
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

1-3-2023 

Arginine methylation of the PGC-1α C-terminus is temperature-Arginine methylation of the PGC-1  C-terminus is temperature-

dependent dependent 

Meryl Mendoza 
California State University 

Mariel Mendoza 
University of Pennsylvania 

Tiffany Lubrino 
Chapman University 

Sidney Briski 
Chapman University 

Immaculeta Osuji 
California State University 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Mendoza, Meryl; Mendoza, Mariel; Lubrino, Tiffany; Briski, Sidney; Osuji, Immaculeta; Cuala, Janielle; Ly, 
Brendan; Ocegueda, Ivan; Peralta, Harvey; Garcia, Benjamin A.; and Zurita-Lopez, Cecilia I., "Arginine 
methylation of the PGC-1α C-terminus is temperature-dependent." Biochemistry. 62, 1. 22 - 34. (2023). 
https://digitalcommons.wustl.edu/oa_4/1153 

This Open Access Publication is brought to you for free and open access by the Open Access Publications at 
Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized 
administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=https://digitalcommons.wustl.edu/oa_4/1153
mailto:vanam@wustl.edu


Authors Authors 
Meryl Mendoza, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan 
Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, and Cecilia I. Zurita-Lopez 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/1153 

https://digitalcommons.wustl.edu/oa_4/1153


Arginine Methylation of the PGC-1α C‑Terminus Is Temperature-
Dependent
Meryl Mendoza, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala,
Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, and Cecilia I. Zurita-Lopez*

Cite This: Biochemistry 2023, 62, 22−34 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We set out to determine whether the C-terminus
(amino acids 481−798) of peroxisome proliferator-activated
receptor gamma coactivator-1 alpha (PGC-1α, UniProt
Q9UBK2), a regulatory metabolic protein involved in mitochon-
drial biogenesis, and respiration, is an arginine methyltransferase
substrate. Arginine methylation by protein arginine methyltrans-
ferases (PRMTs) alters protein function and thus contributes to
various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have
identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using
recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. Various fragments of PGC-1α corresponding to the C-
terminus were used as substrates, and the methylation reactions were analyzed by fluorography and mass spectrometry to determine
the extent of methylation throughout the substrates, the location of the methylated PGC-1α arginine residues, and finally, whether
temperature affects the deposition of methyl groups. We also employed two prediction programs, PRmePRed and MePred-RF, to
search for putative methyltransferase sites. Methylation reactions show that arginine residues R548 and R753 in PGC-1α are
methylated at or below 30 °C by PRMT7, while methylation by PRMT1 was detected at these same residues at 30 °C.
Computational approaches yielded additional putative methylarginine sites, indicating that since PGC-1α is an intrinsically
disordered protein, additional methylated arginine residues have yet to be experimentally verified. We conclude that temperature
affects the extent of arginine methylation, with more methylation by PRMT7 occurring below physiological temperature, uncovering
an additional control point for PGC-1α.

■ INTRODUCTION
Peroxisome proliferator-activated receptor gamma (PPARγ)
coactivator-1 alpha (PGC-1α) is a transcriptional coactivator
capable of forming complexes with transcription factors such as
NRF-1, NRF-2, PPARα, PPARδ, PPARγ, ERRα, and TR.1 It
has regulatory functions in lipid metabolism, mitochondrial
biogenesis, remodeling of muscle tissue, and more recently
inflammatory response pathways.2−4 Initially, PGC-1α was
identified as a thermoregulator, whose expression was induced
upon exposure to cold temperatures (4−24 °C).5 However,
PGC-1α is now implicated in diseases such as type 2 diabetes
and obesity,6,7 cancer,8,9 and neurodegenerative diseases such
as Parkinson’s10 and Huntington’s11 disease. Given its various
functions and significance, how this protein is regulated is the
subject of intense investigation.
According to PhosphoSitePlus, PGC-1α is not only heavily

phosphorylated but also post-translationally modified with
ubiquitin, acetyl, and methyl groups.12 With respect to
methylation, human PGC-1α becomes methylated at arginine
residues 665, 667, and 669 (within RS and E regions of the C-
terminus) at 30 °C by protein arginine methyltransferase 1
(PRMT1).13 PRMT1 is the most active member of a family of
nine PRMT enzymes that methylate arginine residues.14,15

