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  Population synthesis is an important area of research aiming at generating synthetic 

data about households and individuals that would be representative of real large 

populations. Scholars in different fields have worked on synthetic population 

generation: statisticians, computers scientists, economists, social scientists, and 

engineers. In transportation modeling, synthetic agents are a key input for agent-

based models, that are gradually replacing zone-based aggregate four steps models. 

Traditional methods for population synthesis include Iterative Population Fitting 



 

 
 

 

(IPF), that weights sample data until marginals for the variables of interest match 

official statistics (often from CENSUS) at a certain geographical area. Recently,  

Machine Learning algorithms have been tested and compared to IPF, which suffers 

from several well-known limitations. In this M.S. thesis, advanced deep generative 

machine learning methods are applied to generate synthetic populations, including 

CTGAN and TVAE. CTGAN is an advanced GAN algorithm that models tabular 

data distribution and sample rows from the underlying distribution. It has been shown 

that CTGAN can solve issues that challenge conventional GAN model, including 

mixed data types, non-Gaussian distributions, multimodal distributions, learning from 

sparse one-hot-encoded vectors and highly imbalanced categorical columns. TVAE is 

also an advanced VAE model that adapts VAE to tabular data by using preprocessing 

and modifying the loss function. As a case study, this research applies these two 

machine learning methods to generate synthetic population based on a sample from 

the American Community Survey relative to the State of Maryland. To demonstrate 

the performance of the proposed methods, we compare our results to those obtained 

with IPF and Bayesian Network using metrics that evaluate the ability of the 

population synthetizer to reproduce the dependency structure and the marginals in the 

real population and to solve the problem of zero cells in IPF. 
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Chapter 1: Introduction 

  Micro-agents are key inputs to most agent-based models in transportation modeling. 

In microsimulation several methods have been explored and their performance tested 

to assess the quality of the data synthetized with respect to individual and household 

characteristics of the real population. Iterative Proportional Fitting was first adopted 

by scholars in transportation and applied to several case studies. Recently, other 

techniques, like Markov Chain Monte Carlo methods and Machine Learning 

techniques (e.g. GAN, VAE and Bayesian Network) were also applied to the problem 

of population synthesis. My research also focuses on Machine Learning methods and 

explores advanced deep generative methods to generate synthetic populations. The 

machine learning methods we explore in this research include Bayesian Network, 

CTGAN and TVAE and we also compare the machine learning methods with IPF. 

Here Bayesian Network is a probabilistic model that represents a set of variables and 

their conditional dependencies with a directed acyclic graph (DAG). CTGAN is an 

advanced GAN model that models tabular data distribution and sample rows from the 

distribution. Specific techniques are put forward in CTGAN model, which are mode 

specific normalization and conditional generator to solve the issues that conventional 

GAN encounters. Just like CTGAN, TVAE is an advanced VAE model which adapts 

VAE to tabular data by using the same preprocessing and modifying the loss function. 

  In addition, we also apply a copula framework to all the machine learning methods 

(Bayesian Network, CTGAN and TVAE) to improve the quality of synthetic 

population generated by these methods. Copula is a multivariate cumulative 
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distribution function (CDF). The marginal probability distribution of each variable is 

uniform on the interval [0,1] for the CDF. Copulas can fully capture the dependence 

structure between the input variables. For the discrete case, which means the variables 

in the dataset have discrete supports, the normalized vector does not have uniform 

marginals and thus the decoding step will not allow us to recover the marginals of the 

target population. Therefore, an intermediate uniform sampling step is added to my 

population synthesis procedure, which is to sample uniformly each discrete variable 

between its current value and the largest value lower than it. 

  To evaluate the performance of the synthetic population generated by all these 

methods, we also use the metrics including standardized root mean squared error 

(SRMSE) and sampling zero and marginal fits to evaluate each method’s 

performance. SRMSE captures whether the synthetic combination appears in the real 

data thus assessing the fitting of the multi-dimensional dependencies. It is used to 

evaluate the accuracy of the synthetic population generated. Sampling zero counts the 

combinations of variables which are in the test set but not in the training set. It is used 

to evaluate the diversity of the synthetic population generated. Marginal fit is also 

used to make the comparison for all the methods for each single variable in the 

dataset. 

  In the case study, the research proposed a large-scale application relative to the State 

of Maryland and makes use of data extracted from the American Community Survey 

(ACS). The marginals were collected from Decennial census data and the Internal 

Revenue income (IRS). Three experiments were conducted to compare all the 

methods’ performance in generating synthetic population, which were conducted at 
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the state level, county level and puma level. For the state level, we select Maryland as 

the full population. For the county level, we select Anne Arundel county to be the full 

population. And for the puma level, the source is puma 1201 and the target is census 

tract 702204. We compare the performance of all the methods at different 

geographical levels from accuracy and diversity two aspects. The accuracy is 

evaluated by computing the average SRMSE for all possible 𝑖𝑖 -uples of variables 

range from 1 to the number of variables in the dataset. We have ten variables in the 

dataset, so we will compute the average SRMSE for all possible ten uples of variables. 

And the number of sampling zero is used to evaluate diversity. Higher value in 

sampling zero means more diversity. The comparison among each method’s 

performance and comparison before and after applying copula framework will finally 

be discussed in each experiment. Based on the results figured out in three experiments, 

we will summarize the generative model that is most recommended to generate 

synthetic population under different situations (for which geographical level, for 

accuracy or diversity) and whether the technique of copula is helpful in improving 

generative models’ performance in generating synthetic population not only for the 

methods explored in the research but also for the future new models.  

  The remaining part is organized as follows: Chapter 2 is the literature review that 

summarizes the previous work in population synthesis area, including IPF, MCMC 

and machine learning methods including Bayesian Network, VAE and GAN. Chapter 

3 describes the data we use in the research. The sample dataset was obtained from the 

American Community Survey (ACS), and the marginals were collected from 

Decennial census data and the Internal Revenue income (IRS). Chapter 4 introduces 
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the methodologies we use to generate synthetic populations including IPF, Bayesian 

Network, CTGAN, TVAE and copula framework that is applied to the three machine 

learning methods including Bayesian Network, CTGAN and TVAE. The technique 

that aimed at discrete variables is also discussed in this chapter. Chapter 5 presents 

the results of my experiments. We evaluate the synthetic population generated by the 

methodologies mentioned in chapter 4 at the state level, county level and puma level. 

We use root mean squared error (SRMSE), sampling zero and marginal fits to 

evaluate the performance of the synthetic population generated by different methods. 

Chapter 6 presents the major findings and draws the final conclusions based on the 

results in chapter 5. 
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Chapter 2: Literature Review 

  Population synthesis is an important topic that discusses how to generate data that 

are synthetic but at the same time enough to be representative of the real population 

in the transportation modeling area since micro-agents in synthetic populations are a 

key input to most agent-based models. Therefore, many techniques are put forward to 

deal with the problem of population synthesis. 

2.1 IPF 

  Beckman et al 1996[1] gives the standard IPF (Iterative proportional fitting)-based 

procedure to generate synthetic population. For the census data used in the paper, one 

major source is from census tract summary tables in STF-3A (A collection of 

summary tables of demographics, such as the number of persons per household, for 

census tract or census block group sized areas and is often used in transportation 

studies) that is used in the creation of synthetic households, which are divided into 

three categories: family households, nonfamily households and group quarters. 

Another major source of census data is PUMS, which are a representative 5% sample 

of households and group quarters from the PUMA. Weights are assigned to each 

household and person in the sample so that weighted summary statistics can be 

formed. To construct cross-classified tables of demographics for each census tract in 

the area of study, IPF is used to complete these multiway tables. In situations where 

the marginal totals of a multiway table are known and a sample from the population 

which generated these totals is provided IPF gives a constrained maximum entropy 

estimate of the true proportions in the population multiway table. In addition, IPF 
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estimates maintain the same odds ratios as those in the sample table in the absence of 

any marginal information to the contrary. For the IPF procedure, it considers all 

census tracts and parts of tracts that contribute to the PUMS. First, the marginal tables 

for all n census tracts in the PUMS are added. Then an m-dimensional multiway table 

is obtained by IPF of the PUMS against the summed marginals. It can be viewed as 

the construction of an (m+1)-dimensional table. The first m dimensions of the table 

are the m marginals, and the last dimension is created by “stacking” the n tables for 

the census tracts. The final estimated tables are obtained by IPF of a (m+1)-

dimensional table with entries of 1 against these marginal tables. Then the synthetic 

population of households is constructed by selecting entire households from the 

PUMS in the proportion to the estimated probabilities given in the multiway table 

obtained by the technique mentioned above. The number of households to be 

generated of each demographic type is determined for each census tract. These 

numbers can be obtained either by multiplying the total number of households by the 

probabilities in the estimated multiway table, or by drawing the numbers at random 

according to these probabilities. Once the number of households of each demographic 

type to be selected is determined, households with different demographics are 

considered separately. 

  In Eluru, Naveen, et al 2008[2], the paper stresses that conventional wisdom has 

long indicated that the linkages among socioeconomics, land use, and the 

transportation is significant for realistic forecasts of travel demand. However, 

conventional methods use aggregate forecasts of socioeconomics and land use to feed 

into travel models and thus cannot acquire the multitude of interactions that arise over 
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space and time among the different decision makers. To overcome the shortcomings 

of conventional approaches, some integrated land-use transportation modeling 

systems, which lay emphasis on the interactions among population socioeconomic 

processes, the households’ long-term behaviors, and the economic markets within 

which households act, are developed by researchers. At the same time, the paper 

highlights three issues these modeling systems need to consider: First, over a long-

range multi-year forecasting time frame, individuals go through different life cycle 

stages and household compositions; Second, as the socioeconomic process unfolds, 

individuals may begin/finish schooling, move onto different life-cycle stages, 

enter/exit the labor market, and change the jobs ; Third, interactions between 

households and other decision makers(such as businesses, institutions, and real estate 

developers) within the housing, labor, and transportation markets ultimately shape 

land-use patterns. Based on these, the paper discusses their efforts at designing and 

developing a Comprehensive Econometric Microsimulator for Urban Systems 

(CEMUS) that is behaviorally oriented and focuses on the underlying decisions of 

households and individuals, and businesses, and developers, which manifest 

themselves in the form of aggregate passenger travel patterns. CEMUS takes 

aggregate socioeconomics for the base year, activity-travel environment 

characteristics for the base year and policy actions for the future year as base year 

inputs. The process of simulation for the base year is to first feed aggregate-level 

socioeconomics data into the synthesis population generator (SPG) to produce a 

disaggregate-level synthetic dataset describing a subset of the socioeconomic 

characteristics of the households and individuals residing in the study area. The base-
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year socioeconomic attributes that are difficult to synthesize (or cannot be 

synthesized) directly from the aggregate socioeconomic data for the base year are 

simulated by the Comprehensive Econometric Microsimulator for SocioEconomics, 

Land-use and Transportation System (CEMSELTS). Then the base year 

socioeconomic data and activity-travel environment characteristics are run through 

the Comprehensive Econometric Microsimulator for Daily Activity-travel Patterns 

(CEMDAP) to obtain individual-level activity-travel patterns. The activity-travel 

patterns are subsequently passed through a dynamic traffic micro-assignment scheme 

to determine path flows, link flows, and transportation system level-of-service by 

time of day. The resulting transportation system level-of-service characteristics are 

fed back to CEMSELTS along with the socioeconomic data to generate revised 

individual activity-travel pattern. This “within-year” iteration is continued until 

consistency and based-year equilibrium is achieved. The next phase as the population 

go forward in time (one year for example) begins with CEMSELTS updating the 

population, urban form, and the land-use markets. An initial set of transportation 

system attributes is generated by CEMSELTS for this next time step based on three 

types of contents: (1) the population, urban form, and the land-use markets; (2) the 

transportation attributes from the previous year in the simulation; (3) the future year 

policy scenarios provided as input to CEMUS. The CEMSELTS outputs are then put 

into CEMDAP, which interfaces with a dynamic microassignment scheme in a series 

of consistency/equilibrium iterations for the next time step to obtain the “one time 

step” outputs. The loop continues for several time steps forward until the 

socioeconomics, land-use, and transportation system path/link flows and 
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transportation system level of service are obtained for the forecast year specified by 

the analyst. During this iterative process, the effects of the prescribed policy actions 

can be evaluated based on the simulated network flows and speeds for any 

intermediate year between the base year and the forecast year. These are the processes 

of simulation for the base year and the years after that. In addition, the structure of the 

modeling system for population updating within the CEMSELTS module of the 

CEMUS framework that is focused on in this paper includes two major subsystems: 

(1) the migration model system and (2) the socioeconomic evolution model system. 

