
ABSTRACT

Title of Dissertation: CONTROL THEORY-INSPIRED ACCELERATION
OF THE GRADIENT-DESCENT METHOD:
CENTRALIZED AND DISTRIBUTED

Kushal Chakrabarti
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Nikhil Chopra
Department of Electrical and Computer Engineering

Mathematical optimization problems are prevalent across various disciplines in science

and engineering. Particularly in electrical engineering, convex and non-convex optimization

problems are well-known in signal processing, estimation, control, and machine learning research.

In many of these contemporary applications, the data points are dispersed over several sources.

Restrictions such as industrial competition, administrative regulations, and user privacy have

motivated significant research on distributed optimization algorithms for solving such data-driven

modeling problems. The traditional gradient-descent method can solve optimization problems

with differentiable cost functions. However, the speed of convergence of the gradient-descent

method and its accelerated variants is highly influenced by the conditioning of the optimization

problem being solved. Specifically, when the cost is ill-conditioned, these methods (i) require

many iterations to converge and (ii) are highly unstable against process noise. In this dissertation,

we propose novel optimization algorithms, inspired by control-theoretic tools, that can significantly

attenuate the influence of the problem’s conditioning.

First, we consider solving the linear regression problem in a distributed server-agent network.

We propose the Iteratively Pre-conditioned Gradient-Descent (IPG) algorithm to mitigate the

deleterious impact of the data points’ conditioning on the convergence rate. We show that

the IPG algorithm has an improved rate of convergence in comparison to both the classical

and the accelerated gradient-descent methods. We further study the robustness of IPG against

system noise and extend the idea of iterative pre-conditioning to stochastic settings, where the

server updates the estimate based on a randomly selected data point at every iteration. In the

same distributed environment, we present theoretical results on the local convergence of IPG for

solving convex optimization problems. Next, we consider solving a system of linear equations in

peer-to-peer multi-agent networks and propose a decentralized pre-conditioning technique. The

proposed algorithm converges linearly, with an improved convergence rate than the decentralized

gradient-descent. Considering the practical scenario where the computations performed by the

agents are corrupted, or a communication delay exists between them, we study the robustness

guarantee of the proposed algorithm and a variant of it. We apply the proposed algorithm

for solving decentralized state estimation problems. Further, we develop a generic framework

for adaptive gradient methods that solve non-convex optimization problems. Here, we model

the adaptive gradient methods in a state-space framework, which allows us to exploit control-

theoretic methodology in analyzing Adam and its prominent variants. We then utilize the classical

transfer function paradigm to propose new variants of a few existing adaptive gradient methods.

Applications on benchmark machine learning tasks demonstrate our proposed algorithms’ efficiency.

Our findings suggest further exploration of the existing tools from control theory in complex

machine learning problems.

The dissertation is concluded by showing that the potential in the previously mentioned

idea of IPG goes beyond solving generic optimization problems through the development of a

novel distributed beamforming algorithm and a novel observer for nonlinear dynamical systems,

where IPG’s robustness serves as a foundation in our designs. The proposed IPG for distributed

beamforming (IPG-DB) facilitates a rapid establishment of communication links with far-field

targets while jamming potential adversaries without assuming any feedback from the receivers,

subject to unknown multipath fading in realistic environments. The proposed IPG observer

utilizes a non-symmetric pre-conditioner, like IPG, as an approximation of the observability

mapping’s inverse Jacobian such that it asymptotically replicates the Newton observer with an

additional advantage of enhanced robustness against measurement noise. Empirical results are

presented, demonstrating both of these methods’ efficiency compared to the existing methodologies.

CONTROL THEORY-INSPIRED ACCELERATION OF THE
GRADIENT-DESCENT METHOD: CENTRALIZED AND DISTRIBUTED

by

Kushal Chakrabarti

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Nikhil Chopra, Chair/Advisor
Professor Nuno Martins
Professor Richard J. La
Professor André Tits
Professor Pratap Tokekar

© Copyright by
Kushal Chakrabarti

2022

to my beloved Ishita

Acknowledgments

This dissertation is one of my proud possession and it wont be in its final form without the

help of others.

First and foremost, I’d express my sincere gratitude to my advisor, Professor Nikhil Chopra,

for giving me an invaluable opportunity to work on challenging and extremely interesting projects

over the past five years. He has always made himself available for help and advice and there has

never been an occasion when I’ve knocked on his door and he hasn’t given me time. It has been

a pleasure to work with and learn from such an extraordinary individual.

Thanks are due to Professor Nuno Martins, Professor Richard La, Professor André Tits,

and Professor Pratap Tokekar for agreeing to serve on my thesis committee and for sparing their

invaluable time reviewing the manuscript.

Also, thanks to other faculty members and teaching assistants in the university for the

course work which established my foundation for research.

My colleagues have enriched my professional life in many ways and deserve a special

mention. Especially, a significant part of this research was in collaboration with Nirupam Gupta,

Jeffrey N. Twigg, Fikadu T. Dagefu, and Amrit S. Bedi.

I would like to acknowledge financial support from the Petroleum Institute at UAE, the

United States Department of Agriculture, and the Army Research Laboratory, for part of the

projects discussed herein.

iii

I want to thank my friends from here, for making my stay memorable. My warmest thanks

go to my family for their support, love, encouragement, and patience. And at the last from

Einstein’s words:

Thanks to those who said NO !! because of them I did it myself.

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents v

List of Tables ix

List of Figures xi

Chapter 1: Introduction 1

Chapter 2: Distributed Linear Regression in Server-Agent Network 8
2.1 Introduction . 8

2.1.1 Background on gradient-descent method 10
2.1.2 Related work . 11
2.1.3 System noise . 12
2.1.4 Stochastic settings . 13
2.1.5 Summary of our contributions . 15

2.2 Proposed algorithm: Iteratively Pre-Conditioned Gradient-Descent (IPG) 18
2.2.1 Motivation for IPG . 18
2.2.2 Steps in each iteration t . 19
2.2.3 Algorithm complexity . 21
2.2.4 Convergence guarantees . 22

2.3 Comparisons with the existing methods . 25
2.3.1 The gradient-descent method . 26

2.4 Robustness of the IPG method . 27
2.4.1 Notation, assumption, and prior results 27
2.4.2 Robustness against observation noise . 29
2.4.3 Robustness against process noise . 31

2.5 SGD with iterative pre-conditioning . 34
2.5.1 Steps in each iteration t . 35
2.5.2 Notation and assumptions . 37
2.5.3 Convergence guarantees . 40

2.6 Experimental results . 41
2.6.1 Stochastic settings . 44

2.7 Summary . 49

v

Chapter 3: Decentralized Linear Regression in Peer-to-Peer Network 52
3.1 Introduction . 52

3.1.1 Background on decentralized gradient-descent 53
3.1.2 Related Work . 54
3.1.3 Communication delay . 56
3.1.4 Summary of our contributions . 57

3.2 Proposed algorithm . 59
3.2.1 Convergence guarantee . 61
3.2.2 Robustness against computational process noise 64

3.3 Comparison with decentralized gradient-descent 66
3.4 Multiple-solutions case . 68
3.5 Directed-graph case . 69
3.6 Application: decentralized state estimation . 70
3.7 Proposed algorithm in presence of communication delay 74

3.7.1 Convergence guarantee . 76
3.8 Experimental results . 77

3.8.1 Comparison with decentralized Kalman filter 80
3.8.2 In presence of delay . 81

3.9 Summary . 82

Chapter 4: Distributed Convex Optimization in Server-Agent Network 84
4.1 Introduction . 84

4.1.1 Summary of our contributions . 89
4.2 Proposed algorithm: Iteratively Pre-conditioned Gradient-descent (IPG) 90

4.2.1 Steps in each iteration t . 91
4.2.2 Convergence guarantees . 92

4.3 Experimental results . 97
4.3.1 Distributed noisy quadratic model . 97
4.3.2 Distributed logistic regression . 99

4.4 Summary and future work . 102

Chapter 5: Non-Convex Optimization 104
5.1 Introduction . 104

5.1.1 Related work . 110
5.1.2 Our contributions . 112

5.2 Proposed algorithm: Generalized AdaGrad (G-AdaGrad) 117
5.2.1 Description of G-AdaGrad . 117
5.2.2 Convergence of G-AdaGrad . 119

5.3 State-model of Adam and AdaBelief . 122
5.4 A general adaptive gradient algorithm . 124
5.5 Continuous-time AdaBound . 129

5.5.1 State-space model of AdaBound . 129
5.5.2 Convergence of AdaBound . 132

5.6 Convergence analysis of Nadam . 132
5.7 Convergence analysis of RAdam . 133

vi

5.8 Convergence of rescaled gradient flow . 134
5.9 Proposed algorithm: AdamSSM . 135
5.10 Proposed Algorithm: NadamSSM . 137
5.11 Proposed Algorithm: MAdamSSM . 138
5.12 Experimental results . 140

5.12.1 G-AdaGrad . 141
5.12.2 AdamSSM . 142
5.12.3 NadamSSM . 146
5.12.4 MAdamSSM . 148

5.13 Summary and discussions . 150

Chapter 6: Distributed Beamforming 156
6.1 Introduction . 156

6.1.1 Related works . 156
6.1.2 Summary of our contributions . 158

6.2 Problem formulation . 159
6.3 Proposed algorithm: Iteratively Pre-conditioned Gradient-descent for

Distributed Beamforming . 161
6.3.1 Steps in each iteration t ≥ 0 . 165

6.4 Experimental results . 168
6.5 Summary . 170

Chapter 7: Nonlinear Observer 172
7.1 Introduction . 172

7.1.1 Prior works . 173
7.1.2 Summary of our contributions . 176

7.2 Problem formulation . 177
7.3 Proposed observer . 178

7.3.1 Steps in each sampling instant k ≥ N 180
7.3.2 Step-size selection . 181
7.3.3 Relation with extended Kalman filter . 183

7.4 Experimental results . 183
7.5 Summary . 189

Chapter 8: Summary and Future Work 191
8.1 Completed work . 191
8.2 Future work . 193

Appendix A: Proofs of the Theoretical Results 196
A.1 Proof of Theorem 2.1 . 196
A.2 Proof of Corollary 2.1 . 202
A.3 Proof of Lemma 2.1 . 203
A.4 Proof of Theorem 2.2 . 203
A.5 Proof of Theorem 2.3 . 204
A.6 Proof of Theorem 2.4 . 207

vii

A.7 Proof of Theorem 2.5 . 210
A.7.1 Preliminary results . 210
A.7.2 Notations . 213
A.7.3 Convergence of the pre-conditioner matrix 214
A.7.4 Proof of the theorem . 219

A.8 Proof of Lemma 3.1 . 231
A.9 Proof of Theorem 3.1 . 233
A.10 Proof of Theorem 3.2 . 237
A.11 Proof of Theorem 3.3 . 238
A.12 Proof of Theorem 3.4 . 242
A.13 Proof of Lemma 3.2 . 243
A.14 Proof of Lemma 3.3 . 244
A.15 Proof of Theorem 3.5 . 248
A.16 Proof of Lemma 4.1 . 249
A.17 Proof of Theorem 4.1 . 250
A.18 Proof of Theorem 4.2 . 255
A.19 Proof of Theorem 5.2 . 255
A.20 Proof of Theorem 5.3 . 261
A.21 Proof of Theorem 5.4 . 264
A.22 Proof of Theorem 5.5 . 266
A.23 Proof of Theorem 5.6 . 267

Bibliography 269

viii

List of Tables

2.1 Comparisons between the theoretical convergence rate of different algorithms for
distributed linear regression. 16

2.2 Additional notation for analysis of IPSG. 38
2.3 The parameters used in different algorithms for their minimum convergence rate

on distributed linear regression experiments. 48
2.4 The number of iterations required by different algorithms to attain relative estimation

error ϵtol on distributed linear regression experiments. 48
2.5 Comparisons between the final estimation errors limt→∞

∥∥x(t)− x∗
∥∥ for different

algorithms on distributed linear regression experiments. 49
2.6 The parameters used in different stochastic algorithms on distributed linear regression

experiments. 50
2.7 Comparisons between the number of iterations required by different stochastic

algorithms to attain the specified values for the relative estimation errors ϵtol =∥∥x(t)− x∗
∥∥ /∥∥x(0)− x∗

∥∥ on distributed linear regression experiments. 51

3.1 Required notations for solving decentralized linear equations subject to communication
delay. 75

3.2 Comparisons between the performance of different algorithms on decentralized
state prediction experiments. 81

4.1 Comparison between convergence rate and per-iteration computational complexity
of different algorithms, for solving distributed convex optimization problems. t
is the number of iterations. 88

4.2 The parameters used in different algorithms on distributed convex optimization
experiments. 100

4.3 Comparisons between the number of iterations and total floating point operations
(flops) required by different algorithms to attain estimation error

∥∥x(t)− x∗
∥∥ =

0.05 for the NQM. 100
4.4 Comparisons between the number of iterations and total floating point operations

(flops) required by different algorithms to attain
∥∥g(t)∥∥ = 0.02 for binary classification

on MNIST data, subject to process noise. 101

5.1 Comparisons between best training accuracy, best test accuracy, and number of
training epochs required to achieve these accuracies for different algorithms on
image classification task with ResNet34. 149

ix

5.2 Comparisons between best training accuracy, best test accuracy, and number of
training epochs required to achieve these accuracies for different algorithms on
image classification task with VGG11. 150

5.3 Comparisons between best training set perplexity, best test set perplexity, and
number of training epochs required to achieve these perplexities for different
algorithms on language modeling task with 1-layer LSTM. 150

5.4 Comparisons between best training set perplexity, best test set perplexity, and
number of training epochs required to achieve these perplexities for different
algorithms on language modeling task 2-layer LSTM. 151

5.5 Comparisons between best training set perplexity, best test set perplexity, and
number of training epochs required to achieve these perplexities for different
algorithms on language modeling task 3-layer LSTM. 151

5.6 Comparisons between mean (and std.) of the best training and test accuracies,
and the number of training epochs required to achieve them for the MAdamSSM
(proposed) and MAdam algorithms over five runs. 152

5.7 Comparisons between the best training and test accuracies, and the number of
training epochs required to achieve them for the MAdamSSM (proposed) and
MAdam algorithms applied to train ResNet34 with CIFAR-10 data over five runs. 152

x

List of Figures

2.1 Distributed system architecture. 8
2.2

∥∥x(t)− x∗
∥∥ under Algorithm 1 with different initialization on “ash608”. α =

0.1, δ = 1, β = 0. 41
2.3

∥∥x(t)− x∗
∥∥ under Algorithm 1 with different initialization on “gr 30 30”. α =

3× 10−3, δ = 0.4, β = 0. 42
2.4

∥∥x(t)− x∗
∥∥ in absence of noise for different algorithms on “bcsstm07”. 42

2.5
∥∥x(t)− x∗

∥∥ in absence of noise for different algorithms on “can 229”. 43
2.6

∥∥x(t)− x∗
∥∥ in presence of observation noise for different algorithms on “ash608”.

. 44
2.7

∥∥x(t)− x∗
∥∥ in presence of process noise for different algorithms on “ash608”. . 44

2.8
∥∥x(t)− x∗

∥∥ in presence of observation noise for different algorithms on “gr 30 30”.
. 45

2.9
∥∥x(t)− x∗

∥∥ in presence of process noise for different algorithms on “gr 30 30”. 45
2.10

∥∥x(t)− x∗
∥∥ for different stochastic algorithms on “MNIST”. 46

2.11
∥∥x(t)− x∗

∥∥ for different stochastic algorithms on “illc1850”. 47

3.1 Error in estimating the true initial state z(0) in presence of computational process
noise, for different algorithms. 79

3.2 Error in estimating the system states z(t) in presence of process noise and measurement
noise, for Algorithm 3 and DKF. 80

3.3
∥∥xi(t)− x∗

∥∥ under (a) Algorithm 4 and projection-based algorithm, (b) Algorithm 4,
(c) PI consensus algorithm. 82

4.1
∥∥x(t)− x∗

∥∥ for different algorithms on the noisy quadratic model. 97
4.2

∥∥g(t)∥∥ for different algorithms on MNIST. 99

5.1 Decision boundary in the a1−a2 plane, obtained from training a linear regression
model for classification of digit-1 and digit-5 using G-AdaGrad. The data points
from MNIST training set are plotted in a1 − a2 plane. 141

5.2 Decision boundary in the a1−a2 plane, obtained from training a linear regression
model for classification of digit-1 and digit-5 using G-AdaGrad. The data points
from MNIST test set are plotted in a1 − a2 plane. 141

5.3 1
2

∥∥Ax(t)− b
∥∥2 − f ∗ of linear regression for classifying digit-1 and digit-5 from

the MNIST dataset with G-AdaGrad. 141
5.4 Training loss of logistic regression model for classifying digit-1 and digit-5 from

the MNIST dataset with G-AdaGrad. 142

xi

5.5 Test set accuracy for image classification task on CIFAR-10 dataset with ResNet34
architecture trained with different algorithms. 143

5.6 Test set accuracy for image classification task on CIFAR-10 dataset with VGG11
architecture trained with different algorithms. 143

5.7 Test set perplexity for language modeling task on PTB dataset with 1-layer LSTM
architecture trained with different algorithms. 144

5.8 Test set perplexity for language modeling task on PTB dataset with 3-layer LSTM
architecture trained with different algorithms. 146

5.9 Test set perplexity for language modeling task on PTB dataset with 2-layer LSTM
architecture trained with different algorithms. 147

5.10 Second raw moment estimate of gradient along dimension i = 811, for image
classification task on CIFAR-10 dataset with VGG11 architecture trained with
Adam and the proposed AdamSSM algorithms. 154

5.11 Second raw moment estimate of gradient along dimension i = 1728, for image
classification task on CIFAR-10 dataset with VGG11 architecture trained with
Adam and the proposed AdamSSM algorithms. 155

6.1 Cartesian coordinates of n = 19 beamforming agents in the synthetic problem. . 168
6.2 Array factors constructed by the GD algorithm for solving the synthetic beamforming

problem, after different number of iterations t. 169
6.3 Array factors {|AFi| , i = 1, . . . , 49} constructed by the IPG-DB algorithm for

solving the synthetic beamforming problem, after different number of iterations t. 169
6.5 CAD model of the section of Los Angeles from Figure 6.4. 170
6.4 A section of Los Angeles used as the environment for beamforming problem. . . 170
6.6 Cartesian coordinates of n = 5 beamforming agents in the LA urban environment

problem. 171
6.7 Array factors for the electric field along the z-direction constructed by the IPG-

DB algorithm for solving the beamforming problem in LA urban environment,
initially (t = 0) and after t = 25000 iterations. 171

7.1 State estimation error of different observers for bio-reactor system (7.13)-(7.16)
with measurement noise’s standard deviation 0.01. 184

7.2 State estimation error of different observers for bio-reactor system (7.13)-(7.16)
with measurement noise’s standard deviation 0.01. 185

7.3 State estimation error of different observers for bio-reactor system (7.13)-(7.16)
with measurement noise’s standard deviation 0.001. 186

7.4 State estimation error of different observers for bio-reactor system (7.13)-(7.16)
with measurement noise’s standard deviation 0.001. 187

7.5 State estimation error of different observers for inverted pendulum-cart system (7.17)-
(7.21) with measurement noise’s standard deviation 0.1. 188

7.6 State estimation error of different observers for inverted pendulum-cart system (7.17)-
(7.21) with measurement noise’s standard deviation 0.01. 189

7.7 State estimation error of different observers for inverted pendulum-cart system (7.17)-
(7.21) with measurement noise’s standard deviation 0.1. 189

xii

7.8 State estimation error of different observers for inverted pendulum-cart system (7.17)-
(7.21) with measurement noise’s standard deviation 0.01. 190

7.9 True system trajectory and its estimate for the system (7.22)-(7.24) obtained by
IPG observer. 190

7.10 True system trajectory and its estimate for the system (7.22)-(7.24) obtained by
LPV observer. 190

xiii

Chapter 1: Introduction

Mathematical optimization is a common sub-problem in various disciplines, such as modeling,

estimation, control systems, wireless communication, data analysis, finance, and operations research.

Especially with the recent data-driven technological advancements, optimization is ubiquitous in

several applications. A simple optimization technique, known as least-squares, dates back to 1795

A.D. when it was invented by a young scientist Karl Friedrich Gauss [1] for studying planetary

motion using telescopic measurement data. Since then, several new optimization methodologies

have been developed. The most attractive feature of optimization lies in the constructive formulation

of a problem, followed by the availability of sophisticated and thoroughly studied tools to solve

the formulated problem in a reliable and efficient manner. Therefore, the focus of this dissertation

will be on developing novel tools for solving a class of optimization problems, aimed at balancing

the decisive triad of performance, efficiency, and reliability.

Specifically, this dissertation will consider solving unconstrained optimization problems,

where the objective is to minimize a smooth and differentiable cost function. The classical

gradient-descent algorithm, attributed to Cauchy (1847 A.D.), is the basic first-order optimization

algorithm to solve such problems. The gradient-descent algorithm is iterative, wherein the idea

is to repeatedly refine an estimate of the minimum point by taking steps in the opposite direction

of the gradient of the cost function at the current estimate [2]. In principle, the gradient-descent

1

method eventually converges to a minimum point of the cost. However, the speed of convergence

of the gradient-descent method is highly influenced by the conditioning of the optimization

problem being solved. Specifically, when the cost is ill-conditioned, this method (i) requires

many iterations to converge and (ii) is highly unstable against process noise. This dissertation

aims at developing novel optimization algorithms, inspired by classical tools from control theory,

that can significantly attenuate the fundamental influence of the problem’s conditioning.

In many contemporary applications, the data points are dispersed over several sources (or

agents). Due to industrial competition, administrative regulations, and user privacy, it is nearly

impossible to collect the individual data from the different agents at a single machine [3]. In

recent years, these restrictions have motivated a significant amount of research on distributed

algorithms for solving data-driven modeling problems. In most distributed algorithms, an individual

agent is not required to transmit its raw data points [3, 4]. In the aforementioned cases, the

data itself is distributed over multiple sources or agents. With the availability of a large amount

of data, it is sometimes necessary to distribute the processing task over multiple machines or

agents due to the inherent complexity of the problem regarding computational and/or memory

requirements [5]. Therefore, apart from centralized optimization problems, this dissertation will

also consider solving optimization problems with a differentiable cost function in a distributed

manner. In Chapters 2-5, we propose our algorithms for solving specific optimization problems in

centralized settings and in distributed network of multiple agents. In Chapters 6-7, we go beyond

solving generic optimization problems by considering the distributed beamforming problem and

the nonlinear observer problem, wherein we develop new techniques for these two problems by

leveraging an idea from Chapter 4.

In Chapter 2, we consider the multi-agent linear least-squares problem in a server-agent

2

network architecture. The system comprises multiple agents, each with a set of local data points.

The agents are connected to a server, and there is no inter-agent communication. The agents’ goal

is to compute a linear model that optimally fits the collective data. The agents, however, cannot

share their data points. In principle, the agents can solve this problem by collaborating with the

server using the server-agent network variant of the classical gradient-descent method. However,

when the data points are ill-conditioned, the gradient-descent method requires a large number

of iterations to converge. We propose a novel iterative pre-conditioning technique to mitigate

the deleterious impact of the data points’ conditioning on the convergence rate of the gradient-

descent method. The idea of iterative pre-conditioning is inspired by adaptive control techniques.

We rigorously show that our proposed algorithm converges with an improved rate of convergence

in comparison to both the classical and the accelerated gradient-descent methods. In the presence

of system uncertainties, we characterize the proposed algorithm’s robustness against noise. We

further extend our algorithm to the stochastic settings, where the server updates the estimate of

a minimum point based on a single randomly selected data point at every iteration instead of the

full batch of data points. Through numerical experiments on benchmark least-squares problems,

we validate our theoretical findings. This work was carried out under the PSIM Project, supported

by the Petroleum Institute, Khalifa University of Science and Technology, Abu Dhabi, UAE. The

research works in this chapter have been published in [6–9].

In Chapter 3, we consider solving the linear least-squares problem in peer-to-peer multi-

agent networks. Again, each agent has a set of local data points, and its goal is to compute a linear

model that fits the collective data points. In principle, the agents can apply the decentralized

gradient-descent method. However, when the data matrix is ill-conditioned, gradient-descent

requires many iterations to converge and is unstable against system noise. We propose a decentralized

3

pre-conditioning technique to address these issues with the decentralized gradient-descent method.

We show that the proposed algorithm has an improved convergence rate than the decentralized

gradient-descent. Considering the practical scenario where the computations performed by the

agents are corrupted, we also study the robustness guarantee of the proposed algorithm. Additionally,

we apply the proposed algorithm for solving decentralized linear state estimation problems. The

empirical results show our proposed state predictor’s favorable convergence rate and robustness

against system noise compared to prominent decentralized algorithms. When the communication

links between agents are subject to potentially large but constant delays, we utilize a similar

decentralized pre-conditioning technique to propose a delay-tolerant algorithm that solves the

decentralized linear equations. Empirical results show that the accuracy of the solution obtained

by the proposed algorithm is better or comparable to the existing methods. This work was

partially supported by the USDA grant 2020-68012-31085 and partially carried out under the

PSIM Project, supported by the Petroleum Institute, Khalifa University of Science and Technology,

Abu Dhabi, UAE. The research works in this chapter have been published in [10, 11].

In Chapter 4, we study a distributed multi-agent convex optimization problem. The system

architecture is the same as Chapter 2. However, the cost function here is convex and not limited

to quadratic cost. The agents’ goal is to learn a parameter vector that optimizes the aggregate

of their local costs without revealing their local data points. We extend the idea of iterative

pre-conditioning, proposed in Chapter 2, to convex cost functions and a class of non-convex

functions. We present theoretical results on the local convergence of the proposed algorithm.

We demonstrate our algorithm’s superior performance to prominent distributed algorithms for

solving real logistic regression problems and emulating neural network training via a noisy

quadratic model, thereby signifying the proposed algorithm’s efficiency for distributively solving

4

non-convex optimization. Further worth of the idea of IPG is investigated later in Chapter 6-7.

In Chapter 5, we consider solving smooth non-convex optimization problems, with a focus

on deep neural network models. We aim to develop a generic framework for adaptive gradient-

descent algorithms for solving non-convex problems in the continuous-time domain. Particularly,

we model the adaptive gradient methods in a state-space framework, which allows us to exploit

standard control-theoretic tools in analyzing existing prominent adaptive methods. We rigorously

show that few other algorithms that are not encompassed by the proposed generic framework,

can also be modeled and analyzed using a similar technique. The analyses of all all these fast

gradient algorithms are unified by a common underlying proof sketch, relying upon Barbalat’s

lemma. Control-theoretic tools can also aid in developing novel adaptive gradient algorithms,

as we show by proposing new variants of three existing adaptive gradient methods, using the

concept of transfer functions. Applications on benchmark machine learning tasks demonstrate

the proposed algorithms’ efficiency. The findings in this chapter suggest further exploration of

the existing tools from control theory in complex machine learning problems. Part of the research

works in this chapter have been published in [12] and accepted for presentation at [13, 14].

Distributed multi-agent beampattern matching inherently enables covert communication by

constructively combining the transmitted signals at target receivers and forming nulls towards the

adversaries. Most existing beamforming methodologies achieve this by relying on partial or full-

state real-time feedback from the receivers. Chapter 6 proposes a novel distributed beamforming

technique that does not assume any feedback from the receivers or channel parameters such as

multipath fading. The proposed algorithm works in a server-agent architecture of the beamforming

agents, eliminating the need for receivers’ feedback. Our algorithm is built on the classical

gradient-descent (GD) method. However, when the problem is ill-conditioned, GD requires

5

many iterations to converge and is unstable against system noise. We propose an iterative pre-

conditioning technique, founded upon the IPG algorithm proposed in Chapter 4, to mitigate the

deleterious effects of the data points’ conditioning on the convergence rate, facilitating a rapid

establishment of communication links with far-field targets. The empirical results demonstrate

the proposed beamforming algorithm’s favorable convergence rate and robustness against unknown

multipath fading in realistic environments. This work is part of an ArtIAMAS project1 and is

being partially funded by ARL Grant No. W911NF2120076. The results in this chapter has been

accepted for presentation at [15].

Nonlinear observers are required for process monitoring, fault detection, signal reconstruction,

and control in various applications. The previously proposed Newton observer has fast exponential

convergence and applies to a wide class of problems. However, the Newton observer lacks

robustness against measurement noise due to the computation of a matrix inverse at each step. In

Chapter 7, we propose a novel observer for discrete-time plant dynamics with sampled measurements

to alleviate the impact of measurement noise. The key to the proposed observer is an iterative

pre-conditioning technique for the gradient-descent method, proposed in Chapter 4, for solving

general optimization problems. The proposed observer utilizes a non-symmetric pre-conditioner

to approximate the observability mapping’s inverse Jacobian so that it asymptotically replicates

the Newton observer with an additional advantage of enhanced robustness against measurement

noise. Our observer applies to a wide class of nonlinear systems, as it is not contingent upon

linearization or any specific structure in the plant nonlinearity and the measurement mapping.

Its improved robustness against measurement noise than the prominent nonlinear observers is

demonstrated through empirical results. Its relation with extended Kalman filter is also discussed.

1https://artiamas.umd.edu/

6

Finally, Chapter 8 summarizes the completed work and presents the future research directions

resulting from this dissertation. Detailed proof of the theoretical results in this dissertation is

presented in Appendix A.

7

Chapter 2: Distributed Linear Regression in Server-Agent Network

2.1 Introduction

Figure 2.1: Distributed system
architecture.

In this chapter, we consider the multi-agent

distributed linear least-squares problem. The nomenclature

distributed here refers to the data being distributed

across multiple agents. Specifically, we consider a

system comprising multiple agents, each agent having a

set of local data points. The agents can communicate

bidirectionally with a central server, as shown in

Fig. 2.1. However, there is no inter-agent communication, and the agents cannot share their

local data points with the server. The agents’ goal is to generate a linear mathematical model

that optimally fits the data points held by all the agents. To solve this problem, as an individual

agent cannot access the collective data points, the agents collaborate with the central server.

Henceforth, we will refer to the above-described system architecture as server-agent network.

Also, throughout this chapter, the system is assumed synchronous.

To be precise, we consider m agents in the system. Each agent i has a set of ni data points

represented by the rows of a (ni × d)-dimensional real-valued local data matrix Ai, and the

elements of a ni-dimensional real-valued local observation vector bi. Typically, ni > d for each

8

i. The goal for the agents is to compute a parameter vector x∗ ∈ Rd such that

x∗ ∈ X∗ = arg min
x∈Rd

m∑
i=1

1

2

∥∥∥Aix− bi
∥∥∥2 , (2.1)

where∥·∥ denotes the Euclidean norm. For each agent i, we define a local cost function

F i(x) =
1

2

∥∥∥Aix− bi
∥∥∥2 , ∀x ∈ Rd. (2.2)

Note that solving for the optimization problem (2.1) is equivalent to computing a minimum point

of the aggregate cost function
∑m

i=1 F
i(x). An algorithm that enables the agents to jointly solve

the above problem in the architecture of Fig. 2.1 without sharing their data points is defined as a

distributed algorithm.

Common applications of the above linear least-squares problem include linear regression,

state estimation, and hypothesis testing [16], [17]. Also, a wide range of supervised machine

learning problems can be modeled as a linear least-squares problem, such as the supply chain

demand forecasting [18], prediction of online user input actions [19], and the problem of selecting

sparse linear solvers [20]. In many contemporary applications, the data points exist as dispersed

over several sources (or agents). Due to industrial competition, administrative regulations, and

user privacy, it is nearly impossible to collect the individual data from different agents at a single

machine (or server) [3]. These restrictions have motivated a significant amount of research in

recent years on distributed server-agent algorithms for solving data-driven modeling problems,

such as (2.1) above [3], [4]. Herein lies our motivation to improve upon the state-of-the-art

methods for solving (2.1) in a server-agent network.

9

To be able to present our key contributions, we review below the server-agent version of

the traditional gradient-descent method [2].

2.1.1 Background on gradient-descent method

The gradient-descent (GD) method is an iterative algorithm wherein the server maintains

an estimate of a minimum point, defined by (2.1), and updates it iteratively using the gradients

of individual agents’ local cost functions. To be precise, for each iteration t = 0, 1, . . . , let

x(t) ∈ Rd denote the estimate maintained by the server. The initial estimate x(0) may be chosen

arbitrarily from Rd. For each iteration t, the server broadcasts x(t) to all the agents. Each agent i

computes the gradient, denoted by gi(t), of its local cost function F i(x) at x(t). Specifically, for

all i ∈ {1, . . . , m} and for all t ∈ {0, 1, . . .},

gi(t) = ∇F i(x(t)) =
(
Ai
)T (

Ai x(t)− bi
)
. (2.3)

Here, (·)T denotes the transpose. The agents send their computed gradients {gi(t), i = 1, . . . , m}

to the server. Upon receiving the gradients, the server updates x(t) to x(t+ 1) according to

x(t+ 1) = x(t)− δ

m∑
i=1

gi(t), t ∈ {0, 1, . . .}, (2.4)

where δ is a positive scalar real value commonly referred as the step-size. Let g(t) denote the sum

of all the agents’ gradients, that is, g(t) =
∑m

i=1 g
i(t). So, g(t) is the gradient of the aggregate

cost defined in (2.1). Substituting from above in (2.4), we obtain that convergence of the above

server-agent version of the GD method is identical to its centralized counterpart with cost function

10

∑m
i=1 F

i(x).

It is known that for small enough step-size δ, the gradients {g(t), t = 0, 1, . . .} converge

linearly to 0d, the d-dimensional zero vector. Specifically, for δ small enough, there exists µ ∈

[0, 1) such that
∥∥g(t)∥∥ ≤ µt

∥∥g(0)∥∥ , ∀t ≥ 0 [21]. Commonly, the value µ is referred as the

convergence rate [22]. The smaller the value of µ faster is the convergence, and vice-versa.

We propose an iterative pre-conditioning technique that improves upon the GD method’s

convergence rate in a server-agent network. Specifically, in each iteration, the server multiplies

the aggregate of the agents’ gradients g(t) by a pre-conditioner matrix K before updating the

local estimates. However, unlike the classical pre-conditioning techniques [21], the server iteratively

updates the pre-conditioner matrix K. Hence, the name iterative pre-conditioning.

2.1.2 Related work

In his seminal work, Nesterov showed that the use of momentum could significantly accelerate

the GD method [23]. Recently, there has been work on the applicability of the NAG method to the

server-agent network, such as [5] and references therein. Azizan-Ruhi et al. [5] have proposed the

APC method, a combination of the NAG method with a projection operation. Azizan-Ruhi et al.

have shown through experiments that their APC method converges faster compared to the variants

of the NAG and HBM [24]. However, they do not provide any theoretical guarantee for the

improvement in the convergence speed. Also, Azizan-Ruhi et al. only consider a degenerate case

of the optimization problem (2.1) where the set of linear equationsAix = bi, i = 1, . . . , m, has a

unique solution. We consider a more general setting wherein the minimum value of the aggregate

cost function
∑m

i=1 F
i(x) may not be zero, and the solution of the optimization problem (2.1) may

11

not be unique.

The HBM is another momentum-based accelerated variant of the GD method [24]. For the

case when the optimization problem (2.1) has a unique solution, both these accelerated methods,

namely HBM and GD, are known to converge linearly with a rate of convergence smaller than

the above traditional GD method [25], [26].

Newton’s method converges quadratically, hence superlinearly [22]. However, Newton’s

method does not apply to the server-agent networked system unless the agents share their local

data points with the server. A quasi-Newton method, on the other hand, such as BFGS applies to

the server-agent networks [22]. However, similar to Newton’s method, BFGS also requires the

solution of the optimization problem (2.1) to be unique. We consider a setting where the solution

of the problem (2.1) may not be unique.

2.1.3 System noise

These distributed algorithms are iterative wherein the server maintains an estimate of a

solution defined by (2.1), which is updated iteratively using the gradients of the individual agents’

local cost functions defined in (2.2). In an ideal scenario with no noise, these algorithms converge

to an optimal regression parameter defined in (2.1). Practical systems, however, inevitably suffers

from uncertainties or noise [27,28]. Specifically, we consider two types of additive system noises,

1) observation noise, and 2) process noise. The observation noise, as the name suggests, models

the uncertainties in the local data points observed by the agents [29]. The process noise models

the uncertainties or jitters in the computation process due to hardware failures, quantization

errors, or noisy communication links [28].

12

In this dissertation, we empirically show that the approximation error, or the robustness,

of our method in the presence of the above system noises compares favorably to all the other

aforementioned prominent distributed algorithms. Besides empirical results, we also present

formal analyses on the proposed method’s robustness when negatively impacted by additive

system noises. Robustness analyses of some of the other aforementioned distributed algorithms

are in [30, 31].

2.1.4 Stochastic settings

We also consider solving the distributed linear least-squares problem using stochastic algorithms.

In particular, each agent i has n local data points, represented by a local data matrixAi and a local

observation vector bi of dimensions n× d and n× 1, respectively. Thus, for all i ∈ {1, . . . , m},

Ai ∈ Rn×d and bi ∈ Rn. For each agent i, we define a local cost function Fi : Rd → R such that

for a given parameter vector x ∈ Rd,

F i(x) =
1

2n

∥∥∥Aix− bi
∥∥∥2 . (2.5)

The agents’ objective is to compute an optimal parameter vector x∗ ∈ Rd such that

x∗ ∈ arg min
x∈Rd

1

m

m∑
i=1

F i(x). (2.6)

There are several theoretical and practical reasons for solving the distributed problem (2.6)

using stochastic methods rather than batched optimization methods, particularly when the number

of data-points is abundant [32]. The basic prototype of the stochastic optimization methods that

13

solve (2.1) is the traditional stochastic gradient (SGD) [32]. Several accelerated variants of the

stochastic gradient descent algorithm have been proposed in the past decade [33–38]. A few of

such well-known methods are the adaptive gradient descent (AdaGrad) [33], adaptive momentum

estimation (Adam) [34], AMSGrad [37]. These algorithms are stochastic, wherein the server

maintains an estimate of a solution defined by (2.6), which is refined iteratively by the server

using the stochastic gradients computed by a randomly chosen agent.

In particular, Adam has been demonstrated to compare favorably with other stochastic

optimization algorithms for a wide range of optimization problems. However, Adam updates the

current estimate effectively based on only a window of the past gradients due to the exponentially

decaying term present in its estimate updating equation, which leads to poor convergence in many

problems [37]. A recently proposed variant of Adam is the AMSGrad algorithm, which proposes

to fix Adam’s convergence issue by incorporating “long-term memory” of the past gradients.

In this dissertation, we propose a stochastic iterative pre-conditioning technique for improving

the rate of convergence of the distributed stochastic gradient descent method when solving the

linear least-squares problem (2.6) in distributed networks. The idea of iterative pre-conditioning

in the deterministic (batched data) case has been mentioned in Section 2.1.1 wherein the server

updates the estimate using the sum of the agents’ gradient multiplied with a suitable iterative pre-

conditioning matrix. Updating the pre-conditioning matrix depends on the entire dataset at each

iteration. We extend that idea to the stochastic settings, where the server updates both the estimate

and the iterative pre-conditioning matrix based on a randomly chosen agents’ stochastic gradient

at every iteration. Each agent computes its stochastic gradient based on a single randomly chosen

data point from its local set of data points. Using real-world datasets, we empirically show that

the proposed algorithm converges in fewer iterations compared to the aforementioned state-of-

14

the-art distributed methods. Besides empirical results, we also present a formal analysis of the

proposed algorithm’s convergence in stochastic settings.

2.1.5 Summary of our contributions

In this chapter, we propose an iterative pre-conditioning technique for improving the rate

of convergence of the traditional gradient-descent method when solving the linear least-squares

problem in a server-agent network. We present below a summary of our key contributions and

comparisons with other prominent algorithms applicable to the server-agent network architecture.

2.1.5.1 In deterministic settings

• We show that our algorithm, in general, converges linearly. For the special case when the

solution of (2.1) is unique, the convergence of our algorithm is superlinear. Please refer

Section 2.2.4 for details.

• We show that our algorithm has a favorable rate of convergence compared to the prominent

distributed linear least-squares algorithms applicable to the server-agent network; the gradient-

descent (GD) method, Nesterov’s accelerated gradient-descent (NAG) method, the heavy-

ball method (HBM), and the accelerated projection-consensus method (APC) [5]. These

comparisons are summarized in Table 2.1. Please refer Section 2.3 for details.

- In the particular case when the solution (2.1) is unique, our algorithm converges

superlinearly which is only comparable to the BFGS method [22]. The convergence

of the other aforementioned algorithms, on the other hand, is only linear [5], [25].

- For the general case when the least-squares problem has multiple solutions (2.1),

15

both our algorithm and the GD method converge linearly. In this case, our algorithm

provably improves upon the explicit rate of convergence of GD. Specifically, our

algorithm converges exponentially faster compared to the GD method. The explicit

linear rate of convergence of the NAG and HBM method relies on the uniqueness

of the solution [25], [26]. For multiple solutions, these methods’ convergence rate

is available only in terms of the order of iteration numbers [26], [39]. However, not

only the order of number of iterations but also the coefficient associated with the order

contribute to characterizing the convergence rate of an algorithm. Hence, we provide

the explicit convergence rate of our algorithm. Among the other aforementioned

algorithms, convergence of the APC method and BFGS method requires uniqueness

of the solution [22], [5].

• We validate our obtained theoretical results through numerical experiments, presented in

Section 2.6, on benchmark real-world datasets.

Table 2.1: Comparisons between the theoretical convergence rate of different algorithms for
distributed linear regression.

Algorithm Algorithm 1 GD NAG HBM APC BFGS
Condition for any number of optimal solutions unique optimal
convergence solution

unique superlinear linear [5], [25] superlinear [22]
Explicit solution
convergence
rate

multiple
solutions

linear, faster
than GD

linear not known [26], [39] need not converge [22]

16

2.1.5.2 In presence of system noise

Here, we make two key contributions, summarized as follows.

• In Section 2.4, we theoretically characterize the robustness guarantees of the IPG method

against both the observation and the process noises.

• In Section 2.6, we empirically show the improved robustness of the IPG method, in comparison

to the state-of-the-art algorithms.

2.1.5.3 In stochastic settings

• We present a formal convergence analysis of our proposed stochastic algorithm. Our

convergence result can be informally summarized as follows. Suppose the solution of

problem (2.6) is unique, and the variances of the stochastic gradients computed by the

agents are bounded. In that case, our proposed algorithm, i.e., Algorithm 2, converges

linearly in expectation to a proximity of the solution of the problem (2.6). The approximation

error is proportional to the algorithm’s stepsize and the variances of the stochastic gradients.

Note that, as in the deterministic settings, our algorithm converges superlinearly to the

exact solution when the gradient noise is zero. Formal details are presented in Theorem 2.5

in Section 2.5.3.

• Using real-world datasets, we empirically show that our proposed stochastic algorithm’s

convergence rate is superior to that of the state-of-the-art stochastic methods when distributively

solving linear least-squares problems. These datasets comprise

- four benchmark datasets from the SuiteSparse Matrix Collection;

17

- a subset of the “cleveland” dataset from the UCI Machine Learning Repository,

which contains binary classification data of whether the patient has heart failure or

not based on 13 features;

- a subset of the “MNIST” dataset for classification of handwritten digits one and five.

Please refer to Section 2.6 for further details.

2.2 Proposed algorithm: Iteratively Pre-Conditioned Gradient-Descent (IPG)

In this section, we present our algorithm, its computational complexity, and its convergence

properties in the deterministic settings, i.e., with full-batch data and when there is no noise in the

system.

2.2.1 Motivation for IPG

The proposed algorithm is similar to the gradient-descent method described in Section 2.1.1.

However, a notable difference is that in our algorithm, the server multiplies the aggregate of

the gradients received from the agents by a pre-conditioner matrix. The server uses the pre-

conditioned aggregates of the agents’ gradients to update its current estimates. In literature, this

technique is commonly referred as pre-conditioning [40]. When the matrix ATA is non-singular,

the best pre-conditioner matrix for the gradient-descent method is the inverse Hessian matrix(
ATA

)−1, resulting in Newton’s method which converges superlinearly. However,
(
ATA

)−1

cannot be computed directly in a distributed setting as it requires the agents to send their local

data points to the server. Thus, instead of a constant pre-conditioner matrix
(
ATA

)−1, we propose

a distributed scheme where the server iteratively updates the pre-conditioning matrix in such a

18

way that it converges to
(
ATA

)−1 (ref. Lemma A.1). This specific iterative update rule of the

pre-conditioning matrix is described later in Step 4 of the next subsection. Thus, our algorithm

eventually converges to Newton’s method and has superlinear convergence rate, as shown later

in Section 2.2.4. Herein lies the motivation of our proposed algorithm.

The idea of iterative pre-conditioning is inspired by simple adaptive control techniques [41].

In adaptive control theory, the goal is to design a feedback control law, when the system parameters

are unknown, so that the system state is driven to an equilibrium point. Analogous to such

techniques, the proposed algorithm “adapts” to the unknown inverse Hessian matrix
(
ATA

)−1

by tuning the iterative pre-conditioner matrix (the “feedback gain”) which drives the estimate

(system state) to a solution of (2.1). At the same time, the pre-conditioner matrix, which is an

estimate of the unknown parameter
(
ATA

)−1, also converges to the true parameter
(
ATA

)−1.

Thus, in the language of adaptive control theory, we have both the parameter convergence and

the state convergence.

In each iteration t ∈ {0, 1, . . .}, the server maintains an estimate x(t) of a minimum

point (2.1), and a pre-conditioner matrix K(t) ∈ Rd×d. The initial estimate x(0) and the pre-

conditioner matrixK(0) are chosen arbitrarily from Rd and Rd×d, respectively. For each iteration

t ≥ 0, the algorithm steps are presented below.

2.2.2 Steps in each iteration t

In each iteration t, the algorithm comprises four steps, executed collaboratively by the

server and the agents. Before initiating the iterative process, the server chooses three non-

negative scalar real-valued parameters α, δ, and β whose specific values are presented later in

19

Section 2.2.4. The parameter β is broadcast to all the agents.

• Step 1: The server sends the estimate x(t) and the matrix K(t) to each agent i.

• Step 2.1: Each agent i computes the gradient gi(t), as defined in (2.3).

• Step 2.2: Each agent i computes a set of vectors
{
Ri

j(t) : j = 1, . . . , d
}

such that for each

j = 1, . . . , d,

Ri
j(t) =

((
Ai
)T
Ai +

(
β

m

)
I

)
kj(t)−

(
1

m

)
ej, (2.7)

where I denote the (d × d)-dimensional identity matrix, ej and kj(t) denote the j-th

columns of matrices I and K(t), respectively.

• Step 3: Each agent i sends gradient gi(t) and the set of vectors
{
Ri

j(t), j = 1, . . . , d
}

to

the server.

• Step 4: The server updates the matrix K(t) as

kj(t+ 1) = kj(t)− α
m∑
i=1

Ri
j(t), j = 1, ..., d. (2.8)

Finally, the server updates the estimate x(t) to x(t+ 1) such that

x(t+ 1) = x(t)− δK(t+ 1)
m∑
i=1

gi(t). (2.9)

Parameter δ is a non-negative real value, commonly referred as the step-size.

Our algorithm is summarized below in Algorithm 1.

20

Algorithm 1 Iterative pre-conditioning for the gradient-descent method in a server-agent
network.

1: The server initializes x(0) ∈ Rd, K(0) ∈ Rd×d and selects the parameters α > 0, δ > 0 and
β ≥ 0.

2: for t = 0, 1, 2, . . . do
3: The server sends x(t) and K(t) to each agent i ∈ {1, . . . , m}.
4: Each agent i computes the gradient gi(t) as defined by (2.3), and a set of vectors{

Ri
j(t), j = 1, . . . , d

}
as defined by (2.7).

5: Each agent i sends gi(t) and the set
{
Ri

j(t), j = 1, . . . , d
}

to the server.
6: The server updates K(t) to K(t+ 1) as defined by (2.8).
7: The server updates the estimate x(t) to x(t+ 1) as defined by (2.9).
8: end for

2.2.3 Algorithm complexity

We now present the computational complexity of Algorithm 1, in terms of the total number

of floating-point operations (flops) required per iteration.

For each iteration t, each agent i computes the gradient gi(t), defined in (2.3), and d

vectors {Ri
j(t) : j = 1, ..., d}, defined in (2.7). Computation of gi(t) requires two matrix-

vector multiplications, namely Ai x(t) and (Ai)T
(
Ai x(t)− bi

)
, in that order. As Ai is an

(ni × d)-dimensional matrix and x(t) is a d-dimensional vector, computation of gradient gi(t)

requires O(nid) flops. From (2.7), computation of each vector Ri
j(t) requires two matrix-vector

multiplications, namelyAi kj(t) and (Ai)T (Aikj(t)), in that order. AsAi is an (ni×d)-dimensional

matrix, and both vectors kj(t) and Ai kj(t) are of dimensions d, computation of each Ri
j(t)

requires O(nid) flops. Thus, net computation of d vectors {Ri
j(t) : j = 1, ..., d} requires

O(nid
2) flops. Therefore, the computational complexity of Algorithm 1 for each agent i is d

numbers of O(nid) parallel flops, for each iteration. Note that, the computation of each member

in the set {Ri
j(t) : j = 1, ..., d} is independent of each other. Hence, agent i can compute the d

vectors {Ri
j(t) : j = 1, ..., d} in parallel.

21

For each iteration t, the server computes the matrix K(t + 1), defined in (2.8), and vector

x(t + 1), defined in (2.9). Computing K(t + 1) only requires O(d) floating-point additions,

and can be ignored. In (2.9), the computation of K(t + 1)
∑m

i=1 g
i(t) requires only one matrix-

vector multiplication between the d × d dimensional matrix K(t + 1) and the d-dimensional

vector
∑m

i=1 g
i(t). Therefore, the computational complexity for the server is O(d2) flops, for

each iteration.

Communication complexity: For each iteration t, each agent sends a vector gi(t) ∈ Rd

and d vectors Ri
j(t) ∈ Rd, which means (d2 + d) real scalar values are send to the server by each

agent. Thus, the communication complexity of Algorithm 1 for each agent is O(d2), compared

to O(d) of the GD method, which is a drawback of Algorithm 1.

Next, we present convergence results for Algorithm 1.

2.2.4 Convergence guarantees

To be able to present the formal convergence guarantees of Algorithm 1, we note below

some elementary facts and introduce some notation.

• We define the collective data matrix and the collective observation vector respectively to

be A =
[
(A1)T , . . . , (Am)T

]T
, b =

[
(b1)T , . . . , (bm)T

]T .

• Note that matrix product ATA is positive semi-definite. Thus, if β > 0 then
(
ATA+ βI

)
is positive definite, and therefore, invertible. Let Kβ =

(
ATA+ βI

)−1, and let λ1, . . . , λd

denote the eigenvalues of matrix ATA such that λ1 ≥ . . . ≥ λd ≥ 0.

• The rank of matrix ATA is denoted by r. Note that r = d if and only if the matrix ATA

is full rank. In general, when ATA is not the trivial zero matrix, 1 ≤ r ≤ d. Note that if

22

r < d then λ1 ≥ . . . ≥ λr > λr+1 = . . . = λd = 0.

• For a matrixM ∈ Rd×d,∥M∥F denotes its Frobenius norm [42]. Specifically, ifmij denote

the (i, j)-th element of matrix M , then∥M∥F =
√∑d

i=1

∑d
j=1m

2
ij .

For each agent i, recall from (2.2), the cost function F i(x) is convex and differentiable.

Thus, the aggregate cost function
∑m

i=1 F
i(x) is also convex. Therefore, x∗ ∈ X∗ if and only

if [43] ∇
∑m

i=1 F
i(x∗) = 0d, where 0d denotes the d-dimensional zero vector. Recall, from

Section 2.1.1,

g(t) = ∇
m∑
i=1

F i(x(t)) =
m∑
i=1

∇F i(x(t)) =
m∑
i=1

gi(t). (2.10)

We now define below parameters that determine the convergence rate of Algorithm 1. Let,

µ∗ =
λ1 − λr

λ1 + λr + 2(λ1λr/β)
, (2.11)

ϱ =
λ1 − λd

λ1 + λd + 2β
. (2.12)

Since λ1, λr, β > 0, (2.11)-(2.12) implies that µ∗, ϱ < 1. We define the optimal step-size

parameter

δ∗ =
2

λ1

λ1+β
+ λr

λr+β

. (2.13)

The key result on the convergence of Algorithm 1 is presented next.

Theorem 2.1. Consider Algorithm 1. Suppose, 0 < α < 2
λ1+β

and 0 < δ < 2
(

λ1+β
λ1

)
. Then,

1. there exists non-negative real values µ and ρ with µ∗ ≤ µ < 1 and ϱ ≤ ρ < 1 such that

23

for each iteration t ≥ 0,

∥∥g(t+ 1)
∥∥≤(µ+ δλ1

∥∥K(0)−Kβ

∥∥
F
ρt+1

)∥∥g(t)∥∥ ; (2.14)

2. limt→∞
∥∥g(t)∥∥ = 0;

3. If δ = δ∗ then (2.14) holds with µ = µ∗.

As ρ < 1, (2.14) of Theorem 2.1 implies that lim
t→∞

∥g(t+1)∥
∥g(t)∥ ≤ µ < 1, since ρt+1 → 0 as

t → ∞. Thus, Theorem 2.1 implies that the sequence of gradients {g(t)}t≥0 converges linearly

to 0d with convergence rate no worse than µ. Since g(t) is linearly related to x(t) as presented

in (2.10), linear convergence of {g(t)}t≥0 to 0d implies linear convergence of the sequence of

estimators {x(t)}t≥0 to a point in X∗.

Superlinear convergence: Consider the special case when x∗ is the unique solution for

the least-squares problem (2.1), i.e., the unique minimum point of the aggregate cost function∑m
i=1 F

i(x). In this particular case, the matrix ATA is full-rank, and therefore, r = d. Here, we

show below that Algorithm 1 with parameter β = 0 converges superlinearly to x∗. Specifically,

we obtain the following corollary of Theorem 2.1. Recall, from (2.12), that when β = 0 then

ϱ = λ1−λd

λ1+λd
< 1.

Corollary 2.1. Consider Algorithm 1 with β = 0. If x∗ defined by (2.1) is unique, and the

parameter α satisfies the condition stated in Theorem 2.1, then for δ = 1 there exists a non-

negative real value ρ ∈ [ϱ, 1) such that,

1. for each iteration t ≥ 0,
∥∥g(t+ 1)

∥∥ ≤ λ1
∥∥K(0)−Kβ

∥∥
F
ρt+1

∥∥g(t)∥∥;

2. limt→∞
∥x(t+1)−x∗∥
∥x(t)−x∗∥ = 0.

24

Remarks: Since the number of data points ni held by each agent i is not necessarily the

same across the agents, it may be of interest to minimize the weighted aggregate cost function∑m
i=1

ni

2
∑m

i=1 ni

∥∥Aix− bi
∥∥2, where each local cost function F i is weighted by the fraction of the

number of data points of the corresponding agent i relative to the total number of data points of

all the agents combined. We note that the results in this section are still valid for this weighted

cost function.

2.3 Comparisons with the existing methods

In this section, we present comparisons between the rates of convergence of Algorithm 1

and other prominent server-agent algorithms reviewed in Section 2.1. The algorithms are elaborated

in [44].

Unique optimal solution: For the special case when the solution of the distributed least-

squares problem (2.1) is unique, as shown in Section 2.2.4, Algorithm 1 converges superlinearly,

which is comparable only to the BFGS method. The rest of the algorithms, namely GD, NAG,

HBM, and APC, only converge linearly [5].

Multiple optimal solutions: In general when the solution for the distributed least-squares

problem (2.1) is not unique, we show below that Algorithm 1 converges exponentially faster than

the GD method. It should be noted that the convergence of BFGS and APC, and the explicit

convergence rate of NAG and HBM can only be guaranteed for the special when the solution

of (2.1) is unique; see [5], [25], [26] and references therein. Otherwise, the convergence rate of

NAG and HBM is known only in terms of the order of iteration numbers [26], [39]. However,

in practice the constant factor that is often ignored in order convergence analysis can be quite

25

critical. Thus, we provided an explicit convergence rate of Algorithm 1 in Theorem 2.1.

The above comparisons are succinctly summarized in Table 2.1 (ref. Page 16). Detailed

comparison with the classical GD method is presented below.

2.3.1 The gradient-descent method

Consider the GD algorithm in server-agent networks, described in Section 2.1.1. To the best

of our knowledge, in the open literature, the explicit rate of convergence for GD is mentioned only

when the solution for (2.1) is unique [2], [25], [26]. We present below, formally in Lemma 2.1,

the explicit convergence rate of GD for the general case. We define a parameter µGD =
λ1 − λr
λ1 + λr

,

where λ1 and λr are respectively the largest and the smallest non-zero eigenvalue of ATA.

Lemma 2.1. Consider the gradient-descent algorithm in a server-agent network as presented in

Section 2.1.1. In (2.4), if δ ∈
(
0, 2

λ1

)
then there exists µ with µGD ≤ µ < 1 such that, for each

iteration t ≥ 0,
∥∥g(t+ 1)

∥∥ ≤ µ
∥∥g(t)∥∥.

We show formally below, in Theorem 2.2, that Algorithm 1 converges faster than GD

method. Note that, in the special case when all the non-zero eigenvalues of the matrix ATA

are equal, i.e. ATA = kI for some k ≥ 0, both the GD algorithm and Algorithm 1 solve the

optimization problem (2.1) in just one iteration. Now, Theorem 2.2 below presents the case when

λ1 > λr.

Theorem 2.2. Consider Algorithm 1. Suppose that λ1 > λr. If β > 0 then there exists a positive

finite integer τ , and two positive finite real values c and r with r < 1, such that
∥∥g(t+ 1)

∥∥ ≤

c (r µGD)
t+1
∥∥g(0)∥∥ , ∀t > τ .

Consider the best possible rate of convergence for the GD algorithm. That is, substitute

26

µ = µGD in Lemma 2.1. In that case, the gradients for the GD algorithm in a server-agent

network satisfy
∥∥g(t+ 1)

∥∥ ≤ (µGD)
t+1
∥∥g(0)∥∥ , ∀t ≥ 0. From Theorem 2.2, the gradients’

norm for Algorithm 1 are given by
∥∥g(t+ 1)

∥∥ ≤ c (r µGD)
t+1
∥∥g(0)∥∥ , ∀t > τ . Thus, assuming

that both the algorithms are identically initialized with some x(0), there exists a finite integer T

such that the ratio between the upper bounds on the gradients of Algorithm 1 and GD in server-

agent network is given by c rt+1 for iteration t > T , where r < 1. This statement implies

that, after a finite number of iterations, Algorithm 1 is guaranteed to have a smaller error bound

compared to GD with identical initialization of x(0) and arbitrary initialization of the iterative

pre-conditioning matrix K(0). More importantly, this error bound of Algorithm 1 decreases to

zero at an exponentially faster rate compared to the latter one.

2.4 Robustness of the IPG method

In this section, we present our key results on the robustness of the IPG method [6], described

in Algorithm 1 for the noise-free case, in the presence of additive system noises; the observation

noise and the process noise.

We introduce below some notation, our main assumption, and review a pivotal prior result.

2.4.1 Notation, assumption, and prior results

Assumption 2.1. Assume that the matrix ATA is full rank.

Note that Assumption 2.1 holds true if and only if the matrix ATA is positive definite with

λd > 0. Under Assumption 1, ATA is invertible, and we let K∗ =
(
ATA

)−1. Note, from (2.2),

that the Hessian of the aggregate cost function
∑m

i=1 F
i(x) is equal to ATA for all x ∈ Rd.

27

Thus, under Assumption 1 when ATA is positive definite, the aggregate cost function has a

unique minimum point. Equivalently, the solution of the least squares problem defined by (2.1)

is unique.

We review below in Lemma 2.2 a prior result that is pivotal for our key results presented

later in this section. We let

ϱ = (λ1 − λd)/(λ1 + λd). (2.15)

For each iteration t, recall the pre-conditioner matrix K(t) in Algorithm 1, and define

K̃(t) = K(t)−K∗, ∀t ≥ 0. (2.16)

Let k̃j(t) denote the j-th column of K̃(t) and let k∗j denote the j-th column of the matrix K∗.

Lemma 2.2 below states sufficient conditions under which the sequence of the pre-conditioner

matrices {K(t), t = 0, 1, . . .}, in Algorithm 1, converges linearly to K∗.

Lemma 2.2. Consider Algorithm 1 with α ∈ (0, 2
λ1
). If Assumption 1 holds true then there exists

a real value ρ ∈ [ϱ, 1) such that, for all j ∈ {1, . . . , d},

∥∥∥k̃j(t+ 1)
∥∥∥ ≤ ρ

∥∥∥k̃j(t)∥∥∥ , ∀t ≥ 0. (2.17)

We first present in Section 2.4.2 below the robustness of the IPG method against observation

noise, followed by the robustness against process noise in Section 2.4.3.

28

2.4.2 Robustness against observation noise

Based upon the literature [29], we model observation noise as follows. Each agent i

observes a corrupted observation vector bio, instead of the true observation vector bi. Specifically,

bio = bi + wi
b, i ∈ {1, . . . ,m}, (2.18)

where wi
b ∈ Rni is a random vector. Let E [·] denote the expectation of a function of the random

vectors {wi
b, i = 1, . . . ,m}. Let∥·∥1 denote the l1-norm [45].

Assumption 2.2. Assume that there exists η <∞ such that

E
[∥∥∥wi

b

∥∥∥
1

]
≤ η, i ∈ {1, . . . ,m}, . (2.19)

In the presence of the above observation noise, in each iteration t of Algorithm 1, each

agent i sends to the server a corrupted gradient gi(t) defined by (2.20) below, instead of (2.3).

Specifically, for all i and t,

gi(t) =
(
Ai
)T (

Ai x(t)− bio
)
. (2.20)

Due to the above corruption in gradient computation, Algorithm 1 no longer converges to an

exact solution, defined by (2.1), but rather to an approximation.

Theorem 2.3 below presents a key result on the robustness of Algorithm 1 against the above

additive observation noise. Recall from Section 2.4.1 that under Assumption 1 the solution,

denoted by x∗, of the regression problem (2.1) is unique. For each iteration t, we define the

29

estimation error

z(t) = x(t)− x∗. (2.21)

For a matrix M , with columns M1, . . . ,Md, its Frobenius norm [45] is defined to be ∥M∥F =√∑d
j=1

∥∥Mj

∥∥2. Recall the definition of ϱ from (2.15).

