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Lack of VMP1 impairs hepatic lipoprotein secretion and
promotes non-alcoholic steatohepatitis
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Highlights

� VMP1 is critical in regulating the homeostasis of hepatic phospho-
lipids and lipoprotein secretion.

� Decreased hepatic VMP1 is associated with human NAFLD/NASH.

� Overexpression of VMP1 improves diet-induced NAFLD.
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Lay summary
Non-alcoholic fatty liver disease
and its more severe form, non-
alcoholic steatohepatitis, are asso-
ciated with a build-up of fat in the
liver (steatosis). However, the exact
mechanisms that underly steatosis
in patients are not completely un-
derstood. Herein, the authors
identified that the lack of a protein
called VMP1 impairs the secretion
and metabolism of fats in the liver
and could therefore contribute to
the development and progression
of non-alcoholic fatty liver disease.
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Background & Aims: Vacuole membrane protein 1 (VMP1) is an
endoplasmic reticulum (ER) transmembrane protein that regu-
lates the formation of autophagosomes and lipid droplets. Recent
evidence suggests that VMP1 plays a critical role in lipoprotein
secretion in zebra fish and cultured cells. However, the patho-
physiological roles and mechanisms by which VMP1 regulates
lipoprotein secretion and lipid accumulation in non-alcoholic
fatty liver disease (NAFLD) and non-alcoholic steatohepatitis
(NASH) are unknown.
Methods: Liver-specific and hepatocyte-specific Vmp1 knockout
mice as well as Vmp1 knock-in mice were generated by crossing
Vmp1flox or Vmp1KI mice with albumin-Cre mice or by injecting
AAV8-TBG-cre, respectively. Lipid and energy metabolism in
these mice were characterized by metabolomic and tran-
scriptome analyses. Mice with hepatic overexpression of VMP1
who were fed a NASH diet were also characterized.
Results: Hepatocyte-specific deletion of Vmp1 severely impaired
VLDL secretion resulting in massive hepatic steatosis, hepatocyte
death, inflammation and fibrosis, which are hallmarks of NASH.
Mechanistically, loss of Vmp1 led to decreased hepatic levels of
phosphatidylcholine and phosphatidylethanolamine as well as
to changes in phospholipid composition. Deletion of Vmp1 in
mouse liver also led to the accumulation of neutral lipids in the
ER bilayer and impaired mitochondrial beta-oxidation. Over-
expression of VMP1 ameliorated steatosis in diet-induced NASH
by improving VLDL secretion. Importantly, we also showed that
decreased liver VMP1 is associated with NAFLD/NASH
in humans.
Conclusions: Our results provide novel insights on the role of
VMP1 in regulating hepatic phospholipid synthesis and lipo-
protein secretion in the pathogenesis of NAFLD/NASH.

Lay summary: Non-alcoholic fatty liver disease and its more
severe form, non-alcoholic steatohepatitis, are associated with a
build-up of fat in the liver (steatosis). However, the exact
mechanisms that underly steatosis in patients are not completely
understood. Herein, the authors identified that the lack of a
protein called VMP1 impairs the secretion and metabolism of
fats in the liver and could therefore contribute to the develop-
ment and progression of non-alcoholic fatty liver disease.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Euro-
pean Association for the Study of the Liver. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Introduction
Increased free fatty acid uptake and de novo lipogenesis account
for the majority of the hepatic fat source in non-alcoholic fatty
liver disease (NAFLD).1 Hepatic fat accumulation usually results
in increased hepatic VLDL synthesis and secretion, which act as
an adaptive mechanism to attenuate intrahepatic fat accumula-
tion. Impaired hepatic VLDL secretion such as by microsomal
triglyceride transfer protein (MTP) inhibition causes profound
hepatic steatosis, and factors regulating hepatic VLDL synthesis
and secretion are critical in modulating non-alcoholic steatohe-
patitis (NASH) progression and severity.2–4

Vacuole membrane protein 1 (VMP1) is an endoplasmic re-
ticulum (ER) transmembrane protein which was originally
identified in acute pancreatitis with vacuole formation.5 Subse-
quent studies revealed that VMP1 is crucial for autophagosome
and lipid droplet (LD) formation.6,7 VMP1 is also known to
regulate the secretion of soluble or specific proteins that are
transported via the ER-to-Golgi trafficking pathway to maintain
organelle homeostasis in Drosophila and Dictyostelium.8,9 A
recent study revealed that loss of VMP1 causes lipoprotein
accumulation in the intestine, liver cells of zebrafish and early
embryos of mice, as well as in human hepatoma cells, suggesting
VMP1 plays a critical role in lipoprotein secretion.10 VMP1 has
phospholipid scramblase activity that regulates the cellular dis-
tribution of cholesterol and phosphatidylserine, which may be
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involved in LD biogenesis and SARS-CoV-2 (as well as other
coronavirus) infections.11,12

However, the pathophysiological relevance of VMP1-
regulated lipoprotein secretion in the context of NAFLD/NASH
is unknown. Herein, we comprehensively characterized the
function of VMP1 in regulating hepatic lipid homeostasis and
VLDL secretion through physiological, biochemical, molecular
and genetic rescue studies. Our findings provide novel insights
and identify VMP1 as a target for NAFLD/NASH.