The migration model system comprises the models that determine the movement of 

existing households out of the study region. The socioeconomic evolution (SE) model 

system includes three major components: (1) individual-level evolution and choice 

models; (2) household formation models; (3) household-level long-term choice 

models. Once the population is determined from the migration model system, the SE 

model system will focus on simulating the changes in the population. These two 

model systems together determine the changes in population characteristics, 

residential pattern and employment patterns over the course of one simulation year. 

  In Bar-Gera, Hillel, et al 2009[3], the paper discusses the challenge faced when 

transportation professionals want to accurately expand the survey households to 

represent the population. When each individual in the surveys is considered as a 

separate response unit, the determination of weights can be accomplished by simply 

calculating the ratio between the proportion of the subgroup in the population and 

their proportion among survey respondents. Here subgroups are divided from the 

entire population. This approach assumes that we know about the information about 



 

10 
 

 

the proportion of each subgroup in the entire population exogenously to the survey. In 

addition, the proper consideration is required about which characteristics to control 

for and how to divide the population into subgroups. However, the weights are 

determined by a straightforward closed form computation once these choices are 

made. The choice of weights may be slightly more complicated when exogenous 

information is available on the marginal distribution of each control variable 

separately rather than the joint distribution of the combination of all of the variables 

of interest. And determining the weights for travel surveys is even more challenging 

because the response unit is not an individual but a household instead. Typically, 

separate exogenous information exists about the distribution of household 

characteristics and person characteristics. The distribution should be given by 

complete household structure in order to apply the simplistic weighting scheme 

described above, but distributions given by complete household structure are not 

available or not relevant in most practical cases. Therefore, finding a weight for each 

household so that the distributions of characteristics in the weighted sample match the 

exogenously given distributions in the population for both household and person 

characteristics becomes an important goal. No closed form computation seems to be 

there unlike the simple weights described above and an iterative process is probably 

needed. In addition, it is only possible to attain distributions as close as possible to the 

target distributions since perfect match cannot be obtained when the exogenous data 

is inconsistent. Finally, the same target distributions can be obtained by many 

different sets of weights, but the assumption should be that they receive the same 

weight. Based on these problems, the paper presents an Entropy Maximization 
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methodology to estimate household survey weights to match the exogenously given 

distributions of the population, including both household and person. The Entropy 

Maximization methodology can provide solutions to constrained optimization 

problems, which means the problem of estimating survey weights can also be 

formulated as a constrained optimization problem, where one is attempting to 

minimize the difference between the weighted sample distributions and known 

population distributions across a set of control variables at both the household and 

person-levels. It is applied as the strict formulation in order to choose the most 

reasonable set of weights subject to the constraints in the equation where the 

frequency matrix multiply by the weight column vector should be equal to the column 

vector which contains the exogenous information about the distribution of household 

characteristics and about the distribution of person characteristics. For the frequency 

matrix, each column corresponds to a sample household and each row within a 

column gives the distribution from a sample household to a certain population 

characteristic. The objective function is to minimize the negative of the Entropy 

function. Since it’s a strictly convex problem, there is only a unique solution. The 

solution can be obtained using a coordinate-by-coordinate search algorithm. However, 

the cases exist where a perfect match between the weighted sums and the exogenous 

distributions of population characteristics cannot be found because of infeasibility in 

the constraints. Therefore, the paper also proposes a relaxed formulation to deal with 

certain cases. Each of the constraints is relaxed using a relaxation factor and a new 

vector representing the chosen marginals. The chosen marginals are figured out by 

multiplying the original marginals and the relaxation factor. Then the objective 
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function from the strict formulation is modified by adding a new term including this 

relaxation factor. 

  In Ye, Xin, et al 2009[4], the paper points out the disadvantage of standard iterative 

proportional fitting (IPF) procedure and puts forward a heuristic approach called the 

Iterative Proportional Updating (IPU) to solve the issue. The IPF procedure yields the 

maximum entropy estimates of the joint distribution under the constraints of the given 

marginal distributions (Wong 1992[5]) and then it is used to estimate joint 

distributions of household attributes (Beckman et al 1996[1]). Sample frequency 

tables used in the study were generated from the Public Use Microdata Sample 

(PUMA) data using critical household attributes, for which marginal distributions 

were available from the Census Summary Files. Synthetic households were then 

generated by randomly drawing households from the PUMA according to the 

estimated joint distributions. The synthetic population then consisted of all persons 

from the selected households. However, this process doesn’t guarantee the 

consistency for the person attributes of the interest and thus fail to match the known 

distributions of person characteristics from the Census Summary Files. The reason is 

that the procedure will naturally result in two different sets of weights, one set for 

matching household distributions and one set for matching person-level distributions. 

Except under extreme unrealistic conditions, household weights will never match 

person weights. As a result, a synthetic population that is generated based on the 

application of household weights will yield joint distributions of person attributes that 

do not match the person-level marginal distributions. The inconsistency in person-

level distributions can be reduced if the household weights are adjusted based on the 
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person weights obtained from the IPF procedure. It is suitable if the households in the 

sample are small, which is to minimize the objective functions that represent different 

measures of inconsistency between the weighted frequency of the household/person 

type and the given frequency distribution constraints that need to be met. However, 

the number of households in the samples in real-world can be thousands and thus 

making the solution of this optimization problem computationally intractable using 

traditional optimization methods. Thus, the IPU algorithm is put forward to solve the 

problems mentioned above. The IPU algorithm starts by assuming equal weights for 

all households in the sample. The algorithm then proceeds by adjusting weights for 

each household/person constraint in an iterative fashion until the constraints are 

matched as closely as possible for both household and person attributes. The updated 

weights will first perfectly satisfy household level constraints. Then the weights are 

updated to satisfy person constraints. The completion of all adjustments to weights 

for one full set of constraints is defined as one iteration. After enough number of 

iterations, the weighted sums almost perfectly match the household type and person 

type constraints and the household weights for households belonging to a particular 

household type are no longer identical. At the meantime, the household weights have 

been reallocated to match the given constraints for both weighted household and 

person sums. In summary, IPU algorithm works with joint distributions of household 

and person attributes derived using the IPF method, and then iteratively adjusts and 

reallocates weights across households such that both household and person-level 

attributed distributions are matched as closely as possible. The algorithm is flexible 

because it can accommodate a multitude of household and person-level variables of 
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interest and meets dual household- and person-level constraints with reasonable 

computational times. These advantages make IPU able to generate more rational 

synthetic population over previous synthetic population generation algorithms.  

  Then in Konduri, Karthik C., et al 2016[6], the paper extends the work of Ye, Xin, 

et al 2009 which introduced the Iterative Proportional Updating (IPU) algorithm. Due 

to the shortcoming that the IPU algorithm in Ye, Xin, et al 2009[4] have not been able 

to accommodate household and person-level attributes of interest at multiple 

geographical resolutions simultaneously, it may lead to a potential mismatch between 

the synthetic population and true population on known characteristics of interest. For 

example, if control distributions for a few variables of interest are available at the 

Traffic Analysis Zone (TAZ) level, and distributions of others are available only at 

the census tract level, the existing algorithm cannot be used to control variables of 

interest at both geographical resolutions simultaneously. The resulting synthetic 

population may not be as representative of the true population as it might have been 

had information available at both geographic resolutions been used. Inaccuracies in 

population representativeness will inevitably have adverse downstream impacts on 

forecasts obtained from activity-based microsimulation models that take the synthetic 

population as input. So, based on the issue of the previous IPU algorithm, this paper 

puts forward an enhanced IPU algorithm that can accommodate constraints at 

multiple spatial resolutions. This algorithm contains three steps. Firstly, the enhanced 

IPU algorithm begins by assigning an initial set of weights to all sample households 

in all geographic units. Unit weights are assigned to each sample household to start 

the sample weight estimation process. Separate marginal distributions are available at 
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the region level and at the level of two geographic units. Person-level marginal 

distributions are assumed to be available only at the level of geographic units. The 

IPF procedure is run for the region as a whole and for individual geographic units to 

obtain constraints that need to be matched at various spatial resolutions. Secondly, the 

sample weight for all geographic units in a Region are adjusted to match the marginal 

distributions at the Region level. This procedure consists of three sub-steps: (1) An 

adjustment factor for the first household type is computed as the Region level 

constraint divided by the corresponding weighted sum in all geographic units taken 

together; (2) Weight values for the sample households that correspond to the 

household type under consideration are multiplied by the adjustment factor; (3) All 

weights sum and deviation values are updated based on the new weights for all 

household and person types at both Region and Geo levels. The objective of the final 

step is to satisfy the household type and person type constraints at a finer spatial 

resolution by adjusting sample household weights within each geographic unit (Geo). 

The sample weighting process is applied separately to each geographic unit to realize 

this objective. First, an adjustment factor for the first household type in a geographic 

unit is computed as the corresponding constraint divided by the weighted sum. 

Second, weight values for the sample households that belong the first household type 

are adjusted by multiplying the current weight with the adjustment factor. This 

process is repeated for all household and person types in the geographic unit. 

Weighted sums and corresponding deviation values are updated based on the new 

weights for the geographic unit under consideration. This procedure is operated for all 

geographic units within a Region to complete one full iteration of the enhanced 
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algorithm. The weighted sum and deviation values at the Region level are also 

updated at the end of each adjustment. The enhanced IPU algorithm is terminated 

when the improvement in the average deviation value drops below a user-specified 

threshold (When the average deviation value approaches zero, it indicates that the 

sample weights are converging and weighted sums for all households and person 

types matching the geographic unit level constraints.) However, if there are 

inconsistencies in marginal distributions across the geographic levels, then the 

solution is likely to result in a perfect match for some constraints and only a close 

match for others, which requires the consistency of input data across geographic 

levels. The enhanced IPU algorithm helps advance the development of synthetic 

population generators that can control for attributes of interest at multiple spatial 

resolutions simultaneously and shows the better performance of controlling for 

variables at the resolution for which data is available than not controlling for them at 

all. 

2.2 MCMC 

  Farooq, Bilal, et al 2013[7] points out the key shortcomings of the techniques that 

focus on treating synthesis as a fitting problem, which includes Iterative Proportional 

Fitting (IPF) and Combinatorial Optimization based techniques. The shortcomings are: 

1) fitting of one contingency table, while there may be other solutions matching the 

available data; 2) due to cloning rather than true synthesis of the population, losing 

the heterogeneity that may not have been captured in the microdata; 3) overreliance 

on the accuracy of the data to determine the cloning weights; 4) poor scalability with 

respect to the increase in number of attributes of the synthesized agents. Then they 
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put forward a Markov Chain Monte Carlo (MCMC) simulation-based approach to 

solve these issues. MCMC methods are computer-based simulation techniques that 

can be used to simulate a dependent sequence of random draws from very 

complicated stochastic models/processes. These methods have the following 

advantages: 1) provide flexibility in terms of using various data sources at various 

spatial scale; 2) bring in prior knowledge in a systemic way; 3) wherever the data is 

not available; 4) implement assumptions in a coherent manner; 5) are computationally 

and memory-wise robust. In this paper, the problem they want to deal with is to 

synthesize independent populations by drawing agents from the joint distribution of 

the attributes in the real population instead of fitting a single optimization-based 

solution and they propose to use MCMC techniques to draw from the real population 

distribution to obtain a synthetic population, instead of using the conventional fitting 

procedures. MCMC techniques can overcome the shortcomings mentioned above 

while keeping at least the same quality of data as the fitting-based techniques require. 

The process of the MCMC techniques in this paper is as follows: Firstly, they use 

Gibbs sampling, which is a MCMC method, to generate the synthetic population. 

