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Original Investigation | Genetics and Genomics
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Abstract

IMPORTANCE Polygenic risk scores (PRSs), which aggregate the genetic effects of single-nucleotide
variants identified in genome-wide association studies (GWASs), can help distinguish individuals at
a high genetic risk for Alzheimer disease (AD). However, genetic studies have predominantly focused
on populations of European ancestry.

OBJECTIVE To evaluate the transferability of a PRS for AD in the Korean population using summary
statistics from a prior GWAS of European populations.

DESIGN, SETTING, AND PARTICIPANTS This cohort study developed a PRS based on the summary
statistics of a large-scale GWAS of a European population (the International Genomics of Alzheimer
Project; 21 982 AD cases and 41 944 controls). This PRS was tested for an association with AD
dementia and its related phenotypes in 1634 Korean individuals, who were recruited from 2013 to
2019. The association of a PRS based on a GWAS of a Japanese population (the National Center for
Geriatrics and Gerontology; 3962 AD cases and 4074 controls) and a transancestry meta-analysis of
European and Japanese GWASs was also evaluated. Data were analyzed from December 2020 to
June 2021.

MAIN OUTCOMES AND MEASURES Risk of AD dementia, amnestic mild cognitive impairment
(aMCI), earlier symptom onset, and amyloid β deposition (Aβ).

RESULTS A total of 1634 Korean patients (969 women [59.3%]), including 716 individuals (43.6%)
with AD dementia, 222 (13.6%) with aMCI, and 699 (42.8%) cognitively unimpaired controls, were
analyzed in this study. The mean (SD) age of the participants was 71.6 (9.0) years. Higher PRS was
associated with a higher risk of AD dementia independent of APOE ε4 status in the Korean
population (OR, 1.95; 95% CI, 1.40-2.72; P < .001). Furthermore, PRS was associated with aMCI,
earlier symptom onset, and Aβ deposition independent of APOE ε4 status. The PRS based on a
transancestry meta-analysis of data sets comprising 2 distinct ancestries showed a slightly improved
accuracy.

CONCLUSIONS AND RELEVANCE In this cohort study, a PRS derived from a European GWAS
identified individuals at a high risk for AD dementia in the Korean population. These findings
emphasize the transancestry transferability and clinical value of PRSs and suggest the importance of
enriching diversity in genetic studies of AD.

JAMA Network Open. 2022;5(12):e2247162. doi:10.1001/jamanetworkopen.2022.47162
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Introduction

Alzheimer disease (AD) is the main cause of dementia, affecting approximately 50 million individuals
worldwide, and the number is expected to triple by 2050 owing to population aging.1 This is
particularly problematic in East Asia, where the population is aging rapidly. It is estimated that nearly
a quarter of patients with dementia live in East Asia, and the number is expected to double over the
next 20 years.2

The pathological process of AD begins long before the onset of clinical dementia. Therefore,
identifying individuals at a high risk for developing AD is of utmost importance for potential
preventive and therapeutic strategies.3 Genetic information can be used to identify individuals at a
high risk for AD because the heritability of AD is estimated to be 60% to 80%.4 Previous studies have
demonstrated that polygenic risk scores (PRSs), which aggregate the genetic effects of single-
nucleotide variants (SNVs) identified in genome-wide association studies (GWASs), can help
distinguish individuals at a high genetic risk for AD.5

However, previous genetic studies were conducted predominantly in populations of European
ancestry. Thus, the generalizability of a PRS to non-European populations remains unknown.6 A 2019
study examined the risk assessment capability of European ancestry–derived PRSs in samples of
non-European ancestry with various phenotypes.7 The PRS for AD derived from European
populations was also tested in non-Hispanic Black8,9 and Caribbean Hispanic individuals.10 However,
the performance of PRSs for AD in Asian populations has not yet been evaluated.

