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Abstract: Assessment and prediction of vulnerable plaque progression and rupture risk are of
utmost importance for diagnosis, management and treatment of cardiovascular diseases and possible
prevention of acute cardiovascular events such as heart attack and stroke. However, accurate
assessment of plaque vulnerability assessment and prediction of its future changes require accurate
plaque cap thickness, tissue component and structure quantifications and mechanical stress/strain
calculations. Multi-modality intravascular ultrasound (IVUS), optical coherence tomography (OCT)
and angiography image data with follow-up were acquired from ten patients to obtain accurate
and reliable plaque morphology for model construction. Three-dimensional thin-slice finite element
models were constructed for 228 matched IVUS + OCT slices to obtain plaque stress/strain data for
analysis. Quantitative plaque cap thickness and stress/strain indices were introduced as substitute
quantitative plaque vulnerability indices (PVIs) and a machine learning method (random forest)
was employed to predict PVI changes with actual patient IVUS + OCT follow-up data as the gold
standard. Our prediction results showed that optimal prediction accuracies for changes in cap-
PVI (C-PVI), mean cap stress PVI (meanS-PVI) and mean cap strain PVI (meanSn-PVI) were 90.3%
(AUC = 0.877), 85.6% (AUC = 0.867) and 83.3% (AUC = 0.809), respectively. The improvements in
prediction accuracy by the best combination predictor over the best single predictor were 6.6% for
C-PVI, 10.0% for mean S-PVI and 8.0% for mean Sn-PVI. Our results demonstrated the potential
using multi-modality IVUS + OCT image to accurately and efficiently predict plaque cap thickness
and stress/strain index changes. Combining mechanical and morphological predictors may lead to
better prediction accuracies.

Keywords: coronary vulnerable plaque; plaque models; fibrous cap thickness; vulnerable plaque
model; plaque vulnerability prediction

1. Introduction

Vulnerable plaque progression and rupture are closely related to cardiovascular dis-
ease which is the leading cause of death worldwide [1]. Accurate assessment of plaque cap
thickness and prediction require accurate plaque tissue component and structure quan-
tifications and mechanical stress/strain calculations. Plaque vulnerability is commonly
understood as the likelihood of a plaque rupture causing drastic clinical events such as
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heart attack or stroke. While plaque vulnerability is a well-known concept, its quantitative
measure is nearly impossible due to lack of plaque rupture and clinical data, which hinders
its application in clinical scenarios. American Heart Association (AHA) classified plaques
into Types I-VI based on histological data [2,3]. The AHA plaque classifications have been
considered as the gold standard in the research community. However, it is of qualitative
nature and not convenient for quantitative vulnerability tracking and predictions. Some
morphological and biomechanical plaque vulnerability indices (PVIs) have been introduced
based on imaging data and biomechanical factors to overcome this limitation [4,5]. Tang
et al. introduced a stress-based PVI (SPVI) using 34 in vivo magnetic resonance imaging
(MRI) slices from 14 human coronary plaque samples. Their SPVI plaque vulnerability
assessment had an 85% agreement rate with assessment performed by histopathological
analysis [4]. Goncalves et al. introduced a vulnerability index (VI) and calculated VI
values for 194 patients based on histological analysis. Their follow-up data (60 months,
45 postoperative cardiovascular events registered) showed that patients with a plaque VI in
the fourth quartile compared with the first to third quartiles had significantly higher risk to
suffer from a future cardiovascular event (p = 0.0002) [5]. Wang L et al. used intravascular
ultrasound (IVUS)-based morphology PVI to assess and predict plaque vulnerability [6].
Due to MRI and IVUS image resolution limitations and difficulty in recruiting large number
of patients with follow-up data, accurate and reliable plaque cap thickness measurements
are still difficult to obtain in vivo and PVIs still require more effort to obtain acceptance in
research community and clinical practice.

Accurate and reliable image data have been employed to visualize plaque morphol-
ogy and serve as the basis for plaque cap thickness predictions. Atherosclerotic plaque
progression is a long and slow process lasting some 30 to 50+ years. Rapid plaque progres-
sion could also be caused by plaque destabilization followed by thrombus formation and
subsequent healing. From available patient follow-up data, plaque vessel wall thickness
changes were mostly under 100 µm in a year [7]. With a 150–200 µm resolution from IVUS
and 200–300 µm resolution from MRI, plaque progression and morphology changes cannot
be quantified for prediction with admissible reliability and accuracy. With its superior reso-
lution of approximately 10 µm, optical coherence tomography (OCT) is able to detect thin
fibrous cap (the well-known 65 µm threshold cap thickness) of vulnerable plaques [3,8,9].
Liu et al. further demonstrated that plaques with thinner fibrous cap had higher probability
to have plaque rupture and thrombosis events [10]. Reith et al. determined that compared
to patients with stable angina pectoris, patients with acute coronary syndrome tended
to have a smaller minimal fibrous cap thickness within lipid-rich lesions [11]. Among
the morphological factors characterizing vulnerable plaques such as positive remodeling,
large lipid size, and macrophages infiltration, plaque cap thickness is one of the most-
watched measurable characteristics for plaque prone to rupture. Efforts combining IVUS
and OCT to study vulnerable plaques have been reported, and impressive results suggest
that integrating two imaging modalities could be used for more accurate cap stress/strain
calculations and to better evaluate plaque progression and regression [12,13]. Therefore, it
can be considered that the IVUS + OCT merged data could provide detailed plaque mor-
phological information (especially cap thickness) which forms a reliable basis for further
biomechanical analysis and cap thickness and stress/strain index change predictions.

