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Abstract

This thesis contains the results of seven research papers on various types of harmonic
and locally harmonic Maaß forms. To this end, this thesis is divided into two parts. The
first part deals with harmonic Maaß forms and variants thereof, while the second part is
devoted to constructions of new locally harmonic Maaß forms.

The first chapter is divided into three parts. The first part provides an overall
introduction to holomorphic and nonholomorphic modular forms, and summarizes some
previous results in the theory of both classes of forms. The second part collects and
presents the main results of this thesis, while the content of the third part is a brief
discussion of some of the results from the second half of this thesis.

The second chapter introduces the basic theory of harmonic Maaß forms, constructs a
new example of a polar harmonic Maaß form of weight 3

2 on the level of Fourier expansions,
and presents a connection to Hurwitz class numbers as well as a p-adic property (p > 2
prime) of our new polar form. The construction is based on a technique by Zagier and
Zwegers, and adapts a paper by Mertens, Ono, and Rolen.

The third chapter generalizes the construction from the second chapter producing
polar harmonic Maaß forms of non-positive integral weights. The Fourier coefficients
of the holomorphic part of these forms are given by certain twisted divisor sums. As
outlined in the introduction of the second chapter, these new examples thus are certain
nonholomorphic “Eisenstein series”, whose holomorphic parts resemble the Fourier
expansion of the usual holomorphic Eisenstein series in a rough sense.

The fourth chapter explores the connection of (higher depth) harmonic Maaß forms
to the area of hypergeometric q-series and their combinatorial interpretation. This goes
back to Ramanujan’s mock theta functions and Zwegers’ modular completions of them in
depth 1. We define mock theta functions of depth 2, and provide three natural examples.
This chapter concludes the first part of this thesis.

The fifth chapter is the first one of the second part of this thesis. It introduces
the language of integral binary quadratic forms, and utilizes them to construct elliptic,
parabolic and hyperbolic nonholomorphic Eisenstein series of even weights k ≥ 2. This
combines Zagier’s fk,D-function with a modular integral by Parson and Hecke’s trick to
include weight 2. We summarize the analytic continuation in weight k = 2 to the spectral
parameter s = 0, in the parabolic and elliptic case, which is known to yield a harmonic
Maaß form resp. polar harmonic Maaß form. We then complete the picture by proving
the existence of the analytic continuation to s = 0 (with k = 2) in the hyperbolic case by
calculating the Fourier expansion. This yields an explicit formula of the continuation as
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well, and we infer that the continuation coincides with a locally harmonic Maaß form if
the imaginary part of the input variable in the complex upper half plane is sufficiently
large.

The sixth chapter continues the work of the fifth chapter by connecting the hyperbolic
Eisenstein series of positive even weights defined there to a locally harmonic Maaß form
on all of H except an explicit exceptional set of measure zero intrinsic to such forms. This
leads to the new concept of local cusp forms. In addition, we provide a second independent
perspective on our locally harmonic Maaß form of positive weight by rewriting them as
twisted traces of cycle integrals of one of Petersson’s two-variable Poincaré series P2k+2.
Löbrich and Schwagenscheidt obtained the archetypal example F1−k,D of a negative
weight locally harmonic Maaß form introduced by Bringmann, Kane, and Kohnen by
investigating the very same twisted trace of P2k with respect to the other variable.

The seventh chapter constructs bimodular completions of 30 year old functions defined
by Knopp, which he obtained as lifts of Zagier’s fk,D-function under the Bol operator.
In the course of inspecting some properties of our completions, we rediscover the local
cusp forms of positive even weights from the sixth chapter. We define a negative weight
lift of these forms under both the Bol operator and the shadow operator along the
lines of F1−k,D. Our new negative weight form is a locally harmonic Maaß form with
continuously, but not differentially removable singularities. Lastly, we show that this
negative weight locally harmonic Maaß form is an output of a certain scalar valued theta
lift by modifying a theta lift yielding F1−k,D.

The eight chapter utilizes the machinery of regularized theta lifts to establish so called
Eichler–Selberg type relations for a wide class of weakly holomorphic modular forms,
as well as demonstrating an alternative approach to local weak (and locally harmonic)
Maaß forms via theta lifts. This idea goes back to the PhD thesis by Hövel in weight
0, who utilized a Siegel theta kernel in a vector valued setting. We modify his theta
lift by including a Maaß raising operator yielding other weights than 0. The weight
now is determined by the parameters of the lattice and the degrees of a homogeneous
polynomial inside the theta kernel. The overall construction relies on foundational work
by Borcherds and by Bruinier, and the evaluation of the theta lift follows a method by
Bruinier, Ehlen, and Yang.
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Chapter I

Introduction and Statement of
Objectives

This thesis consists of seven research articles [MMR22,Mon21,MMR21,Mon22a,
Mon22b,BM22,MM21], whose unifying theme is the construction of various new Maaß
forms in different frameworks. We recall the basic definitions and results of the theory,
collect the main results of this thesis, and discuss some of them at the end of this chapter.

