index i of U is mapped to object

index j = ϕ((i) of V. The permutation ϕ = (ϕ(1), ϕ(2), . . . , ϕ(n)) defines one of the n!

possible permutations.

Each assignment can be expressed via a permutation matrix. First define the binary

variable xij:

xij =


1 if j = ϕ(i)

0 otherwise

The matrix Xϕ = [|xij|] corresponds to this unique permutation of the n rows of

the size n identity matrix, In. The permutation matrix space Π comprises the set of all

permutation matrices of size n. Assignment problems operate over the domain Π:

Π = {X|X ∈ {0, 1}n×n,
n∑

i=1
xij = 1,

n∑
j=1

xij = 1} (2.1)

Assignment problems can also be expressed using bipartite graphs. A bipartite graph

G = (U, V,E) combines the two disjoint object sets U and V with an edge set E. Edges

e ∈ E must exclusively connect objects between sets; that is, any edge cannot contain

both endpoints in the same set. Matching describes the task of finding a sparse subset

M ⊆ E such that each vertex coincides with one edge [13]. The task of finding an

optimal assignment can then be phrased as identifying an optimal match between nodes of

a bipartite graph.

Assignment problems describe a mathematical framework for organizing and expressing
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matchings. Two questions naturally arise: How do we define an optimal assignment and

How do we find an optimal assignment? As in any subfield of optimization, the answer to

the latter depends on the former.

2.1.1 The Linear Assignment Problem

The linear assignment problem (LAP) presents the simplest model of an assignment

problem. A cost matrix C specifies the cost of assigning object i of U to object j of V via

the entry cij. The total cost of a permutation ϕ, given C, can be expressed ∑n
i=1 Ciϕi. The

optimization problem can then be expressed:

min
ϕ∈Sn

n∑
i=1

ciϕi (2.2)

The permutation matrix formulation of the LAP uses binary optimization variables

xij. The constraints ensure each n× n matrix is an assignment matrix.

min
n∑

i=1

n∑
j=1

cijxij

s.t.
n∑

i=1
xij = 1 i = 1, 2, . . . n

n∑
j=1

xij = 1 j = 1, 2, . . . n

xij ∈ {0, 1}

(2.3)

The LAP follows the form of a linear program. As such, traditional methods for

solving linear programs can be applied to the LAP. However, specific algorithms were

developed just for the LAP as well.
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2.1.1.1 Solving the LAP

Algorithms for solving the LAP rely on a key observation regarding the domain Π.

The continuous relaxation of Π yields the doubly stochastic matrix space, D (Eqn 2.4. Here,

the rows and columns of matrices X ∈ D still sum to one, but entries are relaxed to the

closed interval: xij ∈ [0, 1]. It is evident that every permutation matrix is also a doubly

stochastic matrix, i.e., Π ⊂ D. The set D defines the assignment polytope PA. Birkhoff

showed that each vertex of PA corresponds to a unique permutation matrix X ∈ Π [9].

As a result, every doubly stochastic matrix can be written as a convex combination of

permutation matrices [13].

D = {X|xij ≥ 0,
n∑

i=1
xij = 1,

n∑
j=1

xij = 1} (2.4)

Birkhoff’s result is a step towards relating LAP, a combinatorial optimization problem,

with a traditional linear program. The fundamental theorem of linear programming states

that optimal solutions to a linear objective lie on the vertices of the convex polygonal region

formed by the linear constraints. The two results together pave a strategy for solving the

LAP. Optimization strategies in the doubly stochastic space will converge to a vertex of

the assignment polytope, which Birkhoff showed to be a permutation matrix [13].

Harold Kuhn’s Hungarian algorithm provided the first polynomial time solution to

the LAP [13, 39]. Kuhn’s algorithm uses both the primal (Eqn 2.3 and dual (Eqn 2.5) to

identify a global minimum; the method is O(n4). Two sets of dual variables vj and ui,

i, j = 1, 2, . . . , n are used to find a solution which achieves complementary slackness [39].

20



The Jonker-Volgenant method improves the process to O(n3) [35].

max
n∑

i=1
ui +

n∑
j=1

vj

s.t. ui + vj ≤ cij i, j = 1, 2, . . . n

(2.5)

Auction algorithms frame the bipartite graph matching task through the lens of

an auction. The paradigm iteratively commits to matchings until a global optimum is

achieved. The process is noted to be more efficient when the nature of the matching process

is able to be split into disjoint regions, such as in multiple object tracking applications

[24]. With auction algorithms, a slackness parameter ε is used to decrease computation

at risk of converging upon a suboptimal solution [7]. The Jonker-Volgenant-Castañon

(JVC) algorithm modifies the Jonker-Volgenant algorithm to include an auction step at

initialization [26]. The JVC algorithm is currently used as the most efficient globally

optimal algorithm for the LAP 1 [24].

The LAP stands as one of the most prominent and versatile linear programs. The

model’s simplicity allows for a breadth of applications, while the existence of polynomial

time algorithms ensures scalability and real-time use. However, a linear objective is too

simplistic for certain applications. Indeed, all models aim to simplify or approximate an

entangled real-world scenario, but the LAP is unable to account for any level of dependence

in assignments. Linearity of the optimization variables implies the model’s cost of assigning

objects between sets is independent of other simultaneous assignments.
1The JVC algorithm also allows for rectangular cost matrices.
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2.1.2 Quadratic Assignment Problem

The quadratic assignment problem (QAP) was introduced by Koopmans and Beckmann

[38] in context of locating “indivisible economic activities.” The model was inspired by the

problem of placing facilities in a manner which maximizes profit. The optimal placement

of facilities depends on relationships between local pairs of facilities in how one facility

uses what the other produces. The problem is quadratic in nature due to this pairwise

dependence; a product of the binary optimization variables appears in the objective function

to quantify the relationships. The Koopmans and Beckmann formulation uses two matrices,

distance between facilities A and flow between facilities B in their inspiring example, to

characterize the “indivisibility” problem. The travelling-salesman problem can be expressed

as a Koopmans-Beckmann form QAP, evidence of the applicability of the QAP to combinatorial

optimization tasks [43].

Lawler proposed a more general expression of the QAP, in which the Koopmans-

Beckmann form is a special case [43]. The Lawler formulation extends the LAP objective

with a degree four tensor dijkl = aikbjl to represent “the cost of transportation from plant

i at location k to plant j at location l.”

min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

dijklxikxjl +
n∑

i=1

n∑
j=1

cikxik

s.t.
n∑

i=1
xik = 1 k = 1, 2, . . . n

n∑
k=1

xik = 1 i = 1, 2, . . . n

xik ∈ {0, 1}

(2.6)
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Lawler’s QAP formulation can also be viewed as an extension of the LAP (Eq 2.3).

The quadratic term dijkl can be used to model the cost arising from the joint assignment

of i to k and j to l, where i and k are in the first set and j and l the second set. The

formulation can be naturally applied to nodes and edges in graphs. Graph matching, or

more formally the graph isomorphism problem, describes the task of finding an optimal

alignment between vertices of a graph subject to vertex-to-vertex and edge-to-edge costs.

The linear portion of the Eq 2.6 objective measures the dissimilarity of vertices i and j,

while the quadratic portion measures the dissimilarity of the edge formed by nodes i and

k and the edge formed by nodes j and l.

2.1.2.1 Solving the QAP

Finding an exact solution to the QAP is anNP-hard problem. That is, unless P=NP,

there does not exist a polynomial time solution to exactly solve the QAP. Additionally,

the problem is strongly NP-hard; there does not exist a polynomial time approximation

algorithm within a constant factor of the optimal solution [70]. As a result, methods

for solving the QAP can be stratified into two categories: heuristic methods and exact

methods. Heuristic methods approximate a solution with no bound on optimality due

to the strong NP-hardness. Exact methods, on the other hand, guarantee a globally

optimal solution, but have worst-case exponential computational complexity. A review will

highlight leading heuristic methods as well as branch-and-bound, a seminal paradigm in

combinatorial optimization.

Heuristic methods for solving the QAP rely on the continuous relaxation of Π to
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the doubly stochastic space D. However, the objective is quadratic and non-convex.

Approximate algorithms may converge to suboptimal solutions.

Early approaches approximating the objective with a linear term and gradient based

methods are used to converge to a solution [32]. Spectral methods aim to approximate

the adjacency matrix by calculating the leading eigenvector of the affinity (or dissimilarity)

matrix storing edge-to-edge and node-to-node matching weights [45]. Path-following strategies

using a weighted combination of convex and concave relaxations have emerged at the

forefront of heuristic methodology [48, 84, 93]. A final projection step via an LAP yields a

permutation matrix solution in all approaches.

Exact methods rely on implicit enumeration of the search space Sn to find an optimal

assignment. Branch-and-bound is a paradigm originally developed to solve the travelling

salesman problem, a type of quadratic assignment problem [41, 47]. The methods are

among the most efficient, although there does not appear to be consensus on a generally

best paradigm for exactly solving quadratic assignment problems. Branch-and-bound

methods recursively commit partial assignments and solve successive subproblems within

the search space, Sn. The algorithm iteratively partitions the search space while bounding

the optimum at each branch. At each step the method prunes branches which cannot

contain the optimizer. Convergence occurs when only feasible assignments achieving a

global optimum remain. The NP−hardness of the QAP implies convergence occurs only

after implicit enumeration of Sn.
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2.1.3 N -adic Assignment Problems

Lawler noted the extension to N -adic assignment problems in his formulation of the

QAP [43]. Cubic and quartic (biquadratic) assignment problems extend Lawler’s objective

to include degree three and four products of the assignment variables, respectively. Such

assignment problems and higher order objective formulations are also NP-hard, as they

are lower bounded in complexity by the QAP [70].

2.1.3.1 Hypergraph Matching

Higher order assignment problems can be applied to model hypergraph matching just

as the QAP is applied to model graph matching. Hypergraphs extend the definition of a

graph to include hyperedges which can specify relationships among an arbitrary number

of vertices. Hypergraph matching then concerns finding an optimal vertex correspondence

between pairs of attributed hypergraphs. The number of vertices aligned by the most

comprehensive hyperedge defines the degree of a hypergraph. For example, the cubic

assignment problem can be written as hypergraph matching with degree three hyperedges

which each specify a relationship between vertices a, b, c in the first hypergraph with vertices

d, e, f in the second. Hyperedges are able to express higher degree joint relationships while

edges can only express a bivariate relationship.

2.1.3.2 Solving Hypergraph Matching

Heuristic hypergraph matching methods follow from existing graph matching algorithms.

In particular, spectral methods for solving Lawler’s QAP (Eq 2.6) have been extended to
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solve hypergraph matching. Duchenne et al. adapt Leordeanu’s work to obtain a rank-1

approximation of the affinity tensor via higher order power iteration [27, 45]. However,

calculating the affinity tensor is computationally prohibitive, especially for higher degree

hypergraphs. Simplifying assumptions such as super-symmetry and sparseness are used

with sampling methods to build large affinity tensors [27, 94]. Chertok and Keller propose

similar methodology, but instead unfold the affinity tensor and use the leading left singular

vector to approximate the adjacency matrix [18]. All such methods operate outside the

permutation matrix space. The Hungarian algorithm or similar binarization step is used

to yield a valid assignment, e.g. as in [45].

Heuristic methods rely on computing an affinity tensor prior to each proposed method

in [18, 27, 57, 91, 95]. This step serves as a computational barrier to higher degree

hypergraph matching as calculating the affinity tensor scales exponentially with the size

of the largest hyperedge [27]. Methodologies in previous work justify their strategies as

the hypergraphs are limited to degree three hypergraphs allowing the description of angles

between triplets of points [18, 19, 27, 57, 95]. Such methods are unable to generalize to high

degree hypergraph matching tasks while also providing no certainty as to the optimality of

the returned correspondence.

2.1.4 Multidimensional Assignment Problems

Assignment problems discussed thus far have described identifying an optimal correspondence

of points between two disjoint sets. The optimization objectives allow for relationships

between: individual points, pairs of points, and so on to relationships between all points
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within a set to all points within the other. However, the relationships are still measured

between just two point-sets.

Another type of assignment problem allows flexibility in the number of sets in which

points are matched. The multidimensional assignment problem (MAP) extends the traditional

assignment problem formulation to match points between L > 2 sets [60]. Assume points

are to be matched between L=3 sets with p ≤ q ≤ r. The MAP with linear cost tensor C

is expressed via Eq 2.7.

min
p∑

i=1

q∑
j=1

r∑
k=1

cijkxijk

s.t.
p∑

i=1

q∑
j=1

xijk = 1 k = 1, 2, . . . r

p∑
i=1

r∑
k=1

xijk = 1 j = 1, 2, . . . q

q∑
j=1

r∑
k=1

xijk = 1 i = 1, 2, . . . r

xijk ∈ {0, 1} ∀ i, j, k

(2.7)

The generalization to three sets can be intuitively understood through the lens of

a standard LAP (Eq 2.3). Assume p workers are to be assigned to q jobs; this problem

can be solved with the LAP. However, if we were to assume that employees change jobs

at r different points in time, then the MAP with L=3 can model the task appropriately.

The MAP with L > 2 is NP-hard [36]. Pierskalla’s solution adapts branch-and-bound

methodology to solve LAPs within the solution space [60].

27



2.2 Cell Detection & Tracking in Fluorescence Microscopy

2.2.1 Nucleus Detection

Nuclei of certain cells can be accurately targeted to emit light during imaging via

fluorescent proteins. The practice enables the observation of subgroups of nuclei pertaining

to organ systems and cellular processes en vivo. The resulting fluorescent images can be

interpreted as signals in which the desired objects emit a Gaussian-like (also referred to

as blob-like) intensity pattern about the center of each object. Methods to detect nuclei

are a subset of image segmentation techniques which are built using the assumed Gaussian

profile of objects.

Image segmentation aims to partition an image into disjoint regions formed by sets

of connected pixels. Image segmentation methods can be split into two groups: instance

segmentation and semantic segmentation. Semantic segmentation assigns a class label

to each pixel in an image (or voxel in an image volume), while instance segmentation

identifies clusters of pixels defining an instance of an object within an image. Semantic

segmentation methods serve as an initial step towards identifying instances of objects of

interest. Postprocessing routines such as a connected components analysis will cluster

pixels together to yield disjoint objects.

Traditional methods in segmentation for fluorescence microscopy leverage the Gaussian-

like profile of imaged objects. A blob describes a cluster of pixels belonging to one object. A

Gaussian intensity profile approximates each fluorescent blob-like object; roughly spherical

or ellipsoidal objects exhibit peak intensity near the center and lower intensity towards
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the edges. Locating homogeneous objects such as cells, cell nuclei, or particles is then

equivalent to detecting blobs in an image. Both traditional and modern strategies are

evaluated to perform seam cell nuclei detection. Traditional methods rely on homogeneous

blob-like structures while modern deep learning based methods use a corpus of training

data with a highly parameterized (millions of parameters) graphical model. Table 2.1 lists

each method and its implementation for seam cell nuclei detection.

Method Citation Implementation
IFT-Watershed [29] [49]

LoG-GSF [46, 51] [79]
Wavelet [58] [25]

Mask-RCNN [33] [82]
3D U-Net [98] [20]

Stardist 3D [86] [85]

Table 2.1: Multiple strategies are evaluated to perform seam cell nuclei detection. Both
traditional methods (IFT-Watershed, LoG-GSF, Wavelet) and modern deep learning based
methods (Mask-RCNN, 3D U-Net, Stardist 3D) are listed with implementation citations.

Three traditional segmentation approaches were applied: Image Foresting Transform

Watershed (IFT-Watershed) [29], Laplacian of Gaussian with Gaussian shape fitting (LoG-

GSF) [46, 51], and a Wavelet based method [58]. The IFT-Watershed algorithm uses a

bottom-up approach to merge maxima from a Euclidean distance transform into disjoint

regions [29]. LoG-GSF first applies the Laplacian of Gaussian, a staple method for blob

detection [46]. Resulting spots are filtered according to a quadratic fitting scheme [51]. The

Wavelet method uses a wavelet transform decomposition across multiple scales to identify

bright spots [58]. These methods use few parameters and are able to capture homogeneous

bright spots effectively.

Neural networks are parametric graphical models that leverage large amounts of
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annotated data to learn a compositional functional relationship between inputs and outputs.

Convolutional neural networks (CNNs) are a specific type of neural network better able

to process both planar and volumetric image data; these models yield the best results

in biological image segmentation [69, 86, 98]. Fully convolutional networks (FCNs) are a

subclass of CNNs that output an image or volumetric image the same shape as the input,

known as the encoder-decoder network architecture [50]. Image features are extracted from

the image, and iteratively downsampled and processed throughout the network to expand

field of view while learning more abstract representations. The U-Net demonstrated how

FCNs could revolutionize semantic segmentation in microscopy [69]. The RCNN extended

the FCN to perform instance segmentation with the region proposal network of [33, 82].

However, the Mask-RCNN is currently only able to process images, not volumes. Semantic

segmentation is possible on image volumes via volumetric convolutions. The 3D U-Net

demonstrated the effectiveness of stacked images as context for segmenting microscopy

images [98]. More recently, Stardist 3D combines elements of a volumetric FCN, such as

the 3D U-Net, but with a focus on identifying disjoint objects in fluorescence microscopy

[85, 86]. The key contribution of Stardist 3D is a processing algorithm which inscribes

convex polyhedra into detected blobs with the goal of separating close or touching objects.

2.2.2 Multiple Object Tracking

Multiple object tracking (MOT) is a fundamental task in computer vision. MOT is

defined as maintaining information about a dynamic set of objects throughout a sequence

of discretely sampled images. MOT is an intermediate problem that is often a first step
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to gather contextual information for more complex types of analysis or decision making,

particularly in biomedical imaging. Contributions summarized in Chapter 1.7 can each be

seen as MOT methods applied to track certain sets of cell nuclei in embryonic C. elegans.

MOT is often expressed as two sequential steps: detection and association. Detection

describes the process of obtaining measurements from images, while association refers to

matching aforementioned measurements to unique object tracks. Accurate detections are

crucial for an effective association step; however, moving objects in close proximity are

difficult to track even with perfect detections. Frame-to-frame methods, such as the

Global Nearest Neighbor (GNN) filter, are prone to failure when faced with erroneous

measurements and moving objects in close proximity. Multiple hypothesis tracking (MHT)

is a leading method for association, particularly for applications in fluorescence microscopy

in which homogeneous object paths may intersect [17]. MHT uses detections from future

frames to disambiguate challenging association decisions [10, 64].

The GNN filter serves as the canonical tool for data association in MOT. The method

describes a linear program (LP) in which measurements are uniquely associated to tracks.

Distances between tracks and measurements are used to find a globally optimal pairing

between points of the two sets. The GNN is expressed as the linear assignment problem

(LAP) (Chapter 2.1.1). The assignment constraints enforce each track i = 1, 2, . . . , n being

uniquely matched to one detection j = 1, 2, . . . , n. The data association problem leverages

the LAP to perform MOT.

Define Z(t) = [z(t)
1 , z(t)

2 , . . . , z(t)
n ] as the states of each object i = 1, 2, . . . , n at time

t = 1, 2, . . . , T . State z(t)
i describes the center position of object i at time t. Similarly, define

O(t) = [o(t)
1 ,o(t)

2 , . . . ,o(t)
m(t) ] as the set of measurements at frame t, indexed j = 1, 2, . . . ,m(t),

31



t = 1, 2, . . . , T . The detection step generates sets O(t), t = 1, 2, . . . , T , while the association

step concerns using the detections to update tracks Z(t), t = 1, 2, . . . , T .

The GNN cost matrix C ∈ Rn×(m(t)+n) (Eq 2.8) specifies costs for associating measurements

j = 1, 2, . . . ,m(t) to states i = 1, 2, . . . , n. The matrix comprises two blocks of sizes n×m(t)

and n×n. The first block measures the euclidean distance between track z(t−1)
i and detection

o(t)
j while entries in the second block consists of costs of non association known as gates.

Each gate d
(t)
i allows for track i to receive no measurements at time t. In the context

of the GNN filter, the gate specifies a distance radius about each track z(t−1)
i in which

measurements o(t)
j must reside in order to associate to track i.

C(t) =



‖z(t−1)
1 − o(t)

1 ‖2 ‖z(t−1)
1 − o(t)

2 ‖2 ... ‖z(t−1)
1 − o(t)

m(t)‖2 d1 ∞ ∞ ... ∞

‖z(t−1)
2 − o(t)

1 ‖2 ‖z(t−1)
2 − o(t)

2 ‖2 ... ‖z(t−1)
2 − o(t)

m(t)‖2 ∞ d1 ∞ ... ∞

‖z(t−1)
3 − o(t)

1 ‖2 ‖z(t−1)
3 − o(t)

2 ‖2 ... ‖z(t−1)
3 − o(t)

m(t)‖2 ∞ ∞ d3 ... ∞

... ... ... ... ∞ ∞ ∞ ... ∞

‖z(t−1)
n − o(t)

1 ‖2 ‖z(t−1)
n − o(t)

2 ‖2 ... ‖z(t−1)
n − o(t)

m(t)‖2 ∞ ∞ ∞ ... dn


(2.8)

The cost matrix C defines the GNN filter objective, while the LAP constraints

complete the optimization problem. The resulting linear program is then solvable in

polynomial time [35, 39], yielding globally optimal assignments between tracks and measurements.

The columns m(t) + 1,m(t) + 2, . . . ,m(t) + n correspond to a track receiving no detection

update are included in the one-to-one constraints.
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min
n∑

i=1

m(t)∑
j=1

C(t)
ij xij

s.t.
n∑

i=1
xij = 1 j = 1, . . . n+m(t)

m(t)∑
j=1

xij = 1 i = 1, 2, . . . n

xij ∈ {0, 1}

(2.9)

The GNN is the most common tool for solving the association step in MOT. The

method is typically used in conjunction with physical models of object motion to a crucial

step to MOT paradigms. Dynamical models of varying complexity can model first and

second order liner motion, or even nonlinear trajectories. In particular, linear dynamical

models for MOT are parameterized via the Kalman Filter [28]. The Kalman Filter recursively

updates parameters of a linear dynamical model which is used to generate a priori state

predictions ˆz(t)
i , i = 1, 2, . . . , n prior to each association step. The state predictions are used

in the formulation of C, replacing the previous frame states z(t−1)
i . Each Kalman Filter is

updated after the association step, such that it better reflects object behavior. Benchmark

MOT performance can be achieved by using neural networks for object detection and the

GNN LP with dynamical motion modeling for association [8].

2.2.2.1 Multiple Hypothesis Tracking & Joint Probabilistic Data Association

The simplicity of the GNN lends itself to a multitude of applications. However, the

method often falls short in complex scenarios. The GNN fails in two distinct scenarios:

cluttered scenes and coalescing trajectories. Clutter describes the problem of having many

false positives amid a true object. The one-to-one constraints force one detection to be
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used to update the object’s state. Trajectory coalescence occurs when multiple objects

intersect and move in a similar direction. A frame-to-frame MOT approach may not be

able to disambiguate the objects.