It has been hypothesized that mechanical forces play an important role in plaque
progression and rupture [14–16]. From a mechanical point of view, rupture occurs when
plaque stress and strain at the fibrous cap exceed its tensile strength. Therefore, precise
plaque stress and strain conditions may be helpful in predicting plaque rupture and critical
clinical events [17,18]. Schaar et al. defined a vulnerable plaque as a plaque with a high
strain region at the surface with adjacent low strain regions [19]. In addition, Zhang et al.
calculated strain from in vivo image for the assessment of vulnerable plaques [20]. With
the help of different evaluation methods, stress/strain variables under different definitions
were calculated to detect vulnerable plaques and assess their vulnerability [4,21,22]. Those



J. Funct. Biomater. 2023, 14, 41 3 of 17

studies suggested that plaque stress and strain are closely related to plaque behaviors and
could be utilized in vulnerability predictions.

In the field of predicting plaque behaviors, most of the references adopt mixed-
effect logistic regression models or Cox regression models (proportional risk regression
model) [23,24]. Recently, machine learning approaches were employed in plaque progres-
sion prediction studies due to their strong predictive power and time efficiency [25]. A
risk stratification model based on machine learning was used to predict all-cause death,
recurrent acute myocardial infarction, and massive hemorrhage after acute coronary syn-
drome [26]. Lin et al. developed and validated a deep learning algorithm based on face
photos to evaluate the relationship between face features and CAD [27]. By classifying
the behavior of plaques, Lv et al. successfully performed a binary prediction of plaque
progression based on the generalized linear mixed model and the least squares support
vector machine [28].

Plaque vulnerability quantification and predictions have several challenges: (a) lack
of rupture and clinical data to establish the gold standard for assessment and prediction;
(b) selection of proper predictors, vulnerability measurements and indices to perform
predictions; (c) proper biomechanical models with acceptable labor cost for potential
clinical implementations. With considerable effort, we have obtained multi-modality
images from ten patients with follow-up scan. The data set for each patient include
IVUS + OCT + Angiography data at both baseline and follow-up. IVUS + OCT (IO) data
provide us with reliable and accurate plaque morphologies which is the basis for modeling
and prediction effort. Without plaque rupture and clinical events to serve as the gold
standard, a cap thickness-based plaque vulnerability index (C-PVI) was introduced using
IO data to serve as an alternative gold standard in this paper. While this is not the best
“gold standard”, it is measurable in vivo with OCT accuracy and has the potential to be
implemented in clinical practice. Several stress- and strain-based PVIs were introduced and
their prediction results were compared. Time-saving 3D thin-slice models were constructed
to obtain plaque stress/strain values. Values of nine morphological and biomechanical
risk factors (list to be provided later) were extracted from IO images and computational
models and used for prediction analysis. The random forest (RF) was adopted in this paper
to predict the binary outcomes of PVI changes from baseline to follow-up. Results were
compared and analyzed to identify the best single and combination predictors and the best
performing PVI(s).

2. Materials and Methods
2.1. Data Acquisition, Segmentation, Slice Co-Registration and Merging

Existing de-identified IVUS, OCT and angiography data with follow-up from
10 patients (4F; mean age 70.4) were obtained from Cardiovascular Research Founda-
tion (CRF), Columbia University, New York, NY, USA. Data were collected between April
2017 and November 2018 (mean follow-up time: 251 days) using protocol approved by
local institutional review board following the rules of the Declaration of Helsinki of 1975,
with informed consent obtained. Ten patients with stable angina pectoris were selected
for analysis. Patients with acute coronary syndrome, severe calcified lesion, chronic total
occlusion, or chronic kidney disease (Cr > 1.5 mg/dL) were excluded. Patient demographic
data are shown in Table 1. Patient’s arm blood pressure was collected and used as pressure
conditions in computational models. OCT images of coronary arteries were acquired using
commercially available ILUMIEN OPTIS System (St. Jude Medical, Westford, MA, USA).
IVUS imaging was performed using OptiCross System (OptiCross, Boston Scientific Corpo-
ration, Natick, MA, USA) with a 40 MHz IVUS catheter motorized pullback at 0.5 mm/s.
Coronary angiography data were obtained for both baseline and follow-up.

Co-registration of IVUS and OCT slices was performed by using fiduciary points
such as side branches, bifurcations, and calcifications with the assistance of coronary
angiography images (matched IVUS and OCT, matched baseline and follow-up) [29]
(see Figure 1). Then, by mapping IVUS and OCT frames to the same coronary vessel
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segment, IVUS and OCT segmented slices were merged together to form IO slices to extract
geometric contours for model construction and analysis (See Figure 2). OCT provided
accurate information for plaque cap, lumen and calcification region. Plaque components
included: (1) fibrous tissue (homogeneous, high backscattering region); (2) lipid-rich core
(low-signal region with diffuse border) and (3) calcification (low backscattering region
with sharp border). For large lipid components with a thin fibrous cap, OCT can “see” the
cap clearly, but may not detect the lipid border far away from lumen due to its limited
penetration. In that case, IVUS was used to obtain the lipid out-border and vessel outer-
boundary. Segmentation was performed by ImageJ 1.52v software. One hundred and
fourteen matched IO slices at baseline and follow-up (228 IO slices in total) were obtained
from the ten patients to quantify plaque morphology and track cap thickness changes.
More details about extracting plaque morphological and mechanical stress and strain data
are given in Section 2.2. Sample slices with segmented contours for IVUS and OCT images
were provided as supplemental material.

Table 1. Patient demographic data. F: female; M: male; BP: blood pressure; HT: hypertension; DM:
diabetes mellitus; HL: hyperlipidemia; FU: follow-up.

Patient ID Age Sex BP (mmHg) Diagnosis History FU Days

P1 80 F 71–138 HT DM 304
P2 70 M 84–155 HT 273
P3 65 F 63–149 DM 220
P4 66 M 89–150 DM 290
P5 81 M 69–112 HT 182
P6 73 M 55–150 HT HL 248
P7 74 F 62–151 HT DM HL 244
P8 62 F 79–117 HL 195
P9 61 M 78–128 HT DM HL 283
P10 72 M 80–143 HT DM HL 272
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Figure 1. Registration of baseline and follow-up vessel segment using landmarks and vessel fea-
tures (bifurcation, stenosis, and plaque components from IVUS/OCT). Only angiography is shown.
(a) Baseline angiography; (b) Follow-up angiography. 1: left circumflex artery ostium, 2: 1st obtuse
marginal branch, 3: 2nd obtuse marginal branch, 4: IVUS analysis start point, 5: OCT analysis
start point.
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Figure 2. Merging OCT and IVUS contours to generate combined IVUS + OCT slice with contours.
(a) IVUS images; (b) IVUS segmentation; (c) IVUS segmented contours; (d) Merge IVUS and OCT;
(e) OCT image; (f) OCT segmentation; (g) OCT contours; (h) Merged IVUS + OCT slice with contours.
Red: lipid; Green: outer-boundary; Blue: lumen; Black: calcification (Ca).