I.1 Definitions and previous results
In this preliminary section, we summarize some background with a focus on motivating

and contextualizing the constructions in the main chapters of this thesis. A good
exposition on modular forms can be found in [BvdGHZ08, Iwa97,Kob93,Ser73], and we
follow [BFOR17] to present the theory of harmonic Maaß forms. The subsection on
locally harmonic Maaß forms is mainly based on the paper [BKK15].

I.1.1 Holomorphic modular forms

Holomorphic modular forms are ubiquitous objects in (analytic) number theory and
in many other areas of pure mathematics, as they are equipped with a lot of internal
symmetries and therefore offer a rich theory with many applications. To motivate their
structure, we let

H := {τ = u+ iv ∈ C : v > 0}
be the complex upper half plane, and Γ := SL2(Z) be the modular group. The group Γ is
generated by

( 1 1
0 1
)
,
( 0 −1

1 0
)
and acts on H by fractional linear transformations

γτ := aτ + b

cτ + d
, τ ∈ H, γ =

(
a b
c d

)
∈ Γ,

because

Im (γτ) = det(γ)v
|cτ + d|2

= v

|cτ + d|2
> 0.

1



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

Now, one might ask for functions f : H→ C “respecting” the group action of Γ, namely

f(γτ) = j(γ, τ)f(τ)

for every τ ∈ H and some function j(γ, τ). To motivate a choice for j(γ, τ), we consider
γ1, γ2 ∈ Γ. Our condition on f becomes

j(γ1γ2, τ)f(τ) = f (γ1γ2τ) = f (γ1(γ2τ)) = j(γ1, γ2τ)f(γ2τ) = j(γ1, γ2τ)j(γ2, τ)f(τ).

In other words, the function j(γ, τ) has to satisfy the cocycle condition

j(γ1γ2, τ) = j(γ1, γ2τ)j(γ2, τ),

and one can verify that

j

((
a b
c d

)
, τ

)
:= cτ + d (I.1)

is indeed such a cocycle. Clearly, we have the freedom to introduce powers k ∈ Z of j(γ, τ)
without changing the previous discussion. We further impose an analytic condition and
a growth condition on f as follows.

Definition I.1.1.

(1) A modular form of weight k ∈ Z is a function f : H → C, which satisfies the
following three conditions:
(i) We have f(γτ) = (cτ + d)k f(τ) for every τ ∈ H and every γ =

(
a b
c d

) ∈ Γ.
(ii) The function f is holomorphic on H.
(iii) The function f is holomorphic at i∞.

(2) We call f a cusp form if f is a modular form that vanishes at i∞.

Condition (iii) requires some explanation. Firstly, one requires that i∞ is at most an
isolated and non-essential singularity of f . Secondly, conditions (i) and (ii) imply that
every modular form f has a Fourier expansion of the shape

f(τ) =
∑

n�−∞
af (n)qn :=

∑
n≥nf

af (n)qn, q := e2πiτ ,

for some nf ∈ Z. Thirdly, condition (iii) now translates to nf ≥ 0, so that f is regular
“at q = 0”. We note that f is a cusp form if and only if nf > 0.

2



I.1. DEFINITIONS AND PREVIOUS RESULTS

The notion of modular forms has been generalized in various directions in the literature.
One may consider half integral weights k ∈ 1

2Z, or congruence subgroups of Γ, such as
the Hecke congruence subgroup

Γ0(N) :=
{(

a b
c d

)
∈ Γ: c ≡ 0 (mod N)

}
,

where N ∈ N is called the level of a modular form. Both is motivated by the properties
of Jacobi’s theta function

ϑ(τ) :=
∑
n∈Z

qn
2 = 1 + 2

∑
n≥1

qn
2
,

and its transformation law is captured by invariance with respect to the slash operator

(
f |k

(
a b
c d

))
(τ) :=


f(γτ)

(cτ+d)k if k ∈ Z,(
c
d

)
ε2k
d

f(γτ)
(cτ+d)k if k ∈ 1

2 + Z,
εd :=

{
1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4),

(I.2)

where
(
c
d

)
denotes the extended Legendre symbol, and we stipulate to take the principal

branch of the complex square root throughout. In this notation, we have(
ϑ| 1

2
γ
)

(τ) = ϑ(τ)

for every γ ∈ Γ0(4). Equivalently, the space of modular forms of weight κ + 1
2 , κ ∈ Z,

and level 4 may be defined as the space of functions being holomorphic on H as well as
at the cusps of Γ0(4), and transforming under the action of Γ0(4) like ϑ(τ)2κ+1.

Further generalizations are
• weakly holomorphic modular forms, namely modular forms, which are permitted to

have poles at the cusps,
• meromorphic modular forms (permitting poles on H and possibly at i∞),
• quasimodular forms (relaxing the transformation law in a prescribed manner to

include derivatives of modular forms),
• or Jacobi forms (introducing a second “elliptic” variable)

for instance.
The fruitfulness of modular forms stems from the fact that their Fourier coefficients

often encode arithmetic, geometric, or combinatorial quantities. A classical example
is a short proof of Lagrange’s four squares theorem by producing exact formulas for
representations of natural number as sums of four squares in terms of simple divisor sums.
Additionally, (weighted) traces of non-zero discriminants are the Fourier coefficients of
a modular form, and the generating function of the number of partitions of n ∈ N0 is
a modular form of weight −1

2 up to the factor q 1
24 . Consequently, modular objects are

often investigated via their Fourier expansions.

