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BRIEF COMMUNICATION OPEN

Urine cell-free DNA multi-omics to detect MRD and predict
survival in bladder cancer patients
Pradeep S. Chauhan1,11, Alexander Shiang1,2,11, Irfan Alahi1,3,11, R. Taylor Sundby 4, Wenjia Feng 1, Bilge Gungoren 5,
Cayce Nawaf2,6, Kevin Chen1, Ramandeep K. Babbra 7, Peter K. Harris1, Faridi Qaium1, Casey Hatscher1, Anna Antiporda1,
Lindsey Brunt1, Lindsey R. Mayer1, Jack F. Shern4, Brian C. Baumann1,6, Eric H. Kim2,6, Melissa A. Reimers6,8, Zachary L. Smith2,6 and
Aadel A. Chaudhuri 1,3,6,9,10✉

Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer
patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in
74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer
personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant
allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA)
significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model
incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual
disease in reference to gold-standard surgical pathology. Both progression-free survival (HR= 3.00, p= 0.01) and overall survival
(HR= 4.81, p= 0.009) were dramatically worse by Kaplan–Meier analysis for patients predicted by the model to have MRD, which
was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant
chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74
patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately.

npj Precision Oncology             (2023) 7:6 ; https://doi.org/10.1038/s41698-022-00345-w

INTRODUCTION
Bladder cancers shed tumor DNA into the urine, which can be
measured using ultra-deep targeted sequencing1,2,3. However,
the modest sensitivity of this approach to detect molecular
residual disease (MRD) limits clinical utility3. Here, we analyzed
urine cell-free DNA (cfDNA) using combinatorial ultra-deep
targeted sequencing and ultra-low-pass whole genome sequen-
cing (ULP-WGS) to sensitively detect MRD in urine and predict
survival after curative-intent radical cystectomy (Fig. 1a and
Supplementary Fig. 1).

RESULTS
Cohort characteristics and biofluid samples
Seventy-four localized bladder cancer patients underwent a
physician’s-choice of neoadjuvant treatment and curative-intent
radical cystectomy. Seventy-eight percent (58/74) harbored
muscle-invasive bladder cancer, while the rest had treatment-
refractory non-muscle-invasive bladder cancer (Supplementary
Data 1). Ninety-two percent (68/74) had urothelial carcinoma,
while the remainder had variant histologies. A full description of
the cohort is displayed in Supplementary Data 2. Urine cancer
personalized profiling by deep sequencing (uCAPP-Seq) libraries
prepared from urine cfDNA samples were sequenced to >900x
median unique depth (Supplementary Data 3) along with

comparably sequenced plasma (Supplementary Data 4) and
germline DNA (Supplementary Data 5). ULP-WGS libraries
prepared from urine cfDNA were sequenced to a median unique
coverage of 2x (Supplementary Data 6).

Cell-free DNA biomarker differences in relation to pCR status
Copy number-derived tumor fraction (TFx) levels, estimated from
ULP-WGS of urine cfDNA, ranged from 0 to 62% with a median
value of 4.3% in this cohort (Supplementary Data 2). Genome-wide
analysis of urine cfDNA revealed focal copy number alteration of
genes previously reported by The Cancer Genome Atlas (TCGA) to
be recurrently altered in MIBC (Supplementary Fig. 2)4,5, with
PPARG, ZNF703, and E2F3 being the most frequently amplified.
Further, uCAPP-Seq analysis of single nucleotide variant (SNV) data
from our full 74 patient cohort revealed that the TERT promotor
and TP53 were the most commonly mutated genes (Supplemen-
tary Fig. 3), again consistent with prior tissue sequencing data4–6.
Indicative of specificity, neither copy number alterations nor SNVs
were detected with significance in healthy adult urine cfDNA
(Supplementary Figs. 2, 3). Additionally, results of our copy
number (Supplementary Fig. 2) and uCAPP-Seq (Supplementary
Fig. 3) analyses demonstrated clear differences in urine cfDNA
based on pathologic complete response (pCR) status, which was
determined by examination of surgical specimens by board-
certified genitourinary pathologists.
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Bladder cancer patients who achieved pCR had significantly
lower variant allele frequency (VAF) levels measured by uCAPP-
Seq compared to those who did not (Fig. 1b) despite having
similar baseline characteristics (Supplementary Data 7). Strikingly,
urine cfDNA significantly outperformed plasma circulating tumor

