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This study compares the performance of three different machine learning algorithms 

used for snow water equivalent (SWE) estimation. Inputs to these algorithms include 

passive microwave (PMW) brightness temperature (Tb) observations at 10.65 GHz, 

18.7 GHz, and 36.5 GHz at both vertical and horizontal polarization as collected by the 

Advanced Microwave Scanning Radiometer (AMSR-2). The three algorithms include: 

1) support vector machine (SVM) regression, 2) long short-term memory (LSTM) 

networks, and 3) Gaussian process (GP) regression. In-situ SWE measurements from 

the SNOTEL network collected across western Colorado is used as the training “targets” 

during the training procedure. The performance of the algorithms is evaluated using a 

number of different metrics including, but not limited to correlation coefficient, mean 
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square error (MSE), and bias. The evaluation is conducted over a range of different 

elevations and different land cover classifications in order to assess algorithm 

performance across a broad range of snowpack conditions. Preliminary results suggest 

the LSTM algorithm is computationally more efficient during the training process as 

compared to the other algorithms, yet yields a similar level of performance. Some 

limitations, however, have been found in the study, including poor performance during 

deep snow conditions, which is likely related to signal “saturation” within the PMW 

Tb’s used during the supervised training process. Additionally, algorithm performance 

is strongly dependent on the amount of training data such that too little training data 

results in poor performance by the algorithm at successfully reproducing inter-annual 

variability. The strengths and limitations of these different machine learning algorithms 

for snow mass estimation will be discussed. 
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Chapter1. INTRODUCTION AND MOTIVATION  

1.1. Introduction to Snow 

1.1.1. Importance of Snow  

Terrestrial snow is an important component of the hydrologic cycle. It has a critical 

influence on the land-atmosphere interactions in hydrology, including the control of 

mass and energy exchange [Robinson et al. 1993]. Consequently, snow exerts a 

significant impact on global climate change and regional weather conditions [Barnett 

et al., 1989]. Additionally, water from melted snow and ice is the source of freshwater 

resources for many regions in the world. Over one billion people depend on it as a 

freshwater supply [Foster et al., 2011]. 

At peak accumulation, snow covers approximately 40 percent of the northern 

hemisphere each year [Hall and Martinec, 1986]. The importance of snow is not only 

for human water supply but also as a dominant control on the global energy 

balance[Armstrong and Brun, 2010]. Every object on the Earth can emit and reflect 

radiation across some range of radiation based on its physical properties [Campbell, 

2002]. Snow and ice cover have a high albedo (reflection coefficient), which means 

they can reflect plenty of solar radiation.  

Some scientists compare snow and ice cover to a minor of the Earth surface.  Fresh 

snow with low density can reflect more than 75 percent of income solar radiation, which 
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is almost 15 times that of what wet earth can reflect [Thornes and Lydolph, 1987]. 

Hence, snow and ice cover have an important influence on the global energy balance.  

Since snow plays such an important role in human life, we need to have a better 

understanding and characterization of terrestrial snow, particularly in the face of a 

warming world. To solve our water supply issues and carry out further research on snow, 

we must first quantify the amount of snow to better manage and protect this important 

resource. 

1.1.2. Methods of Measuring Snow  

   Knowing the amount of water stored in the snow is extremely essential for resource 

management. Snow water equivalent (SWE) is a variable used to describe the amount 

of liquid water within a snowpack. It combines snow density and snow depth and 

represents the amount of water available for the possible runoff after melting [Larson 

et al., 2009]. The management of water supply in snow-dominated regions is highly 

related to the measurement of water stored in the snowpack and melting rate forecast 

[Dozier and Shi, 2000].  

   Ground-based snow measurements are the most traditional way to measure snow 

depth and SWE. Most simply, we can determine SWE with a ruler, a snow core, and a 

scale. Inserting the ruler straight into the snow until it hits the ground can tell us the 

snow depth. With a snow core of known dimension and volume along with a measuring 

scale, we can compute the corresponding weight of the SWE, which is the liquid 
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equivalent of snow after subtracting the weight of the snow core. The snow density, 

𝜌𝑠𝑛𝑜𝑤, is then computed as: 

                                              𝜌𝑠𝑛𝑜𝑤 =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑛𝑜𝑤

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑛𝑜𝑤 𝑐𝑜𝑟𝑒
                                                      (1.1-1) 

Finally, we can calculate SWE from ground-based measurements as: 

                                              𝑆𝑊𝐸 =  
𝐷 ∗ 𝜌𝑠𝑛𝑜𝑤 

𝜌𝑤𝑎𝑡𝑒𝑟
                                                    (1.1-2) 

where the unit of snow water equivalent (SWE) meters [m]; D is the snow depth in 

meters [m]; ρsnow is the snow density [Kg*m-3]; and ρwater is the water density 

[Kg*m-3]. 

     The U.S. Snowpack Telemetry (SNOTEL) network provides direct measurements 

of SWE across much of the United States. The limitation of SNOTEL stations’ data is 

that only temporal information at the point scale is provided [Serreze et al., 1999]. In 

some cases, the impact of the topography and other factors make regional 

characterization of SWE using SNOTEL stations a difficult and uncertain process 

[Molotch and Bales, 2006]. Ground-based snow measurements are relatively sparse and 

unavailable in most areas [Luce, Tarboton, and Cooley, 1998]. The emergence and 

development of remote sensing technology provide a new opportunity for research. 

Remote sensing instruments on aircraft and satellites complement the spatial sparsity 

of ground-based measurements of snow properties and can help provide a more robust 

characterization of SWE across the region scale [Larson et al., 2009]. 
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1.2. Introduction to Remote Sensing  

1.2.1. Snow Remote Sensing  

Remote sensing is defined as the collection of information about natural objects 

and phenomena on the earth without any direct physical contact with these objects 

[Eckerstorfer, Bühler, Frauenfelder, and Marines, 2016]. It is the science of accessing, 

processing and generating measurements, and collecting data via detecting the 

interaction between matter and electromagnetic radiation [Sabins, 2007]. Remote 

sensing technology encompasses plenty of different forms, such as airborne, space-

borne, and ground-based sensors. The potential of remote sensing in the research of 

snow was discovered by scientists in the last century. Since that time, space-borne 

sensors date has been widely used in the field of snow science [Chang et al., 1982]. 

Snow researchers started estimating snow cover and snow mass by collecting 

emitted and reflected radiation using space-borne sensors decades ago. With the 

development of aerospace, electronic physics, and other sciences, several different 

forms of sensors have been designed to record electromagnetic radiation. For instance, 

a radiometer, as one of the most widely used sensors, can be either an infrared 

radiometer or a microwave radiometer. It is a device designed to measure the radiant 

flux of electromagnetic radiation presented within a specific wavelength range based 

on its design [Kiedron, Michalsky, Berndt, and Harrison, 1999]. RADAR is another 

type of sensor, which was designed as an object detection system when it was invented. 
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The basic principle of RADAR is using electromagnetic waves to determine the range, 

altitude, direction, or speed of objects. There is also a technology called LIDAR. Instead 

of using low-frequency electromagnetic waves, LIDAR choose utilizes visible light 

from pulsed lasers for detection and ranging.   

1.2.2. Passive Microwave Sensor  

We use a passive microwave sensor (PMW) in this study, whose main structure is 

an antenna system collecting the power of an electromagnetic wave emitted by the 

snowpack and surrounding environment. Recorded data will be transmitted into 

brightness temperature by a built algorithm to calculate the strength of reflected 

radiation. 

There are two important parameters of PMW sensors we care about except for the 

antenna size. Frequency is one of them. The designers determine the antenna size as a 

function of the frequency. The antenna size should be on the order of one-tenth or more 

of the wavelength of the frequency emitted by target objects [Lathi and Dao, 1989]. In 

addition, for the space-borne sensor used in this paper, the antenna size is much bigger 

than one-tenth of the wavelength to achieve a minimal signal-to-power ratio.  

Polarization is another significant parameter to consider in the design of PMW 

sensors. The definition of polarization is the orientation of the electromagnetic wave 

relative to the Earth's surface [Mott, 1992]. Two of the most substantial polarizations 

that we use are horizontal polarization and vertical polarization. The combination of 
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data in two different polarizations can often provide users with really significant 

feedback information. 

In addition, the wavelength of radiation emitted by snow cover is at a relatively 

low spectral frequency. The PMW sensor we use in this study is designed to detect 

microwaves emitted by objects like snow and ice. Compared to optical (visible) 

radiation, microwave radiation has a larger penetration depth through media. As a result 

of this physical property, microwave radiation can be detected by the sensor during both 

daytime and night under all-weather conditions, which means the PMW sensor can 

work during cloudy conditions. 

1.2.3. Brightness Temperature  

     The electromagnetic attributes of snow change in different snowpack conditions. For 

example, the dielectric constant is an electromagnetic attribute of snow that we care 

about, is defined as a measurement of the polarization of the objects upon interaction 

with the electromagnetic wave. It varies with properties such as the amount of liquid 

water in the snow and snow structure [Mulders, 1987]. In general, snow has a dielectric 

constant between 1.2 and 2.0, which can be different during extreme conditions 

[Hallikainen, Ulaby, and Abdelrazik, 1986]. When the snow ablation season begins, a 

snowpack tends to have a larger dielectric constant. That is because snow contains a 

large amount of liquid water during the ablation season, and liquid water contains a 

larger dielectric constant [Rango, 1996].  
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       Researchers use a parameter called brightness temperature (Tb) to characterize the 

signal information recorded by the space-borne PMW sensor. The definition of Tb is 

the equivalent temperature of the microwave radiation thermally emitted by an object 

[Chang et al., 1976]. To put it another way, brightness temperature is the temperature a 

black body should have to emit the same intensity of radiation as a gray body object 

when it is in the thermal equilibrium [Ahmad, Forman, and Kwon, 2019]. According to 

the Raleigh-Jean approximation for microwave radiation, the brightness temperature is 

related to objects’ real temperature and their emissivity [Zwally and Gloersen, 1977] as:   

                                      𝑇𝑏 =  𝜀 · 𝑇𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙   𝜀 ∈ [0 1]                                       (1.2-1) 

where Tphysical is the real temperature of objects in [K], ε is the emissivity of objects 

[unitless] and Tb is brightness temperature in [K]. The emissivity of an object is 

frequency dependent and is a strong function of the dielectric constant of the object.  

1.3. Goals and Objectives  

In recent decades, machine learning is widely used as a data mining and prediction 

tool by snow researchers. The goal of the research is to understand the basic behavior 

of three different machine learning algorithms and analyze whether it is consistent with 

the physical characteristics of snow. This goal was achieved through the following 

objectives: 

(1)  Understand the basic physical principle of predicting SWE as a function of PMW 

brightness temperature data at 10 GHz, 18 GHz, and 36 GHz. 
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(2)  Evaluate the performance of the three different machine learning algorithms (Long 

Short Term Memory, Support Vector Machine Regression, and Gaussian Process 

Regression) under different snow depth and vegetation conditions and point out their 

advantages and disadvantages.  

(3) Analyze the prediction results of three machine learning algorithms and highlight 

the limitations of PMW snow remote sensing retrievals, including the indirect effects 

of vegetation and snow depth on the algorithm. 

(4) Highlight the reasons why PMW snow remote sensing retrievals are less effective 

in regions with dense forest, regions with shallow snow, regions with deep snow, or in 

areas undergoing ablation when the snow is relatively wet. 
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Chapter2. BACKGROUND AND LITERATURE REVIEW 

The following chapter talks about different types of snow measurements and 

principles related to remote sensing of snow. It also discusses the similarities and 

differences between three different machine learning algorithms as applied to snow  

2.1. Ground-based Snow Measurements 

     In the days before remote sensing, ground-based snow measurements were the most 

relied upon by snow researchers. Although with the development of remote sensing 

technology, remote sensing and other advanced measurement methods are more 

commonly used. Ground-based snow measurements have the unique advantage of 

providing direct snowpack information and measurements [Armstrong and Brun, 2010]. 