3



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

I.1.2 Harmonic Maaß forms

Another direction of generalizing modular forms is to replace complex analyticity
(holomorphicity) by real analyticity, but retaining the modular transformation law. This
leads to the notion of weak Maaß forms. To describe them, we define the weight k
hyperbolic Laplace operator by

∆k := −v2
(
∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
= −4v2 ∂

∂τ

∂

∂τ
+ 2ikv ∂

∂τ
,

which reduces to the usual hyperbolic Laplace operator in weight k = 0. We note that
an eigenfunction of ∆k is real-analytic, because ∆k is an elliptic differential operator
(see [Rud91, Theorem 8.12] and the paragraph afterwards for example). Moreover, we
relax the growth condition of modular forms to include weakly holomorphic modular
forms into the theory of Maaß forms, and to permit a power of v in the constant term
of the Fourier expansion later. We alert the reader to the fact that there exist various
conventions regarding the terminology of Maaß forms in the literature, and we deviate
from the convention used in [BFOR17] here.

Definition I.1.2. Let k ∈ 1
2Z, and choose N ∈ N such that 4 | N whenever k 6∈ Z. Let

f : H→ C be smooth.

(1) The function f is a weight k weak Maaß form for Γ0(N) if it satisfies the following
three properties:

(i) We have
(
f |kγ

)
(τ) = f(τ) for all γ ∈ Γ0(N) and all τ ∈ H.

(ii) The function f is an eigenfunction of ∆k.
(iii) There exists some ε > 0 such that f ∈ O

(
eεv
)
as v → ∞. An analogous

condition is required at the other cusps of Γ0(N).

(2) A harmonic Maaß form is a weak Maaß form with eigenvalue 0 under ∆k.
(3) A weak (resp. harmonic) Maaß form with cuspidal shadow is a weak (resp. harmonic)

Maaß form f such that there exists a polynomial Pf ∈ C
[
q−1] (the principal part

of f) satisfying f(τ)− Pf (τ) = O
(
e−δv

)
as v →∞ for some δ > 0. We require an

analogous condition at all other cusps of Γ0(N).

Harmonic Maaß forms are often inspected via their behaviour under certain differential
operators. Bruinier and Funke [BF04] defined the shadow operator

ξk := 2ivk ∂
∂τ

= ivk
(
∂

∂u
+ i

∂

∂v

)
,
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which yields the splitting ∆k = −ξ2−k ◦ ξk. In turn, this splitting implies that the Fourier
expansion of a harmonic Maaß form f of weight 2− k 6= 1 splits into a holomorphic and
a nonholomorpic part

f+(τ) =
∑

n�−∞
c+
f (n)qn, f−(τ) = c−f (0)v1−k +

∑
n�∞
n6=0

c−f (n)Γ(1− k,−4πnv)qn,

f(τ) = f+(τ) + f−(τ).
(I.3)

Here,

Γ(s, z) :=
∫ ∞
z

ts−1e−tdt, Re(s) > 0,

is the incomplete Gamma function. The function s 7→ Γ(s, z) is multi-valued, but
restricting to principal values yields the single-valued principal branch of this function.
Provided that z 6= 0, each branch of s 7→ Γ(s, z) admits an analytic continuation to
all s ∈ C with removable singularities at non-positive integers (see Section II.2 for the
functional equation). We refer the reader to [BDE17, Section 2.2] for more details on this,
and to [GR07, item 8.3357] (or [BCLO10, §8.11]) for the asymptotic expansion of Γ(s, ·).

One can verify that the shadow operator intertwines with the slash operator by
changing the weight from 2− k to k. In other words, if f is a harmonic Maaß form of
weight 2− k then g1 := ξ2−k(f) is a weakly holomorphic modular form of weight k. In
addition, Bruinier and Funke [BF04] proved that the shadow operator is surjective onto
the space of weakly holomorphic modular forms of weight k.

If we are in the situation of integral weight k ≥ 2 then the shadow operator has a
holomorphic companion given by the Bol operator [BOR08]

Dk−1 :=
( 1

2πi
∂

∂τ

)k−1
=
(
q
∂

∂q

)k−1
.

For such k, the Bol operator intertwines with the slash operator by changing the weight
from 2− k to k as well, and hence g2 := Dk−1(f) is a weakly holomorphic modular form
of weight k whenever f is a harmonic Maaß form of weight 2 − k. Moreover, the Bol
operator is surjective onto the space of weakly holomorphic modular forms of weight k
as well.

