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RESEARCH Open Access

Developing methods to detect and
diagnose chronic traumatic
encephalopathy during life: rationale,
design, and methodology for the
DIAGNOSE CTE Research Project
Michael L. Alosco1, Megan L. Mariani2, Charles H. Adler3, Laura J. Balcer4, Charles Bernick5,29, Rhoda Au6,30,31,
Sarah J. Banks7, William B. Barr8, Sylvain Bouix9, Robert C. Cantu10, Michael J. Coleman11, David W. Dodick3,
Lindsay A. Farrer12, Yonas E. Geda13, Douglas I. Katz14,32, Inga K. Koerte9,33, Neil W. Kowall10,34, Alexander P. Lin15,
Daniel S. Marcus16, Kenneth L. Marek17, Michael D. McClean18, Ann C. McKee1,34, Jesse Mez19,
Joseph N. Palmisano20, Elaine R. Peskind21, Yorghos Tripodis22, Robert W. Turner II23, Jennifer V. Wethe24,
Jeffrey L. Cummings25, Eric M. Reiman26, Martha E. Shenton27, Robert A. Stern28* for the DIAGNOSE CTE
Research Project Investigators

Abstract

Background: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that has been
neuropathologically diagnosed in brain donors exposed to repetitive head impacts, including boxers and American
football, soccer, ice hockey, and rugby players. CTE cannot yet be diagnosed during life. In December 2015, the
National Institute of Neurological Disorders and Stroke awarded a seven-year grant (U01NS093334) to fund the
“Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic
Encephalopathy (DIAGNOSE CTE) Research Project.” The objectives of this multicenter project are to: develop in vivo
fluid and neuroimaging biomarkers for CTE; characterize its clinical presentation; refine and validate clinical research
diagnostic criteria (i.e., traumatic encephalopathy syndrome [TES]); examine repetitive head impact exposure,
genetic, and other risk factors; and provide shared resources of anonymized data and biological samples to the
research community. In this paper, we provide a detailed overview of the rationale, design, and methods for the
DIAGNOSE CTE Research Project.
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Methods: The targeted sample and sample size was 240 male participants, ages 45–74, including 120 former
professional football players, 60 former collegiate football players, and 60 asymptomatic participants without a
history of head trauma or participation in organized contact sports. Participants were evaluated at one of four U.S.
sites and underwent the following baseline procedures: neurological and neuropsychological examinations; tau and
amyloid positron emission tomography; magnetic resonance imaging and spectroscopy; lumbar puncture; blood
and saliva collection; and standardized self-report measures of neuropsychiatric, cognitive, and daily functioning.
Study partners completed similar informant-report measures. Follow-up evaluations were intended to be in-person
and at 3 years post-baseline. Multidisciplinary diagnostic consensus conferences are held, and the reliability and
validity of TES diagnostic criteria are examined.

Results: Participant enrollment and all baseline evaluations were completed in February 2020. Three-year follow-up
evaluations began in October 2019. However, in-person evaluation ceased with the COVID-19 pandemic, and
resumed as remote, 4-year follow-up evaluations (including telephone-, online-, and videoconference-based
cognitive, neuropsychiatric, and neurologic examinations, as well as in-home blood draw) in February 2021.

Conclusions: Findings from the DIAGNOSE CTE Research Project should facilitate detection and diagnosis of CTE
during life, and thereby accelerate research on risk factors, mechanisms, epidemiology, treatment, and prevention of
CTE.

Trial registration: NCT02798185

Keywords: Neurodegenerative disease, Biomarkers, Chronic traumatic encephalopathy, Cognitive function,
Concussion, Football, Head trauma, MRI, MRS, National Football League, College football, Neuroimaging, Repetitive
head impacts, Traumatic brain injury, Subconcussion, Traumatic encephalopathy syndrome, Positron emission
tomography, Tau, Remote assessment

Background
Chronic traumatic encephalopathy (CTE) is a neurode-
generative disease that has been neuropathologically diag-
nosed in former contact sport athletes, military combat
veterans, and other individuals exposed to repetitive head
impacts [1–9]. Although CTE is often portrayed as a new
disease, its history dates back to the 1920s and 1930s, with
descriptions of “punch drunk” boxers [10] and “dementia
pugilistica” [11], with the term “chronic traumatic enceph-
alopathy” first used in publications in the 1940s [12, 13].
CTE began to receive significant lay and scientific atten-
tion in 2005, following a report of neuropathological evi-
dence of hyperphosphorylated tau (p-tau) in an irregular
pattern in a deceased former National Football League
(NFL) player who had ante-mortem cognitive and neuro-
psychiatric symptoms [5]. CTE has since been neuro-
pathologically diagnosed in hundreds of deceased
American football players [1–3], in addition to other con-
tact and collision sport athletes (e.g., ice hockey, soccer,
rugby) [2, 8, 14] and military veterans [4]. Given the mil-
lions of active and former contact sport athletes, military
service members, and veterans, CTE is potentially a major
public health concern. However, disease incidence and
prevalence remain unknown due to the inability to detect
and diagnose CTE during life.

Neuropathology of CTE
In 2013, McKee et al. examined the immunocytochem-
ical characteristics of 68 cases (including 50 American

football players) with autopsy-confirmed CTE and pro-
posed neuropathological diagnostic criteria for CTE in
addition to a 4-stage classification scheme to grade the
pathological severity of p-tau [2, 15]. As part of the Na-
tional Institute of Neurological Disorders and Stroke
(NINDS)-funded “Understanding Neurologic Injury in
Traumatic Encephalopathy (UNITE)” study [16], two
consensus meetings have been convened to define the
neuropathological diagnostic criteria for CTE [17, 18].
The pathognomonic lesion is now defined as p-tau ag-
gregates as neurofibrillary tangles (NFT) in neurons,
with or without p-tau in astrocytes, deposited around
small blood vessels, in an irregular pattern at the depths
of the cortical sulci, with the focus in superficial cortical
layers. The panels concluded that the pattern of p-tau in
CTE is distinct from that of any other neurodegenerative
disease [17, 18]. The molecular structure of tau filaments
in CTE has also since been shown to be unique [19] [20]
[21]. Although CTE is a mixed three and four
microtubule-binding domain repeat (3R and 4R) tauopa-
thy, similar to AD, recent research has shown that the
CTE tau isoforms shift across disease severity, from 4R
to 3R, with 4R isoforms found primarily in astrocytes
[22]. Unlike in AD, amyloid-beta protein (Aβ) deposits
in CTE are not an early feature, they are not diagnostic,
and they tend to accumulate with advancing age as a co-
morbidity. When present in CTE, the Aβ plaques tend
to be diffuse and not neuritic [23]. CTE is nonetheless
frequently co-morbid with other neurodegenerative (e.g.,
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Lewy body disease) and non-neurodegenerative condi-
tions (e.g., white matter rarefaction, arteriolosclerosis)
[3, 24–26].

Risk factors for CTE
The primary risk factor for CTE is exposure to repetitive
head impacts and the resulting repeated concussions
and subconcussive trauma (i.e., head impacts that result
in neuronal injury but do not cause immediate symp-
toms) [3, 9, 24, 27–30]. Repetitive subconcussive head
impacts play a prominent role in the development of this
disease [31, 32].The duration of American football play
has been identified as a strong predictor of the risk and
severity of CTE neuropathology [30]. Small autopsy case
series provide suggestive links between soccer and rugby
play and CTE [8, 14]. These associations between repeti-
tive head impacts and neuropathology have been com-
plemented by in vivo research studies that link exposure
to repetitive head impacts with later-life cognitive and
neuropsychiatric symptoms [24, 27, 33, 34]. However,
not all individuals who are exposed to repetitive head
impacts will develop CTE or other long-term neuro-
logical disorders. Risk modifiers may include severity
and nature of repetitive head impact exposure (e.g., fre-
quency [27, 35], type of contact sport played [36–38],
younger age of first exposure [39–44]), lower cognitive
reserve [45], cerebrovascular health [24, 46], and/or gen-
etic make-up [47–49].