Theorem 2.3. Let
{
z(t)

}t=∞
t=0

be constructed by Algorithm 1 with parameters α < 2
λ1

and δ ≤

1, in the presence of additive observation noise defined in (2.18) and the gradients for each

iteration t, {gi(t), i = 1, . . . , m}, defined by (2.20). If Assumptions 2.1-2.2 hold then there exists

ρ ∈ [ϱ, 1) such that, for all t ≥ 0,

E
[∥∥z(t+ 1)

∥∥] ≤ (1− δ + δλ1

∥∥∥K̃(0)
∥∥∥
F
ρt+1

)∥∥z(t)∥∥+ δηm
√
λ1

∥∥∥K̃(0)
∥∥∥
F
ρt+1 + δηm

√
1/λd.

(2.22)

Additionally, limt→∞ E
[∥∥z(t)∥∥] ≤ δηm

√
1/λd.

Since ρ ∈ [0, 1) and δ ∈ (0, 1], Theorem 2.3 implies that the IPG method under the

influence of additive observation noise (2.18) converges in expectation within a distance of

δηm
√

1/λd from the true solution x∗ of the regression problem defined in (2.1). Since the

gradient-descent (GD) method (with constant step-sizes) is a special case of the IPG method

with K(t) = I for all t, from the proof of Theorem 2.3 we obtain that the final error of GD is

bounded by δηm
√
λ1.

30

2.4.3 Robustness against process noise

In the presence of process noise [27,28], in each iteration t of Algorithm 1 (the IPG method

in the noise-free case), the server computes corrupted values for both the pre-conditioner matrix

K(t) and the current estimate x(t), described formally as follows. Specifically, in each iteration

t, and for each j ∈ {1, . . . , d}, instead of computing kj(t) (the j-th column of K(t)) accurately,

the server computes

koj (t) = kj(t) + wk
j (t), (2.23)

where wk
j (t) ∈ Rd. Similarly, instead of computing x(t) accurately, the server computes a

corrupted estimate

xo(t) = x(t) + wx(t), (2.24)

where wx(t) ∈ Rd. Together, the vectors ζ(t) = {wx(t), wk
j (t), j = 1, . . . , d} are referred as

additive process noise. For each iteration t, let Eζt [·] denote the expectation of a function of the

random vectors ζ(t). Let Et [·] denote the total expectation of a function of the random vectors

{ζ(0), . . . , ζ(t)}.

Assumption 2.3. Assume that the random vectors {wx(t), wk
j (t), j = 1, . . . , d} are mutually

independent for all t, and there exists ω <∞ such that for all t, j,

Eζt

[∥∥∥wk
j (t)
∥∥∥
1

]
≤ ω, and Eζt

[∥∥wx(t)
∥∥
1

]
≤ ω. (2.25)

31

In the presence of above process noise, Algorithm 1 is modified as follows. In each iteration

t, each agent i sends to the server a gradient gi(t) and d vectorsRi
1(t), . . . , R

i
d(t) defined by (2.26)

and (2.27) below, respectively, instead of (2.3) and (2.7). Specifically, for all i and t,

gi(t) =
(
Ai
)T (

Ai xo(t)− bi
)
, (2.26)

and, for j = 1, . . . , d,

Ri
j(t) =

(
Ai
)T

Aikoj (t)−
(

1

m

)
ej. (2.27)

Similarly, in each iteration t, the server now computes K(t+ 1) whose j-th column is defined as

follows, instead of (2.8), for all j ∈ {1, . . . , d},

kj(t+ 1) = koj (t)− α
∑m

i=1R
i
j(t). (2.28)

Recall that koj (t + 1), defined by (2.23), is the corrupted value of kj(t + 1). Instead of (2.9), the

updated estimate x(t+ 1) is defined by

x(t+ 1) = xo(t)− δKo(t+ 1)
∑m

i=1 g
i(t), ∀t. (2.29)

Recall that xo(t+ 1), defined by (2.23), is the corrupted value of x(t+ 1).

To present our key result on the robustness of the IPG method, in Theorem 2.4 below,

against the above process noise, we introduce some notation. From Lemma 2.2, recall that ρ ∈

32

[ϱ, 1). For each iteration t, we define

K̃o(t) =
[
k̃o1(t), . . . , k̃

o
d(t)
]
= Ko(t)−K∗, and (2.30)

u(t) = 1− δ + δλ1

(
ρt
∥∥∥K̃(0)

∥∥∥+ ω
√
d
∑t

i=0 ρ
i

)
. (2.31)

Additionally, we let

ρbd =

∥∥∥K̃(0)
∥∥∥∥∥∥K̃(0)

∥∥∥+ ω
√
d
, and ωbd =

(1− ρ)

λ1
√
d
. (2.32)

Theorem 2.4 below characterizes the convergence of Algorithm 1 with modifications (2.26)-

(2.29) in presence of process noise. Recall from definition (2.21) that z(t) = x(t) − x∗ for

all t. Upon substituting x(t) from (2.24), we obtain that z(t) = xo(t) − wx(t) − x∗. We let

z0(t) = x0(t)− x∗. Thus, for each iteration t,

zo(t) = z(t) + wx(t). (2.33)

Theorem 2.4. Let
{
zo(t)

}t=∞
t=0

be constructed by Algorithm 1 with parameter α < 2
λ1

and δ ≤

1, in the presence of additive process noise defined in (2.23)-(2.24), and modifications defined

in (2.26)-(2.29). If Assumptions 2.1 and 2.3 hold then there exists ρ ∈ [ϱ, 1) such that

Et

[∥∥zo(t)∥∥] ≤ Πt
k=1u(k)

∥∥z(0)∥∥+ (1 + u(t) + . . .+Πt
k=1u(k)

)
ω, ∀t. (2.34)

33

Moreover, if

ρ < ρbd, and ω < ωbd, (2.35)

then limt→∞ Et

[∥∥zo(t)∥∥] < ω

δ
(
1−(ω/ωbd)

) .

Note that, from the proof of Theorem 2.4 when K(t) = I, ∀t, the asymptotic estimation

error of the traditional GD method under the above process noise is bounded by ω

1−∥I−δATA∥ .

2.5 SGD with iterative pre-conditioning

In this section, we present our algorithm for solving (2.6) in stochastic settings. Our

algorithm follows the basic prototype of the stochastic gradient descent method in distributed

settings. However, unlike the traditional distributed stochastic gradient descent, the server in

our algorithm multiplies the stochastic gradients received from the agents by a stochastic pre-

conditioner matrix. These pre-conditioned stochastic gradients are then used by the server to

update the current estimate.

In order to present the algorithm, we introduce some notation. The individual data points of

the agents are represented by an data row vector a of dimensions 1× d and a scalar observation

b. Thus, a ∈ R1×d and b ∈ R. For each data point (a, b), we define individual cost function

f : Rd → R such that for a given x ∈ Rd,

f(x; a, b) =
1

2
(a x− b)2 , (2.36)

34

and the gradient of the individual cost function f as

g(x; a, b) = ∇xf(x; a, b) = aT (a x− b) . (2.37)

In each iteration t ∈ {0, 1, . . .}, the server maintains an estimate x(t) of a minimum

point (2.6), and a stochastic pre-conditioner matrix K(t) ∈ Rd×d. The initial estimate x(0)

and the pre-conditioner matrix K(0) are chosen arbitrarily from Rd and Rd×d, respectively. For

each iteration t = 0, 1, . . ., the algorithm steps are presented below.

2.5.1 Steps in each iteration t

Before initiating the iterations, the server chooses a positive scalar real-valued parameter β

and broadcast it to all the agents. We number the agents in order from 1 to m. In each iteration

t, the proposed algorithm comprises of four steps described below. These steps are executed

collaboratively by the server and the agents, without requiring any agent to share its local data

points. For each iteration t, the server also chooses two positive scalar real-valued parameters α

and δ.

• Step 1: The server sends the estimate x(t) and the pre-conditioner matrix K(t) to each

agent i ∈ {1, . . . ,m}.

• Step 2: Each agent i ∈ {1, . . . ,m} chooses a data point (ait , bit) uniformly at random from

its local data points (Ai, bi). Note that, ait and bit are respectively a row in the input matrix

Ai and the output vector bi of agent i. Each data point is independently and identically

distributed (i.i.d.). Based on the selected data point (ait , bit), each agent i then computes a

35

stochastic gradient, denoted by git(t), which is defined as

git(t) = g(x(t); ait , bit). (2.38)

In the same step, each agent i ∈ {1, . . . ,m} computes a set of vectors
{
hitj (t) : j = 1, . . . , d

}
:

hitj (t) = hj(kj(t); a
it , bit), (2.39)

where the function hj : Rd → Rd is defined below. Let I denote the (d × d)-dimensional

identity matrix. Let ej and kj(t) denote the j-th columns of matrices I andK(t), respectively.

For each column j ∈ {1, . . . , d} of K(t) and each individual data point (a, b), we define

hj(kj; a, b) =
(
aTa+ βI

)
kj − ej. (2.40)

• Step 3: Each agent i ∈ {1, . . . ,m} sends the stochastic gradient git(t) and the set of

stochastic vectors
{
hitj (t), j = 1, . . . , d

}
to the server.

• Step 4: The server draws an i.i.d. sample ζt uniformly at random from the set of agents

{1, . . . ,m} and updates the matrix K(t) to K(t+ 1) such that, for each j ∈ {1, . . . , d},

kj(t+ 1) = kj(t)− αh
ζtt
j (t). (2.41)

36

Finally, the server updates the estimate x(t) to x(t+ 1) such that

x(t+ 1) = x(t)− δK(t+ 1)gζtt (t). (2.42)

Parameter δ is a non-negative real value, commonly referred as the stepsize.

These steps of our algorithm are summarized in Algorithm 2.

Algorithm 2 Iteratively Pre-Conditioned Stochastic Gradient-descent (IPSG).
1: The server initializes x(0) ∈ Rd, K(0) ∈ Rd×d, β > 0 and chooses {α > 0, δ > 0 : t =

0, 1, . . .}.
2: Steps in each iteration t ∈ {0, 1, 2, . . .}:
3: The server sends x(t) and K(t) to all the agents.
4: Each agent i ∈ {1, . . . , m} uniformly selects an i.i.d. data point (ait , bit) from its local data

points (Ai, bi).
5: Each agent i ∈ {1, . . . , m} sends to the server a stochastic gradient git(t), defined in (2.38),

and d stochastic vectors hit1 (t), . . . , h
it
d (t), defined in (2.39).

6: The server uniformly draws an i.i.d. sample ζt from the set of agents {1, . . . ,m}.
7: The server updates K(t) to K(t+ 1) as defined by (2.41).
8: The server updates the estimate x(t) to x(t+ 1) as defined by (2.42).

Next, we present the formal convergence guarantees of Algorithm 2. We begin by introducing

some notation and our main assumptions.

2.5.2 Notation and assumptions

For each iteration t ≥ 0 we define the following.

• Let Eζt [·] and for each agent i ∈ {1, . . . ,m} Eit [·] denote the conditional expectation of

a function the random variables ζt and it, respectively, given the current estimate x(t) and

the current pre-conditioner K(t).

• Let It = {it, i = 1, . . . ,m} ∪ {ζt} and EIt [·] = E1t,...mt,ζt(·).

37

Table 2.2: Additional notation for analysis of IPSG.

A =
[
(a1)T , . . . , (aN)T

]T
Kβ =

(
1
N
ATA+ βI

)−1

C1 = maxi

∥∥∥(ai)T ai − 1
N
ATA

∥∥∥ ρ = 1
N

∑N
i=1

∥∥∥∥I − α
((
ai
)T
ai + βI

)∥∥∥∥
s1 ≥ . . . ≥ sd ≥ 0: eigenvalues of the positive semi-definite matrix ATA

Λi and λi: the largest and the
smallest eigenvalue of

(
ai
)T
ai

L = β +maxi=1,...,N Λi

µ =
(
1− 2αsd

N
(1− αL)

)
σ2 = max

j=1,...,d

1

N

N∑
i=1

∥∥∥∥∥
((

ai
)T

ai + βI

)
Kβ ej − ej

∥∥∥∥∥
2

C3 =
αNσ2

sd(1−αL)
C2 =

α
N

∑N
i=1

∥∥∥(ai)T ai − 1
N
ATA

∥∥∥∥∥Kβ

∥∥
ϱ =

∥∥∥I − α
(

1
N
ATA+ βI

)∥∥∥ C5(t) = 2C1E2
s1
N

(∥∥Kβ

∥∥+∥∥∥K̃(0)
∥∥∥ ϱt)

C6(t) =
2sd

sd+Nβ
− 2 s1

N

∥∥∥K̃(0)
∥∥∥ ϱt+1 C7(t) = 2C1E1

(∥∥Kβ

∥∥+∥∥∥K̃(0)
∥∥∥ ϱt)

C8(t) = (V2 + 1)
s21
N
(dC3 +

∥∥Kβ

∥∥2 + 2C2

∥∥Kβ

∥∥∑t
j=0 ρ

j +
∥∥∥K̃(0)

∥∥∥2
F
µt+1

+2
∥∥Kβ

∥∥∥∥∥K̃(0)
∥∥∥ ρt+1) + 0.5

z(t) = x(t)− x∗ R1(t) = 1 + δ2C8(t) + αδC5(t)− δC6(t)

R2(t) = δ2V1N(dC3 +
∥∥Kβ

∥∥2 + 2C2

∥∥Kβ

∥∥∑t
j=0 ρ

j +
∥∥∥K̃(0)

∥∥∥2
F
µt+1

+2
∥∥Kβ

∥∥∥∥∥K̃(0)
∥∥∥ ρt+1) + 1

2
α2C7(t)

2

• Let Et [·] denote the total expectation of a function of the random variables {I0, . . . , It}

given the initial estimate x(0) and initial pre-conditioner matrix K(0). Specifically,

Et [·] = EI0,...,It(·), t ≥ 0. (2.43)

• Define the conditional variance of the stochastic gradient git(t), which is a function of the

random variable it, given the current estimate x(t) and the current pre-conditioner K(t) as

Vit

[
git(t)

]
= Eit

[∥∥∥∥git(t)− Eit

[
git(t)

]∥∥∥∥2
]
= Eit

[∥∥∥git(t)∥∥∥2]−∥∥∥∥Eit

[
git(t)

]∥∥∥∥2 . (2.44)

38

Additional notation are listed in Table 2.2. Among these notation, Kβ is an approximation of

the inverse Hessian matrix, to which the sequence of the pre-conditioner matrices converges

in expectation. R1(t) and R2(t) characterize the estimation error after t iterations. The other

notation in Table 2.2 are required to define R1(t) and R2(t).

We make the following assumption on the rank of the matrix ATA.

Assumption 2.4. Assume that the matrix ATA is full rank.

Note that Assumption 2.4 holds true if and only if the matrix ATA is positive definite

with sd > 0. As the Hessian of the aggregate cost function
∑m

i=1 F
i(x) is equal to ATA for all

x (see (2.5), under Assumption 2.4, the aggregate cost function has a unique minimum point.

Equivalently, the solution of the distributed least squares problem defined by (2.6) is unique.

We also assume, as formally stated in Assumption 2.5 below, that the variance of the

stochastic gradient for each agent is bounded. This is a standard assumption for the analysis

of stochastic algorithms [32].

Assumption 2.5. Assume that there exist two non-negative real scalar values V1 and V2 such

that, for each iteration t = 0, 1, . . . and each agent i ∈ {1, . . . ,m},

Vit

[
git(t)

]
≤ V1 + V2

∥∥∑m
i=1∇F i(x(t))/m

∥∥2 .
Next, we present our key result on the convergence of Algorithm 2.

39

2.5.3 Convergence guarantees

Theorem 2.5. Consider Algorithm 2 with parameters β > 0, α < min
{

N
sd
, 1
L
, 2
(s1/N)+β

}
and

δ > 0. If Assumptions 2.4 and 2.5 are satisfied, then there exist two non-negative real scalar

values E1 ≥
√
V1N and E2 ≥

√
V2N such that the following statements hold true.

1. If the stepsize δ is sufficiently small, then there exists a non-negative integer T < ∞ such

that for any iteration t ≥ T , R1(t) is positive and less than 1.

2. For an arbitrary time step t ≥ 0, given the estimate x(t) and the matrix K(t),

Et

[∥∥z(t+ 1)
∥∥2] ≤ R1(t)

∥∥z(t)∥∥2 +R2(t). (2.45)

3. Given arbitrary choices of the initial estimate x(0) ∈ Rd and the pre-conditioner matrix

K(0) ∈ Rd×d,

lim
t→∞

Et

[∥∥z(t+ 1
∥∥2] ≤ δ2V1N

(
dC3 +

∥∥Kβ

∥∥2 + 2C2

∥∥Kβ

∥∥
1− ρ

)
+ 2α2

(
C1E1

∥∥Kβ

∥∥)2 .

The implications of Theorem 2.5 are as follows.

• According to Part (1) and (2) of Theorem 2.5, for small enough values of the parameters

α and stepsize δ, as R1(t) ∈ (0, 1) after some finite iterations, Algorithm 2 converges

linearly in expectation to a neighborhood of the minimum point x∗ of the least-squares

problem (2.6).

• According to Part (3) of Theorem 2.5, the neighborhood of x∗, to which the estimates of

40

Algorithm 2 converges in expectation, is O(V1). In other words, the sequence of expected

“distance” between the minima x∗ of (2.6) and the final estimated value of Algorithm 2 is

proportional to the variance of the stochastic gradients at the minimum point.

2.6 Experimental results

In this section, first, we present experimental results comparing Algorithm 1 with other

Figure 2.2:
∥∥x(t)− x∗

∥∥ under
Algorithm 1 with different
initialization on “ash608”.
α = 0.1, δ = 1, β = 0.

state-of-the-art methods. We consider five benchmark

collective data matricesA, namely “ash608”, “bcsstm07”,

“can 229”, “gr 30 30”, and “qc324”, from the

SuiteSparse Matrix Collection (http://sparse.tamu.edu/).

The true value of the collective observation is b = Ax∗

where x∗ is a d-dimensional vector with all entries equal

to 1. The rows of (A, b) are distributed among m = 10

agents. AsATA is positive definite except for “can 229”, the problem (2.1) has a unique solution

x∗ for the datasets except “can 229” which has multiple solutions.

We simulate Algorithm 1 with several initialization, for the datasets “ash608” and “gr 30 30”.

For either of these datasets we consider three sets of initialization (x(0), K(0)): each entry of

x(0) and K(0) is zero; each entry of x(0) is selected uniformly at random within (−3, 3) and

each entry of K(0) is zero; each entry of x(0) and K(0) is selected uniformly at random within

(−3, 3) and (0, 0.01) respectively. We observe that, Algorithm 2.2.2 converges to x∗ irrespective

of the initial choice x(0) and K(0) (ref. Fig. 2.2-2.3).

41

Figure 2.3:
∥∥x(t)− x∗

∥∥ under
Algorithm 1 with different
initialization on “gr 30 30”.
α = 3 × 10−3, δ = 0.4, β = 0.

The experimental results have been compared

with the other distributed algorithms mentioned in

Section 2.3. The parameters for all of these algorithms

are chosen such that the respective algorithms achieve

their optimal (smallest worst-case) convergence rate

(ref. Table 2.3). For Algorithm 1 these optimal

parameter values are given by α = 2
λ1+λd+2β

and δ∗

in (2.13). The optimal parameter expressions for the algorithms GD, NAG, HBM, and APC can

be found in [5], [25]. The stepsize parameter for BFGS is selected using backtracking [22]. Note

that evaluating the optimal tuning parameters for any of these algorithms requires knowledge

about the smallest and largest eigenvalues of ATA.

Figure 2.4:
∥∥x(t)− x∗

∥∥ in absence
of noise for different algorithms on
“bcsstm07”.

We compare the number of iterations needed by

these algorithms to reach a relative estimation error

defined as ϵtol =
∥∥x(t)− x∗

∥∥/∥x∗∥ for unique solution

or ϵtol =
∥∥Ax(t)− b

∥∥/∥∥Ax(0)− b
∥∥ for multiple

solutions. Clearly, Algorithm 1 performs fastest

among the algorithms except BFGS, significantly for

the datasets “bcsstm07” and “gr 30 30” (Table 2.4).

Thus, our theoretical claim on improvements over these methods is corroborated by the above

experimental results.

Observation Noise: We add uniformly distributed random noise vectors from (−0.25, 0.25)

and (−0.15, 0.15), respectively, to the true output vectors of datasets “ash608” and “gr 30 30”.

The algorithm parameters are chosen such that each algorithm achieves its minimum convergence

42

rate [5, 44] (ref. Table 2.3). Each iterative algorithm is run until the changes in its subsequent

Figure 2.5:
∥∥x(t)− x∗

∥∥ in absence
of noise for different algorithms on
“can 229”.

estimates is less than 10−4 over 20 consecutive

iterations. We note the final estimation errors of the

different algorithms in Table 2.5. We observe that

the final estimation error of the IPG method is either

comparable or favourable to all the other algorithms, for

each dataset.

Process noise: We simulate the algorithms by adding noise to the iterated variables. For the

algorithms GD, NAG, HBM, and IPG, the process noise has been generated by rounding-off each

entries of all the iterated variables in the respective algorithms to four decimal places. However,

the rounding-off does not generate same values of noise w for the APC and BFGS algorithms.

Therefore, for APC, we add uniformly distributed random numbers in the range (0, 5× 10−5) for

both the datasets, and similarly, for BFGS, we add uniformly distributed random numbers in the

range (0, 9×10−5) and (0, 2×10−6) respectively for the datasets “ash608” and “gr 30 30”. The

final estimation errors of different algorithms are noted in Table 2.5. We observe that the final

error for IPG is less than all the other algorithms. Also, we observe that the estimation error for

the BFGS algorithm on dataset “ash608” grows unbounded after 360 iterations. The cause for

this instability is the violation of the non-singularity of the approximated Hessian matrix, which

is a necessary condition for the convergence of BFGS [22].

43

Figure 2.6:
∥∥x(t)− x∗

∥∥ in presence of observation noise for different algorithms on “ash608”.

2.6.1 Stochastic settings

We conduct experiments for different collective data points (A, b). Four of these datasets

are from the the benchmark datasets available in SuiteSparse Matrix Collection. Particularly

these four datasets are “abtaha1”, “abtaha2”, “gre 343”, and “illc1850”. The fifth dataset,

“cleveland”, is from the UCI Machine Learning Repository [46]. The sixth and final dataset is

the “MNIST” [47] dataset.

Figure 2.7:
∥∥x(t)− x∗

∥∥ in presence of
process noise for different algorithms
on “ash608”.

In the case of the first four aforementioned

datasets, the problem is set up as follows. Consider a

particular dataset “abtaha1”. Here, the matrix A has

14596 rows and d = 209 columns. The collective

output vector b is such that b = Ax∗ where x∗ is a 209

dimensional vector, all of whose entries are unity. The

data points represented by the rows of the matrix A and

the corresponding observations represented by the elements of the vector b are divided amongst

m = 4 agents numbered from 1 to 4. Since the matrixA for this particular dataset has 14596 rows

and 209 columns, each of the four agents 1, . . . , 4 has a data matrix Ai of dimension 3649× 209

and a observation vector bi of dimension 3649. The data points for the other three datasets,

44

“abtaha2”, “gre 343”, and “illc1850”, are similarly distributed among m = 4, m = 7 and

m = 10 agents, respectively.

Figure 2.8:
∥∥x(t)− x∗

∥∥ in presence
of observation noise for different
algorithms on “gr 30 30”.

For the fifth dataset, 212 arbitrary instances from

the “cleveland” dataset have been selected. This dataset

has 13 numeric attributes, each corresponding to a

column in the matrix A, and a target class (whether the

patient has heart disease or not), which corresponds to

the output vector b. Since the attributes in the matrix

A has different units, its each column is shifted by the

mean value of the corresponding column and then divided by the standard deviation of that

column. Finally, a 212-dimensional column vector of unity is appended to this pre-processed

matrix. This is our final input matrix A of dimension (212 × 14). The collective data points

(A,B) are then distributed among m = 4 agents, in the manner described earlier.

Figure 2.9:
∥∥x(t)− x∗

∥∥ in presence of
process noise for different algorithms
on “gr 30 30”.

From the training examples of the “MNIST”

dataset, we select 1500 arbitrary instances labeled

as either the digit one or the digit five. For each

instance, we calculate two quantities, namely the

average intensity of an image and the average symmetry

of an image [48]. Let the column vectors a1 and

a2 respectively denote the average intensity and the

average symmetry of those 1500. Then, our input matrix before pre-processing is[
a1 a2 a1.

2 a1. ∗ a2 a2.
2

]
. Here, (.∗) represents element-wise multiplication and (.2)

represents element-wise squares. This raw input matrix is then pre-processed as described earlier

45

for the “cleveland” dataset. Finally, a 1500-dimensional column vector of unity is appended

to this pre-processed matrix. This is our final input matrix A of dimension (1500 × 6). The

collective data points (A,B) are then distributed among m = 10 agents, in the manner already

described for the other datasets. As the matrix ATA is positive definite in each of these cases, the

optimization problem (2.6) has a unique solution x∗ for all of these datasets.

Figure 2.10:
∥∥x(t)− x∗

∥∥ for different
stochastic algorithms on “MNIST”.

We compare the performance of our proposed

IPSG method (Algorithm 1) on the aforementioned

datasets, with the other stochastic algorithms mentioned

in Section 2.1.4. Specifically, these algorithms

are stochastic gradient descent (SGD) [32], adaptive

gradient descent (AdaGrad) [33], adaptive momentum

estimation (Adam) [34], and AMSGrad [37] in the distributed network architecture of Fig. 2.1.

These algorithms are implemented with different combinations of the respective algorithm

parameters on the individual datasets. The parameter combinations are described below.

IPSG: The optimal (smallest) convergence rate of the deterministic version of the proposed

IPSG method is obtained when α = 2
s1+sd

[44]. For each of the six datasets, we find that the

IPSG method converges fastest when the parameter α is set similarly as α = 2
s1+sd

. The stepsize

parameter δ of the IPSG algorithm is chosen from the set {0.1, 0.5, 1, 2, 2.5}. The parameter β is

chosen from the set {0.1, 0.5, 1, 5, 10, 30, 50}.

SGD: The SGD algorithm has only one parameter: the stepsize, denoted as α [32]. The

deterministic version of the SGD method is the gradient-descent method, which has the optimal

rate of convergence when α = 2
s1+sd

. We find that the SGD method converges fastest when the

stepsize parameter is similarly set as α = 2
s1+sd

. s1 and sd depends on the collective data matrix

46

A, and their values may not be known to the server. When the actual values or estimates of s1 and

sd are not known, the parameter α in both the IPSG and the SGD algorithm can be experimentally

set by trying several values of different orders, as done for the parameters δ and β in the IPSG

method.

AdaGrad: The stepsize parameter α of the AdaGrad algorithm [33] is selected from the

set {1, 0.1, 1
t
}. The parameter ϵ is set at its usual value of 10−7.

Adam and AMSGrad: The stepsize α [34, 37] is selected from the set {c, c√
t
} where c is

from the set {1, 0.5, 0.1, 0.2, 0.05, 0.01}. The parameter β1 is set at its usual value of 0.9. The

parameter β2 is selected from their usual values of {0.99, 0.999}. The parameter ϵ is set at 10−7.

The best parameter combinations from above, for which the respective algorithms converge in a

fewer number of iterations, are reported for each dataset in Table 2.6.

The initial estimate x(0) for all of these algorithms is chosen as the d-dimensional zero

vector for each dataset except the “cleveland” dataset. For “cleveland” dataset, x(0) is chosen

as the d-dimensional vector whose each entry is 10. The initial pre-conditioner matrix K(0) for

the IPSG algorithm is the zero matrix of dimension (d× d).

Figure 2.11:
∥∥x(t)− x∗

∥∥ for different
stochastic algorithms on “illc1850”.

We compare the number of iterations needed by

these algorithms to reach a relative estimation error

defined as ϵtol =
∥x(t)−x∗∥
∥x(0)−x∗∥ . Each iterative algorithm

is run (ref. Fig. 2.10-2.11) until its relative estimation

error does not exceed ϵtol over a period of 10 consecutive

iterations, and the smallest such iteration is reported in

Table 2.7. The second column of Table 2.7 indicates the condition number κ(ATA) for each

dataset. From Table 2.7, we see that the IPSG algorithm converges fastest among the algorithms

47

on four out of the six datasets, except for “cleveland” and “abtaha2”. Note that these two

datasets have small condition number of order 10 and 102. Even for these two datasets, only the

AMSGrad algorithm requires fewer iterations than IPSG. Moreover, from the datasets “MNIST”,

“gre 343”, and “illc1850”, we observe that the differences between the proposed IPSG method

and the other methods are significant when the condition number of the matrix ATA is of order

103 or more. Thus, our claim on improvements over the prominent stochastic algorithms for

solving the distributed least-squares problem (2.6) is corroborated by the above experimental

results.

Table 2.3: The parameters used in different algorithms for their minimum convergence rate on
distributed linear regression experiments.

Dataset GD (δ) NAG
(α, β) [25]

HBM
(α, β) [25]

APC
(γ, η) [5]

Algorithm 1
(β, α, δ)

ash608 0.1163 (0.08, 0.5) (0.15, 0.29) (1.02, 5.27) (0, 0.1163, 1)
bcsstm07 3 ×

10−7

(2 ×
10−7, 0.99)

(10−7, 0.99) (1.09, 12.8) (0, 3× 10−7, 1)

can 229 0.024 (0.012, 0.98) (0.012, 0.87) N/A (0.001, 0.022, 1.08)
gr 30 30 0.014 (0.009, 0.99) (0.03, 0.98) (1.09, 12.8) (0, 0.014, 1)
qc324 0.85 (0.57, 0.99) (0.03, 0.98) (1.05, 18.9) (0, 0.85, 1)

Table 2.4: The number of iterations required by different algorithms to attain relative estimation
error ϵtol on distributed linear regression experiments.

Dataset λ1/λr ϵtol GD NAG HBM APC BFGS Algo. 1
ash608 11.38 10−4 37 23 21 15 15 9
bcsstm07 5.8 ×

107
10−4 > 105 5.64 ×

104
4.87 ×
104

4.85×
104

877 1.19×104

can 229 1.4 ×
104

10−4 1.25 ×
104

4.88 ×
102

2.98 ×
103

N/A N/A 1.6× 102

gr 30 30 3.79×
104

10−4 > 105 1.94 ×
103

1.13 ×
103

1.11×
103

85 7.42×102

qc324 2.15×
109

0.1 > 105 2.83 ×
104

4.41 ×
104

>
105

1.74× 103 1.94×103

48

Table 2.5: Comparisons between the final estimation errors limt→∞
∥∥x(t)− x∗

∥∥ for different
algorithms on distributed linear regression experiments.

Noise
type

Dataset Noise level IPG GD NAG HBM APC BFGS

Obsrv. ash608 η = 8.23 0.86 0.86 0.86 0.86 13.71 0.86
noise gr 30 30 η = 7.21 1.35 2.05 1.35 1.35 1.82 2.25
Prcs. ash608 ω = 9.3 ×

10−3

0 3.46 ×
10−4

9.21 ×
10−4

10−4 4.9 ×
10−4

∞

noise gr 30 30 ω = 4.5 ×
10−2

0 7.68 1.86 8.5 ×
10−3

3.72 1.49 ×
10−2

2.7 Summary

We have considered the multi-agent linear least-squares problem in a distributed server-

agent network. Although several algorithms are available for solving this problem without requiring

the agents to share their local data, their convergence speed is fundamentally limited by the

condition number of the collective data. We have proposed an iterative pre-conditioning technique

that is robust to the condition number. Thus, we can reach a satisfactory neighborhood of

the desired solution in a provably fewer number of iterations than the existing state-of-the-art

algorithms. The convergence analysis of our proposed Iteratively Pre-Conditioned Gradient-

descent (IPG) algorithm and its comparison with related methods have been supported through

experiments on real datasets.

We have considered practical settings with additive system noises: either observation noise

or process noise. In this settings, our contribution has been analyzing the proposed IPG algorithm’s

robustness against such independent system noises whose magnitudes are bounded in expectation.

The experimental results have reinforced our claim on the IPG method’s superior accuracy compared

to other state-of-the-art distributed algorithms when subjected to system noises.

49

Table 2.6: The parameters used in different stochastic algorithms on distributed linear regression
experiments.

Dataset IPSG SGD [32] AdaGrad
[33]

AMSGrad [37] Adam [34]

cleveland α =
0.0031,
δ = 0.5,
β = 30

α =
0.0031

α = 1, ϵ =
10−7

α = 0.05,
β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

α = 0.05,
β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

abtaha1 α =
0.0052,
δ = 2,
β = 5

α =
0.0052

α = 1, ϵ =
10−7

αt = 1√
t
,

β1 = 0.9,
β2 = 0.99, ϵ =
10−7

αt = 0.5√
t
,

β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

abtaha2 α =
0.0033,
δ = 2,
β = 5

α =
0.0033

α = 1, ϵ =
10−7

α = 1,
β1 = 0.9,
β2 = 0.99,
ϵ = 10−7

αt = 0.5√
t
,

β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

MNIST α =
0.0003,
δ = 0.1,
β = 1

α =
0.0003

α = 1, ϵ =
10−7

α = 1,
β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

α = 0.1,
β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

gre 343 α = 1.2,
δ = 2.5,
β = 0.5

α = 1.96 α = 1, ϵ =
10−7

αt = 0.1√
t
,

β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

αt = 0.2√
t
,

β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

illc1850 α =
0.4436,
δ = 2,
β = 1

α =
0.4436

α = 1, ϵ =
10−7

αt = 0.5√
t
,

β1 = 0.9,
β2 = 0.99, ϵ =
10−7

αt = 0.5√
t
,

β1 = 0.9,
β2 = 0.999,
ϵ = 10−7

We have further extended the idea of iterative pre-conditioning to the stochastic settings

where, instead of full-batch data, only random data points are utilized in each iteration of the

algorithms. We have presented convergence guarantee of the proposed Iteratively Pre-Conditioned

Stochastic Gradient-descent (IPSG) and empirically show that the proposed IPSG method’s convergence

rate compares favorably to prominent stochastic algorithms for solving the distributed linear least-

squares problem.

50

Table 2.7: Comparisons between the number of iterations required by different stochastic
algorithms to attain the specified values for the relative estimation errors ϵtol =∥∥x(t)− x∗

∥∥ /∥∥x(0)− x∗
∥∥ on distributed linear regression experiments.

Dataset κ(ATA) ϵtol IPSG SGD AdaGrad AMSGrad Adam
cleveland 7.34 1.5 ×

10−3

4.11× 103 4.71 ×
103

6.04 ×
103

3.63× 103 4.11 ×
103

abtaha1 1.5 ×
102

10−3 7.35× 104 > 105 9.75 ×
104

> 105 > 105

abtaha2 1.5 ×
102

2 ×
10−3

9.86× 104 > 105 > 105 7.6× 104 > 105

MNIST 2.59 ×
103

2.6 ×
10−3

3.41× 104 > 5 ×
104

> 5 ×
104

> 5× 104 4.41 ×
104

gre 343 1.25 ×
104

4 ×
10−3

3.88× 104 4.43 ×
105

> 105 > 105 > 105

illc1850 1.93 ×
106

0.2 8.06× 104 3.31 ×
105

2.81 ×
105

> 5× 105 1.63 ×
105

51

Chapter 3: Decentralized Linear Regression in Peer-to-Peer Network

3.1 Introduction

In this chapter, we consider solving a system of linear algebraic equations having at least

one exact solution over a peer-to-peer network of agents. Specifically, we consider a network of

m agents and the overall system is assumed to be synchronous. Each agent i ∈ {1, . . . , m} has

ni local data points, represented by a data matrixAi ∈ Rni×d and an observation vector bi ∈ Rni .

In this network architecture, each agent i ∈ {1, . . . , m} can communicate with a set of certain

other agents called its neighbors, represented by N i. We assume that the communication between

the agents is bidirectional. This communication topology between the agents is represented by

an undirected graph G = ({1, . . . , m}, E), where an edge (i, j) ∈ E or (j, i) ∈ E if agent i and

agent j are neighbors, for any i, j ∈ {1, . . . ,m}, i ̸= j. Later, in Section 3.5, we consider the

case of directed graph. The aim of the agents is to compute a common solution vector x∗ ∈ Rd

such that

Aix∗ = bi, for all i ∈ {1, . . . ,m}. (3.1)

Since each agent only partially knows the collective data points, they collaborate with their

own neighbors for solving the problem (3.1). However, the agents do not share their local data

52

points. An algorithm that prescribes instructions for the agents to jointly solve the above problem

without sharing their data points is defined as a decentralized algorithm.

If G is connected, the solution vector x∗ in (3.1) is a minima of the following least-squares

problem [49]

x∗ ∈ arg min
x∈Rd

m∑
i=1

1

2

∥∥∥Aix− bi
∥∥∥2 . (3.2)

The above optimization problem can be solved using the decentralized gradient-descent algorithm

(DGD) [50]. To present our key contributions, we review below the DGD method.

3.1.1 Background on decentralized gradient-descent

The decentralized gradient-descent method is an iterative algorithm, wherein each agent

maintains an estimate of a solution defined by (3.1) and updates it iteratively using its individual

local cost function and its neighbors’ estimates. To be precise, for each iteration t = 0, 1, . . . , let

xi(t) ∈ Rd denote the estimate maintained by each agent i ∈ {1, . . . ,m}. The initial estimates

xi(0) may be chosen arbitrarily from Rd. For each iteration t, each agent broadcasts xi(t) to its

neighbors j ∈ N i. Each agent i computes the gradient, denoted by gi(t), of its local cost function

at x(t). Specifically, for all i ∈ {1, . . . , m} and for all t ∈ {0, 1, . . .},

gi(t) =
(
Ai
)T (

Ai xi(t)− bi
)
. (3.3)

53

Having received the estimates xj(t) from its neighbors, each agent i updates xi(t) to xi(t + 1)

defined below. For all t ≥ 0,

xi(t+ 1) = xi(t)− αδ gi(t) + δ
∑
j∈N i

(
xj(t)− xi(t)

)
. (3.4)

Here, δ is a positive scalar value commonly referred as the step-size and α is another positive

scalar value attributing a relative weight to the local gradient gi(t) compared to the consensus

terms
∑

j∈N i

(
xj(t)− xi(t)

)
.

For small enough step-size δ, the DGD algorithm has a linear convergence rate. However,

its convergence rate is limited by the ratio between the largest eigenvalue and the smallest non-

zero eigenvalue of the set of input matrices {
(
Ai
)T
Ai, i = 1, . . . ,m} and that of the graph

Laplacian, as we will show later in Section 3.3. We propose a decentralized pre-conditioning

technique that works on top of the DGD algorithm. Specifically, each agent i computes a fixed

pre-conditioning matrix Ki based only on its local input matrix. Before updating the local

estimate, each agent multiplies its local gradient gi(t) and the consensus terms
∑

j∈N i

(
xj(t)− xi(t)

)
by the matrix Ki. The classical pre-conditioning techniques require access to all the input

matrices, and therefore, cannot be implemented in a decentralized network. Unlike these methods,

in our case, each agent computes its pre-conditioning matrix based only on its local data. Hence,

the name decentralized pre-conditioning.

3.1.2 Related Work

Several decentralized iterative algorithms have been proposed in the past decade for solving

the system of linear equations (3.1). The notable ones among them can be found in [49, 51–59].

54

The projection-based algorithms in [51, 52] require each local input matrix Ai to have full row-

rank. Otherwise, a set of linearly independent rows in each input matrix Ai needs to be obtained,

which is computationally expensive, especially when the number of data points is large. Our

proposed algorithm does not have such a requirement. Explicit linear convergence rates of

these two algorithms have been provided [51, 52]. Explicit linear convergence rate has been

provided also for the least-squares based solution in [53]. Linear convergence rates of the

consensus-innovation and the consensus-residual algorithms proposed in [54] have been proved.

The explicit expression of the convergence rate of the algorithm in [55] has been provided only

under specific conditions, such as the collective input matrix
[
(A1)T , . . . , (Am)T

]T is orthogonal,

or the communication graph is complete. The consensus flow-based algorithm in [56], the least-

squares solver in [49], and the gradient-based algorithm in [57] require each agent to have a single

data point, which is not the general case. A continuous-time finite-time solver has been proposed

in [58]. However, no expression of its convergence time has been provided. The decentralized

convex optimization algorithm DIGing in [60] solves (3.1). However, the convergence guarantee

of the DIGing algorithm assumes the degenerate case of at least one input matrix Ai being full-

rank. We consider a more general problem where none of the input matrices may be full-rank.

Additionally, the convergence rate of DIGing increases with the number of agents in the network.

The DADAM algorithm in [61] is a decentralized adaptive gradient algorithm for solving convex

or non-convex optimization problems. The learning rate in DADAM is adaptively updated based

on the past gradients. The theoretical regret of DADAM converges sublinearly for generic convex

problems [61].

55

3.1.3 Communication delay

We consider a major practical challenge in solving (3.1): delay in the communication links

between the agents. The communication delay from an agent i to agent j is modeled as τ ij , where

τ ij = τ ji > 0 is constant for any edge (i, j) ∈ E . Other approaches to study the delay robustness

problem can be found in [51], [62], [63].

The considered problem has also been addressed in prior works [64], [51], [62], [65], [66].

Initially [64] and later on [51] consider directed time-varying networks. [51] proves the global

convergence of a projection-based asynchronous algorithm, with the assumption of extended

neighbour graphs being repeatedly jointly strongly connected and bounded delays, and provides

an upper bound on the convergence rate. Random communications have been considered in [62], [66]

and algorithms have been provided with almost sure convergence to a solution of (3.1). [65]

proves convergence of a communication-efficient extension of the algorithm in [64]. In the

algorithm proposed in [65], each agent also needs to share the number of their neighbours. We

guarantee convergence in case of a deterministic network topology, without assuming a bound on

the constant delays and by the agents sharing only their estimates with neighbors.

The solution of (3.1) can also be obtained by solving a least-squares problem, such as

in [51], [67], [59], [68]. When (3.1) is not solvable, the least-squares formulation has an advantage

of finding the solution that best fits (3.1). The least-squares problem can also be solved by general

distributed optimization algorithms that have been discussed in the literature. However, ill-

conditioning of collective input matrix poses an additional challenge when there are communication

delays between the agents. Existing distributed optimization algorithms [63], [69], [70], [71], [72]

fare poorly if collective input matrix is ill-conditioned. The algorithms in [69], [70], [71] require

56

decreasing stepsize, which leads to slower convergence. [63] needs additional variables to be

shared with neighbouring agents. [71] requires prior information on the delays. The algorithm

proposed in [72] globally converges under strict convexity of each agent’s cost function. Moreover,

when collective input matrix is ill-conditioned, these gradient-based optimization approaches

suffer from poor convergence rate or may even converge to an undesired point. We follow

the same distributed optimization approach, however, our algorithm converges faster without

requiring strict convexity of the local costs and shares only the estimates between neighbours.

The key ingredient of our proposed approach is local pre-conditioning, which is obtained by

solving an appropriate Lyapunov equation. Additionally, the proposed algorithm does not require

any information about the heterogeneous communication delays, albeit that they are constant.

3.1.4 Summary of our contributions

In this dissertation, we propose a pre-conditioning technique that works on top of the

aforementioned decentralized gradient-descent method when solving the system of linear algebraic

equations in (3.1) over an undirected and connected peer-to-peer network. We rigorously analyze

the convergence of our algorithm, and our key findings are summarized below.

3.1.4.1 In absence of communication delay

Rate of Convergence: We show that our algorithm converges linearly, when the system

of linear equations (3.1) has at least one solution. Moreover, we provide an explicit convergence

rate of our algorithm, detailed in Section 3.2.1 for unique solution and in Section 3.4 for multiple

solutions. In Section 3.3, we show that our algorithm has a favorable convergence rate compared

57

to the decentralized gradient-descent algorithm, especially if the problem (3.1) is ill-conditioned.

Robustness: We analyse our algorithm’s robustness against computational process noise

when (3.1) has a unique solution. Please refer Section 3.2.2 for details. We demonstrate enhanced

robustness when compared to the classical decentralized gradient-descent algorithm, and the

difference between the robustness of the two algorithms is further accentuated when the linear

system is ill-conditioned, as detailed in Section 3.3.

Empirical Study: In Section 3.8, we demonstrate the applicability of our algorithm to

decentralized linear state estimation and propose a state predictor. In this context, we present

empirical evidence of our algorithm’s improved convergence rate and robustness when compared

to most state-of-the-art decentralized algorithms mentioned in Section 3.1.2. The empirical

results suggest the decentralized Kalman-consensus filter’s (DKF) [73] faster convergence rate

and smaller estimation error than our proposed state predictor. However, our algorithm has a

smaller computational and communication cost than the DKF method. Please refer Section 3.8.1

for more details.

Finally, in Section 3.5, we extend our algorithm to strongly connected directed graphs, and

show that our algorithm converges linearly, when (3.1) has a unique solution.

3.1.4.2 In presence of communication delay

Compared to the existing works that address communication delays in solving (3.1), our

major contributions are follows:

• higher robustness to ill-conditioning of problem (3.1), unlike [69], [70], [71], [72].

• the communication delays are apriori unknown, unlike [71].

58

• addressing communication delays in solving least-squares formulation, unlike [64], [51].

3.2 Proposed algorithm

In this section, we present our algorithm, its computational complexity, its convergence,

and its robustness properties, when there is no communication delay in the network.

We make the following assumptions about the problem.

Assumption 3.1. x∗ ∈ Rd is the unique solution of (3.1).

Assumption 3.2. The graph G is undirected and connected.

The proposed algorithm is similar to the decentralized gradient-descent method described

in Section 3.1.1. However, a notable difference is that in our algorithm, each agent multiplies

its local gradient and consensus terms by a local pre-conditioning matrix. In literature, pre-

multiplication of gradients by a matrix is commonly referred as pre-conditioning [40]. It should

be noted that the conventional pre-conditioning techniques would require access to the agents’

combined data points. However, each agent in our algorithm computes its pre-conditioning

matrix based only on local data. The algorithm is iterative wherein each iteration t ∈ {0, 1, . . .},

each agent i ∈ {1, . . . ,m} maintains a local estimate xi(t) of the solution of linear equations (3.1).

Each agent updates its local estimate using the steps presented below in Algorithm 3.

Initialization: Recall from Section 2.1 that, for each agent i ∈ {1, . . . ,m}, N i denotes the

set of its neighbors. Let
∣∣N i

∣∣ denote the cardinality of the set N i. Before starting the iterative

process, each agent chooses two non-negative scalar real-valued parameters α, δ. The specific

values of these parameters are presented later in Section 3.2.1. Further, each agent i ∈ {1, . . . ,m}

59

chooses an initial local estimate xi(0) ∈ Rd and computes a local pre-conditioning matrix

Ki =

(
α
(
Ai
)T

Ai +
∣∣∣N i

∣∣∣ I)−1

, (3.5)

where I denote the (d × d)-dimensional identity matrix. Since the matrix
(
Ai
)T
Ai is positive

semi-definite, if α > 0,
(
α
(
Ai
)T
Ai +

∣∣N i
∣∣ I) is positive definite and invertible.

Algorithm 3 Pre-conditioning for the decentralized gradient-descent method.
1: Each agent i ∈ {1, . . . ,m} initializes xi(0) ∈ Rd, α > 0 and δ > 0.
2: Each agent i ∈ {1, . . . ,m} computes its local pre-conditioning matrixKi as defined by (3.5).
3: for each iteration t = 0, 1, 2, . . . do
4: Each agent i ∈ {1, . . . , m} receives the current estimates xj(t) from its neighbors j ∈

N i.
5: Each agent i ∈ {1, . . . ,m} updates its current local estimate xi(t) to xi(t+ 1) such that

xi(t+ 1) =xi(t)− αδKi
(
Ai
)T (

Ai xi(t)− bi
)
+ δK i

∑
j∈N i

(
xj(t)− xi(t)

)
. (3.6)

6: Each agent i ∈ {1, . . . ,m} sends its updated local estimate xi(t + 1) to all its neighbors
j ∈ N i.

7: end for

Computational complexity: We now present the computational complexity of the proposed

algorithm and compare it with related methods in terms of the total number of floating-point

operations (flops). As floating-point multiplication is significantly costlier than additions [74],

we ignore the additions while counting the total number of flops. Algorithm 3 requires O(nid)

flops for each agent per iteration, which is the same as the DGD method. However, during

initialization, each agent computes the pre-conditioning matrix Ki, which requires O(nid
2 + d3)

flops. Note that, initialization of the existing methods mentioned in Section 3.1.2 also has

significant computational costs. The initialization of the projection-based algorithms in [51, 52]

involves O(nidmin{ni, d}+ r2i d+ r3i) flops for each agent, where ri is the rank of the matrix Ai.

60

The initialization of the least-squares solution in [53] requires O(n2
i d+ nid

2 + n3
i + d3) for each

agent.

Next, we formally analyze the convergence of Algorithm 3.

3.2.1 Convergence guarantee

Notation: To formally state our convergence result, we note below some elementary facts

and introduce some notation.

• For any pair of agents i, j ∈ {1, . . . ,m}, i ̸= j, we define

cij =


1, if (i, j) ∈ E

0, otherwise.

(3.7)

• We define the matrix that represents all the agents’ estimate update equation in Algorithm 3.

Let,

M =
[
(M1)T , . . . , (Mm)T

]T
, (3.8)

whose i-th block-row M i is defined as

M i = Ki[−ci1I, . . . ,−ci(i−1)I,

(
α
(
Ai
)T

Ai +
∣∣∣N i

∣∣∣ I) ,−ci(i+1)I, . . . ,−cimI]. (3.9)

• For each i ∈ {1, . . . ,m}, the matrix
(
Ai
)T
Ai is positive semi-definite, and therefore, has

non-negative eigenvalues. In general, when
(
Ai
)T
Ai is not the trivial zero matrix, at least

61

one of its eigenvalue is positive. We let λ
i

and λi respectively denote the largest and the

smallest non-zero eigenvalue of the matrix
(
Ai
)T
Ai.

• We let L denote the Laplacian matrix of the graph G [75]. It is known that the Laplacian

L is positive semi-definite, and therefore, has non-negative eigenvalues. We let λL and λL

respectively denote the largest and the smallest non-zero eigenvalue of the matrix L.

• We let λmax (·) and λmin (·), respectively denote the largest and smallest non-zero eigenvalue

of a matrix.

• For each iteration t ≥ 0, we let x(t) denote the md-dimensional vector obtained by vertical

concatenation of all the agents’ estimate at iteration t:

x(t) =
[
x1(t)T , . . . , xm(t)T

]T
. (3.10)

Similarly, we let X∗ denote the md-dimensional vector obtained by vertical concatenation

of the unique solution x∗ for all the agents:

X∗ =
[
(x∗)T , . . . , (x∗)T

]T
. (3.11)

Lemma 3.1 below states a preliminary result on the convergence of Algorithm 3 and is

important for our key results presented afterward.

Lemma 3.1. Consider Algorithm 3 with parameter α > 0. Then, under Assumptions 3.1-3.2, all

the eigenvalues of the matrix M are positive.

Note that, under the conditions assumed in Lemma 3.1, λmin(M) > 0. We now define

62

below a parameter that determines the convergence rate of Algorithm 3. Let,

κM =

maxi=1,...,m
λL

|N i| +maxi=1,...,m
αλ

i

αλ
i
+|N i|

min

{
mini=1,...,m

λL

αλ
i
+|N i| , mini=1,...,m

αλi

αλi+|N i|

} . (3.12)

The key result on the convergence of Algorithm 3 is presented below in the form of Theorem 3.1.

Theorem 3.1. Consider Algorithm 3 with parameters α > 0 and δ < 2
λmax(M)

. Suppose each

agent i ∈ {1, . . . ,m} initializes xi(0) ∈ Rd. If Assumptions 3.1-3.2 hold, then there exists

non-negative real values ρ with κM−1
κM+1

≤ ρ < 1 such that, for each iteration t ≥ 0 we have

∥∥x(t+ 1)−X∗∥∥ ≤ ρ
∥∥x(t)−X∗∥∥ . (3.13)

Since 0 ≤ ρ < 1, (3.13) in Theorem 3.1 implies that the sequence of estimates {x(t), t ≥ 0}

converges toX∗ with a linear convergence rate ρ. From the definitions (3.10)-(3.11), we conclude

that the local estimates {xi(t), t ≥ 0} of each agent i ∈ {1, . . . ,m} converges to the solution x∗

of (3.1).

Remark 3.1. The explicit convergence rate of the projection-based algorithms in [51, 52] do

not directly relate to the singular values of the local input matrices {Ai, i = 1, . . . ,m} or

parameters of the graph G that are well-known. On the other hand, the explicit convergence rate

of Algorithm 3 directly relates to the eigenvalues of the set of matrices {
(
Ai
)T
Ai, i = 1, . . . ,m}

and eigenvalues of the graph Laplacian (ref. (3.12)). Thus, the convergence rate of Algorithm 3

is easier to perceive than the algorithms in [51, 52].

Next, we formally analyze the robustness of Algorithm 3 against computational process

63

noise.

3.2.2 Robustness against computational process noise

The convergence result in Theorem 3.1 considers an ideal setting where the system is free

from noise. However, practical systems inevitably suffers from uncertainties or noise. The

computational process noise, as the name suggests, models the uncertainties or jitters in the

computation process due to hardware failures, quantization errors, or noisy communication links [28].

In the presence of computational process noise [27, 28], in each iteration t of Algorithm 3, each

agent computes corrupted values for the current estimate x(t), described formally as follows.

Specifically, in each iteration t, and for each i ∈ {1, . . . ,m}, instead of computing xi(t) accurately,

each agent i computes a corrupted estimate

xio(t) = xi(t) + ζ i(t), (3.14)

where ζ i(t) ∈ Rd. The vector ζ(t) =
[
ζ1(t)T , . . . , ζm(t)T

]T is referred as additive computational

process noise. For each iteration t, we let Eζt [·] denote the expectation of a function of the

random vector ζ(t). We let Et [·] denote the total expectation of a function of the random vectors

{ζ(0), . . . , ζ(t)}.

In the presence of above computational process noise, Algorithm 3 is modified as follows.

In each iteration t, each agent i ∈ {1, . . . ,m} receives corrupted estimates xjo(t) from its neighbors

64

j ∈ N i. Instead of (3.6), the updated estimate is

xi(t+ 1) =xio(t)− αδKi
(
Ai
)T (

Ai xio(t)− bi
)
+ δK i

∑
j∈N i

(
xjo(t)− xio(t)

)
. (3.15)

Recall that xio(t+ 1), defined by (3.14), is the corrupted value of xi(t+ 1).

To present our result, in Theorem 3.2 below, on the robustness of Algorithm 3 against the

above computational process noise, we make the following assumption.

Assumption 3.3. There exists ω <∞ such that for all t ≥ 0 and i ∈ {1, . . . ,m},

Eζt

[∥∥∥ζ i(t)∥∥∥
1

]
≤ ω. (3.16)

For each iteration t ≥ 0, we let xo(t) denote the corrupted md-dimensional vector obtained

by vertical concatenation of all the agents’ corrupted estimates at iteration t:

xo(t) =
[
x1o(t)

T , . . . , xmo (t)
T
]T
. (3.17)

Recall the definition of X∗ in (3.11) and κM in (3.12).

Theorem 3.2. Consider Algorithm 3 with parameters α > 0 and δ < 2
λmax(M)

, in the presence of

computational process noise in (3.14), and modifications defined in (3.15). Suppose each agent

i ∈ {1, . . . ,m} initializes xi(0) ∈ Rd. If Assumptions 3.1-3.3 hold, then there exists non-negative

real values ρ with κM−1
κM+1

≤ ρ < 1 such that, for each iteration t ≥ 1 we have

Et

[∥∥xo(t)−X∗∥∥] ≤ ρt
∥∥x(0)−X∗∥∥+mω

t∑
i=0

ρi. (3.18)

65

Additionally, limt→∞ Et

[∥∥xo(t)−X∗
∥∥] ≤ mω

1− ρ
.

Remark 3.2. Since 0 ≤ ρ < 1, Theorem 3.2 implies that Algorithm 3 under the influence of

additive computational process noise (3.14) converges linearly in expectation within a distance

of mω
1−ρ

from the true solution x∗ of the linear equations defined in (3.1).

3.3 Comparison with decentralized gradient-descent

In this section, we present a discussion, theoretically comparing our proposed algorithm

with the decentralized gradient-descent (DGD) method [50].

Convergence rate: First, we compare the smallest worst-case or optimal convergence rate

of these two algorithms. From Theorem 3.1, the optimal convergence rate of Algorithm 3 is

given by κM−1
κM+1

. Thus, the optimal convergence rate is determined by the condition number bound

κM of the matrix M , as defined by (3.12). The smaller is the value of κM , the faster is the

convergence, and vice-versa. Note that, the DGD algorithm, as discussed in Section 3.1.1, is a

special case of Algorithm 3 where the pre-conditioning matrix of each agent i ∈ {1, . . . ,m} is

the d-dimensional identity matrix, i.e., Ki = I . Thus, the optimal convergence rate of DGD is

κDGD =
λL +maxi=1,...,m αλ

i

min
{
λL, mini=1,...,m αλi

} . (3.19)

For a comparison between κM , defined by (3.12), and κDGD, defined by (3.19), we consider the

following case of problem (3.1). Suppose all the agents i ∈ {1, . . . ,m} have the same number

of neighbors, i.e.,
∣∣N i

∣∣ = N for some positive integer N . We denote, µ = maxi=1,...,m λ
i

and

66

µ = mini=1,...,m λi. From the definitions (3.12) and (3.19) then we have

κM =

λL

N
+ αµ

αµ+N

min
{

λL

αµ+N
,

αµ

αµ+N

} , (3.20)

κDGD =
λL + αµ

min
{
λL, αµ

} . (3.21)

If we choose the parameter α in Algorithm 3 such that λL

αµ+N
≥ αµ

αµ+N
, such as small enough value

of α, then from (3.20) we have κM =
λL
N

+ αµ
αµ+N

αµ

αµ+N

=
(

µ
µ

)(
αµ+N

αµ+N

)
+ λL

αµ
+ λL

N
. Since Gershgorin

circle theorem [76] implies that λL ≤ 2N , from above we have that κM ≤
(

µ
µ

)(
αµ+N

αµ+N

)
+ λL

αµ
+2.

From (3.21), we have κDGD =


λL

λL
+ α µ

λL
, if α > λL

µ

µ
µ
+ λL

αµ
, if α ≤ λL

µ

≥ λL

λL
+ µ

µ
. Since µ > µ and α > 0,

we have
(

αµ+N

αµ+N

)
< 1. From the above two equations we conclude that, if the ratio µ

µ
>> 1,

then κM < κDGD. Hence, when (3.1) is ill-conditioned, Algorithm 3 provably improves upon

the condition number κDGD, and therefore, the optimal convergence rate of DGD.

Robustness against computational process noise: Next, we compare the smallest worst-

case or optimal final estimation error limt→∞ Et

[∥∥xo(t)−X∗
∥∥] of these two algorithms in the

presence of computational process noise, as defined in Section 3.2.2. From Theorem 3.2, the

optimal final estimation error is given by mω κM+1
2

for Algorithm 3, and similarly, mω κDGD+1
2

for the DGD method. From the earlier discussion in this section it follows that, when the

problem (3.1) is ill-conditioned, Algorithm 3 provably improves upon the optimal final estimation

error of the DGD method.

67

3.4 Multiple-solutions case

In this section, we consider the case when the linear equations in (3.1) have multiple exact

solutions, defined as

X∗
m = {x∗ ∈ Rd : Aix∗ = bi,∀i ∈ {1, . . . ,m}}. (3.22)

Below, we present convergence analysis of the proposed algorithm in this case. Assumption 3.1

is not required.

To present our key result in this section, we define the matrix

MN = Diag(
1

|N1|
I, . . . ,

1

|Nm|
I) (L⊗ I) . (3.23)

Then, the ratio between the largest and the smallest non-zero eigenvalue of MN is

κN =
λL maxi=1,...,m

∣∣N i
∣∣

λLmini=1,...,m |N i|
.

The main result on the convergence of Algorithm 3, when the set X∗
m in (3.22) is not a

singleton, is presented below in the form of Theorem 3.3.

Theorem 3.3. Consider Algorithm 3 with parameters α > 0 and δ < 2
λmax(M)

. Suppose each

agent i ∈ {1, . . . ,m} initializes xi(0) ∈ Rd. If Assumption 3.2 holds, then there exists non-

negative real values ρ with max{κM ,κN }−1
max{κM ,κN }+1

≤ ρ < 1 such that, each xi(t) converges to the same

solution in X∗
m at a linear convergence rate ρ.

68

3.5 Directed-graph case

In this section, we consider the communication graph G to be directed. We make the

following assumption.

Assumption 3.4. The graph G is strongly connected.

Since the graph is directed, we make two modifications to Algorithm 3 as follows. Instead

of (3.5), each agent i ∈ {1, . . . ,m} computes its local pre-conditioning matrix

Ki =

(
α
(
Ai
)T

Ai +
∣∣∣N i

in

∣∣∣ I)−1

, (3.24)

where the N i
in represents the set of neighbors from which agent i receives information. Accordingly,

each agent i ∈ {1, . . . ,m} updates its current estimate to

xi(t+ 1) =xi(t)− αδKi
(
Ai
)T (

Ai xi(t)− bi
)
+ δK i

∑
j∈N i

in

(
xj(t)− xi(t)

)
. (3.25)

Also, instead of (3.7), we define cij = 1 if (j, i) ∈ E and zero otherwise. We have the following

result on the convergence of Algorithm 3 in the case of directed graph.

Theorem 3.4. Consider Algorithm 3, with the modifications defined in (3.24)-(3.25) and the

parameter α > 0. Suppose each agent i ∈ {1, . . . ,m} initializes xi(0) ∈ Rd. If Assumption 3.1

and Assumption 3.4 hold and the step-size δ > 0 is small enough, then each xi(t) converges to

the unique solution x∗ of (3.1) at a linear rate.

69

3.6 Application: decentralized state estimation

In this section, we formulate the decentralized state estimation problem for linear time-

invariant (LTI) systems [77] in the framework of problem (3.1). Consider an LTI system having

the discrete-time dynamics

z(t+ 1) = Az(t), t ∈ {0, 1, . . .}, (3.26)

where z(t) ∈ Rd is the system-state at time-instant t and the state matrix of the LTI system (3.26),

denoted by A, is a (d × d)-dimensional real matrix. Each agent i ∈ {1, . . . ,m} in the system

observes d scalar local outputs, defined by

yi(t) = Ciz(t), t ∈ {0, 1, . . . , d− 1}. (3.27)

Here, Ci is a d-dimensional real row vector. The agents’ task is to estimate the state z(t), without

sharing their local outputs yi(t). Since an agent cannot access the collective output vectors

{y1(t), . . . , ym(t), t = 0, . . . , d − 1}, they collaborate with their neighbors to estimate z(t).

The aforementioned problem is referred as decentralized state estimation [77].

We define the following notation.