An inverse of ξ2−k (resp. Dk−1) is given by the nonholomorphic (resp. holomorphic)
Eichler [Eic57] integral of g1 (resp. g2). Both Eichler integrals can be defined on the level
of Fourier expansions straightforwardly. However, each preimage is not unique, since we
may add any weakly holomorphic modular form of weight 2− k to the nonholomorphic
Eichler integral of g1 for instance. If g1 (resp. g2) is a cusp form then its holomorphic

5
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and nonholomorphic Eichler integral have a representation given by

Eg2(τ) := −(2πi)k−1

(k − 2)!

∫ i∞

τ
g2(w)(τ − w)k−2dw,

g∗1(τ) := (2i)1−k
∫ i∞

−τ
g1 (−w)(w + τ)k−2dw.

(I.4)

Conversely, two cusp forms determine a harmonic Maaß form with cuspidal shadow.
However, both cusp forms have to be different, otherwise the resulting harmonic Maaß
form with cuspidal shadow vanishes identically1. This leads to the “lifting problem”:
Given either g1 or g2, find the other cusp form such that both together give rise to
a non-trivial harmonic Maaß form with cuspidal shadow via their respective Eichler
integrals.

I.1.3 Locally harmonic Maaß forms

In 2012, Bringmann, Kane, and Kohnen [BKK15] attacked the aforementioned lifting
problem from a different perspective. They investigated the highly influential weight 2k
cusp form

fk,D(τ) :=
∑

a,b,c∈Z
b2−4ac=D

1
(aτ2 + bτ + c)k

(I.5)

defined by Zagier [Zag75], where k > 2 is an even integer and D > 0 is a discriminant.
For example, the fk,D-function generates the theta kernel function of the Shimura

[Shi73] and Shintani [Shi75] lifts by work of Kohnen [Koh85] and of Kohnen and Zagier
[KZ81], see Remark VI.4 as well. Additionally, the even periods of fk,D are rational by
further work of Kohnen and Zagier [KZ84]. As shown by Katok [Kat85], the fk,D-function
is a hyperbolic Poincaré series, namely an infinite sum of terms of the shape τ−k|2kγ
with γ running over an explicit (shifted) set of hyperbolic cosets, see [IO09] for more
details on such constructions, and [BKK15, Section 3] for a summary of Katok’s work.
Hence certain collections of fk,D with respect to D span the space of weight 2k cusp
forms, because τ−k is the constant term in the hyperbolic expansion of a cusp form.

Bringmann, Kane, and Kohnen now asked for a lift of fk,D under both differential
operators ξ2−2k and Dk−1 in a local sense, which imitates the construction of fk,D. This
question translated to a differential equation in terms of τ−k, because both operators

1An example of a harmonic Maaß form with non-cuspidal shadow, which maps to the same non-trivial
function under both differential operators up to normalization is given in [BFOR17, Theorem 6.15].
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intertwine with the slash operator as discussed above. Assuming that D is not a square,
they solved this differential equation, and the solution is given by the function

F1−k,D(τ) := 1
2

∑
a,b,c∈Z

b2−4ac=D

sgn
(
a|τ |2 + bu+ c

) (
aτ2 + bτ + c

)k−1

× β
(

Dv2

|aτ2 + bτ + c|2 ; k − 1
2 ,

1
2

)
, (I.6)

which indeed has a representation as a certain hyperbolic Poincaré series like fk,D. Here,

β(x; r, s) :=
∫ x

0
tr−1(1− t)s−1dt, x ∈ (0, 1], r, s > 0,

denotes the incomplete β-function. Due to the presence of the sign-function and for
convergence reasons, F1−k,D has jumping singularities (certain discontinuities, see Section
VII.2 for a definition) on the exceptional set

ED :=
{
τ ∈ H : ∃a, b, c ∈ Z such that b2 − 4ac = D and a|τ |2 + bu+ c = 0

}
(I.7)

of measure zero. Geometrically, ED is the union of all Heegner geodesics

S[a,b,c] = {τ ∈ H : [a, b, c]τ = 0}, [a, b, c]τ := 1
v

(
a |τ |2 + bu+ c

)
, (I.8)

namely all semicircles in H centered on R and indexed by integral binary quadratic forms
[a, b, c] of some non-square discriminant D > 0.

The function F1−k,D is modular of weight 2− 2k, is harmonic with respect to ∆2−2k
outside ED, satisfies a limit condition on ED, and is of at most polynomial growth as
v →∞. Altogether, this suggests that F1−k,D is a new type of automorphic form called a
locally harmonic Maaß form with exceptional set2 ED. Returning to the lifting problem,
Bringmann, Kane, and Kohnen proved that

F1−k,D(τ) = PC(τ)− Dk− 1
2 (2k − 2)!