Our study aimed to evaluate the transferability of a PRS for AD in the Korean population using
summary statistics from a prior large-scale GWAS of European populations.11 Moreover, we applied
our PRS to determine whether it is associated with risk of amnestic mild cognitive impairment (aMCI),
earlier symptom onset, or amyloid β (Aβ) deposition. We also evaluated the PRS based on a GWAS
of a Japanese population12 and a transancestry meta-analysis of European and Japanese GWASs.

Methods

All participants provided written informed consent in the primary Korean data set, and the study was
approved by the institutional review board of each center. This study followed the reporting
requirements of the Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) Statement.

Data Set 1
A total of 1255 participants of Korean ancestry were recruited from 14 referral hospitals in the
Republic of Korea from January 2013 to July 2019 (Figure 1). Among them, 954 participants were
recruited from the Samsung Medical Center, 202 from a multicenter study of the Korean Brain Aging
Study for Early Diagnosis and Prediction of AD,13 and 99 from a multicenter clinical research platform
study based on the dementia cohort. We included participants who were diagnosed with AD

Figure 1. Study Data Sets and Analysis Steps
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dementia or aMCI or those who were cognitively unimpaired (CU) based on detailed
neuropsychological test results.14-16 We used the participants’ diagnoses at the latest assessment
point. AD dementia was defined in accordance with the core clinical criteria for probable AD
dementia according to the National Institute on Aging-Alzheimer Association.15 aMCI was defined in
accordance with the following criteria, modified from Peterson’s criteria17: (1) normal activities of
daily living performance, (2) objective memory impairment on a verbal or visual memory test below
the 16th percentile of age- and education-matched norms, and (3) no dementia.

Participants were excluded when they had (1) a causative genetic mutation for AD in known
genes, such as PSEN1, PSEN2, or APP; (2) structural abnormalities detected on brain magnetic
resonance imaging, such as severe cerebral ischemia, territorial infarction, or brain tumors; or (3)
other medical or psychiatric diseases that may cause cognitive impairment.

Data Set 2
For the replication data set, 379 participants of Korean ancestry were recruited from 20 referral
hospitals in the Republic of Korea. Of these, 125 participants were from the biobank of the Chronic
Cerebrovascular Disease Consortium, recruited from 2016 to 2018. This was part of the ongoing
BICWALZS study (Biobank Innovation for Chronic Cerebrovascular Disease With Alzheimer’s Disease
Study) and data from the Center for Convergence Research of Neurological Disorders.18 The
remaining 254 participants were recruited from the PREMIER (Precision Medicine Platform for Mild
Cognitive Impairment Based on Multi-omics, Imaging and Evidence-based Research & Business
Development) study. We included participants who were diagnosed with AD dementia or CU
according to the same criteria in data set 1.

Genotyping and Imputation
DNA samples were genotyped using the Asian screening array (ASA) chip (Illumina). A subset of 125
samples was genotyped using a customized Korea Biobank array (KBA) chip (Affymetrix).19 Quality
control for SNV data was conducted using the PLINK software and imputation was conducted using
the Minimac4 software at the University of Michigan Imputation Server (eMethods in the
Supplement).

Amyloid Positron Emission Tomography (PET)
A subset of 1214 participants in data set 1 underwent either 18F-florbetaben or 18F-flutemetamol PET
(eMethods in the Supplement).20 Aβ positivity was determined by visual assessments.

GWAS Summary Statistics
To investigate the transferability of the PRS in the Korean population, we utilized the summary
statistics generated from the European International Genomics of Alzheimer Project (IGAP) GWAS
(11 480 632 SNVs from 21 982 AD cases and 41 944 controls)11 and East Asian–based National Center
for Geriatrics and Gerontology (NCGG) Japanese GWAS (4 852 957 SNVs from 3962 AD cases and
4074 controls).12 Furthermore, we derived the PRS using transancestry meta-GWAS results
(12 519 321 SNVs) obtained from an inverse variance-weighted fixed-effects meta-analysis of the
European and Japanese GWAS results using METAL.21