Clinical presentation of CTE and traumatic
encephalopathy syndrome
CTE is a neuropathological diagnosis and cannot cur-
rently be diagnosed during life because its clinical pres-
entation has been—until recently—ill-defined, and
because validated in vivo biomarkers for the detection of
CTE neuropathology do not yet exist [50]. To date, the
clinical presentation of CTE has been described primar-
ily through the use of retrospective telephone interviews
with next-of-kin and other informants of brains donors
with autopsy-confirmed CTE. These studies have re-
ported a constellation of progressively worsening and
non-specific cognitive impairments (particularly in ex-
ecutive functions and episodic memory), poor regulation
or control of emotions and/or behavior (including im-
pulsivity, explosiveness, rage, and/or emotional lability),
and, in some instances, parkinsonism and motor neuron
disease [3, 47, 51]. Provisional clinical research diagnos-
tic criteria for CTE have been proposed [52, 53], includ-
ing the traumatic encephalopathy syndrome (TES)
research criteria published in 2014 [54]. Since the time
of the original 2014 publication, the research diagnostic
criteria for TES have been used in several studies. Their
validity in predicting neuropathological CTE diagnoses
has recently been reported along with an item-level

analysis suggesting that cognitive symptoms—more than
neuropsychiatric features—are particularly valuable in
predicting CTE pathology [55]. These findings informed
new NINDS Consensus Diagnostic Criteria for TES that
have recently been published [56].
Consistent with the clinical diagnosis of other neuro-

degenerative diseases [57–60], an accurate diagnosis of
CTE during life will require validated biomarkers of the
underlying pathophysiology of the disease. There have
been several preliminary studies that have examined
both specific (e.g., those that measure regional p-tau
pathology) and non-specific (e.g., general neurodegenera-
tion) biomarkers of CTE. Examples of potential support-
ive or non-specific fluid biomarkers of CTE include
cerebrospinal fluid (CSF) and plasma markers of neuro-
degeneration (e.g., total tau [t-tau] [35, 61, 62], neurofila-
ment light [NfL] chain protein [63]) and microglial
activation (e.g., soluble triggering receptor expressed on
myeloid cells 2 [sTREM2]) [61], as well as measures of
tau in exosomes isolated from plasma and proteomic
profiling of plasma and CSF extracellular vesicles [64–
66]. Candidate neuroimaging biomarkers for the detec-
tion of non-specific neurodegenerative changes of CTE
have recently been reviewed [67, 68] and include the fol-
lowing: cavum septum pellucidum (a common gross
neuropathological finding in CTE [1, 2]) on structural
T1-weighted magnetic resonance imaging (MRI) [69–
72]; frontotemporal and medial temporal lobe atrophy
on structural T1-weighted MRI [73–79]; decreased cor-
tical thickness on T1-weighted MRI [44]; white matter
alterations on diffusion tensor imaging (DTI) [42, 74,
80–84]; cerebral hypoperfusion and functional hypoac-
tivity on single photon emission computerized tomog-
raphy [85]; arterial spin labeling [86] and functional MRI
(fMRI) [87]; and neurochemical alterations on magnetic
resonance spectroscopy (MRS) [88–90].
Efforts are underway to identify specific biomarkers of

CTE. Amyloid positron emission tomography (PET) im-
aging is a neuropathologically validated biomarker for
the early detection, tracking, and diagnosis of neuritic
Aβ deposition, one of the cardinal neuropathological fea-
tures of AD [58, 91]. Although postmortem studies of
CTE have found diffuse Aβ plaques, evidence of neuritic
plaques has primarily been found in late-stage disease [3,
15, 23]. It would be unlikely for amyloid PET tracers to
demonstrate significant binding in CTE, as they bind
preferentially to neuritic plaques [91]. More recently,
PET imaging of paired helical filament tau has become a
neuropathologically validated biomarker for the detec-
tion, tracking, and diagnosis of AD-related tau tangle de-
position. For instance, the PET radiotracer flortaucipir
(AV1451; T807) demonstrates high affinity binding to
the mixed 3R/4R tau isoforms in AD [92]. Flortaucipir’s
binding to other tauopathies with primarily 4R isoforms
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has not been as promising [93, 94]. Although CTE and
AD have similar (3R/4R) tau isoforms, there are differ-
ences at the molecular level [19], and, as mentioned earl-
ier, in CTE the ratio of 3R:4R differs across disease stage
and between neuronal and glial tau [22].
Stern et al. studied flortaucipir PET in 26 symptomatic

former NFL players (ages 40–69) and 31 same-age
asymptomatic men without a history of traumatic brain
injury (TBI) [95]. At a group level, the former players
had significantly higher flortaucipir uptake in superior
frontal, medial temporal, and parietal regions, compared
to the asymptomatic men without TBI; however, the up-
take levels were not as high as seen in individuals with
AD. Although the level of flortaucipir uptake in the
three brain regions was significantly associated with the
number of years playing football, it was not significantly
associated with cognitive and neuropsychiatric test
scores. Importantly, the former players did not have ele-
vated florbetapir levels compared to the unexposed
group, and only one former NFL player had slightly ele-
vated florbetapir standardized uptake value ratio
(SUVR), indicating that the former NFL players’ cogni-
tive impairment was not due to AD. Based on these
findings and other in vivo and neuropathological studies
[78, 96, 97], the utility and specificity of flortaucipir for
the detection of CTE paired helical filament tau is
unclear.

The DIAGNOSE CTE Research Project
In December 2015, NINDS funded a 7-year, multicenter
grant proposal, “Chronic Traumatic Encephalopathy:
Detection, Diagnosis, Course, and Risk Factors,” submit-
ted by our multidisciplinary team of investigators, under
the leadership of four co-principal investigators (co-PIs;
RAS [contact PI], JLC, EMR, MES). This is now referred
to as the “Diagnostics, Imaging, and Genetics Network
for the Objective Study and Evaluation of Chronic Trau-
matic Encephalopathy (DIAGNOSE CTE) Research Pro-
ject.” The specific aims of the DIAGNOSE CTE
Research Project are listed in Table 1. The primary end-
points of the study are to characterize the clinical pres-
entation of CTE and to identify in vivo biomarkers that

can support a “probable CTE” diagnosis. There were
several guiding principles that were followed throughout
the development of the grant proposal and study design,
including (1) CTE is viewed as a neurodegenerative dis-
ease; (2) although the necessary risk factor for the devel-
opment of this tauopathy appears to be a history of
repetitive head impact exposure, CTE itself should not
be confused with TBI or considered the aggregate effect
of multiple symptomatic concussions; (3) to conduct a
study of the clinical presentation, diagnostic criteria, bio-
markers, and risk factors of CTE requires expertise
across many disciplines, including Neurology, Neuro-
psychology, Psychiatry, Neuroimaging, Molecular Medi-
cine, Neuropathology, Exposure Science, Genetics,
Biostatistics, Epidemiology, Computer Science, and Soci-
ology; and (4) a team science approach is required,
breaking down typical academic and institutional “silos”
to conduct the best research in the most efficient
manner.
The objective of this paper is to describe the rationale,

methodology, and design of the DIAGNOSE CTE Re-
search Project. We provide updates on the current status
of the project and conclude with methodological consid-
erations, and discussion of the expected impact of the
project results, as well as the infrastructure and re-
sources created to support further studies.

Methods
Infrastructure overview
The DIAGNOSE CTE Research Project is a 7-year (now
expected to be 8-year following COVID-19 pandemic-
related modifications described below) study that in-
volves more than 40 investigators from 12 research insti-
tutions across the USA (Supplementary Table 1,
Additional File 1). There is a 7-member External Advis-
ory Board (Supplementary Table 2, Additional File 1)
that meets annually with the co-PIs and the NINDS Sci-
entific Program Official. The project is overseen by an
Executive Committee consisting of the co-PIs, Partici-
pant Evaluation Site PIs, NINDS Scientific Program Offi-
cial, Advisory Board Chair (ex officio member), and
Team Leaders for the seven multidisciplinary/multi-in-
stitutional study teams: Data; Neuroimaging; Fluid Bio-
markers; Clinical Outcomes; Diagnostic Criteria; Risk
Assessment; and Diversity, Equity, and Inclusion (DEI).
Investigator meetings are held annually.

Sample selection
The targeted sample and sample size was 240 men, ages
45–74, divided into three groups based on the extent of
exposure to repetitive head impacts: 120 former profes-
sional football players (PRO); 60 former college football
players (COL); and a group of 60 participants with no
history of participation in organized contact/collision

Table 1 Specific aims of the DIAGNOSE CTE Research Project

Aim 1: To collect and analyze neuroimaging and fluid biomarkers for
the in vivo detection of CTE.

Aim 2: To characterize the clinical presentation of CTE.

Aim 3: To examine the progression of CTE in a longitudinal study.

Aim 4: To refine diagnostic criteria for the clinical diagnosis of CTE.

Aim 5: To investigate genetic and head impact exposure risk factors for
CTE.