2.2. Thin-Slice Models, Morphological and Biomechanical Predictors, Data Extraction for Analysis

Three-dimensional (3D) thin-slice models were used to obtain plaque stress and strain
data which will be used in plaque vulnerability predictions. A thickness of 0.5 mm was
added to each IO slice to reconstruct the plaque geometry of 3D thin-slice model. A total of
228 models were constructed at baseline and follow-up. Under in vivo condition, arteries
were subjected to blood pressure and axially stretched. Computational 3D thin-slice models
need to start from zero-load geometries with zero pressure and stress/strain conditions.
Therefore, axial and circumferential shrinking was applied to in vivo IO slices to obtain their
zero-load state. Axial shrinkage was assumed to be 5% for all plaques while circumferential
shrinkage rate was determined for each slice to match its in vivo morphology. Details of
the pre-shrink–stretch process were described in our previous studies [30–32]. Vessel tissue
was assumed to be hyperelastic, anisotropic, nearly-incompressible, and homogeneous.
Plaque components (lipid and calcification) were assumed to be hyperelastic, isotropic,
and nearly-incompressible [13]. The strain energy density functions for the isotropic and
anisotropic modified Mooney–Rivlin material models are given below:

Wiso = c1(I1 − 3) + c2(I2 − 3) + D1[exp(D2(I1 − 3))− 1], (1)

Waniso = Wiso +
K1

K2
{exp[K2(I4 − 1)2]− 1}, (2)

where I1 = ∑(Cii), I2 = 1
2
[
I2
1 − CijCij

]
, I1 and I2 are the first and second invariants of

right Cauchy–Green deformation tensor C =
[
Cij

]
= XTX, X =

[
Xij

]
=

[
∂xi/∂aj

]
,

(xi) is current position,
(
aj
)

is original position, I4 = Cij(nc)i(nc)j, nc is the unit vec-
tor in the circumferential direction of the vessel, c1, c2, D1, D2, K1 and K2 are material
parameters. Material constants of isotropic Mooney–Rivlin model from the existing lit-
erature were used: Lipid: c1 = 0.5 kPa, c2 = 0 kPa, D1 = 0.5 kPa, D2 = 1.5; Calcification:
c1 = 92 kPa, c2 = 0 kPa, D1 = 36 kPa and D2 = 2.0; Vessel/Fibrous tissue: c1 = −262.6 kPa,
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c2 = 22.9 kPa, D1 = 125.9 kPa, D2 = 2.0, K1 = 7.19 kPa, K2 = 23.5 [13]. The 3D thin-slice
models were solved by a finite element software ADINA 9.0 (Adina R&D, Watertown, MA,
USA) to obtain plaque stress/strain distributions following our established procedures [31].
Nonlinear incremental iterative procedures were used to solve the models. Mesh analysis
was performed by refining mesh density by 10% until changes in solutions became less
than 2%.

Nine morphological and mechanical risk factors were selected as predictors to predict
plaque vulnerability changes from baseline to follow-up: lumen area (LA), plaque area
(PA), plaque burden (PB), minimum cap thickness (MinCapT), mean cap thickness (Mean-
CapT), maximum cap stress (MaxCapS), mean cap stress (MeanCapS), maximum cap strain
(MaxCapSn), and mean cap strain (MeanCapSn). PB was defined as

PB =
PA

PA + LA
, (3)

where PA is the area between the outer boundary contour and lumen contour and LA is
the area inside lumen contour (see Figure 3). Values of the risk factors were extracted for
each slice using a Four-Quarter Even-Spacing method [31,32]. For each matched slice, 100
evenly spaced points from the lumen were selected and morphological and biomechanical
factors from the IO slice and 3D thin-slice model at each point were obtained for analysis.
Figure 3b shows a simple illustration of the method. Data extraction of the nine risk
factors and following statistical analysis were implemented by MATLAB (MATLAB R2018a,
MathWorks, Natick, MA, USA).

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 6 of 17 
 

 

circumferential direction of the vessel, 𝑐1, 𝑐2, 𝐷1, 𝐷2, 𝐾1 and 𝐾2 are material parameters. 

Material constants of isotropic Mooney–Rivlin model from the existing literature were 

used: Lipid: 𝑐1 = 0.5 kPa, 𝑐2 = 0 kPa, 𝐷1 = 0.5 kPa, 𝐷2 = 1.5; Calcification: 𝑐1 = 92 kPa, 𝑐2 

= 0 kPa, 𝐷1  = 36 kPa and 𝐷2  = 2.0; Vessel/Fibrous tissue: 𝑐1  = ‒262.6 kPa, 𝑐2  = 22.9 

kPa, 𝐷1 = 125.9 kPa, 𝐷2 = 2.0, 𝐾1 = 7.19 kPa, 𝐾2 = 23.5 [13]. The 3D thin-slice models were 

solved by a finite element software ADINA 9.0 (Adina R&D, Watertown, MA, USA) to 

obtain plaque stress/strain distributions following our established procedures [31]. Non-

linear incremental iterative procedures were used to solve the models. Mesh analysis was 

performed by refining mesh density by 10% until changes in solutions became less than 

2%. 