There are several snow measurement techniques at the point scale. As we mentioned in 

Chapter 1, the simplest way is to use a snow ruler to measure the snow depth and collect 

a snow core at the observation time and location to calculate the snow density. We can 

get information on SWE by taking the product of snow depth and snow density data. 

With the advent of radiometers and sensors, ground-based snow measurements ushered 

in a new development. For example, an ultrasonic snow depth sensor whose working 

principle is using ultrasonic to measure snow depth. It calculates the snow depth based 

on the travel time and speed of the ultrasonic impulses emitted by the sensor [Lea, 1998]. 

In terms of large-scale ground-based snow measurements, an interpolation algorithm 

has some advantages in SWE estimation. It can reproduce the approximate SWE/snow 
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depth data in a large area based on the point-scale observations near to that area [Dyer 

and Mote, 2006]. However, the interpolation algorithm has many limitations, due to the 

spatial and temporal variability of the snow mass. Not only in the interpolation 

algorithm but also all types of ground-based snow measurements, the special and 

temporal variability of snow is a challenge. The spatial resolution of ground-based snow 

measurements highly depends on the proximity, and the number of available located 

stations [Bechle, Millet, and Marshall, 2013]. Because of the limitation of terrain and 

climate, we do not have high-quality ground-based measurements in regions that are 

hard for the human footprint to reach. Further, ground-based snow measurement data 

often lack temporal continuity given data gaps associated with sensor maintenance and 

replacement. Considering these limitations of ground-based snow measurements, 

remote sensing is an attractive technology for snow measurement across a range of 

spatial and temporal scales [Foster, Hall, and Chang, 1987]. 

2.2. Snow Remote Sensing  

         Remote sensing began to be widely used for snow measurements near the end of 

the 20th century [Kelly, Chang, Tsang, and Foster, 2003]. Given the time continuity and 

global scale required for snow cover research, the sensors aboard Earth observation 

satellites became increasingly popular. There are two general types of sensors used to 

measure snow: (1) optical sensors or (2) microwave sensors. Optical sensors are 

commonly used to map the distribution (i.e., spatial extent) of snow cover while 
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microwave sensors often focus on measuring snow depth or SWE. 

Compared with broadband shortwave radiation, microwave radiation has a much 

longer wavelength, and hence, can travel much further through the snowpack as well 

as some low-density vegetation. [Ulaby and Stiles, 1980]. PMW sensors provide us 

with an indirect measurement of snow water (SWE) by measuring the brightness 

temperature. That is, PMW remote sensing of snow relies on a preferential scattering 

of microwave radiation at a higher frequency (18.7GHz or 36.5GHz) compared to a 

lower frequency (10.7GHz or 18.7GHz) by the snowpack. The increased scattering at 

high frequencies decreases the emissivity, and hence, lows the corresponding measured 

brightness temperature [Chang, Foster, and Hall, 1987]. In an idealized scenario, the 

intensity of radiation at 18.7GHz or 36.5GHz emitted by the soil surface should only 

have a small difference. When it comes to snow mass associated with volume scattering, 

the difference in scattering at a higher frequency (36.5GHz) relative to the lower 

frequency (18GHz) serves as the foundation for PMW remote sensing as illustrated in 

Figure 2.2-1. 
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SWE retrievals based on Tb measurements from space-borne microwave 

radiometers including the Scanning Multichannel Microwave Radiometer (SMMR) and 

the Advanced Microwave Scanning Radiometer for Earth Observing Systems (AMSR-

E) have been proven to be successful tools in estimating SWE across some portions of 

the globe. The following study focuses on the data from Advanced Microwave 

Scanning Radiometer 2 (AMSR-2). 

2.3. Existing Snow Estimation Products   

2.3.1. Spatial Interpolation 

There are typically three ways to leverage snow mass information collected by 

space-based sensors. One of them is spatial interpolation, which combines the space-

born PMW observation data of a relatively coarse spatial resolution with point-scale 

ground-based measurements. This method highly depends on the quality and quantity 

Figure 2.2-1 Preferential Scattering of Microwave Radiation Having Frequency 37GHz Compared to 

Microwave Radiation with Frequency 19GHz 
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of ground-based snow measurements data, and has a poor performance in regions with 

sparse spatial coverage of observations [Takala et al., 2011]. In addition, spatial 

interpolation is strongly affected by the strong variability of snow properties in complex 

terrain such as between mountains and valleys [Foppa, Stoffel and Meister, 2007]. 

2.3.2. SWE Retrieval  

The second approach uses brightness temperature at a specific frequencies and in-

situ measurements to calibrate regression coefficients in the retrieval algorithms. Chang 

et al. [1986] put forward the first snow depth retrieval of brightness temperature for a 

uniform snowpack with a fixed snow density of 300 kg/m3 and a mean snow grain size 

(radius) of 0.3mm, which was expressed as: 

                            𝐷 =  1.59 × (𝑇𝑏18, 𝐻 − 𝑇𝑏37, 𝐻)                                    (2.3.1) 

where D is the snow depth [cm]; Tb18,H is brightness temperature [K] at 18 GHz at 

horizontal polarization; and Tb37,H is brightness temperature [K] at 37 GHz at horizontal 

polarization. 

         With more research, Goodingson and Walker [1994] presented another commonly 

used form of SWE retrieval of brightness temperature for dry snow based on Chang's 

research, which was expressed as: 

                             𝑆𝑊𝐸 =  𝑎 + 𝑏(𝑇𝑏37, 𝑉 − 𝑇𝑏19, 𝑉)                                      (2.3.2) 

where SWE is the snow water equivalent [mm]; a and b are fixed parameters; Tb37,V is 

the brightness temperature [K] at 37 GHz at vertical polarization; and Tb19,V is the 
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brightness temperature [K] at 19 GHz at vertical polarization; and a and b are fixed 

parameters from regression tests, a = -20.7 [mm] , b=-2.74 [K-1 ]. 

       Kelly et al. [2003] more closely considered the snow grain radius and volumetric 

fraction data from old models and developed a new generation of snow retrieval 

estimating snow depth based on SMM/I data at a constant snow temperature of 260 [K], 

which was expressed as: 

                     𝐷 =  𝑏(𝑇𝑏19, 𝑉 − 𝑇𝑏37, 𝑉) 2 + 𝑐(𝑇𝑏19, 𝑉 − 𝑇𝑏37, 𝑉)                  (2.3.2) 

 where D is the snow depth [cm]; Tb37,V is the brightness temperature [K] at 37 GHz at 

vertical polarization; and Tb19,V is the brightness temperature [K] at 19 GHz at vertical 

polarization; b and c are regression coefficients related to snow grain radius and 

volumetric fraction data. 

       In addition to snow grain size, vegetation is another important factor that has a 

significant impact on snow retrieval algorithms [Tedesco and Narvekar, 2010]. 

Vegetations over snowpack will absorb and reflect the microwave radiation emitted by 

the snowpack under them. In addition, they also emit their own microwave radiation 

that contributes to the noise within the signal as measured by the PMW sensors 

[Derksen, Walker and Goodison, 2005]. After presenting the first snow depth retrieval 

using PMW brightness temperature, Chang et al. [1996] incorporated vegetation effects 

into his original snow retrieval and improve the SWE estimation accuracy in forested 

regions. This new retrieval uses the following expression: 

                                            𝑆𝑊𝐸 =
 𝑎(𝑇𝑏19,𝑉−𝑇𝑏37,𝑉)

(1−𝑓𝑓)
                                       (2.3.3) 
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where SWE is the snow water equivalent [mm]; Tb37,V is the brightness temperature [K] 

at 37 GHz at vertical polarization; Tb19,V is the brightness temperature [K] at 19 GHz 

at vertical polarization; a is a fixed regression coefficient; and 𝑓𝑓 is the forest fraction 

ranging from 0 to 0.75 [unitless]. 

         With the launch of AMSR-E near the start of 21th century, Kelly et al. [2009] 

derived a unified expression for snow depth retrieval for both forested and non-forested 

regions:  

    𝐷 =  𝑓𝑓 ∗ [ 𝑃1 ∗
(𝑇𝑏18,𝑉−𝑇𝑏36,𝑉)

1−𝑏∗𝑓𝑑
] + (1 −  𝑓𝑓) ∗ [𝑃1(𝑇𝑏10, 𝑉 − 𝑇𝑏36, 𝑉)  +

               𝑃2 (𝑇𝑏10, 𝑉 − 𝑇𝑏18, 𝑉)]                                                                                  (2.3.4) 

where D is the snow depth [cm]; Tb36,V is the brightness temperature [K] at 36 GHz at 

vertical polarization; Tb18,V is the brightness temperature [K] at 18 GHz at vertical 

polarization; Tb10,V is the brightness temperature [K] at 10 GHz at vertical polarization; 

𝑓𝑓 is the forest fraction [unitless]; fd is the forest density; b is the calibration coefficient; 

and P1 and P2 are two dynamic coefficients ranging from 1 to 2. 

        All these retrievals shown above are based on some assumptions such as uniform 

snow grain size and snow density, which is not reasonable in the real world. Factors 

shown below all have a significant impact on the accuracy of SWE retrieval algorithms 

and leads to the uncertainty of retrieval results. 

Snow Grain Size 

        Snow grain size have influence on snow albedo, and is a challenging parameter to 
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characterize in the snow retrieval research given its variability in time and space 

[Armstrong, Chang, Rango and Josberger, 1993]. In addition, thick depth hoar layer 

composed with large loose snow grains near the bottom of the snowpack can attenuate 

microwave emission, which might cause the measured Tb to decrease [Hall and 

Martinec, 1986]. 

       Snow Depth 

        Snow retrieval based on data from spaced-based PMW sensors can only work in a 

specific range of snow depth depending on the frequency. If the snowpack is deep, the 

radiation from the soil surface will be significantly scattered away in the snowpack, and 

the sensor will mistake the signal it receives from the middle of the snow layer as 

coming from the surface of the soil resulting in a retrieval result that is far less than the 

actual snow depth. In shallow snow conditions, the brightness temperature at two 

frequencies will be almost the same, which makes the retrieval completely fail.  

       Ice Layers  

      Ice crusts on the surface and within the snowpack will also contribute to increased 

scattering of radiation emitted by the underlying soil surface, hence, leading to a lower 

brightness temperature. As a result, snow retrieval may over-estimate snow depth and 

SWE. 

      Wet Snow 

      Wet snow has a completely different emissivity than dry snow. The liquid water in 

the wet snow emits more radiation itself than dry snow and thus increase the measure 
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brightness temperature [Walker and Goodison, 1993]. The reason is that liquid water 

has a higher 𝑟  dielectric constant compared to that of dry snow, which causes the 

dielectric of snowpack to increase. Treating water in wet snow as dry snow can lead to 

significant errors in snow retrievals [Tedesco and Narvekar, 2010]. 

2.3.3. Land Surface Models 

       To reduce the uncertainty and error of existing satellite-based snow retrieval 

algorithms, the third method combines remote sensing observations and land 

surfacemodels’ (including a snow physical module) estimation to improve the snow 

estimates [Reichle, 2008]. The basic principle of this technology is called data 

assimilation (DA), which merges the remote sensing measurements with the model 

estimates by weighing their respective uncertainties [McLaughlin, 2002]. Combing 

with the model estimation data makes the snow retrieval results more consistent with 

the physical characteristics of snow, and can effectively eliminate the wrong retrieval 

results that violate the physical characteristics. 

      Although this technology improves the performance of snow retrieval and 

overcomes some limitations of existing satellite-based snow retrieval algorithms, its 

practical application is still plagued by the spatial and temporal variability of snow 

[Pulliainen, Grandell and Hallikainen, 1999]. Wet snow, deep snow, complex terrain 

and mixed land cover still limit the utilization of this technology. Furthermore, because 

of the complexity and huge computational cost of this method, it is computationally 
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expensive to apply across large spatial domains [Durand, Kim and Margulis, 2008].. 