Arginine methylation at 665, 667, and 669 by PRMT1 was
found to decrease the expression of the ERRα promoter, which
is important for mitochondrial biogenesis.13 In addition, this
same study found additional methylation within the C-
terminus; however, the exact arginine residues and the
methyltransferase(s) responsible for this methylation were
not identified.13 Since PRMT1 is one of nine members of this
family of cellular regulators,16 we hypothesized that there are
other PRMTs that contribute to the regulation of PGC-1α via
arginine methylation, in particular PRMT7. Of the nine
mammalian protein arginine methyltransferases, PRMT1 (and
not CARM1/PRMT4) methylates PGC-1α.13 PRMT1 and
CARM1/PRMT4 are the most active methyltransferases that
produce ADMA. In addition, to our knowledge, there is no
evidence of SDMA in PGC-1α, and thus we focused on
PRMT7.
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PRMT7 is a unique member of the methyltransferase family.
Not only is it larger than the rest of the family members, but it
is also the only known type III enzyme, capable of solely
producing ω-monomethylated arginine (ω-MMA) resi-
dues.17−19 Moreover, it preferentially methylates arginine
residues found in RXR motifs (where R represents arginine,
and X represents any amino acid). PRMT7 shows the greatest
activity when substrates contain RXRXR motifs as seen in
histone H2B.18,20 PGC-1α contains various RXR motifs.
Finally, PRMT7 is also sensitive to temperature.17,20

We set out to determine whether the canonical isoform of
PGC-1α (UniProt Q9UBK2) is a substrate for PRMT7. Since
previous work by Teyssier et al. shows that PGC-1α is
methylated in the C-terminus, we focused on this portion of
the protein (amino acids 481−798). In vitro methylation
reactions were performed where the C-terminus of PGC-1α
was incubated with recombinant mammalian PRMT7 enzyme.
Fluorography assays and mass spectrometry were used to
assess arginine methylation. We also employed computational
methylation prediction programs to search for additional
putative methylated arginine residues. Our in vitro findings
demonstrate that both PRMT1 and PRMT7 methylate
arginine residues at temperatures at or below 30 °C. In
addition to demonstrating that PGC-1α is a substrate for
PRMT7, we also identified novel methylated arginine residues
by PRMT1. Our in silico studies indicate that PGC-1α is
capable of receiving additional methyl groups at arginine
residues, perhaps by additional members of the methyltransfer-
ase family, but whose exact conditions remain to be discovered.
Our results provide novel insights into the regulation of this
protein.

■ MATERIALS AND METHODS
Protein Expression and Purification. Wild-type con-

structs of PRMT1 and a PGC-1α plasmid known as G1 were
transformed from DH5α to BL21 Escherichia coli cells. For a
list of the PGC-1α constructs used, including their amino acid
sequences, see Table S1. All constructs were streaked on
ampicillin (Amp) plates (100 mg/mL) and were bacterially
expressed as described previously with the exception of
PRMT7.21 To optimize protein expression for active
PRMT7, a starter culture was selected from a single colony
and used to inoculate 25 mL of YT medium (Amp 100 mg/
mL) and incubated in a 37 °C shaker for 10−12 h.22 This
culture (20 mL) was transferred to 450 mL of Terrific broth, 4
mL of 50% glycerol, and 50 mL of 10 × buffering salt (2.31 g
KH2PO4, 16.4 KH2PO4·3H2O for 100 mL) in a 1 L
Erlenmeyer flask. The samples were incubated for approx-
imately 4−5 h at a 37 °C until the optimum density (OD)
reached an absorbance of 0.6−0.8 and induced with a final
concentration of 1.0 mM isopropyl β-D-1-thiogalactopyrano-
side (IPTG) overnight at 16 °C.
The cells were harvested in centrifuge bottles and spun at

6000g for 8 min at 4 °C. The pellet was dissolved and collected
with 25 mL of 1 × phosphate-buffered saline (PBS) buffer and
spun down again at 5000g for 5 min at 4 °C. Once expressed,
all proteins were purified. Briefly, the pellet was thawed and
dissolved in 8 mL of 1 × PBS in the presence of 80 μL of 1 M
phenylmethylsulfonyl fluoride (PMSF). The GST-proteins
were released via bacterial cell sonication with seven cycles
of 20 s pulses with a 1-min break in between each pulse.
Following sonication, the samples were centrifuged at 23,000g

for 50 min at 4 °C. An additional 80 μL of 1 M PMSF was
added to prevent protein degradation.
GST-PRMT7 was purified as per the manufacturer’s

specifications using glutathione Superflow Agarose (PierceTM
Glutathione Superflow Agarose Thermo Scientific Protocol).
Briefly, the protein extraction was added to the prepared
agarose and mixed on a rotator for 2 h at 4 °C. The solution
was centrifuged for 2 min at 700g and was washed four times
with 2 resin-bed volumes of equilibration buffer (125 mM
Tris−HCl, 150 mM sodium chloride; pH 8.0). The GST-
tagged proteins were eluted with 1 resin-bed volume of elution
buffer (125 mM Tris−HCl, 150 mM sodium chloride, 10 mM
reduced glutathione; pH 8.0) and mixed slowly for 10 min.
The sample was spun for 2 min at 700g at 4 °C. Eluent
fractions were stored at −80 °C. With respect to GST-PRMT7
expression and purification, the samples were immediately
used for methylation reactions to minimize protein degrada-
tion and subsequent loss of enzymatic activity. Protein
concentration was determined as previously described via
TCA Lowry assay using bovine serum albumin (BSA) 1 mg/
mL as a standard.23