• Define the (d× d)-dimensional local observability matrix of each agent i ∈ {1, . . . ,m} as

Oi =

[
(Ci)T (CiA)T . . . (CiAd−1)T

]T
. (3.28)

70

• Define the (m× d)-dimensional global output matrix

C =

[
(C1)T . . . (Cm)T

]T
. (3.29)

• Define (md× d)-dimensional global observability matrix

O =

[
CT (CA)T . . . (CAd−1)T

]T
. (3.30)

• For each agent i ∈ {1, . . . ,m}, we let yi denote the d-dimensional column vector obtained

upon stacking the local outputs {yi(t) ∈ R, t = 0, . . . , d− 1} as

yi =

[
yi(0) . . . yi(d− 1)

]T
. (3.31)

• We let Y denote the md-dimensional column vector obtained upon stacking the local

outputs of all the agents:

Y =

[
y1(0) . . . ym(0) . . . y1(d− 1) . . . ym(d− 1)

]T
. (3.32)

Assumption 3.5. The global system (A, C) is jointly observable, i.e., the global observability

matrix O is full-rank.

First, we estimate the initial state z(0) of the system (3.26)-(3.27) as follows. Upon

71

substituting from (3.29) in (3.30) we have

O =

[
(C1)T . . . (Cm)T . . . (C1Ad−1)T . . . (CmAd−1)T

]T
. (3.33)

Upon substituting from (3.27) and (3.26) in (3.32) we obtain that

Y =

[
(C1)T . . . (Cm)T . . . (C1Ad−1)T . . . (CmAd−1)T

]T
z(0)

(3.33)
= Oz(0). (3.34)

We define the following vector Y , which is a rearrangement of the rows in Y (ref. (3.32)) so that

the measurements of each agent i ∈ {1, . . . ,m} are stacked together as follows:

Y =

[
y1(0) . . . y1(d− 1) . . . ym(0) . . . ym(d− 1)

]T
. (3.35)

Similarly, we define the following matrixO as a rearrangement of the rows in the global observability

matrix O (ref (3.33)):

O =

[
(C1)T . . . (C1Ad−1)T . . . (Cm)T . . . (CmAd−1)T

]T
. (3.36)

Upon substituting from (3.28) in (3.36) we have

O =

[
(O1)T . . . (Om)T

]T
. (3.37)

72

Upon substituting from (3.27) and (3.26) in (3.35) we obtain that

Y =

[
(C1)T . . . (C1Ad−1)T . . . (Cm)T . . . (CmAd−1)T

]T
z(0)

(3.36)
= Oz(0). (3.38)

From (3.35) and (3.36), it follows that Y = Oz(0) in (3.34) is a rearrangement of the equations

Y = Oz(0) in (3.38). So, (3.34) and (3.38) are equivalent. Upon substituting from (3.31)

in (3.35), Y =

[
(y1)T . . . (ym)T

]T
. From (3.37) and above, (3.38) is equivalent to

yi = Oiz(0), i = 1, . . . ,m. (3.39)

Under Assumption 3.5, the matrix O is full-rank. Since O is a rearrangement of the rows in O,

O is full-rank. From (3.37), then it follows that the problem (3.39) has a unique solution z(0)

which is the true initial state of (3.26)-(3.27).

Upon iterating (3.26) from t to 0,

z(t) = Atz(0). (3.40)

Thus, each agent estimates z(t) at any instant t > 0 from the decentralized solution of the

equations (3.39) and using (3.40).

Comparison with related work: The hybrid observer proposed in [78] partially uses a

decentralized solution to linear algebraic equations. However, a major advantage of our aforementioned

approach is its scalability. Since the per-iteration computational complexity is comparable to our

algorithm and the required minimum number of iterations in each estimation loop is O(m2), the

73

total minimum computational cost of the hybrid observer in [78] increases quadratically with

the number of agents. The per-iteration computational cost of the continuous-time decentralized

observer in [79] is O(nid
2
i + (

∑i
j=1 dj)

3) for agent i, where {di, i = 1, . . . ,m} is any partition

of the dimension of the state vector such that
∑m

j=1 dj = d. Thus, the computational cost of

our algorithm is less than the observer in [79]. Additionally, the explicit linear convergence

of the observer in [79] is known only after a finite time. Moreover, unlike the aforementioned

observers in [78]- [79], we have rigorously analyzed the robustness of our method in the presence

of computational process noise and characterized the worst-case estimation error.

3.7 Proposed algorithm in presence of communication delay

In this section, we propose a distributed optimization algorithm for solving (3.1) that is

robust to communication delays. The proposed algorithm is a modification of proportional-

integral (PI) consensus-based gradient descent method [72], wherein we (a) remove the integral

terms from the algorithm and (b) introduce pre-conditioning at every node. It is evident from the

analysis of the proposed method, that integral terms are not required for linear problems. The

pre-conditioning matrices have been introduced in the algorithm to take care of ill-conditioning

of (3.1). Even in the synchronous setting without any communication delay, ill-conditioning

of (3.1) slows down convergence or, even worse, can make the agents converge to an undesired

solution. Proper choice of conditioning matrices can tolerate ill-conditioning.

For each agent i ∈ [m], we denote the local gradients as

ϕi(xi) = (Ai)T (Aixi − bi). (3.41)

74

Table 3.1: Required notations for solving decentralized linear equations subject to
communication delay.

Symbol Meaning
N i neighbor set of node i
ẋ first derivative of x w.r.t time t
|S| cardinality of a set S
A ≻ 0 matrix A is positive definite
I identity matrix of order n
L∞ set of bounded functions
Sd
+ set of symmetric positive semi-definite matrices of order d
Sd
++ set of symmetric positive definite matrices of order d

[m] {1, . . . ,m}

Define local preconditioner matrix Ki which is the solution of the Lyapunov equation [80]

−N iKi −KiN i = −2kI, (3.42)

with k > 0 and N i = (Ai)TAi + |N i|I . Since N i ≻ 0 and k > 0, (3.42) has a unique

symmetrical solution that is specified later in the convergence analysis of the algorithm. Using

the above definitions, we describe Algorithm 4 below.

Algorithm 4
1: for t ≥ 0 do
2: for each agent i ∈ [m] do
3: receive xj(t− τ ji), ∀j ∈ N i

4: update estimate

ẋi(t) = Ki[η(ηI +Ki)−1
∑
j∈N i

(xj(t− τ ji)− xi(t))− ϕi(xi(t))]. (3.43)

5: transmit updated estimate to all j ∈ N i

6: end for
7: end for

In step 3 of Algorithm 4, each xj(t− τ ji) can be set to any value for t < τ ji.

75

3.7.1 Convergence guarantee

Lemma 3.2. For every i ∈ [m], K
i
:= (Ki + ηI)−1(Ki − ηI) is Schur for any η > 0.

In order to establish convergence of Algorithm 4, we develop a framework based on [72]

and pre-conditioning. The analysis of our algorithm then easily follows from this framework.

Note that, the following framework is solely for analysis purposes.

Define consensus terms for each agent:

vi =
∑
j∈N i

vij, vij = Ki(rij − xi). (3.44)

In this framework, rij is an external input to agent i from its neighbor j ∈ N i. In order to evaluate

these rij’s, we define the following transformations [72]:

s⃗ij =
1√
2η

(−vij + ηrij), ⃗sij =
1√
2η

(vij + ηrij), (3.45)

⃗sji =
1√
2η

(vji + ηrji), s⃗ji =
1√
2η

(−vji + ηrji), (3.46)

where η > 0. Information about agent j’s estimate is contained in vji which is sent to neighbor

agent i ∈ N j in the form of s⃗ji. Considering the delay model defined in Section 3.1.3, these

communication variables are related as

⃗sji(t) = s⃗ij(t− τ ij), ⃗sij(t) = s⃗ji(t− τ ji). (3.47)

Upon receiving ⃗sij , which is the variable s⃗ji sent by agent j but delayed in time by τ ji, agent i

76

then recovers rij from it using (3.45). Hence, rij contains information about delayed estimates

of its neighbor j. These transformations are commonly known as scattering transformation [72].

We assume, s⃗ij(t) = s⃗ji(t) = 0 ∀t < 0.

Using the above definitions, we propose the following lemma which will be useful in

proving convergence of Algorithm 4.

Lemma 3.3. Consider the following dynamics for each agent i ∈ [m]:

ẋi = vi −Kiϕi(xi), (3.48)

the transformation (3.45)-(3.46) and delays (3.47) for j ∈ N i, ∀i. If Assumptions 3.1-3.2 hold,

then xi → x∗ ∀i ∈ [m] as t→ ∞.

The following theorem shows global convergence of Algorithm 4.

Theorem 3.5. Consider Algorithm 4. If Assumptions 3.1-3.2 hold, then xi → x∗ ∀i ∈ [m] as

t→ ∞.

3.8 Experimental results

First, we present experimental results for solving the decentralized state estimation problem

described in Section 3.6. We consider an LTI system with m = 5 agents, as described in (3.26)-

77

(3.27), given by

A =



−3 −0.1 0 0 0

0.1 1 −0.1 0 0

0 0.1 −3 0.1 0

0 0 0.1 1 −0.1

0 0 0 0.1 −3


C1 =

[
0 1 0 −1 0

]
, C2 =

[
0 0 1 0 0

]
,

C3 =

[
0 0 0 1 0

]
, C4 =

[
0 1 0 0 0

]
, C5 =

[
0 0 −1 0 1

]
.

The graph G is considered to be a ring. The true initial state is z(0) =

[
1 1 1 1 1

]T
.

We denote the combined true initial state of the LTI system by Z0 =
[
z(0)T , . . . , z(0)T

]T . For

this system, Assumption 3.5 is satisfied. The agents estimate z(0) by solving (3.39) using a

decentralized algorithm. To solve (3.39), we apply Algorithm 3 and compare the experimental

results with the prominent decentralized algorithms in [50–53, 55, 58, 60, 61].

We simulate each algorithm in the presence of computational process noise defined by (3.14).

This noise is generated by rounding off each entry of all the iterated variables in the respective

algorithms to three decimal places. For an unbiased comparison, the parameters of the respective

algorithms are selected such that each algorithm converges in a fewer number of iterations.

Specifically, these parameters are selected as follows. Algorithm 3: The optimal convergence

rate of Algorithm 3 is obtained when the step-size δ = 2
λmax(M)+λmin(M)

[21]. The parameter

α is chosen from the set {10p : p = −4,−3, . . . , 4}. DGD: The optimal convergence rate of

the DGD algorithm is similarly given by δ = 2
λmax(M)+λmin(M)

, where Ki = I for each agent

78

i ∈ {1, . . . ,m}. The other parameter α is chosen from the set {10p : p = −4,−3, . . . , 4}.

Algorithm in [53]: The parameter c is chosen from the set {0.1, 1, 3, 5, 10, 100}. Algorithm

in [52]: The step-size γi is chosen from the set {0.25, 0.5, 0.75, 0.9} for each agent i. Algorithm

in [55]: The parameter γi is chosen from the set {0.25, 0.5, 0.75, 0.99} for each agent i. Algorithm

in [58]: The parameter k(t) = 1
t+1

+ δ, where δ is chosen from the set {0, 0.001, 0.01, 0.1}.

DIGing: The step-size α is chosen from the set {0.01, 0.02..., 0.09} for each agent. DADAM:

The parameters β1, β2, β3 are set to their default values 0.9, 0.999, 0.9, respectively. The step-size

αt is chosen from the set {c × 10p : c = 1, 1√
t
, 1
t
, p = 0,−1,−2}. The best parameter choice

for each of the aforementioned algorithms is tabulated in Table 3.2. The algorithm in [58] is

initialized as per instructions. All the other algorithms are initialized with xi(0) = 0d for each

agent i ∈ {1, . . . ,m}.

Figure 3.1: Error in estimating the
true initial state z(0) in presence
of computational process noise, for
different algorithms.

First, we compare the number of iterations needed

by these algorithms to reach a relative estimation

error defined as ϵtol =
∥x(t)−Z0∥
∥x(0)−Z0∥ . Each iterative

algorithm is simulated (ref. Fig. 3.1) until its relative

estimation error does not exceed ϵtol over a period of

10 consecutive iterations. We observe that the proposed

Algorithm 3 requires the least number of iterations

among all algorithms. Next, we compare the final estimation error limt→∞
∥∥x(t)− Z0

∥∥ of these

algorithms in Table 3.2. We observe that the final estimation error of Algorithm 3 is either

favourable or comparable to the other algorithms.

Next, we compare the aforementioned state predictor with the decentralized Kalman-consensus

filter proposed in [73].

79

3.8.1 Comparison with decentralized Kalman filter

We consider the LTI system described above in this section but in the presence of process

noise and measurement noise. Specifically, at each sampling instant of the state dynamics (3.26),

we add Gaussian zero-mean process noise of standard deviation 10−3. We add Gaussian zero-

mean measurement noise of standard deviation 10−3 to each local output in (3.27).

Figure 3.2: Error in estimating the
system states z(t) in presence of
process noise and measurement noise,
for Algorithm 3 and DKF.

We simulate the decentralized Kalman-consensus

filter (DKF) [73] with parameters ϵ = 0.1, process noise

covariance Q = 10−3I , measurement noise variance

R = 10−3, and initial estimation error covariance

P0 = 5I . We simulate Algorithm 3 with the parameters

listed in Table 3.2. For both algorithms, each entry

of each agent’s initial estimate is randomly selected

from Gaussian distribution of zero mean and 0.1 standard deviation. We let Z(t) =[
z(t)T , . . . , z(t)T

]T denote the combined true states.

From Figure 3.2, DKF converges in fewer iterations than Algorithm 3. However, in DKF,

each agent computes inverses of two (d × d)-dimensional matrices at each iteration. So, the

per-iteration computational complexity of each agent in the DKF algorithm is O(d3), compared

to O(nid) of Algorithm 3. Besides, the communication complexity of DKF per-agent is O(d2),

compared to O(d) of Algorithm 3. Next, we compare the final estimation error limt→∞
∥∥x(t)− Zt

∥∥
of both algorithms. Each algorithm is simulated until the changes in its subsequent estimates are

less than 0.005 over 10 consecutive iterations. We note the final estimation error of Algorithm 3

and DKF respectively are 0.03 and 0.009. The better estimation error of the DKF can be attributed

80

to it being a filtering technique, i.e., the estimate is based on the current outputs. In contrast, our

proposed estimation technique involving Algorithm 3 is a predictor, i.e., its estimates are based

only on the outputs from sampling instant 0 to d− 1.

Table 3.2: Comparisons between the performance of different algorithms on decentralized state
prediction experiments.

Algorithm Algo. 3 DGD Algo.
in [51]

Algo.
in [53]

Algo.
in [52]

Algo.
in [55]

Algo.
in [58]

DIGing
[60]

DADAM
[61]

Para- (α, δ) (α, δ) N/A c = γi = γi = δ = α = (β1, β2, β3
meters =

(103,
=
(0.001,

102 0.5 0.99 0 0.00005 αt) = (0.9,

1.07) 0.12) 0.999, 0.9, 0.1√
t
)

Iterations
(ϵtol =
0.01)

67 >
103

105 133 >
103

113 181 > 103 > 103

Final
error

0.01 3.89 0.03 0.02 0.11 0.04 0.005 ∞ 4.42

3.8.2 In presence of delay

Consider the following numerical example. The matrix A is a real symmetric positive

definite matrix from the benchmark dataset1 “bcsstm19” which is part of a suspension bridge

problem. The dimension of A is (817× 817) and its condition number is 2× 105. The rows of A

and the corresponding rows of b are distributed among m = 5 agents, so that four of them know

163 such rows and the remaining 165 rows are known by the fifth agent. The network is of ring

topology and τ ij = 5. We set b = Ax∗ where x∗ =

[
1 1 . . . 1

]T
is the unique solution.

We implement Algorithm 4 on this numerical example. The differential equations governing

xi’s are solved numerically with small stepsizes h = 10−3. Each agent converge to the desired
1https://sparse.tamu.edu

81

Figure 3.3:
∥∥xi(t)− x∗

∥∥ under (a) Algorithm 4 and projection-based algorithm [51], (b)
Algorithm 4, (c) PI consensus algorithm [72]. (a) xi(0) = [0, . . . , 0]T ∀i in each of the cases.
(b) η = 300, k = 990, xi(0) are randomly initialized within [−20, 20]. (c) xi(0) = [3, . . . , 3]T ∀i.

solution x∗ irrespective of their initial choice of estimate (ref. Fig. 3.3) and convergence rate can

be changed by tuning the algorithm parameters (ref. Fig. 3.3a). We compare this result with that

of two other algorithms in [72] and [51]. The algorithm in [72] has slower convergence rate (ref.

Fig. 3.3c) due of ill-conditioning, and the projection-based algorithm in [51] is comparable with

the proposed Algorithm 4 (ref. Fig. 3.3a).

3.9 Summary

We have proposed a locally pre-conditioned decentralized gradient-descent algorithm for

solving systems of linear algebraic equations over peer-to-peer networks. First, we have assumed

the communication graph is synchronous. We have presented explicit linear convergence rate

of the proposed algorithm and characterized its robustness against process noise. The theoretical

analyses have been supported through experiments by applying the proposed algorithm to develop

a linear state predictor. Our results show that the proposed algorithm requires fewer iterations to

reach a satisfactory neighborhood of the true solution than the existing decentralized methods

except for the decentralized Kalman filter. However, the decentralized Kalman filter has a larger

computational and communication cost. Future works include extending the proposed pre-conditioning

82

scheme to time-varying networks and when the equations have no exact solution.

Additionally, we have proposed a continuous time algorithm for solving the systems of

linear algebraic equations when there are delays in the communication links between the agents.

In this case also, our algorithm utilizes local pre-conditioners in conjunction with the classical

decentralized gradient method. Global convergence and consensus of the proposed algorithm

have been proved, assuming undirected network and constant delay. To illustrate the effectiveness

of the proposed algorithm, we have applied it to solving a numerical example. The results show

that the rate of convergence can be controlled by tuning the algorithm parameters, although

convergence rate has not been analyzed. From simulations, we have seen that the proposed

algorithm’s convergence speed is either favorable or comparable to existing prominent methods.

83

Chapter 4: Distributed Convex Optimization in Server-Agent Network

4.1 Introduction

In this chapter, we consider solving multi-agent distributed convex optimization problems.

Precisely, we consider m agents in the system, as shown in Fig. 2.1. The agents can only interact

with a common server and the overall system is assumed to be synchronous. Each agent i ∈

{1, . . . ,m} has a set of ni number of local data points and a local cost function f i : Rd → R

associated with its local data points. The aim of the agents is to compute a minimum point of

the aggregate cost function f : Rd → R, taking values f(x) =
∑m

i=1 f
i(x) for each x ∈ Rd,

across all the agents in the system. Formally, the goal of the agents is to distributively compute a

common parameter vector x∗ ∈ Rd such that

x∗ ∈ X∗ = arg min
x∈Rd

m∑
i=1

f i(x). (4.1)

Since each agent only partially knows the collective data points, they collaborate with the server

for solving the distributed problem (4.1). However, the agents cannot share their local data points

to the server. An algorithm that enables the agents to jointly solve the above problem in the

aforementioned settings is defined as a distributed algorithm.

In principle, the optimization problem (4.1) can be solved using the distributed gradient-

84

descent (GD) algorithm [2]. Built upon the prototypical gradient-descent method, several adaptive

gradient algorithms have been proposed, which distributively solve (4.1) [22–24, 33–35, 38].

Amongst them, some notable distributed algorithms are Nesterov’s accelerated gradient-descent

(NAG) [23], heavy-ball method (HBM) [24], and Adabelief [81]. All these methods are iterative

in nature, wherein the server maintains an estimate of a solution defined in (4.1) and iteratively

refines it using the sum of local gradients computed by the agents. The per-iteration computational

cost of these algorithms at each agent is O(nid). The above momentum-based methods improve

upon the convergence rate of GD. In particular, the recent Adabelief method has been demonstrated

to compare favorably for machine learning problems [81]. If the aggregate cost function f is

convex, these algorithms converge at a sublinear rate [82, 83]. For the special case of strongly

convex cost f , the aforementioned methods converge linearly [21, 82, 83].

Newton’s method [22] explores second-order information of f . Specifically, when f is

strongly convex, Newton’s method pre-multiplies the aggregate gradient with the inverse Hessian

matrix of f at every iteration, resulting in local quadratic convergence rate [22]. Despite of

faster convergence rate, there are several issues in Newton’s method. (i) For empirical risk

minimization, the per-iteration computational cost of Newton’s is O(nid2) at each agent i and

O(d3) at the server. (ii) Secondly, convergence of Newton’s method is guaranteed only if f is

strongly convex and the convergence is local. (iii) Additionally, it involves computing a matrix

inverse at every iteration, which is highly unstable against process noise, such as hardware

failures and quantization errors. Here, we propose a novel algorithm, addressing the lack of

robustness against noise of Newton’s method.

There is a vast literature of Newton-like methods which address the aforementioned first

and second issues [22, 84, 85]. For least-squares problems, the Gauss-Newton (GN) and the

85

damped Levenberg–Marquardt (LM) methods have been proposed, which discard the second

order terms in Hessian. The GN method converges locally to a minima at quadratic rate if the

residual at the minimum point is zero, i.e., f(x∗) = 0, and the Jacobian matrix is invertible [22].

The damped LM methods converges globally to a minima at a local quadratic rate if f(x∗) = 0

and the Jacobian is bounded [22]. However, f(x∗) = 0 is not the general case. Moreover,

the per-iteration cost of damped LM method is the same as Newton during the initial guess

of damping parameter, and O(nid) at each agent and O(d3) at the server during the updated

damping parameter phase [84]. Cost-efficient variants of the classical LM method have been

proposed in [84,85], but without convergence guarantee. The Armijo-Newton method is globally

convergent with a local quadratic rate, if the cost is strongly convex [86]. Although, our proposed

algorithm is guaranteed to converge locally, f(x∗) need not be zero.

Unlike the aforementioned variations of Newton’s method, the quasi-Newton methods

approximate the full Hessian matrix [22]. The most popular quasi-Newton method is the BFGS

algorithm. The per-iteration computational cost of the BFGS method is O(nid) at each agent

i and O(d2) at the server. If the Hessian at a minimum point x∗ is positive definite, then the

BFGS method locally converges to x∗ at a superlinear rate [22]. The Armijo-BFGS method

is globally convergent at a superlinear rate if the cost is strongly convex [22]. Another class

of algorithms are the nonlinear conjugate gradient (CG) methods [87, 88]. Their per-iteration

computational cost is same as GD or BFGS, depending on the particular update parameter. The

Polyak-Ribière CG method with periodic resetting converges globally with d-step quadratic rate

if f is strongly convex [86]. If f is convex and the Hessian at a minimum point is positive definite,

then the above convergence result holds locally. However, these algorithms also suffer from poor

robustness against noise.

86

The aforementioned works on the formal convergence of Newton-like methods only consider

a Utopian setting wherein the system is free from noise. The algorithms in [89–95] consider a

mini-batch of data points at every iteration. However, process noise is generic and not limited to

any particular source. Specifically, process noise models the uncertainties in the computation due

to hardware failures, quantization errors, adversarial perturbations, or finite difference approximations [28,

96]. While the literature of quasi-Newton methods is vast, only a few of them have addressed

robustness against process noise [97–101]. Sufficient conditions for local quadratic convergence

of Newton’s method executed on finite precision machines and local linear convergence of a class

of quasi-Newton method satisfying a certain deterioration condition have been presented in [97]

and [98]. The analysis of BFGS in [99] assumes progressively diminishing noise. [100] and the

most recent work [101] have proposed noise-tolerant variations of the BFGS method, assuming

that an estimate of the noise is known. In comparison, our proposed algorithm is the same in

deterministic and in noisy settings. Our algorithm does not require any noise estimate.

We propose an adaptive gradient algorithm for improving the convergence rate of the

distributed gradient-descent method when solving the convex optimization problem (4.1). The

key concept in our proposed method is iterative pre-conditioning. The idea of iterative pre-

conditioning has been proposed in Chapter 2, wherein the server updates the estimate using the

sum of the agents’ gradient multiplied with a suitable iterative pre-conditioning matrix. However,

Chapter 2 considers only quadratic cost functions. Note that the iterative pre-conditioning in

Chapter 2 does not trivially extend to general cost functions due to non-linearity in the gradients.

The proposed algorithm in this chapter rigorously extends that idea of iterative pre-conditioning

to general convex optimization problems (4.1). Using real-world datasets, we empirically show

that the proposed algorithm converges in fewer iterations compared to the aforementioned methods

87

Table 4.1: Comparison between convergence rate and per-iteration computational complexity of
different algorithms, for solving distributed convex optimization problems. t is the number of
iterations.

Algorithm Strongly Convex Convex Per-iteration complexity

global local global local agent i server

IPG
(Proposed)

X superlinear X linear O(nid2+d3) O(d2)

NAG, HBM linear linear O(1
t2
) O(1

t2
) O(nid) O(d)

Armijo-
Newton

unknown quadratic X X O(nid2) O(d3)

Damped LM unknown quadraticb unknown quadraticb O(nid2) O(d3)

Armijo-BFGS unknown superlinear X X O(nid) O(d2)

CG unknown d-step
quadratic

X d-step
quadratic

same as GD or BFGS

a X indicates “need not converge”
b if squared cost, f(x∗) = 0, Jacobian uniformly bounded, and Jacobian non-singular at x∗

for solving the distributed convex optimization problem (4.1). Besides empirical results, we also

present a formal analysis of the proposed algorithm’s convergence.

Several research works have used quadratic models for approximating the loss functions of

neural networks [102–106]. Quadratic model-based analyses of neural networks have produced

vital insights, including learning rate scheduling [103], and the Bayesian viewpoint of SGD

with fixed stepsize [107]. The noisy quadratic model (NQM) with carefully chosen model

parameters is a proxy for neural network training. The NQM parameters proposed in [108]

make predictions that are aligned with deep neural networks in realistic experimental settings.

The results in [108] are supported by further evidence from [109], which rigorously show that

quadratic loss function model governs infinite width neural network of arbitrary depth. The

theoretical NQM in [105] correctly captures the short-horizon bias of learning rates in neural

network training. Thus, although the general optimization model of neural networks is non-

88

convex, noisy convex quadratic models such as [108] trim away inessentials features while

capturing the key aspects of real neural network training, including generalization performance [106]

and the effects of pre-conditioning on gradients. This motivates us to implement our proposed

iterative pre-conditioning scheme on the noisy quadratic model [108] of neural networks and

empirically validating it for solving general non-convex optimization problems, including neural

network training.

4.1.1 Summary of our contributions

Our key contributions can be summarized as follows.

• We formally show that our algorithm converges locally at linear rate for a general class

of convex cost functions when the Hessian is non-singular at a solution of (4.1). In the

special case when the solution of (4.1) is unique, the convergence of our algorithm is locally

superlinear. Formal details are presented in Theorem 4.1 and Theorem 4.2 in Section 4.2.2.

• We rigorously show that the local convergence rate of our algorithm compares favorably

to prominent distributed algorithms, namely the GD, NAG, HBM, and AdaBelief methods.

So, compared to the first order methods for general convex problems, the total number of

computations required to reach an optimality gap of ϵ is eventually smaller for the proposed

algorithm, i.e., for small-enough ϵ > 0. This improvement is further accentuated when the

dimension d is small.

- When the solution (4.1) is unique, our algorithm converges locally at superlinear

rate. The convergence of GD, NAG, HBM, and AdaBelief, on the other hand, is only

linear [21, 82, 83].

89

- Moreover, in the general case, our algorithm converges locally at linear rate. On the

other hand, the convergence of GD, NAG, HBM, and AdaBelief is sublinear [21, 82,

83].

• Though numerical experiments on real-world data analysis problems, we demonstrate the

improved computation time and robustness of our algorithm.

- The noisy quadratic model in [108] has been claimed to emulate neural network

training. Our empirical study shows that the proposed algorithm converges faster than

the aforementioned distributed methods on this model, thereby demonstrating the

proposed algorithm’s efficiency for distributed solution of non-convex optimization

problems. Please refer to Section 4.3.1 for further details.

- Our empirical results for distributed binary logistic regression problem on the “MNIST”

datasets validate the proposed algorithm’s superior convergence rate and comparable

test accuracy, under the influence of process noise. Please refer to Section 4.3.2 for

further details.

4.2 Proposed algorithm: Iteratively Pre-conditioned Gradient-descent (IPG)

In this section, we present our algorithm. Our algorithm is an extension of the IPG algorithm

proposed in Chapter 2 for linear regression problems, as described below. The algorithm is

iterative when in each iteration t ∈ {0, 1, . . .}, the server maintains an estimate x(t) of a

minimum point (4.1), and a pre-conditioner matrix K(t) ∈ Rd×d. Both the estimate and the

pre-conditioner matrix are updated using steps presented below.

90

Initialization: Before starting the iterative process, the server chooses an initial estimate

x(0) and a pre-conditioner matrix K(0) from Rd and Rd×d, respectively. Further, the server

chooses a sequence of non-negative scalar parameters {α(t), t ≥ 0} and two non-negative scalar

real-valued parameters δ, β. The server broadcasts parameter β to all the agents. The specific

values of these parameters are presented later in Section 4.2.2.

4.2.1 Steps in each iteration t

In each iteration t, the algorithm comprises four steps that are executed collaboratively by

the server and the agents.

• Step 1: The server sends the estimate x(t) and the matrixK(t) to each agent i ∈ {1, . . . ,m}.

• Step 2: Each agent i ∈ {1, . . . ,m} computes the gradient gi(t) of its local cost function,

defined as

gi(t) = ∇f i(x(t)). (4.2)

Let I denote the (d × d)-dimensional identity matrix. Let ej and kj(t) denote the j-th

columns of matrices I and K(t), respectively, so that K(t) =

[
k1(t), . . . , kd(t)

]
.

In the same step, each agent i computes a set of vectors
{
Ri

j(t) : j = 1, . . . , d
}

such that

for each j,

Ri
j(t) =

(
∇2f i(x(t)) +

(
β

m

)
I

)
kj(t)−

(
1

m

)
ej. (4.3)

91

• Step 3: Each agent i sends gradient gi(t) and the set of vectors
{
Ri

j(t), j = 1, . . . , d
}

to

the server.

• Step 4: The server updates the estimate x(t) to x(t+ 1) such that

x(t+ 1) = x(t)− δK(t)
m∑
i=1

gi(t). (4.4)

The server updates the pre-conditioner matrix K(t) to K(t+ 1) such that

kj(t+ 1) = kj(t)− α(t)
m∑
i=1

Ri
j(t), j = 1, ..., d. (4.5)

Next, we formally analyze convergence of the proposed IPG algorithm.

4.2.2 Convergence guarantees

We make the following assumptions for our theoretical results. Recall that f denotes the

aggregate cost function, i.e., f =
∑m

i=1 f
i, and x∗ denotes a minimum point of f , defined in (4.1).

Assumption 4.1. Assume that the minimum of function f exists and is finite, i.e.,
∣∣minx∈Rd f(x)

∣∣ <
∞.

Assumption 4.2. Assume that each local cost function f i is convex and twice continuously

differentiable over a convex domain D ⊆ Rd containing the set of minimum points X∗, defined

in (4.1).

Assumption 4.3. Assume that the gradient ∇f is Lipschitz continuous over the domain D with

92

respect to the 2-norm with Lipschitz constant l. Specifically, for any x, y ∈ D,

∥∥∇f(x)−∇f(y)
∥∥ ≤ l∥x− y∥ . (4.6)

Assumption 4.4. Assume that the Hessian ∇2f is Lipschitz continuous over the domain D with

respect to the 2-norm with Lipschitz constant γ. Specifically, for any x, y ∈ D,

∥∥∇2f(x)−∇2f(y)
∥∥ ≤ γ∥x− y∥ .

Assumption 4.5. Assume that the Hessian ∇2f is non-singular at any minimum point x∗ ∈ X∗.

Notation: To formally state our convergence result we introduce some notation below.

• For β > 0, we define

K∗ =
(
∇2f(x∗) + βI

)−1
.

Under Assumption 4.2; the function f is convex, thus
(
∇2f(x∗) + βI

)
is positive definite

when β > 0, and hence K∗ is well-defined.

• We let η denote the induced 2-norm of K∗, i.e., η =∥K∗∥.

• For each iteration t ≥ 0, we define

ρ(t) =
∥∥∥I − α(t)

(
∇2f(x(t)) + βI

)∥∥∥ .

• We let λmax [·] and λmin [·], respectively denote the largest and smallest eigenvalue of a

matrix.

93

Lemma 4.1 below states a preliminary result about the convergence of the sequence of pre-

conditioner matrices {K(t), t ≥ 0} to K∗. This lemma is important for our key results presented

afterward.

Lemma 4.1. Consider the IPG algorithm with parameters β > 0 and α(t) subject to

0 < α(t) <
1

λmax

[
∇2f(x(t))

]
+ β

, ∀t ≥ 0. (4.7)

Then, under Assumptions 4.1 and 4.2, ρ(t) ∈ [0, 1) for all t ≥ 0.

Note that under the conditions assumed in Lemma 4.1,

ρ := sup
t≥0

ρ(t) exists, and is less than 1.

We now present below in Theorem 4.1 a key convergence result of our proposed IPG method.

Recall that x∗ denotes a minimum point of f , defined in (4.1).

Theorem 4.1. Suppose that Assumptions 4.1-4.5 hold true. Consider the IPG algorithm with

parameters β > 0, δ = 1 and α(t) satisfying (4.7) for all t ≥ 0. Let the parameter β, the initial

estimate x(0) ∈ D and pre-conditioner matrix K(0) be chosen such that

ηγ

2

∥∥x(0)− x∗
∥∥+ l

∥∥K(0)−K∗∥∥+ ηβ ≤ 1

2µ
(4.8)

where µ ∈
(
1, 1

ρ

)
and η =∥K∗∥. If for t ≥ 0,

α(t) < min

{
1

λmax

[
∇2f(x(t))

]
+ β

,
µt(1− µρ)

2l(1− (µρ)t+1)

}
, (4.9)

94

then we obtain that, for all t ≥ 0,

∥∥x(t+ 1)− x∗
∥∥ ≤ 1

µ

∥∥x(t)− x∗
∥∥ . (4.10)

Since µ > 1, Theorem 4.1 implies that the sequence of estimates {x(t), t ≥ 0} locally

converges to a solution x∗ ∈ X∗ with a linear convergence rate 1
µ

. To obtain a simpler condition

on α(t), compared to (4.9), we can use a more conservative upper bound. Specifically, let Λ be

an upper bound of λmax

[
∇2f(x(t))

]
that holds true for each iteration t. From condition (4.8) in

Theorem 4.1, we have 0 < µρ < 1 and µ > 1. Thus,

µt(1− µρ)

2l(1− (µρ)t+1)
>
µt(1− µρ)

2l
.

Ultimately, from above we infer that if

α(t) < min

{
1

Λ + β
,
µt(1− µρ)

2l

}
, ∀t ≥ 0,

then condition (4.9) is implied, and Theorem 4.1 holds true. Since µ > 1, there exists T < ∞

such that for all t ≥ T the above condition is equivalent to the simpler condition

α(t) <
1

Γ + β
, ∀t ≥ T.

The case of strong convexity: We further show that our algorithm attains superlinear

convergence when the aggregate cost function f is strongly convex (however, the local costs may

only be convex), as stated in the assumption below.

95

Assumption 4.6. Assume that the aggregate cost function f is strongly convex over the domain

D.

In this case, the Hessian ∇2f is positive definite over the entire domain D. Thus, solution

to problem (4.1) is unique, which we denote by x∗. Under Assumption 4.6, we show that IPG

method with parameter β = 0 converges superlinearly.

Theorem 4.2. Consider the IPG algorithm presented in Section 4.2.1, with parameters β = 0,

δ = 1, and α(t) for each iteration t ≥ 0. If Assumptions 4.1-4.4, Assumption 4.6, and the

conditions (4.8)-(4.9) are satisfied, then the following statement holds true:

lim
t→∞

∥∥x(t+ 1)− x∗
∥∥∥∥x(t)− x∗

∥∥ = 0. (4.11)

The case of non-convexity: Finally, we consider a general class of non-convex cost functions

when the Hessian is non-singular at a solution of (4.1) and make the following assumption.

Assumption 4.7. Assume that the smallest eigenvalue of the Hessian ∇2f is uniformly bounded

below over domain D, i.e., λmin

[
∇2f(x)

]
> γ for any x ∈ D. Moreover, λmin

[
∇2f(x∗)

]
> 0.

Assumption 4.7 implies that, for β >
∣∣∣γ∣∣∣, (∇2f(x) + βI

)
is positive definite for x ∈ D.

Also, λmin

[
∇2f(x∗)

]
> 0 in Assumption 4.7 implies that ηβ < 1. So, under Assumption 4.7,

with the algorithm parameter β >
∣∣∣γ∣∣∣, the result in Theorem 4.1 still holds for a class of non-

convex aggregate cost.

96

Figure 4.1:
∥∥x(t)− x∗

∥∥ for different algorithms on the noisy quadratic model.

4.3 Experimental results

This section presents our results on two experiments, validating the convergence of our

proposed algorithm on real-world problems and its comparison with related methods, namely

the distributed versions of GD [2], NAG [23], HBM [24], Adabelief [34], Armijo-Newton [86],

damped LM [22], Armijo-BFGS [22], Polyak-Ribière CG (PR CG) [87], and the recent noise-

tolerant BFGS (nBFGS) [101], on two different experiments.

4.3.1 Distributed noisy quadratic model

In the first experiment, we implement our proposed algorithm for distributively solving (4.1)

in the case of the noisy quadratic model (NQM) [108], which has been shown to agree with the

results of training real neural networks.

The noisy quadratic model of neural networks consists of a quadratic aggregate cost function

f(x) = 1
2
xTHx, x ∈ Rd where H is a (d× d)-dimensional diagonal matrix whose i-th element

in the diagonal is 1
i
, and each gradient query is corrupted with independent and identically

distributed noise of zero mean and the diagonal covariance matrix H . In the experiments,

we choose d = 104, which is also the condition number of the Hessian H . The distributed

implementation of the aforementioned noisy quadratic model is set up as follows. The data

97

points represented by the rows of the matrix H are divided amongst m = 10 agents. Thus, each

agent 1, . . . , 10 has a data matrix of dimension 103 × 104. Since the Hessian matrix H in the

noisy quadratic model is positive definite, the optimization problem (4.1) has a unique solution

x∗ = 0d.

The parameters of the respective distributed algorithms are selected such that each of

these methods converges in a fewer number of iterations. Specifically, these parameters are

selected as described below. For the GD, NAG, and HBM methods, the definition of optimal

parameters can be found in [25]. Since the Hessian of the noisy quadratic model is positive

definite, Assumption 4.6 holds. So, we set the parameter β = 0 for the IPG method. The

optimal convergence rate of the linear version of the proposed IPG method is obtained when

α = 2
λ1+λd

[44]. Here, λ1 = 1 and λd = 1
d

respectively denote the largest and the smallest

eigenvalue of H . We find that the IPG method implemented for the NQM converges fastest when

the parameter α is set similarly as α(t) = 2
λ1+λd

. The step-size parameter α(t) of AdaBelief

is selected from the set {c, c√
t
, c
t
} where c is from the set {0.01, 0.05, 0.1, 0.5, 1, 2}. The other

parameters of Adabelief are set at their usual values of β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The

step-size for Armijo-Newton and Armijo-BFGS is either obtained following the backtrack routine

or chosen from the set {ce−p : c = 1, 2, 5, p = 2, 3, 4, 5}. The best parameter combinations from

above are reported in Table 4.2.

The initial estimate x(0) for these algorithms is randomly drawn from the standard normal

distribution. The initial pre-conditioner matrix K(0) for the IPG algorithm is the zero matrix of

dimension (d × d). The initial approximation of the Hessian matrix B(0) for the Armijo-BFGS

and nBFGS algorithm is the identity matrix of dimension (d× d).

We compare the number of iterations and total floating point operations (flops) needed by

98

these algorithms to reach an estimation error
∥∥x(t)− x∗

∥∥ = 0.05. Each iterative algorithm is

run until it does not exceed this specified tolerance over 15 consecutive iterations. The results

are recorded in Table 4.3 and Figure 4.1. We observe that the proposed IPG algorithm converges

faster than the other algorithms.

4.3.2 Distributed logistic regression

In the second experiment, we implement the proposed algorithm for distributively solving

the logistic regression problem on the “MNIST” [47] dataset.

Figure 4.2:
∥∥g(t)∥∥ for different

algorithms on MNIST.

From the training examples of the “MNIST”

dataset, we select 104 arbitrary instances labeled as

either the digit one or the digit five. For each

instance, we calculate two quantities, namely the

average intensity and the average symmetry of the

image [48]. Let the column vectors a1 and a2

respectively denote the average intensity and the average symmetry of those 104 instances.

These two features are then mapped to a second-order polynomial space. Then, our input data

matrix before pre-processing is

[
a1 a2 a1.

2 a1. ∗ a2 a2.
2

]
. Here, (.∗) represents element-

wise multiplication and (.2) represents element-wise squares. This raw data matrix is then pre-

processed as follows. Each column is shifted by the mean value of the corresponding column and

then divided by the standard deviation of that column. Finally, a 104-dimensional column vector

of unity is appended to this pre-processed matrix. This is our final input matrix A of dimension

(104 × 6). The collective data points (A,B) are then distributed among m = 10 agents, in the

99

manner already described in Section 4.3.1.

Table 4.2: The parameters used in different algorithms on distributed convex optimization
experiments.

Algorithm Parameters Algorithm Parameters

NQM MNIST NQM MNIST

IPG
(α(t), δ, β)

(1.99, 1, 0) (5e−4, 1, 0) GD (α) (1.99) (5e− 4)

NAG (α, β) (1.33, 0.97) (5e− 4, 0.97) HBM
(α, β)

(3.92, 0.96) (1e −
3, 0.94)

Adabelief
(α(t), β1, β2, ϵ)

(1/t, 0.9.0.999, 1e− 8) Armijo-
BFGS
(αt)

backtrack
[22]

(5e− 2)

Table 4.3: Comparisons between the number of iterations and total floating point operations
(flops) required by different algorithms to attain estimation error

∥∥x(t)− x∗
∥∥ = 0.05 for the

NQM.

Algorithm iterations total
flops/(nd)

Algorithm iterations total
flops/(nd)

IPG 3e2 3e6 GD > 5e6 > 5e6

NAG > 5e6 > 5e6 HBM > 5e6 > 5e6

Adabelief > 5e6 > 5e6 Armijo-
Newton

> 3e6 > 3e10

damped
LM

> 1e4 > 1e8 Armijo-
BFGS

unstable
after 245

N/A

PR CG unstable
after 787

N/A nBFGS unstable
after 197

N/A

For the MNIST dataset, the parameter αt in IPG, GD, NAG, and HBM is selected from

{ce−3, ce−4 : c = 1, 2, 5}. In IPG, the other parameters δ is chosen from {1, 0.1, 0.05} and

β from {0, 0.1, 1}. For NAG and HBM, β is from {0.91, 0.92, . . . , 0.99}. The parameters of

100

Table 4.4: Comparisons between the number of iterations and total floating point operations
(flops) required by different algorithms to attain

∥∥g(t)∥∥ = 0.02 for binary classification on
MNIST data, subject to process noise.

Algorithm iterations total
flops/(nd)

Algorithm iterations total
flops/(nd)

IPG 3e2 2e3 GD > 5e3 > 5e3

NAG > 5e3 > 5e3 HBM > 5e3 > 5e3

Adabelief > 5e3 > 5e3 Armijo-
Newton

> 1e3 > 6e3

damped
LM

N/A N/A Armijo-
BFGS

> 5e3 > 5e3

PR CG > 5e3 > 5e3 nBFGS > 5e3 > 5e3

Adabelief. Armijo-Newton, and Armijo-BFGS are set following the steps mentioned in Section 4.3.1.

at their usual values of β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The initial estimate x0 for these

algorithms is randomly drawn from the standard normal distribution. The initial pre-conditioner

matrix K0 for IPG is Od. The initial approximation of the Hessian matrix for Armijo-BFGS and

nBFGS is Id. We note that the damped LM algorithm is not applicable to logistic regression

problems. The algorithms are initialized as described in Section 4.3.1. The best parameter

combinations, for which the respective algorithms converge in a fewer number of iterations, are

then reported for each dataset in Table 4.2.

We compare the performance of the proposed IPG method with other distributed algorithms

for solving the logistic regression problem on the “MNIST” and “CIFAR-10” datasets. The

algorithm parameters are selected such that each of these methods converges in a fewer number of

iterations. Specifically, the parameter selection is described below. The best parameter combinations,

for which the respective algorithms converge in a fewer number of iterations, are then reported

101

for each dataset in Table 4.2. The algorithms are initialized as described in Section 4.3.1.

We add random process noise to each iterated variable of the respective algorithms. Specifically,

the additive noise is generated from normal distribution with zero mean and 5e − 3 standard

deviation. We compare the number of iterations and total floating point operations (flops) needed

by these algorithms to reach the norm of the gradient ∥gt∥ = 0.02. Each iterative algorithm is

run until it does not exceed this specified tolerance over 15 consecutive iterations. The results

are recorded in Table 4.4 and Figure 4.2. We observe that the proposed IPG algorithm converges

faster than the other algorithms.

4.4 Summary and future work

We have extended the idea of iterative pre-conditioning for solving convex optimization in

distributed server-agent network architecture. We have presented some preliminary theoretical

results on the local convergence of the proposed IPG algorithm. Our theoretical results have been

derived for the full-batch settings, convex cost functions, and a class of non-convex cost. Through

experiments we have also shown the efficacy of our algorithm in a binary classification task and

in training of non-convex neural network via a noisy quadratic model.

There is a significant amount of future research scope on the IPG algorithm. First, the

IPG algorithm’s global convergence rate will be rigorously analyzed. There are a few more

classes of other distributed methods which solves the problem (4.1). One such notable class

is stochastic quasi-Newton methods, which include recent optimization methods [22, 84, 85,

89–94, 94, 95, 110]. Detailed theoretical comparison with the aforementioned algorithms will

be investigated, in terms of the per-iteration computational complexity and global convergence

102

rate. The experimental results in Section 4.3 suggests improved robustness of the IPG algorithm

than the existing optimizers. Therefore, IPG’s robustness against process noise will be formally

characterized and compared with the Newton and quasi-Newton methods which have addressed

robustness against noise [97–101].

As indicated, the IPG algorithm has the potential to be applicable to non-convex optimization.

Specifically, ongoing research includes applying the iterative pre-conditioning technique in distributed

beamforming problems and nonlinear observer problem. This direction of research is explored

later in this dissertation.

103

Chapter 5: Non-Convex Optimization

5.1 Introduction

In this chapter, we consider the problem of minimizing a non-convex function. The objective

function f : Rd → R>0 is smooth and, without loss of generality, positive-valued. Formally, the

problem is defined as

min
x∈Rd

f(x). (5.1)

Prominent machine learning models aim to learn a hypothesis parameterized by a vector x ∈ Rd,

when provided with n numbers of input-output training data pairs {ai, bi}ni=1. The learning task is

typically formulated as minimization of the empirical risk function f(x) = 1
n

∑n
i=1 l(x; an, bn),

where l(x; a, b) is the loss function measuring the discrepancy between the prediction by the

learnt model characterized by x on the input data a and the true output b. The most successful

machine learning models used by practitioners, such as neural networks, are non-convex. Instead

of searching a global optimal solution, a more meaningful and attainable goal for such models is

to train the model for finding a critical point of the objective function f .

First-order optimization algorithms are widely used for training complex machine learning

models. The classical gradient-descent (GD) is the simplest first-order optimization method [2].

104

Its stochastic counterpart, known as the stochastic gradient-descent (SGD) has achieved tremendous

success in training deep neural networks, despite its simplicity [32]. The momentum-based

accelerated variants of SGD, such as SGD with momentum [111], Nesterov’s accelerated gradient-

descent (NAG) [23], are popular algorithms for image classification and language modeling

problems [112, 113]. The aforementioned algorithms iteratively update all the model parameters

using a global learning rate, and are classified as accelerated gradient algorithms.

To achieve faster convergence, several adaptive gradient algorithms have been proposed

recently. These methods update each of the model parameters with an individual learning rate,

resulting in faster training than accelerated gradient methods. AdaGrad [33] is the first prominent

adaptive gradient method that significantly improved upon SGD, especially for sparse-gradients

problems [114]. We propose a more general AdaGrad algorithm, referred as G-AdaGrad. G-

AdaGrad can improve upon the convergence rate of AdaGrad by tuning an additional scalar

parameter. We review the AdaGrad algorithm below.

AdaGrad is a prominent optimization method that achieves significant performance gains

compared to SGD. As the name suggests, AdaGrad adaptively updates the learning rate based on

the information of all the previous gradients. Specifically [33], for each iteration k ∈ {0, 1, . . .},

let xk = [xk,1, . . . , xk,d]
T denote the estimate of a local minima in (5.1) maintained by AdaGrad.

In addition, AdaGrad maintains a set of real valued scalar parameters denoted by {bk,i : i =

1, . . . , d}. The algorithm is initialized with arbitrarily chosen initial estimate x0 ∈ Rd and {bk,i >

0 : i = 1, . . . , d}. Let the gradient of the objective function evaluated at x ∈ Rd be denoted as

∇f(x) ∈ Rd, and its i-th element in be denoted as ∇if(x) for each dimension i ∈ {1, . . . , d}. At

each iteration k ∈ {0, 1, . . .}, each of the parameters {bk,i : i = 1, . . . , d} are updated according

to b2k+1,i = b2k,i +
∥∥∇if(xk)

∥∥2. At the same iteration k, the estimate is updated to xk+1,i =

105

xk,i − η∇if(xk)
bk+1,i

for each i ∈ {1, . . . , d}. The real valued scalar parameter η > 0 is called the

step-size. Thus, the learning rate in AdaGrad is adaptively weighted along each dimension by

the sum of squares of the past gradients. AdaGrad has been shown to particularly effective for

sparse gradients [115], but has under-performed for some applications [116].

The Adam algorithm has been observed to compare favorably with other optimization

methods for a wide range of optimization problems, including deep learning [117–119]. Like

AdaGrad, Adam also updates the learning rate based on the information of past gradients.

However, unlike AdaGrad, Adam effectively updates the learning rate based on only a moving

window of the past gradients. Specifically [34], Adam maintains two sets of d-dimensional

vectors, respectively denoted by µk = [µk,1, . . . , µk,d]
T and vk = [vk,1, . . . , vk,d]

T . µk and vk are

respectively known as the biased first moment estimate and biased second raw moment estimate.

These vectors are initialized with µ0 = 0d and {vk,i > 0 : i = 1, . . . , d}. Three parameters

η > 0, β1 ∈ [0, 1), and β2 ∈ [0, 1) are chosen before the iterations begin. At each iteration k ∈

{0, 1, . . .}, the vectors µk and vk are updated according to µk+1,i = β1µk,i+(1−β1)∇if(xk) and

vk+1,i = β2vk,i + (1 − β2)
∥∥∇if(xk)

∥∥2 along each dimension i ∈ {1, . . . , d}. Next, the estimate

xk is updated to xk+1,i = xk,i − η

√
1−βk

2

1−βk
1

µk+1,i√
vk+1,i

for each i ∈ {1, . . . , d}. The factor
√

1−βk
2

1−βk
1

is

responsible for the initial bias correction, as proposed in the original Adam algorithm [34]. Thus,

the learning rate in Adam is weighted by the exponentially moving averages of the past gradients.

Despite its widespread use, the poor generalization ability of Adam has led to several

variants of Adam. The notable ones among them include AdaBelief [81], AdaBound [120],

AdamW [121], AMSGrad [114], Fromage [122], MSVAG [123], RAdam [124], Nadam [38] and

Yogi [125]. Among these modifications of Adam, AdaBelief has been proposed most recently.

Through extensive empirical studies, AdaBelief has been shown to reduce the generalization gap

106

between SGD and adaptive gradient methods, by improving upon the generalization performance

of the aforementioned algorithms including SGD. However, in these experiments, few other

existing methods such as Yogi, MSAVG, AdamW, RAdam, and Fromage have achieved faster

convergence of the training cost than AdaBelief [81]. We review the AdaBelief algorithm below.

The AdaBelief algorithm is similar to Adam, except that
∥∥∇if(x(k))

∥∥2 is replaced by∥∥∇if(x(k))− µi(k)
∥∥2 so that 1√

νi(k)
represents the belief in the observed gradient [81]. In other

words, the following set of equations represents the AdaBelief algorithm. For each i ∈ {1, . . . , d}

and each iteration k ∈ {0, 1, . . .},

µk+1,i = β1µk,i + (1− β1)∇if(xk),

vk+1,i = β2vk,i + (1− β2)
∥∥∇if(xk)− µi(k)

∥∥2 ,
xk+1,i = xk,i − η

√
1− βk

2

1− βk
1

µk+1,i√
vk+1,i

.

Another adaptive gradient method is AdaBound [120]. AdaBound imposes a dynamic

bound on the learning rates, enabling a smooth transition throughout iterations from adaptive

gradient to the classical stochastic gradient-descent (SGD) method, which is known to have

better generalization ability. We briefly review the AdaBound algorithm below. AdaBound is

an iterative algorithm. For each iteration k ∈ {0, 1, . . .}, let xk = [xk,1, . . . , xk,d]
T denote the

estimate of a local minima in (2.1) maintained by AdaBound. In addition, AdaBound maintains

three d-dimensional vectors, respectively denoted by µk = [µk,1, . . . , µk,d]
T , νk = [νk,1, . . . , νk,d]

T ,

and ηk = [ηk,1, . . . , ηk,d]
T . µk and νk are respectively known as the biased first moment estimate

and biased second raw moment estimate. ηk is the learning rate, which is bounded below by

a predefined non-decreasing function ηl : R≥0 → R>0 and upper bounded by another non-

107

increasing function ηu : R≥0 → R>0. Moreover, ηl and ηu asymptotically converge to some

positive-valued scalar α∗. We define an operatorClip (x, y, z) = max
(
min (x, z) , y

)
, for x, y, z ∈

R. The vectors are initialized with µ0 = 0d and {νk,i > 0 : i = 1, . . . , d}. Three parameters

α > 0, β1 ∈ [0, 1), and β2 ∈ [0, 1) are chosen before the iterations begin. At each iteration

k, the vectors µk, νk, and ηk are updated as µk+1,i = β1µk,i + (1 − β1)∇if(xk), νk+1,i =

β2νk,i + (1 − β2)
∥∥∇if(xk)

∥∥2, and ηk+1,i = Clip
(

α√
νk+1,i

, ηl,k, ηu,k

)
along each dimension

i ∈ {1, . . . , d}. Next, the estimate xk is updated to xk+1,i = xk,i − 1√
k+1

ηk+1,iµk+1,i,∀i. In

this way, AdaBound restricts the dimension-wise learning rates ηk,i to be within [ηl,k, ηu,k]. As a

result, AdaBound replicates Adam at the initial stage of iterations as the bounds have very little

impact on learning rates, and it gradually transforms to SGD as the bounds become progressively

restricted.

Recently, the MAdam algorithm [126] has been proposed to improve the stability of adaptive

learning. Unlike AdaBound, MAdam updates νk based on dynamic values of β2 so that the

estimated variance of gradients is maximized. MAdam has been shown to improve over existing

adaptive gradient algorithms on several machine learning experiments. We briefly review the

MAdam algorithm below. For each iteration k ∈ {0, 1, . . .}, MAdam maintains four d-dimensional

vectors, denoted by µ̃k, ũk ν̃k, and wk. The zeroth moment estimate wk of the gradients is used

for the initial bias correction. These vectors are initialized with µ̃0 = ũ0 = w0 = 0d and

ν̃k,i > 0 ∀i. Three parameters α ∈ (0, 1), β, and β are chosen such that 0 < β < β < 1. At

each iteration k, first µ̃k is updated as µ̃k+1,i = αµ̃k,i + (1 − α)∇if(xk). Next, the dynamic

coefficient for updating the moment estimates are computed as βk,i = Clip
(
β̃k,i, β, β

)
, where

β̃k,i = argmaxβ νk,i(β) − uk,i(β)
2. Here, uk = ũk

wk
and νk = ν̃k

wk
are the bias corrected

estimate of the first and the second moment, respectively. Using the computed βk,i, the vectors

108

ũk ν̃k, and wk are updated respectively as ũk+1,i = βk,iũk,i + (1 − βk,i)∇if(xk), ν̃k+1,i =

βk,iν̃k,i + (1 − βk,i)
∥∥∇if(xk)

∥∥2, and wk+1,i = βk,iwk,i + (1 − βk,i). Finally, xk is updated to

xk+1,i = xk,i − ηk
√
wk+1,i

1−αk+1

µ̃k+1,i√
ν̃k+1,i

, where ηk is the step-size. The closed-form expression of βk,i

can be found in the original paper [126].

Two more variants of Adam are the Nadam [38] and the RAdam [124]. By incorporating

Nesterov’s momentum into Adam, Nadam enables faster convergence and smaller generalization

errors on several problems, including natural language processing (NLP) [127], image analysis [128,

129], and automated path planning [130]. RAdam rectifies the variance of dynamic learning rate

in Adam by introducing a constructive warmup (learning rate scheduling). RAdam is being

applied for training transformers [131], general adversarial networks [132], for NLP [133] and

medical imaging tasks [134]. We briefly review the Nadam and RAdam algorithms below.

Nadam and RAdam are iterative methods. For each iteration k ∈ {0, 1, . . .}, let xk =

[xk,1, . . . , xk,d]
T denote the estimate of a local minima in (2.1) maintained by the algorithms. In

addition, they maintain two d-dimensional vectors, respectively denoted by µk = [µk,1, . . . , µk,d]
T

and νk = [νk,1, . . . , νk,d]
T . µk and νk are respectively known as the first moment estimate and

biased second raw moment estimate, initialized with µ0 = 0d and {νk,i > 0 : i = 1, . . . , d}.

Three parameters η > 0 (step-size), β1 ∈ (0, 1), and β2 ∈ (0, 1) are chosen before the iterations

begin. At each iteration k ∈ {0, 1, . . .}, Nadam updates the iterables as µk+1,i = β1µk,i + (1 −

β1)∇if(xk), νk+1,i = β2νk,i + (1− β2)
∥∥∇if(xk)

∥∥2, and xk+1,i = xk,i − η β1√
β2

√
1−βk+1

2

1−βk+2
1

µk+1,i√
νk+1,i

−

η 1−β1√
β2

√
1−βk+1

2

1−βk+1
1

∇if(xk)√
νk+1,i

, for each dimension i ∈ {1, . . . , d}. RAdam updates µk and νk in exactly

the same way as Nadam. The difference lies in updating the estimate xk. Specifically, let ρ∞ =

2
1−β2

− 1, ρk+1 = ρ∞ − 2(k + 1)
βk+1
2

1−βk+1
2

, and rk+1 =
√

(ρk+1−4)(ρk+1−2)ρ∞
(ρ∞−4)(ρ∞−2)ρk+1

. When ρk+1 ≤ 4, xk

109

is updated as xk+1,i = xk,i − η
µk+1,i

1−βk+1
1

. Otherwise, when ρk+1 > 4, xk is updated as xk+1,i =

xk,i − ηrk+1

√
1−βk+1

2

1−βk+1
1

µk+1,i√
νk+1,i

.

5.1.1 Related work

We aim to present simplified proofs of convergence of the aforementioned prominent adaptive

gradient algorithms to a critical point for non-convex objective functions in the deterministic

settings. The first convergence guarantee of a generalized AdaGrad method for non-convex

functions has been presented recently in [135], where the additional parameter ϵ ≥ 0 generalizes

the AdaGrad method. However, the parameter ϵ in [135] has been assumed to be strictly positive

for the convergence guarantee, which excludes the case of the original AdaGrad method [33]

where ϵ = 0. We propose a more general AdaGrad model, coined G-AdaGrad, that subsumes

the work in [135]. Our model and corresponding convergence proof allow the parameter ϵ to

be negative, as well as the case of the original AdaGrad. Besides, our proof provides intuition

behind how this generalization of AdaGrad impacts its convergence. The analysis for AdaGrad

in [136] assumes the gradients to be uniformly bounded. We do not make such an assumption.

Other works also analyze the convergence of AdaGrad-like algorithms for non-convex objective

functions, notable among them being WNGrad [137] and AdaGrad-Norm [138]. Note that all of

the aforementioned analyses of AdaGrad and AdaGrad-like algorithms are in discrete-time. We

analyze AdaGrad in the continuous-time domain.

Previous works that prove convergence of Adam for non-convex problems include [82,

125, 139–142]. In [125], the proof for Adam considers the algorithm parameter β1 = 0, which is

essentially the RMSProp algorithm. We consider the general parameter settings where β1 ≥ 0.

110

An Adam-like algorithm has been proposed and analyzed in [136]. The proofs in [82, 125, 139–

141] do not consider the initial bias correction steps in the original Adam [34]. Our analysis

of Adam considers the bias correction steps. The analyses in [82, 125, 136, 139, 141] assume

uniformly bounded gradients. We do not make such an assumption. The aforementioned analyses

of Adam are in discrete-time. A continuous-time model of Adam has been proposed in [142],

which includes the bias correction steps. However, compared to the convergence proof in [142],

our proof for Adam is simpler. In addition, [142] assumes that the parameters β1 and β2 in the

Adam algorithm are functions of the step-size η such that β1 and β2 tends to one as the step-size

η → 0. We do not make such an assumption in our analysis.

The convergence guarantee of the AdaBelief algorithm has been provided by the authors in

discrete-time [81]. Here, we present a simpler proof for AdaBelief in continuous-time.

There is substantial literature on analysis of iterative optimization algorithms in discrete-

time [143]. However, there has been a recent surge in utilizing tools from control theory for

that purpose. Convergence of the classical gradient-descent algorithm and accelerated gradient

algorithms were characterized in [25] using integral quadratic constraints. Standard control

theoretic tools have been used to gain new insights into the aforementioned accelerated gradient

methods [144–146]. Differential equation-based modeling of these algorithms in the continuous-

time limit has been used for their convergence analysis [83,147–149]. Appropriate discretization

of these continuous-time models has led to the design of new optimization algorithms [83, 147,

148,150]. Recently, a unified model, refered as accelerated gradient flow, for several accelerated

proximal gradient methods and momentum-based methods such as heavy-ball and Nesterov’s

method have been proposed [148]. Driven by this theme, we view adaptive gradient algorithms as

dynamical systems, which we use for the purpose of convergence analysis and also for proposing

111

a novel adaptive gradient algorithm. However, most of the existing research works on continuous-

time modeling of optimization methods have only considered accelerated gradient methods.

Here, we focus specifically on adaptive gradient methods. It must be noted that the convergence

results of continuous-time optimization algorithms or gradient flow not necessarily extend to their

discrete-time counterparts. In fact, different discretization schemes of the same continuous-time

algorithm can result in different algorithms in discrete-time [148].