2.4. Machine learning in SWE Retrieval 

       The uncertainty and limitations of all the existing snow retrieval algorithms 

mentioned in Section 2.3 motivate this research to explore a new approach to estimate 

SWE using space-based PMW radiometers. 

       Since the end of the last century, some snow researchers have tried to introduce 

machine learning algorithms into snow retrievals [Tsang et al. 1992; Davis et al. 1993; 

Tedesco et al. 2004]. In general, these studies focused on using model estimates (from 

physical models) along with ground-based measurements as input data to machine 

learning algorithms to predict SWE. Those predictions were then compared with the 

observation data not used during training to test the performance of those algorithms. 

Good agreement was found in the training area, which proved the feasibility of machine 

learning in snow retrieval. However, these applications are limited to certain regions 

such as the Antarctic region [Tsang et al. 1992] which has almost no vegetation and is 

relatively flat. A recent study conducted by Forman et al. [2013]; Forman and Reichle 

[2014]; and Xue and Forman [2015] applied machine learning based on snow 

properties(modeled) and brightness temperatures(measured) by utilizing ANN and 

SVM regression across large spatial scales. Based on their previous research, this article 

will explore and compare the performance of additional machine learning algorithms. 
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2.5. Introduction to Machine Learning 

The definition of machine learning was proposed in 1959 by Arthur Samuel. 

Machine learning is a technology where computers are capable of learning patterns 

without programming expressly. It is more explicitly defined as the process of 

identifying a set of categories where a new observation is included in the basis of 

training data containing observations whose category membership is known [Ruppert, 

2004]. 

 Machine learning, which requires the analyst to label the training data, defines 

characteristic class signatures that are used to allocate labels to all other undefined areas 

in the model framework [Campbell,2002]. The difference between machine learning 

and unsupervised algorithms is that unsupervised algorithms are self-organizing and 

give models the ability to find natural data clusters, but machine learning refers to 

making computers automatically collect, analyze, and generalize the useful information 

based on the known training database in order to give accurate predictions with unused 

data in the future. 

The purpose of machine learning is to generate classifying or regression 

expressions and functions in complex forms and simplify them in order to help humans 

understand them [Michie, Spiegelhalter, and Taylor, 1996]. One of the advantages of 

machine learning over traditional statistical methods is that it can make predictions and 

classifications without an explicit underlying probability model, so it has a promising 

application in many complex practical problems such as the stock market and Web 
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search [Domingos, 2012]. 

Since the theory of machine learning was proposed, a great variety of machine 

learning algorithms have been developed. Different algorithms differ in performance 

for different problems, so we will discuss the fundamentals of three different algorithms 

in the following sections. 

2.5.1. Long Short Term Memory (LSTM) 

Long Short Term Memory (LSTM) is an algorithm improved from the recurrent 

neural network (RNN), which is designed specifically for time series data [Gers, 

Schmidhuber and Cummins, 2000]. Compared to the original RNN algorithm, LSTM 

is much more efficient in dealing with long-term observation data. As the basic 

framework shown in Figure 2.5-1, LSTM contains several layers: (1) Input layer: these 

layers are used to load data from the original database and get information from outside. 

(2) Hidden layers: two or more hidden layers linked with each other builds the main 

body frame. They connect the input layers and output layers like a bridge, in which the 

information signals it chose to remember can remain and transfer between layers. (3) 

Output layers: layers respond to generate the output data we need and send it out of the 

network. 

LSTM comes in several different forms of data transmission, including forward 

LSTM, backward LSTM, and duplex transmission LSTM. This paper chooses forward 

LSTM, which means the network does not contain any feedback connections. The 
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signals can only transfer in one direction: from the input layers assigned at first to the 

hidden layer and subsequently propagate into the output layer [Atkinson and Tatnall, 

1997]. 

 Xn is the input information in time step n. L1,n and L2,n are the hidden neurons 

for time step n. Instead of using the hidden information saved in neurons at the last time 

step as an additional input like RNN, LSTM introduces a memory system called “gates” 

[Yin et al., 2022]. Based on the research of Kratzert et al. [2019], as Figure 2.5-2 shows, 

for each LSTM cell (hidden neuron), LSTM sets up three gates to control 

the information transmission: Forget gate F; Input gate I; Output gate O. 

Figure 2.5-1 The basic structure of Long Short Term Memory Figure 2.5-1 Basic Structure of Long Short Term Memory (adapted from Kratzert,2019) 
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Forget gate  

The forget gate decides what information this cell is going to forget. It ranges from 

0 to 1, 0 means totally forget the previous memory, 1 means completely keeping all 

information from the last time step. The function form is expressed below:  

                                        𝐹𝑛 =  Ó(𝑊𝑓(ℎ𝑛 − 1, 𝑋𝑛) + 𝑏𝑓)                                   (2.5.1) 

where Ó(.) is the sigmoid function; hn-1 is the hidden state information from the previous 

time step; Xn is the input data in running time step; Wf  is a vector of weights and bf  is 

a vector of bias.  

        Input gate 

The input gate controls how much new information from the input vector Xn is 

going to be added into the system. The expression is shown below: 

                                          𝐼𝑛 =  Ó(𝑊𝑖(ℎ𝑛 − 1, 𝑋𝑛) + 𝑏𝑖)                                     (2.5.2) 

where Ó(.) is the sigmoid function; hn-1 is the hidden state information from the 

previous time step; Xn is the input data in the running time step; Wi is a vector of 

 
Figure 2.5-2 The Structure of Each LSTM Cell 
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weights, and bi is a vector of bias. 

      Cn is the cell input gate that generates cell state information. It can be expressed as: 

                                             𝐶𝑛 =  𝑡𝑎𝑛ℎ(𝑊𝑐(ℎ𝑛 − 1, 𝑋𝑛) + 𝑏𝑐)                                 (2.5.3) 

where tanh(.) is the hyperbolic tangent function; hn-1 represents the hidden state 

information from the previous time step; Xn is the input data in the running time step; 

Wc is a vector of weights; and bc is a vector of bias. 

         Output gate  

     The output gate decides which information stored in the cell states is sent into the 

output layer. The expression of the output gate is:  

                                              𝑂𝑛 =  Ó(𝑊𝑜(ℎ𝑛 − 1, 𝑋𝑛) + 𝑏𝑜)                                      (2.5.4) 

where Ó(.) is the sigmoid function; hn-1 is the hidden state information from the previous 

time step; Xn is the input data in the running time step; Wo is a vector of weights; and 

bo is a vector of biases. 

        Cell states 

Vn is the cell states that characterizes the memory of the system. It can be generated 

from the forget gate and input gate as 

                                          𝑉𝑛 =  𝐹𝑡 ∗  𝑉𝑛 − 1 +  𝐼𝑡 ∗  𝐶𝑡                                                         (2.5.5) 

where * represents element-wise multiplication.  

        In addition, the function for hidden state information is expressed as: 

ℎ𝑛 =  𝑂𝑛 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑛 )                                                (2.5.6) 

where tanh(.) is the hyperbolic tangent function. 
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           With this memory system, LSTMs can avoid vanishing gradients problems 

existing in original RNN algorithms [Kratzert et al.2019]. That is, LSTMs have the 

ability to learn long-term relationships between input and output features [Zhang, 

Lindholm and Ratnaweera, 2018]. Consequently, LSTMs are thought to possess 

advantages in analyzing long timescale data such as snow cover and SWE.                                          

2.5.2.  Support Vector Machine Regression 

     The Support Vector Machine (SVM) was first presented by Vapnik et al. [1998] in 

order to improve the efficiency of solving non-linear function problems. The theoretical 

foundation of SVM is the statistical learning theory put forward by Vladimir Vapnik 

 Figure 2.5-3 The Basic Structure of Support Vector Machine Regression (adapted from Barton A 

Forman,2014) 
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and Alexey Chervonenki [Cherkassky, 1997]; [Shoesmith, Vapnik and Kotz, 1984]; 

[Vapnik, 1999].  In terms of function, SVMs can be divided into SVM regression and 

SVM classification. This paper focuses on SVM regression whose principle is trying to 

find out the non-linear dependence between input matrix X and output vector Y. 

Input matrix X and training targets Y corresponding to X together form the training 

data set t {(X1, Y1),…, (Xn, Yn)}, where Xn ∈ Rx and Yn ∈ RY where Rx represents 

the input space, RY represents real space where Yn belongs [Vapnik, 1999]. The basic 

framework of SVM regression can be seen in Figure 2.5-3. SVM regression assumes 

that M(x) (a.k.a.,“map” function) is a non-linear function to transmit input data set into 

a feature space. The input data sets that are transmitted into the feature space are called 

Mapped Vectors (Vn) which can be expressed as: 

                                                     𝑉𝑛 =  𝑀(𝑋𝑛)                                                 (2.5.7) 

Next, the F(.) is the function describes the linear combination of Mapped Vectors as: 

                                      𝐹(𝑉𝑛) = 𝑊 ∗ 𝑉𝑛 +  𝑏 ;   𝑏 ∈  𝑅𝑌                                               (2.5.8) 

where W is a vector of weights and b is a vector of bias, and both of which are 

determined during the training process. 

The training process of SVM in a given location can be treated as a convex 

optimization problem. The solution is shown as [Smola and Schölkopf, 2004]: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑤, 𝑏, 𝜉)    
1
2

𝑤2 + 𝐶 ∑ 𝜉𝑛
𝑝

𝑛=1
 , 𝐶 > 0   

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑊𝑉𝑛 + 𝑏 − 𝑌𝑛 ≤  𝜉𝑛                                (2.5.9) 

 𝜉𝑛 ≥ 0, 𝑛 = 1,2, … , 𝑖 
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where W is the weight vector in the given location, C is a penalty parameter of the error 

term; p is the number of measurements in time;  𝜉 is the slack variable, which intends 

to relax the boundary conditions and allow for a certain proportion of outliers; and Yn 

is the training target in time step n. 

Parameter C determines how many data points within an abnormal deviation can be 

tolerated in the process. If C is given as a large number, the number of permitted outliers 

approaches zero. However, real measurements are difficult to achieve this requirement 

because real measurements cannot avoid deviation and errors. As a result, the algorithm 

many overfit the model by defining too many support vectors. Similarly, if C is given a 

as a small number, the number of support vector becomes too small, which causes the 

algorithm to generate an overly simple model. In practice, people use cross-validation 

in the algorithm to search for the best value of C [Vapnik, 1999].  

 The complexity of this convex optimization problem is determined by the 

dimensionality of training target Y [Fletcher, 1998]. The solution to this problem is 

using its dual formulation utilizing Lagrange multipliers, where time complexity can 

be transformed into the training targets’ number. The original function (Equation 2.5.9) 

can be written as [Smola and Ikopf, 2004]: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑎𝑖, 𝑎𝑖 ∗)  { −
1

2
∑ (𝑎𝑖 − 𝑎𝑖 ∗)(𝑎𝑗 − 𝑎𝑗 ∗) < 𝑀(𝑥𝑖)

𝑝
𝑖,𝑗=1 . 𝑀(𝑥𝑗) > − ∑ 𝑌𝑖(𝑎𝑖 − 𝑎𝑖 ∗)}

𝑝
𝑖=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ (𝑎𝑖 − 𝑎𝑖 ∗) = 0𝑝
𝑖=1  , 𝑎𝑖, 𝑎𝑖 ∗∈ [0, 𝐶], 𝑖 = 1,2, … , 𝑝                      (2.5.10) 

where ai,ai* are Lagrangian multipliers; <M(xi) ·M(xj) > is dot product of M(xi) and 

M(xj); xi and xj are two training points; and C is the penalty parameter mentioned above. 
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In order to computer the dot products in Equation 2.5.10, a new method called 

“Kernel Function” is introduced in SVM. In this study, it can be defined as: 

                       𝑘(𝑥𝑖, 𝑥𝑗) =< 𝑀(𝑥𝑖)  · 𝑀(𝑥𝑗)  >                                                   (2.5.11) 

using kernel functions can help us avoid the risk of too large a dimensionality of M(x) 

making weight vectors difficult to represent explicitly in memory [Cortes and Vapnik, 

1995]. 