In Vitro Methylation Reactions. An enzyme, either
PRMT1 or PRMT7, was incubated with either bacterially
expressed construct of PGC-1α: G1 (amino acids 566−640);
the C-terminus of PGC-1α (AbCam, amino acids 481−798,
His tag C-terminus); or a fragment of the C-terminus PGC-1α
(Creative Biomart, amino acids 573−767, His tagged C-
terminus) in the presence of 0.5 μM S-adenosyl-L-
[methyl-3H]methionine and of 50 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 10 mM NaCl, and 1
mM dithiothreitol (DTT) for 1 h at various temperatures
ranging from 4 to 37 °C in a final volume of 30 μL. For
fluorography, the reactions were immediately quenched with 4
× loading dye (100 μL of 2-mercaptoethanol per 950 μL of
Laemmli sample buffer; BioRad), resolved via a 12% sodium
dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-
PAGE) and stained with Coomassie Blue. Next, the gel was
incubated with enhance (PerkinElmer) for an hour and placed
in a 10% glycerol solution for an additional hour on a nutator.
The gel was then dried and exposed on film at −80 °C for
various lengths of time. The film was developed with a
developer and fixer solution (GBX Developer and Fixer, M&S
Dental, New York).
Nonradioactive in vitro methylation reactions were carried

out in a similar way except that reactions were incubated in the
presence of a final concentration of 3.2 mM S-adenosylme-
thionine (AdoMet) (New England Biolabs, Inc.). These
samples were analyzed by mass spectrometry.
In-Gel Digestion and Peptide Extraction for Mass

Spectrometry Analyses of Methylated PGC-1α Prod-
ucts. Nonradioactive methylation reactions were resolved via
12% SDS-PAGE gel and stained with Coomassie blue as
described above. After destaining, the gel bands of interest
were sliced out and diced into 1 mm slices on a clean glass
plate and placed in a microcentrifuge tube. The gel slices were
rinsed with 100 mM ammonium bicarbonate (ABC), then
destained completely in 50% acetonitrile/100 mM ABC for 1 h
on a nutator and further dried on a speed vacuum concentrator
(speed vac). Samples were reduced with 10 mM DTT in 100
mM ABC for 1 h at 56 °C, then were alkylated with 55 mM
iodoacetamide in 100 mM ABC for 45 min in the dark. After
alkylation, the gel slices were washed with 100 mM ABC,
dehydrated with 100% acetonitrile, and dried by speed
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vacuum. The slices were then incubated with 12.5 ng/μL
trypsin diluted in 100 mM ABC with enough volume to
completely cover them, placed on ice for 20 min, then left on
the bench overnight.
After overnight trypsin digestion, peptides were extracted

from the gel slices via a series of hydration and dehydration
steps using ABC and acetonitrile solutions. Briefly, gel slices
were rinsed with 100 mM ABC for 45 min and the supernatant
was collected. Next, gel slices were dehydrated with a 50:45:5
ratio of acetonitrile, water, and acetic acid for 15 min to
inactivate trypsin and rehydrate with 100 mM ABC for 15 min.
After a subsequent round of hydration, dehydration, and
hydration, the gel slices were dehydrated with 100%
acetonitrile until the gel slices became white. All of the
supernatant collected from the extraction was pooled and dried
in a speed vac. The samples were then desalted using a C18
column as previously described.24

Dried samples were resuspended in buffer A (0.1% (v/v)
formic acid in water) and loaded into a Nano-LC system
(EASY-nLC 1000, Thermo Fisher Scientific) coupled online
with an Orbitrap Fusion Tribrid mass spectrometer (Thermo
Scientific). Peptides were separated on a home-packed
capillary column (200 mm length, 75 μm inner diameter)
containing reverse-phase ReproSil-Pur C18-AQ resin (3 μm

particle size, Dr. Maisch Gmbh) at a flow rate of 300 nL/min.
A gradient of 20 min was set from 5 to 35% buffer B (0.1%
formic acid in acetonitrile), then 35−98% buffer B in 12 min.
Full scan mass range of m/z 250−1100 was analyzed in the
Orbitrap at 120,000 resolution and 5.0 × 105 AGC target
value. MS/MS was performed in the Orbitrap at 30,000
resolution in the normal mode using data-dependent
acquisition. The HCD collision energy, AGC target, and
maximum injection time were set to 27, 5.0 × 104, and 50 ms,
respectively. Dynamic exclusion (20 s) was enabled. Every
sample was injected once into Orbitrap Fusion.
Mass Spectrometry Data Processing and Analysis.