Aim 6: To share project data with researchers across the country and
abroad.
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sports, combat military service, or known concussion or
other TBI, herein referred to as the unexposed compari-
son group (UE). Inclusion and exclusion criteria are
summarized in Table 2. There were no enrollment cri-
teria for presence or severity of cognitive or neuro-
psychiatric symptoms or of degree of functional
independence for PRO and COL participants (other than
the requirement to have adequate decisional capacity to
provide consent for research at baseline). All participants
were required to have a study partner who knew them
well and with whom they had frequent communication.
Based on telephone screening, UE participants were re-
quired to be asymptomatic.

Sample size determination and power
The sample sizes were determined to assure statistical
power of 80% or greater, to detect moderate effect sizes,
and assuming a significance level of 0.05 with two-tailed
significance tests, for key hypotheses for Specific Aims
1–5. Power calculations were performed and based on
effect sizes from our previous research. The difference in
CSF p-tau/tau ratio between PRO and UE groups was
used as an example of the biomarkers evaluated in Aim

1. Preliminary unpublished results from the NINDS-
funded DETECT study (PI: RAS) show a difference of
0.15 (SD of 0.04) in CSF p-tau/tau ratio between former
NFL players and UE participants. Our sample size has a
power of > 99% to detect differences between the symp-
tomatic PRO and COL participants (n = 120) compared
to asymptomatic PRO and COL participants and UE
participants (n = 120) in p-tau/tau ratio. To illustrate
the power for Aim 3, the longitudinal differences be-
tween symptomatic PRO participants compared to
asymptomatic PRO and UE participants for the Trail
Making B test were used. Gavett et al. showed differ-
ences ranging from 35 to 60 s over a 3-year follow-up
between people with normal cognition and participants
with mild cognitive impairment or dementia [100]. Our
sample will have 94% power to detect similar differences
in a 3-year period among symptomatic PRO participants
compared to asymptomatic PRO and UE participants,
assuming 30% attrition.

Recruitment and retention
A Recruitment and Retention Coordinator and research
assistant oversaw an extensive national recruitment

Table 2 Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

All participants
(N = 240)

Male; age 45–74; no contraindications for MRI, LP, or PET
procedures; English as primary language; agree to all
procedures; willingness to have and availability of a study
partner (i.e., informant who knows the participant well, speaks
or visits with participant at least weekly for a minimum of 6
months, is > 18 years of age, has English as primary language)
who agrees to participate in a telephone interview and
respond to a series of online questionnaires.

History of clinical stroke or significant neurologic condition;
vision or hearing impairment severe enough to compromise
neuropsychological testing; impaired decisional capacity to
provide informed consent to participate in study; currently
clinically significant infectious disease, endocrine or metabolic
disease, pulmonary, kidney or liver impairment, or cancer;
body weight > 400 pounds

Unexposed group
(UE)
(N = 60)

No history of participation in organized contact/collision
sportsa or military combat service or training; asymptomatic,
based on telephone screening questionsb (asked of both
participant and informant) regarding current mood, behavior,
or cognitive symptoms, as well as functional dependence;
have at least 2 years of post-secondary education at a 4-year
accredited college/university, or have an associate’s degree

History of TBI or concussion; history of formal diagnosis or
treatment of psychiatric illness or cognitive impairment; body
mass index (BMI) < 24

Former college
football player
group (COL)
(N = 60)

Played > 6 years of organized American football, with > 3 years
at the college varsity level; played one of the following
positionsc while in college: offensive lineman, defensive
lineman, linebacker, offensive back or receiver, or defensive
back (individuals whose primary position was kicker or
quarterback were not included); no organized football or other
contact/collision sport following college

Former professional
football player
group (PRO)
(N = 120)

Played ≥ 12 years of organized football, including > 3 in
college and > 3 seasons in the NFL; played one of the
following positionsc while in the NFL: offensive lineman,
defensive lineman, linebacker, offensive back or receiver, or
defensive back (individuals whose primary position was kicker
or quarterback were not included)

aThe unexposed participants must have never participated in any of the following organized sports at any level: American football, ice hockey, rugby, soccer
(under age 14 allowed only if no heading the ball), lacrosse, wrestling, boxing, gymnastics, martial arts, and/or kickboxing
bTelephone screening includes modified versions (for telephone) of the AD8 Dementia Screening Interview [98] and the Cognitive Change Index [99] (Items 1–12),
as well as additional screening questions regarding mood, behavior, and cognitive functioning. These were administered to potential participants as well as their
study partners
cFollowing enrollment, when there was a question about an individuals’ position data reported during in-person interview, data from online resources were used
to confirm position(s). Some positions may vary in future exposure modeling studies based on specific percentages of downs played at each position reported
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campaign (Supplementary Material, Additional File 1).
Recruitment efforts were aimed at enrolling across a
continuum of symptom severity, from asymptomatic to
mildly symptomatic to dementia, rather than to any spe-
cific level of impairment. Interested potential partici-
pants underwent a telephone screening interview by
Coordinating Center staff, using a script approved by the
Institutional Review Board (IRB) at BU Medical Campus
(BUMC). Structured and semi-structured questions were
asked about current mood, behavior, and cognitive
symptoms, as well as functional status. An additional
telephone screening was conducted with an informant/
study partner, using similar questions and assessments.
The Recruitment and Retention Coordinator determined
the Participant Evaluation Site most appropriate for the
participant (based on balancing the number of partici-
pants across sites, travel distance, and available sched-
ules). To maximize sample retention over the follow-up
period, participants are telephoned annually by project
staff and sent birthday and holiday cards. A study-wide
newsletter is published quarterly and distributed to all
participants electronically. For participants with demen-
tia, an additional annual call is made to the participant
or (with permission) to a study partner/informant to as-
sess the participant’s status and improve retention.

Study procedures
A centralized project Coordinating Center is located at
Boston University (BU) School of Medicine (BUSM).
There are four Participant Evaluation Sites: (1) Boston
(BUSM, with MRI scans conducted at Brigham and
Women’s Hospital [BWH]); (2) Las Vegas (Cleveland
Clinic [CC] Lou Ruvo Center for Brain Health); (3) New
York (New York University [NYU] Langone Health); and
(4) Scottsdale/Phoenix (Mayo Clinic Arizona, with PET
scans conducted at Banner Alzheimer’s Institute [BAI]
in Phoenix). All participants received a baseline evalu-
ation at one of the four Participant Evaluation Sites.
Baseline evaluations included neurocognitive testing, as-
sessment of functional status, neuropsychiatric question-
naires, neurological assessment (including standardized
motor examination, headache severity and sleep-related
symptoms measurement, and an olfaction test), MRI (in-
cluding structural, diffusion, functional, and neurochem-
ical), two PET scans (with florbetapir amyloid and
flortaucipir tau tracers), lumbar puncture (LP; for CSF
banking and biomarkers), blood draws (for banking, bio-
markers, and DNA extraction), and saliva samples (for
banking and biomarkers). In the original design, the
PRO and UE groups would return for a 3-year, in-
person follow-up evaluation. COL participants would
not be evaluated at follow-up because their inclusion
was for head impact exposure risk modeling at baseline
(Aim 5) and to assure a large baseline sample size with

adequate variability of clinical presentation (Aims 1 &
2).
It was required that all participants have adequate de-

cisional capacity at the time of their baseline visit to par-
ticipate. Because some participants have mild dementia,
specific procedures were conducted to assure appropri-
ate decisional capacity to consent to research participa-
tion. Some participants who reported functional
difficulties (n = 16) were accompanied by their study
partner or other care partner. All participants’ travel ex-
penses (and that of a care partner if required) were paid
by the study and each participant received $500 com-
pensation for completion of the 3-day evaluation. Partic-
ipants were informed during screening, at the time of
consenting, and subsequent to their study visit, that they
could receive a summary of non-experimental study re-
sults (including standardized neuropsychological testing
and neuropsychiatric questionnaires, neurological exam-
ination, clinical reads of the structural MRI, clinical la-
boratory blood tests, electrocardiogram) and/or have the
results sent to their primary healthcare provider. If re-
quested, they could discuss results of the non-
experimental assessments with one of the co-PIs (RAS).
At all times, participants were informed orally and in
written reports that the results should not be used for
clinical or medico-legal decision-making. At the time of
study initiation, and throughout the baseline evaluation
period, flortaucipir (tau) PET imaging was in human tri-
als and viewed as one of the experimental assessments.
It received FDA approval 3 months following comple-
tion of baseline examinations for the evaluation of AD,
with specific package insert wording that it is not indi-
cated for the evaluation of CTE. Florbetapir (amyloid)
PET imaging received FDA approval prior to study initi-
ation for patients being evaluated for AD and is consid-
ered non-experimental for specific clinical purposes. For
this study, the co-PIs, with input from external experts,
chose not to disclose florbetapir results, though this does
not necessarily represent the standard for the field mov-
ing forward.