(4π)2k−1 Efk,D(τ) +Dk− 1
2 f∗k,D(τ), (I.9)

where

PC(τ) := c∞ + (−1)k23−2k
(

2k − 2
k − 1

)
π

∑
a,b,c∈Z

b2−4ac=D
a<0<a|τ |2+bu+c

(
aτ2 + bτ + c

)k−1

2Other exceptional sets of measure 0 are possible as well, but are not studied in the literature yet. A
full definition of a locally harmonic Maaß form can be found in [BKK15, Section 2], and is recalled in
Subsections VI.2.7, VII.2.3.
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is a so-called local polynomial, whose shape depends on the connected component C of
H \ ED in which τ is located. More precisely, it captures the jumping singularities of
F1−k,D, and the sum selects precisely those quadratic forms for which τ is in the bounded
component of the associated Heegner geodesic. Note that there are finitely many such
quadratic forms, and there are none if v >

√
D
2 (see [BKK15, Lemma 5.1 (1), (7.6)]).

The term c∞ is an explicit global constant defined in equation (VII.23) (renormalizing
[BKK15, (4.2), (7.3)]). One may view equation (I.9) as a local generalization of the
Fourier expansion (I.3) with the local polynomial PC serving as a “constant term of higher
degree”.

Zagier’s fk,D-function as well as the local polynomials PC are connected to central
L-values of cusp forms of certain levels N . The former is due to Kohnen and Zagier
[KZ81] for odd and squarefree level, while the latter is understood only in the special
case of a one-dimensional space of cusp forms. In this special case, the idea of Ehlen,
Guerzhoy, Kane, and Rolen [EGKR20] is to generalize work of Kohnen [Koh85] to other
levels, and the splitting (I.9) to weight 0. In essence, the authors of [EGKR20] translate
the vanishing of a central L-value to the modularity of PC , and we refer to their paper
for more details.

I.2 Statement of objectives
We conclude this chapter by collecting the main results of this thesis grouped by the

chapters in which they appear. We omit intermediate results and corollaries.

I.2.1 Polar harmonic Maaß forms and holomorphic projection

In this first main chapter, we construct a family of harmonic Maaß forms of weight 3
2 ,

which are permitted to have poles on H. To describe them, we require some notation.
Let ψ, χ be two Dirichlet characters of moduli Mψ, Mχ, and define

Dn :=
{
d | n : 1 ≤ d ≤ n

d
and d ≡ n

d
(mod 2)

}
,

σsm
2 (n) :=

∑
d∈Dn

χ

( n
d − d

2

)
ψ

( n
d + d

2

)
d2.

Letting θψ be Shimura’s theta-function associated to ψ (see Sections II.1, III.1), and 1

be the trivial character, we further define the functions

F+(τ) := 1
θψ(τ)


∑
n≥1 σ

sm
2 (n)qn if χ 6= 1,

1
2
∑
n≥1 ψ(n)n2qn

2 +∑
n≥1 σ

sm
2 (n)qn if χ = 1,

8
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and

F−(τ) := i

π
√

2

∫ i∞

−τ

θχ(w)
(−i(w + τ))

3
2

dw.

Then, we have the following result.

Theorem I.2.1 (Theorems II.1.1, II.1.3). Suppose that ψ is odd and χ is even. Then the
function F+ + F− is a polar harmonic Maaß form of weight 3

2 on Γ0
(
4M2

χ

) ∩ Γ0
(
4M2

ψ

)
with Nebentypus χ · (ψ · χ−4)−1.

The proof works on the level of Fourier expansions, and utilizes a method by Zagier
and Zwegers based on the technique of holomorphic projection. The construction adapts
the paper [MOR21], and offers a connection to Hurwitz class numbers in a special case
(see Corollary II.1.6). Moreover, we inspect the iterated action of the U -operator( ∑

n�−∞
α(n)qn

) ∣∣∣ U(p) :=
∑

n�−∞
α(pn)qn,

and find the following p-adic property.

Theorem I.2.2 (Theorem II.1.8). Let a, b, p ∈ N and suppose that p is an odd prime.
Then we have (

θψ
(
p2aτ

)
F+(τ)

) ∣∣∣ U (pb) ≡ 0
(
mod pmin(a,b)

)
.

This parallels [MOR21, Theorem 1.4]. It would be interesting to relate other special-
izations of σsm

2 to arithmetic or combinatorial quantities.

I.2.2 Multidimensional small divisor functions

This second main chapter extends the work of the first chapter obtaining polar
harmonic Maaß forms of non-positive integral weight. Let ` ∈ N, and ψ, χ be two
Dirichlet characters of moduli Mψ, Mχ as in the previous chapter. Let λψ := 1−ψ(−1)

2 ,
and P` ∈ Q(X,Y ). We define

Dn :=
{
d ∈ N` : dj | nj , 1 ≤ dj ≤

nj
dj

, and dj ≡
nj
dj

(mod 2) for every 1 ≤ j ≤ `
}
,

9
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the generalized coefficients,

σsm
` (n) :=

∑
d∈Dn

∏̀
j=1

χ

 nj
dj
− dj
2

 , ψ
 nj

dj
+ dj

2

 nj
dj
− dj
2

λχ  nj
dj

+ dj

2

λψ


× P`


∥∥∥∥∥∥
(
nj
dj

)
1≤j≤`

∥∥∥∥∥∥
2

, ‖d‖2
 ,

and the functions

f−` (τ) := 1
Γ (1− kf`)

∑
m∈N`

χ (m!) (m!)λχ ‖m‖2(kf`−1)Γ(1− kf` , 4π‖m‖2v)q−‖m‖2 ,

f+
` (τ) := 1

θψ(τ)`
∑
n∈N`

σsm
` (n) q|n|, f`(τ) := (f+

` + f−` )(τ), kf` := 2− `

2 .