Joint probabilistic data association (JPDA) and the aforementioned multiple hypothesis

tracking (MHT) address these problems, respectively. The two more computationally

intensive solutions to the data association problem use different techniques to handle each

problem but are united in using all solutions to the GNN LP (Eq 2.9. Murty’s algorithm

iteratively solves the GNN LP and adds constraints to ensure each solution is excluded

from the solution set, yielding the K best solutions with complexity O(Kn4) [55]. Miller,

Stone, and Cox further optimized Murty’s method to O(Kn3) using the Jonker-Volgenant

algorithm [35, 54]. Cox and Miller also proposed changes to Murty’s algorithm to better

suit the method for the data association problem [23].

The original implementations of JPDA and MHT both use the n! solutions of the

GNN LP to formulate state updates. [4, 64]. JPDA is known as a soft-assignment method,

a multi-target extension of the single target probabilistic association filter. The single

target approach uses a weighted linear combination of detections with an object gate to

yield a state update. The method is most effective in applications with cluttered detection

sets. The extension to multi-target tracking requires enumeration of the solution space as

it does not simply apply n independent filters. Enumeration of all hypotheses allows for

the calculation of joint probabilities to be used in the multi-target state update without

using detections more than once each [4]. On the other hand, MHT as first proposed

requires the enumeration of hypotheses which are propagated to future frames in which

detections are further associated with each to find the most likely hypothesis of the original
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set. The recursive process constitutes a deferred decision paradigm in which challenging

track associations are only made when information from future detections can disambiguate

the decisions.

Murty’s algorithm has proven integral to building approximations to both JPDA and

MHT. For example, in JPDA, the K -best solutions are used to approximate the full joint

assignment probabilities [65]. Then, only the most likely hypotheses can be generated,

propagated, and maintained across future detection sets [10, 22]. The method allows

for what were once worst-case exponentially scaling algorithms to be approximated in

polynomial time.

In particular, MHT can be expressed as a multidimensional assignment problem

(MAP). The resulting optimization problem can then be solved by branch-and-bound

approaches [17, 30].

Presented contributions focus on the data association step of MOT in application to

nuclei tracking in embryonic C. elegans. The next chapter analyzes the association objective

as a forum to discuss dependencies between objects. The second leading contribution

expands the MHT paradigm to model interdependencies in the association objective within

the multi-frame context. The hypergraphical MAP solution is approximated from a leading

MHT solution archetype.
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Chapter 3: Exact Hypergraph Matching for Posture Identification in Embryonic

C. elegans

3.1 Introduction

Point-set matching describes the task of finding an alignment between two sets of

points. The problem appears in computer vision applications such as point-set registration

[45], object recognition [6], and multiple object tracking [87]. Each set of points can be

modeled via a hypergraph. User-defined attributes characterize the vertices and hyperedges,

such as lengths of chords connecting points, or angles between triplets of points, respectively.

Specified attributes give insight to observable relationships between vertices and allow for

structural analyses of hypergraphs. Hypergraph matching is the optimization problem

defined by the search for a correspondence of vertices between a pair of attributed hypergraphs.

The permutation matrix space Π is updated to the assignment matrix space to account for

situations in which hypergraphs are of varying sizes.

X = {X ∈ {0, 1}n1×n2 : ∀j,
n1∑
i=1

xij ≤ 1, ∀i
n2∑

j=1
xij = 1} (3.1)

The space X (Eq 3.1) comprises assignment matrices which each describe a one-to-one

alignment between vertices of the two hypergraphs. Hypergraph matching then concerns
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finding an optimal vertex correspondence between pairs of attributed hypergraphs. The

number of vertices aligned by the most comprehensive hyperedge defines the degree of a

hypergraph. Maximum degree hypergraphs with hyperedges composed of all n1 vertices

yield the most comprehensive point-set matching function possible. The optimization

objective function captures the dissimilarity arising between the matching: (l1, l2, . . . , ln1) 7→

(l′1, l′2, l′3, . . . , l′n1). Then, for a given assignment matrix X ∈ X , the hypergraph matching

objective can be expressed using n1 dissimilarity tensors of dimension 2, 4, . . . , 2d, . . . , 2n1,

each measuring dissimilarity between degree d hyperedges, respectively. Define Z(d) as the

tensor mapping the dissimilarity for the degree d hyperedges. The hypergraph matching

objective is expressed in Eq 3.2.

f (X|Z(1),Z(2), . . . ,Z(n1)) =
n1∑

l1=1

n2∑
l′1=1

Z(1)
l1l′1
xl1l′1

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

Z(2)
l1l′1l2l′2

xl1l′1
xl2l′2

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

n1∑
l3=l2+1

n2∑
l′3=1

Z(3)
l1l′1l2l′2l3l′3

xl1l′1
xl2l′2

xl3l′3
+ ...

+
n1∑

l1=1

n2∑
l′1=1

...
n1∑

ln1=ln1−1+1

n2∑
l′n1=1

Z(n1)
l1l′1...ln1 l′n1

xl1l′1
. . . xln1 l′n1

(3.2)

Hypergraph matching allows for the modeling of intricate point-set matching problems

through high multiplicity assignment objective function formulations. The Z(d) dissimilarity

terms measure degree d hyperedge dissimilarity comprising d simultaneous vertex assignments.

The range in assignment problem objective complexity from d=1 to d=n1 trades off model

capacity for increased computation. The traditional linear assignment problem (d=1) is

solvable in polynomial time [39], but treats points between sets independently. Existing
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graphical methods (d=2) and hypergraphical methods (d>2) rely on approximate searches

and do not generalize to high degree formulations of Eq 3.2. EHGM (EHGM) is able to find

globally optimal solutions to hypergraph matching problems of arbitrary degree, allowing

for the modeling of intricate point-set matching tasks.

3.1.1 Overview of EHGM & Application to C. elegans

EHGM deviates from recent graph matching and hypergraph matching methodology

as an exact method, guaranteeing convergence to a globally optimal solution (Chapter A.1).

Heuristic hypergraph matching methods approximate the assignment matrix using the

dissimilarity tensor [18, 27] whereas EHGM builds upon the seminal branch-and-bound

algorithm [41]. EHGM extends the methodology to branch and prune based upon a given

hypergraphical model. A k-tuple of nodes at branch m are greedily selected while another

step encapsulates the full hypergraphical objective upon selection. These changes enable

flexibility in altering the hypergraph matching objective, particularly in allowing for high

degree hypergraphical modeling.

EHGM was applied to model posture in embryonic Caenorhabditis elegans (C. elegans),

a small, free-living roundworm. The nematode features approximately 550 cells upon

hatching, including a set of twenty seam cells and two associated neuroblasts. The seam

cells and neuroblasts form in lateral pairs along the left and right sides of the worm,

resulting in eleven pairs upon hatching [77]. The neuroblasts appear in the final hours of

development, just prior to hatching. The pairs of cells are named, posterior to anterior:

T, V6, V5, Q (neuroblasts), V4, V3, V2, V1, H2, H1, and H0. Each pair’s left and right
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cell is named accordingly; for example, H1L and H1R comprise the H1 pair. Figure 3.1-A

depicts center points of seam cell nuclei located in an example image volume as imaged in

the eggshell (left) and straightened to reveal the bilateral symmetry in seam cell locations

(right). Figure 3.1-B shows four sequential images of an embryo, five minutes between

images.

Figure 3.1: High spatial resolution, low temporal resolution imaging necessitates
posture identification. A: Manually identified seam cell nuclei from an imaged C. elegans
embryo. The cells form in pairs; they are labelled posterior to anterior: T, V6, ..., H0. The
identification of all seam cells reveals the embryo’s posture. Natural cubic splines through
the left and right-side seam cells estimate the coiled body. The left image depicts identified
nuclei connected to outline the embryonic worm. The fit splines are used to untwist the
worm, generating the remapped straightened points in the diagram on the right. B: Labelled
nuclear coordinates from a sequence of four images. The embryo repositions in the five
minute intervals between images, causing failure of traditional tracking approaches.

We define posture as the identification of all seam cells and neuroblasts, which together

reveal the shape of the coiled embryo. Posture identification allows for traditional frame-to-

frame tracking of imaged cells belonging to various tissues such as the gut, nerve ring, and
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bands of muscle [21]. Images are captured in five minute intervals (Figure 3.1-B) in order

to achieve necessary resolution to track cells of other tissues without disturbing embryo

development. Figure 3.2-A highlights muscle cell nuclei (red dots) with the identified seam

cells to contextualize the embryo’s positioning. The posture is used to remap the muscle

cells such that traditional cell tracking approaches can be applied in the late-stage embryo

(Figure 3.2-B). Figure 3.2-C depicts the cell remapping process [21]. The muscle cells are

remapped according to splines fitted to the posture. The untwisted cell positions are then

tracked frame-to-frame (Figure 3.2-D).

Figure 3.2: Posture identification allows the tracking of other cells during
late-stage embryogenesis. A: Seam cell nuclei coordinates (black) and muscle nuclei
coordinates (red) in a sequence of three sequential volumetric images. The untwisting
process (green arrows) uses the seam cells to remap muscle coordinates to a common frame
of reference. B: The remapped muscle nuclei are tracked frame-to-frame (blue arrows). C: A
higher magnification view from the right coordinate plot of A. The left, right, and midpoint
splines are used to create a change of basis defined by the tangent (black), normal (blue),
and binormal (cyan) vectors. Ellipses are inscribed along the tangent of the midpoint spline,
approximating the skin of the coiled embryo. D: A portion of the left (red) and center (blue)
remapped muscle coordinates. Black lines connect the coordinates, frame-to-frame.
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Current methods for posture identification rely on trained users to manually annotate

the imaged nuclei using a 3D rendering tool [53]. The process takes several minutes per

image volume and must be performed on approximately 100 image volumes per embryo

[21]. Manual annotation strategies motivated us to develop EHGM, as established methods

for point-set matching fail to adequately capture the relationships between seam cells

throughout myriad twists and deformations of the developing embryo. Figure 3.3 depicts

manually identified postures in the first two successive image volumes of Figure 3.1-B.

Manual identification is performed in Medical Imaging, Processing, Analysis and Visualization

(MIPAV), a 3D rendering program used for manual annotation [53]. Posture identification

can be phrased as a MOT problem in which the seam cells are to be tracked despite five

minute intervals between images.

EHGM used hypergraphical models comprising biologically driven geometric features

to more accurately identify posture than established graphical methods. The limited

expressive power of graphical models hindered accurate seam cell identification; graphical

models accurately identified posture in 27% of samples compared to 56% using a hypergraphical

model. User labelling of the posterior-most seam cell nuclei improved the success of

hypergraph matching to correctly identifying all nuclei in 77% of samples. The improved

accuracy in posture identification attributed to high-degree hypergraphical modeling solved

via EHGM paves a path toward automatic posture identification while presenting a general

framework for approaching similarly challenging point-set matching tasks.
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Figure 3.3: Manual posture identification in two successive image volumes of
Figure 3.1-B using MIPAV. The 20 fluorescently imaged seam cell nuclei rendered in
two successive image volumes. Scale bar: 10 µm. A & B: Seam cell nuclei appearing in two
successive image volumes visualized in MIPAV. The five minute interval allows the embryo
to reposition between images, yielding entirely different postures. C & D: Manual seam
cell identification by trained users reveals the posture. The curved lines are cubic splines
as described in Figure 3.2-C.

3.2 Results

3.2.1 Posture Identification Models

Posture was predicted via EHGM according to three models: a graphical model,

denoted Sides, and two hypergraphical models. The two hypergraphical models, Pairs and
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Posture, showcase EHGM as existing algorithms cannot find solutions under such high

degree hypergraphs. Each of the three models incrementally use higher degree terms to

describe posture. Sides follows the form of Eq 2.6 and leverages pairwise assignments

to calculate lengths and widths of portions of the embryo. Pairs uses degrees four and

six hyperedges to better model local regions of the embryo than is possible with graphical

methods which rely on pairwise relationships. Posture further demonstrates the capabilities

of EHGM by including a degree n1 hyperedge to maximize context in evaluating a hypothesized

posture. Geometric features such as pair-to-pair rotation angles and left-right flexion

angles were developed to more accurately measure and compare posture hypotheses. The

calculation of each angle or distance requires identification of multiple seam cells in tandem

to calculate, necessitating the use of hyperedges.

Models in this sense can be viewed as assignment problem objectives of differing

specification and complexity. An assignment objective f : X 7→ R will take as input a

permutation matrix subject to points given in each point-set to yield an objective function

value f(X). The LAP and the QAP have been used extensively to perform point-set

matching in image processing due to the availability of computationally efficient algorithms

yielding satisfactory solutions for simpler tasks.

Consider a model M that takes in a known correct permutation matrix X̄ ∈ � given

a point-set X and outputs cost C̄. Suppose also the globally optimizer X∗ ∈ Π (given the

same point-set input X) outputs the globally optimal cost M(X∗) = C∗. Let X denote a

point-set and X̄ an ordering. One relevant question is how to design M such that for a

given set of pairs {(X1, X̄1), (X2, X̄2), . . . , (XN , X̄N)} one can find:
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M∗ = argmin
M

1
N

N∑
L=1
‖C̄L − C∗L‖2

Figure 3.4 demonstrates four types of models applied to perform posture identification

on the first two sampled images in Figure 3.1-B. Linear models (Figure 3.4-A & Figure 3.4-

B) are ill-equipped to identify posture due to the repositioning of the embryo between

successive images, so linear models are not evaluated on sampled data. The graphical model

Sides (Figure 3.4-C & Figure 3.4-D) associates local seam cells via edges (purple). Edge-

wise features such as lengths and widths vary if the embryo coils tightly, but are otherwise

approximately static frame-to-frame. However, the similarity in these measurements throughout

the embryo yields a model incapable of differentiating portions of the embryo. Hypergraphical

models Pairs (Figure 3.4-E & Figure 3.4-F) and Posture (Figure 3.4-G & Figure 3.4-H) use

aforementioned hyperedges to more strongly characterize embryonic posture.

3.2.2 Posture Identification Accuracy

Annotators curated a dataset of seam cell nuclei center coordinates from 16 imaged

embryos. Each imaged embryo yielded approximately 80 image volumes for a total of

N =1264 labelled seam cell nuclei coordinate sets. Homogeneity in C. elegans embryo

development allowed use of samples spanning multiple embryos to fit models via a leave-

one-out approach (A.1: Model Fitting, A.1: Posture Modeling). EHGM allows for known

correspondences, henceforth referred to as seeds, to be given as input prior to search

initialization. The algorithm was evaluated both in a traditional point-set matching scenario

given no a priori information, and in a series of seeded simulations. Seeded trials assumed
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Figure 3.4: Posture identification applied to the two successive images in
Figure 3.3 according to a series of increasingly intricate models. The embryo
repositions between images. A & B: Linear models (LAP) cannot quantify relationships
between seam cells; posture identification is impossible without context of neighboring cell
identities. C & D: A graphical model (Sides) specifies edges (purple) between pairs of seam
cell nuclei. Edge lengths are relatively static frame-to-frame, but the similarity of edge
lengths throughout the embryo causes the edges to have a weak signal in identifying seam
cells. E & F: The Pairs model uses degrees four (red) and six (blue) hyperedges to model
a greater local context than is possible in a graphical model. G & H: The Posture model
extends the Pairs model to use a degree n1 (black) hyperedge to evaluate all seam cell
assignments jointly.

incrementally more pairs given sequentially from the tail pair, T, to the fourth pair, V4 (or

Q for n1=22 samples). KerGM [96], a leading algorithm for heuristic graph matching, was

applied to posture identification. The algorithm used the same connectivity matrix as Sides,

but processed results frame-to-frame serially, relying on the correct posture identification

at the prior image as input to search.

EHGM is able to store complete assignments encountered during the search as it

compares against the current solution at the final branch. This allowed for an analysis of

the similarity between cost minimizing posture hypotheses and progressively higher cost
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solutions encountered during search. The top x accuracy describes the percentage of all N

samples in which EHGM returned the correct posture in the x lowest cost solutions; i.e.

the top 1 accuracy describes the percentage of samples in which the correct posture was

returned as the cost minimizing posture, and the top 3 accuracy is the percentage of samples

in which the correct assignment was among 3 lowest cost posture hypotheses returned by

the search. Top x accuracies are reported alongside the median runtime and the median

cost ratio. The cost ratio is defined as the ratio of the correct posture’s objective to the

cost minimizing posture’s objective. A cost ratio greater than one implies the objective of

the hypothesized posture is lower than that of the correct posture, suggesting the model

is not aptly characterizing posture as an incorrect posture hypothesis was preferred by the

model.

Table 3.1 shows the percentage of all N samples in which the correct posture (correct

identification of all seam cells) was returned as the minimizer according to KerGM and

each of the models solved via EHGM: Sides, Pairs, and Posture. KerGM identified 27% of

sampled postures correctly, outperforming Sides (10%). Pairs and Posture more effectively

identified posture with 52% and 56% top 1 accuracies, respectively. Both hypergraphical

models also reported a median cost ratio of 1.00, compared to 1.28 of Sides, suggesting

the hypergraphical representations of coiled posture provided enhanced discriminatory

power across samples. The hypergraphical models demonstrated small trade-offs between

accuracy and runtime. The Posture model’s n1 degree hypergraphical features improved

accuracy over Pairs, 56% to 52%, in exchange for longer median runtime, 60 minutes to

43 minutes. Differences between the top 1 and top 3 accuracies reflect the challenge in

posture identification. The optimums under the Pairs and Posture models were often
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similar to those of similar posture hypotheses. Notably, the Posture model returned the

correct posture in the top 3 hypotheses in approximately 67% of samples, an approximate

20% increase in relative accuracy over the top 1 percentage, 56%.

Top 1 (%) Top 2 (%) Top 3 (%) Top 5 (%) R (minutes) CR
KerGM 27 27 27 27 .01
Sides 10 14 15 16 5.97 1.28
Pairs 52 60 63 65 43.22 1.00
Posture 56 65 67 68 60.35 1.00

Table 3.1: Hypergraphical model Posture achieves highest accuracy. Posture
identification accuracies across all N =1264 samples. KerGM is compared to proposed
models. The first columns list the top x accuracy as a percentage of samples. The column
titled R shows the median runtime of each model in minutes. CR reports the median cost
ratio, defined as the ratio of the correct posture cost to the returned posture cost.

Posture identification results were stratified by the presence of the Q neuroblasts; 875

of the 1264 samples contain only the seam cells while the remaining 389 samples are mature

enough to have the Q neuroblasts. Table 3.2 depicts the findings presented in Table 3.1

split by Q neuroblast presence. KerGM and all models solved via EHGM achieved a higher

accuracy on Q samples. Notably, the Posture model’s top 3 accuracy is higher on the Q

samples (82%) than the pre-Q samples (60%). The extra pair of coordinates provided

substantial context, further defining the coiled shape and helping to penalize incorrect

postures.

The large increases from top 1 accuracy to top 5 accuracy for the Pairs and Posture

models prompted a further investigation into the leading hypotheses across samples. A

fourth hypergraphical model, Full, comprising only the degree n1 hyperedge features was

conceptualized as a powerful model to compare a small set of hypotheses. The hypotheses

for each sample were ranked according to the Full model. The final comparison improved
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Top 1 (%) Top 2 (%) Top 3 (%) Top 5 (%) R (minutes) CR
KerGM 25 25 25 25 .01
Sides 7 10 11 12 4.81 1.36
Pairs 44 51 55 57 34.25 1.04
Posture 48 57 60 61 51.12 1.00

Top 1 (%) Top 2 (%) Top 3 (%) Top 5 (%) R (minutes) CR
KerGM 35 35 35 35 .01
Sides 19 25 26 26 9.66 1.16
Pairs 71 80 82 82 56.58 1.00
Posture 72 81 82 83 72.60 1.00

Table 3.2: Hypergraphical models leverage Q neuroblasts to identify posture.
The samples are split according to the absence (top) or presence (bottom) of the Q
neuroblasts, which form in the last two hours of development. There are 875 n1=20 cell
samples and 389 n1=22 Q samples. Reported methods more accurately identify embryonic
posture in the Q samples, suggesting the increased continuity along the body of the embryo
allows for more consistent posture identification.

performance for the simplest model, Sides; the top 1 accuracies improved from 7% to 12%

on the pre-Q data and from 19% to 24% on Q samples. However, the ranking reduced

performance on the hypergraphical models Sides (pre-Q: 44% to 40%, Q: 71% to 58%) and

Posture (pre-Q: 48% to 39%, Q: 72% to 54%).

Seeded experiments specifying nuclear identities provided a priori information starting

with the tail pair, and incrementally identified more pairs in the posterior region. Each

experiment was given five minutes of maximum runtime; a semi-automated solution requiring

more runtime was deemed infeasible. Top 1 and top 3 accuracy percentages are reported

by EHGM models and number of seeded pairs in Table 3.3. Seeding yielded decreasing

marginal improvements to accuracy and runtime. Figure 3.5 depicts top 1 accuracies and

median runtimes across seeded experiments for the Pairs and Posture models split by

Q pair labelling. Particularly, seeding the first two pairs, T and V6, greatly reduces the

median runtime while also netting the largest gains in top 1 accuracy, partially attributable
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to EHGM converging in the given timeframe.

Top 1 (%) Top 3 (%)
None T T-V6 T-V5 T-V4 None T T-V6 T-V5 T-V4

Sides 9 10 22 29 37 13 15 27 35 43
Pairs 34 49 72 79 84 38 54 77 83 87
Posture 25 36 68 79 84 27 39 73 84 87

Table 3.3: Seeding posterior pair identities promotes accurate posture
identification and reduces runtime. Top 1 and top 3 seeded posture identification
accuracies across all samples. All trials had a five-minute maximum runtime. The rows
again correspond to each model. Columns specify which pairs were given as seeds prior
to search. The None columns recreate the original no information task. The subsequent
columns specify which pairs are correctly identified prior to search.

Figure 3.5: Evaluating the Pairs and Posture models as seam cell identities were
seeded. The Pairs and Posture models top 1 accuracies and median runtimes by Q pair
labelling. Posterior pair seeding drastically improved top 1 accuracy and reduced runtime
when applying both models. Q pair samples required more runtime (n1=22 as opposed to
n1=20), but the added context improved posture identification accuracy. The majority of
samples converged within 5 minutes when seeded with the T and V6 pairs of nuclei.

49



3.3 Discussion

We have presented EHGM as a dynamic and effective tool for intricate point-set

matching tasks. The hypergraph matching algorithm provides a method in which to gauge

the efficacy of modeling point correspondences in conservatively-sized problems; problems

featuring larger numbers of points likely contain the context required to match adequately

via lower degree models. For example, postures in samples containing Q nuclei were more

accurately identified across models, but the largest marginal gain in accuracy came from

Sides (d=2) to Pairs (d=4,6). The results suggest that added context throughout the

embryo would further improve posture identification accuracy, reducing the reliance on

higher degree (and thus more computationally expensive) hypergraphical objective function

formulations. EHGM specifically addresses a gap in literature concerning challenging point-

set matching applications in which domain-specific features lead to rigorously testable

models. Seeding allows a wider range of problems to be approached, and mitigates the

computational expense of the algorithm for scenarios featuring larger point-sets.