PRS Generation
Based on previous study data,5,22,23 we excluded 3877 SNVs surrounding APOE (chromosome 19,
44 400 to 46 500 kb, GRCh37/hg19) to derive the PRS independent of the APOE region (eMethods
in the Supplement). PRSice-2 software version 2.3.3 (GNU General Public License) was used to
generate the PRS for AD dementia using prior GWAS summary statistics (European GWAS, Japanese
GWAS, or meta-analysis).
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Validation and Replication of the PRS for AD
After calculating each participant’s PRS, we performed a logistic regression analysis to determine
whether the PRS derived from the summary statistics for the AD risk based on European populations
was associated with AD dementia diagnosis in the data set 1 and 2 after adjusting for age, sex,
education year, APOE ε4 carrier status, and the first 4 principal components of genetic ancestry. To
verify whether the association of the PRS with AD dementia diagnosis varied by the APOE ε4 carrier
status, we performed the same analysis after stratifying the participants into APOE ε4 carriers and
noncarriers. In addition, we developed the PRS based on previous Japanese GWAS and transancestry
meta-GWAS results and evaluated the association of PRS with AD.

Application of the PRS in Various Phenotypes
A multivariable logistic regression analysis was conducted for the participants with aMCI to evaluate
whether the PRS is associated with aMCI independent of age, sex, education year, APOE ε4 carrier
status, and the first 4 principal components of genetic ancestry.

We stratified the participants based on quartiles of the PRS and evaluated whether the PRS can
be used for risk stratification in addition to APOE ε4 genotyping. We also evaluated whether the
participants with a high PRS showed earlier development of AD than did those with a low PRS. We
performed a Cox regression analysis with age at AD onset and age at the last clinical visit as time
variables and the diagnosis of AD as a status variable.

Furthermore, using a subset of 1214 participants who also underwent Aβ PET, we also
performed a logistic regression analysis to evaluate whether the PRS is associated with Aβ positivity.
We adjusted for the effect of age at which Aβ PET was performed, sex, education year, and APOE ε4
carrier status.

Statistical Analysis
For demographic and clinical characteristics, categorical and continuous variables were presented as
totals and mean averages, respectively. The χ2 test was used for categorical variables and analysis of
variance for continuous variables. Cochran-Armitage tests were used to determine P values for trend.
We reported 2-tailed P values and defined P < .05 as statistically significant. All statistical analyses
and result visualization were performed using PLINK version 1.90,24 R version 3.6.1 (R Project for
Statistical Computing), and MATLAB.

Results

Participants
Data set 1 included a total of 1255 participants with a mean (SD) age of 72.2 (8.9) years (739 women
[58.9%]) (Table 1). Data set 2 included 379 participants with a mean (SD) age of 69.8 (9.3) years (230
women [60.7%]). In the principal component analysis (PCA) with data from the 1000 Genomes
Project, there was an ethnic overlap of our data set with those of other East Asian populations. In the

Table 1. Demographic and Clinical Characteristics of the Study Data Sets

Characteristics

Patients, No. (%)

Data set 1 (n = 1255) Data set 2 (n = 379)
CU
(n = 479)

AD dementia
(n = 554)

aMCI
(n = 222)

CU
(n = 220)

AD dementia
(n = 159)

Age, mean (SD), y 70.7 (7.6) 73.1 (10.0) 73.0 (8.2) 67.8 (9.2) 72.6 (8.6)

Sex

Women 282 (58.9) 348 (62.8) 109 (49.1) 139 (63.2) 91 (57.2)

Men 197 (41.1) 206 (37.2) 113 (50.9) 81 (26.8) 68 (42.8)

Education, mean (SD), y 11.2 (4.9) 10.4 (5.0) 11.9 (4.7) 11.3 (4.6) 9.7 (5.3)

APOE ε4 carrier 118 (24.6) 314 (56.7) 79 (35.6) 55 (25.0) 74 (46.5)