Data collection
Clinical evaluations
Each baseline study visit was conducted over a 3-day
period and each follow-up visit was planned to take
place over a two- or three-day period. Tables 3 and 4 list
the clinical exams and measures that were administered.
Comprehensive semi-structured interviews for all partic-
ipants were performed and supplemented by online
questionnaires in order to collect data on demographics
(e.g., age, education, racial and ethnic identity); psycho-
social and lifestyle history (e.g., exercise, occupational
and educational attainment, early childhood zip code or
equivalent, parents’ educational attainment); medical,
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Table 3 Baseline and 4-year remote follow-up neurologic, neurocognitive, functional, and health assessments

Domain Test/Instrument Baseline Follow-
up

Neurologic exam Semi-structured clinical examination of cranial nerves, sensory functions, muscle strength,
fasciculations, and reflexes

I –

Motor International Parkinson and Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) [101]

I V

Timed Up and Go (TUG) [102] I –

Effort (symptom validity) Test of Memory Malingering (TOMM) [103] [104] I V

Estimated premorbid intelligence Wide Range Achievement Test-Fourth Edition (WRAT-4) Word Reading [] I –

Cognitive screening Montreal Cognitive Assessment (MoCA) [106, 107] I T,V

Attention, visual scanning, and
psychomotor speed

Symbol Digit Modalities Test [108] I V

Trail Making Test Part A [109] I –

Unified Data Set (UDS) Number Span Test [110] I T

Executive function Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) Global Executive
Composite (GEC; Participant and Informant) [111]

R R

BRIEF-A Metacognition Index (MI; Participant and Informant) [111] R R

Phonemic Fluency - Controlled Oral Word Association Test (COWAT) [112] I T

Golden Stroop Color and Word Interference [98] I –

Neuropsychological Assessment Battery (NAB) Mazes [99, 113] I –

Trail Making Test Part B [109] I –

NAB Categories [99] – V

Cambridge Neuropsychological Test Automated Battery (CANTAB) One Touch Stockings of
Cambridge (OTS) [114, 115]

– C

CANTAB Spatial Working Memory (SWW) [114, 115] – C

CANTAB Cambridge Gambling Task (CGT) [114, 115] – C

Learning and memory Brief Visuospatial Memory Test – Revised (BVMT-R) [104] I V

UDS Craft Story [110] I T

NAB List Learning [99] I T

CANTAB Paired Associate Learning (PAL) [114, 115] – C

CANTAB Pattern Recognition Memory (PRM) [114, 115] – C

Language Category (Semantic) Fluency - Animals [112, 116] I T

Category (Semantic) Fluency - Vegetables [112, 116] – T

UDS Multilingual Naming Test (MINT) [110] I V

Visuospatial ability Judgment of Line Orientation (JOLO) [117] I V

BVMT-R Copy [104] I V

Emotional facial perception CANTAB Emotional Recognition Task (ERT) [114, 115] – C

Dementia severity Functional Activities Questionnaire (FAQ; Participant and Informant) [118] R R

Quick Dementia Rating System (QDRS; Participant and Informant) [119] R R

Sleep Mayo Sleep Questionnaire (MSQ; Participant and Informant) [120] R R

Epworth Sleepiness Scale [121] R R

Olfactory Brief Smell Identification Test (B-SIT) [122] I –

Pain Headache Impact Test (HIT-6) [123] R R

Brief Pain Inventory (BPI) [124, 125] P P

Substance use Alcohol Use Disorders Identification Test: Interview Version (AUDIT) [126] I T

Modified National Institute on Drug Abuse (NIDA) Alcohol, Smoking and Substance
Involvement Screening Test (ASSIST) version 2.0 [127]

I T
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neurological, and psychiatric history (including sub-
stance use and performance enhancing drug use); family
history of psychiatric and neurological conditions; ath-
letic history (e.g., age of first exposure, level(s) and dur-
ation of play, position(s) played, era of play); military
history; and concussion and TBI history. For the COL
and PRO participants, involvement in current or pend-
ing litigation involving neurologic consequences of play-
ing American football was also queried. Participants had
vital signs (e.g., blood pressure, pulse, height and weight
measurement) assessed by a registered nurse. Safety pro-
cedures (e.g., blood draw for platelet count and other
clotting tests, and ECG for abnormal heart rhythms and/
or clinically significant cardiovascular disease) were
reviewed by a qualified clinician to ensure participants
were eligible for the LP and flortaucipir PET scan, re-
spectively. During the study visit, study partners were
emailed a survey link to a web-based Research Electronic
Data Capture (REDCap) system to complete standard-
ized measures and a self-report questionnaire on the
presence and onset of cognitive, behavior, and/or mood
problems, as well as an assessment of functional status.
If the informant accompanied the participant to the

visits, she/he was asked to complete the online question-
naires prior to returning home. All informants were also
interviewed by telephone to provide additional history
and to clarify history provided by the participant.
Clinical measures (see Tables 3 and 4) were selected,

in part, to assure harmonization with data sharing plat-
forms, such as the Federal Interagency Traumatic Brain
Injury Research (FITBIR) system and the National
Alzheimer Coordinating Center (NACC). Many instru-
ments and methodologies that overlap with the NINDS
Common Data Elements (CDE) and/or the NACC
Uniform Data Set (UDS) v.3.0 (the latter used by all of
the National Institute on Aging-funded AD Research
Centers) [110] were selected. Measures include those
that assess clinical domains relevant to the features
described in neuropathologically confirmed cases of
CTE [2, 3, 47, 54] and were part of the 2014 TES
research diagnostic criteria [54].
To assure standardization of the administration and

scoring of clinical evaluations across sites and examiners,
extensive training procedures were employed. Neurolo-
gists administering the Movement Disorder Society
(MDS)-Unified Parkinson’s Disease Rating Scale

Table 3 Baseline and 4-year remote follow-up neurologic, neurocognitive, functional, and health assessments (Continued)

Domain Test/Instrument Baseline Follow-
up

Health status EQ-5D-5L Health Questionnaire [128] P P

National Health and Nutrition Examination Survey (NHANES) Physical Activity and Physical
Fitness Questionnaire (PAQ) [129]

I T

NHANES Weight History Questionnaire [130] I T

Note: I administered in-person; V Administered over HIPAA compliant Zoom Video conferencing (modified from original in-person method); T administered over
telephone; R administered over REDCap online data capture forms; P administered on paper form; C administered online using CANTAB Web-Based Testing platform

Table 4 Baseline and 4-year remote follow-up neuropsychiatric instruments

Domain Instrument

Affective lability Center for Neurologic Study – Lability Scale (CNS-LS) [131]

Behavior Barratt Impulsivity Scale-11 (BIS-11) [132]

BRIEF-A Behavioral Regulation Index (BRI; Participant and Informant) [111]

Brown-Goodwin Lifetime History of Aggression (BGLHA) [133]

Buss-Durkee Hostility Inventory (BDHI) [134]

Mild Behavioral Impairment – Checklist (MBI-C; Participant and Informant) [135]*

Neuropsychiatric Inventory – Questionnaire (NPI-Q; Informant) [136]

State-Trait Anger Expression Inventory-II (STAXI-II) [137]

Depression, anxiety, apathy, other Apathy Evaluation Scale (AES) [138]

Beck Anxiety Inventory (BAI) [139]

Beck Depression Inventory-II (BDI-II) [140]

Beck Hopelessness Scale (BHS) [141]

PTSD Checklist – Civilian Version (PCL-C) [142]

Sheehan-Suicidality Tracking Scale (S-STS) [143]

University of California, Los Angeles Loneliness Scale (UCLA) [144]

*Added for follow-up evaluations only

Alosco et al. Alzheimer's Research & Therapy          (2021) 13:136 Page 8 of 23



(UPDRS) [101] completed formal online training offered
through MDS. A comprehensive neuropsychological test
administration and scoring manual was developed and
deployed to all sites, along with an accompanying train-
ing video of a full test administration, including several
demonstrations of how to respond to and score incor-
rect or unusual responses. All staff administering the
neurocognitive tests were certified (and re-certified an-
nually) in test administration and scoring via mock
training videos that were reviewed and certified by two
licensed clinical neuropsychologists at the Coordinating
Center (MLA, RAS).