Materials and methods
Animals
Vmp1flox mice were purchased from the European Mouse Mutant
Archive. Vmp1 conditional knock-in (KI) mice were generated in
collaboration with Cyagen (for details see supplementary
materials). Vmp1flox/Vmp1KI mice were generated by crossing
Vmp1flox mice with Vmp1KI mice. To generate liver-specific Vmp1
(L-Vmp1) knockout (KO) mice, Vmp1flox mice were crossed with
albumin-Cre mice. To generate hepatocyte-specific Vmp1 (H-
Vmp1) KO or Vmp1 restoration mice (H-Vmp1 KO/KI), 8-10-week-
old mice were injected intravenously with adeno-associated vi-
rus 8 (AAV8)-thyroxine binding globulin promoter (TBG)-null or
AAV8-TBG-cre (1×1011 GC/mouse). All mice were fed with a chow
diet unless otherwise indicated. To generate a model of diet-
induced NASH, mice were fed a CDAHFD (choline-deficient,
amino acid-defined high-fat diet (45% fat) containing 0.1%
methionine) for 6 weeks. Mice were specific pathogen free and
maintained in a barrier rodent facility under standard experi-
mental conditions. All procedures were approved by the Insti-
tutional Animal Care and Use Committee of the University of
Kansas Medical Center.

Statistical analysis
Data were analyzed using SigmaPlot. All experimental data are
expressed as mean ± SEM and subjected to unpaired Student’s t
test (2 group comparisons) or one-way ANOVA with Holm-Sidak
post hoc test (multigroup comparisons).

Additional reagents and experimental procedures are pro-
vided in the CTAT table and supplementary materials and
methods. RNAseq data are accessible from GEO (GSE186642).

Results
Hepatocyte-specific deletion of Vmp1 causes accumulation of
neutral lipids in mouse livers
To investigate the physiological functions of VMP1 in mice,
Vmp1flox mice were injected with AAV8-TBG-null (wild-type, H-
WT) or AAV8-TBG-cre (hepatocyte-specific Vmp1 KO, H-Vmp1
KO) for 1, 2 and 4 weeks. Compared to H-WT mice, H-Vmp1 KO
mice had enlarged and yellowish livers (Fig. 1A), with a time-
dependent increase in liver weight and liver-body weight ratio,
but decreased body weight at 4 weeks post AAV injection
(Fig. 1A,B). Contiguous patches of micro-steatosis, hepatocyte
ballooning, lobular inflammation and accumulation of hepatic
lipids were revealed by H&E and Oil Red O staining in H-Vmp1 KO
mice (Fig. 1C). Levels of hepatic triglyceride (TG) and cholesterol
markedly increased in H-Vmp1 KO mice compared with H-WT
mice (Fig. 1D). In contrast, steady-state serum levels of TG and
cholesterol significantly decreased in H-Vmp1 KO mice, although
at 4 weeks serum levels of cholesterol in H-Vmp1 KO mice had
recovered to almost the same levels as in H-WT mice (Fig. 1E).
Hepatic LDLR levels decreased in H-Vmp1 KO mouse livers

compared with WT mice (Fig. 1F), which may contribute to
increased serum cholesterol at 4 weeks post AAV injection. H-
Vmp1 KO mice at 4 weeks post AAV injection had similar energy
expenditure (Fig. S1A) and respiratory exchange ratio (Fig. S1B)
but significantly decreased activity and lean mass compared to
H-WT mice (Fig. S1C,D), suggesting sickness of the mice may
contribute to decreased bodyweight.

Both male and female H-Vmp1 KO mice exhibited similar in-
creases in liver-body weight ratio (Fig. S2A), levels of hepatic TG
and cholesterol (Fig. S2B). However, female H-Vmp1 KO mice had
lower serum levels of TG, but higher levels of cholesterol
compared with male H-Vmp1 KO mice (Fig. S2C). Similar to H-
Vmp1 KO mice, L-Vmp1 KO mice also showed decreased body
weight, increased liver-body weight ratio but similar liver weight
(Fig. S3A,B), severe hepatic steatosis (Fig. S3C), increased hepatic
TG and cholesterol contents (Fig. S3D) and decreased serum TG
and cholesterol (Fig. S3E). Hepatocytes isolated from L-Vmp1 KO
mice or from Vmp1flox mice infected with adenovirus cre showed
increased numbers of LD compared with WT hepatocytes
(Fig. S3F-G). These data indicate that VMP1 plays a critical role in
regulating hepatic lipid homeostasis in mice.