DNA (Supplementary Fig. 4). We also measured the tumor
mutational burden inferred from the number of non-silent
mutations detected in urine cfDNA (iTMB). The median iTMB
was 170 (range 0–476) across the cohort, consistent with previous
reports in bladder cancer7. Comparing between subgroups,
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patients with no pCR had significantly higher iTMB levels than
patients with pCR (median 204 vs. 117, p= 0.001) (Fig. 1c). This
result is consistent with findings in breast cancer, suggesting that
increased TMB is a negative predictor of pCR to neoadjuvant
chemotherapy8. TFx, which was inferred from genome-wide copy
number alterations in urine cfDNA, also differed significantly
based on pCR status (median 2.4% for pCR vs. 9.9% for no pCR,
p < 0.0001) (Fig. 1d), suggesting that genome-wide copy number
alterations, like SNVs, could be utilized for urine-based MRD
detection in bladder cancer.

Random forest model for pCR and survival prediction
We next integrated the three urine cfDNA-derived metrics—
maximum VAF, iTMB, and TFx—with pretreatment clinical
variables using a machine learning random forest model that
we validated by leave-one-out cross-validation (LOOCV) (Supple-
mentary Fig. 5a). Area under the receiver operating characteristic
curve (AUROC) for the random forest model was 0.80 (p < 0.0001)
(Fig. 1e), with a sensitivity of 87%, a negative predictive value
(NPV) of 77%, and a positive predictive value (PPV) of 65% for
determining pCR (Fig. 1f). The combinatorial urine cfDNA metric
was by far the most important predictive feature in the model
(Supplementary Fig. 5b). Indeed, when we developed a LOOCV
model including only urine cfDNA features (maximum VAF, iTMB,
and TFx), its performance remained high with AUROC of 0.76 for
determining pCR (Supplementary Fig. 6).
Using our LOOCV model, we also aimed to predict survival

outcomes within our 74-patient localized bladder cancer cohort.
Therefore, we performed Kaplan–Meier and Cox regression
landmark analyses starting from the time of surgery (Fig. 2 and
Supplementary Data 8, 9). Strikingly, patients predicted by our
model to harbor MRD also had significantly worse progression-
free survival (PFS) (HR= 3.00, p= 0.01; Fig. 2a) and overall survival
(OS) (HR= 4.81, p= 0.009; Fig. 2b), comparable to the presence of
residual disease in the radical cystectomy specimen itself (PFS
HR= 3.13, p= 0.005; OS HR= 3.57, p= 0.03; Fig. 2c, d). Univariate
and multivariate Cox proportional hazards models confirmed the
significance of our MRD predictions (Supplementary Data 8, 9).
The model remained predictive for both PFS and OS when
restricted to only MIBC patients (Supplementary Fig. 7) and
patients treated with NAC (Supplementary Fig. 8). Furthermore,
the model remained significant for predicting PFS when applied to
an independent held-out validation cohort (Supplementary Fig.
9a) with a trend toward predicting OS significantly as well
(Supplementary Fig. 9b).