Abbreviations: AD, Alzheimer disease; aMCI, amnestic
mild cognitive impairment; CU, cognitively
unimpaired.
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East Asian population, mean (5-SD) of PC1 and PC2 were 0.152 (0.001) and 0.034 (0.005)
respectively. In our study cohorts, mean (5-SD) of PC1 and PC2 were 0.151 (0.001) and 0.032 (0.005),
respectively. However, there was no stratification by genotyping arrays (ASA and KBA) (eFigure 1 in
the Supplement). In addition, the PRS distributions among the study participants were not
significantly different according to the genotyping arrays. In patients with AD dementia, mean
(standard error [SE]) of PRS was 0.269 (0.016) and 0.285 (0.051) for those using ASA and KBA chips
respectively (P = .33). In patient who were CU, mean (SE) of PRS was 0.158 (0.016) and 0.212 (0.053)
for those using ASA and KBA chips respectively (P = .77) (eFigure 2 in the Supplement).

Optimal PRS Generation for the Korean Population
To determine the best parameters (P value threshold cut-off and linkage disequilibrium [LD]-based
clumping value) for PRS calculation, we used PRSice-2 using the European GWAS (IGAP) summary
statistics. Among various thresholds, we observed the highest Nagelkerke R2 value (0.020) when the
P and LD values were 4.15 × 10−6 and 0.1, respectively (eFigure 3A in the Supplement). From these
thresholds, 39 SNVs were selected, and their β coefficients were used to create the PRS (eTable 1 in
the Supplement). We observed a significant correlation between the β coefficients of the 39 SNVs
calculated from the European GWAS (IGAP) and those from data set 1 (Spearman correlation = 0.533;
P < .001) (Figure 2).

Association of the PRS With AD Dementia, aMCI, and Aβ Deposition
A higher PRS was associated with an increased risk of AD dementia after adjusting for the effect of
age, sex, education, and APOE ε4 status (odds ratio [OR], 1.95; 95% CI, 1.40-2.72; P < .001) (Table 2).

Figure 2. Scatter Plot of β Coefficients of 39 SNVs
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Furthermore, PRS was also associated with the AD dementia risk in both APOE ε4 carriers (OR, 2.73;
95% CI, 1.53-4.97; P = .001) and noncarriers (OR, 1.70; 95% CI, 1.14-2.59; P = .01). These results were
replicated in data set 2 (eg, AD dementia diagnosis: OR, 1.85; 95% CI, 1.05-3.32) (Table 2). Similarly,
we observed that a higher PRS was significantly associated with an increased risk of aMCI (OR, 1.74;
95% CI, 1.16-2.64; P = .008) and Aβ deposition in the brain (OR, 1.81; 95% CI, 1.32-2.48; P < .001).

Utility of the PRS in Risk Stratification of AD Dementia–Related Outcomes
To evaluate the AD dementia risk using the PRS, we stratified the participants according to PRS
quartiles. There were significant differences among the PRS risk groups in amyloid positivity,
diagnosis, and age at symptom onset. Particularly, the mean age at symptom onset was
approximately 3.7 years younger in the very high PRS group than in the low PRS group (mean [SD] of
age at symptom onset: low PRS group, 69.0 [9.9] vs very high PRS group, 65.3 [9.7]) (eTable 2 in the
Supplement). When we combined PRS and APOE ε4 status, we observed a stepwise increase in the
risk of AD dementia, earlier age at symptom onset, and Aβ deposition according to the PRS quartile
in both APOE ε4 carriers and noncarriers (Figure 3). Notably, compared with APOE ε4 noncarriers in
the low PRS group, the APOE ε4 carriers in the very high PRS group showed a 6.73-fold (95% CI,
3.99-11.75), 2.74-fold (95% CI, 1.88-4.00), and 15.04-fold (95% CI, 8.45-28.13) higher risk for AD
dementia, earlier age at symptom onset, and Aβ deposition, respectively.