Deletion of hepatocyte Vmp1 impairs lipoprotein secretion
in mice
Compared with matched WT mice, levels of serum TG and TG
secretion rate significantlydecreased inH-Vmp1KOandL-Vmp1KO
mice following intravenous administration of tyloxapol to block
lipolysis and uptake of circulating TG-rich lipoproteins (Fig. 2A,B).
Immunoblot analysis showed decreased liver and serum levels of
apolipoprotein (APO)B100 in L-Vmp1 KO mice and H-Vmp1 KO
mice at 1, 2 but not 4 weeks post AAV injection (Fig. 2C,D). Radio-
labeled APOB100 and APOB48 also decreased in H-Vmp1 KO mice
with less effect on APOB48 (Fig. 2E). Interestingly, levels of serum
APOB and hepatic VMP1 recovered in H-Vmp1 KOmice at 4 weeks
post AAV injection (Fig. 2D,F) but TG secretion was only partially
improved (Fig. 2G). Hepatic mRNA levels of Apob significantly
decreased in both H-Vmp1 and L-Vmp1 KO mice (Fig. 2H), sug-
gesting a possible downregulation of APOB by deletion of hepatic
Vmp1. Intriguingly, some hepatocytes still had VMP1 expression
with fewer LDs, andwerePCNA (proliferating cell nuclear antigen)-
positive at 4 weeks post AAV injection (Fig. S4A,B), suggesting
increased compensatory hepatocyte proliferation. These data
suggest that the recovery of VMP1 and APOB proteins in H-Vmp1
KO mice is likely due to compensatory proliferation from cells in
which Vmp1was not sufficiently deleted by cre.

Levels of LC3-II increased after starvation in WT hepatocytes,
which further increased in the presence of chloroquine (CQ),
suggesting increased autophagic flux. The basal levels of p62 and
LC3-II were much higher in Vmp1 KO hepatocytes compared
with WT hepatocytes, suggesting impaired autophagy in Vmp1
KO hepatocytes. The levels of LC3-II were also further increased
by CQ treatment in Vmp1 KO hepatocytes, which is likely due to
the incomplete deletion of VMP1 (Fig. S5A). Results of a RFP-GFP-
LC3 puncta assay showed that starvation increased the number
of red-only puncta in WT hepatocytes, which was markedly
inhibited by CQ. Vmp1 KO hepatocytes had increased basal levels
of yellow puncta with very few red-only puncta under starvation
conditions (Fig. S5B). These data indicate that Vmp1 KO hepa-
tocytes have impaired autophagy, which is consistent with pre-
vious findings.10 H-Atg5 KO mice developed hepatomegaly with
elevated serum alanine aminotransferase (ALT) levels but had
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only slightly increased levels of hepatic TG and no change of
cholesterol (Fig. S6A-D), which is consistent with our previous
report that L-Atg5 KO mice do not exhibit impaired VLDL
secretion and hepatic steatosis.13 Immunoblot analysis
confirmed efficient deletion of VMP1 and ATG5 with increased
SQSTM1/p62 in H-Vmp1 and H-Atg5 KO mouse livers. H-Atg5 KO
mice had blunted LC3-II with increased LC3-I, whereas H-Vmp1
KO mice had increased LC3-I and LC3-II levels (Fig. S6E). These
data indicate that loss of hepatic VMP1 impairs VLDL secretion
and hepatic autophagy.

Deletion of Vmp1 in hepatocytes leads to lipid accumulation
inside the ER bilayer
Lipid fractions from L-Vmp1 KO mouse livers were enriched with
calnexin (ER marker) but had less perilipin-2 (cytosolic LD
marker) and almost no detectable SEC24D (coat protein complex
II [COPII]) and APOB100 (lipoprotein). In contrast, lipid fractions
from WT mouse livers have abundant perilipin-2, APOB100 and