MS raw files of proteome analyzed by Proteome Discoverer 2.1
software against a modified Fasta file that only includes the
proteins used for the in vitro reactions: PRMT1 (Uniprot ID
Q99873), PRMT7 (Uniprot ID Q9NVM4), and the truncated
PGC-1α. Additionally, the database that included common
contaminants was used for the first search. Trypsin was
specified as the digesting enzyme with two missed cleaves
allowed. The search included fixed modifications of carbami-
domethyl cysteine and variable modifications of methionine
oxidation, N-terminal acetylation, methyl (KR), and dimethyl
(KR).

Figure 1. (A) Full-length human PGC-1α protein sequence (UniProt Q9UBK2; MW 91 kDa), C-terminus in boldface (amino acids 481−798,
predicted MW 38 kDa), methylated arginine residues confirmed experimentally in this study: R548 and R753 (red), additional (previously
confirmed) methylated arginine residues R665, R667, and R669 (blue).13 Four RXR, three RXRXR, and one RXRXRXR arginine-rich regions are
underlined. (B) Map of PGC-1α with identified PTMs located in the C-terminus. PTMs were identified using the following databases: dbPTM40

and PhosphoSitePlus.12 Created using Illustrator for Biological Sequences (IBS).41
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In addition, an initial screen of methylation reactions was
carried out and analyzed by mass spectrometry at the Mass
Spectrometry Facility at UC Irvine. Briefly, nonradioactive in
vitro methylation reactions with either PRMT7 or PRMT1 and
PGC-1α fragments (C-term, Creative Biomart) were incubated
with AdoMet for 1 h at temperatures 37, 30, 21, 18, and 16 °C.
Samples were then quenched with 2 × loading dye, resolved on
12% SDS-PAGE, and then stained as described above.
Methylated PGC-1α bands and controls with PGC-1α,
PRMT1, and PRMT7 alone were submitted to UC Irvine
Mass Spectrometry Facility for analyses. Raw files for all MS
proteome work have been deposited to the Chorus repository
(https://chorusproject.org/pages/index.html) under project
number 1765.
Methylation Predication Programs. To search for

putative methylated arginine residues computationally, the

full-length Fasta amino acid sequence for PGC-1α (UniProt
Q9UBK2) was imputed into PRmePRed25 and MePred-RF26

arginine prediction programs. Settings for PRmePRed: window
size 19 amino acids and a 0.5 support vector machine (SVM)
threshold. Settings for MePred-RF: window size 11 amino
acids and a 0.5 random forest (RF) threshold. The putative
arginine residues with overlapping arginine residues in PGC-
1α on a Venn diagram were created using Canva (canva.com).

■ RESULTS AND DISCUSSION
PGC-1α has various protein partners and is found in tissues
with high energy demands that are rich in mitochondria such
as muscle, liver, heart, and pancreas.27−30 To investigate this
protein, we set out to determine whether PGC-1α is
methylated at the C-terminus by PRMT7, which is also widely
expressed in tissues.31 We focused on the C-terminal portion

Figure 2. (A) Methylation of a peptide corresponding to PGC-1α sequence VSPPKSLFSQRPQRMRSRSRSFSRHRSCSRSPYSRSRSRS (aa 551−
590; ∼4.7 kDa). Recombinant GST-PRMT1 (4 μg) was incubated with peptide (5 μg) in the presence of 0.5 μM S-adenosyl-L-
[methyl-3H]methionine for 1 h at 37 °C with 9 μL of 10 × HEPES buffer in a final volume of 90 μL as described in the Materials and Methods
section. The samples were then resolved on a 15% SDS-PAGE gel (lower panel). The radioactive methylation reactions were exposed on film as
described in the Materials and Methods section for 3 weeks (upper panel). (B) Methylation of G1 corresponding to PGC-1α sequence (aa 532−
640; ∼38 kDa). Recombinant GST-PRMT1 (7 μg) was incubated with G1 (7.6 μg) in the presence of 0.5 μM S-adenosyl-L-
[methyl-3H]methionine for 1 h at 37 °C with 3 μL of 10 × HEPES buffer in a final volume of 30 μL as described in the Materials and
Methods section. The samples were then resolved on a 15% SDS-PAGE gel (lower panel). The radioactive methylation reactions were exposed on
film as described in the Materials and Methods section for 5 days (upper panel). (C) Recombinant GST-PRMT7 (5 μg) was incubated with GST-
G1 (5 μg) in the presence of 0.5 μM S-adenosyl-L-[methyl-3H]methionine for 20 h at 22 °C with 4 μL of 10 × HEPES buffer in a final volume of
40 μL as described in the Materials and Methods section. The samples were then resolved on a 12% SDS-PAGE gel (lower panel). The radioactive
methylation reactions were exposed on film as described in the Materials and Methods section for 1 month (upper panel). The GST-G1 construct
is 108 amino acids long or approximately 11 kDa. The GST has a molecular weight of approximately 27 kDa, making G1 approximately 38 kDa.13
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Figure 3. (A) Arginine methylation of PGC-1α (2 μg) (573−767) at (A) 37 °C and (B) 18 °C by 2 μg of either PRMT1 or PRMT7. Substrate was
mixed with 32 mM AdoMet in 50 mM HEPES, 10 mM NaCl, and 1 mM DTT in a final volume of 150 μL master mix. Aliquots were then
incubated at 37, 30, 21, 18, 16, and 4 °C for 1 h followed by the addition of enzyme. The samples were then quenched with 4 × loading dye and
resolved on a 12% SDS-PAGE gel as described in the Materials and Methods section. (C) Detection of methylated arginine peptide fragment
(sequence SLFNVSPSCSSFNSPCR) corresponding to PGC-1α by mass spectrometry. Isolation of this 2+ charge species is denoted by a green
peak (980.43652 m/z, monoisotopic mass 1960.97; calculated mass 1831.8102 without methyl group or carbamidomethylation of cysteine residues
(57.02145 Da) due to iodoacetamide). The table shows the fragmentation patterns of the b and y ions. Red and blue colors indicate fragments
identified.
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of this protein because to date, it is the only portion found to
be methylated at arginine residues.8,13