Posture identification in embryonic C. elegans is a challenging problem benefiting

from high degree hypergraphical modeling. EHGM equipped with biologically inspired

hypergraphical models led to substantial improvement in posture identification. The top

1 accuracy doubled from 27% with a graphical model to 56% via the Posture model

(Table 3.1). The top 3 accuracy rate improved to 67%, highlighting the challenge in

precisely specifying the coiled embryo due to the similarity of competing posture hypotheses.

The presence of Q neuroblasts further contributed to accurate posture identification. The

added context empowered the Posture model to identify the correct posture in 82% of Q
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samples (Table 3.2.

The top x percentage accuracy metric reflects the need to correctly identify all seam

cells in order to recover the underlying posture, but does not distinguish between hypotheses

that are incorrect due to one cell identity swap or a more systemic modeling inadequacy.

A qualitative analysis highlighted a few themes among incorrectly predicted postures. The

foremost errors concern the tail pair cells, TL and TR; spurious identifications occurred

when the tail pair coiled against another the body of the embryo, causing one tail cell

identity to be interchanged with a cell of a nearby body pair. The variance of feature

measurements in the posterior region resulted in similar costs for postures with minor

differences about the posterior region. Further evaluation on posture-wide hypergraphical

model (Full) on top posture hypotheses proved to be ineffective.

Pair seeding allows for the strengths of EHGM to compensate for the most challenging

aspect of posture identification. The posterior region of the embryonic worm is especially

flexible and contributes to the majority of reported errors. Feature engineering stands to

create hypergraphical models more capable of reliable posture identification, particularly

in contextualizing the posterior region. The method and application outline a protocol for

challenging point-set matching tasks.

EHGM enables the modeling and approach of previously intractable point-set matching

tasks. The flexibility of the paradigm in designing models and using data to estimate

parameters in an offline fashion adds further enables applicability. Our presented “template”

matching approach stands in contrast to traditional methods for modeling transformations

in which identified points are assigned to a set of unidentified points arising in a subsequent

frame [27, 95, 97]. EHGM can be applied in the frame-to-frame manner as well; the
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model fitting procedure (Chapter 3.5.3) simply requires using frame-to-frame differences to

estimate parameters of each hyperedge’s distribution.

3.4 Future Work

Automated posture identification is infeasible with current approaches. EHGM with

proposed models did not reliably identify posture. The Posture model’s accuracy increased

11% when considering the top 3 solutions instead of the top solution. The combinatorially

large space (≈1018-1021) being accurately reduced to the top 1 or top 3 is evidence of the

Posture model accurately characterizing the embryo. As noted, many errors comprised

just the tail pair. Moreover, the difference between the optimal value and correct posture’s

costs were often similar (median CR=1). In summary, our proposed model does not perform

adequately despite accurately contextualizing seam cell interdependencies. Theoretically

there could exist a model which does reliably predict posture. Features used Posture were

derived from cues experts used in the manual annotation process. An iterative model fitting

paradigm akin to that of [14] could better tune existing models as well. Further simulations

in the traditional frame-to-frame matching paradigm could also be pursued.

3.5 Methods

3.5.1 EHGM

EHGM extends the branch-and-bound paradigm to exactly solve hypergraph matching.

The algorithm performs the search in the permutation space X subject to a given branch

size k which specifies the number of vertices assigned at each branch. A size n1 hypergraph
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will require M := n1
k

branch steps, where branch m concerns the assignment of vertices

((m−1)k+1, (m−1)k+2, . . . ,mk); vertices 1, 2, . . . ,mk have been assigned upon completion

of the mth branch. The set P contains all possible permutations of the indices of the

unordered point-set, |P|= n2!
(n2−k)! . P is incrementally subset into queues Qm ⊆ P at

branches m = 1, 2, . . . ,M at each branching. The queue Qm is subset according to both a

pruning rule which eliminates permutations leading to a suboptimal solution as well as the

one-to-one constraints of X . The search converges to a global optimum upon the implicit

enumeration of Q1 = P.

The objective function f is further stratified according to the branch size k. Lower

degree (d ≤ 2k) hyperedge dissimilarity tensors are computed prior to search. Branches

comprising k-tuples of vertices are partially assigned in a greedy manner according these

lower degree hyperedge dissimilarities via the selection rule H. Later branches accrue higher

degree (d > 2k) hyperedge dissimilarities which are calculated at time of branching; the

intent of the method is to rely on lower degree terms to steer the search towards an optimum

in effort to minimize the number of branches explored. The aggregation rule I accrues

higher degree hyperedge dissimilarity terms upon branching, further guiding the pruning

step and ensuring the complete specification of the objective f .

The branching and selection rules are designed to reduce computation performed

throughout the search. A partial assignment at branchm: Km = (l′(m−1)k+1, l
′
(m−1)k+2, . . . , l

′
mk) ∈

Qm is selected via precomputed lower degree hyperedge dissimilarity tensors Z(1), . . . ,Z(2k).

A larger branch size k results in a selection rule with larger scope of the optimization

landscape, better equipped to place optimal branches earlier in each queue Qm at time of

branching. However, computing the lower degree dissimilarity tensors prior to search can
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be prohibitively expensive for larger point-sets.

3.5.2 Selection & Aggregation

The first branch permutation K1 = (l′1, l′2, . . . , l′k) ∈ Q1 = P assigns vertices (l1, l2, . . . , lk)

to points (l′1, l′2, . . . , l′k) according to the initial branch selection ruleH1. Eq 3.3 defines a cost

given dissimilarity tensors Z(1),Z(2), . . .Z(k) according to a permutation K1. The k pairs of

constraints given by the branch m and permutation of point indices Km: {(l1, l′1), . . . , (lk, l′k)}

enables a simplification in the objective formulation.

H1(K1|Z(1),Z(2), ...,Z(k)) :=
k∑

i1=1
Z(1)

li1 l′i1
+

k∑
i1=1

k∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+ ...+

k∑
i1=1

k∑
i2=i1+1

. . .
k∑

ik=ik−1+1
Z(k)

l1l′i1
li2 l′i2

...lik
l′ik

(3.3)

Subsequent branches m = 2, 3, . . .M then use the general selection rule Hm to order

the permutations of the mth branch: Km = (l′(m−1)k+1, l
′
(m−1)k+2, . . . l

′
mk) ∈ Qm. Branch

Km incurs a selection rule cost Hm according to Eq 3.4 comprising lower degree hyperedge

dissimilarities for assignments both within branch m and the assignments between branches

1, 2, . . . ,m−1 and branchm. The partial assignment constraints Km allow further simplification

of notation; the reversed order of summation indices satisfies the criteria that only hyperedge

dissimilarities pertaining to branch m assignments are considered via Hm.
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Hm(Km|K1, ...,Km−1,Z(1), ...,Z(2k)) :=
mk∑

i1=(m−1)k+1
Z(1)

li1 l′i1
+

mk∑
i2=(m−1)k+1

i2−1∑
i1=1

Z(2)
li1 l′i1

li2 l′i2

+
mk∑

i3=(m−1)k+1

i3−1∑
i2=1

i2−1∑
i1=1

Z(3)
li1 l′i1

li2 l′i2
li3 l′i3

+ ...+
mk∑

i2k=(m−1)k+1

i2k−1∑
i2k−1=1

. . .
i2−1∑
i1=1

Z(2k)
li1 l′i1

...li2k
l′i2k

(3.4)

The greedy selection rule orders queues Qm, but does not account for higher degree

(2k < d ≤ n1) hyperedge dissimilarities. Precomputing higher degree dissimilarity tensors

can be both computationally expensive, and inefficient as ideally only a small percentage of

combinations are queried throughout the search. The aggregation rule Im, m = 3, 4, . . . ,M

measures the dissimilarity attributable to higher degree (2k < d ≤ mk) hyperedges

accessible due to branch m partial assignments. The aggregation rule updates the cost of

branch Km assignments, further informing the pruning step to subset the next queue Qm+1.

The greedy selection rule Hm in tandem with the aggregation rule Im aim to minimize the

total computation performed in finding an optimum. The definition Im follows from the

general selection rule Hm, but is applied to the higher degree hyperedge dissimilarities.

The aggregation rule Im (Eq 3.5) can be expressed as the degree d dissimilarities calculable

upon assignments of branch m assignments for degrees 2k < d ≤ mk.

Im(Km|K1,K2, . . . ,Km−1,Z(2k+1), . . . ,Z(mk)) :=
mk∑

d=2k+1

mk∑
id=(m−1)k+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id

(3.5)
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The mth branch allows for hyperedge dissimilarities up to degree mk concerning the

first mk assignments. TheM th branch yields a complete assignment, allowing the evaluation

of maximum degree n1 hyperedge dissimilarities. The partitioning and further regrouping

of each Hm and Im as defined fully accounts for the objective f while allowing efficient

computation during the search (A.1:Hypergraphical Objective Decomposition, A.1:Convergence

of EHGM ).

3.5.3 Model Fitting

Hypergraphical models comprising handcrafted features are used to contextualize

relationships among a set of points. Features can be engineered and analyzed in context

of point-set matching just as in traditional supervised learning tasks. Annotated data can

be used to fit these hypergraphical models via measuring average feature measurements

as well as the variation of a feature and covariances between features with the goal of

further describing relationships between points. The hypergraphical model then describes

relationships between points weighted by observation of a training set.

Features can be measured and subsequent matching performed in two ways. The first

way is most commonly seen in point-set matching tasks. Here, an established hypergraph

is observed at time t-1 ; points with their identities and a hypergraphical representation

with features are available. A second point-set arises at time t with the goal of finding an

optimal alignment of such points to maintain similarity to the reference hypergraph at time

t-1. In this case, the established feature means are defined by the measurements of each

feature in the reference hypergraph. Covariances are calculated from the frame-to-frame
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differences in feature measurements across the training set. These statistics contextualize

the difference between an assignment of the new point-set to the reference.

The second method measures feature means directly to aggregate feature measurements

as opposed to frame-to-frame differences. This template method allows for observing

features which may vary highly frame-to-frame, but follow a Gaussian distribution when

viewed across samples. The distinction comes into practice when measuring feature means

and covariances.

Features are expressed as attributes over hyperedge multiplicities d = 1, 2, . . . , n1.

Assume there are Md degree d hyperedges each with mMd
features. The hyperedges

a = 1, 2, . . . ,Md and hyperedge features g(d)
a,s , s = 1, . . . ,mMd

are given as input. Each

feature g(d)
a,s assumes a Gaussian distribution, features bundled together are modeled as

a multivariate Gaussian distribution. Measurements from the data are used to obtain

estimates of the parameters of the Gaussian distributions: µ and Σ. The reference

hypergraph (either the previous frame hypergraph or template hypergraph) and hypergraph

built during search are compared using feature measurements weighted by observed covariation

in training data. The measurements calculated given assignments in the second point-set

add up to a total dissimilarity cost.

The dissimilarity costs penalize the differences between a hypothesized assignment’s

feature measurements and the reference hypergraph feature measurements. The dissimilarity

tensor Z(d) measures the degree d hyperedge dissimilarities arising from a permutation

given the Md hyperedges each with the mMd
features. Covariances between hyperedge

features can be estimated within a hyperedge and between hyperedges. For example,

consider hyperedges a (indexed by a) with na=2 features and a’ (indexed by a’) with na′=4

57



features, where hyperedges are of degree d. Hyperedge a feature covariance (between the

two features) can be estimated as well as the covariances between hyperedge a’ features (6

covariances). Additionally, the covariances between hyperedge a and hyperedge a’ features

(28 covariances) can be calculated. This may be useful for adjacent hyperedges. However, if

two degree d hyperedge feature covariances are estimated, each with d distinct assignments,

then the resulting covariance is of degree 2d as 2d simultaneous assignments are required

to compute the dissimilarity.

For example, consider the ath degree d hyperedge and itsma features: g(d)
a = [g(d)

a,1, g
(d)
a,2, . . . , g

(d)
a,ma

].

The expected values: ḡ(d)
a are calculated in aggregate from training data:

ḡ(d)
a,s = 1

N

N∑
L=1

g(d)
a,s(XL,XL) (3.6)

where XL and XL are the correct permutation and observed point-set, respectively,

for sample L = 1, 2, . . . , N . The estimated covariance matrix per the hyperedge a of the

degree d hyperedges across ma features is expressed:

σ̂(d)
q,r = 1

N

N∑
L=1

(g(d)
a,q(XL,XL)− ḡ(d)

a,q)(g(d)
a,r(XL,XL)− ḡ(d)

a,r) (3.7)

Σ̂
(d)
a =



σ̂
(d)
1,1 σ̂

(d)
1,2 ... σ̂

(d)
1,ma

σ̂
(d)
2,1 σ̂

(d)
2,2 ... σ̂

(d)
2,ma

... ... ... ...

σ̂
(d)
ma,1 σ̂

(d)
ma,2 ... σ̂(d)

ma,ma


(3.8)
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The dissimilarity tensors Z(d) ∈ R
n1 × n2, . . . , n1 × n2︸ ︷︷ ︸

2d use both sets of estimates to

relay costs. The Mahalanobis distance is used to describe the scaled distance between

the observed attributed hyperedge to an estimated feature description. A full assignment:

(l1, . . . , ln1) 7→ (l′1, . . . , l′n1) invokes costs of each hyperedge degree d = 1, 2, . . . , n1. Consider

just the degree d hyperedge dissimilarities. The Md hyperedges a = 1, 2, . . . ,Md each with

ma features comprise the degree d hyperedge dissimilarities.

Then, the degree d hyperedge dissimilarity is expressed as a summation over hyperedge

dissimilarities a = 1, 2, . . .Md, each with its s = 1, 2, . . . ,ma features. Each degree d

hyperedge a is defined by a tuple of d vertices: a = (a1, a2, . . . , ad). The accompanying

assignment a′ = (a′1, a′2, . . . , a′d) define the correspondence for referencing the cost tensor

Z(d):

Z(d)
la1 la′1

la2 la′2
...lad

la′
d

= (g(d)
a − ḡ(d)

a )′(Σ̂(d)
a )−1(g(d)

a − ḡ(d)
a ) (3.9)

Finally, the full degree d dissimilarity score can be found by considering each of the

a = 1, 2, . . . ,Md hyperedges and their dissimilarities accordingly. The Z(d) subscripts will

depend on the hyperedge a and accompanying match a’. Denote a = (a1, a2, . . . , ad) and

a′ = (a′1, a′2, . . . , a′d) each hyperedge a’s assignment from the full assignment (l1, . . . , ln1) 7→

(l′1, . . . , l′n1). The complete degree d hypergraphical cost arising from the full assignment is

the summation of each hyperedge a’s matching cost:

n1∑
l1=1

n2∑
l′1=1

...
n1∑

ld=ld−1+1

n2∑
l′
d
=1

Z(d)
l1l′1...ldl′

d
=

∑
a

Z(d)
la1 la′1

la2 la′2
...lad

la′
d

. (3.10)
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The process is applied to all d = 1, 2, . . . , n1 hyperedges to to build all cost dissimilarity

tensors Z(d). EHGM uses the tensors differently depending on the degree d with respect

to the branching step k.

3.5.3.1 Training

If the matching is being performed using the template method, the sample means

ḡ(d)
a are calculated during the model fitting step as they arise from training data. On

the other hand, if matching is performed frame-to-frame, the previous frame hyperedge

feature measurements are used in place of ḡ(d)
a , as the hypothesized feature measurements

at evaluation are compared to the previous frame measurements.

At training, features are calculated across all N samples for the entire hypergraphical

model. Mean vectors and inverse covariance matrices Σ̂
(d)
a for all a and d are calculated at

the training step for all dissimilarity tensors are calculated for each degree d = 1, 2, . . . , n1

hyperedge’s feature set. The dissimilarity tensors Z(d) are a function of a hypothesized

matching and the sample estimates, and are the tensors thus only formed when evaluating

a match.

3.5.3.2 Evaluation

At evaluation, the lower degree d ≤ 2k dissimilarity tensors are entirely computed

prior to search. That is, each potential degree d matching in the new point set is compared

to the reference hypergraph measurements. To detail further, each feature measurement

per point-set and possible assignment is calculated and a the dissimilarity cost formed
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and stored in the tensor Z(d). Each potential assignment’s hyperedge measurement g(d)
a is

calculated to construct the Mahalanobis distance cost. Lower degree (d ≤ 2k) hyperedge

dissimilarities are referenced in the precomputed Z(d) tensors upon branching, whereas

higher degree dissimilarities d > 2k are calculated and stored on-the-fly on a per index

basis.

The k-tuple of vertices assigned at branching and the accompanying second point-

set serve as the input to calculate hyperedge features. The calculated degree d features of

hyperedge a g(d)
a describe that particular hyperedge dissimilarity: (g(d)

a −ḡ(d)
a )′(Σ̂(d)

a )−1(g(d)
a −

ḡ(d)
a ). The relevant indices of Z(d) are calculated and stored when encountered during the

search.

Each branching assigns k vertices. The hyperedge dissimilarities calculable upon

the branching of degree d ≤ 2k are referenced while the higher degree d > 2k terms are

calculated as described.

3.5.4 Posture Identification in Embryonic C. elegans

Caenorhabditis elegans (C. elegans) is a small, free-living nematode found across the

world. The worm is often studied as a model of nervous system development due to its

relative simplicity [63, 89]. The adult worm features only 302 neurons, the morphology

and synaptic patterning of which have been determined via electron microscopy [89]. The

complete embryonic cell lineage has also been determined [77]; methods and technology

have been developed to allow study of cell position and tissue development in the embryo

[3, 11, 15, 52, 71, 83]. Systems-level studies of these processes may be able to discover
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larger-scale principles underlying developmental events.

The embryo features a set of twenty seam cells and two associated neuroblasts. The

seam cells and neuroblasts together describe anatomical structure in the coiled embryo,

acting as a type of “skeleton” outlining its body. Identification of the seam cells and

neuroblasts defines the embryo’s posture. Fluorescent proteins are used to label cell nuclei,

including the seam cell nuclei so that they may be visualized during imaging, e.g. with light

sheet microscopy [90]. Volumetric images are captured at five minute intervals in order

to capture subcellular resolution without damaging the worm’s development [21]. Seam

cell nuclei appear in the fluorescent images as homogeneous spheroids. Their positions

relative to other nuclei and other salient cues present in the image volumes comprise the

information that trained users employ to manually identify seam cells. Figure 3.6 shows the

two rendered fluorescent images from Figure 3.1-A in Medical Image Processing, Analysis

and Visualization (MIPAV), a 3D rendering tool [53]. The interface is used to annotate

both seam cell nuclei and track remapped nuclei, as in Figure 3.3 [21].

We cast posture identification as hypergraph matching and use EHGM to solve the

resulting optimization problem. The proposed models: Sides, Pairs, and Posture trade off

modeling capacity for increased computation to identify optimal solutions. Sides expresses

posture identification as graph matching; edge-wise (degree d=2) features take the form of

standardized chord lengths between nuclei laterally and sequentially along each side. The

first hypergraphical model, Pairs, employs a greater local context than Sides using degrees

four and six hyperedges to describe relationships between seam cells. Hyperedges formed

by two or three sequential pairs (d=4,6) better detail local regions throughout the embryo

than is capable of a graphical model. Figure 3.7-A presents the hyperedge connectivity
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among nodes in the Pairs model [81]. The Posture model extends the Pairs model by

leveraging complete posture (d=n1) features in effort to further discriminate between

posture hypotheses that appear similar in sequential regions of the embryo. Geometric

features help contextualize the coiled posture. Figure 3.8 illustrates three of the features

used in the Pairs and Posture models. The angle Θ measures the angle between three

successive pair midpoints. The angles Θ decrease throughout development as the worm

elongates. Pair-to-pair twist angles ϕ and τ penalize posture hypotheses in which posterior

to anterior transitions are jagged and unnatural in appearance. See A.1:Posture Modeling

for further details and specification of model features.

The traditional point-set matching task requires a labelled point-set and a second

unidentified point-set. Higher order features such as bend and twist angles may vary largely

frame-to-frame depending on the posture at moment of imaging. However, elongation

throughout late-stage development causes macroscopic trends in these geometric features.

We estimate a template posture as a composite of feature measurements from a corpus of

manually annotated postures. The templates are time dependent to reflect the elongation

from the first point of imaging throughout development until hatching. See A.1:Model

Fitting for details on template estimation.

Together, the fitted models are used with EHGM to identify posture in imaged C.

elegans embryos. The branch size k=2 is set for all models, i.e. a lateral pair of seam

cell identities are assigned at each branch starting with the tail pair cells TL and TR.

The successive pair cells, V6L and V6R, are assigned given the established cells and

hypergraphical relationships accessible with the hypothesized identities. Figure 3.9 depicts

EHGM applied to the sample image depicted in Figure 3.1-A. The initial pair (TL and TR)
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is selected, instantiating a search tree (Figure 3.9-A). Successive seam cell identities are

partially assigned according to the given hypergraphical model in a pair-wise fashion. Each

branch greedily queues hypothesized point-pair assignments conditioned on the previous

branch assignments (black arrows within a branch). The next leading V6 pair (Figure 3.9-

E) is chosen upon exhaustion of the leading hypothesized V6 pair (Figure 3.9-B). EHGM

continues the recursion to implicitly identify a globally optimal posture under the given

hypergraphical model; each possible initial pair will follow this illustrated process subject to

pruning of the minimizing posture accessed via the hypothesized tail pair in Figure 3.9-A.

3.5.5 EHGM Posture Modeling

Embryonic C. elegans posture modeling used the aforementioned template hypergraph

for quantifying hypothesized seam cell identities throughout the search process. The

developing embryo elongates and as a result becomes more coiled due to the constraining

eggshell. As such, the template hypergraphs are updated according to binned time intervals.

Parameters are estimated from data according to the point in development between first

image and hatch.

Each image is captured at time t with n1 = 20 located nuclei centroids. The

coordinates can be stored as X ∈ Rn×3 which Xi = [xi, yi, zi] representing the ith centroid

in R3. The seam cells are ordered posterior to anterior: TL, TR, . . . , H0L, H0R. Then let

1, 3, 5, . . . 19 be in the indices of the left side, and 2, 4, 6, . . . 20 be the indices of the right

side. The seam cells are paired (1, 2) for the tail pair, then (2, 3), (4, 5), (6, 7), . . . (19, 20) for

the body pairs. Let L = (l1, l2, . . . , l10) denote the left side nuclei locations, and similarly
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R the right side nuclei locations.