SEC24D but had less calnexin (Fig. 3A), suggesting that the ma-
jority of lipid fractions are within the ER in Vmp1 KO mouse
livers but are either cytosolic LDs or lipoproteins in WT mice.
Oleic acid (OA) treatment markedly increased the number of
perilipin-2-positive LDs in primary cultured WT hepatocytes.
Increased numbers of LDs were readily observed in Vmp1 KO
hepatocytes with or without OA treatment, and most of these
LDs were perilipin-2-negative with larger size compared to WT
hepatocytes (Fig. 3B,C). Most LDs in Vmp1 KO hepatocytes but
not OA-treated WT hepatocytes were positive for APOB
(Fig. 3D,F) and KDEL (an ER marker, Fig. 3E,F). EM analysis of
Vmp1 KO hepatocytes revealed that “LDs” had membranes facing
the cytosol (black arrows) with clear electron dense “edges”
(likely representing the phospholipid monolayer) surrounding
the lipid structure. The space (denoted by stars) between the ER
membrane and the electron dense-edged lipid structures should
be the ER lumen (Fig. 3G). Similar “LD” structures were also
observed in L-Vmp1 KO mouse livers (Fig. 3H). Taken together,
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these data suggest that LDs in Vmp1 KO hepatocytes are not
cytosolic LDs and are most likely within the ER bilayer, consistent
with the findings reported by Morishita et al.10

Hepatocyte deletion of Vmp1 reduces levels of phospholipids,
alters the fatty acyl chain compositions of phospholipids and
decreases fatty acid beta-oxidation
Unbiased lipidomics analysis revealed that levels of hepatic
phospholipids significantly decreased, whereas sphingolipids
and neutral lipids significantly increased in H-Vmp1 KO mouse
livers (Fig. 4A). Levels of phosphatidylcholine (PC) and phos-
phatidylethanolamine (PE) significantly decreased in H-Vmp1 KO
mouse livers with striking reductions in abundance of 16:0, 18:2
and 16:0, 20:4 PC, two of the most abundant linoleoyl and
arachidonoyl PC species (Fig. 4B,C). Several PE species containing
linoleoyl and arachidonoyl chains were also markedly decreased
in H-Vmp1 KO mouse livers (Fig. 4C).

Transcriptome analysis revealed significant gene expression
changes in H-Vmp1 KO mouse livers, with 2,111 downregulated
and 3,210 upregulated genes compared with H-WT mice
(Fig. S7A). Pathway enrichment analysis showed that the top 20
downregulated pathways included metabolic pathways, com-
plement and coagulation cascades, peroxisome and fatty acid
(FA) degradation, whereas the top 20 upregulated pathways
included cell adhesion molecules, hematopoietic cell lineage and
cytokine-cytokine receptor interactions (Fig. S7B,C). Heatmaps of
gene expression showed downregulation of several important
genes involved in PC and PE synthesis, lipoprotein metabolism,
FA, sterol biosynthesis and fatty acid oxidation (FAO) in H-Vmp1
KO mouse livers (Fig. S7D-H). Consistent with RNAseq data, qPCR
analysis revealed the expression of lipogenesis and cholesterol
metabolism genes significantly decreased in H-Vmp1 KO mice
(Fig. S7I). The levels of lipin-1, a phosphatidate phosphatase that
catalyzes diglyceride synthesis, were increased at 1 week but
decreased at 2 and 4 weeks post AAV injection of H-Vmp1 KO
mice (Fig. S7J). H-Vmp1 KO mice had increased levels of glycerol,
glycerol-3-phosphate, total diglyceride and monoglyceride
(Fig. S7K), consistent with accumulation of the intermediates of
lipid synthesis due to a lack of new lipid synthesis.

Metabolomics analysis showed a pattern of increased FAs,
such as palmitate (16:0), oleate/vaccentae (18:1), eicosapentae-
noate (20:5n3), as well as increased acylcarnitine species
including both monounsaturated and long-chain saturated
acylcarnitine species in H-Vmp1 KO mouse livers (Fig. 4D). The
increase in both FA and acylcarnitine in liver tissues is consistent
with a decrease in overall b-oxidation, which was further sup-
ported by decreased levels of beta-hydroxybutyrate in H-Vmp1
KO mouse livers (Fig. 4E) and FA b-oxidation in Vmp1 KO hepa-
tocytes (Fig. 4F). The expression of FA b-oxidation genes signifi-
cantly decreased in H-Vmp1 KO mouse livers (Fig. 4G and
Fig. S7H). These results indicate that impaired FA oxidation but
not de novo lipogenesis may contribute to hepatic steatosis in H-
Vmp1 KO mice.

Hepatocyte deletion of Vmp1 in mice leads to NASH
Serum levels of ALT and total bilirubin (Fig. 5A) as well as hepatic
caspase-3 activity and cleaved caspase-3 increased in H-Vmp1 KO
mice (Fig. 5B). The number of TUNEL- and F4/80-positive mac-
rophages and infiltrating myeloperoxidase-positive neutrophils
as well as hepatic mRNA levels of inflammatory genes markedly
increased in H-Vmp1 KO livers (Fig. 5C,D). H-Vmp1 KO mice

showed increased liver Sirius red staining, elevated hepatic a-
smooth muscle actin and hydroxyproline levels as well as
expression of fibrotic genes compared with H-WT mice (Fig. 5E-
G). Increased inflammation and fibrosis were also consistent
with our transcriptome analysis results, as both inflammation
and fibrosis were among the top upregulated genes in H-Vmp1
KO mouse livers (Fig. S7C).