PGC-1α is asymmetrically dimethylated by PRMT1 at
arginine residues 665, 667, and 669. This modification is an
activating mark that promotes the expression of target genes
important for mitochondrial biogenesis.13 Although PRMT1
methylates PGC-1α, knockdown does not completely abolish
all arginine methylation in the C-terminus of PGC-1α purified
from COS7 cells.13 We searched for evidence of PGC-1α being
methylated or associating with any other PRMT family
member. We found two studies where PRMT5 modulates
the expression of PGC-1α in hepatocytes,32,33 and three
studies where PRMT5 expression is increased during muscle
plasticity.34−36 In addition, another study found that the
expression of PRMT7 increases the expression of PGC-1α.37
Since to date there is no evidence of PGC-1α receiving an
SDMA mark (catalyzed by PRMT5), we reasoned that in
addition to PRMT1, PRMT7 may also methylate PGC-1α.
Moreover, PGC-1α contains four RXR regions, three RXRXR
regions, and one RXRXRXR arginine-rich region within the C-
terminus (Figure 1A), which could be potential sites for
PRMT7 methylation. The amino acid sequence of PGC-1α
(UniProt Q9UBK2) is shown in Figure 1A, where the C-
terminus is in boldface and the methylated arginine residues
verified experimentally in this study are identified in red. PGC-
1α contains an RS domain (rich in arginine and serine
residues, aa 565−598 and 617−631), an acidic E region (rich
in glutamic acid residues, aa 632−676), and an RNA binding
domain (RBD) which is a common PRMT substrate also
known as an RNA recognition motif (RRM) (aa 677−
753).38,39 Figure 1B emphasizes the C-terminus of PGC-1α,
highlighting various post-translational modifications (PTMs)
identified to date.12,40,41

In vitro methylation reactions were carried out using
portions of the C-terminus corresponding to PGC-1α as
substrates. We included a small peptide (∼40 aa) as a substrate
that corresponds to amino acids 551−590, a portion of PGC-
1α that contains 11 arginine residues many of which are part of
an RXR motif (for peptide sequence and a list of all substrates,
see Table S1). To screen for methylation, purified recombinant
GST-PRMT1 was used to methylate this small peptide as well
as a bacterially expressed GST construct of PGC-1α known as

G1. Figure 2 shows that PRMT1 can methylate the small
peptide (Figure 2A) and G1 construct (Figure 2B) at 37 °C.
PRMT7 is able to methylate the PGC-1α GST-G1 construct at
22 °C (Figure 2C).
Since our fluorographs show that PRMT7 methylates the C-

terminal region of PGC-1α, we decided to investigate whether
temperature affects methylation in this region. PGC-1α is
highly induced in brown fat and skeletal muscle in mice kept at
4 °C.5 It is a cold-inducible coactivator associated with
adaptive thermogenesis, an important component of energy
homeostasis.2,42 More recently, PRMT7 has also shown
sensitivity to temperature. It is most active below room
temperature with less than 10% activity at 37 °C in vitro.17,20,43
Moreover, unlike other members of the PRMT family, PRMT7
(and PGC-1α) is relatively tolerant to low temperatures and
sensitive to high temperatures.18,27 We performed in vitro
methylation reactions using commercially purchased con-
structs corresponding to the C-terminus of PGC-1α and
incubated the reactions at the following six temperatures: 37,
30, 21, 18, 16, and 4 °C. Figure 3A,B shows representative
SDS-PAGE gels where reactions were performed at 37 and 18
°C (for panels of methylation reactions performed at other
temperatures, see the Supporting Information). To specifically
localize arginine methylation, we excised the gel bands
corresponding to the methylated substrate and performed
LC-MS/MS analyses. Figure 3C shows a representative
spectrum of a fragmented species corresponding to residues
532−548 of PGC-1α. The mass spectrum is one of three
fragments denoting methylarginine R548 detected in this same
region (for additional spectra, see the Supporting Informa-
tion).
Methylated peptide fragments obtained after cutting out