5.1.2 Our contributions

First, we propose a more general AdaGrad algorithm, which we refer to as Generalized

AdaGrad (G-AdaGrad). The proposed optimizer improves upon the convergence rate of the

original AdaGrad algorithm. The original AdaGrad, discussed in Section 5.1, is a special case

of the proposed G-AdaGrad algorithm. We propose a state-space models for the G-AdaGrad

algorithm in continuous time-domain. The proposed state-space model of G-AdaGrad is an

autonomous system of ordinary differential equations. Using a simple analysis of the proposed

state-space model, we prove the convergence of the G-AdaGrad algorithm to a critical point of

the possibly non-convex optimization problem (5.1) in the deterministic settings. Our analysis

requires minimal assumptions about the optimization problem (5.1).

Next, we propose a general class of adaptive gradient algorithms for solving non-convex

optimization problems. We represent the proposed algorithm in the state-space form. This state-

model of adaptive gradient algorithms is a non-autonomous system of ODEs, and includes the

aforementioned AdaGrad, G-AdaGrad, Adam, and AdaBelief algorithms as special cases. We

formally analyze the proposed adaptive gradient algorithm framework from state-space perspective,

112

which enables us in presenting simplified convergence proofs of AdaGrad, G-AdaGrad, Adam,

and AdaBelief in continuous-time for non-convex optimization problems.

However, this generic framework does not include the AdaBound, Nadam, and RAdam

algorithms. We analyze these four algorithms in a state-space model, which shows that the

aforementioned intuitive and unifying proof sketch can be applied to other adaptive gradient

algorithms.

Convergence of AdaBound for convex objective function has been analyzed in the AdaBound

paper [120] and later in [151]. Its convergence in the non-convex case has been recently presented

in [152]. Although the monotonicity requirement on the bound functions ηl and ηu has been

removed in [152], we assume ηu to be monotonous and a dynamic bound on the derivative of ηl.

Unlike the aforementioned discrete-time analyses of AdaBound, our continuous-time analysis has

the following advantages. The aforementioned works assume a diminishing step-size sequence

of AdaBound, which slows down the convergence rate when closer to a minimum point. Instead,

we employ a constant step-size in our AdaBound model. The existing analyses do not include

the initial bias correction steps in AdaBound. Consistent with the practical implementation of

AdaBound [120] and other adaptive gradient algorithms [34, 81], our analysis considers the bias

correction steps. Moreover, instead of specifying the exact expression for bias correction, we use

a generic expression satisfying a certain condition which includes the bias correction term used

in practice.

To the best of our knowledge, the theoretical convergence guarantee of the aforementioned

Nadam and RAdam algorithms is not available. We prove the convergence of these two algorithms

for non-convex optimization problems in continuous-time. We note that the Nadam and RAdam

algorithms are not included in our generic framework of adaptive gradient methods. Specifically,

113

the two different bias correction terms
√

1−βk+1
2

1−βk+2
1

and
√

1−βk+1
2

1−βk+1
1

prohibits Nadam to be included in

this generic framework. Similarly, the additional time-varying factor rk+1 and a separate estimate

update law in case of ρk+1 ≤ 4 prohibits RAdam to be included in the generic framework.

Recently, an alternate perspective for the warmup of Adam and a few “rule-of-thumb” warmup

schedules have been presented in [153]. However, no convergence analysis of RAdam or the

proposed warmup schedules has been presented in [153].

Furthermore, we show that our technique for proving convergence of optimizers for non-

convex functions is not limited to adaptive gradient methods. Specifically, we present a convergence

proof of the rescaled gradient flow [154] for smooth non-convex problems by invoking Barbalat’s

lemma. The fixed-time convergence guarantee of the gradient flow algorithm [154] assumes a

unique minimum point of (5.1) and quadratic growth of the objective function f , i.e., f(x) −

f(x∗) ≥ µ
2
∥x− x∗∥2 ∀x ∈ Rd and for some µ > 0. When f is non-convex, it can be easily

shown that the rescaled gradient flow [154] is a descent method, i.e., df
dt
(x(t)) < 0, as in [147].

However, it is a known fact that f being smooth, lower bounded, and decreasing not necessarily

imply that df
dt

converges to zero in the limit t → ∞. Convergence of a discrete-time variation of

the rescaled gradient flow has been analyzed in [155] under the assumption of strongly smooth f ,

a stronger assumption than mere smoothness. In continuous-time, we show that the convergence

of gradient ∇f(x(t)) to zero in the rescaled gradient flow can be proved by Barbalat’s lemma for

smooth non-convex problem (5.1).

Finally, motivated by the issues in training neural network models as mentioned above,

we propose novel adaptive gradient algorithms for solving (5.1), aimed at balancing improved

generalization and faster convergence of machine learning models. Facilitated by our aforementioned

114

state-space framework for adaptive gradient methods, the proposed algorithms are built on top

of Adam, MAdam, and Nadam, respectively. Our proposed algorithms add a specific pole-zero

pair to the dynamics of the second raw moment estimate ν̃ in MAdam, thereby improving its

convergence speed and steady-state behavior.

Our key findings are summarized below.

• We propose the Generalized AdaGrad (G-AdaGrad) algorithm, which improves upon the

convergence rate of the original AdaGrad. From a state-space perspective, we present a

simple yet intuitive convergence analysis of the proposed G-AdaGrad algorithm. Please

refer Section 5.2 for the details.

• We develop a state-space framework for a general adaptive gradient algorithms that solves

the optimization problem defined in (5.1). Using a simple analysis of the proposed state-

space model, we prove the convergence of the proposed adaptive gradient algorithm to

a critical point of the possibly non-convex optimization problem (5.1) in the deterministic

settings. Since our framework is inclusive of the AdaGrad, G-AdaGrad, Adam, and AdaBelief

optimizers, an intuitive and simple convergence proof for each of these methods follows as

a special case of our analysis. Please refer Section 5.4 for the details.

• Compared to existing works, our continuous-time model of AdaBound in Section 5.5 better

resembles the practical implementation of AdaBound and enables a simpler analysis. We

model the aforementioned AdaBound algorithm in the state-space framework. Our model

of AdaBound is in continuous-time and represented by a set of non-autonomous ordinary

differential equations (ODE). We rigorously analyze the proposed state model using tools

from adaptive control theory and present a simple convergence proof of AdaBound to a

115

critical point of the non-convex objective function (5.1) in the deterministic settings.

• We propose two state-space models, each for the Nadam and the RAdam algorithm, in

continuous-time. By utilizing Barbalat’s lemma [156], we present a simple analysis of the

proposed state-space models, proving convergence of Nadam and RAdam to a critical point

of the non-convex optimization problem (5.1) in the deterministic settings for the first time.

Our analysis requires minimal assumptions about the optimization problem (5.1). Further

details are in Section 5.6-5.7.

• In Section 5.8, we further extend the applicability of our proof technique, relying on

Barbalat’s lemma, by proving convergence of the rescaled gradient flow [154] for non-

convex problem.

• We propose new variants of Adam, MAdam, and Nadam, which we refer as AdamSSM,

MAdamSSM, and NadamSSM, respectively, for solving the general non-convex optimization

problem defined in (5.1). The proposed algorithm adds a specific pole-zero pair to the

dynamics of the second raw moment estimate ν in Adam, thereby improving its convergence.

Utilizing the aforementioned framework, we guarantee convergence of the proposed AdamSSM

algorithm to a critical point of (5.1). Please refer Section 5.9 for the details.

• Finally, in Section 5.12, we demonstrate the applicability of the proposed AdamSSM,

MAdamSSM, and NadamSSM algorithms to benchmark machine learning problems. In

this context, we conduct image classification experiments with convolutional neural network

(CNN) models on CIFAR10 and CIFAR100 datasets and language modeling experiments

with long short-term memory (LSTM) models. These results present empirical evidence of

116

the proposed algorithms’ capability in balancing better generalization and faster convergence

than the existing state-of-the-art optimizers.

5.2 Proposed algorithm: Generalized AdaGrad (G-AdaGrad)

In this section, we propose a set of autonomous ordinary differential equations. Using

first-order Euler discretization, we show that the proposed set of differential equations coincides

with a general version of the AdaGrad algorithm, which we refer to as the Generalized AdaGrad

(G-AdaGrad). The proposed differential equations include the original AdaGrad as a special

case.

We make the following assumptions in order to present our algorithms and their convergence

results.

Assumption 5.1. Assume that the minimum of function f exists and is finite. In other words,∣∣minx∈Rd f(x)
∣∣ <∞.

Assumption 5.2. Assume that f is twice differentiable over its domain Rd and the entries in the

Hessian matrix ∇2f(x) are bounded above for all x ∈ Rd.

5.2.1 Description of G-AdaGrad

We propose the Generalized AdaGrad (G-AdaGrad) method which is parameterized by a

positive real scalar c. For each dimension i ∈ {1, . . . , d} and t ≥ 0, consider the following pair

117

of differential equations

ẋci(t) =
∥∥∇if(x(t))

∥∥2 , (5.2)

ẋi(t) = −∇if(x(t))(
xci(t)

)c , (5.3)

with initial conditions xc(0) ∈ Rd and x(0) ∈ Rd. We assume that the initial condition {xci(0) >

0 : i = 1, . . . , d}. The variable xci,∀i can be abstracted as dynamic controller state.

The above pair of differential equations (5.2)-(5.3) can be seen as a continuous-time variation

of the following algorithm, when (5.2)-(5.3) are discretized with a fixed sampling time δ > 0.

For each i ∈ {1, . . . , d} and k ∈ {0, 1, . . .},

xci((k + 1)δ) = xci(kδ) + δ
∥∥∇if(x(kδ))

∥∥2 , (5.4)

xi((k + 1)δ) = xi(kδ)− δ
∇if(x(kδ))(
xci(kδ)

)c . (5.5)

This can be seen from the following argument. Since δ > 0, (5.4)-(5.5) can be rewritten as

xci((k + 1)δ)− xci(kδ)

δ
=
∥∥∇if(x(kδ))

∥∥2 ,
xi((k + 1)δ)− xi(kδ)

δ
= −∇if(x(kδ))(

xci(kδ)
)c .

Defining t = kδ, in the limit δ → 0, the above equations coincide with (5.2)-(5.3). Note

that, (5.4)-(5.5) represents the AdaGrad algorithm in discrete-time [33] with step-size η = δ.

Note that, (5.4)-(5.5) represents a generalization of the AdaGrad algorithm discussed in

Section 5.1 with step-size η = δ and an additional parameter c. The controller states xc(t)

118

in continuous-time corresponds to the variable bk in discrete-time of the AdaGrad algorithm.

When we set c = 0.5, (5.4)-(5.5) correspond to the original AdaGrad algorithm. Introducing the

parameter c can further improve its convergence. This is discussed in the following subsection.

5.2.2 Convergence of G-AdaGrad

Define the set of critical points of the objective function f as

X∗ = {x ∈ Rd : ∇f(x) = 0d}. (5.6)

Theorem 5.1 below presents a key result on the convergence of the G-AdaGrad algorithm (5.2)-

(5.3) in continuous-time to a critical point in X∗.

Theorem 5.1. Consider the pair of differential equations (5.2)-(5.3) with initial conditions xc(0) ∈

Rd and x(0) ∈ Rd such that {xci(0) > 0 : i = 1, . . . , d}. Let the parameter c ∈ (0, 1). If

Assumptions 5.1-5.2 hold, then

lim
t→∞

∇f(x(t)) = 0d. (5.7)

Moreover, for all t ≥ 0, we have

f(x(t)) = f(x(0)) +
d∑

i=1

(
xci(0)

)1−c −
(
xci(0) +

∫ t

0

∥∥∇if(x(s))
∥∥2 ds)1−c

1− c
. (5.8)

119

Proof. The time-derivative of f along the trajectories x(t) of (5.3) is given by

ḟ(x(t)) = (∇f(x(t))T ẋ(t) =
d∑

i=1

∇if(x(t))ẋi(t).

Substituting (5.3) yields,

ḟ(x(t)) = −
d∑

i=1

∥∥∇if(x(t))
∥∥2(

xci(t)
)c .

Further utilizing (5.2) we get,

ḟ(x(t)) = −
d∑

i=1

ẋci(t)(
xci(t)

)c . (5.9)

Integrating both sides above with respect to (w.r.t) t from 0 to t, we get

f(x(t))− f(x(0)) = −
d∑

i=1

∫ t

0

ẋci(s)(
xci(s)

)cds. (5.10)

Since c < 1, upon evaluating the integral we have

f(x(t)) = f(x(0)) +
d∑

i=1

(
xci(0)

)1−c −
(
xci(t)

)1−c

1− c
. (5.11)

Integrating both sides of (5.2) w.r.t t from 0 to t, we have

xci(t) = xci(0) +

∫ t

0

∥∥∇if(x(s))
∥∥2 ds, i ∈ {1, . . . , d}.

Using the above equation in (5.11) proves (5.8).

120

Since xci(0) > 0, we have xci(t) > 0. The above equation implies that xci(t) is non-

decreasing w.r.t t, which combined with (5.8) and c ∈ (0, 1) implies that f(x(t)) in non-increasing

w.r.t. t. From Assumption 5.1, f is bounded below. Thus, limt→∞ f(x(t)) is finite. From (5.11)

then it follows that, limt→∞ xc(t) is finite. Thus, the above equation implies that
∥∥∇f(x(t))∥∥ is

square-integrable w.r.t t. Hence, ∇f(x(t)) is bounded above.

Since ∇f(x(t)) is bounded and xci(t) > 0, from (5.3) we have that ẋ(t) is bounded above.

Now, the time-derivative of∥∇f∥2 along the trajectories x(t) is given by

d

dt

∥∥∇f(x(t))∥∥2 = 2∇f(x(t))T∇2f(x(t))ẋ(t).

We have shown that ∇f(x(t)) and ẋ(t) are bounded above. From Assumption 5.2, we have all

the entries in ∇2f(x(t)) bounded above. Then, from the above equation we have
d

dt

∥∥∇f(x(t))∥∥2
bounded above. Thus,

∥∥∇f(x(t))∥∥2 is uniformly continuous.

We have shown that,
∥∥∇f(x(t))∥∥ is square-integrable and

∥∥∇f(x(t))∥∥2 is uniformly continuous.

From Barbalat’s lemma [157] it follows that limt→∞
∥∥∇f(x(t))∥∥2 = 0. This proves (5.7).

Theorem 5.1 implies that the G-AdaGrad algorithm, proposed in (5.2)-(5.3), converges to a

critical point inX∗ of the non-convex optimization problem (5.1). Furthermore, (5.8) implies that

the convergence of G-AdaGrad is affected by the algorithm parameter c. As we will show through

simulations in Section 2.6, c = 0.5, which corresponds to the original AdaGrad method [33], is

not the optimal value of c.

Another significance of the above proof is that, it explains why the exponent c of xc(t)

(equivalently, bk in discrete-time) in the update equation of the estimate x(t) is limited to c < 1.

If c > 1, (5.8) implies that f(x(t)) will be increasing in t. If c = 1, evaluating the integral

121

in (5.10) we have

f(x(t)) = f(x(0)) +
d∑

i=1

log

(
xci(0)

xci(t)

)
.

Thus, f decreases at a slower rate for c = 1 compared to c < 1, because of logarithmic

decrements in case of c = 1 compared to exponential decrements.

Note that, the parameter ϵ in [135] plays the same role as c. However, the convergence

results in [135] is only for ϵ ∈ (0, 0.5] which corresponds to c ∈ (0.5, 1]. Thus, our analysis is

more general compared to [135]. In addition, our analysis in Theorem 5.1 explains the significance

of the parameter c, as discussed in the previous paragraph.

5.3 State-model of Adam and AdaBelief

In continuous-time domain, the Adam algorithm can be modeled using a set of non-autonomous

ODEs as follows. We define two real-valued scalar parameters b1, b2 ∈ (0, 1). We further define

a positive-valued function α : [0,∞) → R by

α(t) =
1− (1− b1)

t+1√
1− (1− b2)t+1

, t ≥ 0. (5.12)

122

For each i ∈ {1, . . . , d} and t ≥ 0, we consider the following set of ODEs

µ̇i(t) = −b1µi(t) + b1∇if(x(t)), (5.13)

ν̇i(t) = −b2νi(t) + b2
∥∥∇if(x(t))

∥∥2 , (5.14)

ẋi(t) = − 1

α(t)

µi(t)√
νi(t)

, (5.15)

with initial conditions µ(0) ∈ Rd, {νi(0) > 0 : i = 1, . . . , d}, and x(0) ∈ Rd. The variables µ

and v are estimates of, respectively, the biased first moment and the biased second raw moment

of the gradients. These variables µ and ν can be abstracted as dynamic controller states. The term

α(t) in (5.15) is responsible for the initial bias corrections in Adam [34]. Note that, the algorithm

parameters b1 and b2 in the continuous-time representation above are related to the parameters

β1 and β2 in discrete-time implementation of Adam [34], according to β1 = (1 − δb1) and

β2 = (1− δb2) where δ is the sampling-time for first-order Euler discretization of (5.13)-(5.15).

The AdaBelief algorithm is similar to Adam, except that
∥∥∇if(x(t))

∥∥2 in (5.14) is replaced

by
∥∥∇if(x(t))− µi(t)

∥∥2. In other words, the following set of ODEs represents the AdaBelief

algorithm. For each i ∈ {1, . . . , d} and t ≥ 0,

µ̇i(t) = −b1µi(t) + b1∇if(x(t)), (5.16)

ν̇i(t) = −b2νi(t) + b2
∥∥∇if(x(t))− µi(t)

∥∥2 , (5.17)

ẋi(t) = − 1

α(t)

µi(t)√
νi(t)

, (5.18)

with initial conditions µ(0) ∈ Rd, {νi(0) > 0 : i = 1, . . . , d}, and x(0) ∈ Rd.

123

5.4 A general adaptive gradient algorithm

In this section, we propose a class of adaptive gradient algorithms, creating a state-space

framework that encompasses Adam-like adaptive gradient algorithms. We follow by presenting

convergence proofs of some existing adaptive gradient optimizers from a state-space perspective.

These optimizers are G-AdaGrad, Adam, and AdaBelief.

Our framework of adaptive gradient algorithms hinges on their state-space representation

in terms of ODEs. The proposed class of adaptive gradient algorithms is similar to the Adam

method described in Section 5.3. However, there are two notable differences.

• Firstly, we replace the squared-gradient term
∥∥∇if(x(t))

∥∥2 in the evolution of second raw

moment estimate in (5.14) with ψ(∇if(x(t)), µi(t)), where we define ψ as an well-behaved

and non-negative valued function ψ : R2 → R≥0. The sufficient conditions on the general

function ψ which guarantees convergence of the proposed algorithm are specified later in

this section. Needless to say, the proposed setup includes the original Adam algorithm, i.e.,

ψ(∇if(x(t)), µi(t)) =
∥∥∇if(x(t))

∥∥2, as a special case.

• The other difference is that, in our algorithm, the ODE governing the second raw moment

estimate of the gradients has a higher order. From simulations, we observed an issue with

the Adam algorithm that the ODEs (5.13)-(5.14) for the first and second moments can

converge slowly, especially if the optimization problem (5.1) is ill-conditioned, leading to

a slower convergence of the estimate. A similar transient property of momentum-based

algorithms have been theoretically proved in [158]. Now, each of the ODEs (5.13)-(5.14)

can be seen as a controlled dynamical system. The controlled input for (5.13) and (5.14)

124

is, respectively, ∇if(x(t)) and
∥∥∇if(x(t))

∥∥2. The controlled output for (5.13) and (5.14)

is, respectively, µi(t) and νi(t). It is known that addition of a zero improves the transient

response of a linear time-invariant (LTI) system. Note that, the Adam algorithm does not

have any zero in the dynamics (5.14). So, in our algorithm, we add a left-half plane zero

to the dynamics in (5.14) for improving the convergence rate. However, in the Adam

algorithm, the dynamics in (5.14) is strictly proper. Thus, we also add an additional left

half-plane pole in (5.14). Hence, for each dimension i ∈ {1, . . . , d}, the transfer function

from ψ(∇if(x(t)), µi(t)) to the second raw moment estimate νi(t) in our general setup has

an additional pole-zero pair in the left-half plane, as compared to only one pole and no zero

for its counterpart in the Adam method. Herein lies the intuition behind our algorithm.

Our general adaptive gradient algorithm is iterative in nature where, at each time t ≥ 0, it

maintains four d-dimensional vectors: an estimate x(t) of a minimum point of (5.1), an estimate

µ(t) of the first moment of gradients, an estimate ν(t) of the second raw moment of gradients,

and an additional ζ(t) due to higher order of the transfer functions from ψ(∇if(x(t)), µi(t)) to

νi(t). The initial estimate x(0) is chosen arbitrarily from Rd. The real-valued vector variables

µ and ζ are initialized at t = 0 as the d-dimensional zero vector, denoted by 0d. The remaining

variable ν is initialized according to {νi(0) > 0 : i = 1, . . . , d}. Before initiating the iterative

process, the algorithm chooses nine non-negative real-valued scalar parameters λ1, . . . , λ8 and c.

Their specific conditions are presented later in this section. Given the parameters λ2 ∈ (0, 1) and

125

λ6 ∈ (0, 1), we define a positive-valued function αg : [0,∞) → R by

αg(t) =


1− (1− λ2)

t+1(
1− (1− λ6)t+1

)c , if λ7 > 0

1, if λ7 = 0.

(5.19)

For time t ≥ 0, the proposed adaptive gradient optimizer in continuous-time domain are governed

by the set of ODEs

µ̇i(t) = −λ1µi(t) + λ2∇if(x(t)), (5.20)

ζ̇i(t) = −λ3ζi(t) + λ3νi(t), (5.21)

ν̇i(t) = λ4ζi(t)− λ5νi(t) + λ6ψ(∇if(x(t)), µi(t)), (5.22)

ẋi(t) = − 1

αg(t)

λ7µi(t) + λ8∇if(x(t))

νi(t)c
. (5.23)

The d-dimensional vectors µ, ζ , and ν can be abstracted as dynamic controller states. Here,

αg(t) represents the initial bias correction. When the moment estimate is not used in updating

x(t), there is no bias correction needed in the algorithm, e.g. AdaGrad [33]. Such cases are

represented by λ7 = 0 and αg(t) = 1 because of no bias correction.

Assumption 5.3. We assume that the function ψ satisfies the following properties.

A: ψ is differentiable over R2. Moreover, ψ(x, y) and its gradient ∇ψ(x, y) are bounded if

both x and y are bounded, for any x, y ∈ R.

B: ψ(x, .) is bounded only if x is bounded, for x ∈ R.

C: limt→∞ ψ(∇if(x(t)), µi(t)) = 0 only if limt→∞ ∇if(x(t)) = 0.

126

The following theorem guarantees convergence of the proposed adaptive gradient optimizer,

presented above in (5.20)-(5.23), to a critical point of problem (5.1).

Theorem 5.2. Consider the set of differential equations (5.20)-(5.23) with initial conditions

µ(0) = ζ(0) = 0d, x(0) ∈ Rd, and {vi(0) > 0 : i = 1, . . . , d}. Let the parameters satisfy

0 < c < 1, λ2 > 0, λ3 > 0, λ4 ≥ 0, λ4 ≤ λ5 <
2λ1
c
, λ6 > 0, λ7 ≥ 0, λ8 ≥ 0, λ7 + λ8 > 0.

(5.24)

Additionally, let 0 < λ6 < λ2 < 1 if λ7 > 0. If Assumptions 5.1-5.3 hold, limt→∞ ∇f(x(t)) = 0d.

Now we are ready to show that the AdaGrad, G-AdaGrad, Adam, and AdaBelief algorithms

are included in our proposed adaptive gradient algorithm (5.20)-(5.23). Therefore, simple convergence

proofs of the aforementioned algorithms for non-convex problems follow from Theorem 5.2.

The following results present these convergence guarantees in continuous-time. Specifically, we

obtain the following corollaries of Theorem 5.2. Recall the G-AdaGrad, the Adam, and the

AdaBelief algorithms from Section 5.2 and Section 5.3.

Corollary 5.1 (G-AdaGrad). Consider the set of differential equations (5.2)-(5.3) with initial

conditions x(0) ∈ Rd, and {xci(0) > 0 : i = 1, . . . , d}. Let the parameter c satisfy 0 < c < 1. If

Assumptions 5.1-5.2 hold, then limt→∞∇f(x(t)) = 0d.

Proof. The set of equations (5.2)-(5.3) is a special case of (5.20)-(5.23) with ν = xc, λ4 = λ5 =

0, λ6 = 1, λ7 = 0, λ8 = 1, andψ(∇if(x(t)), µi(t)) =
∥∥∇if(x(t))

∥∥2. Clearly, ψ(∇if(x(t)), µi(t)) =∥∥∇if(x(t))
∥∥2 satisfies Assumption 5.3. Thus, Theorem 5.2 is applicable, and the proof follows.

127

Since the AdaGrad algorithm, represented by (5.2)-(5.3), is a special case of AdaGrad with

c = 0.5, the convergence of AdaGrad is included in Corollary 5.1 above.

Corollary 5.2 (Adam). Consider the set of differential equations (5.13)-(5.15) with initial conditions

µ(0) = 0d, x(0) ∈ Rd, and {vi(0) > 0 : i = 1, . . . , d}. Let the parameters b1 and b2 satisfy

0 < b2 < b1 < 1. If Assumptions 5.1-5.2 hold, then limt→∞∇f(x(t)) = 0d.

Proof. The set of equations (5.13)-(5.15) is a special case of (5.20)-(5.23) with c = 0.5, λ1 =

λ2 = b1, λ4 = 0, λ6 = b2, λ7 = 1, λ8 = 0, and ψ(∇if(x(t)), µi(t)) =
∥∥∇if(x(t))

∥∥2. Clearly,

ψ(∇if(x(t)), µi(t)) =
∥∥∇if(x(t))

∥∥2 satisfies Assumption 5.3. Thus, Theorem 5.2 is applicable,

and the proof follows.

Corollary 5.3 (AdaBelief). Consider the set of differential equations (5.16)-(5.18) with initial

conditions µ(0) = 0d, x(0) ∈ Rd, and {vi(0) > 0 : i = 1, . . . , d}. Let the parameters b1 and b2

satisfy 0 < b2 < b1 < 1. If Assumptions 5.1-5.2 hold, then limt→∞ ∇f(x(t)) = 0d.

Proof. The set of equations (5.17)-(5.18) is a special case of (5.20)-(5.23) with c = 0.5, λ1 =

λ2 = b1, λ4 = 0, λ6 = b2, λ7 = 1, λ8 = 0, and ψ(∇if(x(t)), µi(t)) =
∥∥∇if(x(t))− µi(t)

∥∥2.
Clearly, ψ(∇if(x(t)), µi(t)) =

∥∥∇if(x(t))− µi(t)
∥∥2 satisfies Assumption 5.3.A-5.3.B. We will

show that it also satisfies Assumption 5.3.C.

Suppose that limt→∞
∥∥∇if(x(t))− µi(t)

∥∥2 = 0. Then, limt→∞∇if(x(t)) = limt→∞ µi(t).

Then, from (5.17), limt→∞ µ̇i(t) = 0. We define the notation µ∗
i = limt→∞ µi(t) = limt→∞ ∇if(x(t)).

We claim that µ∗
i = 0. Otherwise, suppose that µ∗

i ̸= 0. Then, there exists T < ∞ such that

µi(t) and ∇if(x(t)) have the same sign for all t ≥ T . Then, from (A.151), ḟ(x(t)) < 0 for all

t ≥ T . Since f is bounded below, due to Assumption (5.1), and decreasing for all t ≥ T , f(x(t))

128

converges to its minimum value as t→ ∞. Upon differentiating both sides of (A.151) w.r.t. t,

f̈(x(t)) =
d∑

i=1

∇if(x(t))ẍi(t) +
d∑

i=1

[
∇2f(x(t))

]
i
ẋ(t)ẋi(t). (5.25)

Upon differentiating both sides of (5.18) w.r.r. t and substituting from (5.17),

ẍi(t) = − µ̇i(t)

α(t)νi(t)0.5
+

α̇(t)µi(t)

α(t)2νi(t)0.5
+
b2µi(t)

∥∥∇if(x(t))− µi(t)
∥∥2

2α(t)νi(t)1.5
− b2µi(t)

2α(t)νi(t)0.5
.

From the definition of α in Section 2.1, α(t) > 0 and α̇(t) is bounded. Also, νi(t) > 0.

Since limt→∞
∥∥∇if(x(t))− µi(t)

∥∥2 = limt→∞ µ̇i(t) = 0 and limt→∞ µi(t) = µ∗
i , we have∥∥∇if(x(t))− µi(t)

∥∥2, µ̇i(t), and µi(t) bounded. Then, ẍi(t) is bounded. Since limt→∞∇if(x(t)) =

µ∗
i , ∇if(x(t)) is bounded. Hence, under Assumption 5.2, (5.25) implies that f̈(x(t)) is bounded.

Since we have limt→∞ f(x(t)) finite and f̈(x(t)) bounded, Barbalat’s lemma [157] implies that

limt→∞ ḟ(x(t)) = 0. But we also shown that ḟ(x(t)) < 0 for all t ≥ T . This is a contradiction.

So, Assumption 5.3.C holds and the proof is complete following Theorem 5.2.

5.5 Continuous-time AdaBound

5.5.1 State-space model of AdaBound

In order to present our state-model of AdaBound, we define four real valued positive scalar

parameters α > 0, γ > 0, λ1 ∈ (0, 1) and λ2 ∈ (0, 1). Recall from Section 2.1 that ηl and ηu

are, respectively, the time-varying lower bound and the upper bound on the learning rate. In the

original paper [120], these bounds ηl and ηu are defined as positive valued functions ηl : [0,∞) →

129

R>0 and ηu : [0,∞) → R>0 such that ηl is non-decreasing and ηu is non-increasing. Additionally,

both the functions ηl and ηu are assumed to asymptotically converge to some positive scalar α∗,

i.e., limt→∞ ηl(t) = limt→∞ ηu(t) = α∗. Note that, ηl and ηu are defined by the user before the

algorithm proceeds. We define a positive valued function h : [0,∞) → R>0, which signifies

the initial bias correction term, as is used in the practice while implementing AdaBound or any

other adaptive gradient algorithms [81, 120]. However, our model does not require an explicit

expression of h. The constraints on h and the bound functions ηl, ηu are presented below.

Assumption 5.4. Assume that there exists T1 ∈ [0,∞) such that the function h is non-increasing

for all t ≥ T1.

Assumption 5.5. Assume that ηl and ηu are differentiable. Moreover, there exists T2 ∈ [0,∞)

such that ηu is non-increasing and ηl satisfies η̇l(t) ≤ 2αλ1ηl(t) for t ≥ T2.

Assumption 5.6. Assume that there exists two positive constantsL andR such that [ηl(t), ηu(t)] ⊆

[L,R] for t ≥ 0.

The conventional bias correction h(t) = 1−(1−λ1)t+1√
1−(1−λ2)t+1

is included in Assumption 5.4

as a special case, when the parameters satisfy 0 < λ2 < λ1 < 1. The bound functions

ηl(t) = α∗
(
1− 1

(1−β)t+1

)
and ηu(t) = α∗

(
1 + 1

(1−β)t

)
with β ∈ (0, 1) proposed in the original

AdaBound paper [120] satisfy Assumption 5.5. Assumption 5.6 is the standard boundedness

assumption of ηl and ηu [120, 151].

130

For each i ∈ {1, . . . , d} and t ≥ 0, we consider the following set of equations

µ̇i(t) = −λ1µi(t) + λ1∇if(x(t)), (5.26)

ν̇i(t) = −λ2νi(t) + λ2
∥∥∇if(x(t))

∥∥2 , (5.27)

ηi(t) = Clip

(
1√
νi(t)

,
ηl(t)

α
,
ηu(t)

α

)
, (5.28)

ẋi(t) = − γ

h(t)
µi(t)ηi(t), (5.29)

with initial conditions µ(0) ∈ Rd, νi(0) > 0 ∀i, and x(0) ∈ Rd. Equations (5.26)-(5.29)

represents a dynamical system: x is the state-vector and the variables µ, ν, and η can be abstracted

as dynamic controller states. We assume that the functions ηl and ηu are smooth so that η is

differentiable.

When (5.26)-(5.29) are explicitly discretized as t = kδ with a fixed sampling time δ >

0, (5.26)-(5.29) is a continuous-time equivalent in the limit δ → 0+ of the following algorithm.

For each i ∈ {1, . . . , d} and sampling instant k ∈ {0, 1, . . .}, µi((k + 1)δ) = (1− δλ1)µi(kδ) +

δλ1∇if(x(kδ)), νi((k + 1)δ) = (1 − δλ2)νi(kδ) + δλ2
∥∥∇if(x(kδ))

∥∥2 , ηi(kδ) = Clip(1√
νi(kδ)

,

ηl(kδ)
α
, ηu(kδ)

α
), xi((k + 1)δ) = xi(kδ)− δγ

h(kδ)
µi(kδ)ηi(kδ). The above set of equations represents

the AdaBound algorithm in discrete-time, as reviewed in Section 5.1, with the parameters β1 =

1 − δλ1, β2 = 1 − δλ2, α = δγ, and the controller state η(t) = αη(t). Note that, the step-size

γ in our state-update equation (5.29) is constant, unlike the original AdaBound algorithm which

employs a decreasing step-size 1√
k

(ref. Section 5.1).

131

5.5.2 Convergence of AdaBound

The following theorem guarantees convergence of the state-model of AdaBound, presented

above in (5.26)-(5.29), to a critical point in X∗. The initial states of µ, x are the same as

AdaBound paper [120], and ν is assumed positive to avoid division by zero.

Theorem 5.3. Consider the set of equations (5.26)-(5.29) with initial conditions µ(0) = 0d,

x(0) ∈ Rd, and {νi(0) > 0 : i = 1, . . . , d}. Let the model parameters satisfy α > 0,

γ > 0, and 0 < λ2 < 4λ1 < 1. If Assumptions 5.1-5.2 and Assumptions 5.4-5.6 hold, then

limt→∞∇f(x(t)) = 0d.

5.6 Convergence analysis of Nadam

To present our state-model of Nadam, we define four real valued positive scalar parameters

γ1, γ2 > 0, λ1, λ2 ∈ (0, 1), and two positive-valued functions α1, α2 : [0,∞) → R>0 as

α1(t) =
1− (1− λ1)

t+1√
1− (1− λ2)t+1

, t ≥ 0, (5.30)

α2(t) =
1− (1− λ1)

t+2√
1− (1− λ2)t+1

, t ≥ 0. (5.31)

For each i ∈ {1, . . . , d} and t ≥ 0, we consider the following set of ordinary differential equations

µ̇i(t) = −λ1µi(t) + λ1∇if(x(t)), (5.32)

ν̇i(t) = −λ2νi(t) + λ2
∥∥∇if(x(t))

∥∥2 , (5.33)

ẋi(t) = − γ1
α2(t)

µi(t)√
νi(t)

− γ2
α1(t)

∇if(x(t))√
νi(t)

, (5.34)

132

with initial conditions µ(0), x(0) ∈ Rd and {νi(0) > 0 : i = 1, . . . , d}. The above ODEs (5.32)-

(5.34) are continuous-time equivalent of the discrete-time Nadam algorithm, as reviewed in

Section 2.1, with the parameters β1 = 1−δλ1, β2 = 1−δλ2, γ1 = η
δ

1−δλ1√
1−δλ2

, γ2 = η
δ

δλ1√
1−δλ2

. It can

be easily seen by explicitly discretizing (5.32)-(5.34) with t = kδ and taking the limit at δ → 0+,

where δ > 0 is the sampling time. The ODEs (5.32)-(5.34) represent a closed-loop system: x is

the state-vector and µ, ν are dynamic controller states. The terms α1(t), α2(t) in (5.34) capture

the initial bias corrections in Nadam.

The following theorem proves convergence of the state-model (5.32)-(5.34) of Nadam to a

critical point in X∗.

Theorem 5.4. Consider the ODEs (5.32)-(5.34) with initialization µ(0) = 0d, x(0) ∈ Rd, and

{νi(0) > 0 : i = 1, . . . , d}. Let the model parameters satisfy γ1, γ2 > 0 and 0 < λ2 < λ1 < 1. If

Assumptions 5.1-5.2 hold, then limt→∞∇f(x(t)) = 0d.

5.7 Convergence analysis of RAdam

To present our state-model of RAdam, we define a scalar parameter γ > 0. The update

law for the dynamic controllers µ and ν in RAdam is same as Nadam in (5.32)-(5.33). The state

133

dynamics of RAdam is described by

ρ(t) = ρ∞ − 2(t+ 1)
(1− λ2)

t+1

1− (1− λ2)t+1
, (5.35)

r(t) =

√
(ρ(t)− 4)(ρ(t)− 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρ(t)

, (5.36)

ẋi(t) =


− γ

α1(t)

r(t)µi(t)√
νi(t)

, if ρ(t) > 4

− γ

1− (1− λ1)t+1
µi(t), if ρ(t) ≤ 4,

(5.37)

with initial conditions µ(0), x(0) ∈ Rd and {νi(0) > 0 : i = 1, . . . , d}. The ODEs (5.32), (5.33),

and (5.37) are continuous-time equivalent of the discrete-time RAdam algorithm, as reviewed in

Section 2.1, with the parameters β1 = 1− δλ1, β2 = 1− δλ2, γ = η
δ
.

The following theorem proves convergence of the state-model of RAdam to a critical point

in X∗.

Theorem 5.5. Consider the ODEs (5.32), (5.33), and (5.37) with initialization µ(0) = 0d, x(0) ∈

Rd, and {νi(0) > 0 : i = 1, . . . , d}. Let the model parameters satisfy γ > 0 and 0 < λ2 < λ1 <

1. If Assumptions 5.1-5.2 hold, then limt→∞∇f(x(t)) = 0d.

5.8 Convergence of rescaled gradient flow

The rescaled gradient flow proposed in [154] is governed by the state-dynamics

ẋ(t) = − c1∇f(x(t))∥∥∇f(x(t))∥∥ p1−2
p1−1

− c2∇f(x(t))∥∥∇f(x(t))∥∥ p2−2
p2−1

, (5.38)

134

paremeterized by c1, c2 > 0, p1 > 2, and p2 ∈ (1, 2). The following theorem proves convergence

of (5.38) for non-convex objective function f to a critical point in X∗.

Theorem 5.6. Consider the ODE (5.38) with initial condition x(0) ∈ Rd. Let the model parameters

satisfy c1, c2 > 0, p1 > 2, and p2 ∈ (1, 2). If Assumptions 5.1-5.2 hold, limt→∞∇f(x(t)) = 0d.

5.9 Proposed algorithm: AdamSSM

In this section, we present the novel AdamSSM algorithm and its convergence guarantee.

The proposed AdamSSM algorithm is in the form of the generic adaptive gradient setup, presented

in Section 5.4, where the function ψ in (5.22) is defined as ψ(∇if(x(t)), µi(t)) =
∥∥∇if(x(t))

∥∥2.
Specifically, the AdamSSM algorithm in continuous-time is described by the following set of

ODEs, parameterized by b1, b2, and b3. For each dimension i ∈ {1, . . . , d} and t ≥ 0,

µ̇i(t) = −b1µi(t) + b1∇if(x(t)), ζ̇i(t) = −b2ζi(t) + b2νi(t), (5.39)

ν̇i(t) = b3ζi(t)− (b2 + b3)νi(t) + b2
∥∥∇if(x(t))

∥∥2 , ẋi(t) = − 1

α(t)

µi(t)√
νi(t)

. (5.40)

The function ψ and the parameters β1 = (1 − δb1) and β2 = (1 − δb2) in the proposed

AdamSSM algorithm is same as Adam. However, unlike Adam, b3 in AdamSSM is strictly

positive. As a result, for each dimension i ∈ {1, . . . , d}, the transfer function [80] from
∥∥∇if(x(t))

∥∥2
to νi(t) in AdamSSM is b2(s+b2)

s2+(2b2+b3)s+b22
where s denotes the Laplace variable. On the other hand,

for Adam we have b3 = 0, and the above transfer function b2
(s+b2)

, due to cancellation of a pole-

zero pair at s = −b2. The addition of a pole and a zero in AdamSSM is due to introduction of the

positive-valued parameter b3 which improves the convergence of the estimated objective function

135

Algorithm 5 AdamSSM: Adaptive momentum estimation with Second-order dynamics of
Second Moment

1: Initialize x(0) ∈ Rd, µ(0) = ζ(0) = ν(0) = 0d, b1, b2, b3 > 0, ϵ > 0, and the learning rate
schedule η(t).

2: for each iteration t = 0, 1, 2, . . . do
3: Compute gradient ∇f(x(t)) at the current estimate.
4: Update biased first moment estimate µ(t+ 1) = (1− δb1)µ(t) + δb1∇f(x(t)).
5: Update the vector ζ(t) to ζ(t+ 1) = (1− δb2)ζ(t) + δb2ν(t).
6: Update biased second raw moment estimate νi(t+1) = δb3ζi(t)+ (1− δb2− δb3)νi(t)+

δb2
∥∥∇if(x(t))

∥∥2, for each i = 1, . . . , d.
7: Compute bias corrected first moment estimate µ̂(t+ 1) = µ(t+1)

1−(1−b1)t+1 .

8: Compute bias corrected second raw moment estimate ν̂(t+ 1) = ν(t+1)
1−(1−b2)t+1 .

9: Updates the current estimate x(t) to xi(t+ 1) = xi(t)− η(t) µ̂i(t+1)√
ν̂i(t+1)+ϵ

, i = 1, . . . , d.

10: end for

values f(x(t)). This can be seen from (A.155) in the proof of Theorem 5.2, presented later in

Appendix A.19. The additional parameter b3 > 0 in the AdamSSM algorithm corresponds to

λ4 > 0 in the generic adaptive gradient algorithm (5.20)-(5.23). But in case of Adam we have

λ4 = b3 = 0. Thus, for AdamSSM, there is an additional negative term on the R.H.S. of (A.155),

contributing to faster decrements of f(x(t)). Note that the order of computational cost of the

AdamSSM algorithm is same as Adam.

The formal convergence guarantee of the proposed AdamSSM algorithm in continuous-

time is presented below in the form of Corollary 5.4 of Theorem 5.2.

Corollary 5.4. Consider the set of differential equations (5.39)-(5.40) with initial conditions

µ(0) = ζ(0) = 0d, x(0) ∈ Rd, and {vi(0) > 0 : i = 1, . . . , d}. Let the parameters b1, b2

and b3 satisfy 0 < b2 < b1 < 1, b3 > 0, b2 + b3 < 4b1. If Assumptions 3.1-3.2 hold, then

limt→∞∇f(x(t)) = 0d.

The AdamSSM algorithm in discrete-time is summarized above in Algorithm 5. Specifically,

we use first-order explicit Euler discretization with a fixed sampling rate to discretize the set of

136

ODEs (5.39)-(5.40). To be consistent with the format of the existing algorithms, we replace the

condition νi(0) > 0 ∀i with an additional parameter ϵ > 0, as it is in the existing algorithms. The

purpose of either of these conditions is the same: to avoid division by zero in (5.40). Additionally,

we denote the learning rate parameter for updating the estimate x(t) for each iteration t = 0, 1, . . .

in discrete-time by η(t).

5.10 Proposed Algorithm: NadamSSM

Recall the state-space model of Nadam in (5.32)-(5.34), particularly the dynamic update

of the controller state ν in (5.33) which is the second raw moment estimate of the gradients. It

has been proved that the transient dynamics of a momentum-based algorithm, such as Nadam,

is negatively impacted by the condition number of f , leading to slower convergence [158].

Therefore, the motivation behind our proposed algorithm is to improve upon the convergence rate

of Nadam. We note that the transfer function from input
∥∥∇if(x(t))

∥∥2 to output νi(t) in (5.33)

of Nadam has no zero and one pole. In the above transfer function of our algorithm, therefore,

we add (i) an LHP zero for faster transient response of controller state ν, and (ii) an LHP pole for

improving stability of ν.

The proposed Nadam with Second-order Dynamics of Second Moment (NadamSSM) algorithm

137

is governed by the following state-space model. For i ∈ {1, . . . , d} and t ≥ 0,

µ̇i(t) = −λ1µi(t) + λ1∇if(x(t)), (5.41)

ζ̇i(t) = −λ2ζi(t) + λ2νi(t), (5.42)

ν̇i(t) = λ3ζi(t)− (λ2 + λ3)νi(t) + λ2
∥∥∇if(x(t))

∥∥2, (5.43)

ẋi(t) = − γ1
α2(t)

µi(t)√
νi(t) + ϵ

− γ2
α1(t)

∇if(x(t))√
νi(t) + ϵ

, (5.44)

with x(0) ∈ Rd, µ(0) = ζ(0) = ν(0) = 0d. The algorithm parameters λ1, λ2, γ1, γ2 are the

same as Nadam. The additional parameter λ3 > 0. To be consistent with the format of the

existing algorithms, we replace νi(0) > 0 with an additional parameter ϵ > 0. The purpose

of either of these conditions is to avoid division by zero in (5.44). From (5.42)-(5.43), the

transfer function from
∥∥∇if(x(t))

∥∥2 to νi(t) in NadamSSM is H(s) = λ2(s+λ2)

s2+(2λ2+λ3)s+λ2
2
, where

s denotes the Laplace variable. As described above, H(s) in NadamSSM has a LHP zero at

s = −λ2 and two real valued LHP poles, as compared to no zero and one LHP pole s = −λ2

(ref. (5.33)) in Nadam. In our experiments, we implement the proposed NadamSSM algorithm

by discretizing (5.41)-(5.44) by explicit Euler discretization with a sampling rate δ = 0.15.

5.11 Proposed Algorithm: MAdamSSM

We utilize the transfer function-based modification of Adam and Nadam algorithms on the

MAdam algorithm as well. To provide the intuition of our proposed algorithm, we begin with a

state-space model of the MAdam algorithm, reviewed in Section 5.1, as follows. The MAdam

algorithm is a discrete-time feedback control system, with x being the state-vector and the

138

Algorithm 6 MAdamSSM: Maximum variation averaging Adaptive momentum estimation with
Second-order dynamics of Second Moment

1: Initialize x(0) ∈ Rd, µ̃(0) = ũ(0) = ζ(0) = ν̃(0) = w(0) = 0d, α ∈ (0, 1), 0 < β < β < 1,
β3 ∈ (0, 1), β3 < β2, ϵ > 0, and the step-size schedule η(t).

2: for each iteration k = 0, 1, 2, . . . do
3: Compute gradient ∇f(x(t)) at the current estimate.
4: for each dimension i = 1, . . . , d do
5: Update µ̃k+1,i = αµ̃k,i + (1− α)∇if(xk).
6: Compute β̃k,i = argmaxβ νk,i(β)− µk,i(β)

2.

7: Compute βk,i = Clip
(
β̃k,i, β, β

)
.

8: Update ũk+1,i = βkũk,i + (1− βk)∇if(xk).
9: Update ζk+1,i = βk,iζk,i + (1− βk,i)νk,i.

10: Update ν̃k+1,i = β3ζk,i + (βk,i − β3)νk,i + (1− βk,i)
∥∥∇if(xk)

∥∥2.
11: Update wk+1,i = βkwk,i + (1− βk).
12: Compute uk+1,i =

ũk+1,i

wk+1,i
.

13: Compute νk+1,i =
ν̃k+1,i

wk+1,i
.

14: Update xk+1,i = xk,i − ηk
√
wk+1,i

1−αk+1

µ̃k+1,i√
ν̃k+1,i+ϵ

.

15: end for
16: end for

variables µ̃, ũ, ν̃, w being dynamic controller states. From simulations, we observed an issue with

adaptive gradient algorithms, including Adam and MAdam, that the first and second moments of

gradients can converge slowly, especially if the optimization problem is ill-conditioned. This

property of momentum-based algorithms have been theoretically proved in [158]. Specifically,

the peak overshoot and the rise time of these methods are directly influenced by the condition

number [158]. Now, the difference equation ν̃k+1,i = βkν̃k,i + (1 − βk)
∥∥∇if(xk)

∥∥2 ∀i can

be viewed as a controlled dynamical system. Specifically, the controlled input for updating the

controller state ν̃k,i is
∥∥∇if(xk)

∥∥2 and the controlled output is ν̃k+1,i. From classical control

theory, we know that the addition of a zero improves the transient response of a linear system.

Now, the MAdam algorithm does not have any zero in its dynamics of ν̃k,i. So, in our algorithm,

we add a zero inside the unit circle |z| < 1 to the dynamics of ν̃k,i for improving the convergence

139

rate. However, in the MAdam algorithm, the dynamics of ν̃k,i is strictly proper. Thus, we also

add a pole inside the unit circle to the dynamics of ν̃k,i. Hence, for each dimension i, the transfer

function from
∥∥∇if(xk)

∥∥2 to ν̃k,i in our proposed algorithm has an additional pole-zero pair

inside the unit circle, as compared to only one pole and no zero for its counterpart in the MAdam

method. Herein lies the intuition behind our algorithm.

The proposed MAdamSSM algorithm is summarized above in Algorithm 1. To avoid

division by zero at the first iteration of Algorithm 1, we define ũ1,i = (1 − β1)∇if(x1) and

ν̃1,i = (1 − β1)
∥∥∇if(x1)

∥∥2, and w1,i = (1 − β1), as done in the MAdam algorithm [126]. The

major difference between MAdam and MAdamSSM is the addition of an appropriate pole-zero

pair to the dynamics from
∥∥∇if(xk)

∥∥2 to ν̃k+1,i. Specifically, unlike MAdam, the parameter β3

in our algorithm is a strictly positive scalar. If the coefficient βk is a constant β2, as in Adam or

AdaBound algorithm, then for each each dimension i, the transfer function from
∥∥∇if(xk)

∥∥2 to

ν̃k,i in the MAdamSSM algorithm is T (z) = (z−β2)(1−β2)

z2−(2β2−β3)z+(β2
2−β3)

, where z denotes the operator

in Z-transform. The hyperparameter β3 controls the placement of both the zero and the additional

pole, balancing stability and acceleration. For MAdam, β3 = 0 and the above transfer function

is T ′(z) = (1−β2)
(z−β2)

, due to cancellation of a pole-zero pair at z = β2. The parametric conditions

β2 ∈ (0, 1), β3 ∈ (0, 1) and β3 < β2
2 ensure that the poles and zeros of T (z) are within unit circle.

5.12 Experimental results

In this section, we present our experimental results validating the efficiency of the proposed

G-AdaGrad and AdamSSM algorithms.

140

Figure 5.1: Decision boundary in the a1 − a2 plane, obtained from training a linear regression
model for classification of digit-1 and digit-5 using G-AdaGrad. The data points from MNIST
training set are plotted in a1 − a2 plane.

Figure 5.2: Decision boundary in the a1 − a2 plane, obtained from training a linear regression
model for classification of digit-1 and digit-5 using G-AdaGrad. The data points from MNIST
test set are plotted in a1 − a2 plane.

5.12.1 G-AdaGrad

We consider the problem of recognizing handwritten digit one and digit five. Although it is

Figure 5.3: 1
2

∥∥Ax(t)− b
∥∥2 − f ∗ of

linear regression for classifying digit-
1 and digit-5 from the MNIST dataset
with G-AdaGrad.

a binary classification problem between the digits one

and five, we solve it as a regression problem first. The

obtained linear regression model can be a good initial

decision boundary (ref. Fig. 5.1-5.2) for classification

algorithms. We conduct experiments for minimizing the

objective function f(x) = 1
2
∥Ax− b∥2. The training

data points (A, b) are obtained from the “MNIST” [47]

dataset as follows. We select 5000 arbitrary training instances labeled as either the digit one or

the digit five. For each instance, we calculate two quantities, namely the average intensity of an

141

image and the average symmetry of an image [48]. Let the column vectors a1 and a2 respectively

denote the average intensity and the average symmetry of those 5000 instances. We perform a

quadratic feature transform of the data (a1, a2). Then, our input matrix before pre-processing

is Ã =

[
a1 a2 a1.

2 a1. ∗ a2 a2.
2

]
. Here, (.∗) represents element-wise multiplication and

(.2) represents element-wise squares. This raw input matrix Ã is then pre-processed as follows.

Each column of Ã is shifted by the mean value of the corresponding column and then divided

by the standard deviation of that column. Finally, a 5000-dimensional column vector of unity is

appended to this pre-processed matrix. This is our final input matrix A of dimension (5000 ×

6). Next we consider the logistic regression model and conduct experiments for minimizing the

cross-entropy error on the raw training data.

Figure 5.4: Training loss of logistic
regression model for classifying digit-
1 and digit-5 from the MNIST dataset
with G-AdaGrad.

We train both of these models with the G-

AdaGrad algorithm (5.2)-(5.3). We initialize the

algorithm according to the conditions in Theorem 5.1.

Specifically, we set xc(0) = x(0) = [0.01, . . . , 0.01]T .

G-AdaGrad converges for different values of c (ref.

Fig. 5.3 and Fig. 5.4). We observe that the convergence

is faster when c is smaller. Thus, the coefficient c = 0.5,

which corresponds to the original AdaGrad method, is not the optimal choice. In addition, c = 1

leads to poor convergence, as we have theoretically explained in Section 5.2.2.

5.12.2 AdamSSM

142

Figure 5.5: Test set accuracy for
image classification task on CIFAR-
10 dataset with ResNet34 architecture
trained with different algorithms.

We present experimental results on benchmark

machine learning problems, comparing the convergence

rate and test-set accuracy [48] of the proposed

AdamSSM algorithm with several other adaptive

gradient methods. These methods are AdaBelief [81],

AdaBound [120], Adam [34], AdamW [121], Fromage

[122], MSVAG [123], RAdam [124], SGD [32], and

Yogi [125].

In the experiments, we consider two machine

learning tasks: image classification on CIFAR-10 dataset [159] and language modeling on Penn

TreeBank (PTB) dataset [160]. The CIFAR-10 dataset consists of 60k tiny colour images with

32× 32 pixels in 10 mutually exclusive classes, with 6k images per class. There are 50k training

images and 10k test images. The PTB dataset consists of 929k training words, 73k validation

words, and 82k test words.

Figure 5.6: Test set accuracy for
image classification task on CIFAR-
10 dataset with VGG11 architecture
trained with different algorithms.

For image classification task, we use two CNN

architectures: ResNet34 [161] and VGG11 [162]. The

numeral after the keyword signifies the number of

weighted layers in that architecture. ResNet34 and

VGG11 has approximately d = 21 million and d = 133

million parameters, respectively. These are the state-of-

the-art architectures for image classification. ResNet,

in particular, solves the famous vanishing gradient

problem, where the computed gradients get truncated to

143

zero due to repeated application of chain rule across deep layers during back-propagation and

due to finite precision.

Figure 5.7: Test set perplexity
for language modeling task on
PTB dataset with 1-layer LSTM
architecture trained with different
algorithms.

For language modeling task, we use the long

short-term memory (LSTM) [163] architecture with

respectively 1-layer, 2-layers, and 3-layers. LSTM is

a widely used language model in different applications,

including text generation and speech recognition. It

is a recurrent neural network with ‘gates’ which are

neural network that learns the important information

from the training data corpus. Perplexity [164] is

a metric for measuring performance of a language

model. Technically, a language model computes the

joint probability of a word sequence from product of conditional probabilities of each word.

Perplexity is defined as the inverse probability of the test set, as predicted by a trained model,

normalised by the number of words. Perplexity can also be interpreted as the number of words

that can be encoded with the cross-entropy. Thus, lower the perplexity, more confident the model

is in predicting the next word in a sequence. So, a lower perplexity is preferred.

To conduct these experiments, we adapt the experimental setup used in the recent AdaBelief

paper [81] and the AdaBound paper [120]. The estimate x(t) is initialized randomly from Rd for

all the algorithms. The hyperparameters of the respective algorithms are tuned such that the

individual algorithms achieves a better generalization on the test dataset. Following [81], these

hyperparameters are selected as described below.

AdaBelief: The standard parameter values β1 = 0.9, β2 = 0.999 are used. The parameter

144

ϵ is set to 10−8 for image classification tasks, 10−16 for 1-layer LSTM and 10−12 for 2-layer and

3-layer LSTM. The learning rate η is set to 10−2 for 2-layer and 3-layer LSTM, and 10−3 for all

other models. These parameter values are set according to the implementation of AdaBelief in

GitHub 1.

AdaBound, Adam, MSVAG, RAdam, Yogi: The parameter β1 is selected from the set

{0.5, 0.6, 0.7, 0.8, 0.9}. The learning rate η is selected from the set {10p : p = 1, 0,−1,−2,−3}.

Standard values are used for the other parameters.

AdamW: The weight decay parameter is chosen from the set {10−2, 10−3, 5×10−4, 10−4}.

The other parameters are selected in the same way as Adam.

Fromage, SGD: The learning rate is selected as described above for Adam. The momentum

is chosen as the default value of 0.9.

AdamSSM: The parameters β1 = (1− δb1) and β2 = (1− δb2) are similar to Adam. The

standard choices for β1 and β2 in Adam are respectively 0.9 and 0.999 [34]. With a sampling

time δ = 0.15, therefore we set b1 = 0.67 and b2 = 0.0067. The parameter b3 is chosen from the

set { c×10−3

δ
: c = 1, 2, 3, 4, 5}. The parameter ϵ and the learning rate η are selected in the same

way as AdaBelief.

In our experiments, we have considered the cross-entropy loss function [48]. To avoid

overfitting, we have used l2-regularization [48] while training the architectures. Following [81],

the regularization hyperparameter is set to 5 × 10−4 for the image classification tasks and 1.2 ×

10−6 for the language modeling task, for each of the aforementioned algorithms.

For the image classification tasks, the model is trained for 200 epochs; the learning rate

is multiplied by 0.1 at epoch 150; and a mini-batch size of 128 is used [81, 120]. We compare

1https://github.com/juntang-zhuang/Adabelief-Optimizer

145

the training-set and test-set accuracy of different training algorithms in Table 5.1 and Table 5.2.

We observe that the proposed AdamSSM algorithm has the best test-set accuracy among all the

algorithms, on both the architectures ResNet34 and VGG11. Some other algorithms achieve a

better training-set accuracy than the proposed method. However, the test-set accuracy of those

algorithms is less than AdamSSM.

Figure 5.8: Test set perplexity
for language modeling task on
PTB dataset with 3-layer LSTM
architecture trained with different
algorithms.

For the language modeling tasks, the model is

trained for 200 epochs; the learning rate is multiplied

by 0.1 at epoch 100 and 145; and a mini-batch size of

20 is used [81]. We compare the training-set and test-set

perplexity of different training algorithms in Table 5.3-

5.5. Note that a lower perplexity means better accuracy.

For 1-layer LSTM, only the Adam method generates

lower test set perplexity than the proposed method. For

2-layer LSTM, only the AdaBelief method generates

lower test set perplexity than the proposed method. For

the more complex 3-layer LSTM, the proposed method achieves both the least test set and the

least training set perplexity.

5.12.3 NadamSSM

We implement our NadamSSM algorithm in discrete-time and compare its performance

with AdaBelief [81], AdamSSM, and Nadam [38] algorithms for solving the following machine

learning tasks: image classification on CIFAR-10 dataset [159], with ResNet34 [161] and VGG11

146

Figure 5.9: Test set perplexity for language modeling task on PTB dataset with 2-layer LSTM
architecture trained with different algorithms.

[162] models, and language modeling on Penn TreeBank (PTB) dataset [160], with 3-layer long

short-term memory (LSTM) [163] model. AdaBelief has been shown to be more efficient than

the popular optimizers [81] on benchmark machine learning tasks. However, the experimental

results in [81] have not compared AdaBelief with Nadam.

We use the experimental setup as in the recent AdaBelief paper [81]. Following [81], the

l2-regularization hyperparameter is set to 5 × 10−4 for image classification and 1.2 × 10−6 for

language modeling. The hyperparameters are tuned such that the individual algorithms achieves

a better generalization on the test set. Specifically, all the parameter values of AdaBelief and

AdamSSM are set as per the implementation in the AdaBelief paper [81] and Section 5.12.2. For

Nadam and NadamSSM, λ1 = 0.67, λ2 = 0.0067 are such that β1 = (1−δλ1) and β2 = (1−δλ2)

are same as AdaBelief. λ3 is chosen from {c × 10−3/δ : c = 1, 2, 3, 4, 5}. The parameter ϵ and

the learning rate η are same as AdaBelief and AdamSSM.

All the models are trained for 200 epochs. At each training epoch, we evaluate the performance

of the models, trained with different optimizers, on the test data and compare the smallest error

of individual optimizers. For image classification, the learning rate is multiplied by 0.1 at epoch

150; the mini-batch size is 128 [81]. For language modeling, the learning rate is multiplied by 0.1

147

at epochs 100 and 145; the mini-batch size is 20 [81]. From Table 5.1 and Table 5.2, the proposed

NadamSSM algorithm has the highest test set and training set accuracy on the VGG11 model, but

AdaBelief and AdamSSM perform better on ResNet34. From Table 5.5, NadamSSM achieves

the least test set perplexity (smaller perplexity is better) on 3-layer LSTM. Since each optimizer

is run for 200 epochs and NadamSSM obtains a smaller test error on VGG11 and LSTM over

the same number (200) of epochs, NadamSSM is faster among the algorithms on VGG11 and

LSTM. We note that when Nadam is better than AdaBelief/AdamSSM, NadamSSM significantly

improves on Nadam. Similarly, on ResNet34, when Nadam is poorer than AdaBelief/AdamSSM,

so is NadamSSM but with better performance than Nadam. This behavior can be attributed to

our transfer function-based modification of Nadam.

5.12.4 MAdamSSM

We present experimental results on a benchmark machine learning problem, comparing the

proposed MAdamSSM algorithm and the MAdam algorithm. MAdam has been demonstrated

to be more efficient than the AdaBelief optimizer [126], which in turn is superior to the other

existing optimizers [81], on several machine learning tasks.

In the experiments, we consider the machine learning task of image classification on the

CIFAR-10 and CIFAR-100 datasets [159] using two CNN architectures: ResNet18 and ResNet34

[161]. We adapt the experimental setup used in the MAdam paper [126]. The objective function

f is cross-entropy. The estimate x(t) is initialized randomly from Rd for both the algorithms.

Following [126], the hyperparameters of the respective algorithms are tuned such that the individual

algorithms achieve better accuracy on the test set, as described below. The step-size schedule is

148

cosine [165], which starts with a large value and rapidly decreases to a minimum value before

being increased rapidly again. This minimum value is set to 2e−6. MAdam: TheL2 regularization

parameter is selected from {0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1}, the best value being 0.05 for CIFAR-

10 and 0.2 for CIFAR-100. The learning rate is selected from {ce − 3 : c = 0.5, 1, 2, 3, 4, 6, 8},

the best value being 8e − 3 for CIFAR-10 and 4e − 3 for CIFAR-100. The other parameters are

α = 0.9, β = 0.5, β = 0.999, ϵ = 1e − 8 [126]. MAdamSSM: The regularization parameter,

learning rate, α, β, β and ϵ are same as MAdam. β3 is selected from {ce − 3 : c = 1, 2, 3, 4, 5}

and the best value is observed to be 2e − 3 for CIFAR-10 and 1e − 3 for CIFAR-100. The

ResNet models are trained over 200 epochs with a mini-batch size of 128 [126]. We compare the

training-set and test-set accuracy of MAdamSSM with MAdam over five runs. From Table 5.6-

5.7, we observe that the proposed MAdamSSM algorithm has better test-set accuracy on both

architectures. Additionally, MAdamSSM achieves this accuracy in fewer training epochs.