Nine morphological and mechanical risk factors were selected as predictors to pre-

dict plaque vulnerability changes from baseline to follow-up: lumen area (LA), plaque 

area (PA), plaque burden (PB), minimum cap thickness (MinCapT), mean cap thickness 

(MeanCapT), maximum cap stress (MaxCapS), mean cap stress (MeanCapS), maximum 

cap strain (MaxCapSn), and mean cap strain (MeanCapSn). PB was defined as 

PB =
PA

PA + LA
, (3) 

where PA is the area between the outer boundary contour and lumen contour and LA is 

the area inside lumen contour (see Figure 3). Values of the risk factors were extracted for 

each slice using a Four-Quarter Even-Spacing method [31,32]. For each matched slice, 100 

evenly spaced points from the lumen were selected and morphological and biomechanical 

factors from the IO slice and 3D thin-slice model at each point were obtained for analysis. 

Figure 3b shows a simple illustration of the method. Data extraction of the nine risk factors 

and following statistical analysis were implemented by MATLAB (MATLAB R2018a, 

MathWorks, Natick, MA, USA).  

 

Figure 3. Illustration of slice contours, sample slices with Four-Quarter Even-Spacing method show-

ing the definition and extraction of morphological and mechanical predictor data. (a) Segmented IO 

slice; (b) Four-Quarter Even-Spacing method. Bold black line shows the minimum cap thickness; (c) 

Stress result under maximum pressure; (d) Strain result under maximum pressure. 

2.3. Plaque Vulnerability Indices 

2.3.1. Cap Thickness Plaque Vulnerability Index (C-PVI) 

Wang L et al. introduced 3 morphology-based indices (cap index, lipid index, and 

morphological index) and predicted their changes using patient IVUS follow-up data [6]. 

IO data can provide accurate cap thickness data, but there is no reliable information on 

lipid size. Bearing those in mind, and with the assumption that plaque rupture may be 

linked most closely to minimum cap thickness, C-PVI was introduced using MinCapT as 

a quantitative measure for plaque vulnerability with values 1, 2, 3 and 4 (see Table 2). 

Category 4 (C-PVI = 4) has the thinnest fibrous cap thickness, while Category 1 (C-PVI = 

1) has the thickest fibrous cap thickness. Slice distributions for the 4 C-PVI values are given 

Lipid

Lumen

Q1

Q2

Q3

Q4

Cap

Max stress: 

193.77kPa

Max strain: 

0.256

Max cap 

strain: 0.256

Max cap stress: 

126.02kPa

(b) Four-quarter even-

spacing method.

(d) Strain result under 

maximum pressure.

(c) Stress result under 

maximum pressure.

Outer-boundary Wall thickness

Plaque

(a) Segmented IO 

slice.

min    universal scale     max

Figure 3. Illustration of slice contours, sample slices with Four-Quarter Even-Spacing method
showing the definition and extraction of morphological and mechanical predictor data. (a) Segmented
IO slice; (b) Four-Quarter Even-Spacing method. Bold black line shows the minimum cap thickness;
(c) Stress result under maximum pressure; (d) Strain result under maximum pressure.

2.3. Plaque Vulnerability Indices
2.3.1. Cap Thickness Plaque Vulnerability Index (C-PVI)

Wang L et al. introduced 3 morphology-based indices (cap index, lipid index, and
morphological index) and predicted their changes using patient IVUS follow-up data [6].
IO data can provide accurate cap thickness data, but there is no reliable information on
lipid size. Bearing those in mind, and with the assumption that plaque rupture may be
linked most closely to minimum cap thickness, C-PVI was introduced using MinCapT
as a quantitative measure for plaque vulnerability with values 1, 2, 3 and 4 (see Table 2).
Category 4 (C-PVI = 4) has the thinnest fibrous cap thickness, while Category 1 (C-PVI = 1)
has the thickest fibrous cap thickness. Slice distributions for the 4 C-PVI values are given in
Table 2. The cap thickness interval for each C-PVI value was chosen so that each category
had some samples [33]. Some explanation is given in Section 4.1.
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Table 2. Cap- and Stress/Strain-based PVI definitions and slice divisions by PVI values.

PVI Index Values 1 2 3 4

C-PVI Min-CapT Range (mm) (0.36, 2) (0.26, 0.36] (0.20, 0.26] (0.0, 0.20]
Slice Distributions 79 21 7 7
MaxS-PVI Max Stress Range (kPa) (20, 80] (80, 101] (101, 110] (110, ∞)
Slice Distributions 73 22 8 11
MeanS-PVI Mean Stress Range (kPa) (20, 70] (70, 88] (88, 93] (93, ∞)
Slice Distributions 82 23 8 1
MaxSn-PVI Max Strain Range (0.05,0.17] (0.17,0.18] (0.18,0.2] (0.2, ∞)
Slice Distributions 80 15 13 6
MeanSn-PVI Mean Strain Range (0.05,0.18] (0.18,0.2] (0.2,0.21] (0.21, ∞)
Slice Distributions 95 13 3 3

2.3.2. Stress Plaque Vulnerability Index (S-PVI)

It is believed that plaque cap stress is closely related to plaque progression rupture
and could be used as another measurement for plaque vulnerability. Two stress-based
plaque vulnerability indices (S-PVI) were introduced in this paper for our quantitative
vulnerability analysis: one is based on MaxCapS denoted by MaxS-PVI, one is based on
MeanCapS denoted by MeanS-PVI. Stress intervals for each index values are given in
Table 2. Stress interval divisions were determined so that these index values had the best
match rate with C-PVI. MaxS-PVI was introduced since plaque rupture is closely linked to
MaxCapS. MeanS-PVI is also considered since MeanCapS is an averaged stress value and
may provide plaque stress information in a more collective way. Both stress-based indices
were used for plaque vulnerability investigation in this paper to compare which one will
provide better prediction results.

2.3.3. Strain Plaque Vulnerability Index (Sn-PVI)

While most researchers concentrated on plaque stress (more focused on cap stress)
for vulnerable plaque investigations, plaque cap strain measures whether plaque cap is
stretched hard and may be a better indicator for cap mechanical conditions and plaque
vulnerability. Similar to stress indices, two strain-based plaque vulnerability indices (Sn-
PVI) were introduced in this paper for analysis: one is based on MaxCapSn denoted by
MaxSn-PVI, one is based on MeanCapSn denoted by MeanSn-PVI. Strain intervals for each
index values are given in Table 2. All arrangements for strain indices were similar to those
for stress indices and are omitted for simplicity.