There are four widely used kernel functions in SVM regression: linear kernel, 

polynomial kernel, hyperbolic tangent (sigmoid) kernel, and gaussian radial basis 

function (RBF) kernel [Smola and Schölkopf, 2004]. This study uses the RBF kernel 

as the kernel function, which is defined as:               

 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾||𝑥𝑖 · 𝑥𝑗||2 )                                                       (2.5.12) 

where xi and xj are single instances of input X;  ||xi · xj|| represents the Euclidean norm 

of xi and xj; 𝛾 is a positive parameter controls the width of Gaussian distribution 

[Ben-Hur and Weston, 2010]. If 𝛾 is too large, the RBF kernel function will behave like 

the linear function and lose its ability to represent the non-linear relationship. On the 

contrary, the decision boundary of SVM will become too sensitive to the noise in the 

training data when 𝛾 is underestimated [Haasdonk and Burkhardt, 2007]. 

2.5.3. Gaussian Process Regression  

Gaussian Process Regression (GPR) is a nonparametric, kernel-based probabilistic 

model. A GPR model introduces latent variables to explain the response through a 
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Gaussian process (GP) [Wu and Wang, 2018]. 

 The definition of Gaussian process (GP) will be explained below. There are n 

samples of input data X (x1, x2, …… xn), and the output data Y can be written as 𝑌 =

𝑓(𝑥). Then based on the assumption that the joint distribution of f(x1), f(x2), ……, f(xn) 

is multivariate normal (Gaussian), if this assumption is true for any n, the distribution 

of Y is defined as a Gaussian Process [Fearn, 2013]. There are two significant 

parameters used to specify a multivariate normal distribution. One is mean vector, and 

the other one is covariance matrix. To simplify the process, researchers usually assume 

the mean vector as 0 at first and use the kernel functions mentioned in SVM regression 

to describe the covariance matrix. Consequently, the basic structure of GPR is shown 

in Figure 2.5-4. 

In a GPR algorithm, it is expected that the distribution of y at this observation 

depends on x, and the closer the two x are, the smaller y becomes. Hence, for each 

sample xi, GPR introduces a latent variable f (xi) following Gaussian distribution, and 

all f (xi) together is a set of random variables with a joint Gaussian distribution. The 

GPR model can be expressed as: 

𝑌 = ℎ(𝑥)𝑇 ∗ 𝛽 + 𝑓(𝑥)    𝑓(𝑥)~𝐺𝑃(0, 𝑘(𝑥, 𝑥’))                          (2.5.13) 

where f(x) is the latent variable; h (x) is a set of "basis functions" that transform the n-

dimensional original eigenvectors into p-dimensional new eigenvectors to be consistent 

with the dimension of f (x) on the right. β is the parameter vector of p*1 [Raissi, Babaee 

and Karniadakis, 2019]. Based on Equation 2.5.14, the distribution of Y in the model 
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can be described as: 

                   𝑃(𝑦𝑖|𝑓(𝑥𝑖), 𝑥𝑖)~ 𝐺𝑃(𝑦𝑖|ℎ(𝑥𝑖)𝑇 ∗ 𝛽 + 𝑓(𝑥𝑖),ó2)                             (2.5.14) 

At the same time, the joint distribution of latent variable f (xi) can be expressed as: 

             𝑃(𝑓|𝑋)~𝐺𝑃(𝑓|0, 𝐾(𝑋, 𝑋))                                                                  (2.5.15) 

where 𝐾(𝑋, 𝑋) is a Gramme Matrix shown as: 

                       𝐾(𝑋, 𝑋) = [

𝑘(𝑥1, 𝑥1) … … 𝑘(𝑥1, 𝑥𝑛)

… … 𝑘(𝑥0.5𝑛, 𝑥0.5𝑛) … …
𝑘(𝑥𝑛, 𝑥1) … … 𝑘(𝑥𝑛, 𝑥𝑛)

]                   (2.5.16) 

       

During the training process, there are three main coefficients to be estimated: β, 

σ2 and θ (the hyperparameters of the kernel). They can be estimated by maximizing the 

following marginal log-likelihood [Wu and Wang, 2018]: 

 Figure 2.5-4 The Basic Structure of Gaussian Process Regression 
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                            𝑙(𝛽, 𝜎2 , 𝜃) =  𝑎𝑟𝑔 𝑚𝑎𝑥 𝑙𝑜𝑔 𝑃(𝑌| 𝑋, 𝛽, 𝜎2 , 𝜃)                        (2.5.17) 

When applying the model for prediction, we also incorporate the f(xnew) of the new 

sample into f(X) according to the Bayes formula, and this population conforms to the 

following joint probability distribution [Verrelst et al., 2016]: 

                           𝑃(𝑦_𝑛𝑒𝑤|𝑌, 𝑋, 𝑥𝑛𝑒𝑤) =
𝑃(𝑦_𝑛𝑒𝑤,𝑌|𝑋,𝑥_𝑛𝑒𝑤)

𝑃(𝑌|𝑋,𝑥_𝑛𝑒𝑤)
                 (2.5.18) 

The kernel function  𝑘(𝑥𝑛, 𝑥𝑛) is the same RBF kernel introduced in SVM (Section 

2.5.2). 
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Chapter3. METHODOLOGY AND STUDY DOMAIN 

3.1. Study Domain 

This study focuses on the snow in Western Colorado, which has a relatively 

complete ground snow monitoring network as shown in Figure 3.1-1. Ground-based 

snow measurements are significant to this research as they serve as the training targets 

for these machine learning algorithms. The SNOTEL stations provide high-quality 

SWE information in Western Colorado, which leads to the determination of the study 

domain. In addition, Western Colorado is a region that has applicable snowfall annually. 

As mentioned in Chapter 2, extremely deep or extremely shallow snow will contribute 

to the invalidation of the physical principles of snow retrieval based on PMW brightness 

temperatures and associated volume scattering. The result of machine learning 

algorithms is dubious if it cannot be supported by the corresponding physical principles.  

The study domain and the location of SNOTEL stations are shown in Figure 3.1-1. 

Black dots are the SNOTEL stations. Red dots represent the selected SNOTEL stations 

whose screening criteria will be explained in detail in Part 3.3.  
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     The Rocky Mountains occupy most of the study domain. Abundant snow resources 

in western Colorado provide a good environment and opportunity to carry out this 

research. At the same time, complex mountain terrain and variable land surface types 

limit some of the research. Vegetation is one of the significant factors impacting SWE 

remote sensing using brightness temperature from PMW sensors in space [Langlois et 

al., 2011].  To better understand the impact of vegetation types on the study, land surface 

type data from the NASA Land Information System (LIS) [Waters et al., 2021] are 

incorporated into this study. Figure 3.1-2 shows the land surface types of the study 

domain and the location of SNOTEL stations. 

The original LIS land surface data has 14 different land surface types. Based on 

the needs of this study, the original 14 land surface types are reclassified and combined 

Figure 3.1-1 The Location of Selected Test SNOTEL Stations in Study Domain 
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to achieve the purpose of simplification. Categories 1 to 5 including deciduous broad-

leaved forest, evergreen broad-leaved forest, deciduous coniferous forest, and 

evergreen coniferous forest, are merged into category forest (dark blue in Figure 3.1-2). 

Categories 6, 7 and 14 including shrubs and subtrees are merged into the category 

shrubs (green in Figure 3.1-2). Categories 8, 9, 10, and 12 including different types of 

grassland are merged into the category grass (light blue in Figure 3.1-2). The urban area 

belongs to category 11, which is mainly found in the upper right corner of the study 

domain (dark yellow in Figure 3.1-2). 

 

Figure 3.1-2 The Land Surface Type Map of All SNOTEL Stations in Study Domain 
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Besides vegetation, elevation is another important environmental parameter of the 

study domain. Snow depth and SWE collected by different SNOTEL stations may have 

very different values at different elevations. As a result, elevation will be an important 

environmental factor when evaluating the performance of machine learning algorithms. 

Therefore, Figure 3.1-3 shows the elevation of all SNOTEL stations used in the study. 

All of the stations have elevations of more than 2,600 meters, and more than 70% of 

the stations have elevations of more than 3,000 meters. All the stations are located at a 

higher elevation because snow accumulation is predominant in this area. However, 

there are still some differences in snow characteristics between stations. 

 Figure 3.1-3 The Elevation Map of All SNOTEL Stations in Study Domain 
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3.2. Input Data 

3.2.1. SNOTEL 

Snow Telemetry Network (SNOTEL) is a network of snow and climate monitoring 

stations operated by the Natural Resources Conservation Service (NRCS) of the United 

States Department of Agriculture in the Western United States (SNOTEL Sensor Data 

(usda.gov)). SNOTEL has been collecting different climate information including SWE 

and snow depth since the 1960s [Serreze et al., 1999]. It provides publicly available and 

detailed snow cover data to scholars around the world and permits users to access a 

great amount of data at daily and hourly resolutions [Avanzi et al., 2014]. More than 40 

years of complete time series, large amounts of data from more than 800 sites, and high 

temporal resolution of measurements (daily and hourly) make SNOTEL an excellent 

source of research data. 

       A typical SNOTEL station is equipped with multiple different sensors designed for 

several different climate data. An ultrasonic depth sensor is used to collect snow depth, 

a thermistor can measure the air temperature and a rain gauge is designed for annual 

total precipitation [Serreze et al., 1999]. The data of SWE used in this study is collected 

by a sensor called a “snow pillow”. A snow pillow contains a 1m2 square pillow filled 

with a low freezing point liquid and a pressure transducer. It measures SWE by changes 

in pressure on sensors caused by overlying snow [Castle, 1969]. The general structure 

of a SNOTEL station is shown in Figure 3.2-2. 

https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/snotelSensorData/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/snotelSensorData/
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     Factors such as damage from wildlife attacks and low battery power could cause 

SNOTEL stations to provide incorrect SWE data. Therefore, the quality control of 

SNOTEL data should be carried out first. By creating time series figures of SWE like 

Figure 3.2-1 for all used stations, problematic data can be easily eliminated. Through 

Figure 3.2-2 SNOTEL Station with Snow Pillow Measuring SWE (adapted from Bryan 

Allegretto,2020) 

Figure 3.2-1 Time Series Plots of SWE Snow Depth and Air Temperature for Station 64 
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the examination of the time series plots of all 111 sites, the data of all used stations are 

in a qualified state. 

3.2.2. AMSR2 Passive Microwave Brightness Temperature  

The Advanced Microwave Scanning Radiometer 2 (AMSR2) was lunched abroad 

in May 18, 2012 [AMSR2 | Earthdata (nasa.gov)]. As the successor of to the Advanced 

Microwave Scanning Radiometer for Earth Observing Systems (AMSR-E), AMSR2 is 

also a passive microwave radiometer with 6 frequencies and 2 polarizations for a total 

of 12 channels, Figure 3.2-3. Some instrument specifications are presented in Table 3.2-

1. 

       10.65GHz, 18.7GHz and 36.5GHz frequency bands are considered to be suitable 

frequencies for SWE retrieval. Microwave radiation at these frequencies can pass 

Figure 3.2-3 AMSR2 sensor [image credit: JAXA, GCOM-W1] Figure 3.2-3 The Appearance of AMSR2 Sensor [image credit: JAXA, 

GCOM-W1] 

https://www.earthdata.nasa.gov/sensors/amsr2
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through the atmosphere with relatively small attenuation [Chang et al., 1982]. AMSR2 

observation is not only used for snow retrieval, it is also used for retrievals of other 

geophysical parameters such as precipitation, ocean surface temperature, soil moisture 

and water vapor [Kolassa et al., 2017].   