Table 5.1: Comparisons between best training accuracy, best test accuracy, and number of training
epochs required to achieve these accuracies for different algorithms on image classification task
with ResNet34.

Training algorithm Test accuracy Epoch Train accuracy Epoch
AdaBelief 95.44 194 99.988 193
AdaBound 94.85 190 99.998 191

Adam 93.02 189 99.308 190
AdamW 94.59 164 100.0 169
Fromage 94.51 165 99.992 165
MSVAG 94.44 199 99.996 185
RAdam 94.33 182 100.0 179

SGD 94.64 155 99.272 169
Yogi 94.71 182 99.972 192

AdamSSM (Proposed) 95.61 174 99.99 188
Nadam 95.31 189 99.99 182

NadamSSM (Proposed) 95.38 178 99.98 193

149

Table 5.2: Comparisons between best training accuracy, best test accuracy, and number of training
epochs required to achieve these accuracies for different algorithms on image classification task
with VGG11.

Training algorithm Test accuracy Epoch Train accuracy Epoch
AdaBelief 91.41 193 99.784 197
AdaBound 90.62 176 99.914 193

Adam 88.40 197 94.028 199
AdamW 89.39 166 99.312 198
Fromage 89.77 162 99.730 170
MSVAG 90.24 187 99.948 192
RAdam 89.30 195 98.984 196

SGD 90.11 188 96.436 195
Yogi 90.67 192 99.868 196

AdamSSM (Proposed) 91.49 185 99.792 187
Nadam 91.52 191 99.82 185

NadamSSM (Proposed) 91.81 173 99.84 197

Table 5.3: Comparisons between best training set perplexity, best test set perplexity, and number
of training epochs required to achieve these perplexities for different algorithms on language
modeling task with 1-layer LSTM.

Training algorithm Test accuracy Epoch Train accuracy Epoch
AdaBelief 84.63 199 58.25 192
AdaBound 84.78 199 62.36 155

Adam 84.28 196 58.26 155
AdamW 87.80 194 55.33 155
MSVAG 84.68 199 63.59 167
RAdam 88.57 196 55.81 155

SGD 85.07 199 63.64 155
Yogi 86.59 199 69.22 155

AdamSSM (Proposed) 84.61 199 58.93 192

5.13 Summary and discussions

We have proposed a fast optimizer, named Generalized AdaGrad (G-AdaGrad), a generalization

of the prototypical AdaGrad algorithm. We have acquired state-space framework of the G-

150

Table 5.4: Comparisons between best training set perplexity, best test set perplexity, and number
of training epochs required to achieve these perplexities for different algorithms on language
modeling task 2-layer LSTM.

Training algorithm Test accuracy Epoch Train accuracy Epoch
AdaBelief 66.29 199 45.48 184
AdaBound 67.53 199 43.65 165

Adam 67.27 199 46.86 184
AdamW 94.86 186 67.51 184
MSVAG 68.84 199 45.90 184
RAdam 90.00 199 61.48 184

SGD 67.42 197 44.79 165
Yogi 71.33 199 54.53 143

AdamSSM (Proposed) 66.75 198 44.92 190

Table 5.5: Comparisons between best training set perplexity, best test set perplexity, and number
of training epochs required to achieve these perplexities for different algorithms on language
modeling task 3-layer LSTM.

Training algorithm Test accuracy Epoch Train accuracy Epoch
AdaBelief 61.24 194 37.06 197
AdaBound 63.58 195 37.85 193

Adam 64.28 199 43.11 197
AdamW 104.49 159 104.94 155
MSVAG 65.04 192 39.64 185
RAdam 93.11 199 90.75 185

SGD 63.77 146 38.11 146
Yogi 67.51 196 51.46 164

AdamSSM (Proposed) 61.18 188 36.82 197
Nadam 61.10 181 35.95 197

NadamSSM (Proposed) 60.85 187 36.44 197

AdaGrad algorithm, governed by a set of ordinary differential equations. From the proposed

state-space viewpoint, we have presented simple convergence proof of G-AdaGrad for non-

convex optimization problems. Our analysis of G-AdaGrad has provided further insights into

the AdaGrad method. The theoretical results have been validated empirically on MNIST dataset.

Most importantly, we have proposed a generic adaptive gradient-descent optimizer to accelerate

151

Table 5.6: Comparisons between mean (and std.) of the best training and test accuracies, and the
number of training epochs required to achieve them for the MAdamSSM (proposed) and MAdam
algorithms over five runs.

MAdamSSM (Proposed) MAdam
Model, Test Epoch Train Epoch Test Epoch Train Epoch
Dataset accuracy accuracy accuracy accuracy
ResNet18, 95.36 189.8 100.0 191.2 95.29 194.6 100.0 187.2
CIFAR-
10

(0.09) (2.3) (0) (4.3) (0.1) (4.7) (0) (4.7)

ResNet34, 95.46 187.0 100.0 195.4 95.37 188.0 100.0 190.8
CIFAR-
10

(0.14) (6.3) (0) (2.9) (0.14) (3.2) (0) (3.6)

ResNet18, 78.95 187.8 99.98 194.8 78.83 192.6 99.98 193.2
CIFAR-
100

(0.25) (2.5) (0.0) (2.9) (0.26) (4.2) (0.0) (2.9)

Table 5.7: Comparisons between the best training and test accuracies, and the number of training
epochs required to achieve them for the MAdamSSM (proposed) and MAdam algorithms applied
to train ResNet34 with CIFAR-10 data over five runs.

MAdamSSM (Proposed) MAdam
Test Epoch Train Epoch Test Epoch Train Epoch
accuracy accuracy accuracy accuracy

Run 1 (seed=
0)⋆

95.30 179 100.0 192 95.49 185 100.0 191

Run 2 (seed=
50)

95.53 189 100.0 199 95.18 189 100.0 196

Run 3 (seed=
100)

95.32 187 100.0 196 95.47 193 100.0 192

Run 4 (seed=
500)

95.51 196 100.0 197 95.43 186 100.0 188

Run 5 (seed=
1000)

95.63 184 100.0 193 95.27 187 100.0 187

⋆ seed initializes the random number generator of Python’s NumPy package

gradient-based optimization of non-convex optimization problems. Adaptive gradient optimizers

are an integral component of modern-day machine learning pipelines. We have presented a

152

state-space framework for such optimizers, facilitating a dynamical system perspective of some

prominent adaptive gradient optimizers and their potential variations. Specifically, the estimate of

the true minima is the system state, and updating the learning rate of the state can be described as

a control input. When the learning rates are updated adaptively, the control input is dynamically

evolving. Hence, the dynamic controller states are governed by feedback inputs that are a function

of the current estimate (the current system state). The existing optimizers specify the feedback

input to update the dynamic controller states. We have proposed a general class of feedback

inputs to the controller states and specified sufficient conditions for the feedback to guarantee

convergence of our general algorithm for adaptive optimization. Another salient feature of

our generic algorithm is the addition of a suitable pole and zero in the transfer function to the

controller state from its corresponding input. By rigorously analyzing this state-space model

of the proposed algorithm, we have developed a framework from which simplified proofs of

existing algorithms, such as G-AdaGrad, Adam, and AdaBelief, follow. This framework can yield

constructive insights to design new optimizers, as we have shown by developing the AdamSSM

algorithm. AdamSSM is a variant of Adam, where adding a pole-zero pair in the second-moment

estimate of gradients improves the convergence through a re-balance of transient and steady

state. We proposed such transfer function-based variants of Nadam and MAdam algorithms also.

Through extensive experiments on complex machine learning problems, we have demonstrated

that these proposed algorithms reduces the gap between better accuracy on unseen data and faster

convergence than the state-of-the-art algorithms.

Notable fast gradient optimizers AdaBound, Nadam, RAdam, and the recent rescaled gradient

flow are not included in our proposed framework of generic adaptive gradient methods. However,

we presented convergence proofs of these methods from a state-space analysis in continuous time

153

using Barbalat’s lemma for non-convex optimization problems, similar to our unifying approach

for other adaptive gradient methods. These theoretical results suggest that investigating the

convergence analysis of other fast gradient-based optimizers in the mold of the simple proof

sketch presented in this chapter may be fruitful.

A new optimizer can also be developed by modifying the AdaBelief algorithm similarly.

Formally speaking, this new variant can be described by our generic state-space framework (5.20)-

(5.23) as follows:

µ̇i(t) = −b1µi(t) + b1∇if(x(t)), ζ̇i(t) = −b2ζi(t) + b2νi(t),

ν̇i(t) = b3ζi(t)− (b2 + b3)νi(t) + b2
∥∥∇if(x(t))− µi(t)

∥∥2 , ẋi(t) = − 1

α(t)

µi(t)√
νi(t)

.

Figure 5.10: Second raw moment
estimate of gradient along dimension
i = 811, for image classification task
on CIFAR-10 dataset with VGG11
architecture trained with Adam and the
proposed AdamSSM algorithms.

Convergence of the above algorithm directly

follows from Theorem 5.2. However, further studies

are needed to validate the efficacy of this optimizer

compared to the existing optimizers. In this work,

we modified the transfer function only for the second

moment estimate of the gradients. The idea can be

extended to modifying the transfer function for the first

moment estimate as well. Additionally, other input

functions ψ that satisfy Assumption 3.3 can be explored

for developing potentially better optimizers. In this work, we have analyzed asymptotic

convergence. Another direction of work is characterizing the (finite-time) rate of convergence.

154

Figure 5.11: Second raw moment
estimate of gradient along dimension
i = 1728, for image classification task
on CIFAR-10 dataset with VGG11
architecture trained with Adam and the
proposed AdamSSM algorithms.

Recall that the transfer function from the squared

gradient to νi(t) is b2(s+b2)

s2+(2b2+b3)s+b22
for the proposed

AdamSSM algorithm and b2
s+b2

for the Adam algorithm.

So, the two poles and the single zero of this transfer

function depend on the parameter values b2, b3, where

b3 is an additional parameter compared to Adam. By

tuning the hyperparameters b2, b3 we create a signal νi(t)

that is less impacted by the noise than the input signal of

the squared gradient. The transfer functions for both the

Adam and AdamSSM methods act as a low-pass filter on the squared gradient input to the output

νi(t). So, in other words, by properly tuning the hyperparameters b2, b3, the AdamSSM algorithm

attenuates frequency-specific noise in the squared gradient during the training better than Adam,

which leads to improved generalization. We numerically validate our above hypothesis on the

image classification task with VGG11. In Figure 5.10-5.11, we have plotted the curves of νi(t)

when the VGG11 model is trained with Adam and AdamSSM algorithms, along two different

dimensions i = 811, 1728. The output signal νi(t) increases initially, albeit with larger damping

for AdamSSM due to the addition of an LHP pole compared to Adam. After the initial rise, νi(t)

in the Adam method fluctuates much more throughout the stable part of the signal. It implies

that the output νi(t) of Adam is significantly more impacted by the noise, which supports our

hypothesis that the AdamSSM algorithm supports better generalization by being more robust to

noisy signals.

155

Chapter 6: Distributed Beamforming

6.1 Introduction

Distributed beamforming involves coordination among a group of autonomous transmitting

antennas, referred to as beamforming agents, in such a manner that constructive interference

of the transmitted signals occurs at the desired receiver locations while ensuring destructive

interference at the unintended receivers. The major research trends in distributed beamforming

problem over the past two decades has been classified in the survey [166]. In this chapter, we

consider the problem of beampattern matching, where the beamforming agents aim to optimize

the phase and amplitude of the transmitted signals to achieve the desired beampattern at the

target receivers. The desired beampattern comprises target beams and nulls at specific locations,

enabling directed communication links.

6.1.1 Related works

The majority of research works in optimizing beampattern aims at forming nulls at unintended

directions [167–169] or maximizing the beampattern directivity [170–172]. An extensive literature

of related works can be found in [166]. Another class of works consider simultaneous beamforming

and nullforming [173–177] which utilize the periodic feedback from the beam and null receivers.

156

However, most of the aforementioned works aim to maximize the gain or steering nulls at specific

locations rather than match the radiation pattern. The problem of matching the radiation pattern

is more general than the above objectives, since it offers precise control over the desired power

level at multiple directions and inherently includes simultaneous beamforming and nullforming at

specified locations in a constructive manner. Moreover, formulation of the beampattern matching

problem as an optimization problem offers ability to include additional constraints, such as

limited transmit power of the agents, or derivative constraints [178] when the receiver locations

are not precisely known.

Recent methodologies in [179–183] have considered distributively matching the desired

beampattern. The algorithms in [179–181] use feedback from the receivers. The beamforming

techniques in [182, 183] focus on selecting a subset of active transmitters, also known as sparse

beamforming. In this chapter, we consider the number of transmitting agents to be fixed, and that

the agents are stationary. However, our proposed algorithm can potentially be combined with the

optimal antenna placement and the sparse beamforming approach in [182] and will be explored

in our future work. The existing algorithms in [181, 184] do not assume a channel model for

beamforming. A probabilistic channel prediction and its integration technique with path planning

for mobile beamforming agents have been proposed in [184]. However, the objective in [184]

is energy efficiency in transmitting power and movement of the agents, rather than matching the

desired beampattern. Unlike [181], our proposed algorithm does not require feedback from any

of the receivers. Most recently, a receiver-feedback free approach has been proposed in [185].

Unlike [185], we do not assume line-of-sight channels between receivers and the beamforming

agents.

157

6.1.2 Summary of our contributions

To distributively solve the problem of beampattern matching at a set of desired receiver

locations, we propose a novel algorithm, coined Iteratively Pre-Conditioned Gradient-descent

for Distributed Beamforming (IPG-DB). The proposed IPG-DB algorithm works in a distributed

server-agent architecture and is built on top of the classical gradient-descent algorithm. The

server can be an auxiliary node, acting as a coordinator between the agents. Our key findings are

summarized below.

• Our proposed algorithm achieves significant acceleration over the recently proposed gradient-

based distributed beamforming algorithm in [180]. This feature enables the proposed

algorithm to be potentially incorporated in the alternate optimization framework [180,182]

for the joint optimization of position, sparsity, and transmitted signal.

• Unlike most of the existing works on distributed beampattern matching with a fixed set of

transmitting agents [179–181], our algorithm does not require feedback from any of the

receivers.

• Unlike the existing works [179–181], our algorithm does not require information on channel

fading parameters, thereby demonstrating robustness.

• Through simulations on a synthetic problem and a simulated urban environment of Los

Angeles, we validate the aforementioned claims of our proposed beamforming algorithm.

158

6.2 Problem formulation

Given a fixed number n of beamforming agents, the objective is to match the desired

beampattern at certain locations in space. Each agent is equipped with a transmitting antenna.

Let there be s number of samples, where each sample i ∈ {1, . . . , s} represents the location of

the receiver in two-dimensional polar coordinates (ρi, θi) and the amplitude of the desired array

factor fi at that receiver. Note that fi can be a null, and therefore, the considered problem includes

simultaneous beamforming and nullforming. We assume that the agents’ locations are fixed, and

each agent m ∈ {1, . . . , n} is located at (xm, ym) ∈ R2 in Cartesian co-ordinates. We let the

Euclidean distance between an agent m and the receiver i be denoted by

di,m =

∥∥∥∥∥∥∥∥∥

xm
ym

− ρi

cos θi
sin θi


∥∥∥∥∥∥∥∥∥ . (6.1)

Throughout this chapter, the system is assumed synchronous. Carrier frequency and phase

synchronization of the agents can be done prior to deploying the optimization algorithm for

solving the beamforming problem [166], and is not in the scope of this work. We let k denote the

synchronized carrier wave number. Then, the array factor constructed by the agents at receiver

i ∈ {1, . . . , s} is given by [180]

AFi =
n∑

m=1

hi,mIm exp jk (xm cos θi + ym sin θi), (6.2)

where Im ∈ C is a complex number that represents the excitation signal of the agent m and

hi,m ∈ C is a complex number that represents the channel gain from agent m to receiver i. The

159

excitation signal of agent m with amplitude am and phase αm is given by

Im = am exp jαm. (6.3)

We model the channel gain as

hi,m =
γi,m
di,m

exp jkdi,m, (6.4)

where γi,m ∈ C represents the unknown multipath fading between agent m and receiver i. Upon

substituting from (6.3)-(6.4) into (6.2) we obtain that

(6.5)AFi =
n∑

m=1

amγi,m
di,m

exp j
(
αm + kxm cos θi + kym sin θi + kdi,m

)
.

We have assumed there is no mutual coupling between the agents. The agents collaborate to

construct the desired beampattern at all the receivers i ∈ {1, . . . , s}. Specifically, each agentm ∈

{1, . . . , n} controls their excitation amplitude am and phase αm with the aim that the combined

array factor |AFi| at the receiver i is as close as possible to fi. The aforementioned beamforming

task of the agents can be formulated as the following optimization problem [180]

(a∗m, α
∗
m)

n
m=1 = arg min

(am,αm)nm=1

s∑
i=1

wi

2

∥∥fi − |AFi|
∥∥2 , (6.6)

so that the sum-of-squares error between the desired and constructed array factor amplitude at

all the receivers is minimized. Here, wi is a penalty weight assigned to the cost at receiver i ∈

{1, . . . , s}, which characterize the relative importance of receiver i. Note that the cost function

in (6.6) is non-convex with respect to the optimization variables (a∗m, α
∗
m)

n
m=1. We assume that

160

each agent knows the synchronized carrier frequency, its own location (xm, ym), the location of

the receivers {(ρi, θi), i ∈ {1, . . . , s}}, and the desired amplitudes {fi, i ∈ {1, . . . , s}}.

Recently proposed approaches in [179–181] utilize the gradient-descent (GD) method for

solving the beamforming problem (6.6). However, It is known that convergence rate of classical

gradient-descent method is fundamentally limited by the conditioning of the problem (6.6) [22].

The larger the condition number of the Hessian of the cost function in (6.6), slower is the

convergence, and vice-versa. Additionally, these algorithms in [179–181] depend on feedback

from the receivers. Even if feedback from the intended receivers are available, it is not likely to

be available from the unwanted receivers where the nulls are formed.

In the next section, we propose our IPG-DB algorithm for addressing the above challenges

in distributively solving the beamforming problem defined by (6.6). Specifically, the proposed

algorithm is significantly robust to the condition number of (6.6) and does not require feedback

from the receivers.

6.3 Proposed algorithm: Iteratively Pre-conditioned Gradient-descent for

Distributed Beamforming

We consider a network architecture among the beamforming agents where the agents can

communicate bidirectionally with a central server, as shown in Fig. 2.1. However, there is no

inter-agent communication. The server can be an auxiliary node and it acts as a coordinator

between the agents. Specifically, the agents collaborate with the server and exchange certain

information with it to solve the optimization problem (6.6) using our proposed algorithm. However,

the agents never share its excitation amplitude and phase, thereby maintaining autonomy. Solving

161

the problem (6.6) in the above architecture eliminates the necessity of feedback from the receivers,

which will be evident from the algorithm described below. Henceforth, we will refer to the above-

described system architecture as server-agent network.

We propose the following algorithm, coined Iteratively Pre-conditioned Gradient-descent

for Distributed Beamforming (IPG-DB), for solving (6.6). Note that the idea of iterative pre-

conditioning was proposed in Section 4.2 for solving convex empirical risk optimization problem

in server-agent framework. However, the algorithm in Section 4.2 does not trivially apply to (6.6)

due to the following reasons. First, as opposed to the data points being distributed in Section 4.2,

the estimates are distributed in our problem (6.6). The proposed algorithm is built on top of

the classical gradient-descent (GD) method. In GD, each agent updates its amplitude and phase

estimates using the corresponding row of the gradient vector [180]. The iterative pre-conditioning

technique in Section 4.2 pre-multiplies the gradient vector with an iterative matrix. The beamforming

agents, in this case, update its estimates using the corresponding row of the product of pre-

conditioning matrix and the gradient vector. However, computing any row of this matrix-vector

product requires access to the full gradient vector, unlike the GD method. Thus, the algorithm in

Section 4.2 does not trivially apply to (6.6) in distributed settings. Second, the problem (6.6) is

non-convex, unlike Section 4.2.

To provide the motivation behind using the idea of iterative pre-conditioning in solving

the beamforming problem, first, we consider the special case of strongly convex cost functions.

Then, we generalize it to our problem (6.6), where the cost is non-convex. The well-known

Newton’s method [22] can be restated as a pre-conditioned gradient-descent method x(t + 1) =

x(t)− δ(t)K(t)g(t) wherein the pre-conditioner matrix K(t) is the inverse Hessian H(t)−1, and

hence, iteration-dependent. Here, x(t) denotes the estimate of a minimum point at iteration t

162

and g(t) denotes the cost’s gradient evaluated at x(t). Although Newton’s method converges fast

at a quadratic rate, matrix inversion is vulnerable to process noise. We note that, practically,

the beamforming problem is always impacted by channel noise. Now, to mitigate the effect

of process noise, instead of computing H(t)−1 at each iteration t, we proposed a scheme in

Section 4.2 wherein the pre-conditioner matrix K(t) is updated in such a way that it eventually

converges to H(t)−1. Specifically, it used a fixed-point iteration on the pre-conditioning matrix

K(t+1) = K(t)− ϵ(t)
(
H(t)K(t)− I

)
, where I denotes the identity matrix. For small enough

step-size α(t), the pre-conditioner matrix K(t) in the above equation converges to the fixed point

K∗ which satisfies H∗K∗ = I , i.e., K∗ = H−1
∗ . As a result, the algorithm eventually converges to

Newton’s method and has superlinear convergence rate. However, the cost in (6.6) is non-convex.

Therefore, the Hessian matrix in the beamforming problem is not necessarily invertible. Thus, in

our proposed IPG-DB algorithm to solve the beamforming problem, we introduce a stabilization

parameter β(t) > −λmin(H(t)), where λmin(·) denotes the smallest eigenvalue of a matrix. The

idea is to drive the sequence of the iterative pre-conditioning matrices towards an “approximate

inverse Hessian”
(
H(t) + β(t)I

)−1. In other words, for the non-convex beamforming problem,

the fixed point K∗ in the iteration of the pre-conditioning matrices satisfies H∗K∗ + β∗K∗ = I .

Herein lies the intuition behind the idea of iterative pre-conditioning and our extension of it to

solve the non-convex beamforming problem (6.6).

Below, we elaborate on how our aforementioned extension of the original iterative pre-

conditioning scheme is applied to solve the beamforming problem in (6.6). The proposed IPG-

DB algorithm is iterative, wherein each agent maintains an estimate of its own optimum amplitude

and phase defined by (6.6) and updates it iteratively using the gradient of the cost function. To be

precise, for each iteration t = 0, 1, . . ., let am(t) ∈ R and αm(t) ∈ R denote the estimate of a∗m

163

and α∗
m, respectively, maintained by agent m ∈ {1, . . . , n}. Each of the initial estimates am(0)

and αm(0) may be chosen arbitrarily from the search space R. In each iteration t ∈ {0, 1, . . .},

the server maintains a pre-conditioner matrix K(t) ∈ R2n×2n. The initial pre-conditioner matrix

K(0) is chosen arbitrarily from R2n×2n. Let, x(t) =
[
a1(t), . . . , an(t), α1(t), . . . , αn(t)

]T denote

the combined 2n-dimensional estimate of a minimum point in (6.6). Let, g(t) andH((t) respectively

denote the gradient and the Hessian of the cost function defined in (6.6), evaluated at the current

estimate x(t). Then, in the centralized settings, the extension of the iterative pre-conditioning

scheme in solving (6.6) results in the following two updates at each iteration t. First, the current

estimate x(t) is updated to

x(t+ 1) = x(t)− δK(t)g(t), (6.7)

where δ > 0 is the step-size. Next, the current pre-conditioning matrix K(t) is updated to

K(t+ 1) = K(t)− ϵ
(
H(t)K(t) + βK(t)− I

)
, (6.8)

where ϵ > 0 is an algorithm parameter. In order to implement the steps (6.7)-(6.8) in a distributed

manner, each agent m ∈ {1, . . . , n} requires the product of its corresponding m-th row of the

matrix K(t) and the full gradient vector g(t). However, in the distributed settings, an agent does

not have access to the full gradient vector, as the full gradient vector depends on the estimated

amplitude and phase of all n agents. So, implementation of the centralized steps (6.7)-(6.8) in the

distributed settings is not trivial. In the next subsection, we present the distributed counterpart

of our proposed solution in (6.7)-(6.8), which is the IPG-DB algorithm. Specifically, for each

164

iteration t, the IPG-DB algorithm steps are as follows.

6.3.1 Steps in each iteration t ≥ 0

In each iteration t, the IPG-DB algorithm comprises of five steps, executed collaboratively

by the server and the agents. Before initiating the iterative process, the server chooses three non-

negative scalar real-valued parameters ϵ, δ, β and broadcasts them along with the matrix K(0) to

all the agents.

• Step 1 (local to each agent): For each agent m ∈ {1, . . . , n} and each receiver i ∈

{1, . . . , s}, we define

ζi,m = kxm cos θi + kym sin θi + kdi,m. (6.9)

For each receiver i ∈ {1, . . . , s}, each agent m ∈ {1, . . . , n} computes two real-valued

scalars ui,m(t) and vi,m(t) such that

ui,m(t) =
1

di,m
cos
(
αm(t) + ζi,m

)
, (6.10)

vi,m(t) =
1

di,m
sin
(
αm(t) + ζi,m

)
, (6.11)

and a complex-valued scalar yi,m(t) such that

yi,m(t) = am(t)
(
ui,m(t) + jvi,m(t)

)
. (6.12)

165

• Step 2 (agents → server): Each agent m ∈ {1, . . . , n} sends the set of scalars

{ui,m(t), vi,m(t), yi,m(t), i ∈ {1, . . . , s}}

to the server. We let kj(t) denote the j-th row of the matrix K(t), for j ∈ {1, . . . , 2n}. If

t > 0, then each agent m ∈ {1, . . . , n} also sends the updated m-th and the (m + n)-th

row of the matrix K(t), i.e., km(t) and km+n(t) to the server.

• Step 3 (at the server): The server computes the complex-valued scalar ys(t) =
∑n

m=1 yi,m(t),

for each i ∈ {1, . . . , s}. Note that, ys(t) is the constructed array factor at receiver i in

absence of multipath fading.

• Step 4 (server → agents): For each i ∈ {1, . . . , s}, let

ui(t) =
[
um,1(t), . . . , um,n(t)

]T
, vi(t) =

[
vm,1(t), . . . , vm,n(t)

]T
, yi(t) =

[
ym,1(t), . . . , ym,n(t)

]T
.

The server sends the set of scalars {ys(t), i ∈ {1, . . . , s}}, the set of n-dimensional vectors

{ui(t), vi(t), yi(t), i ∈ {1, . . . , s}}, and the matrix K(t) to each agent m ∈ {1, . . . , n}.

• Step 5 (local to each agent): We let ℜ (·) and ℑ (·) respectively denote the real and

imaginary component of a complex number. Each agent m ∈ {1, . . . , n} updates its

166

amplitude and phase estimates, am(t) and αm(t), according to

am(t+ 1) = am(t)−δkm(t)
s∑

i=1

wi

∣∣ys(t)∣∣− fi∣∣ys(t)∣∣
×
(
ℜ
(
ys(t)

)
ui(t) + ℑ

(
ys(t)

)
vi(t)

)
, (6.13)

αm(t+ 1) = αm(t)−δkm+n(t)
s∑

i=1

wi

∣∣ys(t)∣∣− fi∣∣ys(t)∣∣
×
(
−ℜ

(
ys(t)

)
ℑ
(
yi(t)

)
+ ℑ

(
ys(t)

)
ℜ
(
yi(t)

))
. (6.14)

The above two equations, combined for all agents n, is the distributed implementation of

the estimate update equation (6.7) at each agent. Specifically, the summation terms on the

R.H.S. above is equal to the gradient of the aggregate cost (6.6) with respect to the current

estimates am(t) and αm(t) of each agent m.

In the same step, each agent m ∈ {1, . . . , n} updates the m-th and the (m + n)-th row of

the matrix K(t) as follows. We let I2n denote the (2n × 2n)-dimensional identity matrix.

We let Hj(t) denote the j-th row of the Hessian matrix of the cost defined in (6.6). Then,

kj(t+ 1) = kj(t)− ϵ
(
Hj(t)K(t) + βkj(t)− I2n,j

)
, (6.15)

for each column j ∈ {m,m + n}. Here, I2n,j denote the j-th row of the (2n × 2n)-

dimensional identity matrix. Note that, Hm(t) and Hm+n(t) can be locally computed by

each agentm. Thus, (6.15) above, combined for all agents n, is the distributed implementation

of the pre-conditioner update (6.8).

167

6.4 Experimental results

In this section, we present simulation results comparing the proposed IPG-DB algorithm

with the existing gradient-descent (GD) method, such as in [180].

Synthetic environment: First, we consider a synthetic environment. There are n = 19

Figure 6.1: Cartesian coordinates of
n = 19 beamforming agents in the
synthetic problem.

beamforming agents, with fixed positions in two-

dimensional space as shown in Figure 6.1. s = 49

receivers are located at a radial distance ρ = 10λ

from the origin, uniformly spaced along the angular

direction θ from 0 to 2π radians. The desired array

factor amplitudes at these 49 receivers are shown by

the dashed line in Figure 6.2 in decibels (dB). The

carrier frequency is 40 MHz. We apply the classical GD and the proposed IPG-DB algorithm

for solving this beamforming problem. The agents’ amplitude and phase estimates in both of

these algorithms are identically initialized as am(0) = 10 and αm(0) = 10 for each agent m.

For an unbiased comparison, the parameters in both algorithms are set at their optimum values

so that the individual algorithms attains its best convergence rate. Specifically, the step-size

parameter δ(t) = 1
λmax(H(t))

for GD method, where λmax(·) denotes the largest eigenvalue of a

square matrix. For IPG-DB, we set the parameters ϵ(t) = 1
λmax(H(t))+β

, β = 0.1, and δ = 1.

We artificially add narrow-band fading in each of the channels. The fading parameter γm,i is

generated independently at each iteration of the algorithm from the Rayleigh distribution. Note

that the algorithms do not use the value of γm,i.

168

Figure 6.2: Array factors constructed
by the GD algorithm for solving the
synthetic beamforming problem, after
different number of iterations t.

The beampatterns generated by the GD and

the IPG-DB algorithms are compared in Figure 6.2-

6.3. We observe that the IPG-Db algorithm converges

to a neighborhood of the desired pattern within a

significantly smaller number of iterations t than the GD

method.

Los Angeles urban environment: Next, we consider a realistic urban environment in a

section of Los Angeles (ref. Fig. 6.4). There are n = 5 agents and s = 3 receivers, each with

their fixed positions in two-dimensional space as shown in Figure 6.6. The desired array factor

amplitudes at these 3 receivers are shown by the blue colored bars in Figure 6.7. Two of them are

client receivers, indicated in brown, and the third is a null receiver, indicated in red. The carrier

frequency is 40 MHz. We apply the proposed IPG-DB algorithm for solving this problem.

Figure 6.3: Array factors {|AFi| , i =
1, . . . , 49} constructed by the IPG-
DB algorithm for solving the synthetic
beamforming problem, after different
number of iterations t.

The agents’ amplitude and phase estimates are

initialized randomly from the uniform distribution in

(0, 10). The parameters ϵ(t) and δ are chosen as before.

The third parameter β is set initially at 0 and reduced

to 0.1 after 3000 iterations. To test the performance of

IPG in this problem, we use a dataset generated from

physics-based simulations using EM.CUBE, provided

by the U.S. Army Research Laboratory (ref. Fig. 6.5).

After 25000 iterations of the proposed IPG-DB algorithm, the array factors at each of the three

receivers are shown in Fig. 6.7. We observe that the obtained array factors using IPG-DB are

close to the desired array factor values.

169

Figure 6.5: CAD model of the section of Los Angeles from Figure 6.4.

6.5 Summary

Figure 6.4: A section of Los
Angeles used as the environment
for beamforming problem.

We have considered the multi-agent beamforming

problem with the agents’ objective being able to match

the desired beampattern, which includes target beams

at intended receivers and nulls at unintended receivers.

Majority of the existing beamforming approaches rely

on feedback from the receivers. We have proposed a

distributed iterative pre-conditioning technique in the

server-agent architecture of the beamforming agents.

The proposed algorithm is robust to the condition

number of the problem and noisy channels, and hence, can reach a satisfactory neighborhood of

the desired pattern in a fewer number of iterations. Future work involves incorporating channel

estimates or feedback in the proposed algorithm to further improve its robustness against fading

and utilize the proposed algorithm in the joint optimization framework of position and excitation

of the agents.

170

Figure 6.6: Cartesian coordinates of n = 5 beamforming agents in the LA urban environment
problem.

Figure 6.7: Array factors for the electric field along the z-direction constructed by the IPG-DB
algorithm for solving the beamforming problem in LA urban environment, initially (t = 0) and
after t = 25000 iterations.

171

Chapter 7: Nonlinear Observer

7.1 Introduction

We consider the classical observer design problem for a nonlinear discrete-time system

with sampled noisy measurements. Specifically, let xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, and ηk ∈ Rp

respectively denote the state of the dynamical system, the input to the system, the observed

measurement or output of the system, and the measurement noise vector at the kth sampling

instant. Then, for each k ∈ N, the dynamical system is described in the state-space form

xk+1 = F (xk, uk), (7.1)

yk = h(xk) + ηk, (7.2)

where the state-dynamics function F : (Rn,Rm) → Rn and the output function h : Rn → Rp are

nonlinear. For each k ≥ N , we let Yk = [yk−N+1, . . . , yk]
T ∈ RNp andUk = [uk−N+1, . . . , uk−1]

T ∈

R(N−1)m denote the column vectors of the past N ∈ N consecutive measurements and inputs,

respectively, at the kth sampling instant. In general, the number p of measured variables or

sensors is less than the state dimension (n), due to limited budget or physical constraints, leading

to the natural question of estimating the full state vector from the limited dimension of measurements,

which is essentially the observer design problem. In other words, our aim is to design a discrete-

time dynamical system to estimate the sampled system trajectory using a moving window of the

pastN measurements and inputs so that the output x̂k of the designed system is an estimate of the

172

system states xk in the sense that limk→∞∥xk − x̂k∥ = 0. We assume that the functions F and

h are known. Such an observer is required in several applications including control, monitoring,

reconstruction, and modeling. While observers are essential in various applications, constructing

a nonlinear observer is in general challenging.

7.1.1 Prior works

Generally speaking, the existing nonlinear observers belongs to the class of extended Luenberger

observers with state-dependent gains [186]. Depending on the mathematical technique used in

observer formulation, the existing observers can be categorized into several classes. We briefly

review the classes and the notable works in each class below.

The exact linearization-based observers [187–190] use an invertible functional to transform

the observer into linear coordinates. The advantage of this approach is that the coefficient of

exponential rate in the error can be tuned constructively. However, a key step in this approach

is solving linear functional equations in discrete-time or linear partial differential equations in

continuous-time. The proposed observers in this category approximately solve such equations

using a power-series solution, truncating upto certain order of terms. Thus, the computational

complexity of these observers increases with the dimension n and the truncation order. Our

proposed observer does not rely on the Taylor series approximation.

A majority of the existing observers [191–201] are built for the system (7.1)-(7.2) having

some special structure in F and h. For example, the observers proposed in [194, 199–201]

require (7.1)-(7.2) in the observer canonical form. While this form does not lose generality in

the case of observable linear systems, for nonlinear systems only input-affine systems have been

shown to be only the locally equivalent to observer canonical form by a change of coordinates [202].

173

The observers in [197] require the output mapping h to be linear and assume the nonlinearity in F

to be either quadratically bounded or one-sided Lipschitz. The observers in [191,192,198] require

the output mapping h to be linear. The observers in [189,193,195,196] require the linearity in F

to be upper-triangular and h to be linear. Compared to these vast literature, we do not restrict our

observer to any particular structures in F, h.

Another class is the high-gain observers [200,203–206] which involves computing a robust

inverse of the nonlinear observability matrix. The observer in [200] requires (7.1)-(7.2) to be in

the observer canonical form. The observers in [206] combine the high-gain formulation in [203]

with a robust inversion strategy, without explicitly computing the inverse observability matrix.

However, [206] requires continuous-time measurements of the system. A unified framework

of high-gain observers for uncertain systems with continuous-time measurements is presented

in [205]. We use only sampled measurements (7.2), which is more practical. The qDES observer

framework developed in [207] in presence of measurement noise includes the aforementioned

exact linearization-based and high-gain observers among others. However, constructing a qDES

observer relies on choosing suitable storage and class K functions so that certain conditions are

satisfied [207].

Moving horizon estimation (MHE) techniques have also been used in constructing nonlinear

observers [208–211]. This class of observers minimizes a cost function at each step, where the

cost comprises an weighted error in estimating the measurements, an weighted error in state

estimation, and an approximate arrival cost summarizing the past history. However, for general

nonlinear dynamics, no constructive method for choosing the arrival cost is known [208]. A

quadratic arrival cost is proposed in [210], in which case the stability of the observer depends

on the choice of the corresponding weight matrix. The sufficient condition in [210] on choosing

174

the weight matrix to guarantee stability is not constructive. The one-step ahead MHE algorithm

in [210] requires computing the inverse of the Hessian at each sampling instant, which is prone

to instability in presence of measurement noise. We do not compute any matrix inverse in our

algorithm. Additionally, the MHE observers in [209,210] solve a nonlinear programming (NLP)

at each step, and hence, the efficiency and computational effort of the observer depends on the

chosen NLP solver. Thus, instead of solving the full NLP at each step, three solvers based on

gradient-descent (GMHE), conjugate gradient (CGMHE), and Newton’s method (NMHE) are

proposed in [211], and shown to have much less computational cost than a full NLP optimizer, at

the price of slight decay in performance.

Our proposed observer belongs to the class of Newton and approximate Newton observers

[212–215]. Based on the Newton observer in [212], the finite-difference approximation-based

observer in [213] and the GMRES-based observer in [214] are proposed for the case when,

instead of (7.1), the continuous-time dynamics is known. A Broyden’s method-based quasi-

Newton observer has been proposed in [212]. However, these Newton-type observers result in

large steady-state error, even instability, when subjected to measurement noise. We propose an

approximate Newton observer which is more robust to measurement noise than these methods.

When, instead of (7.1), the continuous-time dynamics is known, an observer based on

Carleman linearization-based discretization of the continuous time-dynamics is proposed in [216].

As shown in [216], the performance of the observer improves with the order of truncation in

the discretization, but at the expense of computing higher order coefficients which adds to the

computational cost. In our method, when the continuous-time dynamics is known, we use the

simple first-order Euler discretization.

Among other related works, the observer in [217] is a partial state observer. The differential-

175

algebraic equation-based observer in [218], the observability function-based observer in [219],

and the observer in [220] require continuous-time measurements of the system. We use only

sampled measurements, which is more practical. An observer for nonlinear discrete-time dynamics

based on linear parameter varying optimization is proposed in [221]. The extended Kalman

filter (EKF) [222] has also been implemented in practice for nonlinear state estimation in several

applications. However, being reliant on linearization, the EKF has serious difficulties when the

dynamics F is strongly nonlinear [186].

7.1.2 Summary of our contributions

While there exists a vast literature on nonlinear observers for (7.1)-(7.2), the majority of

them consider an Utopian setting where the system is noise-free. The performance of most of the

aforementioned observers in presence of measurement noise has not been investigated. Process

and measurement noise in the system (7.1)-(7.2) have been considered in the observers in [197,

209]. However, the observer in [197] is only applicable to a certain structure in (7.1)-(7.2), as

mentioned earlier, and the limitation of MHE observer in [209] is discussed in Section 7.1.1.

We propose an observer for estimating the full states of the discrete-time nonlinear system

defined by (7.1)-(7.2), from a moving window of the past N measurements and inputs. Our

observer is built upon the centralized counterpart of the iteratively pre-conditioned gradient-

descent (IPG) algorithm that was proposed for solving distributed optimization problems in

Section 4.2. The proposed observer leverages the robustness of the general-purpose IPG optimizer

towards system noise, leading to a Newton-type nonlinear observer that is robust to measurement

noise wk in (7.2). This observer does not require any specific structure in the nonlinear functions

F, h. Our observer is developed in Section 7.3. The relationship between the proposed observer

176

and EKF is discussed in Section 7.3.3. The empirical results, in Section 7.4, support our hypothesis

that the proposed observer has an improved robustness against measurement noise than the well-

known nonlinear observers that are applicable to general nonlinear functions F, h.

7.2 Problem formulation

To mathematically formulate the observer problem in [212], we introduce the following

notation. For simplicity, we define F uk(xk) = F (xk, uk) for each k ∈ N and let ◦ denote

the composition of functions. Recall the definition of the past N measurement vector Yk =

[yk−N+1, . . . , yk]
T ∈ RNp from Section 2.1. Then, from (7.1)-(7.2), for each k ≥ N ,

Yk =


h(xk−N+1)

...

h ◦ F uk−1 ◦ . . . ◦ F uk−N+1(xk−N+1)


+


ηk−N+1

...

ηk


.

We let HUk(xk−N+1) and Wk respectively denote the first and the second vector on the R.H.S.

above, and obtain that

Yk = HUk(xk−N+1) +Wk, k ≥ N. (7.3)

Here, HUk : Rn → RNp is known as the observability function of (7.1)-(7.2). The observer

problem involves solving for xk−N+1 from the above set of nonlinear equations online, followed

by propagating the obtained solution of xk−N+1 forward by N sampling instants using the state-

dynamics F , defined in (7.1), to obtain an estimate of xk for each k ≥ N .

Newton observer [212] solves the above problem by solving the nonlinear equations (7.3)

at each sampling instant k ≥ N using the well-known Newton optimizer [22]. For each k ≥ N ,

it computes d + 1 estimates {wi
k ∈ Rn : i = 0, . . . , d} of xk−N+1. Specifically, the iterative

177

Newton optimizer is applied d times, i = 0, . . . , d− 1, for solving (7.3) at each k:

wi+1
k = wi

k −

(
∂HUk

∂w
(wi

k)

)† (
HUk(wi

k)− Yk

)
, (7.4)

where (·)† denotes the pseudo-inverse. From wd
k, after the end of the above d Newton iterations,

the estimate x̂k of the true state xk is obtained by forward propagating wd
k as

x̂k = F uk−1 ◦ . . . ◦ F uk−N+1(wd
k). (7.5)

The initial condition w0
k+1 for the Newton iterations in the next sampling period k + 1 is set by

propagating wd
k forward by one sampling instant as

w0
k+1 = F uk−N+1(wd

k). (7.6)

Under certain assumptions, if the parameter d is large enough and the initial estimate w0
N is

chosen close enough to the true initial state x1, then the Newton observer (7.4)-(7.6) exponentially

converges to xk when the measurement noise ηk = 0p [212]. However, in presence of measurement

noise, the Newton observer can display instability due to inverse computation in (7.4). In the next

section, we propose an observer based on the IPG method (ref. Section 4.2) to alleviate the impact

of measurement noise.

7.3 Proposed observer

First, we provide the intuition behind using the idea of iterative pre-conditioning (ref.

Section 4.2) in solving the observer problem. The well-known Newton’s method [22] solves the

minimization problem x∗ = argminx∈Rn f(x) of a strongly convex cost function f : Rn → R.

We let wi denote the estimate of a minimum point of f , maintained by Newton’s method at

178

iteration i ∈ N. We let gi and H i respectively denote the cost’s gradient and Hessian evaluated

at wi. The, Newton’s method can be restated as a pre-conditioned gradient-descent method

wi+1 = wi − δiKigi wherein the pre-conditioner matrix Ki is the inverse Hessian (H i)−1, and

hence, iteration-dependent. Although Newton’s method converges fast at a quadratic rate, matrix

inversion is vulnerable to system noise. Now, to mitigate the effect of noise, instead of computing

(H i)−1 at each iteration i, the IPG algorithm updates the pre-conditioner matrixKi in such a way

that it eventually converges to (H i)−1. Specifically, IPG uses a fixed-point iteration on the pre-

conditioning matrix Ki+1 = Ki − αi
(
H iKi − I

)
, where I denotes the identity matrix. For

small enough step-size αi, the pre-conditioner matrix Ki in the above equation converges to the

fixed point K∗ which satisfies H∗K∗ = I , i.e., K∗ = (H∗)−1. As a result, the IPG algorithm

eventually converges to the Newton’s method and has superlinear convergence rate. IPG does not

involve any inverse computation, and also the pre-conditioning matrix is not required to preserve

symmetric positive definiteness, unlike the quasi-Newton methods. Thus, IPG is robust against

system noise when compared with other general-purpose optimizers, as shown by simulation

in Section 4.3. Consequently, our proposed observer relies on the IPG algorithm to utilize its

robustness.

We propose to solve the noisy nonlinear equations (7.3) at each sampling instant k ≥ N

in the observer problem using an algorithm similar to the aforementioned IPG algorithm. In

other words, we replace the step (7.4) in Newton observer with an IPG-like iteration as presented

below.

The proposed observer is iterative, wherein at each sampling instant k ≥ N , it applies d

iterations indexed by i = 0, . . . , d− 1. At each iteration i and sampling instant k, it maintains an

n-dimensional estimate wi
k of the state xk−N+1, and an n-dimensional estimate x̂k of the actual

179

state xk, and an n × n-dimensional matrix Ki+1
k . Before initiating the observer, it chooses an

initial estimate w0
N ∈ Rn and an initial pre-conditioning matrix K0

N ∈ Rn×n. The algorithm

parameter d ∈ N is also chosen. At each k ≥ N , the observer comprises the following three

steps.

7.3.1 Steps in each sampling instant k ≥ N

Step-I: The observer executes d iterations to update the current estimate w0
k and the pre-

conditionerK0
k . Before initiating these iterations, two step-size sequences {αi, δi : i = 0, . . . , d−

1} are chosen. Their specific values are described in Section 7.3.2. At each iteration i =

0, . . . , d−1, the pre-conditioning matrixKi
k and the estimatewi

k are updated according to whether

the set of equations (7.3) is square. If n = Np, then in the same iteration i,

Ki+1
k = Ki

k − αi

(
∂HUk

∂w
(wi

k)K
i
k − I

)
, (7.7)

wi+1
k = wi

k − δiKi
k

(
HUk(wi

k)− Yk

)
, (7.8)

and, if n ̸= Np, then in the same iteration i,

Ki+1
k =Ki

k − αi

(∂HUk

∂w
(wi

k)

)T
∂HUk

∂w
(wi

k)K
i
k − I

, (7.9)

wi+1
k =wi

k − δiKi
k

(
∂HUk

∂w
(wi

k)

)T(
HUk(wi

k)− Yk

)
. (7.10)

Here I denotes the n× n-dimensional identity matrix.

Step-II: Using wd
k, after the end of the above d IPG iterations in Step-I, the estimate x̂k of

the true state xk is obtained by forward propagating (N − 1) times the vector wd
k , as described

in (7.5).

180

Step-III: The final step involves setting the initial estimate and the initial pre-conditioning

matrix for the next sampling instant, based on wd
k and Kd

k obtained after the d-th IPG iteration in

Step-I. Specifically, w0
k+1 is obtained according to (7.6) and K0

k+1 is set as

K0
k+1 = Kd

k . (7.11)

Note that the computational complexity of each iteration within the proposed observer is

same as the Newton observer.

7.3.2 Step-size selection

Now, we present our argument for choosing the step-sizes αi, δi in (7.9)-(7.10). Since

the proposed observer applies IPG iterations at each sampling instant k ≥ N , the observer’s

convergence depends on the convergence result of the IPG algorithm which we review below.

We again consider the minimization problem x∗ = argminx∈Rn f(x) of an l-strongly convex cost

function f : Rn → R. Note that the Hessian of f is then full-rank and invertible. We let η denote

the induced 2-norm η =
∥∥(H∗)−1

∥∥. Assume that the gradient and Hessian of f are Lipschitz

continuous with Lipschitz coefficient L and γ respectively. We define ρ = maxi≥0 1− αil. If the

initial estimate w0 and initial pre-conditioning matrix K0 are chosen such that ηγ
2

∥∥w0 − x∗
∥∥ +

L
∥∥K0 − (H∗)−1

∥∥ ≤ 1
2r

, where r ∈
(
1, 1

ρ

)
, αi < min

{
1
L
, r(i)(1−rρ)

2L

}
, and δi = 1, then the IPG

algorithm has a guaranteed local superlinear convergence 4.1. Here, (·)(i) denotes the i-th power.

We further note that 1
L
< r(i)(1−rρ)

2L
⇐⇒ r(i) > 2

1−rρ
. Since r > 1, there exists T < ∞ such

that above condition is necessarily satisfied for all i ≥ T . So, for all i ≥ T , the aforementioned

condition on αi is equivalent to αi < 1
L

.

Hence, to ensure that the IPG iterations (7.7)-(7.10) nested within each sampling instant

181

k ≥ N is a contraction, we select the step-size parameters as follows. Assume that the standard

uniform N -observability and the N -observability rank conditions hold true, as in the Newton

observer paper [212]. These conditions imply that the Jacobian ∂HUk

∂w
is full-rank, which is

assumed in [213, 214]. Note that, this is similar to the Hessian of f being full-rank in the

minimization problem of strongly convex cost f . As in [212–214], we assume that the Jacobian

is uniformly bounded, i.e.,
∥∥∥∂HUk

∂w

∥∥∥ ≤ L when the system of equations (7.3) is square, and∥∥∥∥(∂HUk

∂w

)T
∂HUk

∂w

∥∥∥∥ ≤ L otherwise. Owing to the mean value theorem, the Jacobian being bounded

by L implies that HUk is L-Lipschitz continuous. Again, this is similar to the the gradient of f

being Lipschitz in the minimization problem of f . Thus, following the convergence result of IPG

iterations as mentioned earlier, we set

αi <
1

L
, and δi = 1, i = 0, . . . , d− 1, (7.12)

in (7.7)-(7.10) of our proposed observer’s Step-I.

The convergence of the proposed observer can be proved following the proof sketch of

Newton observer [212, Theorem 3.2]. Following 4.1, at each k, the IPG iterations (7.7)-(7.10)

with the above step-size choices and local initialization as described above, solves the underlying

nonlinear equations (7.3) with superlinear convergence as d → ∞. So, the idea is to find a

minimum number of nested IPG iterations dmin within each k, so that F applied to the final

estimatewd
k after d iterations (ref. (7.6)) and

∥∥∥Kd
k − ∂HUk

∂w
(x̂k−N+1)

−1
∥∥∥ =

∥∥∥K0
k+1 − ∂HUk

∂w
(x̂k−N+1)

−1
∥∥∥

(ref. (7.11)) are such that
∥∥w0

k+1 − x̂k−N+2

∥∥ and
∥∥∥K0

k+1 − ∂HUk+1

∂w
(x̂k−N+2)

−1
∥∥∥ are small enough,

satisfying the local initial condition required to invoke 4.1 at the next instant (k+1). The detailed

proof based on this outline is left for a future work.

182

7.3.3 Relation with extended Kalman filter

As mentioned in Section 7.3.2, the IPG iteration for minimizing a strongly convex cost

function locally converges to the Newton’s method [22], when the initial estimate and the initial

pre-conditioning matrix are chosen close enough to the true mimimum point and the inverse

Hessian at the true minimum point 4.1. Similarly, the proposed observer (7.5)-(7.11) with stepsize

(7.12) is expected to converge to Newton observer as the sampling instant k → ∞ and the

iterations i→ ∞ within each k, ifw0
N andK0

N are suitably initialized, in the sense that limk,i→∞Ki
k =(

∂HUk

∂w
(xk−N+1)

)−1

, if n = Np, else limk,i→∞Ki
k

(
∂HUk

∂w
(wi

k)
)T

=
(

∂HUk

∂w
(xk−N+1)

)†
.

Now, the Newton observer with d = 1 iteration within each sampling instant has been

shown to be exactly the extended Kalman filter for the extended dynamical system

xk+1 = F (xk) + qζk, yk = HUk(xk) + ϵηk,

in the limit of measurement noise covariance ϵ → 0 [212]. The extended output mapping

HUk is defined in (7.3). So, we hypothesize that the proposed observer (7.5)-(7.11) with the

stepsize (7.12) and suitable range of w0
N and K0

N for the dynamical system (7.1)-(7.2) would

converge to the EKF with measurement noise covariance ϵ→ 0 for the above extended dynamical

system in the limit k, i → ∞. However, this relation with EKF will be confirmed by a rigorous

convergence analysis of the proposed observer, which is left for a future work.

7.4 Experimental results

In this section, we present empirical results, comparing robustness of the proposed IPG

observer against measurement noise with prominent observers that are applicable to general

nonlinear plant (7.1) with sampled measurements (7.2). Specifically, these observers are: Newton

183

observer [212], Broyden observer [212], Levenberg-Marquardt (LM) [22] optimizer-based observer,

Figure 7.1: State estimation error
of different observers for bio-
reactor system (7.13)-(7.16) with
measurement noise’s standard
deviation 0.01.

GMRES observer [214], extended Kalman filter

(EKF) [222], gradient-descent moving horizon estimation

(GMHE) [211], conjugate gradient-descent moving

horizon estimation (CGMHE) [211], Newton moving

horizon estimation (NMHE) [211], pseudo-Newton

observer [215], and linear parameter varying observer

(LPV) [221]. We consider two example systems where

we compare with all the aforementioned observers

except LPV. Then, in the third example, we compare our IPG observer with LPV observer only.

First, we consider the mixed-culture bio-reactor system from [212]. The system dynamics

in discrete-time is

x(1),k+1 = x(1),k + h

(
0.4S(x(1),k, x(2),k)

0.05 + S(x(1),k, x(2),k)
x(1),k − 0.3x(1),k

)
, (7.13)

x(2),k+1 = x(2),k + h

(
0.01S(x(1),k, x(2),k)x(2),k

0.05 + S(x(1),k, x(2),k)(0.02 + x(3),k)
− 0.3x(2),k

)
, (7.14)

x(3),k+1 = x(3),k + h
(
−0.5x(1),kx(3),k − 0.3x(3),k + 0.3× 0.0067

)
, (7.15)

yk = x(1),k + x(2),k + ηk, (7.16)

where S(x1, x2) = 2 − 5x1 − 6.667x2, sampling period h = 1, and the true initial state

[0.2, 0.02, 0.005]T . The measurement noise ηk is generated from zero mean Gaussian distribution

with two cases of standard deviation: 0.01 and 0.001. The Newton, IPG, LM, Broyden, GMRES,

GMHE, CGMHE, NMHE, and pseudo-Newton observers are implemented with the window

184

lengthN = 3 and initial state estimate [0.02, 0.2, 0.015]T , following the implementation in [212].

The number of nested iterations for Newton, IPG, LM, GMRES, NMHE, and pseudo-Newton is

d = 2 within each sampling instant. Since Broyden, GMHE, and CGMHE have per-iteration

complexity n times smaller than the other algorithms above, for Broyden, GMHE and CGMHE

Figure 7.2: State estimation error
of different observers for bio-
reactor system (7.13)-(7.16) with
measurement noise’s standard
deviation 0.01.

we set d = 6 for a fair amount of computational

effort at each sampling instant across all algorithms.

The initial pre-conditioner for IPG observer is set at

10−4I3, tuned from {10pI3 : p = −4,−3, . . . , 4} and

the parameter αi is set at a constant value 0.01, tuned

from {0.1, 0.01, 0.001}. The initial approximate of the

Hessian in Broyden observer is set at 0.1I3. In GMRES,

the parameters are set at ρ = 10−7 and η = 0.01. The

parameter α in GMHE and CGMHE is set at 0.001, tuned from {0.1, 0.01, 0.001}, for their

fastest convergence. The initial state estimate in EKF is same as the other algorithms above. The

initial error covariance and the process noise covariance matrix are both set at 0.1I3, tuned from

{10pI3 : p = −3, . . . , 3}. The measurement noise variance in EKF is set at 100, tuned from

{100, 10, 0.1, 0.01, 0.001}.

Next, we consider the inverted pendulum-cart system from [223]. The system dynamics in

185

discrete-time is

x(1),k+1 = x(1),k + hx(2),k, (7.17)

x(2),k+1 = x(2),k + h

(
100x2(4),k sin(x(3),k)− 25g sin(2x(3),k) + 5

2 + 50(1− cos(x(3),k)2

)
, (7.18)

x(3),k+1 = x(3),k + hx(4),k, (7.19)

x(4),k+1 = x(4),k − h

(
50x2(4),k sin(2x(3),k)− 52g sin(x(3),k) + 5 cos(x(3),k)

4 + 100(1− cos(x(3),k)2

)
, (7.20)

yk = [x(1),k, x(3),k]
T + ηk, (7.21)

where g = 9.8, h = 10−3, and the true initial state [0, 1, π, 1]T . The measurement noise ηk

is generated from zero mean Gaussian distribution with two cases of diagonal covariance with

Figure 7.3: State estimation error
of different observers for bio-
reactor system (7.13)-(7.16) with
measurement noise’s standard
deviation 0.001.

standard deviation: 0.1 and 0.01. Since the system

of equations (7.3) is not square in this case, the

Broyden, GMRES, and pseudo-Newton observers are

not applicable here. We implement Newton, IPG, LM,

GMHE, CGMHE, and NMHE with the window length

N = 4 and initial state estimate [5, 5, 5, 5]T . For

Newton, IPG, LM, and NMHE we set d = 2 within each

sampling instant. Since GMHE and CGMHE have per-

iteration complexity n times smaller than the other algorithms above, for GMHE and CGMHE

we set d = 8 for a fair amount of computational effort across all algorithms. The initial pre-

conditioner for IPG observer is set at 104I4, tuned from {10pI4 : p = −4,−3, . . . , 4} and the

parameter αi is set at a constant value 0.1, tuned from {0.1, 0.01, 0.001}. The parameter α in

186

GMHE and CGMHE is set at 0.1, tuned from {0.1, 0.01, 0.001}, for their fastest convergence.

The initial state estimate in EKF is same as the other algorithms above. The initial error covariance

and the process noise covariance matrix are both set at 0.1I4, tuned from {10pI4 : p = −3, . . . , 3}.

The measurement noise covariance matrix in EKF is set at 0.1I2, tuned from {10pI2 : p =

−3, . . . , 3}.

Figure 7.4: State estimation error
of different observers for bio-
reactor system (7.13)-(7.16) with
measurement noise’s standard
deviation 0.001.

We define the steady-state estimation error as the

mean of ∥xk − x̂k∥ over a period of 20 consecutive

sampling instants k after the observer has reached

steady-state. For the bio-reactor system, the steady-state

estimation errors of IPG observer are approximately

0.03 and 0.002, respectively for standard deviation 0.01

and 0.001 in the measurement noise, which are smaller

than the other observers except for GMHE and CGMHE

(ref. Fig. 7.1-7.4). The steady-state estimation errors of GMHE and CGMHE are approximately

0.001 and 0.0004, respectively for standard deviation 0.01 and 0.001 in the measurement noise.

However, with the identical computational load per sampling instant, GMHE and CGMHE attain

these steady-state errors much slower than the IPG observer (ref. Fig. 7.1-7.4). From Fig. 7.1 and

Fig. 7.3, the Newton, Broyden, and GMRES observers are highly unstable. We further report that

the NMHE and the pseudo-Newton observer diverge from the first sampling instant, and hence,

are not shown in the plots.

For the inverted pendulum-cart system, the steady-state estimation errors of IPG observer

are approximately 4 and 0.75, respectively for standard deviation 0.1 and 0.01 in the measurement

noise, which are smaller than the other observers except for GMHE and CGMHE (ref. Fig. 7.5-

187

7.8). The steady-state estimation errors of GMHE and CGMHE are approximately 2, for standard

Figure 7.5: State estimation error
of different observers for inverted
pendulum-cart system (7.17)-(7.21)
with measurement noise’s standard
deviation 0.1.

deviation 0.1 and 0.01 in the measurement noise.

Thus, IPG has a smaller steady-state error than all other

observers for standard deviation 0.01. For standard

deviation 0.1, only GMHE and CGMHE have a smaller

steady-state error than IPG observer. However, with

the identical computational load per sampling instant,

GMHE and CGMHE attain these steady-state errors

much slower than IPG (ref. Fig. 7.5-7.8). Also, NMHE

diverges from the first sampling instant, and hence, not shown in the plots.

Finally, to compare the IPG observer with LPV, we consider the system from the LPV

observer paper [221]:

ẋ(1) = exp(−x2(1)) log(1 + x2(1)) + 0.5
sin(x(2))

x(2)
, (7.22)

ẋ(2) = −
x(2)

1 + x2(2)
− 7

4

x3(2)
1 + x2(2)

− 0.1y3, (7.23)

y = x(1) + 0.5 sinx(1) + η, (7.24)

with initial state [0.5, 0.5]T . The measurement noise η is generated from zero mean Gaussian

distribution with standard deviation 0.1. The LPV observer for this system has been designed in

(48) of [221] in continuous-time, which we solve using ode45. To implement the IPG observer,

we discretize (7.22)-(7.24) with sampling period h = 1 and the IPG observer is built upon this

discretized model. Both the observers are initialized with the state estimate [3, 2]T . For IPG,

188

Figure 7.6: State estimation error of different observers for inverted pendulum-cart system (7.17)-
(7.21) with measurement noise’s standard deviation 0.01.

we choose N = 2 and d = 2. The initial pre-conditioner for IPG observer is set at 10−4I2,

tuned from {10pI2 : p = −4,−3, . . . , 4} and αi = 0.01, tuned from {0.1, 0.01, 0.001}. From

Fig. 7.10, the steady-state estimation error of LPV observer is approximately 0.13. From Fig. 7.9,

the steady-state estimation error of IPG observer is approximately 0.02, smaller than LPV.

7.5 Summary

Figure 7.7: State estimation error
of different observers for inverted
pendulum-cart system (7.17)-(7.21)
with measurement noise’s standard
deviation 0.1.

We proposed a Newton-type observer to address

the lack of robustness of Newton observer and its

existing variants for discrete-time systems with sampled

outputs. The proposed observer is based upon a non-

symmetric iteratively pre-conditioned gradient-descent

(IPG) technique, used for solving a set of nonlinear

equations at each sampling instant, leading to improved

robustness against measurement noise. The proposed

IPG observer applies to a wide class of nonlinear systems. We presented extensive empirical

results comparing the accuracy of our IPG observer with the prominent observers. Future work

involves rigorously obtaining an upper bound on the estimation error of IPG observer in presence

189

Figure 7.8: State estimation error of different observers for inverted pendulum-cart system (7.17)-
(7.21) with measurement noise’s standard deviation 0.01.

Figure 7.9: True system trajectory and its estimate for the system (7.22)-(7.24) obtained by IPG
observer.

of measurement noise and demonstrating the error’s convergence to zero in absence of noise.