Neuroimaging
Neuroimaging protocols include structural T1- and T2-
weighted MRI, diffusion MRI (dMRI), resting-state
fMRI, MRS, and molecular imaging with two PET
tracers, florbetapir and flortaucipir. During the pre-
enrollment period, BWH neuroimaging investigators
and Invicro (a research-dedicated organization that col-
laborates on large-scale diagnosis, progression, and dis-
ease monitoring trials, providing molecular imaging
services, including florbetapir and flortaucipir) created
study-specific image acquisition sequences and technical
operations manuals and developed and implemented
training and setup procedures for the MR and PET cen-
ters, respectively, at each of the Participant Evaluation
Sites. Details on the neuroimaging processing and ana-
lysis are provided in the Supplementary Material (Add-
itional File 1).

MRI MRIs across all four sites were conducted on Wide
Bore 3 T scanners (Siemens Skyra, Erlangan, Germany;
software version VE11) using a 20 channel head coil in
order to accommodate the wide range of participant
sizes. The goal of the MRI sequence selection was to ob-
tain the most advanced images consistent with other
large multi-site studies (e.g., Alzheimer’s Disease Neuro-
imaging Initiative), and which could be acquired at each
site within a reasonable time period to limit participant
burden. The acquisition included sequences for anatom-
ical images, as well as diffusion MRI (dMRI) and resting-
state fMRI. High-resolution (1 × 1 × 1 mm3) 3D T1-
weighted images using MPRAGE with an inversion time
of 1100ms were acquired, as were high-resolution (1 × 1
× 1 mm3) 3D T2-weighted images and fluid attenuated
inversion recovery (FLAIR) sequences. The dMRI has a
multi-shell design with 73 acquisitions spread over 5
shells (4 b = 0, 3 b = 200, 6 b = 500, 30 b = 1000, and 30
b = 2500 s/mm2). Images have a 2 × 2 × 2 mm3 reso-
lution and 73 slices. The resting-state fMRI acquisition
was an echo-planar imaging (EPI) acquisition with 3.5 ×
3.5 × 3.5 mm3 resolution, with 37 slices, TR of 2.5 s, re-
peated 149 times.

MRS 2D-chemical shift imaging (CSI) was acquired
using the localized semi-adiabatic spin-echo refocusing
(semi-LASER) with Gradient-Offset independent Adia-
baticity Wurst modulation (GOIA-W) pulses and spiral
encoding (853-ms duration, 12-kHz bandwidth, 90° flip
angle, 160 mm field of view, 1.5-s repetition time, and
40-ms echo time) [145]. Interleaved constant-density
spirals simultaneously encode one frequency and two
spatial dimensions (16 × 16; 3 averages) for a resolution
of 1 × 1 × 1.5 cm3 and a scan time of 6 min. The 160 ×
160 × 15 mm slab was placed across the corpus callosum
parallel to the A/P plane. Single voxel spectroscopy
(SVS) was acquired using point-resolved spectroscopy
(PRESS; TE = 30ms, TR = 2 s, 2 × 2 × 2 cm3, 128 aver-
ages; 16 average water reference) in the posterior cingu-
late gyrus for a scan time of 5 min [146].

PET Participants underwent two PET imaging studies
(florbetapir and flortaucipir) at baseline. Tracer doses
were requested through Avid Radiopharmaceuticals
(Philadelphia, PA, USA) who then ordered the doses
from one of several contract manufacturing organiza-
tions (usually the most proximate to a site) and coordi-
nated dose shipping and delivery to the four PET
centers. The florbetapir protocol was as follows: immedi-
ately after a 370MBq (10 mCi) bolus injection, the par-
ticipant underwent brain scans consisting of 10 frames,
each 1 min in length. Fifty minutes after injection, the
participant completed a second 15-min brain scan con-
sisting of three frames, each of which required 5 min.
The use of flortaucipir in this study was carried out

through an Investigator Investigational New Drug (IND
#131391) from the U.S. Food and Drug Administration.
The flortaucipir protocol was as follows: 80min after a 370
MBq (10mCi) bolus injection, the participant completed a
continuous dynamic 20-min brain scan (four frames, 5 min
each). Procedures described by Stern et al. [95] will serve as
a guide for initial analyses of florbetapir and flortaucipir im-
ages. However, additional analyses of PET amyloid and tau
scans will be conducted, consistent with the most current
methods and approaches [147–149].

Fluid biomarkers
The collection, tracking, banking, and distribution of all
fluid biospecimens is done under the direction of the
project’s Fluid Biomarker Team leader (ERP) at VA
Puget Sound. CSF, blood, and saliva collection and stor-
age complies with the National Institute on Aging Bios-
pecimen Task Force Guidelines and with NINDS
Repository Biomarkers Discovery Samples Resource.
Education and training were provided at each of the Par-
ticipant Evaluation Sites (through in-person training,
provision of a video DVD [150], and manuals) for the
safe, acceptable, and uniform methods for CSF, blood,

Alosco et al. Alzheimer's Research & Therapy          (2021) 13:136 Page 9 of 23



and saliva collection. The Fluid Biomarker Team pro-
vided all sites with prefabricated CSF, blood, and saliva
sample collection kits. Sample collection and sample
processing procedures are detailed in the Supplementary
Material (Additional File 1). An aliquot of whole blood
was kept at room temperature and shipped to BUSM the
day of collection for DNA extraction for genetic and
genomic analyses. All other saliva, blood, and CSF sam-
ples were processed, aliquoted, and stored at − 80 °C at
the four Participant Evaluation Sites, and then batch
shipped on dry ice overnight to VA Puget Sound, where
they are stored in two − 70 °C freezers. Banked CSF,
blood products, and saliva will be made available to
qualified outside investigators.

Head impact exposure assessment and modeling
A challenge of evaluating the long-term consequences of
repetitive head impacts is that the outcomes are chronic,
but the exposures are acute and, in this setting, remote.
Each impact is of short duration, can be ambiguous, and
rarely quantified. Task-based exposure assessment
methods, such as job-exposure matrices, are often uti-
lized to develop retrospective exposure metrics for inves-
tigating exposure-disease relationships [151]. The same
will be applied to retrospectively estimate repetitive head
impact exposure in the COL and PRO groups. A
position-exposure matrix (PEM) will be developed. Dif-
ferent football positions (e.g., running back, offensive
lineman) experience different impacts in terms of fre-
quency, intensity, location, and type (linear or rotational)
[152–154]. These measurements have been collected for
over 1.8 million head impacts during games and prac-
tices using the Head Impact Telemetry (HIT) System™
[155–159]. Information from this extensive database will
be utilized to construct the PEM. The PEM will use the
most current HIT data to summarize the variation of
impacts by position and level of play. One limitation of
this approach is that the NFL has not publicly released,
nor have there been published reports of HIT System or
other head impact sensor data from NFL players, thus
resulting in the need to rely on college player HIT Sys-
tem data in these PEMs. We will combine the PEM with
each participant’s football history (i.e., age of first expos-
ure, level[s] and duration of play, position[s] played) to
develop participant-specific estimates of cumulative ex-
posure to head impacts [27, 61, 160, 161]. Additional
methods of estimating repetitive head impact exposure
will be included as they become available. Practical prox-
ies of exposure to repetitive head impacts will be exam-
ined, such as years of American football play and age of
first exposure to American football, among others. Data
on the participant’s self-reported number of concussions
[162, 163] and number of episodes of loss of conscious-
ness using the Ohio State University TBI Identification

Method-Interview Form [164] were collected as metrics
of additional history. The participant-specific exposure
estimates will be used to evaluate clinical and biomarker
outcomes.

Genetics
Whole blood collected at the time of the blood draw
was shipped directly to the Molecular Genetics Core at
BUSM where DNA was isolated, frozen, and used for
apolipoprotein E (APOE) genotyping. We will conduct
genome-wide genotyping using the Illumina Global
Screening Array (Illumina, Inc., San Diego, CA, USA).