The sampled worm embryos develop at similar rates. However, the occurrence of the

first twitch, a point in development that triggers rapid physical changes, varies slightly

embryo-to-embryo. As a result, we apply a time normalization in effort to compare feature

measurements from images of the different specimens. Each embryo’s time to first twitch is

measured sw, as well as hatch time hw for sample embryo w = 1, 2, . . . 16. The time points

for each sample are indexed k = 1, 2, . . . nw. Each volume’s imaging time twk is normalized

to the [0, 1] range via Eq 3.11. Each normalized time point zwk is scaled such that zwk = 0

represents first twitch, and zwk = 1 hatching.

zwk = twk − sw

hw − sw

(3.11)

Features used in each of the three models: Sides, Pairs, and Posture are described

with accompanying plots of their distributions throughout both development and within

the embryo. All plots will feature the normalized time of observation zwk on the horizontal

axis. The vertical axis unit will vary between angular measurements, distances (in µm),

and ratios of each which have no unit. Plots with multiple subplots in will measure features

calculated at using segments of the embryo posterior to anterior. The left-most plot will

depict calculations using the tail pair while the right-most will depict the feature ending

with the H0 pair at the anterior of the embryo.
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3.5.5.1 Sides

The graphical model uses scaled distances between pairs of nuclei. The first feature

to analyze is the distance between paired cell nuclei (A.1 Fig 3.10-A):

PDi = ‖Li −Ri‖2 (3.12)

The distance between the left and right seam cell nuclei within a pair can be interpreted

as the width of the embryo measured at the sampled seam cell locations. The first (left-

most) subplot of A.1 Fig 3.10-A illustrates distances in microns between nuclei centroids of

the tail pair for each observation. The tail pair distance is used for the initial pair selection

rule H1 across all models. The second set of distances form along the left and right sides

of the worm (A.1 Fig 3.10-B). The lengths of chords between successive nuclei on each side

are calculated: CL = ‖Li+1−Li‖2 and CR = ‖Ri+1−Ri‖2. Similar to the pair distances,

side length observations are highly variant.

The edge set: {(TL, TR), (TL, V 6L), (TR, V 6R), . . . , (HOL,H0R)} is expressed visually

in Fig 3.11. The only features are the lengths between pairs of nuclear coordinates laterally

and sequentially; i.e. there are 10 lateral edges and 18 sequential edges (9 on each side)

yieldingM2=28 edges in total. The lateral pair edges: {(TL, TR), (V 6L, V 6R), (V 5L, V 5R), . . . , (H0L,H0R)}

are indexed a = 1, 4, 7, . . . , 25, 28. Sequential edges on the left are indexed a = 2, 5, 8, . . . , 23, 26

and sequential edges on the right are indexed a = 3, 6, . . . , 24, 27. Each edge has m1 =

m2 = . . .m28=1 feature.
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3.5.5.2 Pairs

The Pairs model uses hyperedges connecting two or three pairs of nuclei (four or six

nuclei). The first four features measure pair-to-pair variation, while the latter two features

use triplets of pairs to measure angles formed by the midpoints of the three pairs. The

first pair-to-pair feature extends upon the use of pair distances to better describe the coiled

worm. The ratio of sequential pair distances models the variation in width throughout the

assigned nuclei (Fig 3.12-A):

PDRi = PDi

PDi+1
(3.13)

Each feature’s estimated mean is slightly greater than 1, indicating that, on average,

the worm is widening from tail to head. Another easily interpreted distance is the length

of the chords connecting sequential pair midpoints. This is a more robust measure of worm

length as side lengths vary more based upon the worm’s folding (A.1 Fig 3.12-B):

MDi = ‖Mi+1 −Mi‖2 (3.14)

The length of the chords connecting sequential pair midpoints is a more robust

measure of worm length as side lengths vary more based upon the worm’s folding. The

cosine similarity is used to assess the degree to which sequential sides are pointing in the

same direction (A.1 Fig 3.12-C):

φi = (Ri+1 −Ri) · (Li+1 − Li)
‖Ri+1 −Ri‖2‖Li+1 − Li‖2

∈ [−1, 1] (3.15)
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The final two pair-to-pair Pairs features attempt to model two different types of twist

in the posture. The lateral and axial twists measures angles of rotation from lateral and

posterior views, respectively (A.1 Fig 3.12-D).

b1 = Li+1 − Li

‖Li+1 − Li‖2
(3.16)

b2 = Li −Ri

‖Li −Ri‖2
(3.17)

b3 = Ri −Ri+1

‖Ri −Ri+1‖2
(3.18)

b4 = Ri+1 − Li+1

‖Ri+1 − Li+1‖2
(3.19)

n1 = b1 × b2 (3.20)

n2 = b2 × b3 (3.21)

n3 = b3 × b4 (3.22)

c1 =< n1 × n2,b2 > (3.23)

c2 =< n1,n2 > (3.24)

ψi = 1
π
atan2(< n1 × n2,b2 >,< n1,n2 >)) (3.25)

(3.26)

Axial twists present between a sequence of two pairs calculates the angle obtained by

projecting the chord linking pairs onto each other (A.1 Fig 3.12-E):
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b1 = Li − Li+1

‖Li − Li+1‖2
(3.27)

b2 = Ri − Li

‖Ri − Li‖2
(3.28)

b3 = Ri+1 −Ri

‖Ri+1 −Ri‖2
(3.29)

b4 = Li+1 −Ri+1

‖Li+1 −Ri+1‖2
(3.30)

n1 = b1 × b2 (3.31)

n2 = b2 × b3 (3.32)

n3 = b3 × b4 (3.33)

c1 =< n2 × n3,b3 > (3.34)

c2 =< n2,n3 > (3.35)

τi = 1
π
atan2(< n2 × n3,b3 >,< n2,n3 >)) (3.36)

(3.37)

Angles along sides of the worm formed by triples of sequential nuclei approximate

bend in the worm along each side. These bend angles are highly variant, especially frame-

to-frame, in the same manner as side lengths in Sides (A.1 Fig 3.10-B). Angles formed by

pair midpoints exacerbate the computational burden as six nuclei are required, compare

to three in a typical angle calculation, but the midpoint based angles are less variant than

angles of each side (A.1 Fig 3.12-F):
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Θi = 180
π

arccos < Mi+1 −Mi,Mi+2 −Mi+1 >

‖Mi+1 −Mi‖2‖Mi+2 −Mi+1‖2
(3.38)

Each angle Θ ∈ [0, 180] where 0 would denote the worm perfectly folded upon itself,

and 180 would define a flat worm. A second set of angles aims to approximate the posterior

to anterior bend in the worm. The angles ζi are defines as the angles formed by fitted planes

intersecting between pair midpoints (A.1 Fig 3.12-G):

ζi = 180
π

< (Ri+1 − Li+1)× (Mi+1 −Mi), ((Ri+1 − Li+1)× (Mi+1 −Mi+1)) >
‖(Ri+1 − Li+1)× (Mi+1 −Mi)‖2‖(Ri+1 − Li+1)× (Mi+1 −Mi+1)‖2

(3.39)

Fig 3.7-A depicts the Pairs hyperedge set:

{(TL, TR), (TL, TR, V 6L, V 6R), . . . , (H1L,H1R,H0L,H0R)}.

An initial degree d=2 edge ({(TL, TR)}, M1=1) accompanies degrees d=4 and d=6 hyperedges

built sequentially throughout the embryo. There are M4=9 degree 4 hyperedges:

{(TL, TR, V 6L, V 6R), (V 6L, V 6R, V 5L, V 5R), . . . , (H1L,H1R,H0L,H0R)}

and M6=8 degree 6 hyperedges:

{(TL, TR, V 6L, V 6R, V 5L, V 5R), . . . , (H2L,H2R,H1L,H1R,H0L,H0R)}.
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The degree two feature g
(2)
1 = PD (m1=1) is used for the initial branch selection rule.

Then, g(4)
a = [PDR,MD, φ, ψ, τ ] (m1 = m2 = · · · = m9=5 for d=4), a = 1, 2, . . . , 9 are

calculated for degree d=4 hyperedge traversing the embryo, posterior to anterior. Finally,

the g(6)
a = [θ, ζ] (m1 = m2 = · · · = m8=2 for d=6), a = 1, 2, . . . , 8 are calculated for

degree d=6 hyperedges. Each degree 4 hyperedge uses the same features while each degree

6 hyperedge uses the same features.

3.5.5.3 Posture

The Posture model is comprised of all Pairs features as well as the features defined by

the summations of each local feature measurement throughout the hypothesized posture.

Full posture features give insight into the changes in the embryo’s shape throughout late-

stage embryogenesis (A.1 Fig 3.13). Worm length follows an approximately logarithmic

pattern.Total curvature follows a negative exponential pattern. Earlier on the worm is

fatter and cannot bend as much. The worm elongates during development, allowing for

sharper bends.

Fig 3.14 depicts the Pairs hyperedge set with the full degree n1-20 hyperedge:

{(TL, TR, V 6L, V 6R, V 5L, V 5R, . . . , H2L,H2R,H1L,H1R,H0L,H0R)}

. The Pairs edge and hyperedge set is duplicated with an additional degree n1 hyperedge:

(TL, TR, . . . , H0L,H0R). The degree n1=20 hyperedge (M20=1) features are summations

of the Pairs features. The degree n1=20 hyperedge (M20=1) has m1=7 features, the

summations of the degrees 4 and 6 features of Pairs.
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Figure 3.6: Rendered image volumes in the MIPAV GUI. The imaged twisted embryo
(left) and imaged straightened embryo (right) rendered in Medical Image Processing,
Analysis and Visualization (MIPAV) [53]. The fluorescent images are those depicted in
Figure 3.1-A. Trained users navigate the MIPAV GUI to identify seam cells based upon
relative positioning and other salient features such as specks of fluorescence on the skin.
Correct identification of all imaged nuclei reveals the coiled embryonic posture. Green
(left), red (center), and purple (right) splines yield an approximation of the coiled embryo’s
posture. Yellow lines connect seam cell nuclei laterally. The splines are used with the image
volume to sweep planes orthogonal to the center spline, yielding the straightened embryo
image.
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Figure 3.7: The Pairs hypergraphical model uses expansive local contexts about
each portion of the embryo. A: The Pairs hyperedges connect local seam cell nuclei in
sets of four and six. B: Degree four hyperedges connect sequential pairs of seam cells while
degree six hyperedges connect sequential triplets of pairs. The posterior-most degree four
hyperedge and a central degree six hyperedge are bolded.
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Figure 3.8: Hypergraphical geometric features contextualize seam cell
assignments. Anatomically inspired geometric features describe bend and twist of a
posture assignment. A: Three pairs of sequential nuclei: red, green, blue. Rectangles
represent pair midpoints. The angle Θ in red is used as a degree six feature given six point
to nuclei assignments. B, C: Degree four hypergraphical features measuring twist angles ϕ
and τ . These angles measure posterior to anterior twist pair-to-pair and left-right twist,
respectively.
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Figure 3.9: EHGM applied to the sample image depicted in Figure 3.1-A. A:
Two points are selected at the initial branch for TL and TR, respectively. Candidates
for the successive pair, V6L and V6R, are queued based on hypergraphical relationships
between the established cell identities TL and TR and each hypothesized V6 pair (lower
costs are green to higher costs in red). B: The leading hypothesis at branch m=2 given the
initial branch pair is chosen. The recursion continues to queue V5 pair choices at branch
m=3. Black arrows within branch m specify the ordering of the branch given established
cell assignments. Each branch creates a new subproblem of completing the posture given
partially assigned identities. C: The tree continuing from the V5 pair hypothesis is fully
explored according to the established recursion. D: The next leading V5 hypothesis is
initiated upon exhaustion of the subtree formed at panel C. E: Implicit enumeration of
the subtree formed at panel B causes the search to progress to the second leading V6
hypothesis.
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Figure 3.10: Sides model features. A) Distances between nuclei of lateral pairs. Notably,
the tail pair distance (left-most panel) is constant throughout imaging. The tail pair
distance informs the initial pair selection rule H1. B) Chord lengths along left and right
sides of the posture. Both quadratic features show high variance.
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Figure 3.11: Sides model edge set. Edge connect pairs of cells laterally and sequentially
along each side.
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Figure 3.12: Pairs model features. A) Ratios of pair distances (Eq 3.13). B) Distance
between successive pair midpoints (Eq 3.14). C) Cosine similarities between successive left
and right sides (Eq 3.15). D) Lateral axial twist angles (Eq 3.16). E) Axial twist angles
(Eq 3.27). F) Midpoint bend angles (Eq 3.38). G) Planar intersection angles (Eq 3.39).
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Figure 3.13: Posture model features include all Pairs features and posture-wide
versions of Pairs features. A) Summed ratios of pair distances (Eq 3.13). B) Summed
distances between successive pair midpoints (Eq 3.14). C) Summed cosine similarities
between successive left and right sides (Eq 3.15). D) Summed lateral axial twist angles
(Eq 3.16). E) Summed axial twist angles (Eq 3.27). F) Summed midpoint bend angles
(Eq 3.38). G) Summed planar intersection angles (Eq 3.39).
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Figure 3.14: Posture model hyperedges. Posture hyperedges include all Pairs
hyperedges and posture-wide hyperedge.
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Chapter 2: A Semi-automatic Cell Tracking Process Towards Completing

the 4D Atlas of C. elegans Development

2.1 Introduction

The 4D atlas has been completed up to twitching as the embryo is relatively still prior

to the development of muscle cells [77]. Posture identification serves as an intermediate

step towards cell tracking in late-stage development due to the muscular twitching [21].

The post-twitch embryo remains a challenge to established cell tracking methodology [71].

The progression of individual cells to tissues to phenotypic functions across systems can be

observed with completion of the full developmental atlas [21].

Current approaches to cell tracking in the post-twitch embryo require the identification

of seam cells to approximate the coiled posture (Chs. 1.2, 3.5.4). In brief, the seam cells and

neuroblasts together describe anatomical structure in the coiled embryo, acting as a type

of “skeleton” outlining its body. Untwisting the worm describes the computational process

of using the identified seam cell nuclei coordinates to remap coordinates of other imaged

cells to a straightened coordinate system [21]. Subsets of cells can be imaged, detected,

remapped, then tracked. Figure 3.2-C illustrates the untwisting process on a magnified

portion of the right coordinate set in Figure 3.2-A. The remapping uses the left, right, and
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midpoint splines to establish a change of basis to a straightened coordinate space defined

by the tangent (black), normal (blue), and binormal (cyan) vectors. Nuclei encountered

are remapped according to the position along the spline and location within the closest

inscribed ellipse. Black lines connect cell nuclei in the left frame (red) to their locations

in the middle frame (blue); muscle cell names arise from the four bands (A-D), anterior to

posterior (Figure 3.2-D).

The presented strategy is still dependent on trained users to manually identify and

track nuclei in an image rendering GUI [21, 53]. However, the resulting “untwisted” images

yield a feasible multiple object tracking (MOT) scenario. The movement of cell nucleus i

from frame t-1 to t can be approximately decomposed:

‖x(t)
i − x(t−1)

i ‖2= ∆D(t)
i ≈ ∆ID

(t)
i + ∆OD

(t)
i (2.1)

where ∆ID
(t)
i measures movement of nucleus i inside the embryo and ∆OD

(t)
i measures

nuclear movement attributed to the embryo repositioning between images. The untwisting

process mitigates ∆OD
(t)
i , movement attributed to the embryo moving. The remaining term

∆ID
(t)
i can be modeled with MOT methods. However, the untwisting process is imperfect;

the seam cells represent an approximation of the coiled embryo. Users in the rendering

GUI add focal points to the spline fitting to more accurately pinpoint nuclei locations in

the untwisted image. The manual effort is mitigated with a proposed MOT method which

is integrated to the GUI.
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2.2 Methods

Frame-to-frame displacement of cell i at time t: ∆D(t)
i is unpredictable due to the

embryo repositioning between five minute images. The seam cells are used to estimate

complete cubic splines through the left and right sides of the embryo [21]. The remapped

coordinates (Figure 3.2) mitigate the displacement attributed to embryo movement ∆OD
(t)
i ,

leaving only the inter-worm cell movement ∆ID
(t)
i . This movement can be assumed to

be Brownian between frames, allowing for the application of MOT strategies to track

“straightened” nuclei. Sample data of the 85 muscle nuclei (Figure 3.2-B) are used to

evaluate the efficacy of automated tracking approaches.

2.2.1 Nuclei Detection

Detect-and-track MOT paradigms (Chapter 2.2) rely to finding objects in images

then associating unique objects between frames. Nuclei are detected in the sample images

and compared to accompanying annotated coordinate sets. Convolutional neural networks

(CNNs) achieve state of the art performance in image segmentation tasks. Two approaches

are evaluated in this exploration: a 3D U-Net [69, 98] and Stardist 3D [85, 86]. The 3D

U-Net achieves the best results in image segmentation. Two 3D U-Net models are trained

either from a random initialization or from similar data and of differing sizes to achieve

voxel-level segmentations. The architecture itself remains constant, but the number of

filters in each layer varies according to each model. The L model has twice as many filters

in each layer as M , which has twice as many filters as S. 3D U-Net models are trained to

maximize the dice coefficient via the Adam optimization scheme [37]. Stardist 3D combines
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elements of a FCN such as the 3D U-Net but with a focus on identifying disjoint objects.

Two configurations of Stardist 3D are evaluated; the first uses a pretrained model trained

on seam cell nuclei while the second is trained from a random initialization.

2.2.2 Nuclei Tracking

The simplest paradigm for MOT is to solve sequential frame-to-frame GNN LPs

(Eq 2.9). The random motion within the embryo is amenable to the L2 norm cost; however,

the lack of trajectory to cellular motion invalidates a dynamical model such as the Kalman

Filter. However, the coordinate remapping is often imperfect and may shift nuclei from their

true locations due to the spline curves not perfectly adhering to the embryo body wall. A

graph can specify interactivity among adjacent nuclei, allowing for a stronger representation

of nuclear movement than is possible with the GNN. Graph matching (Chapter 2.1.2)

may provide stronger results, but the computation required due to the high number of

muscle nuclei forces the use of heuristic algorithms. Kernelized Graph Matching (KerGM)

[96] is the most recent development in heuristic graph matching and is applied to track

straightened muscle nuclei. While GNN based solutions have been adapted for object

disappearance, reappearance, merging, and splitting [22, 34], KerGM and such graphical

methods have not been adapted. Indeed, the methods can perform one-to-many or many-

to-one assignment, but the methods cannot handle the common scenario in which a cell

disappears in one image, and a different cell appears in the subsequent image.

However if an LAP yields strong solutions, then evaluating multiple solutions via

a more complex cost could improve the tracking quality. Murty’s algorithm allows for
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returning the K best solutions to an LAP with complexity O(Kn3) [54, 55]. The K

hypothesized solutions to the LAP can then be evaluated on a quadratic cost. Evaluating

a higher order cost is computationally inexpensive compared to searching the entire space

for the assignment that minimizes the quadratic cost. If the LAP returns high quality

solutions, then sampling and evaluating at the QAP cost could improve performance by

further applying a more complex model to discriminate between competing hypotheses.

Both KerGM and the evaluation of a graph cost in Murty’s algorithm require a

specified graph for each detection set. The choice in graph greatly influences the results.

A QAP with no edge-wise connections reduces to an LAP. On the other hand, an overly

dense edge set may not generalize well to unseen data. Thus several types of graphs are

evaluated. The first four graphs connect nuclei in the straightened space that are withing

5µm, 7.5µm, 10µm, and 12.5µm respectively. Delaunay Triangulation is used as another

method of generating a graphical representation of the nuclei in the straightened space at

each image [5].

2.2.3 MIPAV Interative Tracking Plugin

Sequential detection and matching allows for accurate frame-to-frame tracking of the

straightened coordinates. However, the simple matching paradigm is susceptible to large

errors from false positives and false negatives. Near perfect detections are necessary for

an effective frame-to-frame matching paradigm. The Untwisting plugin [21] for MIPAV

[53] was augmented to perform semi-automatic frame-to-frame tracking. The 3D rendering

allows for interactive point identification and the import and export of such data. An
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initial detection set is superimposed on the volume in a 3D viewer. The user is able to

perfect the detection set by removing false detections, adding missed nuclei, and splitting

erroneously clumped nuclei. A first pass of the matching model links detections in the next

frame to named nuclei in the prior. The user can then make corrections if necessary, and

then resolve the linear program problem given user verified matched nuclei being passed as

encoded constraints. This process can be repeated to completion in real time due to the

polynomial complexity of solving the GNN LP [35].

Figure 2.1 illustrates the semi-automated process. The seed volume detections are

assessed and nuclei are identified (step 1). Then, the sequential volume detections are

similarly assessed to yield an accurate detection set (step 2). Steps 3A and 3B form a

recursion whereby the user generates predicted identities of the second volume nuclei (step

3A) and then edits the predicted nuclear identities. Another round of matching with added

constraints will regenerate predictions (step 3B). The process is expedited with accurate

detections.

2.3 Results

A set of n = 233 images with densely labelled cell nuclei are manually annotated

to train a model to better segment smaller, closer cell nuclei. The n pairs of fluorescently

imaged embryos and binary annotation masks are used to fit segmentation models described

in Chapter 2.2.1.

Images from three embryos bred to illuminate the muscle cell nuclei were annotated

for evaluating the tracking methodology. The strain KP9305 targets the four bands of
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Figure 2.1: A recursive cell tracking enables real-time cell identification in the
straightened embryo. The semi-automatic densely labelled nuclei tracking paradigm.
Sets of detections in the second fluorophore are remapped via the seam cell lattice. The
initial seed detections are identified (step 1). Then, the sequential frame detections are
simply edited to account for all nuclei in the image (step 2). The recursive tracking
procedure iteratively corrects the nuclear alignments in a manner designed to minimize
the manual burden.

muscle cell nuclei within the worm embryo, each band composing approximately 21 muscle

nuclei. The 85 nuclei are to the best ability of the researchers identified in each image

volume throughout development for each of the three sampled worms. Nuclei centroids

with associated identity are provided for all expertly detected nuclei in each image across

the three worms. Figure 2.2 depicts XY maximum projections from two sequential image

volumes. Cell nuclei homogeneity and density contribute to the tracking challenge.

2.3.1 Detection

Voxel-wise evaluation does not adequately measure the performance of nuclei detection

models. Each model and postprocessing combination yields a set of detections to be

compared to annotation volume nuclei sets. 3D U-Net models [69, 98] are compared to
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Figure 2.2: Volumetric fluorescent images expressing fluorescence in 81 muscle
cell nuclei.XY maximum intensity projections of two sequential image volumes. The
images come from the first worm embryo, approximately four hours prior to hatching. The
nuclei are each inside muscle cells within the worm embryo.

Stardist 3D [85, 86]. Table 2.1 highlights nuclei centroid matching results from processed

image volumes in the held-out test set. Stardist 3D is the most precise, but tends to miss

more dim nuclei than the 3D U-Net models. The nuclei that can appear extremely close

vary in size and intensity. Building an effective model for nuclear identification remains a

barrier to automatic cell tracking.
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Precision Recall F1
Stardist 3D 0.81 0.63 0.68
3D U-Net - S 0.64 0.67 0.65
3D U-Net - M 0.69 0.77 0.72
3D U-Net - L 0.67 0.75 0.70

Table 2.1: Dense nuclei detection is challenging despite the application of state-
of-the-art CNNs. The nuclei are smaller and tend to be more clustered upon each other.
Stardist 3D excels in this setting as it is the most precise model. All models struggle to
find all nuclei, evidenced by the low recall measure.