Secondly, they prepare conditionals. They use parametric models to construct the 

conditional distribution here because in practice not all conditionals can be counts by 

category for each attribute like in the straightforward case. The flexibility of using 

such parametric models is that the data from various sources can be combined to 

estimate the parameter values. Thirdly, they deal with incomplete conditionals. They 

put forward two methods to solve the issue. One is to assume the conditional 

independence on the incomplete conditional which is not available, and another is to 
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use the domain knowledge about the incomplete part of the conditional to construct 

full conditionals. Finally, they realize the synthetic population. Using the full and 

consistent conditionals, it eventually reaches a stationary state if the Gibbs sampler is 

run for an extended number of iterations. At that point any draw will be as if the draw 

was from the original joint distribution. Then using this mechanism, a synthetic 

population can be realized by simply drawing the number of individuals equaling the 

size of the required population. Through comparing the performance of MCMC using 

the real population from Swiss census with the standard IPF, the standard root means 

square error statistics indicated even the worst-case simulation-based synthesis 

outperformed the best case IPF synthesis. 

2.3 Machine Learning 

   Recently, many methodologies have been put forward to deal with the problem and 

as machine learning becomes popular in recent years and many generative models 

from the machine learning area are also utilized to solve this problem. One is the 

Bayesian Network. Sun et al 2015[8] proposes a new alternative for population 

synthesis based on Bayesian networks. The Bayesian network encodes probabilistic 

relationships (causality or dependence) among a set of variables by using a graphical 

model. Essentially, a Bayesian network for a set of variables contains two parts: 1) 

the qualitative part is a network structure in the form of a directed acyclic graph 

(DAG), in which nodes are in one-to-one mapping with the random variables and 

links characterize the dependence among connected variables; 2) the quantitative part 

is a set of local probability distributions/tables for each node/variable, conditional on 

its parents. For the learning problem in Bayesian network analysis, there are two 
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types of learning problem given a set of observations: 1) learning only model 

parameter when network structure is known; 2) learning both model structure and 

model parameter. Most practical problems belong to the second type, in which expert 

knowledge is not available or not sufficient enough for us to build the network 

structure from scratch. So, it’s necessary to make full use of observations available to 

learn network structure and model parameter simultaneously, which is often referred 

to as structural learning. It can be divided into two stages: model selection and model 

optimization. To proceed with model selection stage, a score-based approach is often 

applied and computing a score function that quantifies how well a hypothetical 

structure fits the data. Two main score functions are introduced. The most used score 

function is the Bayesian information criterion (BIC). It contains two terms: the first 

term is the optimal likelihood, which quantifies how well the hypothetical structure 

fits the data and the second term is a penalty function on the complexity of the model, 

preventing the overall structural learning process from overfitting. Another popular 

candidate score function is the so-called Akaike information criterion (AIC). It also 

includes two terms like BIC. The first term is still the optimal likelihood, but the 

second term is the number of free parameters in the model parameter, being 

independent from the size of observations. So, both BIC and AIC are constructed by 

adding penalty terms to the optimal likelihood that balances model fit and model 

complexity, but BIC penalize free parameters more strongly than AIC. There are also 

many other score functions can be chosen. After selecting a score function, the goal 

of the optimization stage is to identify the hypothetical structure with the highest 

score. In practice, it’s infeasible to enumerate all potential candidates and evaluate 
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score of each of them, so the common approach is to use heuristic search techniques. 

In this paper, they mainly introduce the Tabu search method. It is an iterative 

searching procedure to move from one solution to its neighboring solution unit 

stopping criterion is satisfied. The performance of tabu search method is enhanced by 

using a memory structure (tabu list) while exploring the neighborhood of each 

solution during search processes compared with the local searching techniques. It is 

also able to escape from local optima, in which normal local search techniques often 

get stuck. After learning both model structure and model parameter, we can 

generate/sample values of the variables given the factorized joint probability 

distribution defined by the Bayesian network. Unlike the MCMC approach, samples 

generated from the Bayesian network are independent and thus the procedure can be 

paralleled and it’s unnecessary to thin the results to reduce correlation between 

sequential samples. The Bayesian network model also provides us with an efficient 

approach to sample based on evidence. 

  The paper finally also applies the Bayesian network to generate synthetic population 

using the Household Interview Travel Survey (HITS) and the results shows the 

powerfulness of Bayesian network in characterizing the underlying joint distribution 

and meanwhile the overfitting of data can be avoided as much as possible. 

  There are also many other deep generative models in machine learning that are 

applied to generate synthetic populations.  In Borysov, Stanislav S., et al 2019[9], a 

deep generative model called Variational Autoencoder (VAE) is introduced to 

generate micro-agents. The VAE is an unsupervised generative model which can 

learn the joint distribution of the observable variables. It is a latent variable model 
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which relates the observable variables to a multivariate latent variable. The intuition 

behind is that given some known joint distribution of the multivariate latent variable 

(e.g multivariate Gaussian), it can be mapped using a cleverly chosen nonlinear 

transformation such that it approximates the observable variables’ joint distribution. 

VAE uses an encoder-decoder architecture, where the encoder maps the observable 

variables to a multivariable latent variable and the decoder maps the multivariable 

latent variable back. It is like the deterministic Autoencoder which usually has a 

bottle neck structure with the dimensionality of the multivariate latent variable much 

less than the dimensionality of the observable variables.  This bottleneck structure 

allows for learning a compressed representation of sparse data in the low-dimensional 

latent space. VAE uses the reconstruction error and the Kullback-Leibler divergence 

to measure the performance after a VAE model is trained. The goal of training is of 

course to minimize the two types of errors. When the model has been trained, new 

samples can be generated by sampling the latent variable from the prior distribution 

and transforming it through the decoder to the data space. After introduce the VAE, 

the paper also compares the method with some other previous generative methods 

like Iterative Proportional Fitting (IPF), Gibbs sampling, Bayesian Networks or 

Hidden Markov in high-dimension cases. To compare the performance of these 

methods, standardized root mean squared error (SRMSE) based on marginal, 

bivariate and trivariate distributions are used as the measurement. The final 

comparison results turn out that although previous generative methods perform better 

in low-dimension datasets, VAE outperforms these methods when the dimension of 

datasets is much higher.  
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  While this is not the end. Next year the article Garrido, Sergio, et al 2020[10] 

extends the previous work, which introduces another deep generative model called 

Generative Adversarial Network (GAN) to apply for a large-scale population 

synthesis. The idea is to train two neural networks at the same time. One network, 

which is the generator, is initiated with a draw from a latent variable. The draw is 

then transformed in such a way that the output is as realistic as possible. The second 

network is the discriminator, which receives an observation. This data can either be 

from real data or these from the generator. The objective of the discriminator is to tell 

whether the information it receives comes from the real data, and the objective of the 

generator, on the other hand, is to generate samples with the aim of “fooling” the 

discriminator. The name “adversarial” the refers to the competition between these two 

networks. In the process, feedback from the discriminator network is used in the 

generator to improve its capability of generating realistic agents. If the discriminator 

guessed that the sample generated by the generator was likely to be real, the generator 

doesn’t move much away from that parameter configuration. The loss function used 

during the training of a GAN model is a minmax loss function, where the generator 

tries to minimize the loss function while the discriminator tries to maximize it. Just as 

mentioned above, it’s a competition between the two networks. While instead of basic 

GAN architecture, the paper uses a more advanced GAN model called Wasserstein 

Generative Adversarial Network (WGAN), which is proven to have properties that 

makes it more desirable generation tasks. The losses of the generator and the 

discriminator in WGAN are based on a distance called the Wasserstein-1 distance. It 

is proved that if the generator is continuous in the parameters and locally Lipschitz, 
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the Wasserstein-1 distance is continuous everywhere and differentiable everywhere, 

which makes the Wasserstein-1 distance more desirable in an optimization procedure. 

The practical difference between these and the normal GAN comes in the loss 

function and from clipping the weights to force the generator to be Lipschitz. Then 

they make comparison with the previous generative methods including VAE as well. 

Besides SRMSE based on marginal, bivariate and trivariate distributions in their 

previous article, they add sampling zero to somewhat test the diversity of the data 

generated. The comparison results demonstrate that WGAN outperforms other 

methods in terms of prediction power but at the same time less diverse compared with 

VAE. 

 

Chapter 3: Data Description 

  In this research study, a sample dataset of the total population was combined with 

the total aggregates (marginals) of selected variables to generate a synthetic 

population for the entire population. The sample dataset was obtained from the 

American Community Survey (ACS), and the marginals were collected from 

Decennial census data and the Internal Revenue income (IRS). The remaining of the 

chapter will mainly introduce the ACS data. PUMA and Decennial census data will 

also be introduced, and the dataset we use will also be included. 

  The ACS is a national household survey conducted every year by the U.S. It is on 

the leading edge of survey design, continuous improvement, and data quality and it is 

the nation’s most current, reliable, and accessible data source for local statistics on 

critical planning topics.  
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  For the source of addresses for ACS, the Master Address File (MAF) is used, which 

is the Census Bureau’s official inventory of known housing units (Hus), group 

quarters (GQs), and selected non-residential units (public, private, and commercial) in 

the United States and Puerto Rico. It contains mailing and location address 

information, geocodes, and other attribute information about each living quarter. A 

geocoded address is one for which state, county, census tract, and block have been 

identified. The MAF is linked to the Topologically Integrated Geographic Encoding 

and Referencing (TIGER) system. TIGER is a database containing a digital 

representation of all census-required map features and related attributes. It is a 

resource to produce maps, data tabulation, and the automated assignment of addresses 

to geographic locations in geocoding. The resulting database is called the 

MAF/TIGER database (MTdb). The MAF was used as the initial frame for the ACS, 

in its state of existence at the conclusion of Census 2000. Updates from nationwide 

2010 Census operations were incorporated into the MTdb and were included in the 

ACS sampling frame in the middle of 2010. The Census Bureau continues to update 

the MAF using the DSF and various automated, clerical, and field operations, such as 

the Demographic Area Address Listing (DAAL). 

  For the sample selection, they will select independent HU address samples and 

independent full-implementation samples of GQ facilities and persons, which are the 

two separate samples included in the ACS that are drawn from the MAF. They select 

independent HU address samples for each of the 3,143 counties and county 

equivalents in the U.S., including the District of Columbia, as well as for each of the 

78 municipalities in Puerto Rico. In 2004, they selected samples of HU addresses for 
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every county and county equivalent for field data collection in 2005.1 Each year from 

2005–2010, they selected approximately 2.9 million HU addresses in the U.S. and 

36,000 HU addresses in Puerto Rico. Beginning in 2011, they implemented the 

following changes to the ACS sample designs:  

(1) They increased the HU sample in June 2011, bringing the size of the sample 

selected to 3.54 million addresses per year. 

(2) They added several new HU sampling rates that better control the allocation 

of the sample and improve estimate reliability for small areas. 

(3) They increased the follow-up sample to 100 percent in select geographic 

areas. 

Full-implementation samples of GQ facilities and persons are selected independently 

within each state, including the District of Columbia and Puerto Rico. This began in 

2006. In 2006 and 2007, the ACS and the PRCS included approximately 2.5 percent 

of the expected number of residents in GQ facilities. Beginning in 2008, they 

increased the sampling rates in 16 states with small GQ populations to meet 

publication thresholds.  

  For the survey rules, the ACS uses residence rules based on the concept of current 

residence. Residence rules are the series of rules that define who (if anyone) should 

be interviewed at a sample address, and who is considered, for purposes of the survey 

or census, to be a resident. Residence rules decide the occupancy status of each HU 

and the people whose characteristics are to be collected. ACS data are collected 

nearly every day of the year. The survey’s residence rules are applied, and its 

reference periods are defined as of the date of the interview. For mail or Internet 
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responses, this is when the respondent completes the questionnaire; for telephone and 

personal visit interviews, it is when the interview is conducted.  

  For the content collected by the ACS, they can be grouped into four main types of 

characteristics: social, demographic, economic and housing. Social characteristics 

include topics such as education, marital status, fertility, veterans, disability status, 

place of birth and others. Basic demographic characteristics such as sex, age, race, 

Hispanic origin are also collected by the ACS, which are also the same information 

collected on the decennial census. Economic characteristics include topics such as 

employment status, income commuting to work, occupation, industry, health 

insurance and others. Housing characteristics include topics such as tenure, 

information about occupancy, and the structure itself which includes house value, 

housing cost, utilities, plumbing, kitchen facilities and others. 