L-Vmp1 KOmice also had increased serum ALT levels, elevated
hepatic caspase-3 activity (Fig. S8A,B), increased number of liver
F4/80-positive macrophages, myeloperoxidase- and LY6B-
positive neutrophils (Fig. S8C), as well as increased Sirius red
staining (Fig. S8D), compared with L-WT mice. The expression of
Chop and the ratio of spliced and unspliced X box binding protein
1 (Xbp1s/Xbp1u) increased significantly in H-Vmp1 KO mouse
livers (Fig. S9A,B). While levels of BIP decreased, levels of phos-
phorylated eIF-2a, ATF4 and CHOP all increased in H-Vmp1 KO
mouse livers (Fig. S9C), indicating increased ER stress in H-Vmp1
KO mice. These results indicate that hepatocyte-specific deletion
of Vmp1 leads to hepatic steatosis that progresses to NASH.

Hepatic deletion of Vmp1 leads to decreased COPII proteins
that is rescued by hepatocyte-specific Vmp1 knock-in
MTP is required for the lipidation of APOB during the early as-
sembly of VLDL, and protein disulfide isomerase (PDI) increases
MTP activity for hepatic VLDL assembly.3,14 No changes in the
protein levels of MTP and PDI were observed in H-Vmp1 KOmice.
With the exception of SAR1A and SAR1B, levels of SEC23A,
SEC24C and SEC24D, key components of COPII, decreased in H-
Vmp1 KO mice compared to H-WT mice (Fig. 6A). Restoration of
Vmp1 in Vmp1 KO mouse livers restored all COPII proteins
(Fig. 6B,C) and impaired autophagic flux, as demonstrated by
decreased hepatic SQSTM1/p62 and LC3-II levels in Vmp1KI mice
compared with Vmp1flox mice (Fig. 6C). Immunoprecipitation
analysis revealed that VMP1 interacted with SEC24D (Fig. 6D).
Immunofluorescence staining also showed increased colocaliza-
tion of SEC24D with VMP1-GFP in mouse livers (Fig. 6E). Deletion
of VMP1 did not affect ERLIN1 and SURF4 but decreased TANGO1
and KLHL12, which were corrected by the restoration of VMP1
(Fig. S10A,C). These data indicate that VMP1 interacts with
SEC24D and hepatic deletion of Vmp1 decreases levels of some
COPII proteins. However, serum levels of albumin and a1-
antitrypsin, two secretory proteins that are mediated by COPII,
were comparable between H-Vmp1 KO and H-WT mice
(Fig. S10A-B), suggesting that VMP1 may play a more important
role in VLDL secretion than general secretion.

Restoration of Vmp1 promotes VLDL secretion and attenuates
NASH in H-Vmp1 KO mice
Decreased serum TG and cholesterol levels in H-Vmp1 KO mice
were completely recovered and serum cholesterol levels further
increased when Vmp1 was restored (Fig. 7A). Fast protein liquid
chromatography analysis demonstrated substantially decreased
VLDL-TG levels in H-Vmp1 KO mice, which were not only cor-
rected but further increased in H-Vmp1 KO mice following
restoration of Vmp1 (Fig. 7B). H-Vmp1 KO mice had lower levels
of APOB in VLDL fractions, which was completely recovered
when Vmp1 was restored (Fig. 7B). TG secretion was higher in
Vmp1-restored mice than in H-WT mice (Fig. 7C). Following
restoration of Vmp1, H-Vmp1 KO mice had normal liver color and
histology (Fig. 7D) as well as decreased hepatic TG contents
(Fig. 7E). Restoration of Vmp1 in H-Vmp1 KO mice also corrected
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the loss of body weight, hepatomegaly and liver injury (Fig. 7F).
These results indicate that restoration of Vmp1 ameliorates
impaired VLDL secretion and improves NASH in H-Vmp1
KO mice.

Decreased VMP1 is associated with human NAFLD livers and
overexpression of VMP1 ameliorates diet-induced NASH
in mice
Immunoblot and immunohistochemical analysis revealed that
VMP1 decreased in human NAFLD and NASH livers (Fig. 8A,B),
and NAFLD and NASH were confirmed by histology analysis

(Fig. 8B). Consistent with previous reports,15 CDAHFD-fed mice
developed typical NASH and had decreased hepatic protein and
mRNA levels of VMP1 (Fig. 8C). Overexpression of VMP1 signif-
icantly alleviated CDAHFD-induced decreased hepatic PC and PE
levels (Fig. 8D,E), steatosis and impaired VLDL secretion
(Fig. 8F-H).