Table 3-1 AMSR2 Instrument Specifications [NASA,2021] 

Platform GCOM-W1 

Launch Date May 18,2012 

Swath width 1445km 

Altitude 699.6 km (on equator) 

Frequencies (GHz) Dual Polarization 6.9, 10.7, 18.7, 23.8, 36.5, 89.0 

Sample footprint sizes (km) 

74 x 43 (6.9 GHz); 14 x 8 (36.5 GHz); 

6 x 4 (89.0 GHz) 

      In this paper, the brightness temperature measurements come from the gridded 

Level-3 land surface product (AE_Land3) [Ashcroft，2000]. There are two available 

daily measurements at each frequency from descending (night) and ascending (day) 

overpasses [Tedesco and Jeyaratnam, 2016]. This study utilizes descending data as the 

input data because measurements from nighttime AMSR2 overpasses minimize the 

impact of liquid water present in the snow [Forman et al. 2013]. Data from all three 

frequencies are resampled into global cylindrical EASE-Grid cell spacing at a 25km × 

25km resolution grid for consistency [Tedesco and Wang, 2006].      

The 6.9 GHz channel and the 89.0 GHz channel are not used in this study. The 6.9 

GHz channel has a relatively coarse resolution (75km × 43km), which will reduce the 
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accuracy of the machine learning algorithm and make it difficult to evaluate the 

performance of different algorithms on spatial differences in this paper. Although 

higher frequency channels such as 89 GHz mean higher resolution, they are usually 

designed for atmospheric research and are heavily influenced by water vapor and clouds 

[Durand and Margulis, 2007]. Some studies use 89GHz to estimate surface properties 

of snow such as surface grain size because it is more sensitive to surface properties of 

snow than snow depth [Durand et al., 2008]. The 23.9 GHz channel is also avoided 

being used in this study since it is highly affected by water vapor existing in atmosphere 

[Special issue on microwave radiometry and remote sensing applications, 2004]. In 

addition, as Kelly [2009] suggested, the difference of value between 10.65 GHz and 

36.5 GHz can best retrieve medium snow SWE and vertically polarized Tb at 10.65 

GHz and 18.7 GHz is more suitable for calculation of deeper snow SWE.  

Therefore, this study uses both vertically and horizontally polarized Tb 

measurements at 10.65GHz, 18.7GHz, and 36.5GHz from AMSR2 in western Colorado 

from 1 September 2015 to 1 September 2018 as the training inputs, and uses SNOTEL 

SWE data as training targets, Table 3.2-2 

Table 3-2 Machine Learning Inputs Symbols and Units 

Inputs Symbol Unit 

Brightness temperature at 

10.65 GHz, V-polarization 

10V K 

Brightness temperature at 

10.65 GHz, H-polarization 

10H K 

Brightness temperature at 

18.7 GHz, V-polarization 

18V K 
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Brightness temperature at 

18.7GHz, H-polarization 

18H K 

Brightness temperature at 

36.5 GHz, V-polarization 

36V K 

Brightness temperature at 

36.5 GHz, H-polarization 

36H K 

Output Symbol Unit 

Snow water equivalent SWE m 

3.3. Training Data Selection  

For most machine learning algorithms, it is essential to have sufficient training sets 

[Ruppert, 2004]. If the training set data is too small, the model established by the 

machine learning algorithm will have poor performance, and the final prediction result 

will also have large errors [Ben-Hur and Weston, 2010]. However, the training set with 

excessive data increases the computational cost, which makes the prediction efficiency 

of the model low. Therefore, how to set an appropriate size for the training set of 

machine learning algorithms has become the first problem to be faced in this study. This 

paper sets up a test scheme in order to select the most suitable number of training 

stations. 

     The test starts by setting a range to filter the training dataset, and a SNOTEL station 

is considered to be a usable training station if it is located within a 75-km radius of a 

circle centered around the test station. Turn all 111 SNOTEL stations into training 

stations and find the number of training stations each station has that can be used. 

According to the data obtained, Station 64 has the largest number of training stations 

available. For n from 1 to 35, this test randomly draws n of the training stations of 
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Station 64 as the training set and uses the LSTM algorithm to predict the SWE at station 

64. The mean square error (MSE) between the predicted results and the actual SNOTEL 

data is then calculated, and its relationship with n is plotted. Repeating the above 

process 10 times, a boxplot of MSE and the number of training stations n can be 

generated. 

 

Figure 3.3-1 Mean Square Error during Station number tests   

As can be seen from the Figure 3.3-1, when the number of training stations is small, 

the value of MSE changes greatly, and there is a big difference between the values of 

each test. This is because when the number of test stations is too small, if you happen 

to encounter a training station that has very similar snow data to the test station, it will 

lead to a very low MSE, while if you encounter a training station that has very different 
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snow data to the test station, the model will completely fail and produce a very large 

deviation. In addition, although some box plots such as stations 15 and 18 appear to 

have a good distribution, this is due to the presence of many outlier values (red crosses) 

beyond the confidence interval. After stripping these data with a large number of 

anomalies, we can observe that when the number of training stations exceeds 23, the 

overall prediction MSE tends to be stable and no longer has a large fluctuation. At the 

same time, the average value of MSE is also at a low level, and even if the number of 

sites is increased, the performance of the algorithm is difficult to be significantly 

improved. This is the method of determining how much input training data is enough 

to properly train the algorithm.  

Once the appropriate training set size has been decided, it is time to filter the 

appropriate test stations. A suitable test station should meet the following conditions: at 

least 23 training stations can be used within a 75-km radius of the test station as the 

center. After screening, 39 test stations that can be used are selected in this paper. Their 

station numbers are 2, 3, 4, 7, 8, 9, 16, 18, 27, 29, 30, 31, 40, 41, 49, 50, 51, 52, 54, 57, 

62, 67, 68, 69, 70, 75, 78, 86, 87, 88, 92, 95, 96, 98, 103, 107, 108, 109, 111. 

3.4. Training Process 

This study utilized the Machine Learning Toolbox and Deep Learning Toolbox 

provided by Matlab© to generate all three machine learning algorithms. Matlab© has 

powerful matrix computing capabilities, user-friendly code writing interface and 
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detailed interpretation help functions. Hence, Matlab© is an ideal tool for working with 

machine learning algorithms. If the training process of machine learning is compared 

to a black box, the basic structure of three different algorithms is the same, with six 

inputs, one training process algorithm, and one output data (Figure 3.4.1). 

3.4.1. Normalization 

Input normalization is significant for all three machine learning algorithms since 

the training process and the determination of weight vectors are sensitive to the way 

features are scaled [BenHur and Weston, 2010]. In this study, there are six input vectors 

and one output vector in measured in a different scale with a different unit and has a 

different range of possible values. Normalizing all vectors into a common range has 

plenty of benefits. It can avoid greater numeric ranges dominating those in smaller 

ranges [Hsu et al. 2003]. Also, it can overcome the difficulty in calculating inner 

products of feature vectors when the input data has a very different range of value 

(which is not the case in this study) [Hsu et al. 2003]. The normalization methods 

Figure 3.4-1   The Simplified Structure Plots of All Three Different Machine Learning Algorithms 
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utilized in this study can be expressed by the following example. The normalization 

algorithms of Tb36,V data for a single station within a daily training period time can be 

written as:  

𝑥�̂� =
 𝑥𝑖− 𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥)
∗ (𝑏 − 𝑎) + 𝑎                             (3.4.1) 

where 𝑥�̂�  is the normalized brightness temperature data at 36.5 GHz vertically 

[dimensionless]; xi is the original Tb36,V data [K] at day i; min(x) is the minimum Tb36,V 

data across all three years daily measurements; max(x) is the maximum Tb36,V data 

across all three years daily measurements; a is the specified lower bound of the scaling 

range; and b is the upper bound of the defined range of scaling. 

       In order to define the scaling intervals and the upper and lower bound of scaling 

range, this study uses the methods of  Sarle [1997] by scaling the data with the midrange 

of 0 and the range of 2 (in this study is [-1,1]). Sarle [1997] also mentioned another way 

in his study, which is to scale the data with the mean of zero and the standard deviation 

of one. In this study, as daily SWE is an irregular curve, the influence of extreme values 

and abnormal changes on the prediction results of the algorithm will be eliminated in 

this way. However, these extreme values and abnormal changes have important 

physical meaning in snow research (e.g., drought year versus wet year), and they may 

represent important environmental events and evidence of climate change in some years. 

As a result, this study chooses the first way to normalize the data in order to maintain 

the meaning of these extreme values and abnormal changes. In addition, the prediction 

data needs to be unscaled when it is output as the result, and the unnormalizing function 
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is the inverse function of normalizing function.  

3.4.2. SVM 

There are two parameters needed to be determined in the training process: C and 

γ. C is the penalty parameter which is determined by the range of training targets in this 

case as:  

𝐶 = 𝑚𝑎𝑥(𝑌) − 𝑚𝑖𝑛(𝑌) 

where Y is the raining targets which is the SWE [m] in this study. The selection of γ is 

based on a method called cross-validation [Hsu et al. 2003]. 

       Unlike LSTM algorithm that can adjust parameters automatically during the 

training process, SVM needs to adjust the hyper-parameter γ manually. K-fold cross-

validation method is introduced to SVM in order to find out the best hyper-parameters 

for the prediction model [Chan et al. 2013]. The K-fold cross-validation divides the 

training set into K subsets of equal size. One subset is extracted during training and 

used as a validation set, the other (K-1) subsets are used as the training set [Hsu et al. 

2003]. The accuracy of cross-validation is calculated as the percentage of data that is in 

the 95 percent confidence interval of the regression. The parameters with the highest 

accuracy will be selected as the hyper-parameters of the prediction model. Based on the 

research of Forman and Xue [2017], when 𝐾 ≥ 5, the SVM algorithm performs best. 

Since this study uses a similar training data set, the value of K is chosen to be 5 as well 

in this study.  



46 

 

3.4.3. LSTM   

The LSTM training was conducted based on the time step learning cycle to 

minimize the MSE between the LSTM-estimated SWE and the SNOTEL SWE value 

which is the training target in the algorithm. For a single test station, a training set {(P1, 

Y1) …… (Pn, Yn)} including n pairs of input space P and output training space Y using 

the same time period from all of three years is given to the training process. In the 

training process, MSE for a single output neuron can be expressed as:  

𝑀𝑆𝐸 =
1

2
∑ ||𝑃𝑖 − 𝑌𝑖||2

𝑛

𝑖=1

 

where Pi is the ith LSTM-estimated value of SWE [m]; Yi is the ith SNOTEL measured 

value of SWE [m]; n is the total number of evaluated time steps; and ||.|| is the Euclidean 

norm operator. 

      In order to minimize the MSE, the initial weights at the first training time step are 

randomly selected. After that, the Levenberg-Marquardt optimization algorithm 

[Marquardt, 1963] is used to update the weights vectors during the training process until 

it reaches minimum for each output neuron. The Matlab© machine learning toolbox 

uses RMSE which is square root of MSE instead of MSE, shown as Figure 3.4-2.  
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Figure 3.4-2 LSTM training process in Matlab© 

3.4.4. Evaluation Methods 

Statistical 

There are many ways to evaluate the predictive performance of machine learning 

algorithms. From the statistical point of view, simple evaluation parameters such as bias 

and root mean square error, sensitivity analysis, and correlation analysis can be used to 

comprehensively evaluate the model from different perspectives. In this paper, mean 

square error (MSE), time-averaged average bias, and Pearson correlation coefficient are 

used to make an overall evaluation of the final prediction results. However, only using 

a single statistical parameter cannot fully evaluate the performance of the model. MSE 

and bias can be used to evaluate the deviation degree of the predicted value of the model, 

and the correlation coefficient can represent the correlation between the predicted value 
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and the actual observed value. The combination of the three can give a reasonable 

comprehensive evaluation of the model.  

      Plot 

      In addition to the statistical parameters above, images are also a good way to 

evaluate the performance of an algorithm. Images can elicit important information that 

statistical parameters cannot, and may lead to large differences in evaluation results.       

In this study, multiple evaluation maps were introduced to form a comprehensive 

analysis with statistical parameters. The scatter plot of MSE with respect to the training 

target is used to observe whether the distribution of MSE is independent or affected by 

the training target data. If its correlation with the training target is lower, it means that 

the performance of the algorithm is more reasonable. 