  For the data collection operation for housing units HUs, it consists of four modes: 

Internet, mail, telephone, and personal visit. For most HUs, the first phase includes a 

mailed request to respond via Internet, followed later by an option to complete a 

paper questionnaire and return it by mail. If no response is received by mail or 

Internet, the Census Bureau follows up with computer assisted telephone interviewing 

(CATI) when a telephone number is available. If the Census Bureau is unable to 

reach an occupant using CATI, or if the household refuses to participate, the address 

may be selected for computer-assisted personal interviewing (CAPI). For the data 

collection operation for GQs, it is conducted in two phases. First, U.S. Census Bureau 

Field Representatives (FRs) conduct interviews with the GQ facility contact person or 

the administrator of the selected GQ (referred to as the GQ level interview), and 
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second, the FR conducts interviews with a sample of individuals from the facility 

(referred to as the person- or resident-level interview). The GQ-level data collection 

instrument is an automated Group Quarters Facility Questionnaire (GQFQ). 

Information collected by the FR using the GQFQ during the GQ-level interview is 

used to determine or verify the type of facility, population size, and to draw a random 

sample of residents to be interviewed. FRs conduct GQ-level data collection at 

approximately 20,000 individual GQ facilities each year. 

  For the data preparation and processing for HUs and GQs, the main purpose is to 

take the response data gathered from each survey collection mode to the point where 

they can be used to produce survey estimates. Data returning from the field typically 

arrive in various stages of completion, from a completed interview with no problems 

to one with most or all of the data items left blank. There can be inconsistencies 

within the interviews, such that one response contradicts another, or duplicate 

interviews may be returned from the same household but contain different answers to 

the same question. 

Upon arrival at the U.S. Census Bureau, all data undergo data preparation, where 

responses from different modes are captured in electronic form creating Data Capture 

Files. The write-in entries from the Data Capture Files are then subject to monthly 

coding operations. When the monthly Data Capture Files are accumulated at year-end, 

a series of steps are taken to produce Edit Input Files. These are created by merging 

operational status information (such as whether the unit is vacant, occupied, or 

nonexistent) for each HU and GQ facility with the files that include the response data. 
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These combined data then undergo a number of processing steps before they are 

ready to be tabulated for use in data products. 

  For the weighting and estimation, the basic estimation approach is a ratio estimation 

procedure that results in the assignment of two sets of weights: a weight to each 

sample person record, both household and group quarters (GQ) persons, and a weight 

to each sample housing unit (HU) record. As with most household surveys, weights 

are used to bring the characteristics of the sample more into agreement with those of 

the full population by compensating for differences in sampling rates across areas, 

differences between the full sample and the interviewed sample, and differences 

between the sample and independent estimates of basic demographic characteristics. 

In particular, the ACS uses ratio estimation to take advantage of independent 

population estimates by sex, age, race, and Hispanic origin, and estimates of total 

HUs produced by the Population Estimates Program (PEP) of the Census Bureau. 

This results in an increase in the precision of the estimates and corrects for under-

/over coverage by geography and demographic detail. This method also produces 

ACS estimates consistent with the population estimates by these characteristics and 

the estimates of total HUs for each county in the United States. For any given 

geographic area, a characteristic total is estimated by summing the weights assigned 

to the people, households, families, or HUs possessing the characteristic. Estimates of 

population characteristics are based on the person weight. Estimates of family, 

household, and HU characteristics are based on the HU weight. 

  For the variance estimation, all published ACS estimates are accompanied either by 

90 percent margins of error or confidence intervals, both based on ACS direct 
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variance estimates. Due to the complexity of the sampling design and the weighting 

adjustments performed on the ACS sample, unbiased design-based variance 

estimators do not exist. As a consequence, the direct variance estimates are computed 

using a replication method that repeats the estimation procedures independently 

several times. The variance of the full sample is then estimated by using the 

variability across the resulting replicate estimates. Although the variance estimates 

calculated using this procedure are not completely unbiased, the current method 

produces variances that are accurate enough for analysis of the ACS data. For Public 

Use Microdata Sample (PUMS) data users, replicate weights are provided to 

approximate standard errors for the PUMS-tabulated estimates. Design factors are 

also provided with the PUMS data, so PUMS data users can compute standard errors 

of their statistics using either the replication method or the design factor method. 

  Finally for the ACS data products, they include the tables, reports, and files that 

contain estimates of demographic, social, economic and housing characteristics. 

These products cover geographic areas within the United States and Puerto Rico. The 

Public Use Microdata Sample (PUMS) files, which enable data users to create their 

own estimates, are also data products. More details about ACS data can be found on 

their official website.  

  The ACS provides data for Public Use Micro Areas (PUMAs) at two different levels: 

household level and individual level. The PUMA is a geographic unit defined by the 

U.S. Census and contains at least 100k people; PUMAs do not overlap and nested 

within a single state. The sample dataset used in this study included 9 variables from 
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both household level and individual level. Table 3 lists the selected variables and their 

names, levels, definitions and associated values.   

Table 3: List of variables included in the dataset of this study 

Name Definition  Level Values 

AGEP Age of person Individual 0,99 - 0 to 99 years 

SEX Gender of person Individual  1: Male, 2: Female 

RAC1P Race of person Individual 1: White alone, 2: 

Black or African 

American alone, 3: 

American Indian 

alone, 4: Alaska 

Native alone 

ESR Employment status  Individual 1: Civilian 

employed, at work, 

2: Civilian 

employed, with a 

job but not at 

work, 3: 

Unemployed, 4: 

Armed Forces, At 

Work, 5: Armed 
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Forces, With a Job 

but Not at Work, 

6: Not in Labor 

Force 

HINCP Household income 

(past 12 months) 

Household 1: $1 to less $25k, 

2: $25k to less 

$50k, 3: $50k to 

less $75k, 4: $75k 

to less $100k, 5: 

$100k 50 less 

$200k, 6: $200k or 

more 

HHT Household/family 

type 

Household 1: Married couple 

household, 2: Male 

householder, no 

spouse present, 3: 

Female 

householder, no 

spouse present, 4: 

Male householder: 

Living alone, 5:  

Male householder: 
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Not living alone, 6: 

Female 

householder: 

Living alone, 7: 

Female 

householder: Not 

living alone 

NP Number of persons 

in the household 

Household 1,6: Number of 

persons in 

household 

WIF Workers in family 

during the past 12 

months 

Household 0: No workers, 1: 1 

worker, 2: 2 

workers 3: 3 or 

more workers in 

family 

HUPAC HH presence and 

age of children 

Household 1: With children 

under 6 years only, 

2: With children 6 

to 17 years only, 3: 

With children 

under 6 years and 
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6 to 17 years, 4: 

No children 

 

  The decennial Census Data is updated every ten years at years ending with zeros (i.e. 

2000 and 2010). The obtained sample dataset was included the ACS sample data for 

five consecutive years (2012 to 2016) to ensure having a large enough sample to train 

the developed model. Moreover, the selected years were chosen as the middle ground 

between the most recent census data (2010) for the marginal dataset and the year of 

the study. 

  The developed model has been tested in generating synthetic populations for 

different regions in Maryland with different community types. In this study, the input 

dataset involved two counties in Maryland: Anne Arundel County and Frederick 

County as they have different community types; rural and urban, respectively. Anne 

Arundel County has four PUMAs (1201 to 1204), and Frederick County has two 

PUMAs (301 and 302). The sample size for Arundel County is 22,345 observations 

combined from the four PUMAs for the five years at the individual and household 

levels. Similarly, the sample dataset combined from the two PUMAs in Frederick 

County has 13,653 observations. 

  The real observations in the sample dataset were transformed into pseudo-

observations by applying the empirical distribution function to the data. The pseudo-

observations were used to train the model to learn the dependency between the 

selected variables to generate synthetic pseudo-observations for the whole population. 

The inverse of the cumulative distribution function (CDF). Then, the inverse 
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sampling from the cumulative distribution function (CDF) was applied to transform 

the synthetic pseudo-observations to the synthetic population. In this study, the CDFs 

were collected from two data sources. The CDF functions of the following variables: 

AGEP, SEX, RAC1P, HHT, NP, and HUPAC were obtained from the decennial 

census 2010 at the census tract level then was aggregated at the PUMA level. For the 

WIF and ESR, the CDF functions are not available at the census tract level in the 

decennial census data, therefore, it was constructed from the sample dataset at the 

PUMA level and assumed that all census tracts belonging to this PUMA have the 

same CDF functions. The CDF functions of HINCP were also not available in the 

census data, however, they were generated from the IRS data at the census tract level. 

Chapter 4: Methodology 

4.1 IPF 

  In the paper, we use the standard IPF procedures to generate synthetic population. 

The procedure of the IPF can be summarized as follows: 

(1) Choose household-level control variables. 

(2) Obtain the marginal distributions on these variables from census summary 

files (SF). 

(3) Generate a seed matrix of the joint distribution from a microdata sample data 

set (PUMA, travel survey). 

(4) Expand the seed matrix using an IPF-procedure to match the given marginal 

control totals while maintaining the joint distribution implied by the seed 

matrix. 
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  There is also something needs to be mentioned during the procedure of IPF: 

(1) Selection probabilities are estimated for households in the microdata sample. 

(2) Households are drawn using the selection probabilities to match the expanded 

cell frequencies. 

(3) The resulting synthetic population is checked for goodness-of-fit and 

households are redrawn if necessary. 

(4) The synthetic population is comprised of all individuals within the synthesized 

(drawn) households. 

  Fig 4.1 gives a simple example of how IPF progress: 

 

Fig 4.1 IPF Procedure 

  In the paper, we will use the same procedure, but apply it to the ACS data to 

generate the synthesis population we need.  
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4.2 Bayesian Network 

  The definition of Bayesian network and how it works in the context of population 

synthesis comes from Sun et al 2015[8]. It is a graphical model that encodes 

probability distributions for a set of variables 𝑋𝑋 = {𝑋𝑋1 …𝑋𝑋𝑛𝑛}  of interests and the 

variables 𝑋𝑋 consists of qualitative and quantitative parts: 

(1) For the qualitative part, it is a network structure 𝐺𝐺 in the form of a directed 

acyclic graph (DAG) where nodes are in one-to-one mapping with the random 

variable 𝑋𝑋 and links characterize the dependence among connected variables.  

(2) For the quantitative part, it is a set of local probability distributions/tables 𝛩𝛩 =

{𝑃𝑃(𝛱𝛱1), … ,𝑃𝑃(𝛱𝛱𝑛𝑛)} for each node /variable 𝑋𝑋𝑖𝑖, conditional on its parents 𝛱𝛱𝑖𝑖.  

  Here 𝐺𝐺 is referred to as model structure and 𝛩𝛩 is referred to as model parameters. 𝑋𝑋𝑗𝑗 

is referred to as a parent of  𝑋𝑋𝑖𝑖 if there exists a direct link from 𝑋𝑋𝑗𝑗 to 𝑋𝑋𝑖𝑖 and 𝛱𝛱𝑖𝑖 is used 

to denote the set of variables 𝑋𝑋𝑗𝑗. No certain parent variables 𝛱𝛱𝑖𝑖 will make the local 

probability distribution collapse to its marginal 𝑃𝑃(𝑋𝑋). The DAG topology of Bayesian 

Network only asserts conditional dependence of children given parents. Then the joint 

distribution for 𝑋𝑋 in a Bayesian Network can be decomposed, by integrating 𝐺𝐺 and 𝛩𝛩 

and using the chain rule, into a factorized form with smaller and local probability 

distributions, each of which consists of one node and its parents only: 

𝑃𝑃(𝑋𝑋) = �𝑃𝑃(𝑋𝑋𝑖𝑖|𝛱𝛱𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

  In other words, the joint probability distribution 𝑃𝑃(𝑋𝑋) can be exclusively encoded by 

the pair (𝐺𝐺,𝛩𝛩). The Bayesian network representation allows us to approximate and 

represent an unknown distribution 𝑃𝑃(𝑋𝑋)  into a concise graphical form (𝑃𝑃(𝑋𝑋) ≊
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𝑃𝑃(𝑋𝑋) ). Bayesian network system can thus offer us an intuitive framework to 

reproduce 𝑃𝑃(𝑋𝑋) of the studied population system in terms of population synthesis. 