Discussion
We showed that H-Vmp1 KO mice had severely impaired VLDL
secretion, resulting in hepatic steatosis that further progressed
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to NASH. Three processes that occur at the ER site are critical for
VLDL secretion. These include the import of neutral lipids from
the ER bilayer into the ER lumen, the assembly of pre-VLDL in
the ER lumen, and the export of pre-VLDL from the ER lumen to
the Golgi, where VLDL further undergoes a number of modifi-
cations before being transported to the plasma membrane for
secretion. Results from our biochemical and morphological
studies in VMP1 KO hepatocytes and mouse livers indicate that
VMP1 is required for the release of lipoproteins from the ER
membrane bilayer into the ER lumen, which is consistent with
findings in the intestine and liver of VMP1-deficient zebrafish
and early embryos of VMP1-deficient mice and HepG2 cells.10

However, some neutral lipids in our morphological studies
seem wrapped with entire ER membrane. These structures may
represent budded ER membranes with LDs, which separated
from bulk ER and thus are unable to enter the secretory
pathway. Moreover, as the electron microscopy sections only
reflect one single section, some parts, which are not present in
these sections, may not be covered by ER bilayers. 3D-electron
microscopy may be necessary to further confirm these results in
the future.

It is known that MTP is required for transferring the bulk of
TGs into the ER lumen for VLDL assembly. MTP activity is
enhanced by PDI, which is regulated by the IRE1a-XBP1s-PDI
axis.14 No significant changes in either hepatic MTP or PDI were
found in Vmp1 KO mice, suggesting that MTP and PDI are less
likely to be involved in the retention of neutral lipids in the ER
membrane bilayer of Vmp1 KO hepatocytes. The amount of PC
and PE as well as the fatty acyl chain compositions of PC and PE,
especially the arachidonyl chain of PC and PE, have been shown
to regulate VLDL secretion.16,17 A recent report showed that
VMP1 has scramblase activity,11 but whether loss of VMP1 may
affect the equilibration of phospholipids in the ER membrane
and contribute to impaired VLDL secretion remains to be inves-
tigated. However, we found that loss of VMP1 decreased hepatic
PC and PE content, and altered the acyl chain composition of
phospholipids. ER-mitochondria contact sites are enriched with
phospholipid synthesis enzymes including phosphatidylserine
synthase and phosphatidylethanolamine N-methyltransferase.18

Loss of VMP1 increases ER-mitochondria contact sites in
cultured COS7 cells.7 Therefore, it is likely that VMP1 may affect
biosynthesis of phospholipids by regulating ER-mitochondrial

A

B

C D

E

PDI55

100

70

130

130

15

25

40

100

70

(wks)
H-WT

1 2 4
H-Vmp1 KO

MTP

1.00 ± 0.09 1.21 ± 0.13 1.23 ± 0.11 1.08 ± 0.07

1.00 ± 0.05 1.32 ± 0.12 1.2 ± 0.05 1.24 ± 0.04

1.00 ± 0.11 1.21 ± 0.45 0.71 ± 0.2 0.60 ± 0.02

1.00 ± 0.08 0.77 ± 0.16 0.52 ± 0.09 0.38 ± 0.02

1.00 ± 0.07 0.86 ± 0.11 0.57 ± 0.02 0.65 ± 0.01

1.00 ± 0.05 1.40 ± 0.15 1.11 ± 0.03 1.28 ± 0.06

1.00 ± 0.02 1.06 ± 0.08 0.85 ± 0.02 0.84 ± 0.08

SEC23A

SEC24C

SEC24D

SAR1A

SAR1B

β-actin

130

40

100

70

55

15

25

35

15

130

H-WT H-Vmp1 KO H-Vmp1 KO/KI

2 weeks post AAV

1.00 ± 0.27 0.30 ± 0.07 1.18 ± 0.04

1.00 ± 0.17 0.71 ± 0.03 1.16 ± 0.05

1.00 ± 0.16 0.25 ± 0.06 1.23 ± 0.05

1.00 ± 0.22 1.12 ± 0.08 0.30 ± 0.05

1.00 ± 0.04 0.92 ± 0.11 0.79 ± 0.02

1.00 ± 0.75 21.80 ± 0.71 13.34 ± 2.2

1.00 ± 0.33 8.18 ± 0.67 6.17 ± 0.66

SEC23A

SEC24C

SEC24D

SAR1A

SAR1B

p62

GAPDH

LC3I
LC3II

VMP1-FLAG
VMP1 40

130

40

130

Cre- Cre+

Vmp1flagKI

SEC24D

SEC24D

VMP1-FLAG

IP:anti-FLAG

Input

β-actin

Overlay SEC24DVMP1-GFP

10 μm 10 μm 10 μm

ROSA26 WT allele

Conditional KI allele

5’ Exon1 Exon2 3’