2.3.4. Prediction Methods and Plaque Vulnerability Predictions

All possible combinations (511 combinations) of the nine risk factors (see Section 2.2)
with their values at baseline were used to predict 5 PVI changes. PVI changes were
measured by changes in PVI between baseline and follow-up. Using C-PVI as an example
for illustration, C-PVI change (∆C-PVI) between baseline and follow-up for a given IO slice
was defined as

∆C-PVI(Slice #) = (C-PVI at follow-up)− (C-PVI at baseline). (4)

For simplicity, its binary outcomes B∆C-PVI (defined below) served as the target
variable in our prediction models:

B∆C-PVI(Slice #) =
{

1, if ∆C-PVI > 0;
−1, if ∆C-PVI ≤ 0.

(5)

The same definition was used for other 4 PVIs. For each PVI, the values of the 9 risk
factors at baseline and the PVI change binary outcomes of 114 slices were stored in a
10 × 114 matrix which was used as input file for the prediction methods. The RF was
adopted in this paper to perform prediction. Figure 4 shows the schematic diagram of RF
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model. In each test, 9 risk factors and the PVI change binary outcomes from 114 slices were
fed to the RF method. A standard five-fold cross-validation procedure was performed for
model fitting and testing [31]. To be more specific, the data set (114 slices with baseline and
follow-up scans) was randomly divided into five equal parts, with four parts used as the
training set and the remaining one part used as the validation set. Then, the RF method
was run five times so that each of the five parts had a chance to serve as the validation
set. This five-fold cross-validation procedure was repeated 100 times (each time with new
randomly divided 5 parts), and the results were averaged to obtain stable and accurate
prediction results. The RF method was implemented by calling TreeBagger function in
MATLAB (v2018 The MathWorks Inc., Natick, MA, USA). The number of trees in random
forest was set to 50 since the prediction results (sensitivity and specificity) become stable,
and further increase in the number (doubling) showed little difference in results. The
procedure was repeated 100 times and the results were averaged to stabilize the prediction
results. The output of the prediction was a True or False value (defined as True = ∆PVI > 0
and False = ∆PVI ≤ 0) corresponding to the optimal cutoff threshold probability) for each
slice of the test set. The prediction results were compared with actual measurements of
PVI changes based on IO image data (gold standard) to calculate prediction accuracy (Acc),
sensitivity (Sen), and specificity (Spe) defined as follows:

Acc =
TP + TN

TP + FP + TN + FN
, (6)

Sen =
TP

TP + FN
, (7)

Spe =
TN

TN + FP
, (8)

where TP is the number of true positive outcomes (∆PVI > 0 predicted as such), FP is the
number of false positive outcomes (∆PVI ≤ 0 predicted as ∆PVI > 0), TN is the number
of true negative outcomes (∆PVI ≤ 0 predicted as such), and FN is the number of false
negative outcomes (∆PVI > 0 predicted as ∆PVI ≤ 0). The abscissa of the receiver operating
characteristic (ROC) curve is “1-Specificity” and the ordinate is Sensitivity. The area under
ROC curve is the value of AUC. Five PVIs (C-PVI, 2 S-PVIs, and 2 Sn-PVIs) were used
to identify which one would have better prediction accuracies. Details of the prediction
methods and procedures were published before and are omitted here [34].
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3. Results
3.1. Prediction Results for the 5 PVIs Using Combination Predictors

Table 3 lists the prediction accuracy, sensitivity, specificity, and AUC of the respec-
tive optimal combination predictors for the five PVIs. Among the five PVIs, C-PVI
had the best prediction accuracy (90.3%) with the optimal predictor as a combination
of PA + PB + MinCapT + MeanCapT + MeanCapSn. It also had the best specificity (95.8%).
However, its sensitivity was only 56.7%. MaxSn-PVI had the best AUC (0.935) and
the best Sensitivity + Specificity (1.745), with the optimal predictor as a combination
of LA + PA + MaxCapSn. Its ROC curve is shown by Figure 5.

Table 3. Combination predictor prediction accuracy, sensitivity, specificity and AUC values for the 5
PVIs considered.

PVI Index Best Predictor Acc Sen Spe Sen + Spe AUC

C-PVI PA + PB + MinCapT + MeanCapT + MeanCapSn 0.903 0.567 0.958 1.525 0.877
MaxS-PVI MinCapT + MeanCapT + MaxCapS 0.779 0.617 0.844 1.461 0.776
MeanS-PVI PA + MeanCapS 0.856 0.730 0.888 1.617 0.867
MaxSn-PVI LA + PA + MaxCapSn 0.871 0.876 0.869 1.745 0.935
MeanSn-PVI PA + PB + MaxCapSn + MeanCapSn 0.833 0.568 0.876 1.444 0.809

Note: Total number of slices with ∆C-PVI > 0 = 16; Total number of slices with ∆C-PVI ≤ 0 = 98.

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 9 of 17 
 

 

3. Results 

3.1. Prediction Results for the 5 PVIs Using Combination Predictors 

Table 3 lists the prediction accuracy, sensitivity, specificity, and AUC of the respec-

tive optimal combination predictors for the five PVIs. Among the five PVIs, C-PVI had the 

best prediction accuracy (90.3%) with the optimal predictor as a combination of PA + PB 

+ MinCapT + MeanCapT + MeanCapSn. It also had the best specificity (95.8%). However, 

its sensitivity was only 56.7%. MaxSn-PVI had the best AUC (0.935) and the best Sensitiv-

ity + Specificity (1.745), with the optimal predictor as a combination of LA + PA + 

MaxCapSn. Its ROC curve is shown by Figure 5. 