SDS-PAGE bands that correspond to PGC-1α were analyzed
by LC-MS/MS. Over 20 samples corresponding to methyl-
ation reactions and including controls (gel background) were
analyzed and summarized in Table 1. Specifically, mono-
methylation is detected at residues R548 and R753 by PRMT1
at 30 °C, at R548 at 21 °C and at residue R753 at 4 °C.
Monomethylation is detected at residues R548 and R753 by
PRMT7 at 30 °C, and at R548 at 18 °C. Methylation reaction
controls, where both PRMT1 and PRMT7 are incubated
without the substrate PGC-1α, are methylated regardless of

Table 1. Mass Spectrometry Analyses of Human PGC-1α Methylated at Different Arginine Residues by Two Methyltransferase
Enzymes (PRMT1 and PRMT7)a

aIn vitro methylation reactions were carried out with either recombinant PRMT1 or PRMT7 and PGC-1α (amino acids 481−798) at six different
temperatures (37, 30, 21, 18, 16, or 4 °C). Analysis of the controls also revealed automethylation of PRMT7 and PRMT1.
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Figure 4. Identification of methylation sites in full-length PGC-1α (UniProt Q9UBK2) using PRmePRed and MePred-RF computational
prediction programs. (A) In silico analysis of putative methylation sites in the C-terminus of PGC-1α by PRmePRed (upper methyl groups) and
MePred-RF (lower methyl groups); figure created using Illustrator for Biological Sequences (IBS).41 (B) RF and SVM scores predicted by the
PRmePRed and MePred-RF programs. (C) Venn diagram of the common methylated arginine sites in the middle, predicted by corresponding
programs.
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temperature, indicating that temperature affects the PGC-1α
substrate and does not hinder the enzyme’s ability to
automethylate. This is consistent with studies that show the
stability of PRMTs at nonphysiological temperatures.44

Methylation of PGC-1α by both PRMT1 and PRMT7 is
greater at temperatures at or below 30 °C.
Of the 47 arginine residues located in the C-terminus of the

PGC-1α, two methylated arginine residues were identified.
Surprisingly, none of the methylated arginine residues fall
within the RS regions (565−598 and 617−631). Moreover,
only R753 falls within the RRM domain (676−755). Greater
methylation at RXR motifs was expected. However, PRMT7
preferentially methylates RXR motifs with adjacent basic
residues such as lysine.18 The RXR motifs of PGC-1α may not
get methylated because they may not contain enough basic
residues to accommodate the two acidic amino acids (Asp-147
and Glu-149) located within the PRMT7 enzyme active site
necessary for its substrate preference.17 Regardless, an initial
screen of methylated arginine residues carried out by an ABI-
Sciex 5800 MALDI-TOF mass spectrometry revealed methy-
lated sites in PGC-1α. Specifically, a truncated portion of the
C-terminus of PGC-1α (aa 573−767) was methylated by
PRMT7 (or PRMT1) at 37, 30, 21, 18, and 16 °C. Although
the exact arginine residue(s) could not be identified, and this
preliminary screen did not return a high confidence score for
all values, some of the data suggest that further arginine
methylation within amino acid residues 626−677 (containing
several RXR motifs) may be possible (Table S2). We reasoned
that at its sequence, which contains multiple RXR motifs, there
are additional methylated arginine residues yet to be identified
in PGC-1α. Thus, we next explored whether PGC-1α would
become methylated by other PRMTs using methylation
predication algorithms.
Recently, there has been an increased effort to use

computational and machine learning techniques based on
support vector machines (SVMs) or random forest (RF)
algorithms to predict possible methylation sites based on a
protein’s sequence and/or structure. These include programs
such as PRmePRed25 and MePred-RF26 which are validated,
useful for uncovering putative methylated arginine sites, easy to
use, and readily available online. The full-length sequence of
PGC-1α was inputted into each of these programs with the
expectation that they would confirm methylation of the
residues identified experimentally and find novel sites. We

note that when only the C-terminus was also inputted into
each of these programs, they yielded identical results (data not
shown). Figure 4A shows a map of the C-terminus of PGC-1α.
The numbers above and below the map show the positions of
the predicted methylated arginine sites corresponding to
PRmePRed, and MePred-RF methylation prediction programs.
PRmePRed uses an SVM-based algorithm, while Me-PredRF
uses an RF-based algorithm. Figure 4B lists the RF and SVM
prediction scores assigned to each R-site by MePred-RF. A
high prediction score indicates a high confidence in the result.
The Venn diagram in Figure 4C shows that the SVM algorithm
used by PRmePRed predicted the most arginine methylation
sites with 36 putative arginine methylation sites, while the RF
algorithm used by Me-PredRF was more stringent and
predicted only 9 putative arginine methylation sites. Only
PRmePRed validated the methylation of R548. None of the
algorithms confirmed the methylation of R753. However, we
note that these prediction programs do not account for the
effects of temperature changes or methylation by different
members of the PRMT family. Moreover, both identified novel
potential sites.
Accuracy among computational PTM prediction programs is