STOP CAGVmp1
3xFlag

polyA loxP loxP

Fig. 6. Reduced COPII in hepatic Vmp1 KO mice. (A) Total liver lysates of indicated mice were subjected to immunoblot analysis. (B) Strategy for generating
conditional Vmp1KI mice. (C) Total liver lysates of indicated mice were subjected to immunoblot analysis. (D) Immunoprecipitation assay for VMP1 and SEC24D in
mouse livers. (E) Vmp1flox mice were injected with AAV8-TBG-cre for 1 week followed by injecting Ad-Vmp1-Gfp for another 2 weeks. Immunostaining for SEC24D
was performed and the colocalization of VMP1-GFP and SEC24D was assessed by confocal microscopy. KI, knock-in. (This figure appears in color on the web.)

Journal of Hepatology 2022 vol. 77 j 619–631 627



contact independent of its scramblase activity. Decreased PC and
PE contents together with altered acyl chain composition of
phospholipids may thus change the biophysical tension and
curvature of the ER membrane that halts the import of neutral
lipids from the ER membrane bilayer to the ER lumen. Future
work is needed to investigate whether and how VMP1 could
regulate the biosynthesis of PC and PE.

Hepatic mRNA and protein levels of APOB decreased in H-
Vmp1 KO mice. However, this could be a secondary effect due to
the lack of lipoproteins in Vmp1 KO hepatocytes, as it is known
that APOB is degraded via the ER-associated degradation
pathway when lipid availability is reduced.19 It has been reported
that VMP1 directly interacted with APOB100.10 We found that
VMP1 interacted with SEC24D, which raised the possibility that
binding of VMP1 with APOB and SEC24D may increase the pro-
tein stability of APOB and COPII complex proteins. Future studies
are needed to dissect how VMP1 might regulate hepatic APOB
and COPII proteins either at the post-translational or transcrip-
tional level or both. Nonetheless, as the majority of lipoproteins
are already entrapped inside the ER membrane bilayer in Vmp1

KO hepatocytes, decreased hepatic APOB and COPII complex
proteins may not be critical for impaired VLDL secretion in Vmp1
KO hepatocytes. Consistent with Morishita’s report,10 albumin
and A1AT secretion did not seem to be impaired in H-Vmp1 KO
mice, suggesting VMP1 may be specific for VLDL but not general
secretion. Interestingly, hepatic deletion of VMP1 almost abol-
ished APOB100 secretion with moderate reduction of APOB48.
Newberry et al. 20 reported that liver-specific Tm6sf2 KO mice
exhibited decreased VLDL secretionwithout changes in APOB100
and APOB48 secretion. Deletion of Tm6sf2 in Apobec1 KO
(APOB100-only) mice led to a smaller decrease in VLDL secretion
with increased APOB100 secretion compared to Tm6sf2 KO alone
while Apobec1 KO mice had normal VLDL secretion. Those ob-
servations, coupled with our current findings suggest that the
itinerary of a VLDL particle with APOB100 is distinct from that
with APOB48.

Loss of hepatic VMP1 led to increased accumulation of acyl-
carnitines with decreased ketone bodies and 14C-palmitate
oxidation, suggesting reduced FAO in Vmp1 KO mice. Decreased
FAO was also found in Vps15, Atg7 and Atg5 KO mice.21,22
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However, decreased FAO may not be the major cause of lipid
accumulation in Vmp1 KO mouse livers, as L-Atg5 and Atg7 KO
mice do not have obvious steatosis and L-Atg5 KO mice have
normal VLDL secretion.13,22 Moreover, zebrafish lacking rb1cc1/
fip200 or atg5 also do not affect VLDL secretion.10 Therefore,
hepatic steatosis in Vmp1 KO mice is likely largely due to
impaired VLDL secretion and less to reduced FAO and also likely
independent of decrements in autophagy.