Figure 7.10: True system trajectory and its estimate for the system (7.22)-(7.24) obtained by LPV
observer.

190

Chapter 8: Summary and Future Work

This dissertation aims to propose robust and efficient optimization algorithms for unconstrained

problems in centralized and distributed settings. The specific optimization problems that have

been considered can be classified into distributed optimization in server-agent architecture, decentralized

linear regression in peer-to-peer network architecture, and centralized non-convex optimization

with an emphasis on deep neural networks. Novel optimization schemes have been developed to

solve each of these three classes of problems. Additionally, a distributed beamforming algorithm

and a nonlinear observer have been proposed, built upon one of these proposed schemes.

8.1 Completed work

First, the Iteratively Pre-Conditioned Gradient-descent (IPG) algorithm has been proposed

for solving distributed convex optimization. The key to the IPG method is a particular iterative

pre-conditioning scheme, inspired by classical adaptive control laws, facilitating the IPG method

to be executed in distributed settings. For the class of distributed linear regression problems,

thorough theoretical and empirical studies have been presented, which entail comparing IPG with

existing distributed methods. Rigorous characterization of IPG’s robustness against system noise

of arbitrary sources and IPG’s extension (IPSG) to the stochastic settings have been presented,

along with the relevant empirical comparison with existing methods. Theoretical results have

191

been presented for a class of distributed convex cost functions, involving IPG’s local convergence

analysis and comparison with some of the existing distributed optimization methods. Empirical

results indicate IPG’s improved convergence rate and robustness against system noise compared

to some of the existing methods for distributed logistic regression.

Next, two locally pre-conditioned decentralized gradient-descent algorithms have been

proposed for solving systems of linear algebraic equations over peer-to-peer networks, respectively,

in the absence and presence of communication delay. The key to the proposed methods is

a particular decentralized pre-conditioning scheme. The presented theoretical results include

the proposed algorithms convergence guarantee and its robustness against system noise. The

theoretical analyses have been supported through experiments by applying the proposed algorithm

to develop a linear state predictor and comparing it with existing decentralized methods, including

the decentralized Kalman filter.

Finally, solving the centralized non-convex optimization problems has been addressed from

a state-space perspective. The contributions towards this class of problems are motivated by

the recent flourish of considering optimization algorithms as dynamical systems. The eventual

aim is to develop a generic framework encompassing the adaptive gradient-descent algorithms

used in machine learning. To reach this goal, a class of adaptive gradient-descent methods has

been proposed in a state-space framework. A well-known tool from adaptive control, Barbalat’s

lemma, is then utilized to analyze the proposed class of methods, leading to simple and intuitive

proofs of some prominent adaptive gradient-descent optimizers in the continuous-time domain.

It has been shown that the proof sketch build upon Barbalat’s lemma can also be applied for

analyzing other adaptive and accelerated gradient methods that are not included in the proposed

generic framework. The advantage of the state-space perspective for optimization algorithms is

192

not limited to analysis, which we show by proposing variants of some of the prominent adaptive

gradient methods in machine learning, by utilizing the concept of transfer functions. Benchmark

deep neural network experiments suggest that the proposed transfer function-based modification

contributes towards balancing smaller generalization errors and faster training, a dilemma in

applying adaptive methods to train machine learning models.

In addition to the aforementioned generic optimization problems, the distributed beamforming

problem and the nonlinear observer design problem have been considered, which can be formulated

as specific optimization problems. Built upon the aforementioned IPG optimizer, the IPG for

distributed beamforming (IPG-DB) and the IPG observer have been proposed, respectively to

solve these two problems, which leverages the iterative pre-conditioning technique’s robustness

against system noise. Experimental results have been presented, demonstrating the efficiency

of IPG-DB in contested uncertain environments and the robustness of IPG observer against

measurement noise.

8.2 Future work

For general convex cost functions, although the IPG method has been proved to have a

locally superior convergence rate than the existing first-order methods, it lacks a global “picture”.

Hence, the global convergence of the proposed IPG method will be addressed in future. This will

help in a complete comparison with the existing methods, including the classes of nonlinear

conjugate gradient, Newton and quasi-Newton methods with line-search, Levenberg–Marquardt

methods, and the recent stochastic quasi-Newton methods. While the literature on quasi-Newton

methods is vast, only a few have formally addressed robustness against process noise. Most

193

importantly, Newton’s method and the quasi-Newton methods are not reliable in the presence of

uncertainties, as shown in Section 4.3. Sufficient conditions for local quadratic convergence of

Newton’s method executed on finite precision machines and local linear convergence of a class

of quasi-Newton method satisfying a certain deterioration condition have been presented in [97]

and [98]. The analysis of BFGS in [99] assumes progressively diminishing noise. [100], and the

most recent work [101] has proposed noise-tolerant variations of the BFGS method, assuming

that an estimate of the noise is known. In comparison, the IPG algorithm will be the same in

deterministic and noisy settings, and would not require any noise estimate. Instead of presenting

sufficient condition for convergence in the presence of noise, IPG’s robustness against bounded

noise will be characterized.

An immediate research direction from the distributed optimization in server-agent settings

is the federated optimization [224]. The challenge in federated settings is the heterogeneity of

the agents’ data, system-level heterogeneity, the asynchronous nature of the agents in updating

the local gradients, limited and delayed communication between the agents and the server. It is

expected that the robustness of IPG will be useful in addressing these challenges in federated

optimization, possibly resulting in an algorithm superior to the existing federated optimization

techniques [225, 226].

Regarding non-convex optimization, this dissertation hypothesized that by adding poles

and zeros in the transfer function, and by tuning these hyper parameters, we create a signal,

representing the second raw moment estimate of gradients, that is less impacted by the noise

as compared to the squared gradient input. Attenuation of the frequency specific noise may

help by not leading the learning astray and consequently lead to better generalization. Although,

numerical evidence have been presented for this hypothesis, it needs to be rigorously evaluated in

194

a subsequent study. This study will help in understanding whether the idea of transfer functions

can be exploited to improve any existing adaptive gradient optimizer in long-term.

Finally, the ongoing work in distributed beamforming includes integrating feedback from

an auxiliary node into the proposed IPG-DB algorithm to address the additional objective of

suppressing the minor lobes in generated radiation pattern, and covert communication with the

client when the precise locations of the adversaries are unknown. Performance of the IPG-DB

algorithm with higher carrier frequency (2.4 GHz) is being tested using channel data generated

from EM.CUBE simulations.

195

Appendix A: Proofs of the Theoretical Results

A.1 Proof of Theorem 2.1

In this section, we present a proof of Theorem 2.1. Throughout this section we assume

that ATA is not the trivial zero matrix, β > 0, and 0 < α < 2
λ1+β

. The proof relies on the

following lemma, Lemma A.1, which shows the linear convergence of the sequence of matrices

{K(t), t = 0, 1, . . .} to Kβ . Let kjβ denote the j-th column of matrix Kβ where j = 1, . . . , d,

and recall the definition of ϱ from (2.12).

Lemma A.1. Consider Algorithm 1. If α ∈
(
0, 2

λ1+β

)
then there exists ρ with ϱ ≤ ρ < 1 such

that for each j ∈ {1, . . . , d},
∥∥kj(t+ 1)− kjβ

∥∥ ≤ ρ
∥∥kj(t)− kjβ

∥∥ ,∀t ≥ 0.

Proof. From (2.7) we have
∑m

i=1R
i
j(t) =

[(
ATA+ βI

)
kj(t)− ej

]
. Upon substituting from

above in (2.8), for j = 1, . . . , d,

kj(t+ 1) = kj(t)− α
(
ATA+ βI

)
kj(t) + αej. (A.1)

Recall the definition Kβ =
(
ATA+ βI

)−1. Then for each column j = 1, . . . , d of Kβ we obtain

that
(
ATA+ βI

)
kjβ = ej . For each iteration t, let K̃(t) denote the matrix obtained by stacking

196

the column vectors k̃1(t), . . . , k̃d(t):

K̃(t) =
[
k̃1(t), . . . , k̃d(t)

]
= K(t)−Kβ, ∀t ≥ 0. (A.2)

Upon substituting from above in (A.1), and using the definition of k̃j(t) in (A.2), we have k̃j(t+

1) =
[
I − α

(
ATA+ βI

)]
k̃j(t). Since (ATA + βI) is positive definite for β > 0, there exists

α ∈
(
0, 2

λ1+β

)
for which there is a positive ρ < 1 such that

∥∥∥k̃j(t+ 1)
∥∥∥ ≤ ρ

∥∥∥k̃j(t)∥∥∥ for j =

1, . . . , d and ∀t ≥ 0 [21]. Note that [21] ρ ≥ (λ1+β)−(λd+β)
(λ1+β)+(λd+β)

= λ1−λd

λ1+λd+2β

(2.12)
= ϱ. Hence, the

proof.

Now, for each i and t, upon substituting gi(t) from (2.3) in (2.10) we obtain that g(t) =(∑m
i=1(A

i)TAi
)
x(t)−

(∑m
i=1(A

i)T bi
)
. As ATA =

∑m
i=1(A

i)TAi and AT b =
∑m

i=1(A
i)T bi, the

above implies that

g(t) =
∑m

i=1 g
i(t) = AT (Ax(t)− b). (A.3)

From (A.3) and the definition of X∗ in (2.1), X∗ =
{
x ∈ Rd : AT (Ax− b) = 0d

}
. Consider an

arbitrary point x∗ ∈ X∗. Define z(t) = x(t)− x∗. As AT (Ax∗ − b) = 0d, upon substituting from

above in (A.3) we obtain that g(t) = ATAz(t). Let N (ATA) denote the nullspace of matrix

ATA, and N (ATA)⊥ denote the orthogonal vector space of N (ATA). Due to the fundamental

theorem of linear algebra [45], Rd = N (ATA)⊕N (ATA)⊥. Therefore, for each t ≥ 0, we can

decompose vector z(t) into two orthogonal vectors z(t)⊥ and z(t)N , such that z(t)⊥ ∈ N (ATA)⊥

and z(t)N ∈ N (ATA). Specifically, for each t ≥ 0, z(t) = z(t)N + z(t)⊥. As ATAz(t)N = 0d,

197

we have

g(t) = ATAz(t)⊥, ∀t ≥ 0. (A.4)

The remainder of the proof is divided into three steps.

Step I: Upon substituting from (A.3) in (2.9), using the definitions of z(t) and X∗, we

obtain that

z(t+ 1) =
(
I − δK(t+ 1)ATA

)
z(t). (A.5)

Recall that λ1 ≥ . . . ≥ λd ≥ 0 denote the eigenvalues of the positive semi-definite matrix

ATA. We denote by Diag(.) a diagonal matrix of appropriate dimensions, with the arguments

denoting the diagonal entries in the same order. Let S = Diag(λ1, . . . , λd), and let the matrix

V consists of the corresponding orthonormal eigenvectors [V1, . . . , Vd]. Note that V TV = I , and

ATA = V SV T . Recall that r denotes the rank of matrix ATA. In general, 1 ≤ r ≤ d. If r < d

then λ1 ≥ . . . ≥ λr > λr+1 = . . . = λd = 0. Thus, S = Diag(λ1, . . . , λr, 0, . . . , 0︸ ︷︷ ︸
d−r

). Let

span {V1, . . . , Vr} denote the vector space spanned by the orthonormal eigenvectors V1, . . . , Vr,

defined as span {V1, . . . , Vr} =
{∑r

i=1 uiVi : ui ∈ R, ∀i
}

. As the eigenvectors V1, . . . , Vd are

orthogonal [45], N (ATA)⊥ = span {V1, . . . , Vr} and N (ATA) = span {Vr+1, . . . , Vd}. Let,

S⊥ = Diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
d−r

). Define a projection matrix

Q = V S⊥V T . (A.6)

198

Note that for a vector v ∈ Rd, due to the fundamental theorem of linear algebra, the vectors

Qv and (v −Qv) belong to the orthogonal vector spaces N (ATA)⊥ and N (ATA), respectively.

Thus, from the definition of z(t)⊥, z(t)⊥ = Qz(t). This implies that, for all t ≥ 0,

z(t+ 1)⊥ = Qz(t+ 1)
(A.5)
= Q

(
I − δK(t+ 1)ATA

)
z(t)

= z(t)⊥ − δQK(t+ 1)ATAz(t)

= z(t)⊥ − δQK(t+ 1)ATA
(
z(t)N + z(t)⊥

)
. (A.7)

As z(t)N ∈ N (ATA), ATAz(t)N = 0d. Upon substituting this in (A.7) we obtain that z(t +

1)⊥ = z(t)⊥ − δQK(t + 1)ATAz(t)⊥, ∀t. Substituting above from (A.4) we obtain that

z(t+ 1)⊥ = z(t)⊥ − δQK(t+ 1) g(t). Multiplying both sides above with ATA, and substituting

again from (A.4), we obtain that g(t + 1) = g(t) − δ ATAQK(t + 1) g(t). Upon substituting

above from (A.2), we have g(t+ 1) =
(
I − δATAQKβ

)
g(t)− δATAQK̃(t+ 1) g(t).

Step II: Using triangle inequality above, we obtain that

∥∥g(t+ 1)
∥∥ ≤

∥∥∥∥(I − δATAQKβ

)
g(t)

∥∥∥∥+∥∥∥δATAQK̃(t+ 1)g(t)
∥∥∥ . (A.8)

First, we will derive an upper bound on the second term in (A.8). Recall the definition of K̃(t)

from (A.2). Due to Lemma A.1, for each j ∈ {1, . . . , d} we obtain that
∥∥∥k̃j(t)∥∥∥2 ≤ ρ2t

∥∥∥k̃j(0)∥∥∥2.
Since

∥∥∥K̃(t)
∥∥∥2
F
=
∑d

j=1

∥∥∥k̃j(t)∥∥∥2, from above, we obtain that,
∥∥∥K̃(t)

∥∥∥
F
≤ ρt

∥∥∥K̃(0)
∥∥∥
F

. For any

square matrix M , let∥M∥ denote the induced 2-norm of the matrix. Since∥M∥ ≤ ∥M∥F [45],

from above we get, for all t ≥ 0,
∥∥∥K̃(t)

∥∥∥ ≤ ρt
∥∥∥K̃(0)

∥∥∥
F

. Recall that V is a unitary matrix.

Thus, ATAQ = V
(
SS⊥) V T . Note that

∥∥ATAQ
∥∥ = λ1 [45]. From the definition of induced

199

2-norm [45], and substituting from above,

∥∥∥δATAQK̃(t+ 1)g(t)
∥∥∥ ≤ δλ1

∥∥∥K̃(0)
∥∥∥
F
ρt+1

∥∥g(t)∥∥ . (A.9)

Next, we will upper bound the first term in (A.8). As ATA = V SV T where V V T = I , from the

definition of Kβ we obtain that Kβ = V Diag
(

1
λ1+β

, . . . , 1
λd+β

)
V T . Also, from the definition

of S and S⊥ we have ATAQ = V Diag(λ1, . . . , λr, 0, . . . , 0︸ ︷︷ ︸
d−r

)V T . Thus,

(
I − δ ATAQKβ

)
g(t) = V Diag(

(
1− δλi

λi + β

)
︸ ︷︷ ︸

i=1,...,r

, 1, . . . , 1︸ ︷︷ ︸
d−r

)V T g(t). (A.10)

Now, note that from (A.4), g(t) ∈ Im
(
ATA

)
where Im(·) denotes the image of a matrix

operator. Owing to the fundamental theorem of linear algebra [45], Im
(
ATA

)
= N

(
ATA

)⊥.

Thus, g(t) ∈ N (ATA)⊥ = span {V1, . . . , Vr}. Recall that the vectors V1, . . . , Vd, constituting

the matrix V , are orthonormal. Therefore,

∥∥∥∥∥∥∥∥∥V Diag(

(
1− δλi

λi + β

)
︸ ︷︷ ︸

i=1,...,r

, 1, . . . , 1︸ ︷︷ ︸
d−r

)V T g(t)

∥∥∥∥∥∥∥∥∥ ≤ max

{∣∣∣∣1− δλ1
λ1 + β

∣∣∣∣ , . . . , ∣∣∣∣1− δλr
λr + β

∣∣∣∣
}∥∥g(t)∥∥ ,(A.11)

where |·| denotes the absolute value. As λ1 ≥ . . . ≥ λr > 0 and β > 0, if 0 < δ < 2
(

λ1+β
λ1

)
=

2
(
1 + β

λ1

)
, then

max

{∣∣∣∣1− δλ1
λ1 + β

∣∣∣∣ , . . . , ∣∣∣∣1− δλr
λr + β

∣∣∣∣
}

= max

{∣∣∣∣1− δλ1
λ1 + β

∣∣∣∣ ,∣∣∣∣1− δλr
λr + β

∣∣∣∣
}
, (A.12)

and
∣∣∣∣1− δλi

λi + β

∣∣∣∣ < 1, i = 1, . . . , r. (A.13)

200

Substituting from (A.12) and (A.11) in (A.10) we obtain that,

∥∥∥∥(I − δ ATAQKβ

)
g(t)

∥∥∥∥ ≤ max

{∣∣∣∣1− δλ1
λ1 + β

∣∣∣∣ ,∣∣∣∣1− δλr
λr + β

∣∣∣∣
}∥∥g(t)∥∥ . (A.14)

Finally, upon substitution from (A.9) and (A.14) in (A.8),

∥∥g(t+ 1)
∥∥ ≤ max

{∣∣∣∣1− δλ1
λ1 + β

∣∣∣∣ ,∣∣∣∣1− δλr
λr + β

∣∣∣∣
}∥∥g(t)∥∥+ δλ1

∥∥∥K̃(0)
∥∥∥
F
ρt+1

∥∥g(t)∥∥ ,∀t ≥ 0.(A.15)

Then, with µ = max

{∣∣∣1− δλ1

λ1+β

∣∣∣ ,∣∣∣1− δλr

λr+β

∣∣∣}, (A.15) and (A.13) prove (2.14). Recall the

definition of µ∗ from (2.11). Note that [21]

µ ≥
λ1

λ1+β
− λr

λr+β

λ1

λ1+β
+ λr

λr+β

=
β (λ1 − λr)

2λ1λr + β (λ1 + λr)
= µ∗, (A.16)

where the equality µ = µ∗ holds true, if the value of δ is given by (2.13), which is δ = 2
λ1

λ1+β
+ λr

λr+β

.

Note that as
(

λr

λr+β

)
> 0, 2

λ1
λ1+β

+ λr
λr+β

< 2
λ1

λ1+β

= 2
(

λ1+β
λ1

)
. Thus, the value of δ in (2.13) satisfies

the condition of Theorem 2.1.

Step III: In this step, using the following fact, we prove that limt→∞
∥∥g(t)∥∥ = 0.

Fact A.1. Consider an infinite sequence of non-negative values {st, t = 0, 1, . . .} with st <

st−1, ∀t ≥ 1, and limt→∞ st < L where L is a positive finite real number. Then, there exists

0 ≤ T ′ <∞ such that st < L, ∀t > T ′.

In (2.14), let αt =
(
µ+ δλ1

∥∥K(0)−Kβ

∥∥
F
ρt+1

)
. Note that αt ≥ 0 for all t ≥ 0. Since

ρ < 1, the sequence {αt}t≥0 is strictly decreasing, and limt→∞ αt = µ < 1. Thus, due to

Fact A.1, there exists a positive integer τ such that αt < 1, ∀t > τ . From the recursion (2.14),

201

we have

∥∥g(t+ 1)
∥∥ ≤

(
Πt

k=τ+1 αk

)∥∥g(τ + 1)
∥∥ , ∀t > τ. (A.17)

As {αt}t≥0 is strictly decreasing, (2.14) implies that
∥∥g(τ + 1)

∥∥ ≤ ατ

∥∥g(τ)∥∥ ≤ α0

∥∥g(τ)∥∥.

Upon iterating this τ times we get
∥∥g(τ + 1)

∥∥ ≤ ατ+1
0

∥∥g(0)∥∥. Combining (A.17) and the above

we get
∥∥g(t+ 1)

∥∥ ≤
(
Πt

k=τ+1 αk

)
ατ+1
0

∥∥g(0)∥∥ ≤ αt+1
τ+1

(
α0

ατ+1

)τ+1∥∥g(0)∥∥ for all t > τ . Since

ατ+1 < 1, limt→∞
∥∥g(t)∥∥ = 0 follows from above.

A.2 Proof of Corollary 2.1

Note that the solution x∗, defined by (2.1), is unique if and only if the matrix ATA is

full-rank, which means, r = d. Thus, ATA is symmetric positive definite and has positive real

eigenvalues. In other words, we have λ1 ≥ . . . ≥ λd > 0. Moreover,
(
ATA

)−1 exists, and is also

symmetric positive definite. As r = d, substituting β = 0 in (2.11) and (2.12), respectively, we

obtain that µ∗ = 0 and ϱ = λ1−λd

λ1+λd
. Now, (2.14) of Theorem 2.1 implies that, for δ = 1 obtained

by substituting β = 0 in (2.13),
∥∥g(t+ 1)

∥∥ ≤ λ1
∥∥K(0)−Kβ

∥∥
F
ρt+1

∥∥g(t)∥∥ , ∀t ≥ 0. Since

ρ < 1, the above inequality implies that limt→∞
∥g(t+1)∥
∥g(t)∥ = 0.

From the proof of Theorem 2.1, g(t) = ATAz(t) for each t ≥ 0. Since
(
ATA

)−1 exists,

we have z(t) =
(
ATA

)−1
g(t) for each t ≥ 0. From the definition of induced norm, then we

have
∥∥z(t+ 1)

∥∥ ≤
∥∥∥(ATA

)−1
∥∥∥∥∥g(t+ 1)

∥∥ and
∥∥g(t)∥∥ ≤

∥∥ATA
∥∥∥∥z(t)∥∥. The latter implies that∥∥z(t)∥∥ ≥ 1

∥ATA∥
∥∥g(t)∥∥. Then, ∥z(t+1)∥

∥z(t)∥ ≤
∥∥∥(ATA

)−1
∥∥∥∥∥ATA

∥∥∥g(t+1)∥
∥g(t)∥ . Since limt→∞

∥g(t+1)∥
∥g(t)∥ =

0, from above it follows that limt→∞
∥z(t+1)∥
∥z(t)∥ = 0.

202

A.3 Proof of Lemma 2.1

Comparing the GD update in (2.4), and that of Algorithm 1 in (2.9), we see that Algorithm 1

with K(t) = I ∀t ≥ 0 is the GD method. Thus, for GD we define Kβ = I to which the

sequence of matrices {K(t)} converges. Now recall the definition of K̃(t) from (A.2). For

GD, we then have K̃(t) = 0 ∀t ≥ 0. Now we proceed exactly as the proof of Theorem 2.1,

and arrive at (A.8) with K̃(t) = 0 ∀t ≥ 0 and Kβ = I . In other words,
∥∥g(t+ 1)

∥∥ ≤∥∥∥(I − δATAQ
)
g(t)

∥∥∥ , ∀t ≥ 0. Substituting above from eigen-expansion ofATAQ in Section A.1,

∥∥g(t+ 1)
∥∥ ≤

∥∥∥∥∥∥∥V Diag((1− δλi)︸ ︷︷ ︸
i=1,...,r

1, . . . , 1︸ ︷︷ ︸
d−r

)V Tg(t)

∥∥∥∥∥∥∥. Following the argument after (A.10), if δ ∈

(
0, 2

λ1

)
, from above we have

∥∥g(t+ 1)
∥∥ ≤ max

{
|1− δλ1| ,|1− δλr|

}∥∥g(t)∥∥, and |1− δλi| <

1, i = 1, . . . , r. We define max
{
|1− δλ1| ,|1− δλr|

}
= µ. The smallest possible µ is given by

µ ≥ λ1−λr

λ1+λr
, which is µGD. Hence, the proof.

A.4 Proof of Theorem 2.2

We define αt = µ∗ + δλ1
∥∥K(0)−Kβ

∥∥
F
ρt+1. As β > 0 and λ1 > λr, from (2.11) and the

definition of µGD we obtain that µ∗ < µGD. Since ρ < 1, the sequence {αt > 0}t≥0 is strictly

decreasing and limt→∞ αt = µ∗ < µGD. Thus, from Fact A.1, there exists a positive integer τ

such that αt < µGD, ∀t > τ . From (2.14), for some δ > 0 we have
∥∥g(t+ 1)

∥∥ ≤ αt

∥∥g(t)∥∥. Upon

iterating the above,

∥∥g(t+ 1)
∥∥ ≤

(
Πt

k=τ+1 αk

)∥∥g(τ + 1)
∥∥ , ∀t > τ. (A.18)

203

Since {αt > 0}t≥0 is strictly decreasing,
∥∥g(τ + 1)

∥∥ ≤ ατ

∥∥g(τ)∥∥ ≤ α0

∥∥g(τ)∥∥ ≤ ατ+1
0

∥∥g(0)∥∥.

Upon substituting from above in (A.18),
∥∥g(t+ 1)

∥∥ ≤
(
Πt

k=τ+1 αk

)
ατ+1
0

∥∥g(0)∥∥, ∀t > τ . We

define rt = αt/µGD. Thus,
∥∥g(t+ 1)

∥∥ ≤
(
Πt

k=τ+1 rkµGD

)
ατ+1
0

∥∥g(0)∥∥. Upon defining r =

max
t>τ

rt, we have
∥∥g(t+ 1)

∥∥ ≤
(
Πt

k=τ+1 rµGD

)
ατ+1
0

∥∥g(0)∥∥. We define c =
(

α0

rµGD

)τ+1

. Since

rt =
αt

µGD
< 1 ∀t > τ , r = max

t>τ
rt < 1. Hence, the proof.

A.5 Proof of Theorem 2.3

From (2.18) we have bo = b+ wb, where

bo =

[
(b1o)T , . . . , (bmo)T

]T
, wb =

[
(w1

b)
T , . . . , (wm

b)
T

]T
.

From (2.19), we obtain that

E
[
∥wb∥

]
≤ E

[
∥wb∥1

]
=

m∑
i=1

E
[∥∥∥wi

b

∥∥∥
1

]
≤ ηm. (A.19)

Upon substituting from (2.20) in (2.9) we obtain that

x(t+ 1) = x(t)− δK(t+ 1)AT (Ax(t)− b− wb). (A.20)

Now, consider a point x∗ ∈ argminx

∑m
i=1 F

i(x) defined by (2.1). As ∇
∑m

i=1 F
i(x) = AT (Ax−

b),

AT (Ax∗ − b) = 0d. (A.21)

204

Recall from (2.21) that z(t) = x(t) − x∗ for all t. Subtracting x∗ on both sides of (A.20), and

using (A.21), we have

z(t+ 1) =
(
I − δK(t+ 1)ATA

)
z(t) + δK(t+ 1)ATwb

(2.16)
=

(
I − δK∗ATA

)
z(t)− δK̃(t+ 1)ATAz(t) + δK∗ATwb + δK̃(t+ 1)ATwb. (A.22)

Upon using triangle inequality above and the definition K∗ATA = I (ref. Section 2.4.1), we

obtain that

∥∥z(t+ 1)
∥∥ ≤ (1− δ)

∥∥z(t)∥∥+ δ
∥∥∥K̃(t+ 1)ATAz(t)

∥∥∥+ δ
∥∥∥K∗ATwb

∥∥∥+ δ
∥∥∥K̃(t+ 1)ATwb

∥∥∥ .
(A.23)

From the definition of induced 2-norm of a matrix [45] and expectation, (A.23) implies that

E
[∥∥z(t+ 1)

∥∥] ≤(1− δ + δ
∥∥∥K̃(t+ 1)

∥∥∥∥∥∥ATA
∥∥∥)∥∥z(t)∥∥

+ δ
∥∥∥K∗AT

∥∥∥E [∥wb∥
]
+ δ
∥∥∥K̃(t+ 1)

∥∥∥∥∥∥AT
∥∥∥E [∥wb∥

]
.

Upon substituting above from (A.19) we obtain that

E
[∥∥z(t+ 1)

∥∥] ≤(1− δ + δ
∥∥∥K̃(t+ 1)

∥∥∥∥∥∥ATA
∥∥∥)∥∥z(t)∥∥

+ δ
∥∥∥K∗AT

∥∥∥ ηm+ δ
∥∥∥K̃(t+ 1)

∥∥∥∥∥∥AT
∥∥∥ ηm. (A.24)

From Lemma 2.2, we have for all j ∈ {1, . . . , d},
∥∥∥k̃j(t)∥∥∥2 ≤ ρ2t

∥∥∥k̃j(0)∥∥∥2, From basic Linear

Algebra [45], we know that
∥∥ATA

∥∥ = λ1 and
∥∥AT

∥∥ =
√
λ1. Upon substituting these in (A.24)

205

we have

E
[∥∥z(t+ 1)

∥∥] ≤δρt+1
∥∥∥K̃(0)

∥∥∥
F

(
λ1
∥∥z(t)∥∥+ ηm

√
λ1

)
+ (1− δ)

∥∥z(t)∥∥+ δ
∥∥∥K∗AT

∥∥∥ ηm.
(A.25)

From Singular Value Decomposition [45], A = USV T where

ST =

[
Diag

(√
λ1, . . . ,

√
λd

)
, 0d×(

∑m
i=1 ni−d)

]
,

and the matrices U, V , respectively, constitutes of left and right orthonormal singular vectors of

A. From above, (ATA)−1AT = V (STS)−1STUT . Thus [45],
∥∥(ATA)−1AT

∥∥ = 1/
√
λd. As

K∗ =
(
ATA

)−1 (see Section 2.4.1), the above implies that
∥∥K∗AT

∥∥ = 1/
√
λd. As discussed in

Section 2.4.1, Assumption 2.1 is equivalent to λd > 0. Upon substituting this in (A.25),

E
[∥∥z(t+ 1)

∥∥] ≤(1− δ + δλ1

∥∥∥K̃(0)
∥∥∥
F
ρt+1

)∥∥z(t)∥∥+ δηm
√
λ1

∥∥∥K̃(0)
∥∥∥
F
ρt+1 + δηm

√
1/λd.

As t is an arbitrary iteration, the above proves (2.22).As ρ ∈ [0, 1) and δ ∈ (0, 1], there exists

T < ∞ such that
(
1− δ + δλ1

∥∥∥K̃(0)
∥∥∥
F
ρt+1

)
< 1 for all t ≥ T . Thus, upon retracing (2.22)

from t to 0, we have limt→∞ E
[∥∥z(t)∥∥] ≤ δηm

√
1/λd.

206

A.6 Proof of Theorem 2.4

Similar to (A.22) in Section A.5 above, for Algorithm 1 with modifications (2.26)-(2.29),

we obtain that

z(t+ 1) =
(
I − δKo(t+ 1)ATA

)
zo(t), ∀t. (A.26)

Substituting from (2.30) and (2.33) in (A.26), since K∗ATA = I ,

z(t+ 1) =
(
1− δ − δK̃o(t+ 1)ATA

) (
z(t) + wx(t)

)
.

The above implies that

∥∥z(t+ 1)
∥∥ ≤

(
1− δ + δλ1

∥∥∥K̃o(t+ 1)
∥∥∥)(∥∥z(t)∥∥+∥∥wx(t)

∥∥) .
From Assumption 2.3, since the random variables {wx(t), wk

j (t), j = 1, . . . , d} are mutually

independent for all t, the above implies that

Et

[∥∥z(t+ 1)
∥∥] ≤(1− δ + δλ1Et

[∥∥∥K̃o(t+ 1)
∥∥∥])(∥∥z(t)∥∥+ Et

[∥∥wx(t)
∥∥]) . (A.27)

Define W k(t) =

[
wk

1 , . . . , w
k
d

]
. From (2.30) then we have K̃o(t) = K̃(t) + W k(t), which

implies that

Et

[∥∥∥K̃o(t)
∥∥∥] ≤∥∥∥K̃(t)

∥∥∥+ Et

[∥∥∥W k(t)
∥∥∥] . (A.28)

207

By definition of matrix norms [45], Et

[∥∥W k(t)
∥∥] ≤

√
d Et

[∥∥W k(t)
∥∥
1

] (2.25)
≤ ω

√
d. Then,

from (A.28) we get

Et

[∥∥∥K̃o(t)
∥∥∥] ≤∥∥∥K̃(t)

∥∥∥+ ω
√
d. (A.29)

Instead of each column k̃j(t) in Lemma 2.2 if we consider K̃(t) then following the proof of

Lemma 2.2 for K̃j(t), we have a similar result as (2.17):
∥∥∥K̃(t+ 1)

∥∥∥ ≤ ρ
∥∥∥K̃(t)

∥∥∥ , ∀t ≥ 0. Upon

substituting from above in (A.29) we get

Et

[∥∥∥K̃o(t)
∥∥∥] ≤ ρ

∥∥∥K̃(t− 1)
∥∥∥+ ω

√
d ≤ ρt

∥∥∥K̃(0)
∥∥∥+ ω

√
d

t∑
i=0

ρi
(2.31)
=

(
u(t)− 1 + δ

)
/(δλ1) .

Upon substituting from above in (A.27) we get

Et

[∥∥z(t+ 1)
∥∥] ≤ u(t+ 1)

(∥∥z(t)∥∥+ Et

[∥∥wx(t)
∥∥])

≤ u(t+ 1)

(∥∥z(t)∥∥+ Et

[∥∥wx(t)
∥∥
1

]) (2.25)
≤ u(t+ 1)

(∥∥z(t)∥∥+ ω
)

≤ Πt+1
k=1u(k)

∥∥z(0)∥∥+ (u(t+ 1) + u(t+ 1)u(t) + . . .+Πt+1
k=1u(k)

)
ω. (A.30)

From (2.33) and (2.25), Et

[∥∥zo(t+ 1)
∥∥] ≤ Et

[∥∥z(t+ 1)
∥∥]+ω. Substituting from (A.30) in the

R.H.S. above proves (2.34).

208

As ρ < 1, by definition of u(t) in (2.31), we obtain that

lim
t→∞

u(t) = 1− δ + δ
λ1
√
dω

1− ρ

(2.32)
= 1− δ + δ

ω

ωbd

(2.35)
< 1, (A.31)

u(t)− u(t− 1) = δλ1ρ
t−1

(
ρ

(
ω
√
d+
∥∥∥K̃(0)

∥∥∥)−
∥∥∥K̃(0)

∥∥∥)
(2.32)
= δλ1ρ

t−1
∥∥∥K̃(0)

∥∥∥ ((ρ/ρbd)− 1
)
, ∀t ≥ 1.

The above, in conjunction with (2.35), implies that u(t) < u(t− 1), ∀t ≥ 1. The limit in (A.31),

in conjunction with the fact that u(t) is non-negative for all t, implies that there exists τ < ∞

such that 0 ≤ u(t) < 1 for all t ≥ τ . Thus,

lim
t→∞

Πt
k=1u(k) = 0, and (A.32)

lim
t→∞

(
1 + u(t) + . . .+Πt

k=1u(k)
)
<

1

1− u(τ)
. (A.33)

Substituting from (A.32) and (A.33) into (2.34), we obtain that

lim
t→∞

Et

[∥∥zo(t)∥∥] < ω/(1− u(τ)). (A.34)

Since {u(t)} is a strictly decreasing sequence, if (A.34) holds true for some τ satisfying u(τ) < 1

then it also holds true for τ+1, . . . ,∞. Thus, (A.34) implies that limt→∞ Et

[∥∥zo(t)∥∥] < ω/(1−

u(∞)). Substituting u(∞) from (A.31) we obtain that limt→∞ Et

[∥∥zo(t)∥∥] < ω

δ
(
1−(ω/ωbd)

) .

Hence, the proof.

209

A.7 Proof of Theorem 2.5

A.7.1 Preliminary results

The results below are used in the proof of Theorem 2.5.

(a) Consider an arbitrary iteration t ≥ 0. Upon taking conditional expectation EIt [·] on

both sides of (A.60), given the current matrix K(t) and estimate x(t), we have

EIt

[
K̃(t+ 1)

]
=

I − α

(
EIt

[(
aζtt
)T

aζtt
]
+ βI

) K̃(t)

− α

(
EIt

[(
aζtt
)T

aζtt
]
− 1

N
ATA

)
Kβ. (A.35)

Upon subtracting both sides of (A.60) from that of (A.35) we get

EIt

[
K̃(t+ 1)

]
− K̃(t+ 1) = α

((
aζtt
)T

aζtt − EIt

[(
aζtt
)T

aζtt
])(

K̃(t) +Kβ

)
(A.2)
= α

((
aζtt
)T

aζtt − EIt

[(
aζtt
)T

aζtt
])

K(t). (A.36)

(b) Now, consider a minimum point x∗ ∈ argminx∈Rd
1
m

∑m
i=1 F

i(x) defined by (2.6).

From the definition (2.5), the local cost function F i(x) is convex for each agent i ∈ {1, . . . ,m}.

Thus, the aggregate cost function
∑m

i=1 F
i(x) is also convex. Therefore, x∗ ∈ X∗ if and only

if [43] ∇
∑m

i=1 F
i(x∗) = 0d, where 0d denotes the d-dimensional zero vector. As ∇

∑m
i=1 F

i(x) =

AT (Ax− b), x∗ is the minimum point if and only if it satisfies

AT (Ax∗ − b) = 0d. (A.37)

210

From the definition of the each agent’s stochastic gradient git(t) in (2.38) and the definition of

individual cost function’s gradient g in (2.37) we get

EIt

[
gζtt (t)

]
= EIt

[(
aζtt
)T

aζtt
]
x(t)− EIt

[(
aζtt
)T

bζtt
]
=

1

N

(
ATAx(t)− AT b

)
, (A.38)

where the last inequality follows from the definition of the uniform random variable ζtt . Upon

substituting from above and (A.37) in (A.38) we get

EIt

[
gζtt (t)

]
=

1

N
ATAz(t). (A.39)

The R.H.S. above is the gradient of the objective cost 1
m

∑m
i=1 F

i evaluated at the current estimate

x(t) of (2.6), which we denote by ∇F (t). Thus,

∇F (t) = EIt

[
gζtt (t)

]
=

1

N
ATAz(t). (A.40)

The above equation means that, the stochastic gradient gζtt (t) at every iteration t ≥ 0 is an

unbiased estimate of the true gradient ∇F (t) given the current estimate x(t). Noting that
∥∥ATA

∥∥ =

s1 [45], the above implies that

∥∥∇F (t)∥∥ ≤ s1
N

∥∥z(t)∥∥ . (A.41)

(c) Assumption 2.5, combined with (A.40) and the definition (2.44), implies that the conditional

211

second moment of the stochastic gradients satisfies, for each iteration t = 0, 1, . . .,

EIt

[∥∥∥gζtt (t)∥∥∥2] ≤ V1 + VG
∥∥∇F (t)∥∥2 , (A.42)

where VG = V2 + 1. Since

EIt

[∥∥∥gζtt (t)∥∥∥2] = 1

N

N∑
i=1

∥∥∥gi(t)∥∥∥2 ,
(A.42) implies that, for each i ∈ {1, . . . , N},

∥∥∥gi(t)∥∥∥2 ≤ V1N + VGN
∥∥∇F (t)∥∥2 . (A.43)

Thus, there exist two non-negative real scalar values E1 ≥
√
V1N and E2 ≥

√
VGN such that,

for each i ∈ {1, . . . , N},

∥∥∥gi(t)∥∥∥ ≤ E1 + E2

∥∥∇F (t)∥∥ . (A.44)

212

A.7.2 Notations

For the positive valued parameters α, δ, and β, let

C1 = max
i=1,...,N

∥∥∥∥(ai)T ai − 1

N
ATA

∥∥∥∥ , (A.45)

µ =

(
1− 2αsd

N
(1− αL)

)
, (A.46)

ϱ =

∥∥∥∥∥I − α

(
1

N
ATA+ βI

)∥∥∥∥∥ , (A.47)

C4(t) = (V2 + 1)
s21
N

dC3 +
∥∥Kβ

∥∥2 + 2C2

∥∥Kβ

∥∥ t∑
j=0

ρj +
∥∥∥K̃(0)

∥∥∥2
F
µt+1 + 2

∥∥Kβ

∥∥∥∥∥K̃(0)
∥∥∥ ρt+1

 ,

(A.48)

C5(t) = 2C1E2
s1
N

(∥∥Kβ

∥∥+∥∥∥K̃(0)
∥∥∥ ϱt) , (A.49)

C6(t) =
2sd

sd +Nβ
− 2

s1
N

∥∥∥K̃(0)
∥∥∥ ϱt+1, (A.50)

C7(t) = 2C1E1

(∥∥Kβ

∥∥+∥∥∥K̃(0)
∥∥∥ ϱt) , (A.51)

C8(t) = C4(t) + 0.5, (A.52)

R3(t) = δ2V1N

dC3 +
∥∥Kβ

∥∥2 + 2C2

∥∥Kβ

∥∥ t∑
j=0

ρj +
∥∥∥K̃(0)

∥∥∥2
F
µt+1 + 2

∥∥Kβ

∥∥∥∥∥K̃(0)
∥∥∥ ρt+1

 ,

(A.53)

R2(t) = R3(t) +
1

2
α2C7(t)

2, (A.54)

δ(t) = min{ 1

C6(t)
,
C6(t)− αC5(t)

C8(t)
}. (A.55)

213

A.7.3 Convergence of the pre-conditioner matrix

We present below a result regarding the convergence of the iterative pre-conditioner matrix

in Algorithm 2. To present the convergence result of the pre-conditioner matrix K(t), we recall

some notation from Section 2.5.3.

• Recall that ai ∈ R1×d and bi ∈ R respectively denote each row i ∈ {1, . . . , N} of the

collective input matrix A and the collective output vector B.

• For the positive valued parameters α and β, recall from Table 2.2 that

C2 = α
1

N

N∑
i=1

∥∥∥∥(ai)T ai − 1

N
ATA

∥∥∥∥∥∥Kβ

∥∥ .

• For positive values of the parameters α and β, recall from Table 2.2 that

ρ =
1

N

N∑
i=1

∥∥∥∥∥I − α

((
ai
)T

ai + βI

)∥∥∥∥∥ .

• For each iteration t ≥ 0, let

K̃(t) = K(t)−Kβ. (A.56)

• Recall that for each i ∈ {1, . . . , N}, Λi and λi respectively denote the largest and the

smallest eigenvalue of the positive semi-definite matrix
(
ai
)T
ai. Thus, Λi, λi > 0.

Lemma A.2. Consider Algorithm 2 with parameter β > 0. For each iteration t ≥ 0, if 0 < α <

214

mini=1,...,N

{
2

Λi+β

}
then ρ < 1 and

Et

[∥∥∥K̃(t+ 1)
∥∥∥] ≤ ρt+1

∥∥∥K̃(0)
∥∥∥+ C2

t∑
j=0

ρj. (A.57)

Proof. Consider an arbitrary iteration t ≥ 0.

• Recall from Section 2.5.2 that

It = {1t, . . .mt} ∪ {ζt}.

• Recall from Section 2.5.2 that for each iteration t ≥ 0 and agent i ∈ {1, . . . ,m}, Eit [·]

denotes the conditional expectation of a function the random variable it given the current

estimate x(t) and the current pre-conditioner K(t). Similarly, for each iteration t ≥ 0,

Eζt [·] denotes the conditional expectation of a function the random variable ζt given the

current estimate x(t) and the current pre-conditioner K(t). Recall from Section 2.5.2 that

EIt [·] = E1t,...mt,ζt(·).

• Recall from (2.43) that Et [·] denotes the total expectation of a function of the collection of

the random variables {I0, . . . , It} given the initial estimate x(0) and initial pre-conditioner

matrix K(0). Specifically,

Et [·] = EI0,...,It(·).

215

From Step 2 and Step 4 of Algorithm 2, the random variable ζtt is uniformly distributed in the set

{1, . . . , N} that denotes the total number of data points in (A, b). Moreover, (aζtt , bζtt) is a data

point uniformly and independently drawn at random from (A, b).

For each iteration t = 0, 1, . . ., upon substituting from (2.39) and (2.40) in (2.41) we have,

for each column index j = 1, . . . , d of the matrix K(t),

kj(t+ 1) = kj(t)− α

(((
aζtt
)T

aζtt + βI

)
kj(t)− ej

)
. (A.58)

Recall the definition of Kβ in Table 2.2. Let, kjβ denote the j-th column of Kβ . Then for each

column j = 1, . . . , d of Kβ we obtain that

(
1

N
ATA+ βI

)
kjβ = ej. (A.59)

Recall the definition (A.56),

K̃(t) = K(t)−Kβ, ∀t ≥ 0.

Let k̃j(t) denote the j-th column of K̃(t). Subtracting kjβ from both sides of (A.58), from the

definition of k̃j(t) we have for each j = 1, . . . , d,

k̃j(t+ 1) = k̃j(t)− α

((
aζtt
)T

aζtt + βI

)(
k̃j(t) + kjβ

)
+ αej

(A.59)
= k̃j(t)− α

((
aζtt
)T

aζtt + βI

)(
k̃j(t) + kjβ

)
+ α

(
1

N
ATA+ βI

)
kjβ

=

(
I − α

((
aζtt
)T

aζtt + βI

))
k̃j(t)− α

((
aζtt
)T

aζtt − 1

N
ATA

)
kjβ.

216

Upon horizontally concatenating the columns {k̃j(t), j = 1, . . . , d}, from above we get

K̃(t+ 1) =

(
I − α

((
aζtt
)T

aζtt + βI

))
K̃(t)− α

((
aζtt
)T

aζtt − 1

N
ATA

)
Kβ. (A.60)

Using triangle inequality on the R.H.S. of (A.60) we get

∥∥∥K̃(t+ 1)
∥∥∥ ≤

∥∥∥∥∥∥
(
I − α

((
aζtt
)T

aζtt + βI

))
K̃(t)

∥∥∥∥∥∥+ α

∥∥∥∥∥
((

aζtt
)T

aζtt − 1

N
ATA

)
Kβ

∥∥∥∥∥ .
From the definition of induced 2-norm of matrix [45],

∥∥∥K̃(t+ 1)
∥∥∥ ≤

∥∥∥∥∥I − α

((
aζtt
)T

aζtt + βI

)∥∥∥∥∥∥∥∥K̃(t)
∥∥∥+ α

∥∥∥∥(aζtt)T aζtt − 1

N
ATA

∥∥∥∥∥∥Kβ

∥∥ .
Upon taking conditional expectation EIt [·] on both sides, given the current matrix K(t) and the

estimate x(t), we get

EIt

[∥∥∥K̃(t+ 1)
∥∥∥] ≤EIt

∥∥∥∥∥I − α

((
aζtt
)T

aζtt + βI

)∥∥∥∥∥
∥∥∥K̃(t)

∥∥∥
+ αEIt

[∥∥∥∥(aζtt)T aζtt − 1

N
ATA

∥∥∥∥
]∥∥Kβ

∥∥ . (A.61)

Since the random variable ζtt is uniformly distributed in {1, . . . , N}, we have

EIt

∥∥∥∥∥I − α

((
aζtt
)T

aζtt + βI

)∥∥∥∥∥
 =

1

N

N∑
i=1

∥∥∥∥∥I − α

((
ai
)T

ai + βI

)∥∥∥∥∥ ,
EIt

[∥∥∥∥(aζtt)T aζtt − 1

n
ATA

∥∥∥∥
]
=

1

N

N∑
i=1

∥∥∥∥(ai)T ai − 1

N
ATA

∥∥∥∥ .

217

Upon substituting from above in (A.61) we obtain that

EIt

[∥∥∥K̃(t+ 1)
∥∥∥] ≤ 1

N

N∑
i=1

∥∥∥∥∥I − α

((
ai
)T

ai + βI

)∥∥∥∥∥∥∥∥K̃(t)
∥∥∥

+ α
1

N

N∑
i=1

∥∥∥∥(ai)T ai − 1

N
ATA

∥∥∥∥∥∥Kβ

∥∥ . (A.62)

Recall from Section A.7.3 that Λi and λi respectively denote the largest and the smallest eigenvalue

of each
(
ai
)T
ai. Since

((
ai
)T
ai + βI

)
is positive definite for β > 0, for each value of α

satisfying 0 < α < mini=1,...,N

{
2

Λi+β

}
we have [21]

∥∥∥∥∥I − α

((
ai
)T

ai + βI

)∥∥∥∥∥ = max
{∣∣1− α (Λi + β)

∣∣ , ∣∣1− α (λi + β)
∣∣} < 1, i = 1, . . . , N.

Using the definitions of C2 and ρ in (A.62) we then have ρ < 1 such that

EIt

[∥∥∥K̃(t+ 1)
∥∥∥] ≤ ρ

∥∥∥K̃(t)
∥∥∥+ C2. (A.63)

Iterating the above from t to 0, by the law of total expectation we have

Et

[∥∥∥K̃(t+ 1)
∥∥∥] ≤ ρt+1

∥∥∥K̃(0)
∥∥∥+ C2

t∑
j=0

ρj. (A.64)

Hence, the proof.

Lemma A.2 implies that, for sufficiently small value of the parameter α at every iteration,

the iterative pre-conditioner matrix K(t) in Algorithm 2 converges linearly in expectation to a

218

neighborhood of the matrixKβ . Since ρ ∈ (0, 1), this neighborhood is characterized from (A.57):

lim
t→∞

Et

[∥∥∥K̃(t)
∥∥∥] ≤ C2

1− ρ
.

From (A.57), smaller value of the parameter ρ implies faster convergence of the pre-conditioner

matrix. However, the final error in K(t) is large if ρ is small. Thus, there is a trade-off between

the rate of convergence and the final error regarding the convergence of the pre-conditioner matrix

in Algorithm 2. From Table 2.2, in the deterministic case, the value of C2 = 0, which means that

the sequence of pre-conditioner {K(t), t = 0, 1, . . .} converges exactly to Kβ in this case.

A.7.4 Proof of the theorem

Here, we formally prove Theorem 2.5.

A.7.4.1 Proof of Part (ii) of Theorem 2.5

Step I: Upon subtracting x∗ from both sides of (2.42) and using the definition of z(t)

in (2.21), we have

z(t+ 1) = z(t)− δ K(t+ 1) gζtt (t).

The above implies that

∥∥z(t+ 1)
∥∥2 =∥∥z(t)∥∥2 + δ2

∥∥∥K(t+ 1)gζtt (t)
∥∥∥2 − 2δz(t)TK(t+ 1)gζtt (t).

219

Upon taking conditional expectation EIt [·] on both sides above, given the current pre-conditioner

matrix K(t) and estimate x(t), we have

EIt

[∥∥z(t+ 1)
∥∥2] =∥∥z(t)∥∥2 + δ2EIt

[∥∥∥K(t+ 1)gζtt (t)
∥∥∥2]− 2δz(t)TEIt

[
K(t+ 1)gζtt (t)

]
.

(A.65)

Consider the expression z(t)TEIt

[
K(t+ 1)gζtt (t)

]
above. Upon substituting from (A.56),

z(t)TEIt

[
K(t+ 1)gζtt (t)

]
= z(t)TEIt

[
K̃(t+ 1)gζtt (t)

]
+ z(t)TKβEIt

[
gζtt (t)

]
(A.40)
= z(t)TEIt

[
K̃(t+ 1)gζtt (t)

]
+ z(t)TKβ∇F (t). (A.66)

Consider the following equation

z(t)TEIt

[
EIt

[
K̃(t+ 1)

] (
∇F (t)− gζtt (t)

)]
= z(t)TEIt

[
K̃(t+ 1)

]
EIt

[(
∇F (t)− gζtt (t)

)]
(A.40)
= 0.

220

Owing to the above, we have the first expression in the R.H.S. of (A.66) as

z(t)TEIt

[
K̃(t+ 1)gζtt (t)

]
=z(t)TEIt

[
K̃(t+ 1)

]
∇F (t)− z(t)TEIt

[
K̃(t+ 1)

(
∇F (t)− gζtt (t)

)]
+ z(t)TEIt

[
EIt

[
K̃(t+ 1)

] (
∇F (t)− gζtt (t)

)]
=z(t)TEIt

[
K̃(t+ 1)

]
∇F (t)− z(t)TEIt

[
K̃(t+ 1)− EIt

[
K̃(t+ 1)

]]
∇F (t)

− z(t)TEIt

[(
EIt

[
K̃(t+ 1)

]
− K̃(t+ 1)

)
gζtt (t)

]

=z(t)TEIt

[
K̃(t+ 1)

]
∇F (t)− z(t)TEIt

[(
EIt

[
K̃(t+ 1)

]
− K̃(t+ 1)

)
gζtt (t)

]
. (A.67)

From (A.36) we have the second expression in the R.H.S. above as

z(t)TEIt

[(
EIt

[
K̃(t+ 1)

]
− K̃(t+ 1)

)
gζtt (t)

]

= αz(t)TEIt

((aζtt)T aζtt − EIt

[(
aζtt
)T

aζtt
])

K(t)gζtt (t)

 .
Applying Cauchy-Schwartz inequality above we have

z(t)TEIt

[(
EIt

[
K̃(t+ 1)

]
− K̃(t+ 1)

)
gζtt (t)

]

≤ α
∥∥z(t)∥∥

∥∥∥∥∥∥EIt

((aζtt)T aζtt − EIt

[(
aζtt
)T

aζtt
])

K(t)gζtt (t)

∥∥∥∥∥∥ .

221

Using Jensen’s inequality on the convex function∥·∥, from above we have

z(t)TEIt

[(
EIt

[
K̃(t+ 1)

]
− K̃(t+ 1)

)
gζtt (t)

]

≤ α
∥∥z(t)∥∥EIt


∥∥∥∥∥∥
((

aζtt
)T

aζtt − EIt

[(
aζtt
)T

aζtt
])

K(t)gζtt (t)

∥∥∥∥∥∥
 . (A.68)

From the definition of induced 2-norm of matrix we have

∥∥∥∥∥∥
((

aζtt
)T

aζtt − EIt

[(
aζtt
)T

aζtt
])

K(t)gζtt (t)

∥∥∥∥∥∥
≤

∥∥∥∥∥(aζtt)T aζtt − EIt

[(
aζtt
)T

aζtt
]∥∥∥∥∥∥∥K(t)

∥∥∥∥∥gζtt (t)∥∥∥ (A.45)
≤ C1

∥∥K(t)
∥∥∥∥∥gζtt (t)∥∥∥ .

From the definition of expectation and substituting from above in (A.68) we get

z(t)TEIt

[(
EIt

[
K̃(t+ 1)

]
− K̃(t+ 1)

)
gζtt (t)

]
≤ αC1

∥∥z(t)∥∥∥∥K(t)
∥∥EIt

[∥∥∥gζtt (t)∥∥∥]
(A.44)
≤ αC1

∥∥z(t)∥∥∥∥K(t)
∥∥(E1 + E2

∥∥∇F (t)∥∥) . (A.69)

Upon substituting from (A.66), (A.67) and (A.69) in (A.65) we obtain that

EIt

[∥∥z(t+ 1)
∥∥2] ≤∥∥z(t)∥∥2 + δ2EIt

[∥∥∥K(t+ 1)gζtt (t)
∥∥∥2]− 2δz(t)TKβ∇F (t)

− 2δz(t)TEIt

[
K̃(t+ 1)

]
∇F (t) + 2δαC1

∥∥z(t)∥∥∥∥K(t)
∥∥(E1 + E2

∥∥∇F (t)∥∥) . (A.70)

In the following Steps II-V, we bound the expressions in the R.H.S. above.

222

Step II: In this step, we bound the second expression δ2EIt

[∥∥K(t+ 1)gζtt (t)
∥∥2] in the

R.H.S. of (A.70). Consider the expression EIt

[∥∥K(t+ 1)gζtt (t)
∥∥2]. Using the definition of

induced 2-norm and expectation we have

EIt

[∥∥∥K(t+ 1)gζtt (t)
∥∥∥2] ≤ EIt

[∥∥K(t+ 1)
∥∥2∥∥∥gζtt (t)∥∥∥2]

(A.43)
≤

(
V1N + VGN

∥∥∇F (t)∥∥2)EIt

[∥∥K(t+ 1)
∥∥2] . (A.71)

Using triangle inequality on induced 2-norm in (A.56) we get

∥∥K(t)
∥∥ ≤

∥∥∥K̃(t)
∥∥∥+∥∥Kβ

∥∥ , ∀t ≥ 0. (A.72)

From (A.72) and the definition of expectation,

EIt

[∥∥K(t+ 1)
∥∥2] ≤ EIt

[∥∥∥K̃(t+ 1)
∥∥∥2]+∥∥Kβ

∥∥2 + 2
∥∥Kβ

∥∥EIt

[∥∥∥K̃(t+ 1)
∥∥∥] . (A.73)

In the rest of this step, we bound the first expression above, which in turn bounds the R.H.S.

of (A.71). Note that, the third expression above has already been bounded in (A.63).

For each i ∈ {1, . . . , N} and each j ∈ {1, . . . , d}, define a function hij : Rd → R such that

hij(x) =
1

2
xT
((

ai
)T

ai + βI

)
x− xT ej. (A.74)

223

The gradient of hij is given by

∇hij(x) =
((

ai
)T

ai + βI

)
x− ej, ∀x ∈ Rd. (A.75)

Note that,

EIt

[
∇hζttj (x)

]
=

(
EIt

[(
aζtt
)T

aζtt
]
+ βI

)
x− ej =

(
1

N
ATA+ βI

)
x− ej, ∀x. (A.76)

Hence, (A.58) is a stochastic gradient descent update with stepsize α on the objective cost

function Hj : Rd → R defined by Hj(x) =
1
2
xT
(

1
N
ATA+ βI

)
x− xT ej . Under Assumption 1,

the matrix ATA is symmetric positive definite. Equivalently, Hj is sd
N

-strongly convex. Also note

that, each ∇hij is Lipschitz with a Lipschitz constant Li =
∥∥∥(ai)T ai + βI

∥∥∥ = Λi + β.

Upon substituting from (A.59) into (A.76) we have EIt

[
∇hζttj (kjβ)

]
= 0d, where 0d

denotes the origin of Rd. For each j = 1, . . . , d, we define a quantity

σ2
j = max

t≥0
EIt

[∥∥∥∇hζttj (kjβ)
∥∥∥2] (A.77)

Upon substituting above from (A.75) and (A.59) we get

σ2
j = max

t≥0
EIt

∥∥∥∥∥
((

aζtt
)T

aζtt + βI

)
Kβej − ej

∥∥∥∥∥
2
 =

1

N

N∑
i=1

∥∥∥∥∥
((

ai
)T

ai + βI

)
Kβej − ej

∥∥∥∥∥
2

.

For each j = 1, . . . , d, let k̃j(t) = kj(t) − kjβ . Then, if α < min
{

N
sd
, 1
L

}
, we have for each

224

j = 1, . . . , d, [227]

Et
[∥∥∥k̃j(t+ 1)

∥∥∥2] ≤ µt+1
∥∥∥k̃j(0)∥∥∥2 + C3. (A.78)

where µ ∈ (0, 1) (see (A.46)). Then,

∥∥∥K̃(t)
∥∥∥2 ≤∥∥∥K̃(t)

∥∥∥2
F
=

d∑
j=1

∥∥∥k̃j(t)∥∥∥2 ,
which implies that

EIt

[∥∥∥K̃(t)
∥∥∥2] ≤ d∑

j=1

EIt

[∥∥∥k̃j(t)∥∥∥2] .
Taking the total expectation above and substituting from (A.78) we obtain that

Et

[∥∥∥K̃(t+ 1)
∥∥∥2] ≤ µt+1

∥∥∥K̃(0)
∥∥∥2
F
+ dC3. (A.79)

Upon substituting from (A.57) and (A.79) in (A.73) we have

Et

[∥∥K(t+ 1)
∥∥2] ≤ µt+1

∥∥∥K̃(0)
∥∥∥2
F
+ dC3 +

∥∥Kβ

∥∥2 + 2
∥∥Kβ

∥∥ρt+1
∥∥∥K̃(0)

∥∥∥+ C2

t∑
j=0

ρj

 .

225

Upon substituting from above in (A.71) we obtain that

Et

[∥∥∥K(t+ 1)git(t)
∥∥∥2] ≤ (V1N + VGN

∥∥∇F (t)∥∥2)(µt+1
∥∥∥K̃(0)

∥∥∥2
F
+ dC3 +

∥∥Kβ

∥∥2
+ 2
∥∥Kβ

∥∥ρt+1
∥∥∥K̃(0)

∥∥∥+ C2

t∑
j=0

ρj

). (A.80)

Step III: In this step, we bound the the third expression −z(t)TKβ∇F (t) in the R.H.S.

of (A.70). From eigen value decomposition [45], ATA = V SV T where S = Diag (s1, . . . , sd),

and the matrix V constitutes of orthonormal eigen vectors of ATA. From above,

(
1

N
ATA+ βI

)−1

ATA = V Diag

(
s1

(s1/N) + β
, . . . ,

sd
(sd/N) + β

)
V T .

SinceKβ =
(

1
N
ATA+ βI

)−1, the eigenvalues ofKβA
TA are given by

{
si

(si/N)+β
| i = 1, . . . , d

}
.

Thus, from the bound on Rayleigh quotient [45]

−z(t)TKβA
TAz(t) ≤ −λmin(KβA

TA)
∥∥z(t)∥∥2 , (A.81)

where λmin(KβA
TA) = sd

(sd/N)+β
is the minimum eigen value of KβA

TA. Upon substituting

from (A.40) in the expression −z(t)TKβ∇F (t), we obtain that

−z(t)TKβ∇F (t) = − 1

N
z(t)TKβA

TAz(t)
(A.81)
≤ − 1

N
λmin(KβA

TA)
∥∥z(t)∥∥2 . (A.82)

Step IV: In this step, we bound
∥∥∥K̃(t)

∥∥∥ which appears in the fifth expression in the R.H.S.

226

of (A.70). Recall the definition of the uniform random variable ζtt . Then,

EIt

[(
aζtt
)T

aζtt
]
=

1

N
ATA.

Upon substituting from above in (A.35) we have

EIt

[
K̃(t+ 1)

]
=

I − α

(
EIt

[(
aζtt
)T

aζtt
]
+ βI

) K̃(t) =

(
I − α

(
1

N
ATA+ βI

))
K̃(t).