  The way to construct full conditions in Bayesian network model involves the 

concept of Markov blanket. Markov blanket 𝑀𝑀𝑀𝑀(𝑋𝑋𝑖𝑖) for a particular node 𝑋𝑋𝑖𝑖 is the 

union of three sets: (1) its parents; (2) its children; (2) the coparents-a set consists of 

other parents of its children (excluding 𝑋𝑋𝑖𝑖 ). Since we can derive 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑋𝑋𝑖𝑖−1) =

𝑃𝑃(𝑋𝑋𝑖𝑖,𝑋𝑋−𝑖𝑖)/𝑃𝑃(𝑋𝑋−𝑖𝑖)  by canceling out all terms that do not involve 𝑋𝑋𝑖𝑖  from both 

numerator and dominator, we have: 

𝑃𝑃(𝑋𝑋𝑖𝑖|𝑋𝑋𝑖𝑖−1) ∝ 𝑃𝑃(𝑋𝑋𝑖𝑖|𝛱𝛱𝑖𝑖) � 𝑃𝑃(𝑋𝑋𝑘𝑘|𝛱𝛱𝑘𝑘)
𝑘𝑘∈𝑐𝑐ℎ(𝑗𝑗)

 

Where 𝑐𝑐ℎ(𝑗𝑗) denotes the children nodes of 𝑋𝑋𝑖𝑖. 

  Based on this expression, we can find that the full condition distribution 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑋𝑋𝑖𝑖−1) 

only depends on its Markov blanket 𝑀𝑀𝑀𝑀(𝑋𝑋𝑖𝑖), which demonstrates that the inference 

and sampling of 𝑋𝑋𝑖𝑖 can be achieved by only looking at its Markov blanket 𝑀𝑀𝑀𝑀(𝑋𝑋𝑖𝑖) 

instead of the full conditionals. It also gives us a warning to the use of 

partial/incomplete conditionals to replace the full conditionals in the MCMC 

approach.  

  For the learning problem in Bayesian network analysis, we encounter the type in 

which expert knowledge is not available or not sufficient enough for us to build the 

network structure from scratch in this research, which means we should make full use 

of available observations to learn 𝐺𝐺 and 𝛩𝛩 simultaneously. It is often referred to as 

structure learning that in general can be divided into two stages: model selection and 

model optimization. For model selection we usually apply a score-based approach 
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and the most used score function is the Bayesian information criterion (BIC), which is 

defined by (Schwarz,1978): 

𝐵𝐵𝐵𝐵𝐵𝐵(𝐺𝐺ℎ|𝐷𝐷) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃�𝐷𝐷|𝐺𝐺ℎ,𝛩𝛩��  −
𝑑𝑑
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚  

Where 𝛩𝛩�  is the maximum likelihood estimates of parameters given a hypothetical 

structure 𝐺𝐺ℎ, 𝑑𝑑 is the number of free parameters (degrees of freedom) in 𝛩𝛩, and 𝑚𝑚 is 

the size of observation 𝐷𝐷 . The first term on the right-hand side is the optimal 

likelihood, which quantifies how well the hypothetical structure 𝐺𝐺ℎ fits the data; the 

second term is a penalty function on the complexity of the model, preventing the 

overall structural learning process from overfitting. After selecting a score function, 

the goal of the optimization stage is to identify the hypothetical structure with the 

highest score and tabu search method, which is a heuristic search technique, is used to 

deal with the situation where too many potential candidates exist. It is an iterative 

searching procedure to move from one solution to its neighboring solution until some 

stopping criterion is satisfied. It is used because its performance is enhanced by using 

a memory structure (tabu list) while exploring the neighborhood of each solution 

during the search process. It is also capable of escaping from local optima.  

  The Bayesian network method does not require marginals as input and any 

conditionals as well since structural learning and parameter estimation are integrated 

in the learning of a Bayesian network model. Therefore, the only input that is required 

in learning a Bayesian network model is a specified score function.  

  When we want to realize the population synthesis, we can generate/sample values of 

𝑋𝑋  given the factorized joint probability distribution 𝑃𝑃(𝑋𝑋) defined by the Bayesian 

network after learning both model structure and parameter. Samples generated from 
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the Bayesian network are independent, so we don’t need to thin the results to reduce 

the correlation between sequential samples. The Bayesian network is also able to 

sample based on evidence efficiently, like using marginal distributions as evidence to 

control the global sampling of 𝑋𝑋 . The quality and quantity of observation 𝐷𝐷  may 

determine the functionality of estimated network substantially since the learning of 

the Bayesian network relies on 𝐷𝐷. So keeping the structure of a Bayesian network as 

simple as possible is necessary to reduce the occurrence of undefined local 

conditional distribution during the process of learning of the Bayesian network. 

Adopting an appropriate score function, reducing the number of categories in each 

variable, and adopting a Bayesian framework specifying prior distributions of 

potential parameters are the strategies to achieve the goal. Then by sampling from the 

obtained Bayesian network we are allowed to generate a large list of individuals as a 

population pool. 

  In this research, we apply a score function called the minimum description length 

(MDL) consisting of two components that estimate the structural complexity and the 

likelihood of the data given the model. The best model is chosen when it has the 

shortest description of the data. For the dependencies among nine variables in the 

dataset, structural learning is used to learn the dependencies just as mentioned before. 

And the implementation of Bayesian Network is included in a package pomegranate 

for python. The greedy algorithm is used to learn the network and the rejection 

method is used for sampling. 
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4.3 CTGAN 

  The paper will use the CTGAN model instead of the conventional GAN model as 

one of the machine learning methods used to generate synthetic population, which 

was put forward in Xu, Lei, et al. 2019[11]. It is an advanced GAN model that models 

tabular data distribution and sample rows from the distribution. There are many issues 

of tabular data challenge the conventional GAN model, including mixed data types, 

non-Gaussian distributions, multimodal distributions, learning from sparse one-hot-

encoded vectors and highly imbalanced categorical columns. To solve these issues, 

specific techniques are put forward in CTGAN model, which are mode specific 

normalization and conditional generator. The mode specific normalization is designed 

to solve the issues of non-Gaussian and multimodal distribution and conditional 

generator is used to deal with imbalanced discrete columns. 

  For the mode-specific normalization, it contains three steps: 

(1) For each continuous column 𝐶𝐶𝑖𝑖 , use variational Gaussian mixture model to 

estimate the number of modes mi and fit a Gaussian mixture. 

(2) For each value 𝑐𝑐𝑖𝑖,𝑗𝑗  in 𝐶𝐶𝑖𝑖 , compute the probability of 𝑐𝑐𝑖𝑖,𝑗𝑗  coming from each 

mode. 

(3) Sample one mode from given the probability density and use the sampled 

mode to normalize the value. 

The representation of a row become the concatenation of continuous and discrete 

columns: 

𝑟𝑟𝑗𝑗 = 𝛼𝛼1,𝑗𝑗 ⊕ 𝛽𝛽1,𝑗𝑗 ⊕ …⊕𝛼𝛼𝑁𝑁𝑐𝑐,𝑗𝑗 ⊕ 𝛽𝛽𝑁𝑁𝑐𝑐,𝑗𝑗 ⊕ 𝑑𝑑1,𝑗𝑗 ⊕ …⊕𝑑𝑑𝑁𝑁𝑐𝑐,𝑗𝑗 
Where  𝑑𝑑𝑖𝑖,𝑗𝑗 is one-hot representation of a discrete value. 
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  For conditional generator, it can be interpreted as the conditional distribution of 

rows given the particular value at the particular column, which can be shown as: 𝑟̂𝑟 ∼

𝑃𝑃𝐺𝐺(𝑟𝑟𝑟𝑟𝑟𝑟|𝐷𝐷𝑖𝑖∗ = 𝑘𝑘∗). Here 𝑘𝑘∗ is the value from the 𝑖𝑖∗th discrete column 𝐷𝐷𝑖𝑖∗, 𝑟̂𝑟 are the 

generated samples. While integrating conditional generator into a GAN architecture 

needs to devise a representation for the condition as well as to prepare an input for it, 

to preserve the condition as it is given for generated rows and to learn the real data 

conditional distribution for the conditional generator. The solution here includes three 

key elements, which are the conditional vector, the generator loss and the training-by-

sampling method: 

(1) Conditional vector. It is introduced to indicate the Condition 𝐷𝐷𝑖𝑖∗ = 𝑘𝑘∗. Let the 

𝑖𝑖th mask vector be 𝑚𝑚𝑖𝑖 = [𝑚𝑚𝑖𝑖
(𝑘𝑘)], where: 

𝑚𝑚𝑖𝑖
(𝑘𝑘) = �1 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑖𝑖∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 = 𝑘𝑘∗

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
 

Then the conditional vector can be figured out use: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚1 ⊕ …⊕𝑚𝑚𝑁𝑁𝑐𝑐 
(2) Generator loss. To enforce the conditional generator to produce 𝑑̂𝑑𝑖𝑖∗ = 𝑚𝑚𝑖𝑖∗ 

instead of being free to produce any set of discrete vectors, the cross-entropy 

between 𝑑̂𝑑𝑖𝑖∗ and 𝑚𝑚𝑖𝑖∗ is added and the losses are averages over all the instances 

of the batch. 

(3) Training-by-sampling. Following steps are proposed to assess the output 

produced by the conditional generator: 

1) Create 𝑁𝑁𝑑𝑑 zero-filled mask vectors 𝑚𝑚𝑖𝑖 = [𝑚𝑚𝑖𝑖
(𝑘𝑘)]𝑘𝑘=1..|𝐷𝐷𝑖𝑖| for 𝑖𝑖 = 1, … ,𝑁𝑁𝑑𝑑 . 

2) Randomly select a discrete column 𝐷𝐷𝑖𝑖 out of all the 𝑁𝑁𝑑𝑑 discrete columns, 

with equal probability. 
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3) Construct a PMF across the range of values of the column selected in 2), 

𝐷𝐷𝑖𝑖∗ , such that the probability mass of each value is the logarithm of its 

frequency in that column. 

4) Let 𝑘𝑘∗ be a randomly selected value according to the PMF above. 

5) Set the 𝑘𝑘∗th component of the 𝑖𝑖∗th mask to one: [𝑚𝑚𝑖𝑖∗
(𝑘𝑘∗)] = 1. 

6) Calculate the conditional vector: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚1 ⊕ …⊕𝑚𝑚𝑁𝑁𝑐𝑐. 
  Finally, the conditional generator can be formally described as: 

⎩
⎪⎪
⎨

⎪⎪
⎧

ℎ0 = 𝑧𝑧 ⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ1 = ℎ0 ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝐵𝐵(𝐹𝐹𝐹𝐹|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|+|𝑧𝑧|→256(ℎ0))

ℎ2 = ℎ1 ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝐵𝐵(𝐹𝐹𝐹𝐹|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|+|𝑧𝑧|+256→256(ℎ1))

𝛼𝛼�𝑖𝑖 = tanh �𝐹𝐹𝐹𝐹|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|+|𝑧𝑧|+512→1(ℎ2)�  1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐
𝛼𝛼�𝑖𝑖 = gumbel0.2 (𝐹𝐹𝐹𝐹|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|+|𝑧𝑧|+512→𝑚𝑚𝑖𝑖(ℎ2)) 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐
𝑑̂𝑑𝑖𝑖 = gumbel0.2 (𝐹𝐹𝐹𝐹|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|+|𝑧𝑧|+512→|𝐷𝐷𝑖𝑖|(ℎ2)) 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑑𝑑

 

Here 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝜏𝜏(𝑥𝑥)  refers to Gumbel softmax with parameter 𝜏𝜏  on a vector 𝑥𝑥 , 

𝐹𝐹𝐹𝐹𝑢𝑢→𝑣𝑣(𝑥𝑥) refers to a linear transformation on a 𝑢𝑢-dim input to get a 𝑣𝑣-dim output. 

  The PacGAN framework with 10 samples in each pac is used to prevent mode 

collapse. The architecture of the critic can be formally described as: 

⎩
⎪
⎨

⎪
⎧

ℎ0 = 𝑟𝑟1 ⊕ …⊕ 𝑟𝑟10 ⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 ⊕ …⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐10
ℎ1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(leaky0.2 �𝐹𝐹𝐹𝐹10|𝑟𝑟|+10|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|→256(ℎ0)�)

ℎ2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(leaky0.2�𝐹𝐹𝐹𝐹256→256(ℎ1)�)
𝐶𝐶(⋅) = 𝐹𝐹𝐹𝐹256→1(ℎ2)

 

Here 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝛾𝛾(𝑥𝑥) refers to a leaky ReLU activation on 𝑥𝑥 with leaky ratio 𝛾𝛾, 

  The model is trained using WGAN loss with gradient penalty and Adam optimizer 

with learning rate 2 ∙ 10−4 is used. 