Multidisciplinary Diagnostic Consensus Conferences
(MDCC)
Each month there are two MDCCs held through video-
conference and attended by a panel of 16 clinician-
investigators, including 8 neurologists, 5 neuropsycholo-
gists, 2 psychiatrists, and 1 neurosurgeon, from 7 institu-
tions. Each MDCC is required to have a quorum of one
panelist from at least three of the four Participant Evalu-
ation Sites, a minimum of two neurologists and two neu-
ropsychologists, representation from at least two sites
outside of BU, and a minimum of five panelists in at-
tendance. At each MDCC, the history and findings from
approximately 5–9 participants are presented. Following
presentation of the history, course, and test score sum-
maries (including measures of subjective cognitive com-
plaints, functional independence, and sleep, as well as
neurocognitive, neuropsychiatric, neurologic, and motor
functioning), each MDCC member provides their inde-
pendent diagnosis of TES, in addition to other clinical
disorders due to neurodegenerative diseases using estab-
lished diagnostic criteria (e.g., mild cognitive impairment
[MCI] and AD dementia using the National Institute on
Aging – Alzheimer’s Association criteria [165]) and psy-
chiatric disorders based on the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5)
[166]. The MDCC members share and discuss their rat-
ings and adjudicate a final consensus diagnosis (based
on majority).

Modified remote follow-up evaluations
As a result of the COVID-19 pandemic, the project co-
PIs, in collaboration with NINDS Program Officials, and
with input from the Executive Committee and External
Advisory Board, decided that all follow-up evaluations
would be changed to entirely remote assessments to
maintain the safety of our participants and study staff,
while also preserving the scientific integrity of the overall
study. Remote assessments were required given that par-
ticipants are flown from their homes to one of the 4 Par-
ticipant Evaluation Sites, and the pandemic placed
severe restrictions on travel. All follow-up procedures
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were approved by the BUMC IRB. Each participant is
assessed for decisional capacity to provide consent for
research participation, using a modification of the Uni-
versity of California, San Diego Brief Assessment of Cap-
acity to Consent (UBACC) [167]. Informed consent
forms are signed digitally and, in the case of participants
who are determined to lack decisional capacity, their re-
search proxy or legally authorized representative digitally
signs the consent form. Each participant receives $325
compensation for completion of all follow-up proce-
dures. The modified remote follow-up evaluation is con-
ducted using three separate platforms: (1) telephone, (2)
online, and (3) video. Based on prior Baseline Evaluation
experience, all participants have access to a telephone
and most have access to an internet-connected desktop
or laptop computer. Results from a survey conducted of
study participants in the spring of 2020 indicated that a
large majority have access to a desktop or laptop com-
puter with a webcam for videoconferencing. Most of the
tests included in the remote follow-up evaluation have
been found to result in comparable performance when
administered in-person or remotely via telephone, on-
line, or videoconference platforms [107, 115, 168–171].
All follow-up participants are interviewed over the

telephone to update any history and lifestyle information
and to conduct standardized interview-based assess-
ments. In addition, all participants are administered a
telephone-based neurocognitive evaluation which in-
cludes the telephone modification of the NACC UDS 3.0
cognitive assessment battery (T-Cog, including the
Neuropsychological Assessment Battery (NAB) List
Learning Test) [99, 110] and the telephone version of
the Montreal Cognitive Assessment (MoCA) (T-MoCA)
[107]. Participants with access to an internet-connected
desktop or laptop computer also complete a battery of
web-based computerized cognitive tests from the Cam-
bridge Neuropsychological Test Automated Battery
(CANTAB) [114]. Those participants who have a web-
cam (with proficiency in using these devices determined
during a screening prior to follow-up) are administered
additional video-based (using the Zoom videoconference
platform) neurocognitive tests and also undergo a
neurological evaluation, including a modified MDS-
UPDRS examination [172, 173], by a board-certified and
MDS-UPDRS-trained neurologist who specializes in
movement disorders (CHA). Selection of the final bat-
tery of neurocognitive measures was made by the full
team of project neuropsychologist-investigators to assure
that all domains of interest were assessed. All partici-
pants and study partners are asked to complete an on-
line REDCap survey to assess cognitive, mood, and
behavior difficulties, as well as functional independence,
using identical methods employed during baseline evalu-
ations. Follow-up tests and questionnaires, including the

modality of assessment, are listed in Tables 3 and 4. The
Adverse Childhood Experiences (ACEs) questionnaire
[174] was added to the follow-up evaluation to assess
childhood factors that may contribute to adult physical
and psychological health outcomes.
All consenting participants have a fasting blood draw

at their home at the time of their follow-up evaluations.
Blood collection and sample preparation is conducted by
phlebotomists from ExamOne (a Quest Diagnostics
Company, Lenexa, KS) who undergo study-specific
training and who are provided with prefabricated blood
collection and sample preparation supplies, along with a
manual and infographic detailing all procedures, from
the BU Coordinating Center. Whole blood, serum, and
plasma samples are prepared and aliquoted, put on dry
ice within 90min of centrifugation, and shipped to VA
Puget Sound, where they are banked for biomarker as-
says and distribution to qualified investigators (see Sup-
plementary Material, Additional File 1, for details).
All participants will receive a follow-up diagnosis 4

years after their initial assessment using the NINDS
Consensus Diagnostic Criteria for TES [56] through the
same MDCC process as baseline diagnoses.

Management and sharing of data and biospecimens
The Biostatistics and Epidemiology Data Analytics Cen-
ter (BEDAC) at the BU School of Public Health provides
data management, database and web development, and
data analytics for the project (the latter in collaboration
with the project’s lead biostatistician and Data Team
Leader (YT)). Data are collected using web-based data
capture for assessments using REDCap, as well as cus-
tomized forms for complex data. Common data ele-
ments and study-specific data elements are uploaded to
FITBIR on a regular basis to allow for data sharing in
the latter part of the project. Once baseline data collec-
tion was completed, the Data Team developed a web-
based data sharing platform, initially for use by project
investigators, with the plan for subsequent availability to
all qualified researchers (i.e., in the latter part of the pro-
ject). Based on the specific needs of an investigator, a
customized dataset is created using an automated sys-
tem. Raw imaging data and fluid biosamples will be
made available to qualified investigators (see Supplemen-
tary Material, Additional File 1).

Results
Participants
All Participant Evaluation Site institutions (i.e., BU, CC,
Mayo, NYU) and associated sites (BWH, BAI) received
approval by their governing IRB by January 2017. All
participants provided written informed consent during
their baseline visit. Enrollment began in September 2016
and the last baseline evaluation was completed in
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February 2020. The final analytic sample includes 240
men, ages 45–74, including 120 PRO, 60 COL, and 60
UE participants. Table 5 summarizes sample demo-
graphics. An additional 24 participants who underwent
some or all baseline evaluations are excluded from all
data analyses and subsequent evaluation for a variety of
reasons, including UE participants who reported a his-
tory of concussion (n = 6) or who were found to have
extensive psychiatric history (n = 3) during in-person
interview, participants with incomplete biomarker data
(n = 10), participants who self-withdrew (n = 2), or were
withdrawn by a PI for other reasons (n = 3). Three-year
follow-up in-person evaluations (for PRO and UE partic-
ipants) began in October 2019, with 11 completed by
March 6, 2020. Due to the COVID-19 pandemic, all in-
person study activities were ceased on March 16, 2020.
Follow-up evaluations have shifted to fully remote and
are being conducted on all participants, including the
COL participants (see below for details).

Neuroimaging
Neuroimaging protocols completed include structural
T1- and T2-weighted MRI, diffusion MRI (dMRI),
resting-state fMRI, MRS, as well as molecular imaging
with two PET tracers, florbetapir and flortaucipir. Im-
aging calibration and quality control (QC) procedures
were completed for all sites prior to participant enroll-
ment and throughout data acquisition. PET phantoms
from Invicro were checked and each site was certified by
the Invicro team using their standard protocols. Add-
itional MRI and MRS harmonization and QC procedures
were employed by the BWH Psychiatry Neuroimaging
Laboratory (PNL) and Center for Clinical Spectroscopy
(CCS) (see Supplementary Material, Additional File 1).
The four MRI sequences were acquired in approximately
40 min. Total MRS scan time was 15 min, including
shimming. Participants also completed florbetapir and
flortaucipir PET scans and 214 participants completed
both PET scans. Florbetapir scans were typically con-
ducted first (n = 157 [73%] of the 214 participants who
had both PET scans), with at least 12 h between the two
scans. PET protocol length is described above.