Again using the definition of induced matrix 2-norm above, we obtain that

∥∥∥∥EIt

[
K̃(t+ 1)

]∥∥∥∥ ≤

∥∥∥∥∥I − α

(
1

N
ATA+ βI

)∥∥∥∥∥∥∥∥K̃(t)
∥∥∥ . (A.83)

Since
(

1
N
ATA+ βI

)
is positive definite for β > 0, for each value of α satisfying 0 < α < 2

s1/N+β

we have
∥∥∥I − α

(
1
N
ATA+ βI

)∥∥∥ = max

{∣∣∣1− α
(
s1
N
+ β

)∣∣∣ , ∣∣∣1− α
(
sd
N
+ β

)∣∣∣} < 1 (Fessler,

2020). Using the definition of ϱ (see (A.47)) in (A.83) we then have ϱ < 1 such that

∥∥∥∥EIt

[
K̃(t+ 1)

]∥∥∥∥ ≤ ϱ
∥∥∥K̃(t)

∥∥∥ .
Iterating the above from t to 0, the total expectation is given by

∥∥∥∥Et [K̃(t+ 1)
]∥∥∥∥ ≤ ϱt+1

∥∥∥K̃(0)
∥∥∥ . (A.84)

From the definition of conditional expectation Et[·], we have Et

[
K̃(t)

]
= K̃(t). Thus, (A.84)

227

implies that

∥∥∥K̃(t)
∥∥∥ ≤ ϱt

∥∥∥K̃(0)
∥∥∥ . (A.85)

Step V: In this step, we bound the the fourth expression −z(t)TEIt

[
K̃(t+ 1)

]
∇F (t) in

the R.H.S. of (A.70). Using Cauchy-Schwartz inequality,

−z(t)TEIt

[
K̃(t+ 1)

]
∇F (t) ≤

∥∥z(t)∥∥∥∥∇F (t)∥∥∥∥∥∥EIt

[
K̃(t+ 1)

]∥∥∥∥
(A.84)
≤ ϱt+1

∥∥∥K̃(0)
∥∥∥∥∥z(t)∥∥∥∥∇F (t)∥∥ . (A.86)

Step VI: In this step, we combine the upper bounds obtained in Step-II to Step-V above to

get a bound on the R.H.S. of (A.70) in Step-I. Upon substituting from (A.40), (A.72), (A.80), (A.82),

(A.86), (A.85) in (A.70) we obtain that

Et

[∥∥z(t+ 1)
∥∥2] ≤ (1 + δ2C4(t) + αδC5(t)− δC6(t)

)∥∥z(t)∥∥2 + αδC7(t)
∥∥z(t)∥∥+R3(t),

(A.87)

where C4−7(t) and R3(t) have been defined in (A.48)-(A.53). We apply the AM-GM inequality

2ab ≤ (a2 + b2) with a = δ
∥∥z(t)∥∥ and b = αC7(t), which results in

Et

[∥∥z(t+ 1)
∥∥2] ≤ (1 + δ2(C4(t) + 0.5) + αδC5(t)− δC6(t)

)∥∥z(t)∥∥2 +R3(t) +
1

2
α2C7(t)

2.

228

From the definitions of C8(t) in (A.52) and R2(t) in (A.54), the above can be rewritten as

Et

[∥∥z(t+ 1)
∥∥2] ≤ (1 + δ2C8(t) + αδC5(t)− δC6(t)

)∥∥z(t)∥∥2 +R2(t)

= R1(t)
∥∥z(t)∥∥2 +R2(t). (A.88)

From (A.63), (A.78), and (A.84), we have shown that (A.87), and hence (A.88), hold for any

δ > 0 and α satisfying

0 < α < min

{
N

sd
,
1

L
,

2

(s1/N) + β
,

2

Λi + β
|i = 1, . . . , N

}
.

By definition, L = maxi=1,...,N{Λi + β}. Thus, the above implies that (A.88) holds for

0 < α < min

{
N

sd
,
1

L
,

2

(s1/N) + β

}
, δ > 0. (A.89)

Then, (A.88) completes the first part of the proof.

A.7.4.2 Proof of Part (i) of Theorem 2.5

Next, we show that the value of R1(t) is between 0 and 1 after some finite iteration if

the parameter δ satisfies an additional criterion. Note that, the values of C5(t), C6(t) and C8(t)

implicitly depend on α, but independent of δ. For any α > 0 consider the function rα : Z+ → R

defined as

rα(t) =
C6(t)

αC5(t)
=

sd
sd+Nβ

− s1
N

∥∥∥K̃(0)
∥∥∥ ϱt+1

αC1E2
s1
N

(∥∥Kβ

∥∥+∥∥∥K̃(0)
∥∥∥ ϱt) .

229

From the definition, rα is a strictly increasing function. As ρ ∈ (0, 1), we have the limit of rα as

lim
t→∞

rα(t) =
C6(t)

αC5(t)
=

sd
sd+Nβ

αC1E2
s1
N

∥∥Kβ

∥∥ > 0,

where the last inequality holds under Assumption 1. Since rα(t) is strictly increasing with t with

a positive limit as t → ∞, there exists 0 ≤ T < ∞ such that rα(t) > 0 for all t ≥ T . Since

the above holds for any α > 0, it also holds for the values of α satisfying (A.89). Hence, for any

value of the parameter α in (A.89) there exists T <∞ such that

C6(t)− αC5(t) > 0, ∀t ≥ T.

Now consider any iteration t ≥ T . If 0 < δ < C6(t)−αC5(t)
C8(t)

, then we have

δC8(t) + αC5(t) < C6(t) =⇒ 1 + δ2C8(t) + δαC5(t)− δC6(t) < 1.

Additionally, if 0 < δ < 1
C6(t)

, then

δC6(t) < 1 =⇒ 1− δC6(t) > 0 =⇒ 1 + δ2C8(t) + δαC5(t)− δC6(t) > 0.

We combine the above two results to conclude the proof. If α satisfies (A.89) then there exists

T <∞ such that for any iteration t ≥ T , if δ < min{ 1
C6(t)

, C6(t)−αC5(t)
C8(t)

} then

(
1 + δ2C8(t) + δαC5(t)− δC6(t)

)
∈ (0, 1).

230

From (A.55), note that the bound on δ above is δ. Thus, the proof of the second part of the

theorem is complete.

A.7.4.3 Proof of Part (iii) of Theorem 2.5

From Part (ii) of Theorem 2.5, we have 0 < R1(t) < 1 for all t ≥ T . Thus, upon

retracing (2.45) from t to 0, we obtain

lim
t→∞

Et

[∥∥z(t+ 1
∥∥2] ≤ R2(∞).

Upon substituting from (A.51) in the definition of R2(t) in (A.54), we get

R2(∞) = lim
t→∞

δ2V1N

dC3 +
∥∥Kβ

∥∥2 + 2C2

∥∥Kβ

∥∥ t∑
j=0

ρj +
∥∥∥K̃(0)

∥∥∥2
F
µt+1 + 2

∥∥Kβ

∥∥∥∥∥K̃(0)
∥∥∥ ρt+1


+

1

2
α2

(
2C1E1

(∥∥Kβ

∥∥+∥∥∥K̃(0)
∥∥∥ ϱt))2

.

From the proof of Part (i) of Theorem 2.5, the values of ρ, µ, ϱ are within the range (0, 1). Then,

R2(∞) = δ2V1N

(
dC3 +

∥∥Kβ

∥∥2 + 2C2

∥∥Kβ

∥∥
1− ρ

+

)
+ 2α2

(
C1E1

∥∥Kβ

∥∥)2 .
Hence, the proof.

A.8 Proof of Lemma 3.1

Consider the linear dynamics ẏ(s) = −My(s) with initialization y(0) ∈ Rmd and s ≥ 0. If

0md is the exponentially stable equilibrium point of the above dynamics, then all eigenvalues of

231

M must have positive real parts. Next, we prove that the above dynamics is exponentially stable.

We let yi(s) ∈ Rd denote the i-th block-row of a vector y ∈ Rmd, such that y(s) =[
y1(s)T , . . . , ym(s)T

]T . Recall the definition of the matrix Ki in (3.5). We define the Lyapunov

function candidate V : Rmd → R such that

V (y) =
1

2

m∑
i=1

(yi)T
(
Ki
)−1

yi, y ∈ Rmd. (A.90)

Clearly, V (y) > 0 for any y ∈ Rmd such that y ̸= 0md, and V (0md) = 0. Also, lim∥y∥→∞ V (y) →

∞. Upon differentiating both sides of (A.90) with respect to s, along the trajectory of ẏ(s) =

−My(s), y(0) ∈ Rmd we have

V̇ (y(s)) =
m∑
i=1

yi(s)T
(
Ki
)−1

ẏi(s) = −
m∑
i=1

yi(s)T
(
Ki
)−1

M iy(s).

Upon substituting above from (3.9),

V̇ (y(s)) = −
m∑
i=1

yi(s)T

(α
(
ai
)T

ai +
∣∣∣N i

∣∣∣ I)yi(s)− ∑
j∈N i

yj(s)

 .

Since the graph G is undirected, from above we obtain that

V̇ (y(s)) = −α
m∑
i=1

∥∥∥Aiyi(s)
∥∥∥2 − 1

2

∑
(i,j)∈E

∥∥∥yi(s)− yj(s)
∥∥∥2 ≤ 0. (A.91)

Let N (P) denote the nullspace of a matrix P : N (P) =
{
v ∈ Rmd : Pv = 0md

}
. Define

the matrix A =
[
(A1)T , . . . , (Am)T

]T . Assumption 3.1 implies that the matrix A is full-rank.

Then, N (A) = 0d. Under Assumption 3.2, (A.91) implies that V̇ (y(s)) = 0 ⇐⇒ ∃yc ∈

232

Rd such that yi(s) = yc, y
i(s) ∈ N (Ai), ∀i ∈ {1, . . . ,m}. So, V̇ (y(s)) = 0 ⇐⇒ yi(s) =

0d, ∀i ∈ {1, . . . ,m} ⇐⇒ y(s) = 0md. Hence, we have that V̇ (y(s)) < 0 for y(s) ̸= 0md. Then,

according to Lyapunov’s stability theorem [228], 0md is the exponentially stable equilibrium point

of the system ẏ(s) = −My(s), y(0) ∈ Rmd, and therefore, the eigenvalues of M have positive

real parts. Now we consider the expression ofM in (A.96). From the argument following (A.97),

the eigenvalues of M are real. Thus, M has positive real eigenvalues.

A.9 Proof of Theorem 3.1

Throughout this proof, we assume that, for any i ∈ {1, . . . ,m},
(
Ai
)T
Ai is not the trivial

zero matrix, and α, δ > 0. Consider an arbitrary iteration t ≥ 0. Define the estimation error at

iteration t as

z(t) =
[
z1(t)T , . . . , zm(t)T

]T
=
[
(x1(t)− x∗)T , . . . , (xm(t)− x∗)T

]T
. (A.92)

Upon substituting above from (3.6) we have zi(t+1) = zi(t)−αδKi
(
Ai
)T (

Ai zi(t) + Ai x∗ − bi
)
+

δKi
∑

j∈N i

(
zj(t)− zi(t)

)
. Upon substituting above from the definition of x∗ in (3.1),

zi(t+ 1) =zi(t)− αδKi
(
Ai
)T

Aizi(t) + δKi
∑
j∈N i

(
zj(t)− zi(t)

)
. (A.93)

Recall the definition ofM from (3.8)-(3.9). Upon substituting from above in (A.92), the estimation

error at iteration (t+ 1) is

z(t+ 1) = (I − δM) z(t). (A.94)

233

We denote by Diag(.) a block-diagonal matrix of appropriate dimensions, with the arguments

denoting the block-diagonal entries in the same order. Recall that L is the Laplacian matrix of

graph G. We let ⊗ denote the Kronecker product of two matrices. For simplicity of notations,

we define

K = Diag

({
Ki
}m

i=1

)
,Γ = Diag

({(
Ai
)T

Ai

}m

i=1

)
. (A.95)

Upon substituting from (A.95) in the definition of M in (3.8),

M = αKΓ +K (L⊗ I) . (A.96)

For an md-dimensional arbitrary vector v ̸= 0md, consider the quadratic form of M :

ϕ(v) = vTMv = α vTKΓv + vTK (L⊗ I) v. (A.97)

Since L is symmetric positive semi-definite [75], L⊗ I is also symmetric positive semi-definite.

From the definition ofKi in (3.5) andK in (A.95), we have thatK is symmetric positive definite.

Thus, the matrix product K (L⊗ I) has non-negative eigenvalues, and vTK (L⊗ I) v ≥ 0.

Similarly, since K is symmetric positive definite and Γ is symmetric positive semi-definite, KΓ

has non-negative eigenvalues, and vTKΓv ≥ 0. From Lemma 3.1, the eigenvalues of M are

positive. Thus, ϕ(v) > 0. Therefore, the following three cases are possible.

234

Case-I: vTKΓv = 0. Since ϕ(v) > 0, we have

vTK (L⊗ I) v > 0 ⇐⇒ vTK (L⊗ I) v ≥ λmin(K (L⊗ I))∥v∥2

(A.97)
=⇒ ϕ(v) ≥ λmin(K (L⊗ I))∥v∥2 .

Case-II: vTK (L⊗ I) v = 0. Since ϕ(v) > 0, we have

vTKΓv > 0 ⇐⇒ vTKΓv ≥ λmin(KΓ)∥v∥2 (A.97)
=⇒ ϕ(v) ≥ αλmin(KΓ)∥v∥2 .

Case-III: vTKΓv > 0, vTK (L⊗ I) v > 0. From (A.97),

ϕ(v) ≥
(
αλmin(KΓ) + λmin(K (L⊗ I))

)
∥v∥2 .

Thus, for any v ̸= 0md, we obtain that ϕ(v) ≥ min
{
λmin(K (L⊗ I)), α λmin(KΓ)

}∥∥v2∥∥, which

implies

λmin(M) ≥ min
{
λmin(K (L⊗ I)), α λmin(KΓ)

}
. (A.98)

From (A.97), we further have that

λmax(M) ≤ λmax(K (L⊗ I)) + αλmax(KΓ). (A.99)

Next, we compute the eigenvalues in the R.H.S. of (A.98)-(A.99).

Let λi1 ≥ . . . ≥ λid ≥ 0 denote the eigenvalues of
(
Ai
)T
Ai. Let Si = Diag(λi1, . . . , λ

i
d),

235

and let the matrixU i consists of the orthonormal eigenvectors [U i
1, . . . , U

i
d] such that

(
Ai
)T
AiU i

j =

λij U
i
j . Note that (U i)TU i = I , and

(
Ai
)T
Ai = U iSi(U i)T . From (3.5), then we obtain

Ki = U iDiag

(
{ 1

αλij + |N i|
}dj=1

)
(U i)T , (A.100)

Ki
(
Ai
)T

Ai = U iDiag

(
{

λij
αλij + |N i|

}dj=1

)
(U i)T . (A.101)

From (A.95),KΓ = Diag
[
K1ATA1, . . . , Km (Am)T Am

]
. So, the smallest non-zero eigenvalue

of KΓ is mini=1,...,m λmin(K
i
(
Ai
)T
Ai). From (A.101),

λmin(KΓ) = min
i=1,...,m

λi

αλi + |N i|
. (A.102)

Similarly, the largest eigenvalue of KΓ is

λmax(KΓ) = max
i=1,...,m

λ
i

αλ
i
+ |N i|

. (A.103)

Since K is block diagonal with positive eigenvalues and (L⊗ I) is symmetric positive semi-

definite, we have [229, 230]

λmin(K (L⊗ I)) ≥ λmin(K)λmin (L⊗ I) , (A.104)

λmax(K (L⊗ I)) ≤ λmax(K)λmax (L⊗ I) . (A.105)

From (A.95) and the decomposition ofKi in (A.100), λmin(K) = mini=1,...,m
1

αλ
i
+|N i| , λmax(K) =

maxi=1,...,m
1

|N i| . Recall that, λL and λL respectively denote the largest and the smallest non-zero

236

eigenvalues of L. Then, λmin (L⊗ I) = λL, λmax (L⊗ I) = λL. Upon substituting from above

in (A.104)-(A.105), we get

λmin(K (L⊗ I)) ≥ min
i=1,...,m

1

αλ
i
+ |N i|

λL, (A.106)

λmax(K (L⊗ I)) ≤ max
i=1,...,m

1

|N i|
λL. (A.107)

Upon substituting from (A.102)-(A.103) and (A.106)-(A.107) in (A.98)-(A.99), we obtain that

the condition number of M is bounded as

κ(M) =
λmax(M)

λmin(M)
≤

maxi=1,...,m
λL

|N i| + αmaxi=1,...,m
λ
i

αλ
i
+|N i|

min

{
mini=1,...,m

λL

αλ
i
+|N i| , αmini=1,...,m

λi

αλi+|N i|

} .

Substituting above from (3.12), κ(M) ≤ κM . Since ϕ(v) = vTMv > 0, M has at least one

positive eigenvalue. Under the condition of the theorem, δ < 2
λmax(M)

. Then, from (A.94) it

follows that there exists ρ such that (3.13) holds and κ(M)−1
κ(M)+1

≤ ρ < 1 [21]. Since κ(M) ≤ κM ,

the proof is complete.

A.10 Proof of Theorem 3.2

Consider an arbitrary iteration t ≥ 0. Define the estimation error at iteration t as zo(t) =[
z1o(t)

T , . . . , zmo (t)T
]T

=
[
(x1o(t)− x∗)T , . . . , (xmo (t)− x∗)T

]T . Upon substituting above from (3.14)

and (A.92),

zo(t) = z(t) +
[
ζ1(t)T , . . . , ζm(t)T

]T
= z(t) + ζ(t). (A.108)

237

Proceeding in the same way as (A.94) in Section A.9, from the estimate update equation (3.15)

we have z(t + 1) = (I − δM) zo(t). Upon substituting above from (A.108), z(t + 1) =

(I − δM) z(t) + (I − δM) ζ(t). Using triangle inequality and the definition of induced 2-norm

of matrix, from above we get

∥∥z(t+ 1)
∥∥ ≤∥I − δM∥

∥∥z(t)∥∥+∥I − δM∥
∥∥ζ(t)∥∥ . (A.109)

Define, ρ = ∥I − δM∥. Under Assumption 3.1 and α > 0, from Lemma 3.1 we have that

λmin(M) > 0. Since 0 < δ < 2
λmax(M)

and λmin(M) > 0, we have κM−1
κM+1

≤ ρ < 1 [21]. Under

Assumption 3.3, from the definition of ζ(t) in Section 3.2.2,

Eζt

[∥∥ζ(t)∥∥] ≤ Eζt

[∥∥ζ(t)∥∥
1

]
=

m∑
i=1

Eζt

[∥∥∥ζ i(t)∥∥∥
1

]
≤ mω. (A.110)

Upon taking expectation with respect to ζ(t) on (A.109) and substituting from above, we obtain

that Eζt

[∥∥z(t+ 1)
∥∥] ≤ ρ

∥∥z(t)∥∥ + ρmω. Upon iterating the above from t to 0, the total

expectation is obtained as Et

[∥∥z(t+ 1)
∥∥] ≤ ρt+1

∥∥z(0)∥∥ + mω
∑t+1

i=1 ρ
i. Upon substituting

above from (A.108) and (A.110) proves (3.18). Since 0 ≤ ρ < 1, taking limit as t → ∞ on both

sides of (3.18) proves the theorem.

A.11 Proof of Theorem 3.3

Consider any solution x∗ of (3.22) and an arbitrary iteration t ≥ 0. Recall the definition

of estimation error at iteration t from (A.92). We define the matrix A =
[
(A1)T , . . . , (Am)T

]T .

When (3.22) has multiple solutions, the matrix A (equivalently ATA) has a non-zero nullspace.

238

Let N (ATA) denote the nullspace of matrix ATA and N (ATA)⊥ denote the orthogonal vector

space of N (ATA). Due to the fundamental theorem of linear algebra [45], Rn = N (ATA) ⊕

N (ATA)⊥. Therefore, for each t ≥ 0, we can decompose vector zi(t) into two orthogonal vectors

z(t)⊥ ∈ N (ATA)⊥ and zi(t)N ∈ N (ATA). Specifically, zi(t) = zi(t)N + zi(t)⊥. Below, we

separately analyze the convergence z(t)⊥ and zi(t)N , and combine them subsequently.

Consider the eigen-decomposition of ATA = V SV T , where V consists of the orthonormal

eigenvectors [V1, . . . , Vd] and S is the diagonal matrix of the eigenvalues of ATA. Let the rank

of ATA be denoted by r. We define S⊥ = Diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
d−r

). Let span {V1, . . . , Vr} ={∑r
i=1 uiVi : ui ∈ R, ∀i

}
. As V1, . . . , Vd are orthogonal,

N (ATA)⊥ = span {V1, . . . , Vr} , (A.111)

N (ATA) = span {Vr+1, . . . , Vd} . (A.112)

Define a projection matrix Q = V S⊥V T . Note that for a vector v ∈ Rd, due to the fundamental

lemma of linear algebra, the vectors Qv and (v − Qv) belong to the orthogonal vector spaces

N (ATA)⊥ and N (ATA), respectively. Thus, z(t)⊥ = Qz(t). Similarly, the projection matrix to

239

N (ATA) is P = I −Q = V Diag(0, . . . , 0︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
d−r

)V T . Therefore,

zi(t+ 1)⊥ =Qzi(t+ 1)
(A.93)
= zi(t)⊥ − αδQKi

(
Ai
)T

Aizi(t)

+ δQKi
∑
j∈N i

(
zj(t)− zi(t)

)
, (A.113)

zi(t+ 1)N =P zi(t+ 1)
(A.93)
= zi(t)N − αδPKi

(
Ai
)T

Aizi(t)

+ δPKi
∑
j∈N i

(
zj(t)− zi(t)

)
. (A.114)

Consider a vector w ∈ N (ATA). Since N (ATA) = ∩m
i=1N (

(
Ai
)T
Ai), w ∈ N (

(
Ai
)T
Ai)∀i.

Recall the eigen-decomposition ofKi
(
Ai
)T
Ai from (A.101). Let the eigenvalues ofKi

(
Ai
)T
Ai

be denoted by sj , i.e., sj =
λi
j

αλi
j+|N i| . Let the rank of

(
Ai
)T
Ai be denoted by ri. From (A.101)

and definition of P , PKi
(
Ai
)T
Ai =

∑d
l=r+1 VlV

T
l

∑ri
j=1 sjU

i
jU

iT
j . Since N (

(
Ai
)T
Ai)⊥ =

span
{
U i
1, . . . , U

i
ri

}
and N (ATA) = ∩m

i=1N (
(
Ai
)T
Ai), we have that span

{
U i
1, . . . , U

i
ri

}
⊆

N (ATA)⊥. So, from (A.112), V T
l U

i
j = 0 for each j = 1, . . . , ri and each l = r + 1, . . . , d,

and hence, PKi
(
Ai
)T
Ai = 0d×d. Since P = I − Q, we have QKi

(
Ai
)T
Ai = Ki

(
Ai
)T
Ai.

From (A.100) and definition of P , PKi =
∑d

l=r+1 VlV
T
l

∑d
j=1

1

αλi
j+|N i|U

i
jU

iT
j . Now, λij = 0

for each j = ri + 1, . . . , d. From above, PKi = 1

|N i|
∑d

l=r+1 VlV
T
l

∑d
j=ri+1 U

i
jU

iT
j . Since∑d

j=ri+1 U
i
jU

iT
j is the projection matrix to N (

(
Ai
)T
Ai) and N (ATA) ⊆ N (

(
Ai
)T
Ai), from (A.112)

we have PKi = 1

|N i|
∑d

l=r+1 VlV
T
l = 1

|N i|P . Then, for any vector v ∈ N (ATA)⊥ we have

PKiv = 1

|N i|Pv = 0d. And, QKiv = (I − P)Kiv = Kiv. Consider any vector w ∈ N (ATA).

Then, QKiw = Kiw − PKiw = Kiw − 1

|N i|Pw = (Ki − 1

|N i|I)w. So, from (A.100),

QKiw =
∑ri

j=1

−αλi
j

(αλi
j+|N i|)|N i|U

i
jU

iT
j w. Now, w ∈ N (

(
Ai
)T
Ai) = span

{
U i
ri+1, . . . , U

i
d

}
. Thus,

240

QKiw = 0d. Above we have shown that

PKi
(
Ai
)T

Ai = Od×d, QK
i
(
Ai
)T

Ai = Ki
(
Ai
)T

Ai,

QKiv = Kiv, PKiv = QKiw = 0d, PK
i =

P

|N i|
. (A.115)

Upon substituting from (A.115) in (A.113)-(A.114),

zi(t+ 1)⊥ = zi(t)⊥ − αδQKi
(
Ai
)T

Aizi(t)⊥ + δQKi
∑
j∈N i

(
zj(t)⊥ − zi(t)⊥

)
,

zi(t+1)N = zi(t)N+ δP

|N i|
∑

j∈N i

(
zj(t)N − zi(t)N

)
= zi(t)N+ δ

|N i|
∑

j∈N i

(
zj(t)N − zi(t)N

)
.

Define

Q = Diag(Q, . . . , Q), z(t)⊥ =
[
z1(t)⊥T , . . . , zm(t)⊥T

]T
, z(t)N =

[
z1(t)NT , . . . , zm(t)NT

]T
.

Upon substituting from above in (A.92), z(t+1)⊥ =
(
I − δQM

)
z(t)⊥ = (I − δM) z(t)⊥, and

z(t+1)N =
(
I − δMN) z(t)N . Considering the Lyapunov function V (y) = 1

2

∑m
i=1(y

i)T
∣∣N i

∣∣ yi
for y ∈ Rmd, if δ < 2

λmax(MN)
, it follows that zi(t)N reaches consensus to some vector z∗(t)N .

Moreover [21], there exists ρ1 > 0 such that κ(MN)−1
κ(MN)+1

≤ ρ1 < 1 and
∥∥z(t+ 1)N

∥∥ ≤ ρ1
∥∥z(t)N∥∥,

for all t ≥ 0. Without Assumption 3.1, from the argument following (A.97) we have ϕ(v) ≥

0, and hence, the eigenvalues of M are non-negative. From (A.115) and the definition of M i

in (3.9), if w ∈ N (ATA) then w ∈ N (QM i). Thus, using (A.115), the quadratic form of QM

is v⊥TMv⊥ for any v ∈ Rmd. Moreover, since vN ∈ N (QM) and v⊥ is orthogonal to vN , we

have v⊥ /∈ N (QM). Then, the quadratic form of QM is non-zero. So, the quadratic form of

241

QM is positive. In the proof of Theorem 3.1, Assumption 3.1 has only been used to show that

ϕ(v) > 0. Thus, without Assumption 3.1, we follow the rest of the proof of Theorem 3.1 exactly,

and obtain the following. If δ < 2
λmax(M)

, then there exists ρ2 such that κ(M)−1
κ(M)+1

≤ ρ2 < 1 and∥∥z(t+ 1)⊥
∥∥ ≤ ρ2

∥∥z(t)⊥∥∥ , ∀t ≥ 0. We define ρ = max{ρ1, ρ2}. Since z(t) = z(t)N +z(t)⊥ and

z(t)NT z(t)⊥ = 0, we get
∥∥z(t+ 1)

∥∥2 ≤ ρ2
∥∥z(t)∥∥2, if δ < min{ 2

λmax(M)
, 2
λmax(MN)

} = 2
λmax(M)

.

Moreover, ρ ≥ max{κ(MN)−1
κ(MN)+1

, κ(M)−1
κ(M)+1

} = max{κM ,κN }−1
max{κM ,κN }+1

and ρ < 1.

Finally, we find the limit point of xi(t). Since {zi(t)N , i = 1, . . . ,m} reach consensus

in N (ATA), {xi(t)N , i = 1, . . . ,m} also reach consensus to some vector in N (ATA), which

we denote by x∗N . Since zi(t)⊥ converges to 0d, xi(t)⊥ converges to x∗⊥. Therefore, xi(t) =

xi(t)⊥ + xi(t)N converges to x∗⊥ + x∗N . Since x∗N ∈ N (ATA), we have A
(
x∗⊥ + x∗N

)
= Ax∗⊥.

Since Ax∗N = 0, we get A
(
x∗⊥ + x∗N

)
= Ax∗⊥ + Ax∗N = Ax∗ = b. So, each xi(t) converges

to the same solution of (3.22). Hence, the proof.

A.12 Proof of Theorem 3.4

We follow the proof of Lemma 3.1 presented in Appendix A.8: below, we show that 0md

is the exponentially stable equilibrium point of ẏ(s) = −My(s), y(0) ∈ Rmd, and therefore, the

eigenvalues of M have positive real parts. Then, for small enough step-size δ > 0, the estimation

error z(t) in (A.94) linearly converges to 0md.

Under Assumption 3.4, there exists a vector σ = [σ1, . . . , σm]
T ∈ Rm with

∑m
i=1 σi =

1 and σi > 0 such that σTL = 01×d [54]. Define Φ = Diag(σ1, . . . , σm). Consider the

Lyapunov function candidate V : Rmd → R such that V (y) = 1
2
yT (Φ ⊗ I)K−1y for any

y ∈ Rmd. Since Φ ⊗ I is diagonal matrix, V is positive definite. Moreover, V̇ (y) = −yT (Φ ⊗

242

I)K−1My. Upon substituting above from (3.8) and using properties of Kronecker product,

V̇ (y) = −α
∑m

i=1 σi
∥∥Aiyi

∥∥2 − yT (ΦL⊗ I)y. Now,

yT (ΦL⊗ I)y =
1

2
yT
(
(ΦL⊗ I) + (ΦL⊗ I)T

)
y =

1

2
yT
(
(ΦL+ LTΦ)⊗ I

)
y.

Since σTL = 0Td , we have 1Td (ΦL + LTΦ) = 0Td and (ΦL + LTΦ)1d = 0d. So, (ΦL + LTΦ)

is a symmetric Laplacian associated with an undirected graph [54]. Then, V̇ (y) ≤ 0. Since

(ΦL + LTΦ) is Laplacian associated with an undirected graph, under Assumption 3.1, V̇ (y) =

0 ⇐⇒ yi ∈ N (
(
Ai
)T
Ai),∃yc ∈ Rd such that yi(s) = yc ∀i ⇐⇒ y = 0md. Thus, V̇ (y) < 0

for y ̸= 0md. Hence, the proof.

A.13 Proof of Lemma 3.2

For any i ∈ [m],

(λ, v) is an Eigen-pair ofK
i ⇐⇒ (Ki + ηI)−1(Ki − ηI)v = λv

⇐⇒ (Ki − ηI)v = (Ki + ηI)λv [Soλ ̸= 1 , otherwise v = 0 is an Eigenvector of K
i
.]

⇐⇒ Kiv =
1 + λ

1− λ
ηv ⇐⇒ (

1 + λ

1− λ
η, v) is an Eigen-pair of Ki.

We have Ki = k(N i)−1, which can easily be verified by substituting this expression in the

Lyapunov equation (3.42) which has a unique solution. Then,

λ[Ki] =
k

λ[N i]
=

k

λ[(Ai)TAi] + |N i|
> 0 ⇐⇒ 1 + λ

1− λ
η > 0 ⇐⇒ |λ|< 1.

243

Therefore, K
i

is Schur and the claim follows.

A.14 Proof of Lemma 3.3

We begin with the necessary definitions (ref. [72]):

rij = rij − x∗, (A.116)

xi = xi − x∗. (A.117)

S
i
= (1/2)

∥∥∥xi∥∥∥2 , (A.118)

V ij(t) =
1

2

∫ t

t−τ ij

∥∥∥∥s⃗ij(y)− 1√
2η
ηx∗
∥∥∥∥2 dy + 1

2

∫ t

t−τ ji

∥∥∥∥s⃗ji(y)− 1√
2η
ηx∗
∥∥∥∥2 dy, (A.119)

V =
∑
i∈[m]

S
i
+
∑

(i,j)∈E

V ij. (A.120)

As the proof is long, we outline the steps as follows:

1. Define a suitable time-dependent Lyapunov function candidate V (ref. (A.120)) for the

combined agent dynamics, where the overall Lyapunov function is contributed by storage

functionals S
i

for individual agents and V ij for their links.

2. The time derivative of V is shown to be non-positive, and consensus is established between

the agents using extension on LaSalle’s principle.

3. Finally, asymptotic convergence is established by showing that the solution set of the time

derivative of the Lyapunov function V being identically zero only consists of each agent

asymptotically reaching the desired solution x∗.

244

From (3.48) and (A.117),

ẋ
i
= ẋi = vi −Kiϕi(xi). (A.121)

From (A.118), S
i

is “positive definite” and

Ṡ
i

= (xi)Tvi − (xi)TKi(Ai)TAi(xi − x∗). (A.122)

From (3.44), (A.116) and (A.117),

vij = Ki(rij − xi), vi =
∑
j∈N i

Ki(rij − xi).

Substituting them into (A.122),

Ṡ
i

=(xi)T
∑
j∈N i

Ki(rij − xi)− (xi)TKi(Ai)TAixi

=
∑
j∈N i

[(rij)
Tvij − (xi − rij)

TKi(xi − rij)]− (xi)TKi(Ai)TAixi. (A.123)

We use the following facts (ref. proof of Lemma 5 in [72]):

V ij(t) ≥ 0 ∀t (A.124)

and v̇ij(t) = −(vij)T rij − (vji)T rji. (A.125)

245

From (A.123) and (A.125) it follows that,

V̇ =−
∑
i∈[m]

∑
j∈N i

(xi − rij)
TKi(xi − rij)

∑
i∈[m]

(xi)TKi(Ai)TAixi ≤ 0 (A.126)

So, xi ∈ L∞ ∀i. From (3.44)-(3.47),

rij(t) = (K
i
)2rij(t− τ ij − τ ji) + βij(t), (A.127)

where βij(t) are linear functions of xi and xj at times t, t− τ ij , t− τ ji, t− τ ij − τ ji (ref. [72]).

Also βij(t) are bounded linear, because xi ∈ L∞. Lemma 3.2 states that Eigenvalues of K
i ∀i

are within unit circle, if η > 0. Then, (A.127) is a stable difference equation with bounded inputs,

which means rij ∈ L∞. So, extension of LaSalle’s principle for time delay systems is applicable.

Now,

V̇ ≡ 0 ⇐⇒ xi = rij ∀i, ∀j ∈ N i,
∑
i∈[m]

(xi)TKi(Ai)TAixi = 0. (A.128)

Thus, LaSalle’s principle implies that

∀i, xi → rij as t→ ∞∀j ∈ N i. (A.129)

From (3.44)-(3.47) one can see that,

ηrij(t) =
√

2ηs⃗ji(t− τ ji)−Ki(rij(t)− xi(t))

=−Kj(rji(t− τ ji)− xj(t− τ ji)) + ηrji(t− τ ji)−Ki(rij(t)− xi(t)). (A.130)

From (A.129) and (A.130), for every i, ∀j ∈ N i,

lim
t→∞

rij(t) = lim
t→∞

rji(t− τ ji) = lim
t→∞

rji(t) =⇒ lim
t→∞

xi(t) = lim
t→∞

xj(t).

246

Thus consensus is achieved asymptotically. Then, from (A.128) we have

V̇ ≡ 0 =⇒ lim
t→∞

xi(t) = lim
t→∞

x(t)∀i, lim
t→∞

∑
i∈[m]

(x(t))TKi(Ai)TAix(t) = 0. (A.131)

for some x : R → Rd and x := x− x∗. So, the only thing left to be shown is

lim
t→∞

∑
i∈[m]

(x(t))TKi(Ai)TAix(t) = 0 =⇒ lim
t→∞

x(t) = 0.

So it is sufficient to show that,

∑
i∈[m]

Ki(Ai)TAi ≻ 0. (A.132)

We have

Ki ∈ Sd
++, (A

i)TAi ∈ Sd
+ ∀i =⇒

∑
i∈[m]

Ki(Ai)TAi ⪰ 0

For each i, consider the Eigen decomposition (Ai)TAi = U iΛi(U i)T , where U i is the Eigenvector

matrix of (Ai)TAi and Λi is a diagonal matrix with the Eigenvalues of (Ai)TAi in the diagonal.

Then,

N i = |N i|I + (Ai)TAi = U i(|N i|I + Λi)(U i)T .

We haveKi = k(N i)−1, which can easily be verified by substituting in the Lyapunov equation (3.42)

which has a unique solution. Then,

Ki(Ai)TAi = kU idiag{ λik
|N i|+λik

}dk=1(U
i)T ,

where λik are the Eigenvalues of (Ai)TAi ∈ Sd
+, and λik = 0 if the kth column of U i is in N (Ai).

This also means Ki(Ai)TAi ∈ Sd
+.

Consider any x ∈ Rn, x ̸= 0. Now ∃j∗ ∈ [m] s.t. x /∈ N (Aj∗). Otherwise, x ∈ N (Ai) ∀i

247

which implies x ∈ N (A). From Assumption 3.1, N (A) = 0 which is a contradiction. Now,

xTKj∗(Aj∗)TAj∗x =k
d∑

k=1

λj∗k
|N j∗ |+λj∗k

∥∥∥xTuj∗k∥∥∥2 . (A.133)

We consider the nontrivial case where for each i, Ai is not the zero matrix. Then, a positive

eigenvalue exists, because (Aj∗)TAj∗ ∈ Sd
+ and all of its eigenvalues cannot be zero. Define

l = n−N ((Aj∗)TAj∗). Then ∃l ≥ 1 such that λj∗k > 0, k = 1, ..., l (possibly by rearrangement

of indices) and the eigenvectors {uj∗k}lk=1 ̸⊂ N ((Aj∗)TAj∗) and {uj∗k}dk=l+1 = N ((Aj∗)TAj∗).

Then,

xTKj∗(Aj∗)TAj∗x = 0 ⇐⇒ x ⊥ span{uj∗k}lk=1 ⇐⇒ x ∈ span{uj∗k}dk=l+1

⇐⇒ x ∈ N ((Aj∗)TAj∗)

Therefore, xTKj∗(Aj∗)TAj∗x > 0 and the claim follows from (A.132).

A.15 Proof of Theorem 3.5

For every i ∈ [m], consider the system (3.48) with the definitions (3.45)-(3.47). Then,

Lemma 3.3 implies that xi → x∗ ∀i as t → ∞. So it is enough to show that, there exists s⃗ij

∀j ∈ N i satisfying definitions (3.45)-(3.47) such that the dynamics in (3.43) is same as the

dynamics (3.48). Let

s⃗ij(t) =

√
η

2
xi(t)∀j ∈ N i. (A.134)

From (3.47) and the scattering variables chosen as above,

⃗sij(t) = s⃗ji(t− τ ji) =

√
η

2
xj(t− τ ji). (A.135)

248

From (3.44), (3.45) and (A.135) it can be seen that,

ηxj(t− τ ji) = Ki(rij(t)− xi(t)) + ηrij(t) =⇒ rij(t) = (Ki + ηI)−1(ηxj(t− τ ji) +Kixi(t)).

By the above equation and (3.44),

vij(t) =Ki[(Ki + ηI)−1(ηxj(t− τ ji) +Kixi(t))− xi(t)]

=ηKi(Ki + ηI)−1(xj(t− τ ji)− xi(t)), (A.136)

where the last equality follow from the fact

(Ki + ηI)−1Ki − I = (Ki + ηI)−1Ki − (Ki + ηI)−1(Ki + ηI) = −η(Ki + ηI)−1.

Equation (A.136) substituted in (3.48) leads to (3.43), and the choice of variables in (A.134)

satisfy definitions (3.45)-(3.47). Therefore, the proof is complete, following Lemma 3.3.

A.16 Proof of Lemma 4.1

Recall the definition of K∗ from Section 4.2.2. For each iteration t ≥ 0, define the matrix

K̃(t) = K(t)−K∗. (A.137)

Consider an arbitrary iteration t ≥ 0. Upon substituting from (4.3) and (4.5) in the definition (A.137),

K̃(t+ 1) =K(t)− α(t)
((

∇2f(x(t)) + βI
)
K(t)− I

)
−K∗

=K(t)−K∗ − α(t)
((

∇2f(x(t)) + βI
)
K(t)−

(
∇2f(x(t)) + βI

)
K∗
)

− α(t)
((

∇2f(x(t)) + βI
)
K∗ −

(
∇2f(x∗) + βI

) (
∇2f(x∗) + βI

)−1
)
.

Upon substituting above from (A.137) and the definition of K∗,

K̃(t+ 1) =
(
I − α(t)

(
∇2f(x(t)) + βI

))
K̃(t)− α(t)

(
∇2f(x(t))−∇2f(x∗)

)
K∗.

249

Applying Cauchy-Schwartz inequality above,

∥∥∥K̃(t+ 1)
∥∥∥ ≤

∥∥∥I − α(t)
(
∇2f(x(t)) + βI

)∥∥∥∥∥∥K̃(t)
∥∥∥+ α(t)

∥∥∇2f(x(t))−∇2f(x∗)
∥∥∥K∗∥ .

(A.138)

Under Assumption 4.2, each local cost function f i is convex, implying that the aggregate cost

function f =
∑m

i=1 f
i is convex. Thus,

(
∇2f(x(t)) + βI

)
is positive definite for β > 0. It

follows that, if α(t) < 1

λmax[∇2f(x(t))]+β
then ρ(t) =

∥∥∥I − α(t)
(
∇2f(x(t)) + βI

)∥∥∥ < 1. This

proves the lemma.

A.17 Proof of Theorem 4.1

Before presenting the proof, we define the following notation. Recall the definition of the

minimum points X∗ in (4.1). For a minimum points x∗ ∈ X∗ and each iteration t ≥ 0, define the

estimation error

z(t) = x(t)− x∗. (A.139)

Step 1: In this step, we derive an upper bound of
∥∥∥K̃(t+ 1)

∥∥∥, provided with the iterations

from 0 to t. In this step, we use (A.138) from the proof of Lemma 4.1. Consider an arbitrary

iteration t ≥ 0. From Section 4.2.2, recall that η denotes the induced 2-norm of the matrix K∗.

Then,

η =∥K∗∥ =
∥∥∥(∇2f(x∗) + βI

)−1
∥∥∥ =

1

λmin

[
∇2f(x∗)

]
+ β

. (A.140)

Under Assumption 4.2 and 4.5, ∇2f(x∗) is positive definite. Then, λmin

[
∇2f(x∗)

]
> 0, and

η < 1
β

. From Section 4.2.2, recall the definition ρ = supt≥0 ρ(t). From Lemma 4.1 we have

250

0 ≤ ρ < 1. Upon substituting from (A.140) and the definition of ρ in (A.138),

∥∥∥K̃(t+ 1)
∥∥∥ ≤ρ

∥∥∥K̃(t)
∥∥∥+ η α(t)

∥∥∇2f(x(t))−∇2f(x∗)
∥∥ . (A.141)

Under Assumption 4.4,
∥∥∇2f(x(t))−∇2f(x∗)

∥∥ ≤ γ
∥∥x(t)− x∗

∥∥. Upon substituting above

from the definition (A.139),
∥∥∇2f(x(t))−∇2f(x∗)

∥∥ ≤ γ
∥∥z(t)∥∥. Upon substituting from above

in (A.141),

∥∥∥K̃(t+ 1)
∥∥∥ ≤ρ

∥∥∥K̃(t)
∥∥∥+ ηγ α(t)

∥∥z(t)∥∥ .
Iterating the above from t to 0 we have

∥∥∥K̃(t+ 1)
∥∥∥ ≤ρt+1

∥∥∥K̃(0)
∥∥∥+ ηγ α(t)

(∥∥z(t)∥∥+ ρ
∥∥z(t− 1)

∥∥+ . . .+ ρt
∥∥z(0)∥∥) . (A.142)

Step 2: In this step, we derive an upper bound on the estimation error
∥∥z(t+ 1)

∥∥, provided

iteration t. Upon substituting from (4.4) in (A.139), with the parameter δ = 1,

z(t+ 1) =z(t)−K(t)
m∑
i=1

gi(t).

Upon substituting above from (4.2) and the definition of aggregate cost function f =
∑m

i=1 f
i,

z(t+ 1) =z(t)−K(t)∇f(x(t)).

Upon substituting above from the definition of K̃(t) in (A.137),

z(t+ 1) =z(t)−K∗∇f(x(t))− K̃(t)∇f(t)

=−K∗
(
∇f(x(t))− (K∗)−1 z(t)

)
− K̃(t)∇f(x(t)).

Since x∗ is a minimum point of the aggregate cost function f in (4.1), the first order necessary

condition states that ∇f(x∗) = 0d. Here, 0d denotes the d-dimensional zero vector. Thus, the

251

above equation can be rewritten as

z(t+ 1) =−K∗
(
∇f(x(t))−∇f(x∗)− (K∗)−1 z(t)

)
− K̃(t)∇f(x(t)). (A.143)

Using the fundamental theorem of calculus [22],

∇f(x(t))−∇f(x∗) = (x(t)− x∗)

∫ 1

0

∇2f(yx(t) + (1− y)x∗)dy.

From above and the definition of K∗ =
(
∇2f(x∗) + βI

)−1 (see Section 4.2.2), we have

∇f(x(t))−∇f(x∗)− (K∗)−1 z(t)

= (x(t)− x∗)

∫ 1

0

∇2f(yx(t) + (1− y)x∗)dy −
(
∇2f(x∗) + βI

)
z(t)

= (x(t)− x∗)

∫ 1

0

(
∇2f(yx(t) + (1− y)x∗)−∇2f(x∗)

)
dy − βz(t).

From (A.139), recall that z(t) = x(t)− x∗. Thus, from above we obtain that

∥∥∥∇f(x(t))−∇f(x∗)− (K∗)−1 z(t)
∥∥∥

≤
∥∥z(t)∥∥∫ 1

0

∥∥∇2f(yx(t) + (1− y)x∗)−∇2f(x∗)
∥∥ dy + β

∥∥z(t)∥∥ .
Under Assumption 4.4,

∥∥∇2f(yx(t) + (1− y)x∗)−∇2f(x∗)
∥∥ ≤ γ(1− y)

∥∥z(t)∥∥. Thus,

∥∥∥∇f(x(t))−∇f(x∗)− (K∗)−1 z(t)
∥∥∥ ≤ γ

∥∥z(t)∥∥2 ∫ 1

0

(1− y)dy + β
∥∥z(t)∥∥

=
γ

2

∥∥z(t)∥∥2 + β
∥∥z(t)∥∥ .

Upon using Cauchy-Schwartz inequality in (A.156), and then substituting from above, we obtain

∥∥z(t+ 1)
∥∥ ≤ηγ

2

∥∥z(t)∥∥2 + ηβ
∥∥z(t)∥∥+∥∥∥K̃(t)

∥∥∥∥∥∇f(x(t))∥∥ .
Since ∇f(x∗) = 0d, the above can be rewritten as

∥∥z(t+ 1)
∥∥ ≤ηγ

2

∥∥z(t)∥∥2 + ηβ
∥∥z(t)∥∥+∥∥∥K̃(t)

∥∥∥∥∥∇f(x(t))−∇f(x∗)
∥∥ .

252

Upon using the Lipschitz property (4.6) in above,

∥∥z(t+ 1)
∥∥ ≤ηγ

2

∥∥z(t)∥∥2 + ηβ
∥∥z(t)∥∥+ l

∥∥∥K̃(t)
∥∥∥∥∥z(t)∥∥ . (A.144)

Upon substituting above from (A.142) in Step 1, we have

∥∥z(t+ 1)
∥∥ ≤ η

γ

2

∥∥z(t)∥∥2 + ηβ
∥∥z(t)∥∥

+ l
∥∥z(t)∥∥(ρt∥∥∥K̃(0)

∥∥∥+ ηγ α(t− 1)
(∥∥z(t− 1)

∥∥+ ρ
∥∥z(t− 2)

∥∥+ . . .+ ρt−1
∥∥z(0)∥∥)) .

(A.145)

Step 3: In this final step of the proof, we prove (4.10) which is a direct result of the

following claim.

Claim A.1. Given the conditions of Theorem 4.1, for each iteration t ≥ 0 the following statement

holds true:

∥∥z(t+ 1)
∥∥ ≤ 1

µ

∥∥z(t)∥∥ and
∥∥z(t)∥∥ < 1

µηγ
. (A.146)

Proof. We proof the aforementioned claim by the principle of induction. First, we show that the

claim is true for iteration t = 0. At t = 0, from (A.144) we have

∥∥z(1)∥∥ ≤
∥∥z(0)∥∥(ηγ

2

∥∥z(0)∥∥+ ηβ + l
∥∥∥K̃(0)

∥∥∥) .
Upon substituting above from the condition (4.8),

∥∥z(1)∥∥ ≤ 1

2µ

∥∥z(0)∥∥ .
Since µ > 1, from above we have

∥∥z(1)∥∥ < 1

µ

∥∥z(0)∥∥ .
Moreover, (4.8) implies that

∥∥z(0)∥∥ < 1
µηγ

. Thus, the claim holds for t = 0. Now, we assume

253

that the claim is true for the iterations from 0 to t. We need to show that the claim is also true for

the iteration t+ 1. From the above assumption we have

∥∥z(t+ 1)
∥∥ ≤ 1

µ

∥∥z(t)∥∥ ≤ 1

µ2

∥∥z(t− 1)
∥∥ ≤ . . . ≤ 1

µt+1

∥∥z(0)∥∥ < 1

µt+1

1

µηγ
. (A.147)

Since µ > 1, the above implies that
∥∥z(t+ 1)

∥∥ < 1
µηγ

. Now, consider the expression

(∥∥z(t)∥∥+ ρ
∥∥z(t)∥∥+ . . .+ ρt

∥∥z(0)∥∥)
in the R.H.S. of (A.145) for iteration t+ 1. Upon substituting from (A.147),

∥∥z(t)∥∥+ ρ
∥∥z(t)∥∥+ . . .+ ρt

∥∥z(0)∥∥ ≤
∥∥z(0)∥∥(1

µt
+

ρ

µt−1
+ . . .+ ρt

)
=
∥∥z(0)∥∥ 1− (µρ)t+1

µt(1− µρ)
.

From the condition of Theorem 4.1 we have that µρ < 1. Upon substituting from above

in (A.145) for iteration t+ 1,

∥∥z(t+ 2)
∥∥ ≤

∥∥z(t+ 1)
∥∥(ηγ

2

∥∥z(t+ 1)
∥∥+ ηβ + lρt+1

∥∥∥K̃(0)
∥∥∥+ ηγl α(t)

∥∥z(0)∥∥ 1− (µρ)t+1

µt(1− µρ)

)
.

(A.148)

From Step 1 we have ρ < 1. Thus, lρt+1
∥∥∥K̃(0)

∥∥∥ < l
∥∥∥K̃(0)

∥∥∥. Additionally, if α(t) < µt(1−µρ)
2l(1−(µρ)t+1 ,

then ηγl α(t)
∥∥z(0)∥∥ 1−(µρ)t+1

µt(1−µρ)
< η γ

2

∥∥z(0)∥∥. Using condition (4.8) then we have

ηβ + lρt+1
∥∥∥K̃(0)

∥∥∥+ ηγl α(t)
∥∥z(0)∥∥ 1− (µρ)t+1

µt(1− µρ)
<

1

2µ
. (A.149)

We have shown above that
∥∥z(t+ 1)

∥∥ < 1
µηγ

, which implies that η γ
2

∥∥z(t+ 1)
∥∥ < 1

2µ
. Upon

substituting from above and (A.149) in (A.148),

∥∥z(t+ 2)
∥∥ ≤ 1

µ

∥∥z(t+ 1)
∥∥ .

Thus, the claim holds for iteration t+ 1. Due to the principle of induction, the proof of the claim

is complete.

254

Equation (4.10) directly follows from the aforementioned claim, and concludes the proof

of Theorem 4.1.

A.18 Proof of Theorem 4.2

For this proof, we borrow the results (A.142) and (A.144) from the proof of Theorem 4.1.

Under Assumption 4.6, ∇2f(x(t)) is positive definite for x(t) ∈ D. So, Assumption 4.6 is

a special case of Assumption 4.5. Moreover, since ∇2f(x(t)) is positive definite for x(t) ∈ D,

Theorem 4.1 is applicable with β = 0 in this case. To prove (4.11), consider (A.144) from the

proof of Theorem 4.1. Upon taking limits on both sides as t→ ∞ and substituting β = 0, we get

lim
t→∞

∥∥z(t+ 1)
∥∥∥∥z(t)∥∥ ≤ lim

t→∞

(
η
γ

2

∥∥z(t)∥∥+ l
∥∥∥K̃(t)

∥∥∥) . (A.150)

Since µ > 1, from (4.10) of Theorem 4.1 we have that limt→∞
∥∥z(t)∥∥ = 0. Since ρ < 1

and limt→∞
∥∥z(t)∥∥ = 0, from (A.142) we have limt→∞

∥∥∥K̃(t)
∥∥∥ = 0. Upon substituting them

in (A.150) above, we obtain (4.11). Hence, the proof.

A.19 Proof of Theorem 5.2

The time-derivative of f along the trajectories x(t) of (5.23) is given by

ḟ(x(t)) =
d∑

i=1

∇if(x(t))ẋi(t) = −
d∑

i=1

1

αg(t)

λ7∇if(x(t))µi(t) + λ8
∥∥∇if(x(t))

∥∥2
νi(t)c

. (A.151)

255

Upon multiplying both sides above with αg(t), followed by integrating both sides w.r.t. time from

0 to t and substituting from (5.20) we have∫ t

0

αg(s)ḟ(x(s))ds =−
d∑

i=1

∫ t

0

λ7µi(s)µ̇i(s)

λ2νi(s)c
ds

−
d∑

i=1

∫ t

0

λ7λ1µi(s)
2

λ2νi(s)c
ds−

d∑
i=1

∫ t

0

λ8
∥∥∇if(x(s))

∥∥2
νi(s)c

ds. (A.152)

Integrating by parts we have the first term on R.H.S. as∫ t

0

µi(s)µ̇i(s)

νi(s)c
ds =

[
µi(s)

2

2νi(s)c

]t
0

+
c

2

∫ t

0

µi(s)
2νi(s)

−c−1ν̇i(s)ds.

Upon substituting above from (5.22), and using that µ(0) = 0d,∫ t

0

µi(s)µ̇i(s)

νi(s)c
ds =

µi(t)
2

2νi(t)c
+
cλ4
2

∫ t

0

µi(s)
2νi(s)

−c−1ζi(s)ds

− cλ5
2

∫ t

0

µi(s)
2νi(s)

−cds+
cλ6
2

∫ t

0

µi(s)
2νi(s)

−c−1ψ(∇if(x(s)), µi(s))ds.

Upon substituting above in (A.152) we obtain that∫ t

0

αg(s)ḟ(x(s))ds =−
d∑

i=1

λ7
2λ2

µi(t)
2νi(t)

−c −
d∑

i=1

cλ7λ4
2λ2

∫ t

0

µi(s)
2νi(s)

−c−1ζi(s)ds

−
d∑

i=1

λ7
λ2

(
λ1 −

cλ5
2

)∫ t

0

µi(s)
2νi(s)

−cds

−
d∑

i=1

cλ7λ6
2λ2

∫ t

0

µi(s)
2νi(s)

−c−1ψ(∇if(x(s)), µi(s))ds

−
d∑

i=1

∫ t

0

λ8
∥∥∇if(x(s))

∥∥2 νi(s)−cds. (A.153)

We consider the possible cases λ7 = 0 and λ7 > 0. First we consider λ7 > 0. We

define, γ1 = 1 − λ2 and γ2 = 1 − λ6. Upon differentiating both sides of (5.19) w.r.t t we get

α̇g(t) =
cγt+1

2 (1− γt+1
1) log γ2 − γt+1

1 (1− γt+1
2) log γ1

(1− γt+1
2)1.5

. So we have

α̇g(t) < 0 ⇐⇒
(
γ2
γ1

)t+1
1− γt+1

1

1− γt+1
2

>
1

c

log γ1
log γ2

. (A.154)

256

From the condition λ2 > λ6, we have 1 > γ2 > γ1 > 0. Then,
(
γ2
γ1

)t+1

and
1− γt+1

1

1− γt+1
2

are, respectively, increasing and decreasing functions of t. Since 1 > γ2 > γ1 > 0, we have

limt→∞

(
γ2
γ1

)t

→ ∞ and limt→∞
1− γt1
1− γt2

= 1. Thus,
(
γ2
γ1

)t
1− γt1
1− γt2

is increasing in t ≥ T ′ for

some T ′ < ∞. Then, there exists T ∈ [T ′,∞) such that (A.154) holds for all t ≥ T . Integrating

by parts we rewrite the L.H.S. in (A.153),∫ t

0

αg(s)ḟ(x(s))ds =
[
αg(s)f(x(s))

]t
0
−
∫ t

0

α̇g(s)f(x(s))ds.

Upon substituting from above in (A.153), for t ≥ T ,

αg(t)f(x(t)) +
d∑

i=1

λ7
2λ2

µi(t)
2νi(t)

−c = αg(0)f(x(0)) +

∫ T

0

α̇g(s)f(x(s))ds+

∫ t

T

α̇g(s)f(x(s))ds

−
d∑

i=1

cλ7λ4
2λ2

∫ t

0

µi(s)
2νi(s)

−c−1ζi(s)ds−
d∑

i=1

λ7
λ2

(
λ1 −

cλ5
2

)∫ t

0

µi(s)
2νi(s)

−cds

−
d∑

i=1

cλ7λ6
2λ2

∫ t

0

µi(s)
2νi(s)

−c−1ψ(∇if(x(s)), µi(s))ds−
d∑

i=1

∫ t

0

λ8
∥∥∇if(x(s))

∥∥2 νi(s)−cds.

(A.155)

For each i ∈ {1, . . . , d}, consider the state-space system described by (5.21)-(5.22), with

the state vector [ζi, νi]T ∈ R2. From (5.24), λ4 ≥ 0. Here, we consider the possible cases: λ4 > 0

and λ4 = 0.

• λ4 > 0 : Define the state matrix A =

−λ3 λ3

λ4 −λ5

. Since ζ(0) = 0d, the states are given

by the solutionζi(t)
νi(t)

 = eAt

 0

νi(0)

+

∫ t

0

eA(t−s)

 0

λ6

ψ(∇if(x(s)), µi(s))ds.

Upon computing the state-transition matrix ϕ(t) = eAt and substituting above, we obtain

257

that

ζi(t) = ϕ12(t− 1)νi(1) + λ2

∫ t

1

ϕ12(t− s)ψ(∇if(x(s)), µi(s))ds, (A.156)

νi(t) = ϕ22(t− 1)νi(1) + λ2

∫ t

1

ϕ22(t− s)ψ(∇if(x(s)), µi(s))ds, (A.157)

where ϕ12(t) = λ3e
−λ3+λ5

2
t e

p
2 t−e−

p
2 t

p
, ϕ22(t) = e−

λ3+λ5
2

t e
p
2 t(p−λ5+λ3)+e−

p
2 t(p+λ5−λ3)

2p
, and

p =
√

(λ3 − λ5)2 + 4λ3λ4. Since λ3, λ6 > 0 (ref. (5.24)), νi(0) > 0, ψ ≥ 0, and p > 0,

from (A.156) we have ζi(t) > 0. Since λ3, λ4 > 0, we have p =
√

(λ3 − λ5)2 + 4λ3λ4 >

|λ5 − λ3|, which implies that ϕ22(t) > 0. From above and νi(0) > 0, we have νi(t) > 0.

• λ4 = 0 : From (5.22), ν̇i(t) = −λ5νi(t)+λ6ψ(∇if(x(t)), µi(t)). The solution of this ODE

is νi(t) = e−λ5tνi(0)+λ6
∫ t

0
e−λ5(t−s)ψ(∇if(x(s)), µi(s))ds, which implies that νi(t) > 0.

Since ζi(t) > 0 and ψ ≥ 0, due to (5.24) and (A.154), the R.H.S. in (A.155) is decreasing

in t ≥ T . Then, the L.H.S. in (A.155) is also decreasing in t ≥ T . Since µi(t) and νi(t) are

continuous and νi(t) > 0,
λ7
2λ2

µi(t)
2νi(t)

−c is continuous. Also, αg(t)f(x(t)) is continuous.

Thus, considering the compact interval [0, T], αg(T)f(x(T)) +
∑d

i=1

λ7
2λ2

µi(T)
2νi(T)

−c =:MT

is finite. Since the L.H.S. in (A.155) is decreasing in t ≥ T , we have the L.H.S. in (A.155)

bounded above by MT for all t ≥ T .

From the R.H.S. of (A.155) then we have that µi(t)
2νi(t)

−c−1ψ(∇if(x(t)), µi(t)) and

µi(t)
2νi(t)

−c are integrable w.r.t. t and bounded. Moreover, if λ8 > 0, we also have
∥∥∇if(x(t))

∥∥2
νi(t)

−c integrable and bounded. It implies that, ψ(∇if(x(t)), µi(t)) is bounded unless µi(t) = 0

or νi(t) = ∞. To show that ψ(∇if(x(t)), µi(t)) is bounded even if µi(t) = 0 or νi(t) = ∞, we

consider the possible cases: λ8 = 0 and λ8 > 0.

• λ8 = 0 : From (5.23), either of the conditions µi(t) = 0 and νi(t) = ∞ implies that

258

ẋi(t) = 0 and, hence, d
dt
∇if(x(t)) = 0. Due to continuity of ∇if , we then have ∇if(x(t))

is bounded. Upon solving (5.20), µi(t) = λ2
∫ t

0
e−λ1(t−s)∇if(x(s)ds, and hence, µi(t)

is bounded. From Assumption 5.3.A, ∇if(x(t)) and µi(t) being bounded implies that

ψ(∇if(x(t)), µi(t)) is bounded.

• λ8 > 0 : In this case,
∥∥∇if(x(t))

∥∥2 νi(t)−c is bounded. Thus, ∇if(x(t)) is bounded

unless νi(t) = ∞, in which case ẋi(t) = 0. Following the argument in the previous case,

ψ(∇if(x(t)), µi(t)) is bounded.

Thus, ψ(∇if(x(t)), µi(t)) is bounded, and therefore, Assumption 5.3.B implies that ∇if(x(t))

is bounded.

To show that νi(t) is bounded, we consider the possible cases: λ4 > 0 and λ4 = 0.

• λ4 > 0 : We can rewrite ϕ22 as ϕ22(t) = e−
λ3+λ5−p

2 t(p−λ5+λ3)+e−
λ3+λ5+p

2 t(p+λ5−λ3)
2p

. Since

p =
√

(λ3 − λ5)2 + 4λ3λ4 ≤ λ3 + λ5 for λ5 ≥ λ4 (see (5.24)) and ψ(∇if(x(t)), µi(t)) is

bounded, it follows from (A.157) that νi(t) is bounded.

• λ4 = 0 : In this case, νi(t) = e−λ5tνi(0) + λ6
∫ t

0
e−λ5(t−s)ψ(∇if(x(s)), µi(s))ds. The

above implies that νi(t) is bounded as ψ(∇if(x(t)), µi(t)) is bounded.

Earlier, we have shown that µi(t) is bounded and νi(t) > 0. From (5.23) then we have, ẋi(t)

is bounded. From (5.20), µi(t) = 0 implies that µ̇i(t) = λ1∇if(x(t)). Thus, µi(t) can be zero

only at isolated points t. Otherwise, for some h > 0 there exists an interval (t − h, t + h) such

that µi(s) = 0 for all s ∈ (t − h, t + h). In that case, µ̇i(s) = 0 for all s ∈ (t − h, t + h).

Since µ̇i(s) = λ1∇if(x(s)) for all s ∈ (t − h, t + h), we then have ∇if(x(s)) = 0 for all

s ∈ (t− h, t+ h), which proves the theorem.