  The model of CTGAN can also be visualized as Fig 4.3: 
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Fig 4.3: CTGAN model 

  The network architectures and parameters shown above are the default architectures 

and values which have already been defined in the package ctgan in python. In the 

paper, We directly use the default ctgan to train the dataset and generate the synthesis 

population. 

4.4 TVAE 

  Just like GAN, in the paper TVAE model is used instead of conventional VAE to 

generate synthesis population, which adapts VAE to tabular data by using the same 

preprocessing and modifying the loss function. The TVAE model is also proposed in 

Xu, Lei, et al. 2019 and they use two neural networks to model 𝑝𝑝𝜃𝜃(𝑟𝑟𝑗𝑗|𝑧𝑧𝑗𝑗)  and 

𝑞𝑞∅(𝑧𝑧𝑗𝑗|𝑟𝑟𝑗𝑗) and train them using evidence of lower-bound (ELBO) loss. Here 𝑞𝑞∅(𝑧𝑧𝑗𝑗|𝑟𝑟𝑗𝑗) 

can be seen as the encoder part that maps observable variable to latent space and 

𝑝𝑝𝜃𝜃(𝑟𝑟𝑗𝑗|𝑧𝑧𝑗𝑗)can be seen as the decoder part that maps the latent space back. 

  The design of 𝑃𝑃𝜃𝜃(𝑟𝑟𝑗𝑗|𝑧𝑧𝑗𝑗) is shown as follow: 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ℎ1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐹𝐹𝐹𝐹128→128�𝑧𝑧𝑗𝑗�)

ℎ2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐹𝐹𝐹𝐹128→128(ℎ1))
𝑎𝑎�𝑖𝑖,𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐹𝐹𝐹𝐹128→1(ℎ2) 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐

𝑎𝑎�𝑖𝑖,𝑗𝑗~𝑁𝑁(𝑎𝑎�𝑖𝑖,𝑗𝑗, 𝛿𝛿𝑖𝑖) 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐
𝛽̂𝛽𝑖𝑖,𝑗𝑗~𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝐹𝐹𝐹𝐹128→𝑚𝑚𝑖𝑖

(ℎ2)) 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐
𝑑̂𝑑𝑖𝑖,𝑗𝑗~𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝐹𝐹128→|𝐷𝐷𝑖𝑖|(ℎ2)) 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑑𝑑

𝑝𝑝𝜃𝜃�𝑟𝑟𝑗𝑗�𝑧𝑧𝑗𝑗� = � 𝑃𝑃(𝑎𝑎�𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑖𝑖,𝑗𝑗)
𝑁𝑁𝑐𝑐

𝑖𝑖=1
� 𝑃𝑃(𝛽̂𝛽𝑖𝑖,𝑗𝑗 = 𝛽𝛽𝑖𝑖,𝑗𝑗)� 𝑃𝑃(𝑎𝑎�𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑖𝑖,𝑗𝑗)

𝑁𝑁𝑑𝑑

𝑖𝑖=1

𝑁𝑁𝑐𝑐

𝑖𝑖=1

 

Here 𝑎𝑎�𝑖𝑖,𝑗𝑗 , 𝛽̂𝛽𝑖𝑖,𝑗𝑗  and 𝑑̂𝑑𝑖𝑖,𝑗𝑗  are random variables. They assume 𝑎𝑎�𝑖𝑖,𝑗𝑗  follows a Gaussian 

distribution with different mean and variance and 𝛽̂𝛽𝑖𝑖,𝑗𝑗  and 𝑑̂𝑑𝑖𝑖,𝑗𝑗  follow a categorical 

PMF. Weight matrices and variance are parameters in 𝑃𝑃𝜃𝜃(𝑟𝑟𝑗𝑗|𝑧𝑧𝑗𝑗), which are trained 

using gradient descent. 

  The design of 𝑞𝑞∅(𝑧𝑧𝑗𝑗|𝑟𝑟𝑗𝑗) is similar to conventional VAE, which is shown as follow: 

⎩
⎪⎪
⎨

⎪⎪
⎧ℎ1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐹𝐹𝐹𝐹|𝑟𝑟𝑗𝑗|→128�𝑟𝑟𝑗𝑗�)
ℎ2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐹𝐹𝐹𝐹128→128(ℎ1))

𝜇𝜇 = 𝐹𝐹𝐹𝐹128→128(ℎ2)

𝜎𝜎 = exp (
1
2
𝐹𝐹𝐹𝐹128→128(ℎ2))

𝑞𝑞∅(𝑧𝑧𝑗𝑗|𝑟𝑟𝑗𝑗)~𝑁𝑁(𝜇𝜇,𝜎𝜎𝜎𝜎)

 

  TVAE uses 1e-3 as the training rate of Adam. 

  In the paper, we also directly use the default tvan to train the dataset and generate 

the synthesis population and the network architectures and parameters shown above 

are the default architectures and values defined in the package tvae in python. 

4.5 Copula 

  A copula 𝐶𝐶: [0,1]𝑑𝑑 → [0,1] is a multivariate cumulative distribution function (CDF) 

for which the marginal probability distribution of each variable is uniform on the 

interval [0,1]. 
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  Consider a random vector 𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝑑𝑑). If its marginals 𝐹𝐹𝑖𝑖(𝑥𝑥) = 𝑃𝑃[𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥] are 

continuous, then applying the probability integral transform to each component gives 

the random vector: 

𝑈𝑈 = (𝑈𝑈1, … ,𝑈𝑈𝑑𝑑) = (𝐹𝐹1(𝑋𝑋1), … ,𝐹𝐹𝑑𝑑(𝑋𝑋𝑑𝑑)) 
which has uniform marginals over [0,1]. This normalized vector is referred as the 

copula-uniform dual representation of X. It allows us to study the structure of our 

problem in a way that is robust to the peculiarities of the marginal distributions. The 

copula of 𝑋𝑋  characterizes the dependency structure of its copula-uniform dual 

representation. In other words, it is the joint CDF of 𝑈𝑈 

𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑑𝑑) = 𝑃𝑃[𝑈𝑈1 ≤ 𝑢𝑢1, … ,𝑈𝑈𝑑𝑑 ≤ 𝑢𝑢𝑑𝑑] 
  Given a procedure to generate samples from the copula function, we can map back 

the synthetic samples to the data space by applying the inverse of the marginal CDFs 

(𝑋𝑋1, … ,𝑋𝑋𝑑𝑑) = (𝐹𝐹−1(𝑈𝑈1), … ,𝐹𝐹𝑑𝑑−1(𝑈𝑈𝑑𝑑)) 
  Copulas fully capture the dependence structure between the input variables, while 

the marginals are informative about how the underlying phenomenon was observed. 

For example, in a census data generation context, it is reasonable to conjecture that 

marginals encode demographic elements and that multidimensional dependences 

encode more complex socioeconomic patterns shared across related regions. 

  Suppose we wish to generate synthetic data of a target population from which we 

only have marginals’ information and that we have access to a sample of another 

source, population sharing the structure of the target. Our population synthesis 

procedure is as follow: 

(1) Normalize the source population with the probability integral transform. 

(2) Generate synthetic population from the normalized data. 

(3) Decode the synthetic population with the inverse of the marginal CDFs of the 
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target population. 

  In practice, it is unlikely to have access to true marginals. To normalize 𝑋𝑋, one 

would then use the empirical CDFs (ECDF): 

𝐹𝐹�(𝑥𝑥) =
1
𝑁𝑁
�𝕝𝕝𝑥𝑥𝑖𝑖≤𝑥𝑥

𝑁𝑁

𝑖𝑖=1

 

Where 𝕝𝕝 is the indicator function and the pseudo-inverse function: 

𝐹𝐹�−1(𝑢𝑢) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥:𝐹𝐹(𝑥𝑥) ≥ 𝑢𝑢) 
to map the generated data back in the primal space. 

  The copula framework has been applied to most of my methods in order to improve 

the performance of the synthetic population generated by these methodologies. We 

also compare the methods plus copula with the ones without checking whether the 

copula framework does improve the performance of the methods we research. We 

define the code of copula transfer learning by myself. The class of copula can encode 

features with probability integral transform and decode features with pseudo-inverse 

of the provided data. It can also be used to resample discrete encoded features 

uniformly between the steps of their ECDF. 

4.6 Discrete Case 

  When the variables of 𝑋𝑋 have discrete supports, the normalized vector 𝑈𝑈 does not 

have uniform marginals. In that case, the decoding step will not allow us to recover 

the marginals of the target population. We can see from the definitions that it is 

possible to lose values in some dimensions when applying the ECDF and the pseudo-

inverse of two different populations to the same discrete data. Consider the example 

of a binary attribute. If the first possible value has a smaller ratio in the target 

distribution than in the source, then applying the pseudo-inverse of the target 
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population on the synthesized normalized examples will map every generated first 

value to the second, loosing the first value in the synthetic population. 

  We heuristically solve this issue with the following idea. Consider a generated 

example 𝑢𝑢 . A discrete component 𝑢𝑢𝑖𝑖  of 𝑢𝑢  reside in the copula dual space and its 

domain is given by the ECDF of the source 𝑢𝑢𝑖𝑖 ∈ {𝑢𝑢𝑖𝑖1, . . . ,𝑢𝑢𝑖𝑖
𝑛𝑛𝑖𝑖} with 𝑢𝑢𝑖𝑖𝑘𝑘 ∈ [0,1] and  

𝑢𝑢𝑖𝑖𝑘𝑘−1 ≤ 𝑢𝑢𝑖𝑖𝑘𝑘 for all 𝑘𝑘. Suppose that 𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑘𝑘, to recover the uniform behavior of this 

marginal, we sample its value between its current value and the largest possible value 

that is lower than it 𝑢𝑢𝑖𝑖 ∼ 𝑈𝑈{𝑢𝑢𝑖𝑖𝑘𝑘−1,𝑢𝑢𝑖𝑖𝑘𝑘}. We do this for each discrete dimension of 

every generated normalized sample. 

  In short, we add an intermediate uniform sampling step to our population synthesis 

procedure: 

(1) Normalize the source population with the probability integral transform. 

(2) Generate synthetic population from the normalized data. 

(3) For each generated example, sample uniformly each discrete variable between its 

current value and the largest value lower than it. 

(4) Decode the synthetic population with the inverse of the marginal CDFs of the 

target population. 
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Chapter 5:  Results 

  This chapter will present all the results in my case study at the state level, county 

level and puma level. We compare all methodologies, including target, independent 

baseline, IPF, machine learning methods and Bayesian Network, using metric 

evaluations and marginal fit. We’ll first focus on introducing metric evaluations we 

use and then present the results at the state level, county level and puma level. 

5.1 Evalutation Methods 

  To assess the quality and fitness of the synthetic data several metrics are used and 

their introductions are shown as below: 

(1) Standardized root mean squared error (SRMSE). The standardized root mean 

squared error (SRMSE) is a popular metric in the population synthesis scientific 

community. We follow the definition from Sun and Erath [2015], which is 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = � � …
𝑀𝑀1

𝑚𝑚1=1

� (𝑓𝑓𝑚𝑚1…𝑚𝑚𝑑𝑑 − 𝑓𝑓𝑚𝑚1…𝑚𝑚𝑑𝑑)2 × (𝑀𝑀1 …𝑀𝑀𝑑𝑑)
𝑀𝑀𝑑𝑑

𝑚𝑚𝑑𝑑=1

 

Where 𝑓𝑓𝑚𝑚1…𝑚𝑚𝑑𝑑  and 𝑓𝑓𝑚𝑚1…𝑚𝑚𝑑𝑑  are the relative frequency of a particular combination in 

the reference data and in the synthetic data and 𝑀𝑀𝑖𝑖 is the number of categories for 

attribute 𝑋𝑋𝑖𝑖. A value of 0 means a perfect match while large values mean distance 

between true and synthetic data. 

As suggested by Borysov et al. [2018] we compute the average SRMSE for all 

possible 𝑖𝑖-uples of variables range from 1 to the number of variables in the dataset. 

For example, SRMSE averaged over the uni-variate distributions evaluate the fitting 
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of the marginals and SRMSE averaged over the possible pairs, triplets, and 

quadruplets of variables evaluate the fitting of the joint bi, tri, and quadri distributions. 