Fluid biomarkers
At the completion of all baseline evaluations, plasma,
and CSF samples were shipped on dry ice overnight
from VA Puget Sound to the University of Gothenburg,
Sweden, where primary biomarker assays were con-
ducted in batch. Primary fluid biomarkers include
plasma and CSF measures of p-tau181, p-tau217, p-tau231,
total tau, abeta40, abeta42, abeta38, glial fibrillary acidic
protein (GFAP), NfL, soluble triggering receptor
expressed on myeloid cells 2 (sTREM2), and soluble
platelet-derived growth factor receptor beta

(sPDGFRbeta). Supplemental assays will be conducted at
VA Puget Sound and University of Washington and will
include the following: CSF and plasma CNS-derived
extracellular vesicle (EV) total tau and p-tau epitopes
181, 231, and 396; vascular endothelial growth factor-A
(VEGF-A); basic fibroblast growth factor (bFGF); inter-
leukins (ILs) 1alpha and beta, 7, and 17a; tumor necrosis
factor (TNF)-a; monocyte chemotactic protein (MCP)-1;
C-reactive protein (CRP); alpha-synuclein; CSF serum al-
bumin ratio; and CSF catecholamines and indolamines
and their precursors and metabolites. Additional CSF,
plasma, and saliva biomarkers will be examined as new
discoveries direct.

Multidisciplinary Diagnostic Consensus Conferences
(MDCC)
MDCCs were completed for all participants following
their baseline evaluations using the provisional 2014
TES criteria [54]. MDCCs are being repeated for all
baseline evaluations to derive new TES diagnoses using
the recently published 2021 NINDS Consensus Diagnos-
tic Criteria for TES [56], but without re-diagnosing other
conditions. Only these new TES diagnoses will be used
in baseline data analyses. MDCCs will be held following
remote follow-up evaluations to determine any change
in TES diagnosis (using the 2021 criteria) or in other
neurodegenerative and/or psychiatric diagnoses.

First NINDS Consensus Workshop to define the diagnostic
criteria for TES
Refinement and validation of the 2014 research diagnos-
tic criteria for TES [54] is an aim of the DIAGNOSE
CTE Research Project. Since the time of the original
2014 publication, the TES criteria have been used in sev-
eral ongoing research studies, including the UNITE
study [55] and for the initial baseline evaluation MDCCs
in this DIAGNOSE CTE Research Project. In April
2019, the First NINDS Consensus Workshop to Define
the Diagnostic Criteria for TES was held in Phoenix, Ari-
zona. The goal of the workshop was to evaluate and up-
date TES criteria based on the following: (1) inter-rater
reliability data from research studies (including baseline
MDCC data from this project); (2) predictive validity
data, both published [55] and unpublished, examining
the relationship between the specific criteria and neuro-
pathologically diagnosed CTE; (3) systematic review of
CTE literature to date; and (4) expert opinion. A Modi-
fied Delphi approach was followed and included a first
round of anonymous voting that took place during the
Workshop, followed by three additional online voting
rounds on revised criteria. Voting panelists included 20
clinician-researchers across a variety of disciplines (e.g.,
Neurology, Neuropsychology, Psychiatry, Physical Medi-
cine and Rehabilitation, Neurosurgery), areas of
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Table 5 Demographic summary of DIAGNOSE CTE Research Project sample at baseline
Former NFL players (PRO) Former college football players (COL) Unexposed (UE) p valuea

Total N 120 60 60 –

Age, mean (SD) years 59.1 (7.8) 53.5 (7.7) 59.3(8.3) < 0.01b

Age by decade, n (%) years

45–54 42 (35.0) 44 (73.3) 23 (38.3) < 0.01

55–64 46 (38.3) 9 (15.0) 15 (25.0)

65–75 32 (26.7) 7 (11.7) 22 (36.7)

Body mass index, mean (SD) kg/m2 32.0 (4.5) 33.8 (4.8) 30.8 (4.5) < 0.01c

Years of education, mean (SD) 16.6 (1.1) 17.1 (1.0) 17.3 (3.4) 0.38

Level of education, n (%)

Some college, no degree 15 (12.5) 5 (8.3) 7 (11.7) < 0.01

Associate degree 2 (1.7) 1 (1.7) 8 (13.3)

Bachelor’s degree 82 (68.3) 35 (58.3) 23 (38.3)

Master’s degree 16 (13.3) 17(28.3) 12 (20.0)

Doctoral degree 5 (4.2) 2 (3.4) 10 (16.7)

Racial Identity, n (%)

American Indian or Alaska Native 1 (0.8) 0 (0.0) 0 (0.0) 0.05

Black or African American 51 (42.5) 10 (16.7) 24 (40.0)

Native Hawaiian or other Pacific Islander 0 (0.0) 0 (0.0) 1 (1.7)

White 66 (55.0) 48 (80.0) 35 (58.3)

Multiracial 1 (0.8) 1 (1.7) 0 (0.0)

Not reported 1 (0.8) 1 (1.7) 0 (0.0)

Ethnicity, n (%)

Hispanic or Latino 3 (2.5) 0 (0.0) 0 (0.0) 0.28

Not Hispanic or Latino 117 (97.5) 60 (100.0) 59 (98.3)

Unknown/not reported 0 (0.0) 0 (0.0) 1 (1.7)

Marital status, n (%)

Never married 5 (4.2) 3 (5.0) 15 (25.0) < 0.01

Married or domestic partnership 88 (73.3) 43 (70.0) 31 (51.6)

Divorced or separated 23 (19.2) 14 (23.3) 13 (21.7)

Widowed 1 (0.8) 1 (1.7) 0 (0.0)

Other 3 (2.5) 0 (0.0) 1 (1.7)

Employment status, n (%)

Working full-time 57 (47.5) 40 (66.7) 27 (45.0) < .01

Working part-time 10 (8.3) 0 (0.0) 11 (18.3)

Unemployed 1 (0.8) 7 (11.7) 1 (1.7)

Retired 38 (31.7) 9 (15.0) 21 (35.0)

Disabled 13 (10.8) 2 (3.3) 0 (0.0)

Other/refused 1 (0.8) 2 (3.3) 0 (0.0)

Level of father’s education, n (%)

Less than high school 24 (20.0) 3 (5.0) 8 (13.3) 0.01

High school diploma or graduate equivalent degree (GED) 43 (35.8) 15 (25.0) 18 (30.0)

Some college or associate degree 10 (8.3) 11 (18.3) 6 (10.0)

Bachelor’s degree 15 (12.5) 19 (31.7) 12 (20.0)

Master’s degree 9 (7.5) 6 (10.0) 10 (16.7)

Doctoral degree 7 (5.8) 4 (6.7) 3 (5.0)

Unknown 12 (10.0) 2 (3.3) 3 (5.0)

Level of mother’s education, n (%)

Less than high school 19 (15.8) 4 (6.7) 5 (8.3) 0.04
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expertise (e.g., neurodegenerative disease, TBI), and aca-
demic institutions (i.e., ten). The Delphi process was
completed in January 2020 and a report on the new
NINDS Consensus Diagnostic Criteria for TES was pub-
lished in 2021 [56]. These new TES diagnostic criteria
are intended for research purposes and not for clinical
diagnosis. It is expected that the criteria will be further
updated and revised through future NINDS Consensus

Workshops as research in this field and on the criteria
evolve and biomarker data become available.

Discussion
This report provides a description of the methodology
for the DIAGNOSE CTE Research Project, a multicen-
ter, observational, cohort study designed to develop, re-
fine, and validate in vivo biomarkers for CTE;

Table 5 Demographic summary of DIAGNOSE CTE Research Project sample at baseline (Continued)
Former NFL players (PRO) Former college football players (COL) Unexposed (UE) p valuea

High school diploma or GED 52 (43.3) 21 (35.0) 22 (36.7)

Some college or associate degree 16 (13.3) 11 (18.3) 11 (18.3)

Bachelor’s degree 18 (15.0) 17 (28.3) 10 (16.7)

Master’s degree 6 (5.0) 6 (10.0) 8 (13.3)

Doctoral degree 1 (0.8) 1 (1.7) 3 (5.0)

Unknown 8 (6.7) 0 (0.0) 1 (1.7)

History of learning disability or ADHD, n (%) 9 (7.5) 10 (16.7) 1 (1.7) 0.02

Site evaluated, n (%)

Boston 26 (21.7) 18 (30.0) 20 (33.3) 0.58

Las Vegas 33 (27.5) 13 (21.7) 11 (18.3)

New York 28 (23.3) 15 (25.0) 16 (26.7)

Scottsdale/Phoenix 33 (27.5) 14 (23.3) 13 (21.7)

Primary position at highest level of football, n (%)

Offensive lineman 22 (18.3) 22 (36.7) – 0.09

Defensive lineman 14 (11.7) 5 (8.3)

Offensive back or receiver 36 (30.0) 14 (23.3)

Linebacker 21 (17.5) 7 (11.7)

Defensive back 23 (19.2) 12 (20.0)