the subject of active investigation and beyond the scope of this
work. Despite this, we speculate here about the different results
from the two arginine prediction programs. Although both
programs use stringent datasets for developing predictor
statistics, the initial dataset used for these machine learning
algorithms establishes initial parameters and was different for
each: MePred-RF employed 2351 total entries (180 positive
sequences for arginine methylation), while PRmePRed
employed 6837 total entries (1298 positive sequences for
arginine methylation). Since the list of experimentally verified
methylated arginine residues continues to grow, sequences
among the datasets listed as “negative for arginine methylation”
may now contain potential sites that could be methylated but
that had not been identified or have yet to be identified as
methylated arginine sites. Moreover, each of these prediction
programs places different values on chemical properties such as
charge, hydrophilicity, isoelectric point, and structure within
the sequence windows and among the overall protein. For
example, whether the arginine residues are solvent-exposed, or
whether they are located within a particular secondary
structure of the protein aid in making the predictions.
Structural, evolutionary, and/or disorder information is not
always available. We note here that only PRmePRed validated
two (R665 and R669) of the three previously identified
arginine methylation sites: R665, R667, and R669.13 This may
be due to the inherently disordered nature of PGC-1α. Despite
this, both programs are useful to screen putative substrates and
test biological hypotheses. In addition, each of these programs
builds upon the work of Daily et al., who built a predictor for
methylation by taking into account intrinsic disorder.45 Thus,
we pursued our investigation of PGC-1α by considering the
postulate that PTMs preferentially occur in intrinsically
disordered regions.
Thus far, we identified two methylated arginine residues

deposited by two different PRMTs: R548, and R570 by
PRMT1 and PRMT7, in vitro. We also identified potential
arginine residues: R566, R568, R570, R580, R585, R589, R598,
R625, and R630, in silico, by two independent methylation
prediction programs. We next studied the structure of PGC-1α
to map the methylated arginine residues so that we may
determine possible insights into the function of arginine

Figure 5. PGC-1α is an intrinsically disordered protein with several
methylated arginine residues. PONDR IDP graph showing the
disordered and ordered regions of PGC-1α.
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methylation. To date, a crystal structure of the full-length
PGC-1α has not been solved, as determined from Protein Data

Bank searches. In addition, PGC-1α has been characterized as
an intrinsically disordered protein (IDP).46

Figure 6. (A) Sequence alignment of the C-terminus of PGC-1α (480−798). Arginine residues confirmed in this study in vitro: R548 and R753,
shown in red and highlighted in yellow. All other arginine residues are shown in red and boldface. Multiple sequence alignments were generated
using Clustal O (1.2.4), percent identity matrix shown below the alignment. (B) Molecular model of the C terminus with methylated arginine
groups identified in this study highlighted in red. (C) Magnified portion of the C-terminus containing only the RNA recognition motif (RRM)
domain with methylated arginine 753 highlighted in red. Figures for (B) and (C) were generated using Phyre-2 and PyMOL. The Phyre-2 web
portal for protein modeling, prediction, and analysis was used to obtain the model and was then imported into PyMOL for structure annotation.54
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IDPs contain flexible regions that facilitate protein−protein
interactions and promote access to various PTMs.47 In
reviewing the many PTMs located on the C-terminus of
PGC-1α (Figure 1B) and given its physiological role as a
master metabolic regulator, we next analyzed whether arginine
methylation sites in PGC-1α are located at intrinsically
disordered regions that may affect accessibility. To further
understand the function of arginine methylation, we analyzed
PGC-1α using PONDR predictor of natural disordered
regions.48 Figure 5 shows a graph of PGC-1α created by
PONDR, which determined that PGC-1α contains 18
disordered regions. Specifically, there are 361 disordered
residues and a stretch of 71 amino acids (224−294) as the
longest disordered region. With respect to the C-terminus,
PGC-1α contains the following disordered regions: 473−500,
509−523, 551−576, 578−590, 619−634, 662−681, 689−696.
The methylated amino acid residue R570 identified in this
study in vitro, as well as those previously identified by Teyssier
et al., (R665, R667, and R669), fall within these disordered
regions. IDPs are also known to interact with binding partners
with high specificity, but modest affinity.49 Considering its
largely unstructured nature, we postulate that PGC-1α is most
likely sampling its structure to expose sequences that allow for
PTMs such as arginine methylation.
The intrinsically disordered nature of PGC-1α has failed to