The NASH phenotypes in H-Vmp1 KO mice are distinct from
other NASH models including L-Lpcat3 KO, Mea6 KO, Sar1b KO
and Surf4 KO mice.16,23–25 While L-Lpcat3 KO, Mea6 KO, Sar1b KO
and Surf4 KO mice all showed defective hepatic VLDL secretion
and steatosis, none of them develop NASH. Notably, liver-specific
Sar1b and Surf4 KO mice have near-total depletion of serum TG
and cholesterol, but no obvious liver damage or inflammation.
Liver-specific deletion of TMEM41B, another ER lipid scramblase
and homologue of VMP1, also led to impaired VLDL secretion and
NASH in mice.26 Unlike deletion of VMP1, deletion of TMEM41B
does not affect levels of hepatic PC and only slightly decreased PE
but increased hepatic lipogenesis without inducing ER stress.
Deletion of either VMP1 or TMEM41B is sufficient to impair VLDL
secretion resulting in NASH, suggesting that TMEM41B cannot

compensate for the loss of VMP1 in H-Vmp1 KO mice and vice
versa. Moreover, overexpression of VMP1 is able to correct the
autophagy defect in TMEM41B-deficient cells but not vice versa,6

further supporting distinct functions of VMP1 and TMEM41B
beyond lipid scramblase.

Increased cell death, inflammation and fibrosis have been
observed in liver-specific Atg5 KO mice.27 Loss of autophagy can
impair the removal of dysfunctional mitochondria resulting in
decreased FAO, which can further exacerbate steatosis in Vmp1
KO mice. Therefore, the NASH phenotypes in Vmp1 and Tmem41b
KO mice are likely due to combined defects in VLDL secretion
and autophagy, which is unique to VMP1 and TEM41B but not for
TANGO1, TALI, Mea6 and SAR1B.

In summary, our results indicate that lack of hepatic
VMP1 impairs VLDL secretion and autophagy resulting in
NASH. Intronic single-nucleotide polymorphism associations
(rs11650106, rs2645492 and rs1292065) in the VMP1 gene have
been identified and are associated with increased levels of
circulating LDL cholesterol, total cholesterol, triglyceride or
decreased level of lipoprotein-associated phospholipase A2 by
human genome-wide association studies.28–31 The decreased
circulating TG and cholesterol in Vmp1 KO mice may also

A B

C

D

F

40 

35 

VMP1

GADPH

Control CDAHFD

1.00 ± 0.19 0.33 ± 0.06

G

0

 S
er

um
 T

G
 (m

g/
dl

)
500

0 2 3 4
Time (hrs) 

1,000

1,500

2,000

1

* *

E

0

H
ep

at
ic

 T
G

 (m
g/

g)

10

20

30

40
***

50

WT

H-Vmp1
 KI

0

H
ep

at
ic

 C
H

L 
(m

g/
g)

2

4

6

***
8

WT

H-Vmp1
 KI

0

PC
 (μ

m
ol

/g
)

10

20

30 ** **

- +
WT

+
H-Vmp1

KI

CDAHFD

Vmp1-WT Control diet
Vmp1-WT CDAHFD
H-Vmp1 KI CDAHFD

0

PE
 (μ

m
ol

/g
)

5

15

10

20 ** **

- +
WT

+
H-Vmp1

KI

CDAHFD

0.0

V
m

p1
 m

R
N

A 
le

ve
l

0.5

1.0

*1.5

Con
tro

l

CDAHFD

40 

35 

VMP1

GADPH

Normal NAFLD NASH

H-Vmp1 KO H-Vmp1 KO/KI

100 μm 100 μm 100 μm

50 μm 50 μm 50 μm

VM
P1

H
&E

Normal

Normal

NASH #1

NAFLD

NASH #2

NASH

50 μm

50 μm

W
T

H
-V

m
p1

 K
I

H

Vmp1KI

2 wks 6 wks

CDAHFD

AAV8-TBG-null (H-WT)
AAV8-TBG-cre (H-Vmp1 KI)

Fig. 8. Decreased VMP1 in human NAFLD and overexpression of VMP1 alleviates diet-induced steatosis in mice. (A) Total lysates from human livers were
subjected to immunoblot analysis. (B) Representative images of VMP1 IHC and H&E staining of normal and NAFLD/NASH patient livers. (C) H-WT mice were fed
with CDAHFD for 6 weeks. Protein and mRNA levels of VMP1 in mouse livers were measured by immunoblot and qPCR analysis. (D) Scheme of CDAHFD-induced
NASH in mice. (E) Hepatic concentrations of PC and PE, (F) TG and cholesterol and (G) H&E staining of liver tissues. (H) VLDL secretion was assessed in WT and
VMP1 KI mice. Data represent mean ± SEM (n = 5-7). *p <0.05; ***p <0.001 (Unpaired Student’s t test for 2 group comparison or one-way ANOVAwith Holm-Sidak
post hoc test for multigroup comparison). NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis. (This figure appears in color on the web.)

Journal of Hepatology 2022 vol. 77 j 619–631 629



provide novel insights into potential strategies for preventing
cardiovascular disease and atherosclerosis by targeting VMP1.
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