Transferability of the PRS Based on the Japanese GWAS and Meta-analysis
GWAS Data
We further evaluated the PRS derived from the Japanese GWAS (3962 AD cases and 4074 controls).
Across the various thresholds (P and LD values), the highest Nagelkerke R2 value for PRS was 0.006
(P = .03) when the P and LD values were 5.00 × 10−8 and 0.1, respectively, which was smaller than
PRS based on the European GWAS (Nagelkerke R2 = 0.020; P < .001). Next, we performed
transancestry meta-GWAS from European and Japanese GWAS (eFigure 4 in the Supplement). When
we developed PRS from the transancestry meta-GWAS, the transancestry PRS achieved the highest
performance (Nagelkerke R2 = 0.023; P < .001) among other PRSs (eFigure 3, eTables 3 and 5 in the
Supplement). In contrast to European population–based and transancestry PRS, Japanese
population–based PRS showed the highest performance when using a single SNV (eTable 4 in the
Supplement) and its estimation of AD dementia risk was not replicated in the data set 2 (eTable 5 in
the Supplement).

Discussion

In this study, we demonstrated that a PRS derived from a prior GWAS of European ancestry was
associated with AD dementia risk independent of APOE ε4 status in the Korean population.

Table 2. Association of the PRS With AD Dementia, aMCI, and Aβ Deposition

Measure OR (95% CI) P value
AD dementia diagnosisa

Data set 1 1.95 (1.40-2.72) <.001

Data set 2 1.85 (1.05-3.32) .04

aMCI diagnosisb 1.74 (1.16-2.64) .008

Aβ PET depositionc 1.81 (1.32-2.48) <.001

Abbreviations: Aβ, amyloid β; AD, Alzheimer disease; aMCI, amnestic mild cognitive impairment; CU, cognitively
unimpaired; OR, odds ratio; PC, principal component; PET, positron emission tomography; PRS, polygenic risk score.
a Diagnosis (CU = 0, AD dementia = 1) = sex + age + education year + PC1-4 + APOE ε4 carrier (0 or 1) + PRS.
b Diagnosis (CU = 0, aMCI = 1) = sex + age + education year + PC1-4 + APOE ε4 carrier (0 or 1) + PRS.
c Aβ deposition (negative = 0, positive = 1) = sex + age + education year + PC1-4 + APOE ε4 carrier (0 or 1) + PRS.
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Furthermore, the PRS was associated with aMCI, earlier symptom onset of AD dementia, and Aβ
deposition independent of APOE ε4 status.

Our results support the potential utility of a prior large-scale GWAS of one population in
developing a PRS in another population. Consistent with our findings, previous studies have shown
that a PRS for AD derived from European GWASs accurately estimated the dementia risk among
non-Hispanic Black8,9 and Caribbean Hispanic individuals.10 In our multivariable logistic model, PRS
was associated with the AD dementia risk independent of the APOE ε4 carrier status, which was
replicated in the independent data set. We observed a stepwise increase in the risk of AD dementia
with increased PRS quantiles (Figure 3). In our Korean population data set, the APOE ε4 status

Figure 3. Forest Plots of AD Dementia–Related Outcomes According to the PRS Group and APOE ε4 Status
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showed the highest effect size among the factors, including the PRS, confirming that the APOE ε4
status is an important risk factor for AD dementia across various ancestries.25 However, risk
stratification based on the APOE ε4 status alone might be insufficient because individuals are
classified into only 3 genotypes (APOE ε4 noncarrier, heterozygous carrier, and homozygous carrier),
and this status does not provide sufficient explanation of the phenotypic variance of AD. In this
regard, aside from the APOE genotype, PRS may further explain the phenotypic variance and
represent the polygenicity of AD dementia. Notably, compared with APOE ε4 noncarriers in the low
PRS group, the APOE ε4 carriers in the very high PRS group showed a 6.73-fold (95% CI, 3.99-11.75)
higher risk for AD dementia. Therefore, PRS is expected to be a useful risk tool for assessing risk in
addition to the APOE ε4 status in precision medicine.