DISCUSSION
Here, we developed a multi-modal urine cfDNA method to
sensitively detect MRD and predict pCR in bladder cancer patients.
Our technology also predicted survival significantly and comparably

to gold-standard surgical pathologic analysis of resected tumor
tissue9. Limitations of our study include patients having only a single
timepoint assessment of urine cfDNA. Other investigations utilizing
plasma have shown that multiple samples obtained in surveillance
settings can achieve greater sensitivity for detecting circulating
tumor DNA MRD10,11. We nevertheless achieved high MRD
sensitivity by multimodally analyzing urine, the biofluid most
proximal to localized bladder cancer. While our study was
prospective, all samples were obtained from a single medical
center. It will be important to corroborate our findings in a multi-
institutional setting. Finally, given the prospective nature of our
study with all patients enrolled between 2019 and 2021, the median
follow-up time was modest at 23 months. It will be important to
perform a study with a longer follow-up to confirm the dramatic
survival differences we observed.
In conclusion, our multi-omic urine-based cell-free DNA analysis

allowed for the detection of MRD with high sensitivity and risk-
stratified patients by survival. In the future, this type of integrative
analysis could potentially be used to facilitate more personalized
clinical decision-making for bladder cancer.

METHODS
Patient recruitment and sample collection
We enrolled 74 patients with localized bladder cancer who
proceeded with curative-intent radical cystectomy at the Washing-
ton University Siteman Cancer Center. Eligible patients were
required to be at least 18 years old and to have a diagnosis of
bladder cancer confirmed by histologic or cytologic assessment.
Urine and blood collection was performed at the time of
enrollment. We also utilized urine and blood samples from 15
healthy adult volunteers for comparison. The methods were
performed in accordance with relevant guidelines and regulations
and approved by the institutional review board at the Washington
University in St. Louis School of Medicine. Patients and healthy
donors were enrolled in NCT04354064 (ClinicalTrials.gov). Written
informed consent was obtained from all trial participants in
accordance with the Declaration of Helsinki. This study followed
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines for observational studies.

Pathologic response assessment
Surgical resection specimens from radical cystectomy procedures
were processed consistently using a standardized institutional
approach, including specimen collection, handling, and submis-
sion to the Pathology Department at the Washington University
School of Medicine. Resected surgical specimens were micro-
scopically reviewed by blinded board-certified genitourinary
surgical pathologists. AJCC 8th edition pathologic stage T0, Tis,
and Ta were defined as pathologic complete response (pCR) in our

Fig. 1 Pathologic complete response prediction using a random forest model based on urine tumor DNA. a Urine was collected
prospectively from 74 localized bladder cancer patients pre-operatively on the day of curative-intent radical cystectomy after physician’s-
choice neoadjuvant treatment. Urine cell-free DNA was sequenced by uCAPP-Seq (for single nucleotide variants) and ULP-WGS (for genome-
wide copy number alterations) and then correlated with residual tumor in the surgical resection specimen and with patient survival. This
figure panel was created with BioRender.com. b SNV-derived maximum VAFs, c inferred tumor mutational burden, and d CNA-derived tumor
fraction levels in urine cell-free DNA from patients with localized bladder cancer. Scatter plots display these three different urine cell-free DNA
metrics, stratified by pathologic complete response status, with significance determined by the Mann–Whitney U-test. VAF and CNA-derived
tumor fraction data are shown after square root transformation. e ROC analysis of random forest model integrating urine tumor DNA metrics
and other pretreatment clinical variables (Supplementary Fig. 5). ROC curve demonstrating the model’s performance for predicting pCR after
LOOCV (AUC= 0.80, p < 0.0001). f Stacked bar plot depicting NPV and PPV of the random forest model with LOOCV, with significance
determined by the Fisher’s exact test. AUC area under the curve, cfDNA cell-free DNA, CNA copy number alteration, iTMB inferred tumor
mutational burden, LOOCV leave-one-out cross-validation, max maximum, MRD molecular residual disease, NPV negative predictive value,
pCR pathologic complete response, PPV positive predictive value, ROC receiver operating characteristic, SNV single nucleotide variant, Sqrt
square root, TFx tumor fraction, uCAPP-Seq urine cancer personalized profiling by deep sequencing, ULP-WGS ultra-low-pass whole genome
sequencing, VAF variant allele frequency.
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study. Non-pathologic complete response (no pCR) was defined as
stages T1, T2, T3, or T4, with or without evidence of nodal disease
(N1–N2) and/or evidence of metastatic disease.