2.3.2 Tracking

Manually identified nuclei positions served as test data to evaluate and compare

methods. Expert annotators missed in this data, and will miss nuclei in frames due to

nuclear dimming or occlusion. Tracking results arise from assuming expert level detections,

i.e. that the detections are of the same quality of the annotations. Frame-to-frame accuracy

is reported by the proportion of correct matches to total nuclei in the subsequent frame.

Longer term frame-to-frame tracking is prone to errors, and thus tracking is currently

assumed to be done in a semi-automated fashion in which a trained user edits and verifies

tracks in successive frames.

The data as presented features many frames with missing nuclei. The most challenging

of scenarios occurs when two sequential frames have nuclei not present in each other. The

augmented LAP is able to account for these cases by matching candidates from each set

to nothing. However, the methodology is not designed for highly variant movement within

a frame [34]. Nuclear movement introduced by untwisting error, worm elongation, and

general nuclear movement are exacerbated by inaccurate detections. The GNN LP (Eq 2.9)

was applied at four varying µm gates for nuclear movement: 10µm, 15µm, 20µm, 100µm.
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Nuclear movement beyond each interval is a signal that a nucleus has dimmed in the

subsequent frame while a newly emerging detection outside the cutoff is labelled a false

positive.

Table 2.2 reports median matching accuracies for all gates over the test set. The

gated LAP median accuracies converge to the non-gated LAP accuracy as the gate values

increase. Varying the µm cutoffs cause significant changes in the median accuracy due to

highly variant movement between frames. Certain frame show low nuclear movement while

others show larger elongation of the worm. The elongation stretches coordinates along the

body of the worm. Often nuclei move large distances, but they do so together. A checked

detection set with an high cutoff would then allow the gated GNN LP to match nuclei

despite highly variant bouts of movement.

Median IQR
GNN 0.952 0.120
GNN - 10 µm 0.615 0.529
GNN - 15 µm 0.702 0.564
GNN - 20 µm 0.708 0.610
GNN - 100 µm 0.952 0.145
Murty - K 5 - 10 µm 0.609 0.505
Murty - K 5 - 15 µm 0.690 0.569
Murty - K 5 - 20 µm 0.708 0.604
Murty - K 5 - 100 µm 0.952 0.134
Murty - K 30 - 10 µm 0.609 0.505
Murty - K 30 - 15 µm 0.701 0.554
Murty - K 30 - 20 µm 0.704 0.597
Murty - K 30 - 100 µm 0.952 0.135

Table 2.2: Simple tracking approaches effectively track remapped nuclei when
detections are perfect. The augmented LAP allows for flexibility in handling imperfect
detections. However, a cardinal assumption of the method is that nuclear movement is
stationary [34]. This assumption does not hold due to the error injected from the untwisting
process. A semi-automated approach in which a user corrects detections enables the GNN
model effectively match nuclei in the straightened space.
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2.4 Discussion

Tracking in the remapped coordinate space using a simple GNN tracker accurately

tracks the majority of cell nuclei, but requires perfect annotations to be effective. The

sources of nuclear movement are challenging to model accurately enough for reliable tracking

despite the majority of frame-to-frame displacement being explained by embryo repositioning.

The high variance in frame-to-frame displacement arises from error introduced by the

coordinate remapping process. The body wall approximation via splines introduces systemic

misplacement in some positions.

The burden thus ultimately falls on the detection process. The FCNs discussed in

this work achieved results that correctly identified most of the nuclei, but are far from

reliable in a fully automatic GNN tracker. The results point to a semi-automated solution.

First image volumes are processed to detect nuclei. A trained user then remove debris,

splits touching nuclei, and adds annotations for missed nuclei. The GNN tracker works in

realtime, allowing for an refining approach to tracking nuclei. An initial pass will tend to

correctly identify all nuclei from the prior frame. However, simply correcting any errors and

rerunning while anchoring the correct predictions iteratively will produce correct frame-to-

frame associations. This process applied recursively throughout an imaged worm drastically

reduces both the manual effort and the time spent to track all densely labelled nuclei in a

strain.
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2.5 Future Work

Accurate nuclei detection stands as the foremost barrier to automated cell tracking.

The semi-automatic interface and recursive cell identification algorithm mitigate the manual

burden despite imperfect detections. The untwisting process accounts for cellular displacement

attributable to embryo movement. However, the method is inadequate at times due to

sharp bends or twists between pairs of seam cells. The residual cellular displacement

is then a combination of inter-embryo movement and incorrectly mitigated displacement

from untwisting. Bouts of elongation or warping complicate gating as nuclei may move

minimally within the embryo or all in large coherent shifts. This variance furthers the need

for accurate detections.
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Chapter 2: Multiple Hypothesis Hypergraph Tracking for Posture Identification

in Embryonic Caenorhabditis elegans

2.1 Introduction

EHGM more accurately identified posture using hypergraphical models than established

methods (Ch. 3.2), demonstrating the efficacy of interdependent modeling of seam cell

movement. However, even top performing models often failed to discriminate between

competing hypotheses. Posture identification in the low temporal resolution data was

challenging due to the complete repositioning between images. The five minute recovery

time between images was necessary to preserve the health of both the fluorophores and the

embryo given the high spatial resolution necessary to identify other cells.

The 4D atlas project is broadly interested in tissue development across the embryo.

Among the most studied is the nervous system. The development and functional capacity

of the nerve ring, comprising just 302 cells, is widely studied as a model of human brain

development. Nervous system development peaks between twitching and hatching as

the bumbling embryo emerges from its eggshell demonstrating controlled motion. Late-

stage twitching challenges behavioral analysis as observing the embryo using fluorescence

microscopy suffers from the same tradeoffs present in the 4D atlas project. A detailed
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behavioral analysis required rapid imaging to observe the continuously moving embryo.

However, imaging with a high capture rate necessitates a low light dose to preserve both

embryo and fluorophore health.

Late-stage embryos were imaged at 3 Hz (3 volumetric images per second) over 5

hours, producing ≈54000 image volumes. The increased capture speed entailed correlation

between images. Posture identification at frame t is substantially easier in a qualitative

sense (i.e. visually) if one knew the posture at frame t-1. Previous frame posture was

shown to predict current frame posture in 27% of cases (Ch. 3.2) when using a graphical

model. Here we investigated the integration of hypergraphical models to tracking posture.

The task was modeled as a multiple object tracking (MOT) problem (Ch. 2.2.2) as opposed

to a general object identification task in Ch. 3.

Recall the discussion on MOT in Ch. 2.2.2, particularly note the progression in

model capacity from the global nearest neighbor (GNN) to the multiple hypothesis tracking

(MHT) and application of Kalman Filtering. Frame-to-frame methods, such as the GNN,

are prone to failure when faced with these obstacles. The optimization task is framed as

a linear program (Eq. 2.9. Tracks and detections are paired by minimizing the summed

displacement between points (Eq. 2.8).

MHT uses a “deferred decision” logic to make association decisions. Future detection

sets are used in a probabilistic framework to disambiguate these challenging track-to-

detection associations. The method requires a protocol to generate alternate association

hypotheses. Murty’s algorithm is the foremost method to generate the K leading solutions

to the GNN in polynomial time [54, 55]. Each association hypothesis is then a feasible

full track-detection update; future detections help to delineate comparable hypotheses by
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individually computing likelihoods for each object. MHT can be expressed as a multidimensional

assignment problem (MAP) [17, 30]. The MAP extends the traditional LAP to more than

two frames, i.e. more than two successive point-sets [60]. Tracks at the previous frame

are matched to detections in the sequential frame as a function of how those matches fit

the expected object states (detections or expected locations if using a dynamical model).

Detections from future frames are used to propagate tracks recursively; the matchings are

subject to assignment problem constraints. The traditional MAP assumes a linear cost

structure between objects, just as the MHT is expressed as well. The progression from

GNN to MHT is illustrated in the second row of Fig. 2.1. Track update decisions in the

second frame are made according to how decisions affect future associations. The final

frame (Fig. 2.1-B) shows how a sudden motion can lead to incorrect associations.

The standard linear objective (as in Eq 2.9) explicitly models associations independently,

i.e. the objective states that the association of track i to detection j is done irrespective of i’

to j’. While this assumption enables efficiently scaling algorithms and broad applicability, it

limits the association method from using interdependencies to better describe the association

problem. Graphs are abstract models that describe pair-wise relationships between objects.

Vertices refer to objects themselves while edges link vertices together. Attributed vertices

and edges within each the track set and detection set can then be used to describe a

correspondence. For example, the distance between vertices i and and i’ can be used when

considering a potential pair-wise match to detections j and j’. See edges between points in

the third row of Fig. 2.1 for an example of a graphical representation. The correspondence

problem is known as graph matching.

Hypergraphs extend the definition of a graph to include hyperedges which can specify
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relationships among an arbitrary number of vertices. Hypergraph matching then concerns

finding an optimal vertex correspondence between pairs of attributed hypergraphs. For

example, a degree three hyperedge specifies a relationship between vertices i, i′, i′′ in the

track hypergraph and vertices j, j′, j′′ in the detection hypergraph. Similar to the edges

between points described above, an angle is visible between the red, blue, and green points

in Fig. 2.1-C. Hyperedges are able to express higher degree joint relationships while edges

can only express a bivariate relationship. Jointly, edges between pairs of points and angles

between triplets of points assist in ensuring correct association decisions.

Multiple hypothesis hypergraph tracking integrates the deferred decision logic of MHT

with the intricate modeling capability of hypergraphs. Hypergraphical models strengthen

the association step of MOT by considering an intricate representation of simultaneous

track to detection pairings. Data can be used to fit the hypergraphical model, further

tuning the method to a particular application. Fig. 2.1 depicts the progression in tracking

paradigm complexity from GNN to MHHT.

2.1.1 Related Research

Research on MOT in fluorescence microscopy has focused on single particle tracking

(SPT). Particles defined as homogeneous independently moving objects are tracked under

the assumption that frame-to-frame movement undergoes Brownian motion. Jaqaman

et al. developed a two step approach to SPT [34]. The first step uses an expanded

GNN cost matrix to specify cutoffs for both tracks with no associated measurements and

measurements that are not associated to tracks, a program similar to Eq 2.9. The second
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step solves a large LAP to handle linking the frame-to-frame associations, and both merge

and split events throughout the image sequence. Padfield et al. combine both steps into

one linear program [59]. A final image registration step is used to align successive frames

with effort to clearly delineate large movements and object disappearances. The matching

problem which Jaqaman et al. solved via the Hungarian algorithm is converted to a shortest

path optimization problem and solved as a general linear program.

MHT based paradigms use future frame measurements, yielding a more computationally

intensive but higher capacity MOT approach. Feng et al. express MHT as a multidimensional

assignment problem [30]. The optimization objective is then rewritten into a linear program

and solved as a binary linear program. The method is compared to Jaqaman et al [34];

MHT is more robust to noisy detections. Chenouard et al. present a probabilistic MHT

framework. The MAP is again cast as a linear program to identify the optimal measurement

to track association given measurements from a specified number of future frames. The

program is solved via a branch-and-bound approach of the Simplex algorithm [17]. On

the other hand, Rezatofighi et al. approach joint probabilistic data association [31](JPDA)

within an MHT paradigm. The authors propose an algorithm to rank solutions to the LAP,

producing a similar output to Murty’s algorithm [66]. The ranked solutions serve as an

approximation to the JPDA association costs. The process is then integrated into an MHT

scheme to robustly associate measurements to tracks by using the JPDA soft assignment

criteria and the deferred logic of MHT.

More recent methods to solve data association are inspired by the surge in popularity

of neural networks. Spilger et al. demonstrate how recurrent neural networks using long-

short term memory gates (LSTM) can be used to perform data association [75]. The LSTM
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model learns assignment probabilities which then allow for the Hungarian algorithm to

output a set of associations. Another recent approach uses both an LSTM and CNN for

data association. Yao et al. use both networks with handcrafted and learned features to

better inform the data association task [92]. The networks are used in tandem to learn

association costs, similar to the approach of Spilger et al. [75]. Neural networks are used

for expressive power to better contextualize the association step.

Euclidean distance is the underlying metric used by particle association methods

[17, 34, 66]. The progression from traditional methods to recently published research is

hallmarked by higher capacity models which are able to handle ambiguous association

scenarios [75, 92]. MHHT builds upon the traditional MHT, but uses hypergraphical

representations of object interdependencies to address challenging association decisions.

Recent deep learning based approaches and proposed MHHT use data to more effectively

perform data association.

2.1.2 Overview of MHHT & Application to C. elegans

MHT’s adaptability and intuitiveness has led to its success on MOT tasks across

domains. However, challenging MOT tasks which feature interdependent object motion

could better be addressed by modeling these relationships. We developed multiple hypothesis

hypergraph tracking (MHHT) to flexibly integrate interdependent association models into

the prominent MHT paradigm. MHHT uses graphical and hypergraphical models to

contextualize relationships between objects between points. While a graphical model uses

edges to specify relationships between pairs of points, hyperedges allow for connecting an
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arbitrary number of points. Graphical and hypergraphical relationships have been shown to

improve the point-set matching process [27, 42, 96]. Point-set matching using such complex

models is known to drastically inflate computational burden [42, 70]. However, the intricacy

of the graph or hypergraph does not severely hamper computation as Murty’s method is

carried forward from MHT to generate hypotheses [23, 54, 55]. Each hypothesis constitutes

a feasible full track update which is then evaluated using the posited hypergraphical model.

MHHT uses Murty’s algorithm in two distinct ways. The first explicitly calculates the K

best hypotheses of each hypothesis at the preceding level, i.e. generating K l hypotheses

at level l in the search tree. Hypergraphical evaluations are then conducted in a depth-

first search manner to identify the minimum cost path in the tree. The second applied an

optimized version of Murty’s algorithm [23, 54] to generate the K best hypotheses from the

K preceding hypotheses at the prior level. Results presented above were achieved using

the explicit search method.

The hypergraphical model f yields a cost when input an association between tracks

Z(t−1) and intermediate hypotheses formed at time steps t, t+1, . . . , t+N−1 using detections

O(t),O(t+1), . . . ,O(t+N−1) given the hypergraph parameters Z. Denote the cost f (t−1,t), then

the hypergraphical objective between successive frames t-1 and t. Then, the N frame

MHHT objective for the association decision at time t can be expressed as a sum over

l = 0, 1, . . . , N − 1: ∑N−1
l=0 f (t+l−1,t+l). The method enhances the data association step of

MHT within a commonly used framework to mitigate challenges associated MOT.

MHHT was inspired by the nematode Caenorhabditis elegans (C. elegans), a small,

free-living roundworm often studied as a model for neurodevelopment [88, 89]. The embryonic

worm has a set of twenty skin cells, termed seam cells, which act as a “motion capture suit,”
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revealing the coiled embryo’s posture as it maneuvers in the eggshell. The cells run in pairs

along the left and right sides of the embryo and are named in pairs: H0, H1, H2, V1, ..., V6,

T, i.e. H0L and H0R comprise the H0 pair. Tracking the seam cells together constitutes

recovering the coiled embryo’s posture. Studying the embryo’s movement throughout

late-stage development yields insight into how the nervous system assumes control prior

to hatching. Random bouts of muscular twitching in late-stage development complicate

posture tracking. A custom cell nucleus detection model is applied to process all ≈ 54000

image volumes prior to tracking (Fig. 2.2-A). MHHT is applied using both data-independent

and data driven hypergraphical models to perform posture tracking. The best performing

models used graphical and hypergraphical relationships (Fig. 2.2-B,C) to more accurately

model posture. Interdependent modeling improves performance on posture tracking on

images from a held-out test embryo, demonstrating the effectiveness of the method on a

cutting-edge task in computational biology.

2.2 Results

Seam cells expressing nuclear localized green fluorescent protein (GFP) were imaged

by light-sheet fluorescence microscopy, which allows rapid optical sectioning with minimal

photodamage [40, 90]. We recorded volumes at 3 Hz for more than 4.5 hours. Each

image has .65µm2 resolution with a 1.2 µm axial step size. Imaging in this manner did

not appear to affect development and was not accompanied by detectable photobleaching.

Consequently, we conclude that this imaging protocol did not interfere with normal embryonic

development.
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To track posture, seam cell nuclei must first be accurately detected (i.e. distinguished

from each other and background). Using image volumes with manually annotated seam

cells, we compared the performance of several image segmentation methods. The best

performance was obtained using a 3D convolutional neural network [69, 98]. After detection,

we evaluated methods for enabling comprehensive tracking of nuclear locations across all

image volumes. Then, GNN and MHT approaches were compared to proposed MHHT

models on posture tracking on a range of detection qualities: annotations, 3D U-Net,

and IFT-Watershed [29, 49]. The three methods are vary by quality of detections; the first

(annotations) assuming seam cell nuclei are always detected. The 3D U-Net was the highest

performing method, automatically fit on a corpus of training data. The IFT-Watershed

achieved the worst performance; it was manually tuned across training image volumes.

Biological insight into C. elegans inspired concepts of physical models to contextualize

embryonic movement. The models themselves are expressed as graphs or hypergraphs. The

embryo graph G = (V,E) specifies a set of vertices V representing seam cells and edges E

connecting seam cells locally. Edges appear posterior to anterior, laterally between pairs

of nuclei, and diagonally between sequential pairs. The graph G serves as the basis for

graphical and hypergraphical posture tracking models. Fig. 2.3 depicts a the embryo graph

of an uncoiled embryo. The first graphical association model, denoted Embryo, compares

changes in edge lengths frame-to-frame. Differences in the lengths of edges contribute to the

cost of the track update. Annotated data were used to estimate statistics of a parametric

model to further describe embryonic behavior. Two such models, Posture and Movement,

were explored to track posture. Posture is the data-driven enhancement of Embryo; the

hypergraphical model measures the consistency in the shape of the embryo throughout
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successive frames. Movement is then a data enhanced version of the GNN, a graphical

model evaluating patterned movement between nuclei.

2.2.1 Detection

Seam cell nuclei segmentation methods were evaluated by comparing each set of

detections to annotated nuclei center points at each frame. Manually labelled annotation

volumes were used to generate ground truth detection sets. Voxels corresponding to

nuclei were labelled 1 while others are labelled 0. Each independent connected component

represents a single nucleus. Each volume contains the nuclei visible to the annotator; ideally

there are 19 nuclei in images from the first 3.5 hours of post-twitch development, and 21

when the Q neuroblasts split from the V 5 pair. The tail pair nuclei appeared close due

to limited spatial resolution, and are treated as one nucleus. Some nuclei were too dim to

locate, in which case they were not annotated.

A total of 230 3D image volumes across three embryos were manually labelled using

ImageJ [74]. The binary volumes were then randomly split into training, validation, and

test sets of proportions 60%, 20%, and 20%, respectively.

Each proposed detection method ultimately yielded a set of detected objects. A linear

program was used to match detections to annotations at each frame of the annotation set.

One-to-one matching aligned annotations and detections per volume across the test set.

The average precision, recall, and F1 score across test set volumes are reported for each

method in Table 2.1.

Traditional methods for blob detection such as Watershed [29] and Laplacian of
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Model Precision Recall F1

IFT-Watershed [29] 0.81 0.80 0.80
LoG-GSF [46, 51] 0.95 0.90 0.92
Wavelet [58] 0.88 0.86 0.87
Mask-RCNN [33] 0.93 0.89 0.91
3D U-Net Dice [69] 0.94 0.91 0.92
3D U-Net Dice/BCE [98] 0.95 0.92 0.93
Stardist 3D [86] 0.91 0.88 0.89

Table 2.1: 3D CNNs outperform traditional segmentation methods for seam cell
nuclei detection. Nuclear detection results on a held out test set. Large kernel 3D U-
Nets yielded both the highest precision and recall. However, even the 3D U-Nets could not
accurately detect all seam cell nuclei.

Gaussians (LoG) [34] were compared to a variety of deep learning based approaches. Even

recent methods such as Stardist3D [86] struggled to detect all seam cell nuclei. Most notable

across methods is the disparity between precision and recall. While both traditional and

deep learning based methods achieved comparable average precision, CNNs detected more

of the dim nuclei. The latter result may be due to the CNNs’ improved accuracies on voxels

between close nuclei, more often returning disjoint nuclei instead of clumping multiple nuclei

as detection. The adapted 3D U-Net trained on the summed Dice and BCE loss functions

demonstrated the best results across the test set.

2.2.2 Tracking

Seam cell nuclei tracking stands in contrast to typical MOT tasks in fluorescence

microscopy, and thus a broader metric was used to evaluate performance. An accurate

representation of the posture requires accurate tracks of all seam cell nuclei. Incorrect

associations violate the representation of the embryo and need to be corrected before

cascading into further errors. The embryo also expresses several distinct behaviors throughout
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late-stage development, such as relative stillness, fluid movement, and twitching. Two

embryos were imaged and seam cell locations were then annotated across all (≈54000)

volumes. The first imaged embryo was used to estimate MHHT model parameters, while

performance was evaluated on the second annotated embryo, allowing for cross-validation

of MHHT models. Test-set performance on the held out embryo gave insight into the

generalizability of proposed models on future embryos. MHHT models were compared to

two baseline methods: GNN (K=1, N=1) and MHT. MHT was conducted using MHHT

with GNN costs between frames. Results presented were achieved by building explicit.

The predicted states were compared to the annotated ground-truth coordinates at

each frame. A successful posture update will align one-to-one to the annotation points

with each predicted nucleus state being sufficiently close to its respective annotation point,

set at 7.5 µm. Frames which failed the test with either an incorrect association or losing

track of at least one nucleus marked an error which would require expert intervention, and

the coordinates were reset via a correction in the next frame. Methods were compared by

their ability to maintain the embryonic posture across late-stage embryogenesis throughout

variations in behavior. The percentage error rate is given by the ratio of frames in which

a correction is required to all ≈ 54000 frames on the held out test embryo.

2.2.2.1 Annotations

A series of association models f were tested, increasing in complexity from the simple

GNN (MHT, K=1,N=1) to the hybrid Posture-Movement model. Varying N from a single

scan (N=1) up to N=5 highlighted the contribution of the deferred decision paradigm,
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while varying K = 1, 2, . . . , 5 allowed us to employ a wider search, improving the likelihood

of encountering correct posture hypotheses.

Percentage error rates on the top quartile of movement across both pre-Q and post-Q

frames are depicted in Table 2.2. The GNN achieved a baseline 6.04% error rate, while MHT

(K=5, N=5) increases the error rate to 7.60%, demonstrating the inability of the linear

association model to distinguish competing hypotheses. However, the progression from

MHT to Embryo slightly reduced the error rate from GNN levels. The added discriminatory

power of the graphical model allowed for identifying the correct posture more consistently.