The time series plots are also used in this study. By placing the prediction data of 

the algorithm and SNOTEL ground measurement data in the same time series graph, 

the performance and limitations of the prediction algorithm can be directly observed. 

The Y prediction figure is also used in this study. The SWE data estimated by the 

algorithm is used as the Y-axis, and the actual SNOTEL data is used as the X-axis to 

make the scatter chart. A reasonable and relatively well-behaved algorithm would 

observe that the scatter points are fairly evenly distributed on both sides of the line Y=X. 
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Chapter4. RESULTS AND ANALYSES 

4.1. Spatial Analysis  

The study domain of this paper, Western Colorado, is a combination of mountains 

and plateaus, and the varied topography causes significant differences in important 

factors such as snow cover and vegetation types among different stations. Therefore, 

the spatial analysis of the whole study domain is indispensable. In this paper, three 

different machine learning algorithms are used to test the 38 selected available stations, 

and regional MSE maps of the predicted results are produced. Since there is no snow 

cover in summer, there is still a large amount of vegetation and high soil moisture, so 

the introduction of summer data will affect the performance of the algorithm model. As 

a result, the snow season of this year is set from September 13 to April 1 of the following 

year in this study, and the data of the snow season of three years are selected as the 

training set and test set. 

Figure 4.1-1 Regional MSE of Selected Stations Using LSTM 
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Figure 4.1-1 shows the MSE of all selected test stations in study domain calculated 

by LSTM. By combining the above figure with Figure 3.1-2 and Figure 3.1-3, it is seen 

that the stations in the grassland and shrub areas at high altitudes generally have a low 

mean square error, ranging from 0 to 0.03 meters, while the stations in the forest areas 

at high altitudes generally have some slightly higher MSE, with the value generally 

distributed around 0.06 meters. In the forest area of low elevation, the MSE was much 

higher than that of other sites, with values exceeding 0.1, showing a poor prediction 

result. 

Figure 4.1-2 shows the MSE of all selected test stations in study domain calculated 

with the trained SVM. From the overall point of view, the MSE of the predicted value 

of the SVM algorithm is smaller than that of LSTM algorithm. However, SVM and 

LSTM algorithms maintain a high degree of consistency in the MSE differences of 

different elevations and land surface types. In the high-altitude grassland and shrub 

Figure 4.1-2 Regional MSE of Selected Stations Using SVM 
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areas, the MSE is relatively low, ranging from 0 to 0.02 meters, which is very similar 

to the result of LSTM algorithm. In high-altitude forest areas, the range of MSE is about 

0.04 meters, which is relatively small compared with the results of LSTM algorithm. 

However, when it comes to the low-altitude forest area, the MSE of the predicted value 

of SVM is significantly different from that of LSTM algorithm, which is only about 

half of that of LSTM algorithm. This indicates that SVM algorithm may have better 

performance than LSTM in low-altitude forest areas. 

 

Figure 4.1-3 Regional MSE of Selected Stations Using GP Regression 

Figure 4.1-3 shows the MSE of all selected test stations in study domain calculated 

by GP regression. GP regression and SVM regression have almost the same MSE for 

predicted SWE. However, it is worth noting that although the MSE of GP regression 

and SVM regression are almost the same in the grassland and shrub areas at high 

altitude and the forest areas at high altitude, the MSE of GP regression will be slightly 
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higher than that of SVM regression in the forest areas at low altitude. It can be 

speculated that, compared with SVM algorithm, the performance of GP regression is 

more affected by vegetation, snow depth and other factors. 

In general, there are significant differences in the performance of these three 

algorithms under different elevations and surface types, which is determined by the 

PMW remote sensing technology used in this paper and the physical characteristics of 

snow cover. It also reflects that the machine learning results must be consistent with the 

actual physical principles before they can be evaluated and used. At the same time, the 

difference of MSE also shows that the three different algorithms have their own 

performance characteristics. The complete tables of statistical values of all test stations 

and their boxplots are available in Appendix A. In the following discussion, typical 

stations in different elevations and with different land surface types will be selected for 

more specific analysis and comparison. 

4.1.1. SWE in the Regions with High Elevation and Low Forest Cover 

As mentioned in Chapter 2, vegetation and snow depth are factors which have 

significant impact on PMW snow remote sensing. Low forest cover regions in this study 

means the areas whose land surface type is grass or shrub. Since most of the stations 

used in this paper are located in mountainous areas with high altitude, and their 

elevation generally exceeds 2500m and snow depth is generally large, the stations with 

altitude over 3000m are set as high elevation stations. This study choose station 111 as 
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the typical station which has high elevation and low forest cover. The basic situation of 

station 111 is shown below: 

Table 4-1 Basic Information of Station 111 

Station number latitude longitude elevation Land surface type 

111 39.7667 N 105.9 W 3169.9m Grass 

Mean square error, bias, and correlation coefficient are three statistical number 

this study used to evaluate the performance of different machine learning algorithms, 

which are shown as bar plots below.   

According to the bar plots of statistical data (Figure 4.1-4), the LSTM performs 

better in this region. Compared with the other two algorithms, its MSE is lower, but the 

average error was higher than the other two algorithms. LSTM has the highest 

correlation coefficient value of 0.88, which means the prediction SWE calculated by 

LSTM Is highly correlated with the actual SNOTEL SWE data and causes both to have 

very similar trends. SVM and GP regression almost have the same performance, the 

Figure 4.1-4 Statistical Parameters of Station 111 for All Three Algorithms 
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values of their three statistical parameters are quite similar. The subplot representing 

bias shows the absolute value of the bias, and it can be observed from the subplot that 

the predicted values of the three algorithms are about 0.02m smaller than the actual 

Figure 4.1-5 Prediction and Validation Plots and MSE Dot Plots for All Three Algorithms in Station 111 
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SNOTEL data on average. 

In addition, the scatter plot of the predicted value of the algorithm on the SNOTEL 

data and the scatter plot of the errors (bias) in SWE are used to evaluate the performance 

of the algorithm (Figure 4.1-5). 

As can be observed from the scatter plot of the predicted value of the algorithm on 

the SNOTEL data, the predicted SWE value from LSTM is more concentrated on both 

sides of the line than the other two algorithms. This is consistent with the data of 

statistical parameters and explains why the MSE of LSTM algorithm is lower and the 

Pearson correlation coefficient is higher. Compared with GP regression, SVM 

regression has a higher degree of concentration, but at the same time, it also has many 

outliers (i.e., predicted SWE and the actual SNOTEL SWE have a large deviation), 

which leads to the phenomenon of high MSE in the statistical parameters. 

From the scatter plots of the errors (bias) on the SWE on the right, the deviation 

of an algorithm model should reflect independence and randomness, specifically, it 

should be relatively evenly distributed on both sides of 0 and not change with the 

change of the value of the training target. It can be clearly observed that the deviation 

of the LSTM algorithm is almost in the region less than 0 when the SWE is less than 

0.25m while most of it becomes in the region more than 0 when the SWE is more than 

0.3m. That is, intends to be larger with an increase in SWE. This shows that the LSTM 

algorithm has some defects. For SVM regression, it has the same problems as the LSTM 

algorithm. When SWE is less than 0.3 meters, the bias is generally less than 0. When 
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SWE is more than 0.3 meters, the bias is generally greater than 0. In this respect, the 

GP regression algorithm performs better. Although when SWE is less than 0.2m, the 

deviation of GP regression is more distributed in the region less than 0, but when SWE 

is in the moderate region between 0.2m and 0.4m, the deviation of GP regression shows 

a relatively uniform distribution on both sides of 0 and does not gradually increase with 

the increase of SWE. 

Times series analysis is another important tool to evaluate the performance of 

algorithms (Figure 4.1-6). From the time series diagram, it can be clearly found that 

LSTM has an obvious advantage compared with the other two algorithms, that is, less 

noise. However, LSTM's prediction of the first half of the snow accumulation season 

in the first year has a larger deviation than the other two algorithms. On the contrary, 

SVM regression and GP regression algorithms showed relatively accurate predictions 

during the snow accumulation season of the first years while relatively large deviations 

occurred in the snow accumulation season of the third year. Compared with the GP 

regression algorithm, SVM regression shows a higher fit with the actual SNOTEL SWE 

data during the first two years, but its disadvantage is that a large amount of abnormal 

noise appears in the peak period of snow cover when SWE is large. 

In general, in high-altitude areas with low vegetation cover, the predicted SWE 

values of the three algorithms show relatively good agreement with the actual SNOTEL 

SWE measurements. The three different algorithms also show their respective strengths 

and weaknesses in this region. The predicted value of LSTM has a high correlation with 
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the actual data and has less noise, while the predicted value of GP regression and SVM 

in the first year has a higher degree of agreement with the actual data. 

 

Figure 4.1-6 Time Series Plots of Station 111 

4.1.2. SWE in the Regions with High Elevation and High Forest Cover 

This study choose station #3 as the typical station that has a high elevation and 
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relatively dense forest cover. The basic characteristics of station #3 is shown below:  

Table 4-2 Basic Information of Station 3 

Station number latitude longitude elevation Land surface type 

3 40.35 N 106.383 W 3340.6m Forest 

According to the analysis of the bar plots of statistical data (Figure 4.1-7), the 

LSTM algorithm still maintains the lowest MSE and the highest correlation coefficient 

among the three algorithms. Different from high-altitude areas with low vegetation 

coverage, SVM regression yields lower MSE and higher correlation coefficient than 

GP regression in this area. However, the MSE values of all three algorithms are about 

10 times greater when compared with the results obtained at high altitudes with low to 

moderate forest cover. At the same time, their correlation coefficient drops by about 10 

percent. The changes of the three statistical parameters show that the performance of 

all algorithms decreases to some extent in the forest area at high altitude. This is 

Figure 4.1-7 Statistical Parameters of Station 3 for All Three Algorithms 
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consistent with the conclusion that vegetation has a significant influence on PMW snow 

remote sensing discussed in Chapter 2 of this study. 

          Next, the scatter plot of the predicted values of each algorithm relative to the 

Figure 4.1-8 Prediction and Validation Plots and MSE Dot Plots for All Three Algorithms in Station 3 



60 

 

SNOTEL data and the scatter plot of the errors (bias) on the SWE are used for further 

analysis and comparison (Figure 4.1-8). As can be seen from the scatter plot of the 

predicted value of the algorithm with the SNOTEL measurements, the SWE predictions 

from all three algorithms are no longer uniformly concentrated on both sides of the line 

(predicted SWE equals to actual SNOTEL SWE) in the forest area at high altitude due 

to the influence of vegetation cover. The predicted SWE values are generally lower than 

the actual SNOTEL SWE measurements, and the deviation tends to increase gradually 

as the snow gets deeper. This is consistent with the results shown in the scatter plot of 

the errors (bias) on the SWE on the right. Nevertheless, the LSTM still has a better 

concentration than the other two algorithms, which is also consistent with its highest 

correlation coefficient. In addition, when SWE is less than 0.3m, SVM regression 

shows better concentration than the GP algorithm, but when SWE is higher, both of 

them show poor concentration. 

       In the time series plots (Figure 4.1-9), the effects of vegetation type and snow depth 

on PMW snow remote sensing and algorithm accuracy are more intuitively displayed. 

Compared with the results from high-altitude areas with low forest cover, the LSTM 

algorithm shows significantly more noise in the predicted values, and the agreement 

with the actual SNOTEL SWE measurements is also reduced. Moreover, when SWE 

exceeds 0.6m, the LSTM algorithm can no longer predict as accurately as the other two 

algorithms. 
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Figure 4.1-9 Time Series Plots of Station 3 

This is because when the snow is too deep, the brightness temperature data 

generated by the PMW sensor no longer captures the assumed physics of volume 

scattering, which leads to the failure of the LSTM algorithm. This is because during the 

snowmelt season, the snow layer contains a large amount of liquid water, and the 
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different emissivity between wet snow and dry snow will degrade the quality of the 

SWE prediction. 