Urine cell-free DNA extraction
Urine samples were collected in cups pre-filled with 1–2mL of
0.5 M EDTA. Shortly following collection, cfDNA was extracted
from 22 to 90ml of urine with Q-sepharose resin slurry (GE
Healthcare, Chicago, Illinois)3. Briefly, Q-sepharose resin was
added to urine at a ratio of 10 ul slurry per ml of urine and mixed
for 30 min. After centrifuging the mixture at 1800 × g for 10 min,
the supernatant was discarded. The resin was washed twice with
0.3 M LiCl/10 mM sodium acetate (pH 5.5), transferred to a Micro
Bio-Spin column (Bio-Rad, Hercules, California, USA), and the
bound DNA was eluted with 70% ethanol and passed over a
QIAquick column (Qiagen, Hilden, Germany). Columns were then
washed with 2 M LiCl in 70% ethanol, followed by 75mM
potassium acetate (pH 5.5) in 80% ethanol. Finally, DNA was
eluted in nuclease-free water or 10mM Tris-Cl (pH 8.5). Urine
cfDNA was quantified using the Qubit dsDNA High Sensitivity
Assay kit (Thermo Fisher Scientific, Waltham, Massachusetts).

cfDNA quality was assessed on an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, California).

Germline DNA extraction
A peripheral blood sample was collected from each subject using
EDTA tubes (Becton Dickinson, Franklin Lakes, New Jersey).
Plasma-depleted whole blood (PDWB) was collected by centrifu-
gation and then frozen at −80 °C prior to the isolation of germline
DNA. Germline DNA was extracted from 50 to 100 ul of PDWB
using the QIAmp DNA Micro Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. DNA was then
quantified by the Qubit dsDNA High Sensitivity Assay to
determine yield (Thermo Fischer, Waltham, Massachusetts).

Cancer personalized profiling by deep sequencing (CAPP-Seq)
Urine CAPP-Seq was performed on urine cfDNA along with
matched germline DNA1,3. Briefly, urine cfDNA and germline DNA
were fragmented to ~180 bp size fragments prior to library
preparation using a LE220-focused ultrasonicator (Covaris,
Woburn, Massachusetts). Approximately 32 ng of sheared urine
cfDNA or germline DNA was used for library preparation using the

Fig. 2 Survival analysis comparing urine MRD detection to pathologic analysis of the resection specimen. Kaplan–Meier plots showing
a progression-free survival and b overall survival stratified by MRD detection in urine, determined by the LOOCV random forest model
(Supplementary Fig. 5). c Progression-free survival and d overall survival stratified by pCR determined by microscopic analysis of the radical
cystectomy specimen. Survival times shown are relative to the time of radical cystectomy. p values were calculated by the log-rank test and
HRs by the Mantel–Haenszel method. HR hazard ratio, LOOCV leave-one-out cross-validation, MRD molecular residual disease, pCR pathologic
complete response.
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KAPA HyperPrep kit with barcoded adapters containing demulti-
plexing, deduplicating, and duplexed unique molecular identifiers.
Targeted hybrid capture was performed per the standard uCAPP-
Seq method1,3. We used a focused MRD gene panel spanning
145 kb in size and consisting of 49 consensus driver genes
frequently mutated in bladder cancer for the VAF estimation in
each sample3. For TMB estimation, we utilized an expanded panel
of 387 kb in size which covers 536 genes3. Following hybridization
capture, libraries were sequenced deeply on a HiSeq 4000
(Illumina, San Diego, California) with 2 × 150 bp paired-end reads.
Sequencing results were analyzed for single nucleotide variants
using the CAPP-Seq bioinformatic pipeline12,13. CAPP-Seq was
similarly performed on plasma with matched germline DNA12–14.