Special teams 4 (3.3) 0 (0.0)

Total years of football, mean (SD) 18.0 (3.3) 11.5 (2.5) – < 0.01

Total fall seasons of college football, mean (SD) 4.1 (0.5) 3.9 (0.6) – 0.11

Total years of NFL participation, mean (SD) 7.4 (2.7) – – –

Age of first exposure to football, mean (SD) 11.5 (2.8) 10.2 (2.6) – < 0.01

Neuroimaging data available, n (%)

Magnetic resonance imaging 114 (95.0) 55 (91.7) 56 (93.3) –

Tau PET – Flortaucipir 112 (93.3) 58 (96.7) 58 (96.7)

Amyloid PET – Florbetapir 119 (99.2) 60 (100.0) 58 (96.7)

Biofluids collected, n (%)

Cerebrospinal fluid 102 (85.0) 40 (66.7) 46 (76.7) –

Blood (plasma, serum, whole blood) 118 (98.3) 58 (96.7) 58 (96.7)

Saliva 120 (100.0) 60 (100.0) 58 (96.7)

MoCA total raw score, mean (SD) 24.3 (3.5) 25.4 (3.2) 26.5 (2.3) < 0.01d

Functional Activities Questionnaire – Informant Total, mean (SD) 3.9 (5.5) 3.2 (4.9) 0.4 (2.4) < 0.01e

ApoE genotype – n (%) ε4 carriersf 33 (28.7) 20 (33.9) 11 (19.6) 0.22
aCategorical variables compared with chi-square or Fisher’s exact tests. Continuous variables compared with T-test or ANOVA (for normally distributed data) or
Mann-Whitney U or Kruskal-Wallis tests (for non-normally distributed data). Significant ANOVA post hoc pairwise group comparisons examined with
Student-Newman-Keuls test
bPRO=UE > COL
cPRO=UE < COL
dPRO=COL<UE
ePRO=COL>UE
fApoE genotyping unavailable for 10 participants (5 PRO, 1 COL, 4 UE)
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characterize the clinical course and presentation of this
tauopathy; identify potential risk factors; and refine and
validate research diagnostic criteria for the clinical pres-
entation associated with CTE (i.e., TES). This report also
provides a description of the demographics of the sam-
ple, comprised of 120 former NFL players, 60 former
college football players, and 60 unexposed same-age
asymptomatic men.
Methodological decisions were made in designing the

DIAGNOSE CTE Research Project based on the over-
arching goal of establishing clinical diagnostic criteria
for CTE with highly accurate in vivo biomarkers. As
such, we decided to focus on a sample of former college
and professional American football players to ensure a
sample at high risk for CTE [3] and to maximize power
for hypothesis testing. Although the inclusion of a more
heterogeneous sample of contact and collision sport ath-
letes (e.g., boxers, soccer players, ice hockey players, in-
cluding women), as well as participants with other
sources of repetitive head impact exposure, such as mili-
tary combat veterans with blast-injuries, survivors of in-
timate partner violence, and younger participants, may
increase generalizability, it would be difficult to estimate
“exposure” levels or achieve adequate statistical power
or assure that the sample was at high risk for CTE.
Thus, at the time of initial development of in vivo CTE
diagnostics, homogeneity of the source of repetitive head
impacts was prioritized. An area of active investigation
by our team includes other, non-football contact sport
athletes (e.g., soccer, ice hockey, rugby), particularly fe-
male former contact sport athletes. Some investigators
of DIAGNOSE CTE are leading a new NIH-funded ini-
tiative (PI: Stern), known as the Head Impact and
Trauma Surveillance Study (HITSS), that will leverage
the online Brain Health Registry platform and recruit,
enroll, and longitudinally follow female and male former
soccer players and male former American football
players (across all levels of play). This initiative will
increase our understanding of the long-term effects of
repetitive head impacts across sports and in females,
and lead to future investigations that are similar to
DIAGNOSE CTE, allowing for rich clinical charac-
terizations of female former contact sport athletes.
The UE group was carefully selected. If the primary

goal was to study disease risk, then certain variables
should have been well-controlled, e.g., cardiovascular/
cerebrovascular risks, performance enhancing drug use,
substance use, history of team sport involvement. How-
ever, our primary goals were to examine possible bio-
markers to detect CTE and the refinement of diagnostic
criteria for the clinical manifestations of CTE. Therefore,
our comparison group included individuals who were
similar to the former American football players in terms
of age, sex, and BMI, but did not have repetitive head

impact exposure and were asymptomatic. This type of
design is appropriate for biomarker development and
validation. Importantly, while the UE group will allow us
to answer questions regarding biomarker development
and validation, their inclusion in other types of analyses
requires careful consideration. For instance, it would be
inappropriate to characterize the effect of repetitive head
impact exposure on clinical measures in both the former
player groups and UE group, given that the UE group
was required to be asymptomatic (for neurological and
psychiatric conditions) at the time of recruitment and
the former players were not. Even among questions per-
taining to biomarkers, it will be important to conduct
sensitivity analyses to determine if any potential group
differences are related to exposure to repetitive head im-
pacts or to other factors. Lastly, other types of “control”
groups were considered, but not incorporated into the
design of the study. There have been efforts to recruit
former professional baseball players or body builders as
controls for similar studies, because they have similar
lifestyles and body habitus as former American football
players. Yet, there have been very few who had never
participated in organized contact sports or who, in the
case of baseball players, had not reported multiple con-
cussions. Planned ancillary studies will also recruit par-
ticipants with AD dementia and AD-related dementias
as disease comparison groups to the former profession
American football players.
All participants were required to have a study part-

ner who knows them well to provide assessments of
their perspective of the participant’s cognitive, behav-
ioral, and functional status. In some cases, these re-
ports may be inaccurate due to a variety of factors,
including misattributions of symptoms to age-related
changes or stress; exaggeration of deficits for potential
secondary gain (including financial compensation
from disability or legal cases); and denial/unawareness
of deficits (including anosognosia) due to neurodegen-
erative disease and other neurologic conditions. This
requirement may introduce some degree of selection
bias due to the potential for some participants with
underlying CTE to have neuropsychiatric features
(e.g., rage, aggression, impulsivity) that result in the
loss of close relationships and overall social isolation.
Therefore, it is possible that potential participants
with more severe neuropsychiatric features were ex-
cluded due to those features limiting the availability
of a study partner.
The primary method of validating biomarkers for the

detection of CTE pathology or to truly examine risk fac-
tors for the development of CTE pathology is to com-
pare data collected during life with postmortem
neuropathology and diagnosis. The large majority of
former college and professional football players in the
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DIAGNOSE CTE cohort have agreed to brain donation.
At the time of the current paper, five former players had
already died, and their brain tissue will be examined for
these clinicopathological correlation and validation
studies.
Our goal was to enroll a similar proportion of Black

participants across the three exposure groups (i.e., PRO,
COL, UE), with the target of approximately 40% overall.
Although the PRO and UE groups have a similar pro-
portion of Black participants, with 42.5% and 40.0%, re-
spectively, the COL group has a significantly smaller
proportion of black participants (16.7%). Interactive ef-
fects between levels of exposure to repetitive head im-
pacts and Black racial identity on potential
neuroimaging and fluid biomarkers of CTE have been
reported [161]. Moreover, there are potential differences
between Black and White participants in the expression
of psychiatric symptoms and performance on cognitive
tests [175, 176], as well as important racial disparities in
life-course social determinants of health, cognitive aging,
and neurodegenerative disease [177–179]. For these rea-
sons, interpretation of data analyses including the COL
group will be done with these racial identity differences
in mind [180].

Conclusions
The DIAGNOSE CTE Research Project will lead to a
rich dataset that will be used to further our under-
standing of CTE in terms of its clinical presentation,
in vivo biomarkers, clinical research diagnostic cri-
teria, and risk and resiliency factors for the develop-
ment of CTE. In addition to repetitive head impact
exposure and genetic factors, project data will inform
on the role of demographic, lifestyle, medical, and
psychiatric risk and resilience variables, as well as on
social determinants of health and racial disparities.
Importantly, the data will provide the infrastructure
and resources for opportunities to conduct ancillary
or add-on studies that target questions not being dir-
ectly examined by the DIAGNOSE CTE Research
Project. Ultimately, it is anticipated that findings from
the DIAGNOSE CTE Research Project and associated
ancillary studies will facilitate the ability to detect and
diagnose CTE during life and thereby accelerate re-
search on risk factors, mechanisms, epidemiology,
and, most importantly, treatment and prevention of
CTE.
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