The data enhanced model Posture illustrates the contribution of annotations to tracking

seam cell nuclei. Posture-Movement (PM ) yields stronger results than either alone. The

combined model reduces the error rate to 3.53%, a 42% reduction relative to the GNN

error rate. Table 2.2(a) highlights the change in error rate across models with respect to

the search width K, holding N=5 constant. Table 2.2(b) shows how parameterized shape

based models Posture and PM particularly benefit from searching deeper, illustrating an

improvement in performance with tree depth N .

2.2.2.2 Detections

Frames with debris and missed nuclei (i.e. imperfect detections) require evaluating

more hypotheses (K) to find valid associations. Adapting MHHT to imperfect detections

requires the introduction of gates d(t)
i with missing nucleus interpolation. Table 2.3 compares

results by detection method, 3D U-Net vs. IFT-Watershed segmentation. Baseline methods

are compared to MHHT models across quartiles of frame-to-frame movement, while varying
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K MHT Emb. Post. Move. PM
1 6.04 6.04 6.04 6.04 6.04
2 6.18 6.09 4.65 4.88 4.48
3 6.64 6.03 4.26 4.54 4.09
4 7.21 5.95 3.90 4.26 3.72
5 7.60 5.90 3.71 4.09 3.53

(a) Varying K, N=5.

N MHT Emb. Post. Move. PM
1 6.04 5.37 4.24 4.04 3.97
2 6.98 5.53 4.07 4.06 3.88
3 7.26 5.77 3.87 4.08 3.61
4 7.41 5.90 3.82 4.04 3.58
5 7.60 5.90 3.71 4.09 3.53

(b) Varying N , K=5.

Table 2.2: Data driven hypergraphical modeling better maintains posture than
simpler methods. Percentage error rates on frames in the top quartile of movement on
the held out test embryo, assuming perfect detections. The combined PM model achieves
an error rate of 3.53% (K=5, N=5), a 42% reduction in the error rate from the baseline
GNN (6.04%). PM also benefits from increasing K and N , especially compared to simpler
non-parametric models (MHT and Embryo). Bolded entries indicate the best in class
(lowest) error rates.

gate size and detection method; MHT and MHHT methods use K=25 and N=2. Best in-

quartile error rates are in bold; highlighting the effectiveness of data driven hypergraphical

models in conjunction with state of the art detection methodology. The PM model achieved

lower error rates across gate sizes and detection methods for each level of embryonic

displacement, collectively lowering overall error by approximately 15% over baseline methods.

Importantly, the MHHT models also demonstrated less variance within each quartile across

gates for both detection methods. In particular, the 12.5 µm gate size posed a significant

challenge for baseline methods, which were unable to distinguish between competing hypotheses.

Fig. 2.4 highlights relative error rates on the 12.5 µm gate across movement deciles

as a function of search width K (5, 10, 25) with N = 2 on the 3D U-Net detections.

PM sees a higher marginal reduction in error rate than MHT with respect to K. The

improvements are attributed to the enhanced discriminatory power of the hypergraphical

model over unary association methods. PM more effectively used computational resources

allocated via the search width K than baseline MHT to perform posture identification.
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Gate (µm) 3D U-Net [98] IFT-Watershed [29, 49]
GNN MHT Embryo PM GNN MHT Embryo PM

Q1

2.5 3.44 2.94 2.78 2.82 3.80 5.09 3.53 3.68
5.0 2.93 4.35 2.71 2.57 5.56 15.87 3.62 3.91
7.5 3.32 5.10 2.73 2.62 14.30 22.65 6.94 6.62
10.0 5.60 5.83 2.93 2.80 35.37 30.47 22.12 20.41
12.5 7.09 6.71 3.67 3.34 49.07 40.89 39.38 37.31

Q2

2.5 6.00 5.12 4.72 4.75 6.68 7.38 5.87 6.10
5.0 4.84 5.78 4.43 4.40 7.94 18.66 5.98 6.22
7.5 4.93 6.70 4.52 4.31 17.94 25.17 9.48 9.08
10.0 6.95 7.47 4.75 4.49 38.70 32.57 25.25 25.25
12.5 8.78 8.28 5.24 5.00 52.41 43.82 41.87 40.13

Q3

2.5 10.90 8.40 8.03 7.86 11.70 11.58 9.78 9.67
5.0 7.63 8.57 7.16 7.00 11.60 21.58 9.58 9.36
7.5 7.80 9.69 7.17 6.97 20.93 28.85 13.04 12.33
10.0 9.91 10.23 7.21 7.09 42.25 36.15 28.00 26.49
12.5 11.85 10.67 7.71 7.55 56.08 47.63 46.16 44.69

Q4

2.5 22.68 19.96 18.70 18.69 23.86 22.95 21.71 21.46
5.0 16.19 15.29 13.71 13.07 22.12 28.79 18.67 18.57
7.5 14.35 15.81 12.67 12.19 29.32 36.20 21.13 20.95
10.0 15.63 16.24 12.43 11.99 49.35 43.23 35.82 34.63
12.5 17.35 16.71 12.84 12.37 62.18 54.52 52.31 51.19

Table 2.3: MHHT outperforms baseline methods across levels of detection
quality. Comparing percentage error rates between baseline methods (GNN and MHT)
and MHHT (Embryo and PM ) when detections are imperfect. MHT and the MHHT
models used K=25 and N=2. The progression in modeling capacity is compared to
increasing gate size µm, embryonic movement (movement quartiles Q1-4) and detection
method: 3D U-Net [98] vs. IFT-Watershed [29, 49]. MHHT achieved lower error rates
across all degrees of movement and detection method. In particular, PM error rates were
more robust to gate size, remaining accurate while GNN error rates increased. Bolded
entries indicate best in class (lowest) error rates.

2.2.3 Eigen-embryos compactly describe posture and behavioural motifs

To describe embryo posture, we used seam cell positions to fit each side of the

body with a natural cubic spline and then computed dorsoventral bending angles between

adjacent seam cells (totalling 18 bend angles in each volume, Fig. 2.5-A,B). Four PCs

captured approximately 88% of variation in the 18 angles (Fig. 2.5-C). The corresponding
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eigenvectors of the four leading components (termed eigen-embryos) were stereotyped between

animals. For example, PC1 captures ventral or dorsal coiling (i.e., all ventral or all

dorsal body bends, respectively) while PC2 describes postures with opposing anterior and

posterior bends. In this framework, embryonic posture can be approximated by a linear

combination of eigen-embryos. The contribution of eigen-embryos shifted consistently

across development, with less variance accounted for by PC1 as PC2 and PC3 gained

prominence (Fig. 2.5-D). PC2 and PC3 approximate sinusoids with a phase difference of

about 90◦ that can be combined to generate travelling waves of dorsoventral bending. The

developmental shift towards PC2 and PC3 more closely approximates the adult motion

pattern, where the top two PCs also describe sinusoids with a 90◦ phase shift [76]. The

relatively limited dimensionality of dorsoventral bending observed in both adults and

embryos is likely a consequence of muscle anatomy, with electrically coupled muscle bundles

running ventrally and dorsally along the body [89].

The behavior of late-stage embryos exhibits several potential signatures of neuronal

control (increasingly directed movement, dorsal coiling bias, and sinuous crawling). To

establish a role for synaptic signalling, we analyzed unc-13 (s69 ) mutants which have a

nearly complete block in synaptic vesicle fusion and (consequently) profound movement

defects [67]. In late-stage embryos (750 mpf), unc-13 mutant movement was strongly

impaired, as indicated by shorter seam cell trajectories and smaller diffusion coefficients

(Fig. 2.5-E). Although their motion was severely restricted, unc-13 mutants continued

subtle movements in place, suggesting that spontaneous muscle contractions persist even

when synaptic transmission is blocked. By contrast, at 530 mpf seam cell diffusion coefficients

for unc-13 mutants were indistinguishable from controls (Fig. 2.5-F), implying that synaptic
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transmission is not required for the behavior of immature embryos. See [2] for more results

and further discussion of behavioral analyses.

2.3 Discussion

MHHT is proposed as an extension of traditional MHT to leverage complex data

association functions to handle interdependent object motion in tracking applications.

The method is demonstrated to be more robust to poor detections than baseline tracking

paradigms while achieving lower error rates on when tracking posture in embryonic C.

elegans. Simulations across models and hyperparameter configurations demonstrate the

generalizability of MHHT to similar tasks. The explicit tree search method adds discriminatory

power at the cost of computation, particularly when increasing tree depth N. On the

other hand, the more typically applied version of Murty’s algorithm [23, 54] maintains

K hypotheses at each scan. As such, the computational burden is linear in both K

and N. Further simulations will need to be done using this method to better understand

performance trade offs.

EHGM and associated posture identification models Sides, Pairs, Posture, and Full

stood as a first look at modeling seam cell interdependencies. The hypergraphical models

comprised intricate features in effort to overcome the little temporal context available

in identifying posture. EHGM models stand in contrast to the best performing posture

tracking model, PM. Presented MHHT models were much simpler in their constitutions.

Cell-to-cell and edge-to-edge variations were used to quantify embryo movements at the

3 Hz capture rate. EHGM models were applied in the MHHT paradigm but yielded
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poor results at all levels of detection quality. Recall the bias-variance tradeoff (Ch. 1.4);

posture identification benefited from the more intricate models, but the task itself was

more challenging. Posture tracking improved with relatively simpler models (PM ), but

failed with the EHGM models.

Hypergraphical optimization strategies differed between EHGM and MHHT. EHGM

searches the entire permutation space for the optimal hypergraphical match. The exactness

of EHGM ensure the identification of a globally optimal solution. On the other hand,

MHHT orders the permutation space according to a linear model. Finding the optimal

linear match across the permutation space is completed in polynomial time [35]. Like

EHGM, MHHT enables both data-driven and data-independent approaches to hypergraphical

modeling. In fact, the models applied to posture tracking are the data-driven versions of the

data-independent models; Movement is a graphical model estimating correlated movement

between cells, i.e. it is a data-driven GNN. Then, Posture estimates correlations between

edge variations; it is a data-driven form of the graphical Embryo model (Chapter 2.5.2.3).

Graphical and hypergraphical modeling functions are proposed in a context-free manner.

While EHGM models were highly specified to posture identification, MHHT models are

readily applicable in data-independent and data-driven manners to any MOT problem

featuring interdependent motion.

Posture tracking in twitching embryonic C. elegans presents itself as an emerging

problem archetype in MOT. Cutting edge microscopes allow for the observation of previously

intimate of biological detail. MHHT improves upon tracking outcomes across detection

capabilities, using annotated data to contextualize the complete embryo frame-to-frame.

The method reduces the frame-wise error rate by approximately 11% over baseline methods
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on the test embryo, correctly maintaining embryonic posture and thus eliminating the need

for human intervention on over 700 additional volumes, out of approximately 54000 for an

imaged embryo.

Our results suggest that embryos exhibit a stereotyped program for behavioral maturation

in the final few hours before hatching, which comprises at least three phases (early flipping,

an intermediate phase of reduced motility, and a late phase of mature motion). Following

elongation, embryo behavior was initially dominated by flipping between all dorsal and all

ventral body bends. Flipping behavior was not disrupted in unc-13 mutants, implying

that it does not depend on synaptic transmission. Flipping could be mediated by intrinsic

oscillatory activity in muscles or by a form of neuronal signaling that persists in the absence

of UNC-13 (e.g., gap junctions or an unconventional form of synaptic vesicle exocytosis).

Because flipping comprises alternating all dorsal and all ventral bends, there must be some

mechanism to produce anti-correlated ventral and dorsal muscle contractions.

Early flipping behavior is followed by a period of decreased motion. This slowdown is

apparently not neuronally evoked, as it requires neither neuropeptide processing enzymes

nor UNC-13. Slowing does coincide with a shift in the forces defining body morphology,

from a squeeze generated by contraction of circumferential actin bundles of the epidermal

cytoskeleton to containment within a tough, yet flexible extracellular cuticle [61]. This

structural transition could impact behavior; however, preliminary experiments (not shown)

suggest that reduced motion is a consequence of decreased muscle activity rather than a

structural constraint limiting motion. A shift from cytoskeletal to exoskeletal control of

body shape is likely reiterated at each larval molt and could contribute to molt-associated

lethargus quiescence [62].
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Following the inactive phase, late-stage embryos exhibit a mature pattern of motion.

Mature motion comprises sinusoidal crawling, prolonged bouts of forward and reverse

motion, and a rhythmic pattern of brief quiescent bouts. All of these features are grossly

disrupted in unc-13 mutants, implying that they are driven by synaptic circuits. Our prior

study suggests that bouts of directed motion are mediated by the forward and reversal

locomotion circuits that operate post-hatching [1].

2.4 Future Work

Similar to dense cell tracking (Ch. 2), posture tracking was burdened by segmentation

errors. MHHT with the PM model reduced the overall error rate on the held-out test

embryo by 29% over baseline methods (2.01% to 1.43%). However, the results were not as

strong on the 3D U-Net detections; MHHT only reduced error by 11% (5.25% to 5.88%).

Further feature engineering may yield a more accurate posture tracking model, but better

nucleus detection is evidenced here to improve results.

2.5 Methods

2.5.1 Multiple Hypothesis Hypergraph Tracking

2.5.1.1 Hypergraphical Association

The established MHT paradigm [10, 22] relies upon a linear data association step

to evaluate hypotheses. Successive associations across future frames ideally disambiguate

the correct track update among sampled hypotheses. A hypergraphical model can better
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evaluate the sampled hypotheses by accounting for interdependent object motion. An

association function f measures the dissimilarity between established tracks Z(t−1) and a

hypothesized state update Ẑ(t)). The state estimate of the K sampled hypotheses Ẑ(t,k)

which minimizes the association function f is chosen as the joint state update, Z(t). The

method is most effective when a linear program can identify competitive state updates, but

cannot accurately discern between candidates solely using the linear program costs.

A graphG = (V,E) specifies a set of edges E connecting objects locally. Hypergraphical

models allow for further evaluation of a sampled hypothesis under some further function of

this edge set E. Hypotheses evaluated at time t: ĝ(t) := g(Ẑ(t);E) describe the hypothesis

according to predicted states at time t. Frame-to-frame differences in the attributed

representations are assumed multivariate Gaussian: (ĝ(t)−g(t−1)) ∼ N (0,Σ). The Mahalanobis

distance f is used to evaluate a hypothesized state representation:

f(ĝ(t),g(t−1); Σ̂−1) =
√

(ĝ(t) − g(t−1))′Σ̂−1(ĝ(t) − g(t−1))

The covariance matrix Σ is estimated from a corpus of annotated data. States of all n

objects from frames t = 1, 2, . . . , T are used as pairs {(Z(1),Z(2)), (Z(2),Z(3)), . . . , (Z(T−1),Z(T ))}

to estimate frame-to-frame variation in pairs of hyperedge differences: {(g(1),g(2)), (g(2),g(3)), . . . , (g(T−1),g(T ))}.

Define ḡ =
∑T

t=1 g(t+1)−g(t)

T−1 . Then, the covariance matrix is estimated:

Σ̂ := 1
T − 1

T∑
t=1

(g(t+1) − g(t) − ḡ)(g(t+1) − g(t) − ḡ)′
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2.5.1.2 Graphical Interpolation

Independently moving objects cannot provide insight into states of objects with

missing measurements. However, specified dependencies between objects can be used to

more precisely update tracks that do not receive a measurement at frame t. Our proposed

graphical interpolation uses states Z(t−1) and a hypothesis ϕ(t,k) with measurements O(t)

to complete the state update with predictions z̄(t)
i , i = 1, 2, . . . , n. The intermediate state

update of hypothesis k: Ẑ(t, k) can then be written in terms of associated measurements

O(t) and predicted object positions Z̄(t):

ẑ(t,k)
i =


z̄(t,k)

i ϕ
(t)
k = 0

o(t)
j ϕ

(t)
k = j

(2.1)

A graphical model specifying connectivity between objects serves as the basis for point

interpolation. Each hypothesis ϕ(t)
k describes two disjoint sets of objects: objects which

receive a measurement at t (ϕ(t)
k 6= 0) and objects that do not receive a measurement at t

(ϕ(t)
k = 0). Designate the two disjoint sets D(t,k) and U (t,k), detected vertices and undetected

vertices, respectively. Edges in which one element u is missing the other v is detected are

used to predict the state of the missing vertex u. In the scenario in which for all edges

connecting a missing vertex u, v is also a missing vertex the prior frame position is used

for interpolation. Assume each undetected object u ∈ U (t,k) is a component of some edges

in which the complementing vertex is detected: D̃(t,k)
u = {v ∈ D(t,k) : (u, v) ∈ E} ⊂ U (t,k),

n(t,k)
u := |D̃(t,k)

u |. The graphically interpolated states are expressed:
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z̄(t,k)
u =

∑
v∈D̃

(t,k)
u

[ẑ(t,k)
v − (z(t−1)

v − z(t−1)
u )]

n
(t,k)
u

(2.2)

The estimated position of a missing object is the average of predicted positions

under the edge set E. Inconsistencies in the complete state update will be penalized by

hypergraphical association models. The method is extendable to hypergraphical or other

forms of state interpolation involving object features derived from the image.

Fig. 2.6 illustrates an example of graphical interpolation applied to posture tracking.

An anterior portion of Fig. 2.3 is depicted with H2L missing. Five nuclei give insight into

H2L’s position: H1L, H1R, H2R, V1L, and V1R. The prior volume points (blue) and the

identified current volume points (red) yield intermediate predictions (green). The final

prediction (purple) is an average of all five intermediate predictions. Encoded domain

knowledge of C. elegans body structure via the graph is used to prune hypotheses which

result in physically invalid postures.

2.5.1.3 Algorithm

MHHT adapts the established hypothesis oriented MHT proposed by Cox and Hingorani

[22] to include graphical interpolation and further evaluation of the sampled hypotheses.

In summary, Murty’s algorithm identifies leading solutions to the data association problem

proposed in Equation 2.9; states that are not directly updated undergo graphical interpolation

when possible, and a hypergraphical association function f measures the cost of the complete

state updates Ẑ(t,k). This process is iterated recursively across multiple future frames to

better inform the state update at time t. The parameter N dictates how many future
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detection sets are considered. The deferred decision logic considers the expansion from

states Ẑ(t,k) to Ẑ(t+1,k), Ẑ(t+2,k), . . . , Ẑ(t+N−1,k) in the update at time t.

The recursion can be executed in two different ways. The first method forms an

exponentially growing search tree in which paths from the initial state Z(t−1) expand into

K solutions. Each of the K solutions following interpolation yields a hypothesized state

Ẑ(t,k), initiating a recursion, adding to the cost of association at frame t. The search

follows in a depth-first search manner with respect to time. The first complete posture

sequence across N frames stands as the minimum cost hypothesis. The search continues

with pruning to find the cost minimizing hypothesis accessible in the search tree. There are

O(KN) hypotheses are evaluated in the worst-case in the explicit tree search. Fig. 2.7-A

depicts the explicit tree search method with K=2 and N =3. Murty’s algorithm [54] is

applied at each hypothesis to generate K hypotheses at the next time point. The cost-

minimizing path is bolded, with the right hypothesis at N =1 being the chosen full-track

update. Scissors indicate a pruned path due to an infeasible posture position. Darker colors

(white to dark red) indicate an increasing cumulative cost as tracks are added to the search

path.

The second method follows that of Miller, Stone and Cox [54] and Cox and Miller

[23] in which the K best hypotheses of the K preceding hypotheses are found in one call of

Murty’s algorithm [55]. This second method is used in leading MHT applications [22]. The

trade off is in losing the ability to compare all K2 hypotheses from a previous subproblem

as opposed to only the K leading hypotheses (according to the linear model). There are in

total NK hypotheses evaluated using this method. Fig. 2.7-B shows the optimized version

of Murty’s algorithm typically applied in MHT [22] with K=3 and N =3. Again, the bolded
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path identifies the cost-minimizing path. However, not all K l hypotheses at level l (but for

l=1) are evaluated using the hypergraphical model. As such, a suboptimal path may be

returned in exchange for reduced computation.

The introduction of graphical modeling requires a fixed structure among tracked

objects, with the n objects being set a priori. New objects require updating the graphical

models for interpolation and association, and will be tracked until manually removed

from the object set. MHHT is designed to track a set number of objects with specified

interdependencies despite noisy detections and large bouts of coherent motion.

2.5.2 Posture Tracking in Embryonic C. elegans

2.5.2.1 Overview

Posture is defined as the complete state identification of all seam cells, which approximates

the shape of the coiled embryo. Seam cell nuclei tracking is achieved via a detect and track

paradigm. The image volumes are first processed in batch via a 3D convolutional neural

network (CNN) to detect nuclei. The detections are used to track seam cells throughout

the image sequence. Tracking is achieved via our proposed method: multiple hypothesis

hypergraph tracking (MHHT).

2.5.2.2 Seam Cell Nuclei Detection

Accurate seam cell nuclei detection is especially challenging for two distinct reasons.

First, nuclei frequently appear dim to the degree that an expert has to infer their positions

from the more visible adjacent nuclei. The second issue arises due to the spatial resolution
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of the image volumes. The imaged embryo will often depict two seam cell nuclei so

close to each other that they appear as one larger nucleus. Fig. 2.8 depicts three XY

maximum intensity projections from sequential image volumes. The shapes and intensities

of fluorescently labelled seam cell nuclei vary throughout imaging. The tail nuclei are

smaller than other nuclei and much closer than nuclei of other pairs. The limited spatial

resolution results in the tail nuclei appearing merged as one nucleus. Red dots are placed

on seam cell nuclei in the tail pair in each maximum intensity projection.

Seam cell nuclei detection is achieved by a convolutional neural network (CNN). A 3D

U-Net style architecture is employed to perform semantic segmentation on the C. elegans

embryo image volumes [69, 98]. Fig. 2.9 depicts the model architecture. The established 3D

U-Net is augmented to use a size (5, 5, 5) kernel, extending the field of view at each layer.

Strided 3D convolution layers downsample by a factor of two across lateral dimensions

while preserving axial resolution. The limited axial resolution encodes more information

per planar image due to the explicit downsampling occurring during imaging. The number

of filters in each layer doubles from 16 to 32, 64, 128 when downsampling.

The loss function is a uniformly weighted average of the binary cross-entropy and

negative dice coefficient. The cross-entropy portion prioritizes accurate prediction of challenging

individual voxels between close nuclei, but may produce noisy predictions. On the other

hand, the dice coefficient prioritizes structural similarity in clusters of voxels constituting

nuclei, but is known to consolidate sigmoid outputs at extreme values 0 and 1, resulting

in close nuclei being labelled as one supervoxel [73]. Denote y ∈ {0, 1}X×Y×Z and ŷ ∈

[0, 1]X×Y×Z as the binary ground truth and sigmoid output tensors respectively. The loss

can then be written:
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L(y, ŷ) = −
X∑

i=1

Y∑
j=1

Z∑
k=1

[yijk log(ŷijk) + (1− yijk)(log(1− ŷijk)]
︸ ︷︷ ︸

Cross Entropy

+
−2 ∑X

i=1
∑Y

j=1
∑Z

k=1 yijkŷijk∑X
i=1

∑Y
j=1

∑Z
k=1(y2

ijk + ŷ2
ijk)︸ ︷︷ ︸

Dice Coefficient

The model is trained via the Adam optimizer with an initial learning rate of 0.00075

[37]. The resulting image volume contains values ŷijk ∈ [0, 1]. The output is thresholded

and then independent connected components are returned as predicted instances of seam

cell nuclei. The centroids of each supervoxel serve as the detection set for each image

volume.