Single nucleotide variant analysis from cfDNA
Only non-silent mutations with duplex support and with no
germline support were considered when querying MRD from
cfDNA3. Specifically, we defined maximum VAF as the maximum
variant allele fraction among all non-silent mutations with duplex
support detected by CAPP-Seq using our 145 kb driver gene-
focused MRD gene panel3, regardless of the number of other
mutations detected and their frequencies. Maximum VAF was
selected as the metric representing tumor DNA by CAPP-Seq, and
was correlated with MRD status in the surgical specimen. Non-
silent SNVs in urine cfDNA with >2.3% VAF3 are represented in the
Supplementary Fig. 3 heatmap. We additionally inferred tumor
mutational burden using our urine CAPP-Seq results. Briefly, we
utilized our TMB gene panel, which is 387 kb in size and covers
536 genes, and applied the equation determined previously by
linear regression while accounting for potential dropout in order
to infer exome-wide TMB3.

Ultra-low-pass whole genome sequencing (ULP-WGS)
ULP-WGS libraries were prepared from 32 to 50 ng of sheared urine
cfDNA using the Kapa HyperPrep kit (Roche, Basel, Switzerland).
Libraries were balanced, pooled, and sequenced on a HiSeq 4000
(Illumina, San Diego, California) to a median deduplicated depth of
2x (Supplementary Data 6). FASTQ files were demultiplexed and
raw reads were quality-filtered using fastp v.0.20.0. Quality-filtered
reads were then aligned to the hg19 human genome assembly
using BWA v.0.7.17. Aligned reads were deduplicated with
Samtools v.1.13. ichorCNA v0.2.01515 was then used to infer tumor
fractions in each urine cfDNA sample. Briefly, reads were summed
in nonoverlapping bins of 106 bases; local read depth was
corrected for GC bias and known regions of low mappability,
and artifacts were removed by comparison to ichorCNA’s built-in
healthy control reference. Copy number alterations (CNAs) were
then predicted across the whole genome using low tumor fraction
parameters for cfDNA samples; X and Y chromosomes were
excluded from copy number calculations. ichorCNA then used
these binned, bias-corrected copy number values to model a two-
component mixture of tumor-derived and non-tumor-derived
fragments, from which it inferred the fraction of reads in each
sample originating from the tumor (tumor fraction)15.
The visualization of aggregate genome-wide CNAs (Supple-

mentary Fig. 2) was generated from compiled log2 ratios of copy
number, broken down into three categories: No pathologic
complete response (n= 39), pathologic complete response
(n= 35), and healthy adults (n= 15). Following the removal of
artifacts, regions were classified as exhibiting copy number gain if
log2 of the copy number ratio was >0.58 (log2 (3/2)) or loss if log2
of the copy number ratio was <−1.0 (log2 (1/2))16. Midpoints of
genes previously shown to be commonly altered in whole exome
sequencing data of muscle-invasive bladder cancer, based on their
annotation in Fig. 1 of the respective TCGA publications4,5 are
specifically highlighted (Supplementary Figs. 2, 3).

Machine learning model to predict pathologic complete
response and survival
We implemented a random forest model for the prediction of pCR,
which we validated using LOOCV. We used the maximum VAF,
iTMB, and ULP-WGS-inferred tumor fraction (TFx) in urine cfDNA,
which were combined together into one urine tumor DNA feature
for the random forest model via multiplication followed by the
square root of the product. Other features in the model included
age, gender, ethnicity, smoking status, receipt of neoadjuvant
chemotherapy, and tumor invasion status (Supplementary Fig. 5).
We additionally developed another LOOCV random forest model
using only urine cfDNA features (VAF, iTMB, and TFx) without the
clinical variables (Supplementary Fig. 6). We used the Python
scikit-learn package (v0.24.2)17 to implement the random forest
algorithm, with the following parameters: n_estimators= 2000;
criterion= gini; bootstrap= True. The performance of the model
after LOOCV for predicting pCR was assessed by receiver
operating characteristic (ROC) area under the curve (AUC) analysis.
Patients predicted by the LOOCV model to not achieve pCR