Table 3. Combination predictor prediction accuracy, sensitivity, specificity and AUC values for the 

5 PVIs considered. 

PVI Index Best Predictor Acc Sen Spe Sen + Spe AUC 

C-PVI PA + PB + MinCapT + MeanCapT + MeanCapSn 0.903 0.567 0.958 1.525 0.877 

MaxS-PVI MinCapT + MeanCapT + MaxCapS 0.779 0.617 0.844 1.461 0.776 

MeanS-PVI PA + MeanCapS 0.856 0.730 0.888 1.617 0.867 

MaxSn-PVI LA + PA + MaxCapSn 0.871 0.876 0.869 1.745 0.935 

MeanSn-PVI PA + PB + MaxCapSn + MeanCapSn 0.833 0.568 0.876 1.444 0.809 

Note: Total number of slices with ΔC-PVI > 0 = 16; Total number of slices with ΔC-PVI ≤ 0 = 98. 

 

Figure 5. ROC curve with AUC = 0.935 for prediction of ΔMaxSn-PVI. 

3.2. Prediction Results for the 5 PVIs Using Single Predictors 

Prediction results of the nine single predictors for the five PVIs are shown in Table 4. 

Only one single predictor was used in each prediction here. Among the five PVIs, MaxSn-

PVI had the best performance with MaxCapSn delivering best prediction AUC (0.909) and 

accuracy (79.8%). Among all nine predictors for C-PVI, PB had the best pre-diction accu-

racy (83.7%) and AUC (0.827). The two stress-based PVIs had lower pre-diction accuracies 

and AUC values. The best single predictor for MaxS-PVI was MeanCapT with accuracy 

of 65.4% and AUC 0.675. The best single predictor for MeanS-PVI was PA with accuracy 

of 75.6% and AUC 0.781.  

Figure 5. ROC curve with AUC = 0.935 for prediction of ∆MaxSn-PVI.

3.2. Prediction Results for the 5 PVIs Using Single Predictors

Prediction results of the nine single predictors for the five PVIs are shown in Table 4.
Only one single predictor was used in each prediction here. Among the five PVIs, MaxSn-
PVI had the best performance with MaxCapSn delivering best prediction AUC (0.909) and
accuracy (79.8%). Among all nine predictors for C-PVI, PB had the best pre-diction accuracy
(83.7%) and AUC (0.827). The two stress-based PVIs had lower pre-diction accuracies and
AUC values. The best single predictor for MaxS-PVI was MeanCapT with accuracy of
65.4% and AUC 0.675. The best single predictor for MeanS-PVI was PA with accuracy of
75.6% and AUC 0.781.
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Table 4. Single predictor prediction accuracy, sensitivity, specificity and AUC values for the
5 PVIs considered.

C-PVI MaxS-PVI

Predictor (Acc, Sen, Spe, AUC) Predictor (Acc, Sen, Spe, AUC)
LA (0.702, 0.136, 0.794, 0.416) LA (0.566, 0.288, 0.679, 0.483)
PA (0.738, 0.068, 0.847, 0.434) PA (0.568, 0.309, 0.674, 0.465)
PB (0.837, 0.702, 0.859, 0.827) PB (0.634, 0.445, 0.711, 0.632)
MinCapT (0.756, 0.199, 0.847, 0.674) MinCapT (0.506, 0.351, 0.569, 0.463)
MeanCapT (0.696, 0.220, 0.774, 0.571) MeanCapT (0.654, 0.388, 0.762, 0.675)
MaxCapS (0.715, 0.235, 0.793, 0.524) MaxCapS (0.600, 0.323, 0.713, 0.610)
MeanCapS (0.789, 0.279, 0.872, 0.687) MeanCapS (0.451, 0.184, 0.559, 0.356)
MaxCapSn (0.778, 0.293, 0.858, 0.672) MaxCapSn (0.559, 0.349, 0.644, 0.486)
MeanCapSn (0.785, 0.177, 0.885, 0.603) MeanCapSn (0.587, 0.386, 0.669, 0.540)

MeanS-PVI MaxSn-PVI

Predictor (Acc, Sen, Spe, AUC) Predictor (Acc, Sen, Spe, AUC)
LA (0.735, 0.316, 0.841, 0.664) LA (0.576, 0.551, 0.587, 0.627)
PA (0.756, 0.513, 0.818, 0.781) PA (0.704, 0.535, 0.776, 0.699)
PB (0.676, 0.355, 0.757, 0.640) PB (0.615, 0.302, 0.749, 0.523)
MinCapT (0.704, 0.171, 0.839, 0.509) MinCapT (0.498, 0.353, 0.560, 0.474)
MeanCapT (0.564, 0.238, 0.646, 0.436) MeanCapT (0.521, 0.331, 0.602, 0.504)
MaxCapS (0.646, 0.179, 0.764, 0.492) MaxCapS (0.641, 0.506, 0.698, 0.641)
MeanCapS (0.580, 0.294, 0.653, 0.513) MeanCapS (0.606, 0.422, 0.684, 0.543)
MaxCapSn (0.717, 0.277, 0.828, 0.660) MaxCapSn (0.798, 0.593, 0.885, 0.909)
MeanCapSn (0.716, 0.403, 0.795, 0.628) MeanCapSn (0.623, 0.306, 0.757, 0.585)

MeanSn-PVI

Predictor (Acc, Sen, Spe, AUC) Predictor (Acc, Sen, Spe, AUC)
LA (0.743, 0.047, 0.857, 0.508) PA (0.734, 0.200, 0.821, 0.451)
PB (0.748, 0.361, 0.811, 0.579) MinCapT (0.710, 0.201, 0.793, 0.560)
MeanCapT (0.714, 0.306, 0.781, 0.587) MaxCapS (0.701, 0.041, 0.808, 0.326)
MeanCapS (0.715, 0.168, 0.805, 0.477) MaxCapSn (0.753, 0.266, 0.833, 0.693)
MeanCapSn (0.659, 0.518, 0.682, 0.650)