Imperfect detections due to low spatial resolution contribute to a challenging MOT

task. Detection methods often yield debris and fail to detect all nuclei due to either

dimness or clumping adjacent nuclei together. The proposed 3D U-Net [98] outperforms

both traditional methods: Imaging Forest Transform Watershed [29], Laplacian of Gaussian

[46, 51] and a Wavelet method [58], and modern CNN based approaches: Mask-RCNN [33],

and Stardist 3D [86] in detecting seam cell nuclei. Descriptions and implementations of

detection methods can be found in the appendix (section 2.2.1).

2.5.2.3 Posture Tracking

Posture tracking is achieved using MHHT with a proposed hybrid graphical and

hypergraphical model. The explicit tree search method of Murty’s algorithm is used to

achieve the lowest cost hypotheses at expense of computation. Disjoint body segments

are formed by sequential pairs of seam cells. Incorrect associations may yield a graphical
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representation in which body segments intersect with each other. The Möller-Trombore

algorithm is used to estimate intersection among body segments and prune invalid hypotheses

[56].

Embryo & Posture The Embryo and Posture models penalizes associations which distort

the embryo’s shape. Accurate seam cell nuclei state updates will adhere to the physical

confines of the embryo, even during sudden twitches. Edges illustrated in Fig. 2.3 vary

in length as the states update frame to frame. Denote the edges E = [e1, e2, . . . , eM ],

where edge ej = (uj, vj) describes a relationship between nuclei uj and vj. Each vector

e(t)
j = z(t)

uj
− z(t)

vj
describes the chord connecting states of nuclei uj and vj at time t. Then,

the vector E(t) = [‖e(t)
1 ‖2, ‖e(t)

2 ‖2, . . . , ‖e(t)
M ‖2] describes lengths of these chords. Differences

in chord lengths between frames E(t) - E(t−1) ∈ RM×1 form the basis of the association cost.

Then, the Embryo model is defined:

fE(Ẑ(t),Z(t−1)) =
√

(Ê(t) − E(t−1))′I(Ê(t) − E(t−1)) =
M∑

j=1

√
(Ê(t) − E(t−1))2 (2.3)

Annotated data are used to estimate covariances between the M differences across

state updates. The resulting covariance matrix Σ̂P scales differences in chord lengths among

the M chords present in G:

fP (Ẑ(t),Z(t−1); Σ̂−1
P ) =

√
(Ê(t) − E(t−1))′Σ̂−1

P (Ê(t) − E(t−1)) (2.4)

Both Embryo and Posture are further characterized by the unary costs specified by
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C (Equation 2.8) and the evaluated hypothesis ϕ(t): ∑n
i=1 Ci,ϕ(t) .

Movement Movement extends the traditional GNN cost to penalize unnatural movement

between states. The distance between states at t − 1 and t, ∑n
i=1‖z

(t)
i − z(t−1)

i ‖2, can be

scaled by the inverse covariance matrix describing motion between pairs of nuclei. The

states z(t)
i = [x(t)

i , y
(t)
i , z

(t)
i ] and z(t−1)

j = [x(t−1)
j , y

(t−1)
j , z

(t−1)
j ] can be expressed as element-

wise differences:

Z(t) − Z(t−1) =



z(t)
1

z(t)
1

...

z(t)
n


−
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1
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∈ R3n×1 (2.5)

Each pair of nuclei has an estimable 3×3 covariance matrix specifying the relationship

between movement along each axis. The resulting block 3n × 3n covariance matrix, ΣM

then scales the difference between states:

122



fM(Ẑ(t),Z(t−1); Σ̂−1
M ) =

√
(Ẑ(t) − Z(t−1))′Σ̂−1

M (Ẑ(t) − Z(t−1)) (2.6)

The Posture and Movement models are combined additively to produce the Posture-

Movement (PM ) model.

2.5.2.4 An Interface for Posture Tracking

We developed our detect and track method with the goal of extracting seam cell

coordinates over time, thereby allowing detailed analysis of embryonic behavior. The

image volumes are processed in batch, yielding the complete detection set. An interface

is developed in Python to perform posture tracking in embryonic C. elegans via MHHT.

The web based interface is freely available: https://github.com/lauziere/MHHT. Track

correction is performed in MIPAV : Medical Imaging, Processing, and Visualization [21, 53].

MIPAV is available: https://mipav.cit.nih.gov/.

2.5.2.5 Creating Annotations

Image volumes were processed in batch via the large kernel 3D U-Net in section

2.5.2.2. Tracking was achieved via a gated GNN. An overlaid graphical representation

(Fig. 2.3) serves as visual cue for correctly updating posture. The user is prompted to

verify if the posture is correct; the program generates a file structure that MIPAV can

recognize and outputs the necessary parameters to view the data if the tracks need to be

edited. The process is applied recursively frame-to-frame throughout the image sequence

until hatching.
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Figure 2.1: Interdependent object tracking can be achieved via MHHT. Four
objects (blue, red, green, purple) are observed in a sequence of images: t-1, t, t+1, and
t+2. The established tracks at frame t-1 are to be continued across the next frames. Three
tracking paradigms are presented: global nearest neighbor (GNN, top), multiple hypothesis
tracking (MHT, middle), and multiple hypothesis hypergraph tracking (MHHT, bottom).
Frame-to-frame methods such as GNN can only use information from the sequential frame
(solid black arrows) to update tracks. A sudden rotation of all objects (A) may cause GNN
to misidentify objects. However, Multiple Hypothesis Tracking (middle) uses information
from future frames t+1 and t+2 (dashed black arrows) to disambiguate tracking decisions
at frame t. Object identities can be recovered under smooth motion, but sudden large
movements (B) may introduce tracking error. Both GNN and MHT perform tracking
by treating objects as independent entities. MHHT (bottom) augments MHT to allow
interdependent modeling of object tracks (orange lines). Correlated object movements
yield additional structure such as angles (dark red). Hypergraphical modeling adds richer
context than MHT or GNN, enabling accurate tracking of objects with interdependent
motion (C).
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Figure 2.2: Overview of MHHT applied to track posture in embryonic C. elegans.
A) Raw image volumes are processed via a custom segmentation model to find seam cell
nuclei. Scale bar 10 µm. The detection centers are then used with prior frame tracks and
future detection sets to recover posture, i.e. identify all seam cells. The process is repeated
for the last hours of development, ≈ 54000 image volumes. B) A flattened representation
of the seam cells. The cells of each pair anterior to posterior: H0, H1, ..., V5, V6, T are
related to each locally other via a graph. The V2 cell’s movement is positively correlated
(red) with nearby cells while its movement is negatively correlated (blue) with anterior and
posterior cells. C) A hypergraphical model relates edges to each other. Length variation in
V2-V3 edge is positively correlated to variation of edges within that portion of the embryo
while negatively correlated with edges adjacent to that portion of the embryo.
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Figure 2.3: The embryo graph describes interconnectivity among seam cells and
serves as a basis for hypergraphical modeling. Interdependence between seam cells
is modeled via a graph. Pairs of cells are labelled anterior to posterior: H0, H1, H2, V1,
..., V5, V6, T. Physiologically close cells are linked via an edge. The graphical model
underpins both the interpolation step and hypergraphical data association steps of the
tracking process. Specifically, correlated movement between paired nuclei and correlated
edge length variations are considered when quantifying a track update.

127



Figure 2.4: Hypergraphical models improve performance on challenging
association decisions. Percentage relative error rates by movement decile, focusing on
the 12.5µm gate. GNN, MHT (K=5, 10, 25. N=2), and PM (K=5,10,25. N=2) are
compared. The MHT results are clustered while the PM results improved with increased K.
The separation between PM models with varying K highlights the increased discriminatory
power in the hypergraphical model.
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Figure 2.5: Eigen-embryos compactly describe behavioral maturation. A) A
schematic illustrating how dorsoventral (DV) bends are defined. Top: Seam cell nuclei
on each side of the body are fit with a natural cubic spline (black line). Vector ~v2 links the
midpoints between adjacent seam cell nuclei (open circles). Bottom: View looking down
~v22 to highlight a DV bend angle on one side of the body (red arrow). B) DV bend angles
between all adjacent seam cells are used to define an embryo’s posture. DV bends along
the left (+) and right (o) sides of an embryo (top) are plotted (top). The posture model
for this embryo is shown (bottom). Position along the anteroposterior axis is indicated
by the color gradient. C) The fraction of the total variance captured by reconstructing
postures using 1 through all 18 principal components is plotted. D) Fraction of the total
variance captured by the first 4 principal components is plotted as a function of embryo age
(minutes post fertilization, mpf). E & F) unc-13 mutants have a late-stage motility
defect. E) Seam cell motions are compared in WT and unc-13 mutant embryos at 750
mpf (E) and 530 mpf (F). Representative 10 minute trajectories for the H1 seam cell (left)
and mean diffusion coefficients for all seam cell pairs (right; mean +/- SEM) are shown.
Scale bar, 10 µm. Sample sizes, 750 mpf (3 WT, 3 unc-13 ); 530 mpf (3 WT, 2 unc-13 ).
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Figure 2.6: Graphical interpolation leverages hypothesized associations to yield
a more robust full track update. Graphical interpolation is applied to posture tracking
via the embryo graph. The blue graph represents an anterior part of the posture of the
image volume show in Fig. 2.3. The red graph arises from a posture hypothesis in the next
frame in which H2L is missing. Black edges comprising identified relevant nuclei are used
in conjunction with the prior frame graph to predict the position of H2L. The green points
are intermediate predictions with the purple point being the final prediction, an average of
individually predicted black points via Eq 2.2.
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Figure 2.7: MHHT search trees constructed using two different methods. Murty’s
algorithm applied in two different manners to perform posture tracking. A) The traditional
implementation of Murty’s algorithm will generate the K best hypotheses from each
preceding hypothesis. The exponentially growing search tree yields a more thorough
exploration of hypotheses. On the other hand, a more typically used version of Murty’s
algorithm will generate the K best hypotheses from the K preceding hypotheses. Worst
case computation is reduced from exponential in N to linear in N. Bolded circles highlight
the cost-minimizing path; scissors denote a pruned hypothesis due to Murty’s algorithm
returning a biologically infeasible posture.

Figure 2.8: Low spatial resolution, high temporal resolution volumetric imaging
allows observation of late-stage behavior.Three sequential XY maximum intensity
projections of images captured at approximately 2 hours before hatching, imaged at 3
Hz. Low illumination dose permits long-term imaging of rapid movements in the embryo
without obvious phototoxicity. The apparent size and intensity of seam cell nuclei fluctuate
throughout imaging, but are largely homogeneous and are indistinguishable based on
appearance alone. Red dots are placed on nuclei in the tail pair.
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Figure 2.9: A 3D U-Net is trained to perform semantic segmentation on image
volumes. The input (orange) is a full 3D image volume. Successive convolutions (blue
arrows) and strided convolutions (gray arrows) encode information. Deconvolution layers
parametrically upsample input layers towards the input size. The number of filters in each
layer (1, 16, 32, 64, 128) is displayed. The output is (orange) is the same size as the input,
each voxel value yijk ∈ [0, 1] representing the likelihood of being part of a nucleus.
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Chapter 2: Conclusions

Multidisciplinary research between natural scientists, optical physicists, and mathematicians

stands to advance discovery of biological phenomena. In particular, questions concerning

developmental biology often requires observation at the cellular level. Techniques such as

electron microscopy and fluorescence microscopy (Chapter 1.3) enable such observation.

However, the quantity and quality of subsequent image data increases as the capability

of microscopes improves. The development and application of algorithms and data-driven

statistical modeling is integral for efficiently analyzing image data.

C. elegans embryogenesis inspired mathematical research contributed in this thesis.

Biologists and neuroscientists study the worm as a model for nervous system development.

However, the onset of muscle cells approximately halfway through embryo-development

complicates further observation of the embryo. The rapid twitching movements cause

the embryo to move abruptly in its eggshell (Chapter 1.2); limitations in fluorescence

microscopy impose tradeoffs when imaging the embryo (Chapter 1.3). Two research problems

concerning C. elegans embryo-development were explored: completing the 4D atlas and

behavioral analysis. Point-set identification problems have been largely solved using efficient

matching algorithms or registration methods. Posture identification emerged as a problem

unlike any other in computer vision. The C. elegans embryo’s particular flexibility in
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conjunction with its developmental elongation and fast twitching bouts come together to

yield a uniquely challenging point-set identification task.

The 4D atlas prior to twitching has been completed [71]. Late-stage development

encompasses the moments in which cells form complete tissues and organs, as well as when

the embryo becomes capable of life outside the eggshell. Completion of the 4D atlas requires

tracking cells throughout late-stage development despite bouts of twitching motion. The

seam cells act as a “motion capture suit” to register sequential images; cells are then

remapped according to an approximation of the embryonic posture (Figure 3.2) [21]. Joint

identification of the seam cells defines the posture. Manual posture identification requires

biological knowledge and is labor intensive. As such, posture identification is a significant

barrier to completing the 4D atlas.

Behavioral analysis focuses on the nervous system. The C. elegans nerve ring is

composed of 302 cells. How and when the nerve ring activates throughout late-stage

development is largely unknown. The seam cells again act as fiducial markers to describe

posture. Rapid imaging (3 Hz) enables observation of the embryo moving in the eggshell.

Tracking the posture is defined as tracking all seam cells together. Patterns in movement

(i.e. patterns in posture transformations) throughout late-stage development are used

to understand nervous system development. Aforementioned twitching motions challenge

existing object tracking methods. The high capture rate also necessitates a lose light dose

to avoid photobleaching, making nuclei appear dim and close together.

Image capture rate is the key distinction between imaging approaches. The five

minutes between images imposes a complete independence of postures between images,

whereas images captured at 3 Hz show continuous motion of the embryo. Posture as a
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composition of identified seam cells is used in both projects to mitigate embryonic twitching

and conduct analyses in late-stage development. Differing facets of each imaging approach

lead to the development of novel algorithms for object identification and multiple object

tracking. Each algorithm is then applied to posture identification and posture tracking,

respectively.

We explored the relationship between models for point-set identification and accompanying

algorithms for solving the underlying optimization problem. Algorithms such as the Hungarian

method [39] and Jonker-Volgenant [35] solve the LAP (Chapter 2.1.1) in polynomial time,

enabling efficient application of simple models to large point-set matching tasks. Progressing

from linear to quadratic models incurs a significant computational burden; exactly solving

the QAP (Chapter 2.1.2) is NP-hard. Heuristic approximation algorithms are polynomial,

but offer no guarantee on the gap between a converged and optimal solution (Chapter 2.1.2.1).

Assignment problems of higher orders (cubic, quartic, etc.) further suffer from burdensome

computation. Some heuristic methods for the QAP have been adapted to solve higher

order assignment problems, but even such methods are not readily applicable to assignment

problems higher than a 4th order model [27, 44, 95].

The lack of an existing algorithm which could flexibly integrate a wide range of

matching models inspired EHGM (Chapter 3). Such an algorithm was necessary for

pursuing posture identification, as biologically relevant cues used by biologists comprised

the entire embryo. EHGM adapts a branch-and-bound approach to exactly solve arbitrarily

intricate assignment problems [42]. The method was designed as an independent tool for

approaching challenging point-set matching tasks. EHGM allows for models to be both

rigorously tested due to the exactness of the method (Chapter A.1) and easily altered on
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account of the flexibility of the branching optimization process. However, EHGM’s worst

case computational complexity is exponential in the number of points. The method is a

novel contribution to assignment problem methodology and stands to improve performance

on moderately sized point-set matching tasks.

We then applied EHGM to posture identification using hypergraphical models with

features derived from experts performing manual annotation (Chapter 3.2.1). The hypergraphical

model parameters were estimated using over 1200 instances of manually identified posture

(Chapter 3.5.3). The Posture model solved with EHGM identified posture more than twice

as often as an existing graphical method (Chapter 3.2.2) [96].

Posture identification enables subsequent cell tracking in late-stage development (Chapter 2).

Detected cell nuclei are remapped to a “straightened” posture space which mitigates embryo-

wise displacement of cell positions, i.e. movement that is due to twitching. The remapped

coordinates can then be tracked using the GNN. The two-chapter sequence, Chs. 3 and 2,

describes the application of state-of-the-art image segmentation and assignment problem

methodologies to improve efficiency in completing the 4D atlas project [21].

The five minute interval between images contributes largely to the challenge in posture

identification; the step size in conjunction with twitching ensures that posture at each

timepoint is independent of preceding postures. While this non-traditional imaging approach

ensures embryo health, it precludes application of standard point-set matching algorithms.

A more traditional imaging style was applied to observe behavioral progression in C. elegans

embryos (Chapter 2). The sensitive embryo was imaged at 3 Hz over the last 5 hours of

development; the approach necessitated a low dose to preserve embryo-health. Each embryo

imaged in this manner yields ≈54000 image volumes. The seam cell nuclei appear as dim
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fluorescent spheroids moving in close proximity as the worm coils (Figure 2.8). Images

from previous frames give context to seam cell nuclei identities at the present frame despite

random bouts of twitching.

Posture tracking was approached as a MOT problem; however, existing MOT methods

did not allow the modeling of interdependencies between object trajectories. Many MOT

tasks can be successfully modeled via linear models in the same sense that traditional

point-set matching problems can be adequately solved via linear and quadratic models.

Moreover, objects do not reliably move together in many real-life MOT tasks; many image

capture paradigms also enable observation of smooth predictable motion. Again, seam cell

identification emerges as a cutting edge problem in the field.

MHT stands as the gold-standard paradigm for approaching an MOT task. Intersecting

trajectories are disambiguated using future frame data under the assumption of smooth

motion. Treating object movements as independent can yield strong results even if objects

move interdependently. We were interested in intertwining MHT’s deferred decision logic

with our empirically validated hypergraphical modeling approach to yield a new tool for

MOT tasks featuring correlated movement, such as posture tracking.

MHHT efficiently integrates MHT’s multiple frame evaluation protocol with flexible

hypergraphical modeling to track a hypergraphical form across several future frames. While

recent MHT applications in fluorescence microscopy solve a large multidimensional assignment

problem [17, 30], traditional implementations use an optimized Murty’s algorithm [54, 55]

to recursively update hypotheses across a specified number of future frames. An explicit

tree search will consider at most KN hypotheses, whereas using an optimized Murty method

enables evaluating only KN hypotheses [23, 54]. The tree search method has the potential
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to find a path with lower total hypergraphical cost of the K original hypotheses than the

approximation at expense of computation; the tree search method is worst-case exponential

in N while the approximation is worst-case (and average-case) linear in N (Chapter 2.5.1.3).

MHHT’s hypergraphical model evaluation step occurs after hypothesis generation via a

linear model. As a result, the algorithm’s scaling is largely independent of the chosen

hypergraphical model.

MHHT with data-driven hypergraphical models improved posture tracking accuracy

over baseline methods across levels of detection (Chapter 2.2.2). MHHT was relatively more

effective on data with perfect detections, particularly on frames in the top quartile of frame-

to-frame embryo displacement (Table 2.2). Volumetric imaging at 3 Hz stood to damage

both the embryo and fluorophores; a low laser dose was used to compensate. However, the

trade off caused nuclei to appear dim and close together, yielding a challenging detection

problem. Nuclei were often under-segmented (undetected) or over-segmented (clumped

together) despite the training and deployment of a 3D CNN (Chapter 2.5.2.2). MHHT

dramatically lowered the error rate on frames with less movement, but also struggled on

high movement frames (Figure 2.4). Nonetheless, MHHT proved to be more effective over

baseline method at all levels of embryo-movement. We also developed a Python interface

for posture tracking to enable efficient posture annotation of future imaged embryos.

The algorithm and interface are easily applicable to other interdependent MOT tasks.

Subsequent analysis of behavioral maturation gave insight into how and when the nervous

system assumes control of locomotion [2].

Altogether, presented contributions highlight the application of image processing

techniques and novel combinatorial optimization approaches. Methods can be broadly
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described as approaching point-set identification tasks through the lens of supervised learning.

Novel algorithms EHGM and MHHT integrate hypergraphical modeling in a data-driven

fashion to point-set matching tasks. Developed methods were applied to identify a set of

skin cells in embryonic C. elegans, a model organism for neurodevelopment. We demonstrated

the efficacy of both EHGM and MHHT by dramatically improving posture identification

accuracy and enabling more efficient analysis of posture data, respectively. The dynamism

of both methods allows for applicability to domains and problems beyond seam cell identification

in embryonic C. elegans.

This thesis bridged academic communities at two levels. First, the supervised learning

and combinatorial optimization communities within the larger mathematics community

were brought together in modeling cutting-edge point-set matching tasks. Second, the

mathematical communities has been bridged with the developmental biology and microscopy

communities. This partnership highlighted the capacity of multidisciplinary research in

discovering biological phenomena.
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Appendix A: Appendix

A.1 Exact Hypergraph Matching for Posture Identification in Embryonic

C. elegans

EHGM Pseudocode

EHGM requires as input the branching step k ∈ {1, 2, . . . , n1}, the dissimilarity

tensors Z(d), d = 1, 2, . . . , n1, the size k permutation set P, and optionally an initial

upper bound C0 on the global minimum C∗. The dissimilarity tensors are calculated

given the reference hypergraph of size n1, and either a previous frame hypergraph or a

template hypergraph as described in Model Fitting. The lower degree dissimilarity tensors

Z(d), d ≤ 2k are calculated prior to the search and used to select branches. The higher

degree dissimilarity terms d > 2k are calculated during the search as required. Algorithm

1 initializes the search from the first candidate set Q1 = P. The search is parallelized via

initializing several first branches. Each explores a disjoint section of the domain X .