were defined as MRD-positive, while those predicted to have pCR
were defined as MRD-negative. LOOCV model MRD predictions
were compared to gold-standard surgical pathology results
(Fig. 1f) and were also stratified by Kaplan–Meier analysis from
the time of surgical resection for progression-free survival (PFS)
and overall survival (OS) (Fig. 2). The model was additionally
generated using independent training and held-out validation
cohorts (Supplementary Fig. 9). Furthermore, we calculated feature
importance levels by assessing mean decrease in impurity18, to
determine how classifications of pCR (MRD-negative) versus no
pCR (MRD-positive) were affected if a particular feature was left out
of the random forest model (Supplementary Fig. 5b).

Power and statistical analyses
We powered the current study assuming a substantial difference in
urine tumor DNA levels between patients who achieved pCR or
healthy donors, compared to patients with no pCR. Assuming a large
effect size estimated by Cohen’s f= 0.5, we accrued subjects to this
study until there were at least 14 subjects per group (groups=
healthy donors, bladder cancer with pCR, bladder cancer with no
pCR) in order to detect a difference between healthy or pCR, and no
pCR with an estimated power of 80% and significance level of 0.05
as determined by one-way ANOVA. Patient characteristics such as
age, gender, ethnicity, smoking history, tumor stage, neoadjuvant
chemotherapy, and histology were statistically compared between
groups of pCR and no pCR patients using Fisher’s exact test for
categorical variables and Student’s t-test for normally distributed
continuous variables (Supplementary Data 7). SNV-derived max-
imum VAFs, inferred tumor mutational burden, and CNA-derived
tumor fraction levels in urine cell-free DNA from patients with
localized bladder cancer were statistically compared between
groups of pCR and no pCR using the Mann–Whitney U-test (Fig.
1b–d and Supplementary Figs. 4a, 7a–c, 8a–c). The Python scikit-
learn package (v0.24.2) was used for random forest modeling with
LOOCV (Supplementary Figs. 5, 6) or with separate training and
validation datasets (Supplementary Fig. 9). ROC analysis was carried
out to assess the performance of the LOOCV random forest model
and the corresponding AUC was calculated for the full cohort of 74
localized bladder cancer patients with and without pretreatment
clinical variables (Fig. 1e and Supplementary Fig. 6b) and for MIBC
patients (Supplementary Fig. 7d). MRD predictions based on the
LOOCV random forest model were compared to surgical ground-
truth by Fisher’s exact test (Fig. 1f and Supplementary Fig. 7e).
Survival curves for PFS and OS were analyzed by the Kaplan–Meier
method and statistical significance was determined by the log-rank
test (Fig. 2 and Supplementary Figs. 7f-g, 8d-e, 9). The
Mantel–Haenszel method was used to estimate hazard ratios. Cox
proportional hazards model (PHM) univariate and multivariate
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analyses were developed to assess both PFS and OS (Supplementary
Data 8, 9). In addition to random forest model prediction,
hematocrit, body mass index, and urine cfDNA concentration were
included in the multivariate models. For OS, there were no deaths
during the follow-up period among patients predicted by the
random forest model to achieve pCR. Given this, the assumption of
proportional hazards was not met. We performed all Kaplan–Meier
and Cox regression analyses starting from the time of surgery. The
reverse Kaplan–Meier method was used to calculate the median
follow-up time (Supplementary Data 1). All statistical analyses were
performed using Prism 9 (GraphPad Software, San Diego, California)
or SAS version 9.4 (SAS, Cary, North Carolina).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All FASTQ files corresponding to sequenced patient samples are available from the
sequencing read archive (SRA) under accession number PRJNA907063 and ID
number 907063.
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