By comparing three different algorithms, the LSTM still has the problem of low 

accuracy in predicting at the first half of the snow accumulation season during the first 

year, but it also maintains its advantages of less noise and high prediction accuracy in 

the last two years. Compared with GP regression, SVM regression has better 

performance in this region. In contrast to the results in high-altitude and low-vegetation 

areas, the SVM regression algorithm had less noise in this area than the GP regression 

algorithm, and the predicted values in the first year had a higher agreement with the 

actual SNOTEL SWE measurements. It is worth mentioning that the LSTM algorithm 

showed its ability to capture the interannual variability of SWE in the third year’s 

prediction, while SVM and GP regression did not show such skill. 

In general, the performance of all three machine learning algorithms in high-

altitude forest areas is degraded due to the impact of vegetation and deep snow. Overall, 

the LSTM is still the best performing algorithm, while GP regression has the poorest 

performance. However, the LSTM's poor accuracy in the first half of the year persisted, 

and neither of them is able to provide a more accurate forecast of the snow melt season. 

In the snow accumulation season, LSTM can give a good prediction accuracy when 

SWE is less than 0.6 meters, while SVM and GP regression can only have a relatively 

good performance when SWE is less than 0.4 meters. 



63 

 

4.1.3. SWE in the Regions with Low Elevation and Low Forest Cover 

This study choose station #8 as the typical station which has low elevation and low 

forest cover. The basic situation of station #8 is shown below:  

Table 4-3 Basic Information of Station 8 

Figure 4.1-10 shows the statistical parameters of all three algorithms in low 

altitude and low forest cover regions. Different from the high-altitude regions, the 

LSTM algorithm has the highest MSE and the lowest correlation coefficient among the 

three algorithms in the low-altitude and low-forest cover areas. Compared with SVM 

regression, the MSE of LSTM is more than three times that of SVM, and the correlation 

coefficient is about 15% less. As the algorithm with the best performance of statistical 

parameters in this area, SVM regression significantly reduces MSE and improves the 

correlation coefficient compared to high-altitude forest areas, which indicates that 

Station number latitude longitude elevation Land surface type 

8 39.6 N 106.52 W 2590.8m Shrub 

Figure 4.1-10 Statistical Parameters of Station 8 for All Three Algorithms 
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vegetation type has a significant impact on the results of SVM regression, and the GP 

regression algorithm also has the same characteristics. For LSTM, MSE and bias 

decreased to a certain extent compared with high-altitude forest areas, but the 

correlation coefficient was not improved. This shows that different from the 

characteristics of SVM and GP regression, which are more affected by vegetation and 

less affected by elevation, elevation and vegetation both have significant effects on the 

performance of LSTM algorithm.  

Figure 4.1-11 shows that the predicted value of LSTM in the low-altitude areas 

with low vegetation cover has a worse performance than that in the high-altitude forest 

areas, and the predicted value has a large deviation from the actual SNOTEL SWE 

measurements, especially when the SWE value is lower than 0.2 meters. In contrast, 

the results of both SVM and GP regression are more concentrated near the line 

(predicted SWE equals to actual SNOTEL SWE), although the predicted SWE value is 

generally slightly higher than the actual SWE. According to the scatter plots of the 

errors (bias) on the SWE on the right, the deviations of all three algorithms have a trend 

of gradually decreasing with an increase in SWE. This indicates that the predicted SWE 

from the machine learning algorithms will be less accurate when the snow is shallow. 
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Figure 4.1-11 Prediction and Validation Plots and MSE Dot Plots for All Three Algorithms in Station 8 

Different from the high-altitude areas, SVM regression and GP regression showed 

better prediction accuracy during the snow accumulation season than in the low-altitude 

area. In particular, the predicted SWE value using SVM regression during the second 
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snow season showed good agreement with the actual data, and a prediction accuracy 

comparable to that of high-altitude and low-vegetation areas. However, when it comes 

to the third (dry) year, as with the LSTM algorithm, SVM regression and GP regression 

cannot accurately predict SWE, and the predicted value given by the algorithm is much 

greater than the actual SWE. At the same time, the LSTM algorithm also lost its ability 

to capture the inter-annual variation of the SWE in this region.  

           In general, SVM regression has the best performance in low altitude areas with 

low vegetation cover while LSTM algorithm has the worst prediction accuracy. 

However, all three algorithms, in general, cannot make accurate predictions when SWE 

is less than 0.15 meters. This is because when the snow is shallow, volume scattering is 

minimal and the limitations of PMW remote sensing of snow are apparent. As a result, 

the machine learning algorithms have relatively little information content from the 

PMW observations to use during SWE prediction. 
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Figure 4.1-12 Time Series Plots of Station 8 

4.1.4. SWE in the Regions with Low Elevation and High Forest Cover 

In the overall study of the selected stations in the study area, the low-elevation 

forested areas have the worst prediction performance. This study choose station #88 as 

the typical station which has low elevation and low forest cover. The basic 
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characteristics of station #88 are shown below:  

Table 4-4 Basic Information of Station 88 

 

 

In the low-altitude forested area, the LSTM algorithm shows much higher MSE than 

the other two algorithms, which is similar to the scenario in the low-altitude area with 

low vegetation cover. However, the LSTM still has the best performance in terms of 

correlation coefficient. According to the comprehensive evaluation of MSE, correlation 

coefficient and bias, SVM has the lowest MSE and bias, and the correlation coefficient 

is similar to GP algorithm, so it can be considered the algorithm with the best 

Station number latitude longitude elevation Land surface type 

88 39.7164 N 106.15 W 2865.1m forest 

Figure 4.1-13 Statistical Parameters of Station 88 for All Three Algorithms 
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performance in the low-altitude forest area. 

It can be seen from Figure 4.1-14 that all three algorithms have significant 

differences between the SNOTEL observations and high MSE in the shallow snow 

period when SWE is less than 0.2 meters. In addition, compared with the results of low-

elevation areas with low vegetation cover, the MSE and bias in low-elevation forest 

Figure 4.1-14 Prediction and Validation Plots and MSE Dot Plots for All Three Algorithms in Station 88 
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areas increased by about 30%. At the same time, the predicted values of all three 

algorithms are generally higher than the actual SNOTEL SWE. 

From the time series diagram (Figure 4.1-15), it is more obvious that the predicted 

value of the LSTM algorithm for SWE can be twice that of the actual SNOTEL SWE. 

Figure 4.1-15 Time Series Plots of Station 88 
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However, SVM regression and GP regression algorithms can still give a better 

prediction value when SWE is greater than 0.2 meters, especially in the first and second 

year of the snow peak period. Although the LSTM algorithm had the least amount of 

variability (noise), its prediction accuracy is significantly lower than the other two 

algorithms, and it does not even yield the same general trend as the actual SWE during 

the first year. In terms of capturing the annual variation trend of snow cover, the GP 

regression algorithm performs the best, especially during the third year of snow 

accumulation season, which shows a prediction line that is more consistent with the 

actual SWE variation trend than the other two algorithms. Unfortunately, compared 

with the prediction performance of low vegetation covered areas, none of the three 

algorithms could predict the SWE of snow melt season well in forested areas. 

In general, in low altitude forest areas, SVM regression has higher prediction 

accuracy, and GP regression algorithm has more realistic SWE change prediction. 

However, the LSTM algorithm, which has a relatively good performance in both high-

altitude areas and low altitude areas with low vegetation coverage, shows a large 

prediction deviation relative to the SNOTEL measurements. At the same time, the three 

algorithms also show the limitations mentioned in the previous part that they cannot 

make relatively accurate prediction during the snowmelt season or during periods of 

shallow snow. 
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4.2. Temporal Analysis 

In this paper, station #64 located in a grassland area with high altitude was selected 

as a typical station for time series analysis to explore the performance differences of 

LSTM during the accumulation season and snowmelt (ablation) season. At the same 

time, it also helps us to understand some limitations of PMW snow remote sensing.  

Table 4-5 Basic Information of Station 64 

 

 

 

Figure 4.2-1 Statistical Parameters for Accumulation Season and Ablation Season using LSTM 

As can be seen from Figure 4.2-1, the MSE and bias of the predicted value of the 

LSTM algorithm during the snow accumulation season are much smaller than those in 

the snow melting season. At the same time, the correlation coefficient during the 

Station number latitude longitude elevation Land surface type 

64 39.1330 N 107.283W 3048m Grass 
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accumulation season is slightly higher than during the ablation season.  

From the time series diagram (Figure 4.2-2), it is obvious that in the snow 

accumulation season, the predicted value of the LSTM algorithm has a high degree of 

consistency with the actual SNOTEL SWE measurements and can yield good 

prediction accuracy during the period when SWE is greater than 0.3 meters. During the 

snowmelt season, although the predicted value can still show the variation trend of 

snow cover, the accuracy of the prediction is greatly reduced. This is consistent with 

the previously mentioned situation that the two have relatively large differences in MSE 

and bias but similar correlation coefficients. 

The prediction performance of the LSTM in the snow accumulation season and 

snowmelt season has a big difference, which is determined by the different physical 

characteristics of the snow during the two different time periods. During the snow 

Figure 4.2-2 Time Series Plots of Station 63 using LSTM 
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accumulation season, snow melt is less common and the snow is mainly dry. During 

the snowmelt season, melting of the snow is more commonplace, and at night after the 

temperature decreased, the liquid water in the snow will refreeze, which leads to a more 

complicated and layered snow structure [Tsutsui, 2016]. This phenomenon, together 

with the liquid water produced by melting snow layers during the snowmelt season, has 

a great impact on the PMW brightness temperature data collected by PMW snow 

remote sensing. Due to the poor quality of the input brightness temperature data with 

relation to snow mass, the final prediction results of the machine learning algorithms 

will similarly suffer. 

4.3. General Evaluation 

According to the overall evaluation, the LSTM algorithm has the best performance 

in high-altitude areas with low vegetation coverage, while SVM and GP regression 

algorithms have better performance in low-altitude forest areas. In addition, the 

predicted value of the LSTM algorithm can better capture inter-annual variability and 

higher correlation with the observed SNOTEL data. This reason is that the LSTM 

includes a time series component that can put the information and characteristic of 

former time steps into the present time step compared to memoryless algorithms like 

SVM and GP regression [Zhang, Lindholm and Ratnaweera, 2018]. 

However, they still have a number of limitations. When the snow cover is shallow 

(SWE less than 0.2 m), the difference between the Tb data recorded by the PMW sensor 
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at different frequencies can be negligible [Armstrong, Chang, Rango and Josberger, 

1993]. When the snow is deep (SWE greater than 0.5 m), the signal received by PMW 

sensor actually originates from the middle of the snowpack rather than from the soil 

under the snowpack, and the radiation signal emitted by the surface is scattered in the 

snow layer before exiting the snowpack [Mulders, 1987]. In addition, the liquid water 

in the wet snow emits more radiation itself than dry snow and thus increases the 

measured brightness temperature [Walker and Goodison, 1993]. The reason is that 

liquid water has a higher 𝑟  dielectric constant compared to that of dry snow, which 

causes the dielectric of snowpack to increase. Treating water in wet snow regions as 

dry snow can lead to significant errors in snow retrievals [Tedesco and Narvekar, 2010]. 

As a result, the performance of all three algorithms during the ablation season is 

relatively poor. 
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Chapter5. Conclusion and Discussion  

5.1. Conclusion 

Based on the results and analysis in Chapter IV, this paper evaluates the performance 

of three different machine learning algorithms, and qualitatively analyzes the influence 

of various influencing factors on PMW snow remote sensing and algorithm 

performance. The main conclusions are summarized as follows: 

(1)   The long short term memory (LSTM) algorithm has relatively good performance 

in high altitude areas with low vegetation coverage. In these regions, the LSTM 

algorithm has less variability (noise), yields more accurate predictions, and best 

captures the trend of SWE variability across the entire snow season. At the same 

time, LSTM algorithm can also show part of the annual variation of snow cover. 

(2)  Support vector machine (SVM) regression has better performance in low altitude 

areas. Compared with the LSTM, SVM regression is more variable, but still has 

its advantages in low altitude areas and forest areas. In these areas, compared with 

LSTM, SVM regression yields a more accurate prediction with a higher degree of 

conformity to the general trend of snow mass throughout the entire snow season. 