SRMSE captures whether the synthetic combination appears in the real data thus 

assessing the fitting of the multi-dimensional dependencies. 

(2) Sampling zeros. SRMSE does not take into account the diversity of data. A 

synthetic combination might be desired even if it does not appear in the reference data. 

To assess the diversity of the produced synthetic data, we implement sampling zeros: 

we count the combinations of variables which are in the test set but not in the training 

set. 

5.2 State Level 

  The experiment at the state level has several details need to be mentioned here: 

(1) We assume the aggregation of Maryland’s PUMAs to be a full population. Doing 

so allows me to accurately evaluate the multi-variate dependencies as if we knew the 

ground truth population. 

(2) In this experiment, the aggregation of the PUMAs is the target and we use a 

random micro sample of 1% as the source. 

(3) We use the empirical marginals of the target to transfer the learning of the 

dependencies from the source for IPF and our copula framework 

  Then the results of evaluation metrics are shown as Table 5.2:  
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 1 2 3 4 5 6 7 8 9 10 SZ 

Ind 
0.1042
274043 

0.4518
935993 

0.7102
783809 

1.6047
62656 

4.5079
75642 

10.935
04464 

12.276
75129 

24.349
81605 

47.243
83404 

122.14
89898 7018 

CTGA
N 

0.4761
84927 

0.7940
800443 

1.2439
64983 

2.8825
89763 

7.1863
95281 

14.488
34985 

16.271
99799 

29.890
48243 

54.846
65431 

133.07
80349 26483 

CTGA
N+Cop

ula 
0.4609
034478 

0.7537
656087 

1.1328
69228 

2.3652
3742 

5.9889
60757 

12.359
77219 

14.104
627 

26.565
19116 

50.260
95556 

123.21
35545 26136 

TVAE 
1.2690
49356 

1.7234
85698 

2.7001
54978 

6.7084
94713 

14.532
98521 

29.844
51156 

31.536
14861 

51.107
19453 

88.935
62612 

203.68
59545 18500 

TVAE
+Copul

a 
1.1715
65823 

1.5458
51852 

2.3938
09697 

5.2605
80512 

11.320
89855 

23.055
47586 

24.498
52065 

40.282
89263 

70.696
60189 

162.73
48373 22793 

BN 

0.0964
720634

7 
0.4472
713068 

0.6217
259876 

1.4218
44283 

4.2465
99087 

9.4170
12769 

10.944
15921 

22.135
97781 

43.584
35851 

113.94
49343 37992 

BN+C
opula 

0.0094
693570

94 
0.4280
410949 

0.6106
936121 

1.3673
83669 

4.1641
79524 

9.3262
45447 

10.872
32969 

22.047
57031 

43.406
97815 

113.77
85025 34956 

IPF 

0.0006
386592

122 
0.2274
147576 

0.5174
202018 

5.2367
30654 

15.747
0527 

38.438
57905 

54.701
04858 

122.70
33419 

245.69
06063 

650.35
00978 0 

 
Table 5.2 Metrics Evaluation for State Level 

  Based on the results in Table 5.2, we have the following conclusions: 

(1) IPF nicely matches the low dimensional conditional distributions but does worse 

than the independent baseline in higher dimensions.  

(2) After applying copula transfer learning to three machine learning methods 

including Bayesian Network, CTGAN and TVAE, we can find that the performance 

of all these methods are in general improved compared with the ones without copula 

transfer learning, which are lower SRMSE in all dimensions in the three machine 

learning methods and higher sampling zeros in CTGAN and TVAE that hint more 

diverse synthetic data. For Bayesian Network, sampling zeros perform worse after 

applying copula framework. Importantly, IPF evidently has a nul score for sampling 
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zeros since it only replicates examples from the source. It cannot generalize to 

realistic but unknown combinations. 

(3) Among the three machine learning methods, both Bayesian Networks perform 

best compared with CTGAN and TVAE in generating accurate synthetic populations  

since both Bayesian Networks have lowest SRMSE in all dimensions and highest 

sampling zero reflecting more diversity. 

(4) Among all the methods, Bayesian Network plus Copula performs best in all 

dimensions of SRMSE and Bayesian Network performs best in sampling zero. 

  Then we compare the Bayesian Network and the one plus Copula (The two methods 

that perform best) with target and the independent baseline using the marginal fit 

among all the counties in Maryland is shown as Figure 5.1: 

 

Figure 5.2 Marginal Fit at the State Level 

  We can find the similar conclusion that Bayesian Network plus Copula performs 

best in fitting the target data among all counties in Maryland. 
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5.3 County Level 

  The experiment at the county level also has several details need to be mentioned 

here: 

(1) This experiment is similar to the previous, but we study the population synthesis 

capabilities at the county level. The source has a limited number of samples. 

(2) We assume Anne Arundel county to be a full population. 

(3) In that experiment, the county is the target and we use a random micro sample of 

1% as the source. 

  Then the results of evaluation metrics are shown as Table 5.3:  

 
 1 2 3 4 5 6 7 8 9 10 SZ 

Ind 
0.1272
215183 

0.3632
546723 

1.4034
42519 

3.7357
83888 

9.1085
46462 

10.146
27092 

20.023
62682 

38.678
1245 

99.981
8079 

162.78
23915 361 

CTGA
N 

0.3011
687643 

0.5965
593546 

1.4819
13223 

3.9404
97752 

9.5228
43088 

10.529
74393 

20.430
8687 

39.045
00791 

100.67
19695 

163.40
89641 264 

CTGA
N+Cop

ula 
0.1779
922895 

0.5155
970233 

1.2382
47905 

3.4038
92431 

9.1430
73166 

10.170
11135 

20.088
46587 

38.887
44418 

100.44
40273 

163.13
11098 287 

TVAE 
0.1917
865886 

0.4531
648119 

4.0571
50911 

10.887
75758 

23.977
37917 

27.067
05786 

49.544
5576 

90.411
72616 

220.72
43117 

348.92
82139 1017 

TVAE
+Copul

a 
0.1244
953957 

0.3363
16169 

2.6127
28314 

6.9636
48541 

15.435
33788 

17.515
97086 

32.145
73163 

59.270
9662 

144.79
20403 

233.54
53045 1451 

BN 
0.1348
4659 

0.3727
049798 

1.3977
60086 

3.6964
29966 

8.9439
28153 

10.014
55985 

19.872
94334 

37.818
89478 

98.018
63583 

161.61
06233 756 

BN+C
opula 

0.0214
380750

8 
0.3281
27674 

1.1164
33787 

3.0935
51179 

8.4776
10613 

9.5838
96734 

19.614
45094 

37.695
58301 

97.996
71018 

161.37
70241 684 

IPF 
0.0005
029778 

0.3647
612808 

5.5188
64114 

16.515
8186 

40.618
43584 

57.882
39614 

130.01
41199 

260.42
24076 

689.85
89054 

1381.9
20488 0 
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Table 5.3 Metrics Evaluation for County Level 

  Based on the results in Table 5.3, the following conclusions can be arrived at similar 

to the previous experiment: 

(1) Lowering the source size harms IPF’s performance. IPF just nicely matches the 

first two low dimensional conditional distributions but does worse than the 

independent baseline in higher dimensions compared with the previous experiment 

that matches the first five dimensions. 

(2) After applying copula transfer learning to three machine learning methods 

including Bayesian Network, CTGAN and TVAE, we can find that the performance 

of all these methods are perfectly improved compared with the ones without copula 

transfer learning, which are lower SRMSE in all dimensions and higher sampling 

zeros that hint more diverse synthetic data. Still, IPF evidently has a nul score for 

sampling zeros since it only replicates examples from the source. It cannot generalize 

to realistic but unknown combinations. 

(3) Among the three machine learning methods, both Bayesian Networks perform 

best compared with CTGAN and TVAE in generating accurate synthetic populations 

since the two Bayesian Networks have lowest SRMSE in all dimensions. However, 

TVAE performs better in data diversity in this case since both TVAE architectures 

have higher values in sampling zero 

(4) Among all the methods, Bayesian Network plus Copula performs best in all 

evaluation metrics in this experiment. 
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  Then we also compare the Bayesian Network and the one plus Copula (The two 

methods that perform best) with target and the independent baseline using the 

marginal fit among all the pumas in Anne Arundel county is shown as Figure 5.2:  

 
Figure 5.3 Marginal Fit at the County Level 

 

  We can still find the similar conclusion that Bayesian Network plus Copula 

performs best in fitting the target data among all the pumas in Anne Arundel county. 

5.4 Puma Level 

  Table 5.4.1-5.4.6 show the results of the experiments at puma level at PUMA 1201, 

1202, 1203, 1204, 301 and 302. Here we also add the parametric copula (These ML 

methods plus copula are non-parametric copula) as one of the methods to compare.  

 
 

 1 2 3 4 5 6 7 8 9 SZ 

Ind 
0.24105
29572 

0.42791
267 

2.12812
5369 

4.92600
8029 

11.1356
4557 

13.4261
92 

27.6463
497 

53.7179
7463 

140.410
8854 70 

CTGA
N 

0.28501
36781 

0.48972
44658 

2.37573
2739 

5.30767
3053 

11.3887
6522 

13.6884
5603 

27.7759
3892 

53.9156
8592 

140.295
9068 86 

CTGA 0.20880 0.39728 1.47765 3.83247 10.2884 12.7243 27.0579 53.3436 139.710 103 
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N+Cop
ula 

29794 82928 2401 9886 5 1907 7595 2878 71 

TVAE 
0.24689
67689 

0.90309
77911 

5.72952
0227 

14.5958
5094 

29.7529
4267 

38.4930
9087 

75.9009
6228 

121.385
9201 

305.702
8763 176 

TVAE+
Copula 

0.33001
44101 

0.67932
81386 

2.73784
5044 

7.12924
5478 

15.1284
6944 

20.4965
937 

38.8988
9912 

65.7368
826 

169.279
2456 372 

BN 
0.21696
75327 

0.43283
70393 

2.13544
7544 

4.92015
4542 

11.0219
9722 

13.3393
9738 

27.6094
4188 

53.6221
5286 

140.056
8036 93 

BN+Co
pula 

0.02170
237124 

0.27602
76786 

1.42508
711 

3.75338
6914 

10.1600
9951 

12.6158
4634 

27.0038
5174 

53.2304
7853 

139.354
8492 105 

Copula 
0.45568
11881 

0.71074
91015 

1.75560
4361 

4.28039
9996 

10.2552
1612 

12.6957
1644 

27.6864
1108 

53.9485
6735 

140.295
9068 70 

IPF 
0.28327

7304 
0.79173
09614 

9.61251
4814 

27.3850
5826 

67.1961
2648 

95.4556
1482 

213.862
68 

428.250
5719 

1133.08
842 0 

 
Table 5.4.1 Metrics Evaluation for PUMA 1201 

 
 

 1 2 3 4 5 6 7 8 9 SZ 

Ind 
0.53116
04863 

0.77202
59509 

2.49408
4666 

6.25046
8318 

12.7985
2274 

15.6013
9274 

31.7296
7754 

61.8874
8094 

161.224
9072 52 

CTGA
N 

0.55060
49664 

0.98186
42858 

2.91742
0171 

6.81131
6185 

13.1562
6402 

16.0375
3043 

31.9211
2242 

62.0038
4735 

161.254
7112 56 

CTGA
N+Cop

ula 
0.19966
24166 

0.53521
89951 

1.65366
6582 

4.42427
6634 

11.3765
1122 

14.3451
2116 

30.9132
1985 

61.3415
1896 

160.627
6652 47 

TVAE 
0.56937
94676 

1.03358
6738 

6.48184
2707 

17.4408
3735 

36.5342
9058 

45.8943
6658 

86.1753
5047 

150.718
4593 

364.987
5842 93 

TVAE+
Copula 

0.06983
565976 

0.30013
59902 

2.41446
5998 

6.71786
4143 

14.7323
2252 

19.5380
6488 

38.1655
6801 

71.0004
9703 

176.111
666 168 

BN 
0.50328
05483 

0.77205
36383 

2.56427
6635 

6.39098
651 

13.0698
8094 

15.8686
2468 

32.0739
9067 

62.0868
3268 

161.923
8516 37 

BN+Co
pula 

0.04779
288205 

0.42425
94786 

1.54697
9017 

4.18231
9769 

10.9113
9999 

14.0122
4239 

30.7713
1962 

61.2070
7163 

160.657
5801 48 

Copula 
0.50940
62634 

0.73957
58112 

1.80372
7153 

4.80458
3786 

11.3855
5935 

14.5010
057 

31.4498
7611 

61.9706
221 

161.284
5097 36 

IPF 
0.52655
14114 

1.06518
2688 

11.8068
9289 

33.5098
6951 

82.1940
1502 

116.398
219 

260.547
1223 

521.040
6606 

1378.56
4595 0 

Table 5.4.2 Metrics Evaluation for PUMA 1202 
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 1 2 3 4 5 6 7 8 9 SZ 