yield a crystal structure of the full-length protein. Nevertheless,
a putative structure can be obtained via AlphaFold (https://
alphafold.ebi.ac.uk/entry/Q9UBK2).50,51 AlphaFold produces
a per-residue confidence score (pLDDT) between 0 and 100.
The structure for PGC-1α determined by AlphaFold yields
very few portions of this protein at high confidence. Moreover,
all of the methylated arginine residues identified in vitro and in
silico by this study contain confidence scores below 50, which
correlate with disorder. Given the highly conserved nature of
PGC-1α in mammals, a sequence alignment is shown in Figure
6A,52,53 a putative structure of the C-terminus of PGC-1α was
modeled using Phyre-254 and PyMOL (PyMOL Molecular
Graphics System, Version 2.0 Schrödinger, LLC), with
arginine residues shown in red (Figure 6B).
PGC-1α contains an RNA recognition motif (RRM). RRMs

are one of the most common RNA binding domains,
responsible for binding to RNA and abundant in intrinsically
disordered regions.55 We modeled solely the RRM domain of
PGC-1α (Figure 6C). Although PGC-1α contains very little
structure in the C-terminus, this domain adopts a β1α1β2β3α2β4
topology forming two α-helices against an antiparallel β-sheet
consistent with an RRM motif.56 The overall flexibility of its C-
terminus is consistent with its physiological role as a master
regulator and provides a possible explanation for its tissue-
specific signaling and responsiveness to temperature changes.

■ CONCLUSIONS
Tissue-specific, PGC-1α is found wherever energy is needed.
Thus, it is expressed in highly oxidative tissues that are rich in
mitochondria including embryonic brown adipose tissue, heart,
skeletal muscle cells, kidney, and brain.5,57−61 According to the
tissue where it is expressed, PGC-1α activity is induced by
increased energy demand during fasting,62 temperature
changes,5,63 calorie restriction,64 and exercise.65−67 Several
tissue-specific PGC-1α isoforms have been identified, including
muscle, liver, and central nervous system (CNS-PGC-
1α).66,68−70 In addition to transcription, PGC-1α is also
regulated by post-translational modifications.

We set out to determine whether PGC-1α is methylated at
arginine residues by PRMT7. Both PGC-1α and PRMT7 are
highly expressed in skeletal muscle and deletion of PRMT7
gene causes a decrease in PGC-1α expression.37 PRMT7
methylates RXR motifs and has greater activity at or below
room temperature. Although we expected to see greater
methylation of PGC-1α since it contains many RXR motifs,
after performing several in vitro methylation reactions and
analyses by mass spectrometry, our data show that PGC-1α is
methylated at arginine residue 548 and 753 by both PRMT1
and PRMT7 at temperatures at or below 30 °C. Physiological
studies that include a temperature dependence may reveal
direct interaction between PRMT7 and PGC-1α. We also used
computational prediction programs PRmePRed, and MePred-
RF to anticipate additional arginine methylation sites.
PRmePRed predicted R548 as a site; however, neither program
predicted methylation of R753 or R667, a methylated arginine
residues previously verified experimentally.13 Computational
prediction programs rely on experimental results, often MS-
based proteomics, as the basis for their algorithms.25 While it is
possible that some of these predicted arginine sites can be
further verified experimentally using other members of the
PRMT family, the fact that experimental data is lacking for
PGC-1α as an intrinsically disordered protein operating at
variable temperatures, may explain why computational
predicted residues were not similarly detected experimentally.
Additionally, while both of these computational prediction
programs used stringent datasets, they may have assigned a
disproportionate weight to positive flanking residues that are
known to affect substrate binding and catalysis by PRMT
active site.71 In preparation for this manuscript, we have
discovered that a new prediction program that addresses
overfitting by early stopping is now available.72

The exact role of temperature-dependent arginine methyl-
ation of PGC-1α by PRMT7 remains unclear. As an IDP,
PGC-1α has many protein partners, which affect its function as
a master regulator. In principle, colder temperatures inhibit the
rate of chemical reactions. However, the disordered nature of
PGC-1α may allow for exposure of specific arginine residues at
lower temperatures making them amenable to methylation by
PRMT7. This type of plasticity has been observed in other
IDPs allowing them to adopt different conformations based on
temperature, pH, salinity, etc.73 In addition, PGC-1α may have
specific binding partners with Tudor domains that recognize
methylated arginine residues at low temperatures.74 Moreover,
PGC-1α is methylated at the C-terminus within the RNA
recognition motif. It is possible that arginine methylation will
disrupt protein−ligand binding with RNA polymerase II, RNA
processing factors, or other proteins involved in splicing.75 To
understand the physiological consequence of these modifica-
tions, in vivo experiments conducted at varying temperatures
are underway.
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