259

We have shown above that µi(t) = 0 only at isolated points and νi(t) is bounded. So,

1

µi(t)2νi(t)−c
is bounded except at isolated points. Since µi(t)

2νi(t)
−c is integrable and

1

µi(t)2νi(t)−c

is bounded except at isolated points, we have
1

µi(t)2νi(t)−c
is integrable. Since νi(t) is bounded

and
1

µi(t)2νi(t)−c
is integrable, we have

1

µi(t)2νi(t)−c−1
integrable. Now, we apply Cauchy-

Schwartz inequality on the functions µi(t)νi(t)
(−c−1)/2ψ(∇if(x(t)), µi(t))

0.5 and
1

µi(t)νi(t)(−c−1)/2
.

Since we have µi(t)
2νi(t)

−c−1ψ(∇if(x(t)), µi(t)) and
1

µi(t)2νi(t)−c−1
integrable, the Cauchy-

Schwartz inequality implies thatψ(∇if(x(t)), µi(t))
0.5 is integrable. Sinceψ(∇if(x(t)), µi(t))

0.5

is bounded and integrable, it is also square-integrable. Thus, ψ(∇if(x(t)), µi(t)) is integrable.

Now, the time-derivative of ψ along the trajectory xi(t) is

d

dt
ψ(∇if(x(t)), µi(t)) = ∇ψ(∇if(x(t)), µi(t))

T


[
∇2f(x(t))

]
i
ẋ(t)

µ̇i(t)

 .
We have shown that ∇if(x(t)) and µi(t) are bounded. Then, according to Assumption 5.3.A,

∇ψ(∇if(x(t)), µi(t)) is bounded. From Assumption 3.2, [∇2f(x(t))]i is bounded. We have

shown that ẋi(t) is bounded. Since ∇if(x(t)) and µi(t) are bounded, (5.20) implies that µ̇i(t)

is bounded. Then, from the above equation we have
d

dt
ψ(∇if(x(t)), µi(t)) is bounded. Thus,

ψ(∇if(x(t)), µi(t)) is uniformly continuous w.r.t t.

We have shown that, for each i ∈ {1, . . . , d}, ψ(∇if(x(t)), µi(t)) is integrable and uniformly

continuous. From Barbalat’s lemma [157] it follows that limt→∞ ψ(∇if(x(t)), µi(t)) = 0. Then,

according to Assumption 5.3.C, limt→∞∇if(x(t)) = 0.

Next, we consider the case λ7 = 0. In this case, αg(t) = 1 (see (5.19)). Also, from (5.24),

λ8 > 0. For λ7 = 0, the argument in the paragraph following (A.155) still holds, and we obtain

260

that νi(t) > 0. Upon substituting λ7 = 0 and αg(t) = 1 in (A.153),

f(x(t)) = f(x(0))−
d∑

i=1

∫ t

0

λ8
∥∥∇if(x(s))

∥∥2 νi(s)−cds.

Then, f(x(t)) is decreasing in t. From Assumption 3.1, f is bounded below. Thus, limt→∞ f(x(t))

is finite. So, the above equation implies that
∥∥∇if(x(t))

∥∥2 νi(t)−c is integrable. So, from the

previous argument for the case λ8 > 0, ∇if(x(t)) is bounded. From (5.23) then we have, ẋi(t) is

bounded. Upon solving (5.20), µi(t) = λ2
∫ t

0
e−λ1(t−s)∇if(x(s)ds, and hence, µi(t) is bounded.

Now,

d

dt

∥∥∇if(x(t))
∥∥2 νi(t)−c

=− c
∥∥∇if(x(t))

∥∥2 νi(t)−c−1ν̇i(t) + 2∇if(x(t))
[
∇2f(x(t))

]
i
ẋ(t)νi(t)

−c. (A.158)

From Assumption 3.2, [∇2f(x(t))]i is bounded. From Assumption 5.3.A, ∇if(x(t)) and µi(t)

being bounded implies that ψ(∇if(x(t)), µi(t)) is bounded. From the previous arguments for the

cases λ4 = 0 and λ4 > 0, it follows that νi(t) and ν̇i(t) are bounded. So, (A.158) implies that

d
dt

∥∥∇if(x(t))
∥∥2 νi(t)−c is bounded. Then,

∥∥∇if(x(t))
∥∥2 νi(t)−c is uniformly continuous. Again,

we apply Barbalat’s lemma [157] and obtain limt→∞
∥∥∇if(x(t))

∥∥2 νi(t)−c = 0. Since νi(t) is

bounded, we get limt→∞
∥∥∇if(x(t))

∥∥ = 0. The proof is complete.

A.20 Proof of Theorem 5.3

The time-derivative of f along the trajectories of (5.29) is

ḟ(x(t)) = −
d∑

i=1

∇if(x(t))
γ

h(t)
µi(t)ηi(t).

261

Upon substituting above from (5.26), ḟ(x(t)) = − γ

λ1h(t)

∑d
i=1

(
µ̇i(t) + λ1µi(t)

)
µi(t)ηi(t).

Integrating with respect to (w.r.t.) time s from 0 to t,∫ t

0

h(s)ḟ(x(s))ds =− γ

λ1

d∑
i=1

∫ t

0

µ̇i(s)µi(s)ηi(s)ds− γ
d∑

i=1

∫ t

0

µi(s)
2ηi(s)ds. (A.159)

Integrating by parts we have the first term on R.H.S. as
∫ t

0
µ̇i(s)µi(s)ηi(s)ds =

[
1
2
µi(s)

2ηi(s)
]t
0
−∫ t

0
1
2
µi(s)

2η̇i(s)dsUpon substituting from above in (A.159) and using µ(0) = 0d,
∫ t

0
h(s)ḟ(x(s))ds =

− γ
2λ1

∑d
i=1 µi(t)

2ηi(t) +
γ

2λ1

∑d
i=1

∫ t

0
µi(s)

2η̇i(s)ds − γ
∑d

i=1

∫ t

0
µi(s)

2ηi(s)ds. For each t ≥ 0,

we partition the set {s : 0 ≤ s ≤ t} into Li(t) = {s : 0 ≤ s ≤ t, ηi(s) = ηl(s)
α

},

Ui(t) = {s : 0 ≤ s ≤ t, ηi(s) = ηu(s)
α

}, and Mi(t) = {s : 0 ≤ s ≤ t, ηi(s) = 1√
νi(s)

}.

Upon rewriting the above equation and substituting from (5.27),∫ t

0

h(s)ḟ(x(s))ds+
γ

2λ1

d∑
i=1

µi(t)
2ηi(t) =

γλ2
4λ1

d∑
i=1

∫
Mi(t)

µi(s)
2√

νi(s)
ds− γ

d∑
i=1

∫ t

0

µi(s)
2ηi(s)ds

− γλ2
4λ1

d∑
i=1

∫
Mi(t)

µi(s)
2νi(s)

−1.5
∥∥∇if(x(s))

∥∥2
+

γ

2αλ1

d∑
i=1

(∫
Li(t)

µi(s)
2η̇l(s)ds+

∫
Ui(t)

µi(s)
2η̇u(s)ds

)

= −γ
(
1− λ2

4λ1

) d∑
i=1

∫
Mi(t)

µi(s)
2√

νi(s)
ds− γ

d∑
i=1

∫
Li(t)

µi(s)
2

(
ηi(s)−

η̇l(s)

2αλ1

)
ds

− γ
d∑

i=1

∫
Ui(t)

µi(s)
2ηi(s)ds+

d∑
i=1

∫
Ui(t)

γµi(s)
2η̇u(s)

2αλ1
ds

− γλ2
4λ1

d∑
i=1

∫
Mi(t)

µi(s)
2νi(s)

−1.5
∥∥∇if(x(s))

∥∥2 . (A.160)

We let r(t) denote the R.H.S. in (A.160). By (5.28) and Assumption 5.5, we have 0 < L
α

≤

ηi(t) ≤ R
α

for t ≥ 0. Under Assumption 5.4, ηu is non-increasing and η̇l(t) ≤ 2αλ1ηl(t) for

t ≥ T2. So, under the condition λ2 < 4λ1, r(t) is decreasing for t ≥ T2. Integrating by parts

we rewrite the L.H.S. in (A.160) as
∫ t

0
h(s)ḟ(x(s))ds =

[
h(s)f(x(s))

]t
0
−
∫ t

0
ḣ(s)f(x(s))ds.

262

Under Assumption 5.3, we define T = max(T1, T2). Upon substituting from above in (A.160),

for t ≥ T ,

h(t)f(x(t)) +
γ

2λ1

d∑
i=1

µi(t)
2ηi(t)

= h(0)f(x(0)) +

∫ T

0

ḣ(s)f(x(s))ds+

∫ t

T

ḣ(s)f(x(s))ds+ r(t). (A.161)

From (A.161), since r(t) is decreasing and h(t) non-increasing in t ≥ T , we have h(t)f(x(t)) +

γ
2λ1

∑d
i=1 µi(t)

2ηi(t) is decreasing for t ≥ T . Since h(t)f(x(t))+ γ
2λ1

∑d
i=1 µi(t)

2ηi(t) is continuous,

considering the compact interval [0, T], h(T)f(x(T)) + γ
2λ1

∑d
i=1 µi(T)

2ηi(T) is finite. Then,

h(t)f(x(t)) + γ
2λ1

∑d
i=1 µi(t)

2ηi(t) is bounded for t ≥ T . So, h(t)f(x(t)) is bounded for

t ≥ T . From (A.159) and (A.161), it follows that µ̇i(t)µi(t)ηi(t) and µi(t)
2ηi(t) are bounded

and integrable. So, their superposition
(
µ̇i(t)µi(t)ηi(t) + λ1µi(t)

2ηi(t)
)

is integrable. Upon

substituting µ̇i(t) above from (5.26), λ1∇if(x(t))µi(t)ηi(t) is integrable.

From (5.26) and (5.29), µi(t) = 0 implies µ̇i(t) = λ1∇if(x(t)) and ẋi(t) = 0. So,

µi(t) can be zero only at isolated points t. Otherwise, for some h > 0 there exists an interval

(t − h, t + h) such that µi(s) = 0 for all s ∈ (t − h, t + h). In that case, µ̇i(s) = 0 for

all s ∈ (t − h, t + h). Since µ̇i(s) = λ1∇if(x(s)) for all s ∈ (t − h, t + h), we then have

∇if(x(s)) = 0 for all s ∈ (t − h, t + h), which proves the theorem. We also have ηi(t) > 0.

Thus, µi(t)
2ηi(t) can be zero only at isolated points. Since ∇if(x(t))µi(t)ηi(t) and µi(t)

2ηi(t)

are integrable and µi(t)
2ηi(t) can be zero only at isolated points, ∇if(x(t))µi(t)ηi(t)

µi(t)2ηi(t)
= ∇if(x(t))

µi(t)
is

integrable. Since ∇if(x(t))
µi(t)

is integrable and µi(t) can be zero only at isolated points, ∇if(x(t))
µi(t)2

is integrable. Similarly, since µi(t)
2ηi(t) is integrable and ηi(t) > 0, µi(t)

2 is integrable. Since

∇if(x(t))
µi(t)2

and µi(t)
2 are integrable, Cauchy-Schwartz inequality on |∇if(x(t))|0.5

|µi(t)| and
∣∣µi(t)

∣∣ implies

that
∣∣∇if(x(t))

∣∣0.5 is integrable. So,
∥∥∇if(x(t))

∥∥2 is integrable for each i ∈ {1, . . . , d}. Thus,

263

∥∥∇f(x(t)∥∥2 is integrable.

Since
∥∥∇f(x(t)∥∥2 is integrable, ∇f(x(t) is bounded. Since µi(t)

2ηi(t) is bounded and

0 < L
α

≤ ηi(t) ≤ R
α

, µi(t) and ηi(t) are bounded. From (5.29), then ẋ(t) is bounded. Now,

d

dt

∥∥∇f(x(t))∥∥2 = 2∇f(x(t))T∇2f(x(t))ẋ(t). We have shown that ∇f(x(t)) and ẋ(t) are

bounded. From Assumption 5.2, we have all the entries in ∇2f(x(t)) bounded. Then, from the

above equation we have
d

dt

∥∥∇f(x(t))∥∥2 bounded, and so,
∥∥∇f(x(t))∥∥2 is uniformly continuous.

We have shown that,
∥∥∇f(x(t))∥∥2 is integrable and uniformly continuous. From Barbalat’s

lemma [156] it follows that limt→∞
∥∥∇f(x(t))∥∥2 = 0. The proof is complete.

A.21 Proof of Theorem 5.4

The time-derivative of f along the trajectories x(t) of (5.34) is

ḟ(x(t)) = −
d∑

i=1

γ1∇if(x(t))µi(t)

α2(t)
√
νi(t)

−
d∑

i=1

γ2
∥∥∇if(x(t))

∥∥2
α1(t)

√
νi(t)

.

Upon integrating both sides above with respect to (w.r.t.) time s from 0 to t and substituting

∇if(x(s)) from (5.32),∫ t

0

α2(s)ḟ(x(s))ds = −
d∑

i=1

∫ t

0

γ2α2(s)
∥∥∇if(x(s))

∥∥2
α1(s)

√
νi(s)

ds

−
d∑

i=1

∫ t

0

γ1µi(s)µ̇i(s)

λ1
√
νi(s)

ds−
d∑

i=1

∫ t

0

γ1µi(s)
2√

νi(s)
ds.

Since λ1 ∈ (0, 1), from the definitions (5.30)-(5.31) we get α2(t) ≥ α1(t). From above then we

have ∫ t

0

α2(s)ḟ(x(s))ds ≤ −
d∑

i=1

∫ t

0

γ2
∥∥∇if(x(s))

∥∥2√
νi(s)

ds

−
d∑

i=1

∫ t

0

γ1µi(s)µ̇i(s)

λ1
√
νi(s)

ds−
d∑

i=1

∫ t

0

γ1µi(s)
2√

νi(s)
ds. (A.162)

264

Integrating by parts the second term on R.H.S. above and substituting ν̇i(s) from (5.33),∫ t

0

α2(s)ḟ(x(s))ds ≤ −
d∑

i=1

γ1

(
1− λ2

4λ1

)∫ t

0

µi(s)
2√

νi(s)
ds

−
d∑

i=1

γ1µi(t)
2

2λ1
√
νi(t)

−
d∑

i=1

γ2

∫ t

0

∥∥∇if(x(s))
∥∥2 νi(s)−0.5ds

−
d∑

i=1

γ1λ2
4λ1

∫ t

0

µi(s)
2νi(s)

−1.5
∥∥∇if(x(s))

∥∥2 ds. (A.163)

We define, a = 1− λ1 and b = 1− λ2. Upon differentiating both sides of (5.31) w.r.t t we

get

α̇2(t) < 0 ⇐⇒
(
b

a

)t+1
1− at+2

1− bt+1
> 2a

log a

log b
. (A.164)

From the condition λ1 > λ2, we have 1 > b > a > 0. Then,
(
b

a

)t+1

and
1− at+2

1− bt+1
are,

respectively, increasing and decreasing functions. Since 1 > b > a > 0, we have limt→∞

(
b

a

)t+1

→

∞ and limt→∞
1− at+2

1− bt+1
= 1. Thus,

(
b

a

)t+1
1− at+2

1− bt+1
is an increasing function of t. Then, there

exists T < ∞ such that (A.164) holds for all t ≥ T . Integrating by parts the L.H.S. in (A.163),

for t ≥ T we have

α2(t)f(x(t)) +
d∑

i=1

γ1µi(t)
2

2λ1
√
νi(t)

−
∫ t

T

α̇2(s)f(x(s))ds

+
d∑

i=1

∫ t

0

(1− λ2
4λ1

)
γ1µi(s)

2√
νi(s)

+
γ2
∥∥∇if(x(s))

∥∥2√
νi(s)

 ds

+
d∑

i=1

γ1λ2
4λ1

∫ t

0

µi(s)
2νi(s)

−1.5
∥∥∇if(x(s))

∥∥2 ds
≤ α2(0)f(x(0)) +

∫ T

0

α̇2(s)f(x(s))ds. (A.165)

Since α̇2(t) < 0 for t ≥ T and λ2 < λ1, from above we have the L.H.S. in (A.165) is

bounded. Then, µi(t)
2νi(t)

−1.5
∥∥∇if(x(t))

∥∥2, µi(t)
2νi(t)

−0.5, and
∥∥∇if(x(t))

∥∥2 νi(t)−0.5 are

265

integrable w.r.t. t and bounded. It implies that,
∥∥∇if(x(t))

∥∥ is bounded unless νi(t) = ∞.

From (5.34), νi(t) = ∞ implies that ẋi(t) = 0 and, hence, d
dt
∇if(x(t)) = 0. Due to continuity of

∇if and
∥∥∇f(x(0))∥∥ <∞, we then have

∥∥∇if(x(t))
∥∥ is bounded for all t. Integrating both sides

of (5.32)-(5.33), µi(t) = λ1
∫ t

0
e−λ1(t−s)∇if(x(s))ds and νi(t) = λ2

∫ t

0
e−λ2(t−s)

∥∥∇if(x(s))
∥∥2 ds+

νi(0)e
−λ2t. Since

∥∥∇f(x(t))∥∥ is bounded and λ1, λ2 > 0, the above equations imply that µi(t)

and νi(t) are bounded. Moreover, νi(t) > 0 as νi(0) > 0. From (5.34), then ẋ(t) is bounded.

Now, d
dt

∥∇if(x(t))∥2

√
νi(t)

=
2∇if(x(t))[∇2f(x(t))]

i
ẋ(t)√

νi(t)
− ∥∇if(x(t))∥2

ν̇i(t)

2νi(t)1.5
. From Assumption 5.2,

[∇2f(x(t))]i is bounded. Since
∥∥∇f(x(t))∥∥ and νi(t) are bounded, (5.33) implies that ν̇i(t)

is bounded. We have also shown that νi(t) > 0 and ẋi(t) is bounded. So, the above equation

implies that d
dt

∥∇if(x(t))∥2

√
νi(t)

is bounded. Then, ∥∇if(x(t))∥2

√
νi(t)

is uniformly continuous. We apply

Barbalat’s lemma [156] and obtain limt→∞
∥∇if(x(t))∥2

√
νi(t)

= 0. Since νi(t) is bounded, we get

limt→∞
∥∥∇if(x(t))

∥∥ = 0. The proof is complete.

A.22 Proof of Theorem 5.5

We utilize the proof of Theorem 5.2. Note that, instead of specifying the expression of bias

correction αg(t), Theorem 5.2 also holds under the additional condition that there exists T < ∞

such that αg(t) in (5.19) is decreasing for t ≥ T .

We define b = 1− λ2. From (5.35), the time-derivative of ρ(t) is

ρ̇(t) = −2bt+11− bt+1 − log(1/b)− t log(1/b)

(1− bt+1)2
.

Since b ∈ (0, 1), the above implies that there exists T1 < ∞ such that ρ̇(t) > 0 for t ≥ T1.

From the definition (5.36) then ṙ(t) > 0 for t ≥ T1. Since ρ̇(t) > 0 for t ≥ T1, from (5.37)

266

we have that there exists T2 ∈ [T1,∞) such that ẋi(t) = −γ r(t)
α1(t)

µi(t)√
νi(t)

for t ≥ T2. Upon

differentiating (5.30) w.r.t. t and following the argument after (A.154), we have that there exists

T3 < ∞ such that α̇1(t) < 0 for t ≥ T3. Thus, there exists T = max{T2, T3} such that α1(t)
r(t)

is decreasing for t ≥ T . Due to continuity, considering the finite interval [0, T], we have that

∇f(x(t)), µ(t), ν(t), and x(t) are bounded for t ∈ [0, T].

Upon comparing with the state-space model (5.13)-(5.15), the argument in the above paragraph

implies that, for all t ≥ T , the ODEs (5.32), (5.33), and (5.37) are similar to Adam if we

replace α(t) in (5.12) with α1(t)
r(t)

. Now, we have shown that α1(t)
r(t)

is decreasing for t ≥ T ,{
∇f(x(t)), µ(t), ν(t), x(t) : 0 ≤ t ≤ T

}
is bounded, and Theorem 5.2 holds under the additional

condition that there exists T < ∞ such that αg(t) in (5.19) is decreasing for t ≥ T . Thus,

following the proof of Theorem 5.2 we have that limt→∞∇f(x(t)) = 0d. The proof is complete.

A.23 Proof of Theorem 5.6

We consider the non-trivial case ∇f(x(t)) ̸= 0d. We define, q1 = p1
p1−1

and q2 = p2
p2−1

.

The time-derivative of f along the trajectories x(t) of (5.38) is ḟ(x(t)) = ∇f(x(t))T ẋ(t) =

−c1
∥∥∇f(x(t))∥∥q1 − c2

∥∥∇f(x(t))∥∥q2 . Upon integrating both sides above w.r.t. time s from 0

to t, f(x(t)) + c1
∫ t

0

∥∥∇f(x(s))∥∥q1 ds + c2
∫ t

0

∥∥∇f(x(s))∥∥q2 ds = f(x(0)). Since f(x(t)) > 0

and c1, c2 > 0, the above implies that
∥∥∇f(x(t))∥∥q2 is integrable and bounded. Since p2 ∈

(1, 2), from the definition of q2 we obtain q2 > 2. Since
∥∥∇f(x(t))∥∥q2 is bounded and q2 > 2,∥∥∇f(x(t))∥∥ and

∥∥∇f(x(t))∥∥q2−2 are bounded.

From triangle inequality on the R.H.S. of (5.38),

∥∥ẋ(t)∥∥ ≤ c1
∥∥∇f(x(t))∥∥ 1

p1−1 + c2
∥∥∇f(x(t))∥∥ 1

p2−1 .

267

Since
∥∥∇f(x(t))∥∥ is bounded and p1, p2 > 1, we have ẋ(t) is bounded.

The time-derivative of
∥∥∇f(x(t))∥∥q2 along the trajectories x(t) of (5.38) is d

dt

∥∥∇f(x(t))∥∥q2 =
q2
∥∥∇f(x(t))∥∥q2−2∇f(x(t))T∇2f(x(t))ẋ(t). We have shown that

∥∥∇f(x(t))∥∥,
∥∥∇f(x(t))∥∥q2−2,

and ẋ(t) are bounded. From Assumption 5.2, ∇2f(x(t)) is bounded. Then, the above equation

implies that d
dt

∥∥∇f(x(t))∥∥q2 is bounded. So,
∥∥∇f(x(t))∥∥q2 is uniformly continuous.

Since
∥∥∇f(x(t))∥∥q2 is integrable and uniformly continuous, from Barbalat’s lemma [156]

limt→∞
∥∥∇f(x(t))∥∥q2 = 0. Since q2 > 0, the proof is complete.

268

Bibliography

[1] Harold W Sorenson. Least-squares estimation: from Gauss to Kalman. IEEE spectrum,
7(7):63–68, 1970.

[2] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation:
numerical methods. Prentice-Hall, Inc., 1989.

[3] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:
Concept and applications. ACM Transactions on Intelligent Systems and Technology
(TIST), 10(2):1–19, 2019.

[4] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated
multi-task learning. In Advances in Neural Information Processing Systems, pages 4424–
4434, 2017.

[5] Navid Azizan-Ruhi, Farshad Lahouti, Amir Salman Avestimehr, and Babak Hassibi.
Distributed solution of large-scale linear systems via accelerated projection-based
consensus. IEEE Transactions on Signal Processing, 67(14):3806–3817, 2019.

[6] Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Iterative pre-conditioning to
expedite the gradient-descent method. In 2020 American Control Conference (ACC), pages
3977–3982, 2020.

[7] Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Robustness of iteratively pre-
conditioned gradient-descent method: The case of distributed linear regression problem.
IEEE Control Systems Letters, 5(6):2180–2185, 2020.

[8] Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Accelerating distributed SGD for
linear regression using iterative pre-conditioning. In Learning for Dynamics and Control,
pages 447–458. PMLR, 2021.

[9] Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Iterative pre-conditioning
for expediting the distributed gradient-descent method: The case of linear least-squares
problem. Automatica, 137:110095, 2022.

269

[10] Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. On distributed solution of ill-
conditioned system of linear equations under communication delays. In 2019 Sixth Indian
Control Conference (ICC), pages 413–418. IEEE, 2019.

[11] Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. On pre-conditioning of
decentralized gradient-descent when solving a system of linear equations. IEEE
Transactions on Control of Network Systems, 9(2):811–822, 2022.

[12] Kushal Chakrabarti and Nikhil Chopra. Generalized AdaGrad (G-AdaGrad) and Adam: A
state-space perspective. In 2021 60th IEEE Conference on Decision and Control (CDC),
pages 1496–1501, 2021.

[13] Kushal Chakrabarti and Nikhil Chopra. Analysis and synthesis of adaptive gradient
algorithms in machine learning: The case of AdaBound and MAdamSSM. In 2022 61st
IEEE Conference on Decision and Control (CDC), 2022. (accepted).

[14] Kushal Chakrabarti and Nikhil Chopra. A state-space perspective on the expedited gradient
methods: Nadam, RAdam, and rescaled gradient flow. In 2022 Eighth Indian Control
Conference (ICC). IEEE, 2022. (accepted).

[15] Kushal Chakrabarti, Amrit S. Bedi, Fikadu T. Dagefu, Jeffrey N. Twigg, and Nikhil
Chopra. Fast distributed beamforming without receiver feedback. In 56th Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2022. (accepted).

[16] Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized
empirical risk minimization. Journal of Machine Learning Research, 18:1–42, 2017.

[17] Yinchu Zhu and Jelena Bradic. Linear hypothesis testing in dense high-dimensional linear
models. Journal of the American Statistical Association, 113(524):1583–1600, 2018.

[18] Real Carbonneau, Kevin Laframboise, and Rustam Vahidov. Application of machine
learning techniques for supply chain demand forecasting. European Journal of
Operational Research, 184(3):1140–1154, 2008.

[19] John Canny, Shi Zhong, Scott Gaffney, Chad Brower, Pavel Berkhin, and George H John.
Method and system for generating a linear machine learning model for predicting online
user input actions, January 29 2013. US Patent 8,364,627.

[20] Sanjukta Bhowmick, Victor Eijkhout, Yoav Freund, Erika Fuentes, and David Keyes.
Application of machine learning to the selection of sparse linear solvers. Int. J. High
Perf. Comput. Appl, 2006.

[21] Jeffrey A Fessler. Image reconstruction: Algorithms and analysis. http://web.eecs.
umich.edu/˜fessler/book/c-opt.pdf, 2020. [Online book draft; accessed 17-
February-2020].

[22] Carl T Kelley. Iterative methods for optimization. SIAM, 1999.

270

http://web.eecs.umich.edu/~fessler/book/c-opt.pdf
http://web.eecs.umich.edu/~fessler/book/c-opt.pdf

[23] Y Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Sov. Math. Doklady, 27(2):372–376, 1983.

[24] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[25] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of
optimization algorithms via integral quadratic constraints. SIAM Journal on Optimization,
26(1):57–95, 2016.

[26] Mahyar Fazlyab, Alejandro Ribeiro, Manfred Morari, and Victor M Preciado. Analysis of
optimization algorithms via integral quadratic constraints: Nonstrongly convex problems.
SIAM Journal on Optimization, 28(3):2654–2689, 2018.

[27] Bernard Gold and Charles M Rader. Effects of quantization noise in digital filters. In
Proceedings of the April 26-28, 1966, Spring joint computer conference, pages 213–219,
1966.

[28] Jordan L Holi and J-N Hwang. Finite precision error analysis of neural network hardware
implementations. IEEE Transactions on Computers, 42(3):281–290, 1993.

[29] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study.
Artificial intelligence review, 22(3):177–210, 2004.

[30] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75,
2014.

[31] Othmane Sebbouh, Ch Dossal, and Aude Rondepierre. Convergence rates of damped
inertial dynamics under geometric conditions and perturbations. SIAM Journal on
Optimization, 30(3):1850–1877, 2020.

[32] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

[33] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[35] Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[36] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-Rmsprop: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[37] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. arXiv preprint arXiv:1904.09237, 2019.

271

[38] Timothy Dozat. Incorporating nesterov momentum into adam. In International Conference
on Learning Representations Workshops, 2016.

[39] Weijie Su, Stephen Boyd, and Emmanuel J Candes. A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights. The Journal of Machine
Learning Research, 17(1):5312–5354, 2016.

[40] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[41] Daniel Liberzon. Notes for ECE 517: Nonlinear and adaptive control, 2016.

[42] Carl D Meyer. Matrix analysis and applied linear algebra, volume 71. SIAM, 2000.

[43] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[44] Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Iterative pre-conditioning for
expediting the gradient-descent method: The distributed linear least-squares problem.
arXiv preprint arXiv:2008.02856, 2020.

[45] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[46] Dheeru Dua and Casey Graff. UCI machine learning repository. https://archive.
ics.uci.edu/ml/datasets/Heart+Disease, 2017. University of California,
Irvine, School of Information and Computer Sciences.

[47] MNIST in CSV. https://www.kaggle.com/oddrationale/mnist-in-csv,
2018. Accessed: 19-September-2020.

[48] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data,
volume 4. AMLBook New York, NY, USA:, 2012.

[49] Tao Yang, Jemin George, Jiahu Qin, Xinlei Yi, and Junfeng Wu. Distributed least squares
solver for network linear equations. Automatica, 113:108798, 2020.

[50] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1):48, 2009.

[51] Ji Liu, Shaoshuai Mou, and A Stephen Morse. Asynchronous distributed algorithms for
solving linear algebraic equations. IEEE Transactions on Automatic Control, 63(2):372–
385, 2017.

[52] Keyou You, Shiji Song, and Roberto Tempo. A networked parallel algorithm for solving
linear algebraic equations. In 2016 IEEE 55th Conference on Decision and Control (CDC),
pages 1727–1732. IEEE, 2016.

[53] Xuan Wang, Jingqiu Zhou, Shaoshuai Mou, and Martin J Corless. A distributed algorithm
for least squares solutions. IEEE Transactions on Automatic Control, 2019.

272

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://www.kaggle.com/oddrationale/mnist-in-csv

[54] Yu Tang and Jie Mei. Distributed algorithms for solving a linear equation under a directed
graph. In 2018 37th Chinese Control Conference (CCC), pages 7193–7198. IEEE, 2018.

[55] Peng Wang, Wei Ren, and Zhisheng Duan. Distributed algorithm to solve a system of
linear equations with unique or multiple solutions from arbitrary initializations. IEEE
Transactions on Control of Network Systems, 6(1):82–93, 2018.

[56] Guodong Shi, Brian DO Anderson, and Uwe Helmke. Network flows that solve linear
equations. IEEE Transactions on Automatic Control, 62(6):2659–2674, 2016.

[57] Brian DO Anderson, Shaoshuai Mou, A Stephen Morse, and Uwe Helmke. Decentralized
gradient algorithm for solution of a linear equation. Numerical Algebra, Control &
Optimization, 6(3):319, 2016.

[58] Jingqiu Zhou, Xuan Wang, Shaoshuai Mou, and Brian DO Anderson. Finite-time
distributed linear equation solver for solutions with minimum l1-norm. IEEE Transactions
on Automatic Control, 65(4):1691–1696, 2019.

[59] Lili Wang and A Stephen Morse. A distributed observer for a time-invariant linear system.
IEEE Transactions on Automatic Control, 63(7):2123–2130, 2017.

[60] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for
distributed optimization over time-varying graphs. SIAM Journal on Optimization,
27(4):2597–2633, 2017.

[61] Parvin Nazari, Davoud Ataee Tarzanagh, and George Michailidis. Dadam: A consensus-
based distributed adaptive gradient method for online optimization. arXiv preprint
arXiv:1901.09109, 2019.

[62] S Sh Alaviani and Nicola Elia. A distributed algorithm for solving linear algebraic
equations over random networks. In 2018 IEEE Conference on Decision and Control
(CDC), pages 83–88. IEEE, 2018.

[63] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H Sayed. Decentralized consensus
optimization with asynchrony and delays. IEEE Transactions on Signal and Information
Processing over Networks, 4(2):293–307, 2017.

[64] Shaoshuai Mou, Ji Liu, and A Stephen Morse. A distributed algorithm for solving a linear
algebraic equation. IEEE Transactions on Automatic Control, 60(11):2863–2878, 2015.

[65] Ji Liu, Xiaobin Gao, and Tamer Başar. A communication-efficient distributed algorithm
for solving linear algebraic equations. In 2014 7th International Conference on NETwork
Games, COntrol and OPtimization (NetGCoop), pages 62–69. IEEE, 2014.

[66] Xiaobin Gao, Ji Liu, and Tamer Başar. Stochastic communication-efficient distributed
algorithms for solving linear algebraic equations. In 2016 IEEE Conference on Control
Applications (CCA), pages 380–385. IEEE, 2016.

273

[67] Xuan Wang, Shaoshuai Mou, and Dengfeng Sun. Improvement of a distributed algorithm
for solving linear equations. IEEE Transactions on Industrial Electronics, 64(4):3113–
3117, 2016.

[68] Yang Liu, Youcheng Lou, Brian Anderson, and Guodong Shi. Network flows that solve
least squares for linear equations. arXiv preprint arXiv:1808.04140, 2018.

[69] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE transactions on
automatic control, 31(9):803–812, 1986.

[70] Konstantinos I Tsianos and Michael G Rabbat. Distributed dual averaging for convex
optimization under communication delays. In 2012 American Control Conference (ACC),
pages 1067–1072. IEEE, 2012.

[71] Håkan Terelius, Ufuk Topcu, and Richard M Murray. Decentralized multi-agent
optimization via dual decomposition. IFAC proceedings volumes, 44(1):11245–11251,
2011.

[72] Takeshi Hatanaka, Nikhil Chopra, Takayuki Ishizaki, and Na Li. Passivity-based
distributed optimization with communication delays using PI consensus algorithm. IEEE
Transactions on Automatic Control, 63(12):4421–4428, 2018.

[73] Reza Olfati-Saber. Distributed Kalman filtering for sensor networks. In 2007 46th IEEE
Conference on Decision and Control, pages 5492–5498. IEEE, 2007.

[74] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2012.

[75] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science
& Business Media, 2001.

[76] Howard E Bell. Gershgorin’s theorem and the zeros of polynomials. The American
Mathematical Monthly, 72(3):292–295, 1965.

[77] Shinkyu Park and Nuno C Martins. Design of distributed lti observers for state
omniscience. IEEE Transactions on Automatic Control, 62(2):561–576, 2016.

[78] Lili Wang, A Stephen Morse, Daniel Fullmer, and Ji Liu. A hybrid observer for a
distributed linear system with a changing neighbor graph. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 1024–1029. IEEE, 2017.

[79] Romeo Ortega, Emmanuel Nuno, and Alexey Bobtsov. Distributed observers for LTI
systems with finite convergence time: A parameter estimation-based approach. IEEE
Transactions on Automatic Control, 2020.

[80] Joao P Hespanha. Linear systems theory. Princeton university press, 2018.

274

[81] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek,
Xenophon Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by
the belief in observed gradients. In Advances in Neural Information Processing Systems,
volume 33, pages 18795–18806, 2020.

[82] Qianqian Tong, Guannan Liang, and Jinbo Bi. Calibrating the adaptive learning rate to
improve convergence of ADAM. arXiv preprint arXiv:1908.00700, 2019.

[83] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights. Advances in neural
information processing systems, 27:2510–2518, 2014.

[84] Youzuo Lin, Daniel O’Malley, and Velimir Valentinov Vesselinov. A computationally
efficient Levenberg-Marquardt algorithm and its application to hydrogeologic inverse
modeling. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2016.

[85] Jarosław Bilski, Bartosz Kowalczyk, Alina Marchlewska, and Jacek M Zurada. Local
Levenberg-Marquardt algorithm for learning feedforward neural networks. Journal of
Artificial Intelligence and Soft Computing Research, 10, 2020.

[86] André L Tits. Notes for ENEE 664: Optimal control, 2011.

[87] William W Hager and Hongchao Zhang. A survey of nonlinear conjugate gradient
methods. Pacific journal of Optimization, 2(1):35–58, 2006.

[88] Gonglin Yuan, Zengxin Wei, and Yuning Yang. The global convergence of the Polak–
Ribière–Polyak conjugate gradient algorithm under inexact line search for nonconvex
functions. Journal of Computational and Applied Mathematics, 362:262–275, 2019.

[89] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic
quasi-Newton method for large-scale optimization. SIAM Journal on Optimization,
26(2):1008–1031, 2016.

[90] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-Newton methods
for nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956,
2017.

[91] Thomas O’Leary-Roseberry, Nick Alger, and Omar Ghattas. Inexact Newton methods
for stochastic nonconvex optimization with applications to neural network training. arXiv
preprint arXiv:1905.06738, 2019.

[92] Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for non-convex
optimization under inexact hessian information. Mathematical Programming, 184(1):35–
70, 2020.

[93] Quoc Tran-Dinh, Nhan Pham, and Lam Nguyen. Stochastic gauss-newton algorithms
for nonconvex compositional optimization. In International Conference on Machine
Learning, pages 9572–9582. PMLR, 2020.

275

[94] Brian Bullins, Kshitij Patel, Ohad Shamir, Nathan Srebro, and Blake E Woodworth. A
stochastic Newton algorithm for distributed convex optimization. Advances in Neural
Information Processing Systems, 34, 2021.

[95] Xuezhe Ma. APOLLO: An adaptive parameter-wise diagonal quasi-newton method for
nonconvex stochastic optimization. arXiv preprint arXiv:2009.13586, 2020.

[96] Satish Balay, Kris Buschelman, Victor Eijkhout, William D Gropp, Dinesh Kaushik,
M Knepley, Lois Curfman McInnes, Barry F Smith, and Hong Zhang. Petsc users manual
technical report anl-95/11-revision 2.1. 3, argonne national laboratory, 2002. Google
Scholar, 2002.

[97] Tjalling J Ypma. The effect of rounding errors on Newton-like methods. IMA Journal of
Numerical Analysis, 3(1):109–118, 1983.

[98] John E Dennis and Homer F Walker. Inaccuracy in quasi-Newton methods: Local
improvement theorems. In Mathematical Programming at Oberwolfach II, pages 70–85.
Springer, 1984.

[99] Tony Doungho Choi and Carl T Kelley. Superlinear convergence and implicit filtering.
SIAM Journal on Optimization, 10(4):1149–1162, 2000.

[100] Albert S Berahas, Richard H Byrd, and Jorge Nocedal. Derivative-free optimization of
noisy functions via quasi-Newton methods. SIAM Journal on Optimization, 29(2):965–
993, 2019.

[101] Hao-Jun M Shi, Yuchen Xie, Richard Byrd, and Jorge Nocedal. A noise-tolerant
quasi-Newton algorithm for unconstrained optimization. SIAM Journal on Optimization,
32(1):29–55, 2022.

[102] James Lucas, Juhan Bae, Michael R Zhang, Stanislav Fort, Richard Zemel, and Roger
Grosse. Analyzing monotonic linear interpolation in neural network loss landscapes. arXiv
preprint arXiv:2104.11044, 2021.

[103] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International
Conference on Machine Learning, pages 343–351. PMLR, 2013.

[104] Michael R Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead optimizer:
k steps forward, 1 step back. arXiv preprint arXiv:1907.08610, 2019.

[105] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon
bias in stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

[106] Yeming Wen, Kevin Luk, Maxime Gazeau, Guodong Zhang, Harris Chan, and Jimmy Ba.
An empirical study of large-batch stochastic gradient descent with structured covariance
noise. arXiv e-prints, pages arXiv–1902, 2019.

[107] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as
approximate Bayesian inference. arXiv preprint arXiv:1704.04289, 2017.

276

[108] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl,
Chris Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch
sizes? insights from a noisy quadratic model. Advances in neural information processing
systems, 32, 2019.

[109] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. Journal of Statistical Mechanics: Theory and
Experiment, 2020(12):124002, 2020.

[110] Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Giant: Globally improved
approximate newton method for distributed optimization. Advances in Neural Information
Processing Systems, 31, 2018.

[111] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013.

[112] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19, 2018.

[113] Liangchen Luo, Wenhao Huang, Qi Zeng, Zaiqing Nie, and Xu Sun. Learning personalized
end-to-end goal-oriented dialog. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6794–6801, 2019.

[114] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. In International Conference on Learning Representations, 2018.

[115] John Duchi, Michael I Jordan, and Brendan McMahan. Estimation, optimization, and
parallelism when data is sparse. In Advances in Neural Information Processing Systems,
volume 26, 2013.

[116] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017.

[117] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[118] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

[119] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

277

[120] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with
dynamic bound of learning rate. In International Conference on Learning Representations,
2019.

[121] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[122] Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between
two neural networks and the stability of learning. arXiv preprint arXiv:2002.03432, 2020.

[123] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning, pages 404–413.
PMLR, 2018.

[124] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the variance of the adaptive learning rate and beyond. In International
Conference on Learning Representations, 2020.

[125] Manzil Zaheer, Sashank J. Reddi, Devendra Singh Sachan, Satyen Kale, and Sanjiv Kumar.
Adaptive methods for nonconvex optimization. In NeurIPS, pages 9815–9825, 2018.

[126] Chen Zhu, Yu Cheng, Zhe Gan, Furong Huang, Jingjing Liu, and Tom Goldstein. MaxVA:
Fast adaptation of step sizes by maximizing observed variance of gradients. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 628–643. Springer, 2021.

[127] Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference:
Performance study of LSTM-networks for sequence tagging. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 338–348, 2017.

[128] Lichao Mou, Lorenzo Bruzzone, and Xiao Xiang Zhu. Learning spectral-spatial-temporal
features via a recurrent convolutional neural network for change detection in multispectral
imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2):924–935, 2018.

[129] Lichao Mou, Yuansheng Hua, and Xiao Xiang Zhu. A relation-augmented fully
convolutional network for semantic segmentation in aerial scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12416–12425,
2019.

[130] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven
Koenig, and Howie Choset. Primal: Pathfinding via reinforcement and imitation multi-
agent learning. IEEE Robotics and Automation Letters, 4(3):2378–2385, 2019.

[131] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are RNNs: Fast autoregressive transformers with linear attention. In
International Conference on Machine Learning, pages 5156–5165. PMLR, 2020.

278

[132] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast
waveform generation model based on generative adversarial networks with multi-
resolution spectrogram. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6199–6203. IEEE, 2020.

[133] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through
principled regularized optimization. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 2177–2190, 2020.

[134] Jizong Peng, Ping Wang, Christian Desrosiers, and Marco Pedersoli. Self-paced
contrastive learning for semi-supervised medical image segmentation with meta-labels.
Advances in Neural Information Processing Systems, 34, 2021.

[135] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent
with adaptive stepsizes. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 983–992. PMLR, 2019.

[136] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple
convergence proof of Adam and Adagrad. arXiv preprint arXiv:2003.02395, 2020.

[137] Xiaoxia Wu, Rachel Ward, and Léon Bottou. WNGrad: Learn the learning rate in gradient
descent. arXiv preprint arXiv:1803.02865, 2018.

[138] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. In International Conference on Machine Learning, pages 6677–
6686. PMLR, 2019.

[139] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for RMSProp
and ADAM in non-convex optimization and an empirical comparison to nesterov
acceleration. arXiv preprint arXiv:1807.06766, 2018.

[140] Anas Barakat and Pascal Bianchi. Convergence rates of a momentum algorithm with
bounded adaptive step size for nonconvex optimization. In Asian Conference on Machine
Learning, pages 225–240. PMLR, 2020.

[141] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class
of adam-type algorithms for non-convex optimization. In International Conference on
Learning Representations, 2019.

[142] Anas Barakat and Pascal Bianchi. Convergence and dynamical behavior of the ADAM
algorithm for nonconvex stochastic optimization. SIAM Journal on Optimization,
31(1):244–274, 2021.

[143] Dimitri Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.

[144] Bin Hu and Laurent Lessard. Control interpretations for first-order optimization methods.
In 2017 American Control Conference (ACC), pages 3114–3119. IEEE, 2017.

279

[145] Bin Hu and Laurent Lessard. Dissipativity theory for Nesterov’s accelerated method. In
International Conference on Machine Learning, pages 1549–1557. PMLR, 2017.

[146] AC Wilson, B Recht, and MI Jordan. A Lyapunov analysis of momentum methods in
optimization (2016). arXiv preprint arXiv:1611.02635, 2016.

[147] Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on
accelerated methods in optimization. proceedings of the National Academy of Sciences,
113(47):E7351–E7358, 2016.

[148] Guilherme França, Daniel P Robinson, and René Vidal. Gradient flows and proximal
splitting methods: A unified view on accelerated and stochastic optimization. Physical
Review E, 103(5):053304, 2021.

[149] Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration
phenomenon via high-resolution differential equations. Mathematical Programming,
pages 1–70, 2021.

[150] Miguel Vaquero, Pol Mestres, and Jorge Cortes. Resource-aware discretization of
accelerated optimization flows: the heavy-ball dynamics case. IEEE Transactions on
Automatic Control, 2022.

[151] Pedro Savarese. On the convergence of AdaBound and its connection to SGD. arXiv
preprint arXiv:1908.04457, 2019.

[152] Jinlan Liu, Jun Kong, Dongpo Xu, Miao Qi, and Yinghua Lu. Convergence analysis of
AdaBound with relaxed bound functions for non-convex optimization. Neural Networks,
145:300–307, 2022.

[153] Jerry Ma and Denis Yarats. On the adequacy of untuned warmup for adaptive optimization.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):8828–8836, 2021.

[154] Param Budhraja, Mayank Baranwal, Kunal Garg, and Ashish Hota. Breaking the
convergence barrier: Optimization via fixed-time convergent flows. arXiv preprint
arXiv:2112.01363, 2021.

[155] Ashia C Wilson, Lester Mackey, and Andre Wibisono. Accelerating rescaled gradient
descent: Fast optimization of smooth functions. Advances in Neural Information
Processing Systems, 32, 2019.

[156] Hassan K Khalil. Nonlinear systems. Pearson New York, 2002.

[157] I Barbalat. Systemes d’équations différentielles d’oscillations non linéaires. Rev. Math.
Pures Appl, 4(2):267–270, 1959.

[158] Hesameddin Mohammadi, Samantha Samuelson, and Mihailo R Jovanovic. Transient
growth of accelerated optimization algorithms. IEEE Transactions on Automatic Control,
2022.

280

[159] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[160] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. 1993.

[161] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[162] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[163] Xiaolei Ma, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng Wang. Long short-term
memory neural network for traffic speed prediction using remote microwave sensor data.
Transportation Research Part C: Emerging Technologies, 54:187–197, 2015.

[164] Daniel Jurafsky and James H Martin. Speech and language processing: An
introduction to natural language processing, computational linguistics, and speech
recognition. https://web.stanford.edu/˜jurafsky/slp3/ed3book_
sep212021.pdf. [Third edition draft; 21-September-2021].

[165] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
In International Conference on Learning Representations, 2017.

[166] Suhanya Jayaprakasam, Sharul Kamal Abdul Rahim, and Chee Yen Leow. Distributed
and collaborative beamforming in wireless sensor networks: Classifications, trends, and
research directions. IEEE Communications Surveys & Tutorials, 19(4):2092–2116, 2017.

[167] Keyvan Zarifi, Sofiène Affes, and Ali Ghrayeb. Collaborative null-steering beamforming
for uniformly distributed wireless sensor networks. IEEE Transactions on Signal
Processing, 58(3):1889–1903, 2009.

[168] N NikAbdMalik, Mazlina Esa, and Nurul Mu’azzah Abdul Latiff. Least-square
collaborative beamforming linear array for steering capability in green wireless sensor
networks. Journal of Electronic Science and Technology, 14(2):118–125, 2016.

[169] Shahab Farazi, Kim Chinkidjakarn, and D Richard Brown. Simultaneous distributed
beamforming and nullforming with adaptive positioning. In 2016 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pages 129–132. IEEE, 2016.

[170] Suhanya Jayaprakasam, Sharul Kamal Abdul Rahim, Chee Yen Leow, and Mohd
Fairus Mohd Yusof. Beampatten optimization in distributed beamforming using
multiobjective and metaheuristic method. In 2014 IEEE Symposium on Wireless
Technology and Applications (ISWTA), pages 86–91. IEEE, 2014.

[171] Nikolaos Chatzipanagiotis, Yupeng Liu, Athina Petropulu, and Michael M Zavlanos.
Distributed cooperative beamforming in multi-source multi-destination clustered systems.
IEEE Transactions on Signal Processing, 62(23):6105–6117, 2014.

281

https://web.stanford.edu/~jurafsky/slp3/ed3book_sep212021.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book_sep212021.pdf

[172] Suhanya Jayaprakasam, Sharul Kamal Abdul Rahim, and Chee Yen Leow. Psogsa-explore:
A new hybrid metaheuristic approach for beampattern optimization in collaborative
beamforming. Applied Soft Computing, 30:229–237, 2015.

[173] D Richard Brown, Upamanyu Madhow, Patrick Bidigare, and Soura Dasgupta. Receiver-
coordinated distributed transmit nullforming with channel state uncertainty. In 2012 46th
Annual Conference on Information Sciences and Systems (CISS), pages 1–6. IEEE, 2012.

[174] Lei Yu, Yinsheng Wei, and Wei Liu. Adaptive beamforming based on nonuniform linear
arrays with enhanced degrees of freedom. In TENCON 2015-2015 IEEE Region 10
Conference, pages 1–5. IEEE, 2015.

[175] Yongsheng Fan, Yuanping Zhou, Donglin He, and Wenlong Xia. Fast transmit
beamforming with distributed antennas. IEEE Antennas and Wireless Propagation Letters,
16:121–124, 2016.

[176] Sairam Goguri, Ben Peiffer, Raghu Mudumbai, and Soura Dasgupta. A class of scalable
feedback algorithms for beam and null-forming from distributed arrays. In 2016 50th
Asilomar Conference on Signals, Systems and Computers, pages 1447–1451. IEEE, 2016.

[177] Justin S Kong, Fikadu T Dagefu, and Brian M Sadler. Distributed adaptive beamforming
and nullforming for secure wireless communications, March 31 2022. US Patent App.
17/205,355.

[178] Barry D Van Veen and Kevin M Buckley. Beamforming: A versatile approach to spatial
filtering. IEEE assp magazine, 5(2):4–24, 1988.

[179] Amy Kumar, Raghuraman Mudumbai, Soura Dasgupta, Upamanyu Madhow, and
D Richard Brown. Distributed mimo multicast with protected receivers: A scalable
algorithm for joint beamforming and nullforming. IEEE Transactions on Wireless
Communications, 16(1):512–525, 2016.

[180] Jemin George, Anjaly Parayil, Cemal Tugrul Yilmaz, Bethany L Allik, He Bai, and Aranya
Chakrabortty. Multi-agent coordination for distributed transmit beamforming. In 2020
American Control Conference (ACC), pages 144–149. IEEE, 2020.

[181] Jemin George, Cemal Tugrul Yilmaz, Anjaly Parayil, and Aranya Chakrabortty. A
model-free approach to distributed transmit beamforming. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5170–5174. IEEE, 2020.

[182] Anjaly Parayil, Amrit Singh Bedi, and Alec Koppel. Joint position and beamforming
control via alternating nonlinear least-squares with a hierarchical gamma prior. In 2021
American Control Conference (ACC), pages 3513–3518. IEEE, 2021.

[183] Tzanis Anevlavis, Jonathan Bunton, Anjaly Parayil, Jemin George, and Paulo Tabuada. To
beam or not to beam? beamforming with submodularity-inspired group sparsity. In 2020
59th IEEE Conference on Decision and Control (CDC), pages 390–395. IEEE, 2020.

282

[184] Arjun Muralidharan and Yasamin Mostofi. Energy optimal distributed beamforming using
unmanned vehicles. IEEE Transactions on Control of Network Systems, 5(4):1529–1540,
2017.

[185] Samer Hanna, Enes Krijestorac, and Danijela Cabric. Destination-feedback free
distributed transmit beamforming using guided directionality. arXiv preprint
arXiv:2108.01837, 2021.

[186] Costas Kravaris, Juergen Hahn, and Yunfei Chu. Advances and selected recent
developments in state and parameter estimation. Computers & chemical engineering,
51:111–123, 2013.

[187] Nikolaos Kazantzis and Costas Kravaris. Discrete-time nonlinear observer design using
functional equations. Systems & Control Letters, 42(2):81–94, 2001.

[188] Arthur J Krener and MingQing Xiao. Nonlinear observer design in the Siegel domain.
SIAM Journal on Control and Optimization, 41(3):932–953, 2002.

[189] Alessandro Astolfi and Laurent Praly. Global complete observability and output-to-state
stability imply the existence of a globally convergent observer. Mathematics of Control,
Signals and Systems, 18(1):32–65, 2006.

[190] Nikolas Kazantzis. Map invariance and the state reconstruction problem for nonlinear
discrete-time systems. European Journal of Control, 15(2):105–119, 2009.

[191] Jeff S Shamma and Kuang-Yang Tu. Approximate set-valued observers for nonlinear
systems. IEEE Transactions on Automatic Control, 42(5):648–658, 1997.

[192] Masoud Abbaszadeh and Horacio J Marquez. Robust H∞ observer design for sampled-
data Lipschitz nonlinear systems with exact and Euler approximate models. Automatica,
44(3):799–806, 2008.

[193] Iasson Karafyllis and Costas Kravaris. From continuous-time design to sampled-data
design of observers. IEEE Transactions on Automatic Control, 54(9):2169–2174, 2009.

[194] Madiha Nadri, Hassan Hammouri, and Rafael Mota Grajales. Observer design for
uniformly observable systems with sampled measurements. IEEE Transactions on
Automatic Control, 58(3):757–762, 2012.

[195] Vincent Andrieu, Madiha Nadri, Ulysse Serres, and Jean-Claude Vivalda. Self-triggered
continuous–discrete observer with updated sampling period. Automatica, 62:106–113,
2015.

[196] Daoyuan Zhang, Yanjun Shen, Jun Mei, and Zhi-Hong Guan. Sampled-data observer
design for a class of nonlinear systems with delayed measurements. In 2016 Chinese
Control and Decision Conference (CCDC), pages 2242–2246. IEEE, 2016.

[197] Hossein Beikzadeh and Horacio J Marquez. Input-to-error stable observer for nonlinear
sampled-data systems with application to one-sided Lipschitz systems. Automatica, 67:1–
7, 2016.

283

[198] Aleksandar Haber, Ferenc Molnar, and Adilson E Motter. State observation and sensor
selection for nonlinear networks. IEEE Transactions on Control of Network Systems,
5(2):694–708, 2017.

[199] Tarek Ahmed-Ali, Iasson Karafyllis, and Fouad Giri. Sampled-data observers for delay
systems. IFAC-PapersOnLine, 53(2):5901–5908, 2020.

[200] Laura Menini, Corrado Possieri, and Antonio Tornambè. Design of high-gain observers
based on sampled measurements via the interval arithmetic. Automatica, 131:109741,
2021.

[201] Saeed Kashefi and Majid Hajatipour. New optimal observer design for a class of nonlinear
systems based on approximation. International Journal of Dynamics and Control, pages
1–12, 2022.

[202] J Gauthier and G Bornard. Observability for any u(t) of a class of nonlinear systems.
IEEE Transactions on Automatic Control, 26(4):922–926, 1981.

[203] Antonio Tornambè. High-gain observers for non-linear systems. International Journal of
Systems Science, 23(9):1475–1489, 1992.

[204] G Ciccarella, M Dalla Mora, and A Germani. A robust observer for discrete time nonlinear
systems. Systems & Control Letters, 24(4):291–300, 1995.

[205] Hassan K Khalil and Laurent Praly. High-gain observers in nonlinear feedback control.
International Journal of Robust and Nonlinear Control, 24(6):993–1015, 2014.

[206] Laura Menini, Corrado Possieri, and Antonio Tornambe. A “practical” observer for
nonlinear systems. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
pages 3015–3020. IEEE, 2017.

[207] Hyungbo Shim and Daniel Liberzon. Nonlinear observers robust to measurement
disturbances in an ISS sense. IEEE Transactions on Automatic Control, 61(1):48–61,
2015.

[208] Christopher V Rao, James B Rawlings, and David Q Mayne. Constrained state estimation
for nonlinear discrete-time systems: Stability and moving horizon approximations. IEEE
Transactions on Automatic Control, 48(2):246–258, 2003.

[209] Angelo Alessandri, Marco Baglietto, and Giorgio Battistelli. Moving-horizon state
estimation for nonlinear discrete-time systems: New stability results and approximation
schemes. Automatica, 44(7):1753–1765, 2008.

[210] Angelo Alessandri, Marco Baglietto, Giorgio Battistelli, and Victor Zavala. Advances in
moving horizon estimation for nonlinear systems. In 49th IEEE Conference on Decision
and Control (CDC), pages 5681–5688. IEEE, 2010.

[211] Angelo Alessandri and Mauro Gaggero. Fast moving horizon state estimation for discrete-
time systems using single and multi iteration descent methods. IEEE Transactions on
Automatic Control, 62(9):4499–4511, 2017.

284

[212] PE Moraal and Jessy W Grizzle. Observer design for nonlinear systems with discrete-time
measurements. IEEE Transactions on Automatic Control, 40(3):395–404, 1995.

[213] Emrah Bıyık and Murat Arcak. A hybrid redesign of Newton observers in the absence of
an exact discrete-time model. Systems & Control Letters, 55(6):429–436, 2006.

[214] E Biyik and Murat Arcak. Hybrid Newton observer design using the inexact Newton
method and GMRES. In 2006 American Control Conference, pages 6–pp. IEEE, 2006.

[215] Shigeru Hanba. Numerical nonlinear observers using pseudo-Newton-type solvers.
International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal,
18(17):1592–1606, 2008.

[216] Filippo Cacace, Valerio Cusimano, and Alfredo Germani. An efficient approach to the
design of observers for continuous-time systems with discrete-time measurements. In
2011 50th IEEE Conference on Decision and Control and European Control Conference,
pages 7549–7554. IEEE, 2011.

[217] Dina Shona Laila and Alessandro Astolfi. Sampled-data observer design for a class
of nonlinear systems with applications. In Proc. 17th International Symposium on
Mathematical Theory of Networks and Systems, pages 715–722, 2006.

[218] Ramine Nikoukhah. A new methodology for observer design and implementation. IEEE
Transactions on Automatic Control, 43(2):229–234, 1998.

[219] Daniele Carnevale, Sergio Galeani, Mario Sassano, and Alessandro Astolfi. Nonlinear
observer design techniques with observability functions. In 52nd IEEE Conference on
Decision and Control, pages 31–36. IEEE, 2013.

[220] Daniele Astolfi and Corrado Possieri. Design of local observers for autonomous nonlinear
systems not in observability canonical form. Automatica, 103:443–449, 2019.

[221] Salim Ibrir. LPV approach to continuous and discrete nonlinear observer design. In
Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly
with 2009 28th Chinese Control Conference, pages 8206–8211. IEEE, 2009.

[222] Arthur Gelb et al. Applied optimal estimation. MIT press, 1974.

[223] J Boyle and J Wen. Newton descent observer for nonlinear discrete-time systems.
Technical report, KAPL (Knolls Atomic Power Laboratory (KAPL), Niskayuna, NY),
2005.

[224] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–
60, 2020.

[225] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and
H Vincent Poor. Federated learning for internet of things: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 23(3):1622–1658, 2021.

285

[226] Zhengjie Yang, Wei Bao, Dong Yuan, Nguyen H Tran, and Albert Y Zomaya. Federated
learning with nesterov accelerated gradient. IEEE Transactions on Parallel and
Distributed Systems, 2022.

[227] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted
sampling, and the randomized Kaczmarz algorithm. In Advances in neural information
processing systems, pages 1017–1025, 2014.

[228] Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River, NJ, 2002.

[229] Rajendra Bhatia. Linear algebra to quantum cohomology: the story of Alfred Horn’s
inequalities. The American Mathematical Monthly, 108(4):289–318, 2001.

[230] Alexander A. Klyachko. Random walks on symmetric spaces and inequalities for matrix
spectra. Linear Algebra and its Applications, 319(1):37–59, 2000.

286

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Distributed Linear Regression in Server-Agent Network
	Introduction
	Background on gradient-descent method
	Related work
	System noise
	Stochastic settings
	Summary of our contributions

	Proposed algorithm: Iteratively Pre-Conditioned Gradient-Descent (IPG)
	Motivation for IPG
	Steps in each iteration t
	Algorithm complexity
	Convergence guarantees

	Comparisons with the existing methods
	The gradient-descent method

	Robustness of the IPG method
	Notation, assumption, and prior results
	Robustness against observation noise
	Robustness against process noise

	SGD with iterative pre-conditioning
	Steps in each iteration t
	Notation and assumptions
	Convergence guarantees

	Experimental results
	Stochastic settings

	Summary

	Decentralized Linear Regression in Peer-to-Peer Network
	Introduction
	Background on decentralized gradient-descent
	Related Work
	Communication delay
	Summary of our contributions

	Proposed algorithm
	Convergence guarantee
	Robustness against computational process noise

	Comparison with decentralized gradient-descent
	Multiple-solutions case
	Directed-graph case
	Application: decentralized state estimation
	Proposed algorithm in presence of communication delay
	Convergence guarantee

	Experimental results
	Comparison with decentralized Kalman filter
	In presence of delay

	Summary

	Distributed Convex Optimization in Server-Agent Network
	Introduction
	Summary of our contributions

	Proposed algorithm: Iteratively Pre-conditioned Gradient-descent (IPG)
	Steps in each iteration t
	Convergence guarantees

	Experimental results
	Distributed noisy quadratic model
	Distributed logistic regression

	Summary and future work

	Non-Convex Optimization
	Introduction
	Related work
	Our contributions

	Proposed algorithm: Generalized AdaGrad (G-AdaGrad)
	Description of G-AdaGrad
	Convergence of G-AdaGrad

	State-model of Adam and AdaBelief
	A general adaptive gradient algorithm
	Continuous-time AdaBound
	State-space model of AdaBound
	Convergence of AdaBound

	Convergence analysis of Nadam
	Convergence analysis of RAdam
	Convergence of rescaled gradient flow
	Proposed algorithm: AdamSSM
	Proposed Algorithm: NadamSSM
	Proposed Algorithm: MAdamSSM
	Experimental results
	G-AdaGrad
	AdamSSM
	NadamSSM
	MAdamSSM

	Summary and discussions

	Distributed Beamforming
	Introduction
	Related works
	Summary of our contributions

	Problem formulation
	Proposed algorithm: Iteratively Pre-conditioned Gradient-descent for Distributed Beamforming
	Steps in each iteration t 0

	Experimental results
	Summary

	Nonlinear Observer
	Introduction
	Prior works
	Summary of our contributions

	Problem formulation
	Proposed observer
	Steps in each sampling instant k N
	Step-size selection
	Relation with extended Kalman filter

	Experimental results
	Summary

	Summary and Future Work
	Completed work
	Future work

	Proofs of the Theoretical Results
	Proof of Theorem 2.1
	Proof of Corollary 2.1
	Proof of Lemma 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Theorem 2.5
	Preliminary results
	Notations
	Convergence of the pre-conditioner matrix
	Proof of the theorem

	Proof of Lemma 3.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.5
	Proof of Lemma 4.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 5.5
	Proof of Theorem 5.6

	Bibliography