Algorithm 1 initializes arrays and variables to start the recursive branch search

(Algorithm 2). Eligible branch candidates are subset from the general queue P into Qm

via the Enqueue procedure (Algorithm 3). Each Qm contains the potential assignments

for the next k terms that satisfy both the pruning constraints and assignment constraints
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specified by X . The current assignment cost C̃ is checked against the current minimum C∗

upon reaching a complete assignment. The Backtrack procedure (Algorithm 4) removes

km−1 from Qm−1 when the path from km−1 is exhausted, which occurs when Qm = ∅. The

recursion will continue until Q1 is empty, signaling the complete enumeration of the search

space Sn.
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Algorithm 1: EHGM
Input: k, C0,P,Z(1), . . . ,Z(2k)

Output: x∗, C∗ = f (x∗)

Initialization

C∗ ← C0

H̃ = []

Ĩ = []

x̃← ∅

C̃ ← 0

m← 1

Q1 ← Enqueue(x̃,P, C̃, C∗, 1)

while Q1 6= ∅ do
k1 ← Q1.pop()

Ĥ1 ← H1(k1|Z(1), . . . ,Z(k))

C̃ ← Ĥ1

H̃[1] = Ĥ1

x̃← x̃ ∪ {k1}

m += 1

V isit(P, x̃, C̃, C∗,m)

end

Return: x∗, C∗
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Algorithm 2: Visit
Input: P, x̃, C̃, C∗,m

Qm ← Enqueue(x̃,P, C̃, C∗,m)

while Qm 6= ∅ do

k̂m ← Qm.pop()

x̃← x̃ ∪ {k̂m}

m += 1

Ĥm ← Hm(km|x̃,Z(1), . . . ,Z(2k))

H̃[m] = Ĥm

C̃ += Ĥm

if m ≥ 3 then
Îm ← Im(km|x̃,Z(2k+1), . . . ,Z(mk))

Ĩ[m] = Îm

C̃ += Îm

end

if m < M then
V isit(P, x̃, C̃, C∗,m)

else if m = M then

if C̃ ≤ C∗ then
x∗ ← x̃

C∗ ← C̃

end
Backtrack(x̃,Qm−1,m)

end
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Algorithm 3: Enqueue
Input: x̃,P, C̃, C∗,m

Output: Qm

Qm ← ∅

for k ∈ P do

if (k ∩ x̃ = ∅) ∧ (C̃ +Hm(k|x̃) < C∗) then
Qm ← Qm ∪ k

end

end

Algorithm 4: Backtrack
Input: x̃,Qm−1,m

Qm−1 ← Qm−1 \ x̃m

x̃← {x̂1, x̂2, . . . , x̂m−1}

C̃ ← Σm−1
j=1 (Cm + Im)

Hypergraphical Objective Decomposition

The hypergraphical optimization objective can be decomposed according

to hyperedge multiplicity and branching step. The stratification enables efficient

search via EHGM.

Theorem 1. Assume an assignment problem objective f is in the form:
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f (X|Z(1),Z(2), . . . ,Z(n1)) =
n1∑

l1=1

n2∑
l′1=1

Z(1)
l1l′1
xl1l′1

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

Z(2)
l1l′1l2l′2

xl1l′1
xl2l′2

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

n1∑
l3=l2+1

n2∑
l′3=1

Z(3)
l1l′1l2l′2l3l′3

xl1l′1
xl2l′2

xl3l′3
+ ...

+
n1∑

l1=1

n2∑
l′1=1

...
n1∑

ln1=ln1−1+1

n2∑
l′n1=1

Z(n1)
l1l′1...ln1 l′n1

xl1l′1
. . . xln1 l′n1

(A.1)

Then, for k ∈ {1, 2, . . . , n1}, the stratification fully describes the objective f after

M = n1
k

branches. Define of H1, Hm, and Im:

H1(K1|Z(1),Z(2), ...,Z(k)) :=
k∑

i1=1
Z(1)

li1 l′i1
+

k∑
i1=1

k∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+ ...+

k∑
i1=1

k∑
i2=i1+1

. . .
k∑

ik=ik−1+1
Z(k)

l1l′i1
li2 l′i2

...lik
l′ik

Hm(Km|K1, ...,Km−1,Z(1), ...,Z(2k)) :=
mk∑

i1=(m−1)k+1
Z(1)

li1 l′i1
+

mk∑
i2=(m−1)k+1

i2−1∑
i1=1

Z(2)
li1 l′i1

li2 l′i2

+
mk∑

i3=(m−1)k+1

i3−1∑
i2=1

i2−1∑
i1=1

Z(3)
li1 l′i1

li2 l′i2
li3 l′i3

+ ...+
mk∑

i2k=(m−1)k+1

i2k∑
i2k−1=1

. . .
i2−1∑
i1=1

Z(2k)
li1 l′i1

...li2k
l′i2k

Im(Km|K1,K2, . . . ,Km−1,Z(2k+1), . . . ,Z(mk)) :=
mk∑

d=2k+1
Ξ(d)

m
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where

Ξ(d)
m (Km|K1,K2, . . . ,Km−1,Z(2k+1), . . . ,Z(mk)) :=

mk∑
id=(m−1)k+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id

Then, the degree n1 hypergraph matching objective f can be expressed

f (X|Z(1),Z(2), . . . ,Z(n1)) =
m∑

m=1
Hm +

m∑
m=3

Im

Proof. First consider the single branching case k = 1. This yields M = n1
k

= n1
1 = n1

branches. Each branch yields one assignment; i.e. Km = l′m is assigned to the vertex lm.

The initial branch selection rule H1 can only utilize the first order term:

H1(K1|Z(1)) = Z(1)
l1l′1

Then the general selection rule for the second branch will: gather the first order costs

for the second assignment as well as the quadratic (second order) costs between the first

two assignments:

H2(K2|K1,Z(1),Z(2)) = Z(1)
l2l′2

+
2∑

i2=2

i2∑
i1=1

Z(2)
li1 l′i1

li2 l′i2
= Z(1)

l2 + Z(2)
l1l′1l2l′2

The third branching step will include H3 and I3. H3 follows from H2:
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H3(K3|K1, K2,Z(1),Z(2)) = Z(1)
l3l′3

+
3∑

i2=3

i2−1∑
i1=1

Z(2)
li1 l′i1

li2 l′i2
= Z(1)

l3l′3
+ Z(2)

l1l′1l3l′3
+ Z(2)

l2l′2l3l′3

I3(K3|K1, K2,Z(3)) = Ξ(3)
m = Z(3)

l1l′1l2l′2l3l′3

Note that if n1 = 3, then H1 +H2 +H3 +I3 fully describes the third order assignment

problem:

H1 +H2 +H3 + I3

= Z(1)
l1l′1︸ ︷︷ ︸

H1

+ Z(1)
l2l′2

+ Z(2)
l1l′1l2l′2︸ ︷︷ ︸

H2

+ Z(1)
l3l′3

+ Z(2)
l1l′1l3l′3

+ Z(2)
l2l′2l3l′3︸ ︷︷ ︸

H3

+ Z(3)
l1l′1l2l′2l3l′3︸ ︷︷ ︸

I3

=
3∑

i1=1
Z(1)

li1 l′i1
+

3∑
i1=1

3∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+

3∑
i1=1

3∑
i2=i1+1

3∑
i3=i2+1

Z(3)
li1 l′i1

li2 l′i2
li3 l′i3

= f(X|Z(1),Z(2),Z(3)) (A.2)

Now consider the extension to n1 = 4, yielding a fourth degree assignment problem.

The fourth branch will assign the next term, K4 = l′4. The terms H4 and I4 will then fully

specify the fourth degree problem:

H4(K4|K1, K2, K3,Z(1),Z(2)) = Z(1)
l4l′4

+ Z(2)
l1l′1l4l′4

+ Z(2)
l2l′2l4l′4

+ Z(2)
l3l′3l4l′4

The second aggregation rule I4 will consider third order terms between branches 1, 2
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and 4 as well as the fourth order term using all four assignments:

I4(K4|K1, K2, K3,Z(3),Z(4)) = Ξ(3)
4 + Ξ(4)

4 = Z(3)
l1l′1l2l′2l4l′4

+ Z(3)
l2l′2l3l′3l4l′4

+ Z(4)
l1l′1l2l′2l3l′3l4l′4

Joining the fourth branch:

H1 +H2 +H3 + I3 +H4 + I4 =
3∑

i1=1
Z(1)

li1 l′i1
+

3∑
i1=1

3∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+

3∑
i1=1

3∑
i2=i1+1

3∑
i3=i2+1

Z(3)
li1 l′i1

li2 l′i2
li3 l′i3︸ ︷︷ ︸

H1+H2+H3+I3

+ Z(1)
l4l′4

+ Z(2)
l1l′1l4l′4

+ Z(2)
l2l′2l4l′4

+ Z(2)
l3l′3l4l′4︸ ︷︷ ︸

H4

+ Z(3)
l1l′1l2l′2l4l′4

+ Z(3)
l2l′2l3l′3l4l′4

+ Z(4)
l1l′1l2l′2l3l′3l4l′4︸ ︷︷ ︸

I4

=
4∑

i1=1
Z(1)

li1 l′i1
+

4∑
i1=1

4∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+

4∑
i1=1

4∑
i2=i1+1

4∑
i3=i2+1

Z(3)
li1 l′i1

li2 l′i2
li3 l′i3

+
4∑

i1=1

4∑
i2=i1+1

4∑
i3=i2+1

4∑
i4=i3+1

Z(4)
li1 l′i1

li2 l′i2
li3 l′i3

li4 l′i4

= f(X|Z(1),Z(2),Z(3),Z(4)) (A.3)

Now consider the arbitrary (m+ 1)st branch. This will yield the full objective for an

assignment problem of size m+ 1 up to degree m+ 1.
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m+1∑
p=1

Hp +
m+1∑
p=3

Ip =
m∑

p=1
Hp +

m∑
p=3

Ip +Hm+1 + Im+1 =

m∑
i1=1

Z(1)
li1 l′i1

+
m∑

i1=1

m∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+ · · ·+

m∑
i1=1

m∑
i2=i1+1

...
m∑

im=im−1+1
Z(m)

li1 l′i1
li2 l′i2

...lim l′im︸ ︷︷ ︸∑m

p=1 Hp+
∑m

p=3 Ip

+ Z(1)
lim+1 l′im+1

+
m∑

i1=1
Z(2)

li1 l′i1
lm+1l′m+1︸ ︷︷ ︸

Hm+1

+
m+1∑
d=3

Ξ(d)
m+1︸ ︷︷ ︸

Im+1

(A.4)

It is sufficient to show each degree d ∈ {1, 2, . . . ,m+ 1} hyperedge is fully accounted

for across all m + 1 points to prove the (m + 1)st branch satisfies the objective f. The

hyperedge costs across all points will be decomposed into three disjoint sets, and each set

considered at a time:

{1}, {2}, {3, . . . ,m}, {m+ 1}

The first and final of the four cases are trivial. The first degree terms are enumerated

via the first term in Hm+1, while Xi(m+1)
m+1 explicitly addresses the degree m+ 1 hyperedge

comprising all assignments: Z(m+1)
l1l′1l2l′2...lm+1l′m+1

. We will focus on the second and third cases.

The degree d = 2 terms are formed by the addition of branch m+ 1 are considered in term

Hm+1:

m∑
i1=1

m∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+

m∑
i1=1

Z(2)
li1 l′i1

lim+1 l′im+1
=

m+1∑
i1=1

m+1∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2

Let d ∈ {3, . . . ,m}. The completion is similar to the d = 2 degree case; however,
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the term Ξ(d)
m+1 in Im+1 address higher degree hyperedges up to and including degree m

concerning branch m+ 1:

m∑
i1=1

...
m∑

id=id−1+1
Z(d)

li1 l′i1
...lid

l′id

+ Ξ(d)
m+1 =

m+1∑
i1=1

...
m+1∑

id=id−1+1
Z(d)

li1 l′i1
...lid

l′id

Therefore, the (m+ 1)st step fully accrues the objective f :

m+1∑
p=1

Hp +
m+1∑
p=3

Ip = f(X|Z(1),Z(2), . . . ,Z(m+1))

Then inductively, the stratification holds such that:

n1∑
m=1

Hm +
n1∑

m=3
Im = f(X|Z(1),Z(2), . . .Z(n1))

Now consider the plural branching rule k > 1. The proof will follow from the single

assignment branching case. The base case at the fourth branch will be established, followed

by the induction hypothesis demonstrating the branching from m to m + 1. First, define

the terms H1, H2, H3, I3, H4, and I4:

H1 =
k∑

i1=1
Z(1)

li1 l′i1
+

k∑
i1=1

k∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+ ...+

k∑
i1=1

k∑
i2=i1+1

...
k∑

ik=ik−1+1
Z(k)

li1 l′i1
li2 l′i2

...lik
l′ik

(A.5)

H2 =
2k∑

i1=k+1
Z(1)

li1 l′i1
+

2k∑
i2=k+1

i2−1∑
i1=1

Z(2)
li1 l′i1

li2 l′i2
+ ...+

2k∑
i2k=k+1

...
i3−1∑
i2=1

i2−1∑
i1=1

Z(2k)
li1 l′i1

...li2k
l′i2k

(A.6)
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H3 =
3k∑

i1=2k+1
Z(1)

li1 l′i1
+

3k∑
i2=2k+1

i2−1∑
i1=1

Z(2)
li1 l′i1

li2 l′i2
+ ...+

3k∑
i2k=2k+1

...
i2−1∑
i1=1

Z(2k)
li1 l′i1

...li2k
l′i2k

(A.7)

I3 =
3k∑

d=2k+1
Ξ(d)

3 (A.8)

H4 =
4k∑

i1=3k+1
Z(1)

li1 l′i1
+

4k∑
i2=3k+1

i2−1∑
i1=1

Z(2)
li1 l′i1

li2 l′i2
+ ...+

4k∑
i2k=3k+1

...
i2−1∑
i1=1

Z(2k)
li1 l′i1

...li2k
l′i2k

(A.9)

I4 =
4k∑

d=3k+1
Ξ(d)

4 (A.10)

The terms presented thus far for the general k > 1 case fully describe all terms

concerning assignments 1, 2, . . . 4k up to degree 4k. The hyperedge multiplicities will again

be partitioned into disjoint groups:

{1}, {2, . . . , k}, {k + 1, . . . , 2k}, {2k + 1, . . . , 3k}, {3k + 1, . . . , 4k}

The first case is trivial, just as in the single assignment branching (k = 1) proof.

Unary terms are accounted for in the first summand of each Hm. Then, consider d ∈

{2, . . . , k}:
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k∑
i1=1

...
k∑

id=id−1+1
Z(d)

li1 l′i1
...lid

l′id︸ ︷︷ ︸
H1

+
2k∑

id=k+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸

H2

+
3k∑

id=2k+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸

H3

+
4k∑

id=3k+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸

H4

=
4k∑

i1=1

4k∑
i2=i1+1

...
4k∑

id=id−1+1
Z(d)

li1 l′i1
...lid

l′id

The proof for degree d ∈ {k + 1, . . . , 2k} follows immediately from the grouping

presented above, but without the initial branch selection rule term H1. Next, assume

d ∈ {2k + 1, . . . , (m − 1)k}. Degree d hyperedge dissimilarities will be contained in both

I3 and I4 terms:

3k∑
id=2k+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸

I3

+
4k∑

id=3k+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸

I4

=
4k∑

i1=1
...

4k∑
id−1=id−2+1

4k∑
id=id−1+1

Z(d)
li1 l′i1

...lid
l′id

Since d ≤ 2k + 1, the terms only appear in the third branch term I3 when the

assignment 2k+1 is committed. The final set arises from the definition of I4 which accrues

hyperedges of degree d ∈ {3k + 1, . . . , 4k} across assignments in branches m = 1, 2, 3, 4.

The base case is fully established for the arbitrary k > 1 case. The final step of the proof

is to establish the extension of the (m+ 1)st branch:
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m+1∑
p=1

Hp +
m+1∑
p=3

Ip =
m∑

p=1
Hp +

m∑
p=3

Ip +Hm+1 + Im+1 =

mk∑
i1=1

Z(1)
li1 l′i1

+
mk∑

i1=1

mk∑
i2=i1+1

Z(2)
li1 l′i1

li2 l′i2
+ · · ·+

mk∑
i1=1

mk∑
i2=i1+1

...
mk∑

imk=imk−1+1
Z(mk)

li1 l′i1
...limk

l′imk︸ ︷︷ ︸∑m

p=1 Hp+
∑m

p=3 Ip

+
(m+1)k∑

i1=mk+1
Z(1)

li1 l′i1
+ ...+

(m+1)k∑
i2k=mk+1

i2k−1∑
i2k−1=1

...
i2−1∑
i1=1

Z(2k)
li1 l′i1

...li2k
l′i2k︸ ︷︷ ︸

Hm+1

+
(m+1)k∑
d=2k+1

Ξ(d)
m+1︸ ︷︷ ︸

Im+1

(A.11)

The (m+ 1)k hyperedge multiplicities will be stratified into four groups:

{1}, {2, . . . , 2k}, {2k + 1, . . . ,mk}, {mk + 1, . . . , (m+ 1)k}

Just as in the singular k = 1 case, the proof for the first and last groups are trivial. The

unary terms are again evident from the first term in Hm+1, while the mk+1 ≤ d ≤ (m+1)k

terms in Im+1 fully encapsulates the fourth group. The steps in the remaining two cases

will follow that of the k = 1 case.

First, assume d ∈ {2, . . . , 2k}. The extension of the (m+ 1)st branch uses exclusively

the selection rule Hm+1:

mk∑
i1=1

...
mk∑

id−1=id−2+1

mk∑
id=id−1+1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸∑m

p=1 Hm

+
(m+1)k∑

id=mk+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸

Hm+1

=

(m+1)k∑
i1=1

...
(m+1)k∑

id−1=id−2+1

(m+1)k∑
id=id−1+1

Z(d)
li1 l′i1

...lid
l′id

(A.12)
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Next, assume d ∈ {2k + 1, . . . ,mk}. These terms are captured in Im+1 using each

definition of Ξ(d)
m+1:

mk∑
i1=1

...
mk∑

id−1=id−2+1

mk∑
id=id−1+1

Z(d)
li1 l′i1

...lid
l′id

+
(m+1)k∑

id=mk+1

id−1∑
id−1=1

...
i2−1∑
i1=1

Z(d)
li1 l′i1

...lid
l′id︸ ︷︷ ︸

Im+1

=

(m+1)k∑
i1=1

...
(m+1)k∑

id−1=id−2+1

(m+1)k∑
id=id−1+1

Z(d)
li1 l′i1

...lid
l′id

(A.13)

All four results together show that every degree hyperedge 1, . . . , (m+1)k is accounted

for in the (m+ 1)st branch, thus proving the induction hypothesis:

m+1∑
p=1

Hp +
m+1∑
p=3

Ip = f(X|Z(1),Z(2), . . .Z((m+1)k))

The M th branch completes the degree n1 assignment problem of size n1. For any

k ∈ {1, 2, . . . n1}, the selection and aggregation rules yield the full degree n1 assignment

problem objective:

M∑
p=1

Hp +
M∑

p=3
Ip = f(X|Z(1),Z(2), . . .Z(n1))

Convergence & Exactness of EHGM

Theorem 2. EHGM (algorithm 1) will converge to a globally optimal solution of the

following hypergraph matching optimization problem given input k ∈ {1, 2, . . . , n1}:
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min
X∈X

n1∑
l1=1

n2∑
l′1=1

Z(1)
l1l′1
xl1l′1

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

Z(2)
l1l′1l2l′2

xl1l′1
xl2l′2

+
n1∑

l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

n1∑
l3=l2+1

n2∑
l′3=1

Z(3)
l1l′1l2l′2l3l′3

xl1l′1
xl2l′2

xl3l′3
+ ...

+
n1∑

l1=1

n2∑
l′1=1

...
n1∑

ln1=ln1−1+1

n2∑
l′n1=1

Z(n1)
l1l′1...ln1 l′n1

xl1l′1
. . . xln1 l′n1

(A.14)

where X is defined:

X = {X ∈ {0, 1}n1×n2 : ∀j,
n1∑
i=1

xij ≤ 1,∀i
n2∑

j=1
xij = 1} (A.15)

Proof. First, we will show EHGM converges, then it will be proven that the converged

solution is globally optimal.

The search begins with initializing queue Q1 = P. The algorithm terminates with

the exhaustion of Q1. Each set Qm ⊂ P contains feasible k-assignments conditioned on the

assignment constraints and costs C̃, C∗. Backtrack (Algorithm 4) removes xm from Qm−1

upon enumeration of Qm. The recursion then falls back to selecting from branch m − 1,

eventually exhausting Qm−1 just as in the enumeration of Qm. This recursion continues

until the first branch k1 ∈ Q1 is removed, signaling the exploration of all assignments

originating with the k-tuple k1. The exploration is repeated for each k1 ∈ Q1. Thus, all

possible assignments X ∈ X are explored via the branching scheme.

Assignments accrue a monotonically increasing cost C̃ to be compared to C∗ with

accompanying assignment x∗ at each branch. A complete assignment then drops the last k
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assignments from x̃, initializing the backwards recursion, emptying Qm until k(nk)
m−1 ∈ Qm−1

is exhausted. There are at most |Qm|≤ nk viable permutations at branch m. Each possible

branch is evaluated from x̃ = [k1,k2, . . .km−1]. The (m − 1)st branch km−1 ∈ Qm−1 is

removed from Qm−1 upon exhaustion of Qm:

x̃(m)
1 = [k(1)

1 ,k(1)
2 , . . .k(1)

m−1,k(1)
m ]

x̃(m)
2 = [k(1)

1 ,k(1)
2 , . . .k(1)

m−1,k(2)
m ]

...

x̃(m)
nk

= [k(1)
1 ,k(1)

2 , . . .k(1)
m−1,k(nk)

m ]

Each of the nk possible final branches from k(1)
m−1 is explored, then k(1)

m−1 is removed

from Qm−1.

The process follows for the M th branch, exhausting viable assignment sets until kM−1

is removed. The recursion follows inductively back to the exhaustion of Q1, signaling the

end of the search. Thus, all possible assignments X ∈ X are explored via the branching

scheme.

The convergent and exhaustive algorithm will yield a globally optimal solution C∗ =

f(x∗) after exhausting Q1. As proven above the additive decomposition of the cost structure

(equation 3.2) is proven to be satisfied by summing all selection and aggregation rule terms.

Assume an uninformed initialization C∗ = ∞. Then the first pass will greedily take the
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best permutation from the first set Q1: k(1)
1 , and the best from the second set given it does

not conflict with k(1)
1 : k(2|1)

2 . This process will continue until the first complete assignment:

x̃ = [k(1)
1 ,k(2|1)

2 ,k(3|2,1)
3 , . . . ,k(M |(M−1),...,1)

M ] with C̃ = f(x̃). The first Bracktrack removes

k(M |(M−1),...,1)
M , and the M th Visit call will exhaust QM . Subsequent Enqueue calls will limit

only allow branches that satisfy both the assignment constraints and the updated selection

rule cost (Algorithm 3). This follows that any k-tuple of assignments k(j)
m such that for

x̃ = [k(j1)
1 ,k(j2|j1)

2 , . . . ,k(jd|j(m−1),...j1)
m ]:

C̃ +Hm(x̃m−1,k
(jd|j(m−1),...j1)
m ) < C∗

The additive decomposition of the objective paired with the assumed non-negativity

of the dissimilarity tensors Z(j) results in each branch monotonically increasing C̃:

C̃ +Hm(x̃m−1,k
(jd|j(m−1),...j1)
m ) + Im(k(j1)

1 ,k(j2|j1)
2 , . . . ,k(jd|j(m−1),...j1)

m ) ≥ C̃

The convergent search will thus eliminate all paths that are not globally optimal.

Incrementally updating the reserved solution x∗ with cost C∗ expedites convergence as

each replacement is necessarily a better solution. The resulting x∗ and corresponding cost

C∗ are such that at no other full assignment x̃ can replace x∗, by definition a globally

optimal solution of f.
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