Then, we have the following result.

Theorem I.2.3 (Theorem III.2.1). Let ψ be an odd Dirichlet character, χ be an even and
non-trivial Dirichlet character. Let ` ∈ 2N+ 2. Define P` as indicated in Corollay III.3.2,
obtaining the corresponding small divisor function σsm

` . Then the resulting function f` is a
polar harmonic Maaß form of weight kf` ∈ −N0 on Γ0(4M2

χ)∩Γ0(4M2
ψ) with Nebentypus

χ · (ψ · χ−4)−1. Its shadow is given by a non-zero constant multiple of θ`χ.

The proof is along the same lines as the proof of Theorem I.2.1. We offer some
numerical examples of polynomials P` in Section III.4.2.

I.2.3 Higher depth mock theta functions and q-hypergeometric series

The third main chapter is devoted to the interplay between the theory of harmonic
Maaß forms and so called q-hypergeometric series extending foundational work by Zwegers
[Zwe02] and Bringmann and Ono [BO06,BO10a]. For n ∈ N ∪ {0,∞}, we let

(a)n := (a; q)n :=
n−1∏
j=0

(
1− aqj

)
be the usual q-Pochhammer symbol. Zwegers investigated Ramanujan’s mock theta
functions, which are certain holomorphic but non-modular hypergeometric q-series.
Three examples of them are given by

ν(q) :=
∑
n≥0

qn(n+1)

(−q; q2)n+1
, φ(q) :=

∑
n≥0

qn
2

(−q2; q2)n
, ρ(q) :=

∑
n≥0

qn
2

(q; q2)n
.
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Their modular properties remained mysterious for 80 years until Zwegers [Zwe02] dis-
covered their nonholomorphic modular completions in 2002. In today’s terminology,
Ramanujan’s mock theta functions are holomorphic parts of weight 1

2 harmonic Maaß
forms. In other words, mock modular forms such as Ramanujan’s mock theta functions
are preimages of (weakly) holomorphic modular forms under the shadow operator ξ 1

2
.

Following unpublished work by Zagier and Zwegers, work of Alexandrov, Banerjee, Man-
schot and Pioline [ABMP18], and of Nazaroglu [Naz18], the idea is to extend the search
for preimages under the shadow operator inductively, which leads to the notion of higher
depth (mixed) mock modular forms (see Section IV.1 and [BFOR17, Definition 13.2]).

Many of the (depth one) mock theta functions are specializations of

R(α, β; q) :=
∑
n≥0

(αβ)nqn2

(αq; q)n(βq; q)n
,

up to the additon of a modular form. We let ζ := e2πiz with z ∈ C, and let[
m

n

]
q

:= (q; q)m
(q; q)m−n(q; q)n

be the q-binomial coefficient. We define the functions

f1(z, τ) := (1 + ν(q))
(

1 + ζ

(1− ζ)(1 + q)R
(
ζ,−q; q2

))
,

f2(z, τ) := φ(q)
(

1 + ζ

(1− ζ)(1 + q2)R
(
ζ,−q2; q2

))
,

f3(z, τ) := ρ(q)
(

1 + ζ

(1− ζ)(1− q)R
(
ζ, q; q2

))
,

and refer to Definition IV.2.4 for the notion of higher depth mock theta functions.

Theorem I.2.4 (Theorems IV.1.1, IV.1.2). Let ζ be a root of unity. Then the functions
fj for j ∈ {1, 2, 3} are each mock theta functions of depth two with a natural modular
completion provided in Section IV.2.3. Furthermore, we have the following representations
as double-sum q-series:

(1) The function f1 can be written as

f1(z, τ) =
(
1 + q−1

) ∑
m,n≥0

(−1)n q2n2
ζn+m

[
m+ n

m

]
q2

(
− q2n

ζ ; q2
)
m

(1 + q2n−1) (−q; q2)m+2n
.

11
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(2) The function f2 can be written as

f2(z, τ) = 2
∑

m,n≥0
(−1)n q2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(1 + q2n) (−q2; q2)m+2n
.

(3) The function f3 can be written as

f3(z, τ) =
∑

m,n≥0
(−1)n q2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(
1− q−1)

(1− q2n−1) (q; q2)m+2n
.

The proof uses the known modular completions of ν, φ, ρ, and R as well as a product
formula by Srivastava [Sri87].

I.2.4 Eisenstein series of even weight k ≥ 2 and integral binary quadratic
forms

The fourth main chapter introduces the language of integral binary quadratic forms,
which enables us to construct and inspect new modular objects. We let QD be the set of
integral binary quadratic forms

Q(x, y) = [a, b, c](x, y) = ax2 + bxy + cy2

of discriminant D := b2 − 4ac ∈ Z. The modular group Γ = SL2(Z) acts on QD by linear
subsitution, that is

(Q ◦ ( α11 α12
α21 α22 )) (x, y) := Q (α11x+ α12y, α21x+ α22y) .