We demonstrated that higher PRS was associated with increased risk of aMCI. This is consistent
with previous findings that PRS for AD was associated with MCI.26,27 In addition, we observed that
patients with higher PRS were more likely to develop AD dementia symptoms at a younger age. The
mean age at symptom onset was approximately 3.7 years younger in the very high PRS group
compared with the low PRS group. It is well known that APOE ε4 is associated with earlier symptom
onset of AD dementia. Our results showed that PRS further indicates an acceleration in the age at
symptom onset beyond the effect of APOE ε4. A previous study also showed that PRS derived from
23 genetic variants was associated with the age at symptom onset of AD dementia.28

Furthermore, we found a significant association between PRS and Aβ positivity independent of
the APOE ε4 carrier status (Figure 3). When we stratified participants according to APOE genotype
and PRS, we found that compared with APOE ε4 noncarriers in the low PRS group, the APOE ε4
carriers in the very high PRS group showed a 15.04-fold (95% CI, 8.45-28.13) higher risk for Aβ
deposition (Figure 3). This is in line with previous findings,22,29-34 which showed that the PRS was
associated with AD pathologies (Aβ deposition, τ, and neurodegeneration). Identifying patients with
Aβ deposition is crucial in predicting prognosis and selecting patients for clinical trials of anti-Aβ
therapy.35 Currently available diagnostic tools for measuring Aβ deposition are either invasive
(cerebrospinal fluid examination) or expensive (PET).36 Our findings highlight that the genetic data
(PRS and APOE ε4 status) obtained from less invasive methods (blood or saliva specimen evaluation)
can be used to prescreen individuals for Aβ positivity. These findings indicate the potential use of the
PRS to promote early intervention by early identification of individuals at an increased risk for AD
dementia.

The performance of the PRS was low when it was developed based on a prior GWAS of the
Japanese population (eFigure 3 in the Supplement), despite the closer genetic relatedness of Korean
individuals with Japanese populations than with European populations, as shown in the 1000
Genomes Project data set (eFigure 1 in the Supplement). We speculated that this low performance
could be attributed to the difference in the sample size of the GWAS (8036 Japanese patients vs
63 926 European patients). The GWAS with a larger sample size identified more SNVs, estimated
more accurate β coefficients of each SNV, and further improved the performance of PRS compared
with its counterpart. When we used the data from the transancestry meta-analysis of European and
Japanese GWAS, the transancestry PRS achieved the highest Nagelkerke R2 value for AD dementia
in the Korean population, indicating the importance of ancestral background as well. As an additional
point of view, several studies have shown that different LD patterns could affect the transferability
when a risk is assessed by tagged SNVs from different ancestral backgrounds.37-40 Thus, the sample
size and ancestral background of prior GWASs are both important factors in developing PRS.

Limitations
This study has several limitations. First, the sample size of the Korean population was relatively small
compared with that of the European population, which limited the statistical power to compare the
effects of each variant between populations. Although this study was performed in thoroughly
phenotyped subjects using clinical and neuroimaging data, our findings should be replicated in larger
independent data sets. Second, the findings of this study were limited to the Korean population.
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Subsequent studies including other East Asian populations, such as Chinese or Japanese populations,
may further strengthen the evidence for transancestry transferability of PRS in the East Asian
population.

Conclusions

This cohort study found that a PRS derived from a European GWAS was associated with AD dementia
independent of APOE ε4 status in the Korean population. Furthermore, it was associated with aMCI,
earlier symptom onset of AD dementia, and Aβ deposition independent of APOE ε4 status. Our
findings emphasize the ancestral transferability and clinical value of the PRS and further emphasizes
the need for enriching diversity in genetic studies of AD.
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