(3)   Gaussian process (GP) regression algorithm has a slightly lower performance than 

SVM regression in most areas, but in the low-altitude forest area, GP regression 

algorithm has the highest degree of conformity to the general trend of snow mass 

throughout the entire snow season. 
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(4)   The indirect influence of overlying vegetation on the algorithm is significant. The 

performance of the LSTM algorithm in forested areas is much worse than that in 

low vegetation areas. Compared with SVM regression and GP regression 

algorithms, the prediction accuracy of the LSTM algorithm is more sensitive to 

vegetation type. In forested areas, the prediction value of LSTM often yields the 

highest MSE and bias. In general, the performance of the three algorithms in 

forested areas is worse than that in the low vegetation cover area, and the influence 

of SVM regression and GP regression algorithm is less than that of the LSTM 

algorithm. 

(5) The depth of the snow is another factor that has a significant effect on the 

performance of the algorithm. This is because when the snow is too shallow, the 

brightness temperature difference between different frequencies collected by the 

PMW sensor will be almost zero, while when the snow is too deep, the PMW 

sensor cannot receive the radiation signal emitted from the surface soil that is 

covered by the overlying snow. All three algorithms have the best performance 

under medium snow depth (SWE between 0.3-0.5 m). However, LSTM can still 

yield reliatvely accurate estimes in deep snow with SWE between 0.5 and 0.65 

meters, but at the same time, the LSTM has the poorest performance when SWE 

is less than 0.3 meters. On the contrary, SVM regression and GP regression 

algorithms can still maintain good prediction accuracy when SWE is between 0.2-

0.3 meters, but fails when SWE exceeds 0.5 meters. 
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(6)   When the snow accumulation season and snow melt season are modeled separately, 

the snow accumulation season has a significantly greater accuracy. However, the 

snow melt season is affected by the liquid water and ice in the snow layer, and the 

accuracy of the prediction is significantly lower. 
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Appendix A 

Table A-1  Statistical Value of Three algorithms for Stations with Low Elevation and Low Forest Cover 

Station number Surface type  Elevation 

LSTM 

MSE Bias Correlation coefficient 

8 Shrubland 2590.8000  0.0279  0.1396  0.6994  

69 Shrubland 2651.7600  0.0114  0.0550  0.6445  

103 Shrubland 2816.3520  0.0197  0.0966  0.7137  

7 Shrubland 2889.5040  0.0207  0.1034  0.6719  

29 Grass 2895.6000  0.0240  0.0922  0.7163  

98 Grass 2907.7920  0.0099  0.0540  0.8168  

9 Shrubland 2913.8880  0.0426  0.1109  0.3416  

52 Grass 2987.0400  0.0066  0.0099  0.8053  

Station number Surface type  Elevation 

SVM Regression 

MSE Bias Correlation coefficient 

8 Shrubland 2590.8000  0.0110  0.0817  0.7876  

69 Shrubland 2651.7600  0.0151  0.0923  0.6221  

103 Shrubland 2816.3520  0.0169  0.0723  0.6577  

7 Shrubland 2889.5040  0.0083  0.0119  0.7543  

29 Grass 2895.6000  0.0372  0.0795  0.3003  

98 Grass 2907.7920  0.0194  

-

0.0040  0.5527  

9 Shrubland 2913.8880  0.0311  0.0268  0.2192  

52 Grass 2987.0400  0.0099  0.0353  0.7446  

Station number Surface type  Elevation 

GP Regression 

MSE Bias Correlation coefficient 

8 Shrubland 2590.8000  0.0127  0.0889  0.7623  

69 Shrubland 2651.7600  0.0186  0.1015  0.4778  

103 Shrubland 2816.3520  0.0208  0.1029  0.6911  

7 Shrubland 2889.5040  0.0075  0.0264  0.7876  

29 Grass 2895.6000  0.0406  0.0782  0.1619  

98 Grass 2907.7920  0.0165  0.0088  0.5411  

9 Shrubland 2913.8880  0.0349  0.0187  0.0642  

52 Grass 2987.0400  0.0131  0.0321  0.7059  
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 Table A-2 Statistical Value of Three algorithms for Stations with Low Elevation and High Forest Cover 

Station 

number 

Surface 

type  Elevation 

LSTM 

MSE Bias Correlation coefficient 

40 Forest 2621.2800  0.0898  0.2719  0.2947  

86 Forest 2657.8560  0.0718  0.2464  0.5063  

2 Forest 2724.9120  0.0870  0.2763  0.8072  

75 Forest 2752.3440  0.0962  0.2933  0.3973  

88 Forest 2865.1200  0.0928  0.2784  0.4101  

57 Forest 2956.5600  0.0741  0.2412  0.3130  

Station 

number 

Surface 

type  Elevation 

SVM Regression 

MSE Bias Correlation coefficient 

40 Forest 2621.2800  0.0670  0.2444  0.1963  

86 Forest 2657.8560  0.0678  0.2328  0.3110  

2 Forest 2724.9120  0.0608  0.2073  0.5486  

75 Forest 2752.3440  0.0447  0.1845  0.4177  

88 Forest 2865.1200  0.0599  0.2229  0.5200  

57 Forest 2956.5600  0.0390  0.1586  0.2731  

Station 

number 

Surface 

type  Elevation 

GP Regression 

MSE Bias Correlation coefficient 

40 Forest 2621.2800  0.0590  0.2192  0.2830  

86 Forest 2657.8560  0.0600  0.2212  0.3071  

2 Forest 2724.9120  0.0930  0.2786  0.4976  

75 Forest 2752.3440  0.0465  0.1916  0.4390  

88 Forest 2865.1200  0.0720  0.2487  0.4840  

57 Forest 2956.5600  0.0348  0.1329  0.0696  
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 Table A-3 Statistical Value of Three algorithms for Stations with High Elevation and Low Forest Cover 

Station number Surface type  Elevation 

LSTM 

MSE Bias Correlation coefficient 

67 Grass 3060.1920  0.0086  

-

0.0067  0.7494  

16 Grass 3081.5280  0.0114  

-

0.0301  0.6534  

4 Grass 3133.3440  0.0134  0.0140  0.7556  

92 Grass 3139.4400  0.0133  0.0188  0.7014  

111 Grass 3169.9200  0.0079  0.0441  0.8287  

41 Grass 3215.6400  0.0055  0.0409  0.8810  

31 Shrubland 3444.2400  0.0045  0.0032  0.9291  

51 Grass 3474.7200  0.0069  

-

0.0177  0.7980  

62 Shrubland 3474.7200  0.0184  

-

0.0805  0.7734  

30 Grass 3535.6800  0.0170  

-

0.0308  0.7952  

Station number Surface type  Elevation 

SVM Regression 

MSE Bias Correlation coefficient 

67 Grass 3060.1920  0.0106  0.0290  0.7267  

16 Grass 3081.5280  0.0081  

-

0.0134  0.7062  

4 Grass 3133.3440  0.0277  

-

0.0278  0.3944  

92 Grass 3139.4400  0.0286  0.0178  0.1220  

111 Grass 3169.9200  0.0119  0.0136  0.6115  

41 Grass 3215.6400  0.0145  0.0632  0.6298  

31 Shrubland 3444.2400  0.0166  

-

0.0367  0.6356  

51 Grass 3474.7200  0.0127  0.0324  0.5929  

62 Shrubland 3474.7200  0.0206  

-

0.0305  0.5706  

30 Grass 3535.6800  0.0366  0.0421  0.4260  

Station number Surface type  Elevation 

GP Regression 

MSE Bias Correlation coefficient 

67 Grass 3060.1920  0.0130  0.0277  0.7004  

16 Grass 3081.5280  0.0087  

-

0.0044  0.6674  

4 Grass 3133.3440  0.0258  

-

0.0265  0.4352  

92 Grass 3139.4400  0.0408  

-

0.0363  -0.1522  
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111 Grass 3169.9200  0.0099  0.0191  0.6836  

41 Grass 3215.6400  0.0165  0.0847  0.6804  

31 Shrubland 3444.2400  0.0144  

-

0.0347  0.6889  

51 Grass 3474.7200  0.0119  0.0532  0.7040  

62 Shrubland 3474.7200  0.0206  

-

0.0293  0.5810  

30 Grass 3535.6800  0.0539  0.0555  0.4156  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

 Table A-4 Statistical Value of Three algorithms for Stations with High Elevation and High Forest Cover 

Station number Surface type  Elevation 

LSTM 

MSE Bias Correlation coefficient 

70 Forest 3020.5680  0.0361  0.1679  0.6692  

95 Forest 3139.4400  0.0421  0.1829  0.8367  

109 Forest 3157.7280  0.0254  0.1257  0.7127  

54 Forest 3169.9200  0.0433  

-

0.1451  0.4107  

68 Forest 3200.4000  0.0133  

-

0.0262  0.8096  

18 Forest 3206.4960  0.0449  0.1554  0.6196  

107 Forest 3230.8800  0.0163  0.1176  0.9118  

96 Forest 3316.2240  0.0299  0.0791  0.2630  

3 Forest 3340.6080  0.0384  

-

0.1458  0.7726  

50 Forest 3383.2800  0.0485  0.1075  0.3198  

27 Forest 3398.5200  0.0299  0.1056  0.6524  

108 Forest 3398.5200  0.0119  

-

0.0122  0.3559  

78 Forest 3413.7600  0.0575  

-

0.1716  0.5211  

87 Forest 3413.7600  0.0171  0.0136  0.7124  

49 Forest 3474.7200  0.0261  

-

0.1112  0.6041  

Station number Surface type  Elevation 

SVM Regression 

MSE Bias Correlation coefficient 

70 Forest 3020.5680  0.0275  0.1136  0.2607  

95 Forest 3139.4400  0.0417  0.1307  0.4410  

109 Forest 3157.7280  0.0407  0.1802  0.5605  

54 Forest 3169.9200  0.0228  

-

0.0506  0.5046  

68 Forest 3200.4000  0.0406  0.0796  0.3838  

18 Forest 3206.4960  0.0264  0.0444  0.5180  

107 Forest 3230.8800  0.0330  0.1603  0.5633  

96 Forest 3316.2240  0.0562  0.1699  0.3748  

3 Forest 3340.6080  0.0548  

-

0.1711  0.5803  

50 Forest 3383.2800  0.0209  

-

0.0154  0.4881  

27 Forest 3398.5200  0.0252  0.0473  0.5409  

108 Forest 3398.5200  0.0204  0.0877  0.3805  

78 Forest 3413.7600  0.0387  

-

0.1149  0.5643  
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87 Forest 3413.7600  0.0505  0.0977  0.3058  

49 Forest 3474.7200  0.0285  

-

0.0352  0.1757  

Station number Surface type  Elevation 

GP Regression 

MSE Bias Correlation coefficient 

70 Forest 3020.5680  0.0243  0.0531  0.0636  

95 Forest 3139.4400  0.0444  0.1406  0.4259  

109 Forest 3157.7280  0.0452  0.1935  0.5451  

54 Forest 3169.9200  0.0212  

-

0.0448  0.5328  

68 Forest 3200.4000  0.0509  0.0872  0.3873  

18 Forest 3206.4960  0.0299  0.0750  0.5142  

107 Forest 3230.8800  0.0457  0.1935  0.5986  

96 Forest 3316.2240  0.0820  0.2242  0.3125  

3 Forest 3340.6080  0.0563  

-

0.1709  0.5772  

50 Forest 3383.2800  0.0245  

-

0.0386  0.3872  

27 Forest 3398.5200  0.0300  0.0881  0.5375  

108 Forest 3398.5200  0.0207  0.1066  0.4821  

78 Forest 3413.7600  0.0463  

-

0.1158  0.4528  

87 Forest 3413.7600  0.0589  0.1473  0.3589  

49 Forest 3474.7200  0.0222  

-

0.0151  0.3030  
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Figure A-1 Boxplots of Statistical Value for All Test Stations 
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