If we evaluate at (x, y) = (τ, 1), we obtain (recall equation (I.1))

(Q ◦ γ)(τ, 1) = j(γ, τ)2Q(γτ, 1)

for every γ ∈ Γ. Using the usual averaging technique and assuming absolute convergence
hence yields modular objects such as Zagier’s fk,D-function (see equation (I.5)).

Suppose that D is not a square, and let

sgn([a, b, c]) := sgn(a), Re(s) > 1− k

2 , k ∈ 2N,

d be a fundamental discriminant dividing D, and χd be the extend level 1 genus character
[GKZ87, Proposition 1]. Utilizing Hecke’s trick and an idea of Parson [Par93], Zagier’s
construction from equation (I.5) extends to the function

Ek,D(τ, s) :=
∑

Q∈QD

χd(Q) sgn (Q)
k
2 vs

Q(τ, 1) k2 |Q(τ, 1)|s
.
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Depending on the sign of D, Ek,D(τ, s) is an elliptic (D < 0), parabolic (D = 0),
or hyperbolic (D > 0) Eisenstein series with respect to τ . It is natural to investigate
wether Ek,D posseses an analytic continuation to s = 0 in weight k = 2. If D ≤ 0 then
the continuation of E2,D to s = 0 exists and is given by a harmonic (D = 0) resp. polar
harmonic (D < 0) Maaß form essentially3. The main result of Chapter V completes the
picture by adding the hyperbolic case. We recall equations (I.7), (I.8), and let ΓQ be the
stabilizer of Q giving rise to the projection SQ/ΓQ of SQ into a fundamental domain for Γ.
Additionally, we let

E∗2(τ) := 1− 24
∑
n≥1

∑
d|n

dqn − 3
πv

be the completed Eisenstein series of weight 2 (see [BFOR17, Section 6.1.1] for example),
let j be the Hauptmodul for Γ, and jm be the Duke–Jenkins [DJ08] basis of weight 0
(see Section VIII.1 for their description as well).
Theorem I.2.5 (Theorem V.1.1). Suppose that D > 0 is not a square, and k = 2. Then,
the function E2,D(τ, s) can be analytically continued to s = 0 and the continuation is
given by

lim
s→0
E2,D(τ, s) = −2

D
1
2

∑
m≥0

∑
Q∈QD/Γ

χd(Q)
∫

SQ/ΓQ
(jm(w)− E∗2(τ)) |dw|Im(w) q

m

for any τ ∈ H. Furthermore, if v is sufficiently large, that is τ is located above the net of
geodesics ED, then we have

lim
s→0
E2,D(τ, s) = −2

D
1
2

∑
Q∈QD/Γ

χd(Q)
∫

SQ/ΓQ

( D(j)(τ)
j(w)− j(τ) − E

∗
2(τ)

) |dw|
Im(w) .

This result follows calculating the Fourier expansion of Ek,D using work of Zagier
[Zag75] as well as of Duke, Imamoḡlu, and Tóth [DIT11]. As a byproduct, we obtain the
Fourier expansion of Ek,D for any even weight k ≥ 4 at s = 0.
Theorem I.2.6 (Theorem V.1.2). Suppose that D > 0 is not a square, and k ≥ 4 is
even. Moreover, let Gm(τ, s) be Niebur’s Poincaré series4. Then, we have

Ek,D(τ, 0) = (−1) k2 2π k2

D
k
4 Γ
(
k
4

)2
∑
m≥1

m
k
2−1 ∑

Q∈QD/Γ
χd(Q)

∫
SQ/ΓQ
G−m

(
w,
k

2

) |dw|
Im(w) q

m.

These results are connected to further work by Duke, Imamoḡlu, and Tóth as well,
compare [DIT10, (8), (16)].

3We summarize the elliptic case, and a slightly more special variant of the elliptic case in Chapter V.
4See equation (V.1), Definition VI.2.4. Up to normalization, also see [BFOR17, equation (13.4)].
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I.2.5 Locally harmonic Maaß forms of positive even weight

This fifth main chapter continues the work of Chapter V. We observe that the analytic
continuation of E2,D(τ, s) to s = 0 from Chapter V coincides with a locally harmonic
Maaß form whenever τ is located above the net of geodesics ED. Being more precise,
this form is given by

τ 7→
∑

Q∈QD/Γ
χd(Q)

∫
SQ/ΓQ

( D(j)(τ)
j(w)− j(τ) − E

∗
2(τ)

) |dw|
Im(w) , τ ∈ H \ ED,

and its locality is caused by the Γ-orbits of the integration variable inside the cycle
integral. Consequently, this twisted trace of cycle integrals has the exceptional set ED as
a function of τ again.