3.3. Combination Predictors Had Better Prediction Accuracies Than Those from Single Predictors

Figure 6 presents prediction accuracies of the best combination predictors and the best
single predictors for the five PVIs. For C-PVI, the best combination predictor increased
accuracy by 6.6% compared to the best single predictor (90.3% vs. 83.7%). For MaxS-PVI,
the best combination predictor had a prediction accuracy which was 12.5% over that of the
best single predictor (77.9% vs. 65.4%). For MeanS-PVI, the improvement of accuracy by
the best combination predictor over the best single predictor was 10.0% (85.6% vs. 75.6%).
Considering MaxSn-PVI and MeanSn-PVI, the best combination predictors improved pre-
dictor accuracies by 7.3% and 8.0% over those from the best single predictors, respectively
(87.1% vs. 79.8%, and 83.3% vs. 75.3%). AUC values by the best combination predictors
also improved over the best single predictors by 0.050, 0.101, 0.086, 0.026, and 0.116 for the
five PVIs, respectively (see Figure 7). Overall, it was observed that prediction accuracies of
the best combination predictors were higher than those from the best single predictors.
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Figure 6. Comparison of prediction accuracies by best combination and single predictors for the
five PVIs. Best combination predictors are provided in Table 3, and best single predictors are PB,
MeanCapT, PA, MaxCapSn and MaxCapSn, respectively.
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Figure 7. Comparison of AUC values by best combination and single predictors for the five PVIs.
Best combination predictors are provided in Table 3, and best single predictors are PB, MeanCapT,
PA, MaxCapSn and MaxCapSn, respectively.

4. Discussion

As important as vulnerable plaque research is to the health of the general public,
progress has been limited by several key factors: (a) lack of quantitative measure of
plaque vulnerability; without quantitative measure, it is hard to say whether plaque
vulnerability is improving or not and it is difficult to perform prediction analysis; (b) lack
of accurate medical images with acceptable resolution to provide exact plaque morphology
for assessment and mechanical model construction; (c) lack of “gold standard” for plaque
rupture or clinical events to validate plaque progression and vulnerability predictions. In
the following, we will attempt to discuss the ways in which we tried to address those
limitations in this paper.

4.1. Introducing Quantitative Plaque Vulnerability Indices for Vulnerability Predictions

Our research effort has been focused on introducing morphological and mechanical
indices for plaque classification, comparison, and prediction [4,6]. Five PVIs were intro-
duced in this paper as measures of plaque vulnerability. With the high resolution from OCT,
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C-PVI was considered the “gold standard”. Our criterion for an index was that it should
be based on reliable data and it should be measurable. While C-PVI may be missing some
other important factors such as cell activities on the lumen surface (inflammation, erosion),
it focuses on cap thickness which may be one of the most watched items for vulnerable
plaques. Stress and strain indices were included because we do believe that mechanical
forces play an important role in plaque progression and rupture and monitoring them may
provide useful information which is not included in plaque morphology alone. Our results
actually demonstrated that strain-based PVIs had better prediction accuracy compared to
stress-based PVIs (see Table 3).

Compared with the current literature, Mortensen et al. noted that PB may be a major
predictor of cardiovascular event and mortality risk compared to coronary stenosis [35].
The prediction results using PB for C-PVI changes (Accuracy = 83.7%, see Table 4) are in
good agreement with the statement, and the best combined predictive accuracy achieved
90.3%. It should be noted that due to our data limitation, the cap thickness threshold for
category 4 plaque was set to 0.2 mm in Table 2 instead of the generally accepted threshold
(65 µm) of vulnerable plaques. This value was chosen for two reasons: (1) It is larger than
65 µm used in other studies based on ex vivo histology data. This is reasonable since
the fibrous cap thickness in in vivo data is higher than that in histological sections [36];
(2) We could have some number of slices in Category 4 when 0.2 mm was selected. If 65 µm
threshold was adopted, the number of Category 4 plaques in our data set would be zero and
prediction analysis would not be possible. Hence, the well-accepted cap thickness of 65 µm
for highly vulnerable plaques was not adopted due to realistic in vivo data limitations
compared to results based on histological data [3]. Another point to note is that if a slice
does not have a lipid core, then the slice does not have a fibrous cap and is not included in
the data set in this work.

In mechanics, various evidences indicated that high plaque stresses are indeed linked
to plaque rupture which is more likely to occur near thin fibrous cap, so the cap position
should attract more attention [4,17]. By setting fibrous cap and its shoulder as critical
region, Wang L et al. clearly explained the use of morphological factors and S-PVI to
predict plaque composition changes [37]. For MeanS-PVI, the accuracy of the single
predictor (PA) was 75.6%, but the optimal combination predictor was 85.6%, showing
a significant improvement. Numerous studies have attempted to establish a solid link
between plaque strain values and their vulnerability by solving circumferential strain
directly from in vivo images [21]. Since in vivo images do not have zero-load state, strain
values calculated using in vivo images used a difference reference frame and would be
smaller than true strain values using zero-load reference frames [21,22]. Our models
included a pre-shrink–stretch process and stress/strain were calculated using plaque zero-
load geometries. Caution should be exercised when comparing results from models with
different model assumptions.