Ind 
0.34130
90432 

0.57576
10715 

2.40115
6782 

6.32868
0042 

13.3117
1167 

15.5969
3433 

31.1660
7433 

60.1171
0347 

156.990
1802 126 

CTGA
N 

0.51063
57559 

0.81945
17898 

2.61030
7135 

6.57582
9393 

13.7483
9027 

16.0994
2693 

31.5544
5161 

60.4008
5047 

157.282
3329 77 

CTGA
N+Cop

ula 
0.16383
02906 

0.50680
90192 

1.72782
2806 

4.66469
1656 

11.8729
658 

14.3183
6894 

30.4168
0771 

59.4234
8919 

156.288
8838 84 

TVAE 
0.44254
71456 

0.95055
66282 

6.50836
408 

18.3094
5271 

36.8437
8899 

46.1062
643 

88.0585
8841 

152.942
5267 

392.471
273 182 

TVAE+
Copula 

0.17759
84163 

0.48987
56451 

2.58523
0474 

7.18979
0751 

15.6602
5376 

20.0077
7623 

38.2654
8324 

70.9303
6962 

180.203
1971 366 

BN 
0.34728
78931 

0.59561
18018 

2.39820
8269 

6.29946
7383 

13.5186
0794 

15.8272
506 

31.3645
983 

60.1910
842 

157.178
055 114 

BN+Co
pula 

0.02069
072726 

0.39260
83802 

1.63964
7758 

4.49398
5698 

11.6509
2857 

14.2231
747 

29.8317
2102 

58.9922
9085 

155.405
1754 150 

Copula 
0.39943
97926 

0.63414
43773 

1.84348
4274 

4.94597
5734 

11.8096
6924 

14.3795
815 

31.0154
0352 

60.0547
3323 

156.634
6908 104 

IPF 
0.20162

097 
0.91149
30804 

9.96890
2414 

28.2839
9259 

69.8280
417 

99.2312
6848 

222.252
2842 

445.227
1834 

1178.12
2151 0 

Table 5.4.3 Metrics Evaluation for PUMA 1203 

 
 

 1 2 3 4 5 6 7 8 9 SZ 

Ind 
0.25387
47653 

0.60140
95617 

2.60797
4146 

5.53416
0108 

11.5518
5389 

13.7058
7999 

27.2748
6485 

53.1270
3867 

139.203
0098 78 

CTGA
N 

0.36787
53435 

0.70215
47692 

2.68194
8099 

5.88090
1111 

11.8434
6681 

13.8205
4044 

27.2589
8428 

53.1197
9325 

139.203
0098 57 

CTGA
N+Cop

ula 
0.24584
65297 

0.51896
10799 

1.74483
909 

4.19040
8609 

10.4556
9848 

12.6902
6246 

26.5109
4159 

52.4709
4414 

137.978
2406 91 

TVAE 
0.48959
93909 

0.99272
02666 

6.81917
6795 

15.6900
6526 

32.9858
7955 

41.7518
6952 

81.5459
9731 

148.177
9419 

375.942
4537 133 

TVAE+
Copula 

0.27748
91166 

0.62407
8894 

2.80428
5557 

6.63885
6984 

15.0251
2281 

18.9035
0481 

37.3880
4346 

69.2160
9774 

177.449
7159 359 

BN 
0.27299
84757 

0.56994
14193 

2.61135
4143 

5.61100
114 

11.6008
9598 

13.8170
5876 

27.3365
3489 

53.2681
2737 

139.183
6532 65 
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BN+Co
pula 

0.02490
985405 

0.41155
3628 

1.63752
2522 

3.91518
8339 

9.80994
3007 

12.1185
4543 

26.1215
2412 

51.9771
41 

137.508
7924 117 

Copula 
0.42272
73683 

0.70564
45814 

1.79222
0955 

4.29156
5421 

10.0104
49 

12.2731
8937 

27.1209
6322 

53.2356
0163 

139.048
0816 61 

IPF 
0.24861
08779 

0.92423
86622 

9.87388
3546 

24.3029
0473 

60.0973
5804 

85.3110
7353 

191.420
8231 

383.248
747 

1014.11
2248 0 

Table 5.4.4 Metrics Evaluation for PUMA 1204 

 
 
 

 1 2 3 4 5 6 7 8 9 SZ 

Ind 
0.24105
02073 

0.51387
0958 

2.35342
4273 

6.10743
3274 

13.0990
9496 

14.7821
6417 

28.1582
8628 

53.8899
9158 

140.109
8024 174 

CTGA
N 

0.30085
44405 

0.73861
50626 

2.43394
0426 

6.11371
5835 

13.2590
1645 

15.0159
9724 

28.5583
1947 

54.1437
1334 

140.620
9756 119 

CTGA
N+Cop

ula 
0.13858
64596 

0.68093
66467 

1.66565
3501 

4.48084
8237 

11.7180
0512 

13.6200
0751 

27.2795
1798 

53.1843
9203 

138.931
0286 209 

TVAE 
0.31219
66514 

0.75810
99802 

5.63885
5064 

15.5238
757 

34.4444
4547 

39.6694
1226 

69.0264
2844 

121.402
4626 

301.094
3664 261 

TVAE+
Copula 

0.15446
8137 

0.65260
32657 

2.76975
3329 

7.68924
7691 

16.8272
8136 

20.3976
416 

39.0729
5575 

70.4920
7383 

177.930
1269 645 

BN 
0.24079
77511 

0.55097
86542 

2.36385
1322 

6.16678
1378 

13.1151
3095 

14.8253
4204 

28.0917
4354 

53.9348
5274 

140.586
5729 177 

BN+Co
pula 

0.01957
054963 

0.35775
85852 

1.48836
3659 

4.02332
8029 

11.1113
6491 

13.0261
3612 

26.8797
3414 

52.7713
4534 

138.256
2633 254 

Copula 
0.38057
84387 

0.60688
42902 

1.67434
5863 

4.46873
0133 

10.8658
5051 

12.8427
1042 

27.6183
2878 

53.7080
2791 

139.006
4447 244 

IPF 
0.18491
63528 

0.72240
79395 

9.15501
2796 

25.6567
9395 

63.5045
3809 

90.1447
7203 

202.517
6849 

405.250
0005 

1072.75
1925 0 

 
Table 5.4.5 Metrics Evaluation for PUMA 301 

 
 

 1 2 3 4 5 6 7 8 9 SZ 

Ind 
0.19732

4888 
0.83138
21698 

2.41724
6625 

6.09360
5588 

12.6388
3328 

15.0301
2952 

30.2544
4563 

58.7510
4667 

153.039
7572 88 

CTGA
N 

0.23744
15215 

0.76698
49239 

2.41687
548 

5.91950
554 

13.0072
5527 

15.4275
9834 

30.9320
5553 

59.5414
7368 

154.350
9261 125 
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CTGA
N+Cop

ula 
0.08627
003666 

0.54076
47642 

1.65450
3687 

4.42353
6024 

11.0451
3404 

13.8376
819 

29.4487
2435 

58.1405
9682 

152.735
5813 82 

TVAE 
0.18099
67416 

1.15552
107 

7.10235
5124 

19.4055
5732 

42.5035
2208 

52.7949
5606 

103.449
2656 

187.340
7718 

482.799
7089 109 

TVAE+
Copula 

0.06411
31764 

0.58750
26518 

3.04019
1888 

7.78352
7304 

16.4290
0061 

21.3228
4799 

41.4483
8867 

78.0693
8044 

200.784
5769 201 

BN 
0.20331
80251 

0.78838
60984 

2.42058
4378 

6.04665
1748 

12.6869
2587 

15.1394
1727 

30.1994
9855 

59.2847
0324 

153.646
3024 119 

BN+Co
pula 

0.03509
129002 

0.36808
21859 

1.55771
6075 

4.21780
8699 

10.8931
5912 

13.6334
6413 

29.3042
3868 

57.7797
4848 

151.898
7916 105 

Copula 
0.37363
74511 

0.61926
9174 

1.75851
3781 

4.56047
7519 

10.9646
4211 

13.7126
4542 

29.9889
6105 

58.9141
572 

153.242
2057 58 

IPF 
0.27434
72251 

1.17786
2985 

10.1510
8353 

28.4223
5811 

70.0602
8556 

99.2776
1746 

222.511
5489 

444.846
6852 

1177.51
9393 0 

Table 5.4.6 Metrics Evaluation for PUMA 302 

  Based on the results from Table 5.4.1-5.4.6, the most conclusions are similar as 

previous experiments except that IPF don’t perform best even at the first dimension, 

which again shows that lower source size harms IPF’s performance. And the 

parametric copula performs nearly as good as BN and BN+Copula when the 

dimension is high. 
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Chapter 6:  Conclusion 

  In the research we focus on exploring different methods to generate synthetic 

populations, including IPF, and machine learning methods (Bayesian Network, 

CTGAN and TVAE). We also apply a framework called copula to improve the 

quality of synthetic populations generated by these methods and compare them with 

the original ones. We compare the performance of all these methods at three different 

levels: state level, county level and puma level. The results can give us the following 

conclusions in general: 

(1) IPF performs well at the state level and when the dimensions of the variables in 

the data are low. When the data comes from state level to county level and puma level 

and the dimensions of the variables in the data become higher, the performance of 

IPF becomes worse and worse. So, IPF is more suitable to apply at a higher 

geographical level and lower dimensions of the data. In contrast, the performances of 

machine learning methods and Bayesian Network aren’t influenced too much when it 

comes to a lower geographical level. 

(2) Machine learning methods perform worse compared with independent baseline 

and IPF when the dimensions of the variables in the data are low in generating 

accurate synthetic population. But when the dimensions of the variables in the data 

becomes higher, machine learning methods finally exceed the performance of IPF and 

are very close to the performance of independent baseline. For the diversity of data, 

machine learning methods show huge advantages compared with independent 

baseline and IPF. 
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(3) Among the machine learning methods including Bayesian Network, CTGAN and 

TVAE, Bayesian Network always performs best in generating accurate synthetic 

population compared with CTGAN and TVAE no matter which geographical level. 

For the diversity of the synthetic population, it depends on the geographical level. At 

the state level, Bayesian Network still performs best in generating a diverse synthetic 

population. But when it comes to the county level, the situation changes that TVAE 

exceeds the performance of Bayesian Network and CTGAN in sampling zero. It 

shows that Bayesian Network and CTGAN are better at generating an accurate 

synthetic population, but TVAE is better at generating a diverse synthetic population 

at a lower geographical level. Therefore in general, Bayesian Network is the best 

generative model when we want the most accurate synthetic populations. While at 

some geographical level, other machine learning methods like TVAE will exceed 

Bayesian Network in generating a more diverse synthetic population. 

(4) In the experiment at puma, parametric copula also performs well compared with 

BN and BN+Copula when the dimension is high, which means the copula itself is 

also a good generative method. 

(5) For the methods that apply copula framework, including CTGAN, TVAE and 

Bayesian Network, all of them are improved in the performance not only the accuracy 

of the synthetic population but also their diversity. Therefore, it turns out that copula 

is a very useful technique to improve the quality of the synthetic population when we 

want to use the current generative models to generate synthetic populations or explore 

new generative models. 
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Contributions 

  In this research, I mainly make the following several contributions: 

(1) Join choosing the methodologies that are suitable for the research; 

(2) Add parametric copula into comparisons at the puma level and make sure all 

the methodologies are compared at the same level; 

(3) Join the modifications of codes used for other methodologies; 

(4) Generate the results included in this paper; 

(5) Join the final writing of literature review, methodology, results and conclusions. 
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