4.2. Predicting PVI Changes Based on Accurate and Reliable OCT-Based Data

It has been mentioned that IVUS resolution is not enough to quantify thin plaque
cap thickness and plaque progression, meanwhile the thin cap thickness and plaque wall
thickness changes in follow-up are normally smaller than the IVUS resolution. Those limi-
tations are the reason behind IVUS-based vulnerable plaque progression and vulnerability
prediction results possibly being subjected to large errors. Using IVUS data and generalized
linear mixed model (GLMM) prediction method, Wang L et al. reported that an optimal
combination predictor achieved AUC = 0.629 in predicting wall thickness increase and
AUC = 0.845 in predicting plaque area increase [37]. Multi-modality data combining IVUS
and OCT ensures accurate cap thickness quantification, C-PVI assessment and further me-
chanical stress/strain calculations. These improvements made accurate and reliable plaque
morphology assessment and PVI predictions possible. In this work, using IO data, the mean
AUC of five PVIs is 0.853, showing a superior prediction ability. Guo et al. also reported
similar findings using least squares support vector machine (SVM) prediction methods
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that the ability of IO/OCT-based vulnerability predictions were improved compared with
IVUS-based predictions (Accuracy: 0.838 vs. 0.786) [13]. Moreover, by observing different
PVIs, the accuracy and AUC value of prediction results from IO slices are both higher than
75% (see Table 3). The accuracy of all the single predictors was more than 70% for C-PVI,
while PB and LA had higher prediction accuracies (86.5% and 77.8%), which confirms
the general reliability of the prediction based on IO data. It is worth recognizing that
fusion OCT and IVUS were used in this study to provide precise measurements of fibrous
cap thickness. This data set warrants more accurate mechanical and plaque vulnerability
quantification and prediction accuracy. However, it is difficult to have patients to agree to
simultaneously undergo OCT, IVUS, and coronary angiography at baseline and follow-up,
and thus limiting the patient data set here. For prediction methods, Wang L et al. compared
various prediction methods, among which the prediction accuracy of RF was the highest,
superior to SVM and GLMM. The prediction accuracy of machine learning method (RF) is
5.91% higher than that of GLMM method [34]. In this paper, the above three prediction
methods were all performed and compared. The prediction results from RF were selected
for report since they provided best prediction accuracies.

4.3. Combining Mechanical and Morphological Predictors May Lead to Better Predictions

At present, some general scoring rules, such as CLIMA score and Burgmaier score, are
often used in plaque assessment [19,38,39]. However, these scoring rules did not include
mechanical forces in their assessment. It has been conjectured that those mechanical
forces play an important role in plaque progression and rupture process and combining
mechanical and morphological factors may lead to better prediction results. In a study
using IVUS follow-up data from none patients, Wang L et al. reported that the prediction
accuracy from the best morphological + mechanical combination predictor was 68.1%,
3.9% higher than that of the best morphological combination predictor (64.2%) [33]. In this
paper, by using accurate multi-modality IVUS + OCT data with follow-up, for five PVIs,
the combination predictors improved the prediction accuracies by 6.6%, 12.5%, 10.0%, 7.3%
and 8.0% respectively, with an average improvement of 8.9%. Taking the MeanS-PVI as an
example, the accuracy of the combination predictor (PA + MeanCapS) improved over that
of the best single factor (PA) by 10%. That is better that the 4.01% improvement reported
in work by Wang Q et al. [31]. Prediction sensitivity and specificity also had significant
improvements. Our work is adding further evidence to the conjecture that combining
mechanical and morphological factors may lead to better prediction results. It should be
acknowledged that our sample size is small and further effort using large scale samples is
needed to reach solid conclusions.

4.4. Labor Cost and Potential Implementations

The construction and simulation of a 3D thin-layered (slice) model could be finished
within 10 min on a personal computer (Xeon E5-1620 v3 kernel processor (3.5 GHz)).
This provides the possibility to integrate modeling with medical equipment for potential
clinical implementations. Compared with 3D fluid-structure interaction (FSI) model (which
requires approximately 2 weeks to construct one model), this 3D thin-layered (slice) model
has the advantages of low labor cost, short construction time, ease of convergence, high
accurate simulation results (relative error < 10% compared with FSI model).

It is of interest to note that only baseline data would be needed to make predictions
after the model becomes well trained and validated. Indeed, follow-up data (IVUS + OCT)
were only needed in this paper for verification, i.e., to verify if the predictions were indeed
true. It is also needed for model training as well. If data set was large enough and the
model was sufficiently trained and validated, then only baseline data would be needed to
make predictions. As technology develops, OCT may have better penetration and OCT
alone would be enough to construct the models and provide all values for all the predictors
to make predictions.
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4.5. Limitations

Some limitations of our study include the following. (a) Our sample size is still small
and contained fewer slices with C-PVI = 3 and 4 (12.2% of total slices). That might account
for the low sensitivity in our prediction results. Most of the patients were not in the acute
progression stage of the disease, and the growth of plaque was generally slow, resulting
in a small change in the condition of plaque within a year and a skewness distribution of
data. Because most people were on medication, that also exacerbated to an unbalanced
sample set. (b) Improving sample size and conducting our work at patient-level may help
address sample imbalance, but lack of in vivo data on plaque rupture remains one of the
limitations of current research. (c) Patient-specific vessel material properties were not
available. Therefore, vessel material parameters from available literature were used in
this study [30]. It should be noted that there is high variability of constitutive parameters
among different individuals [40–42], which indeed impacts the stress/strain calculation.
Guo et al. used patient-specific plaque material properties and showed that the relative
errors could be 40% in stress and 123% in strain calculations if material properties obtained
from ex vivo tensile testing were used [43]. (d) Thin-slice models were used in this study
since they could provide better accuracy over 2D models and save model construction
time compared to full 3D models [30,31]. However, they only provided plaque structure
stress and strain values and did not retain flow information (for example, flow wall shear
stress). Thin-slice models require much less labor to construct and could be more practical
for potential clinical implementations. However, it remains true that full 3D FSI models
could be a better choice for more accurate stress/strain and wall shear stress calculations.
It is worth noting that the 3D thin-slice model and prediction method used in this paper
are relatively more integrated, and efforts are being made to automate and streamline the
whole process.

5. Conclusions

Since plaque vulnerability is hard to quantify, plaque cap thickness index and biome-
chanical stress/strain indices were defined as alternative quantitative plaque vulnerability
indices (PVIs) to conduct predictive research. Accurate multi-modality IVUS + OCT data
at both baseline and follow-up and machine learning methods were used to identify and
validate the best predictors of changes in plaque vulnerability. The results showed that
the accuracy of the combined predictors including mechanical factors was significantly
better than that of the single predictors. Plaque cap thickness and cap stress and strain
could be used as measurable and calculable evaluation indexes to predict plaque vulner-
ability change and provide a more complete early screening strategy for patients with
vulnerable plaques.
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