A natural question now is to ask for the obstructions of lims→0 E2,D(τ, s) and Ek,D(τ, 0)
(k > 2) to coincide with these twisted traces of cycle integrals in the other connected
components of H\ED. We show that this question boils down to relate the sign functions
sgn(Q), sgn

(
Qτ
)
, and 1Q(τ) to each other. Here, 1Q is the characteristic function of

the connected component enclosed by the Heegner geodesic SQ and the real interval
with endpoints given by the two zeros of Q (see [Sch18, Corollary 5.3.5], [Mat20a, p. 8],
Section VI.2). Explicity, we find that (recall equation (I.8), compare Lemma VI.2.1)

sgn (Qτ ) = sgn(Q) (1− 21Q(τ)) ,

and consequently define

Êk,D(τ, s) :=
∑

Q∈QD

χd(Q) sgn (Qτ )
k
2 vs

Q(τ, 1) k2 |Q(τ, 1)|s
(I.10)

under the same assumptions on D, k, d and s as in the previous section. We further
recall a Poincaré series of Petersson [Pet50] (recall equation (I.2))

Pk(z1, z2) := Im(z2)k−1 ∑
γ∈Γ

( 1
(z1 − z2)(z1 − z2)k−1

) ∣∣∣
k,z1

γ

= Im(z2)k−1 ∑
γ∈Γ

( 1
(z1 − z2)(z1 − z2)k−1

) ∣∣∣
2−k,z2

γ.

(I.11)

Here, the second subscript of the slash-operator indicates on which variable it acts. By
work of Bringmann and Kane [BK20], Pk(z1, ·) is a polar harmonic Maaß form of weight
2− k, while Petersson proved in [Pet50] that Pk(·, z2) is a meromorphic modular form of
weight k without a pole at the cusp.

We call a function f : H→ C a local cusp form of weight k if it behaves like a cusp
form of weight k outside ED, but has jumping singularities on ED additionally, compare
Sections VI.2, VII.1. Then, we offer the following result.
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Theorem I.2.7 (Theorem VI.1.1). Let 0 < k ≡ 2 (mod 4), and τ ∈ H \ ED. Let D > 0
be a non-square discriminant, and d be a positive fundamental discriminant dividing D.

(1) The function Ê2,D(τ, 0) is a locally harmonic Maaß form of weight 2 for Γ with
exceptional set ED as a function of τ .

(2) If 2 < k ≡ 2 (mod 4) then Êk,D(τ, 0) is a local cusp form of weight k for Γ with
exceptional set ED as a function of τ .

(3) Moreover, we have the alternative representation

Êk,D(τ, 0)

=
∑

Q∈QD/Γ
χd(Q)


−2
D

1
2

∫
SQ/ΓQ

(
D(j)(τ)
j(z)−j(τ) − E∗2(τ)

)
Q(z, 1)−1dz if k = 2,

(−1)kΓ(k)C1(k)C2(k)
2
k
2−2Γ( k4 )2

∫
SQ/ΓQ

Pk(τ, z)Q(z, 1)− k2 dz if k > 2,

where C1(k) and C2(k) are explicit constants provided in Section VI.4.

As discussed at the end of the previos section (and proven in [BKK15, Lemma 5.1
(1)]), we have 1Q(τ) 6= 0 for only finitely many quadratic forms Q and for any fixed
τ ∈ H \ ED. In other words, the part of Êk,D(τ, 0) containing 1Q yields the local part of
our local cusp forms, which is now a local rational function instead of a local polynomial
due to the opposite sign of the weight. This parallels Knopp’s [Kno78,Kno81] extension
of period polynomials to rational period functions. And indeed, local polynomials and
period polynomials are closely related (see [BKK15, Section 8]).

I.2.6 A modular framework of functions of Knopp and indefinite binary
quadratic forms

In the sixth main chapter, we inspect a 30-year old function introduced by Knopp
[Kno90] in the course of constructing a term-by-term lift of Zagier’s fk,D-function (recall
equation (I.5)) under the Bol operator, which is made precise in Proposition VII.3.1.
However, averaging his result over Q ∈ QD would yield a divergent series, and hence
Knopp changed the sign of k in his lift to enforce convergence. This leads to the function

ψk+1,D(τ) :=
∑

Q∈QD

Log
(
τ−α−Q
τ−α+

Q

)
Q(τ, 1)k+1 , α±[a,b,c] := −b±

√
D

2a ∈ R,

where k ∈ 2N, D > 0 is a non-square discriminant, and Log denotes the principal
branch of the complex logarithm. Although the Bol operator intertwines with the slash
operator, the function ψk+1,D is not modular due to Knopp’s sign change of k. Instead,

15
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the obstruction towards modularity of ψk+1,D (see Proposition VII.3.1 (3), correcting a
typo in [Kno90, (4.6)]) satisfies the so-called period relations, which characterize period
polynomials in the space C[X], see [Kno90, (2.2), p. 334]. However, this obstruction is
neither a polynomial nor a rational function.

The first main result of this chapter provides a completion of ψk+1,D to a bimodular
form5, which is explicitly given by

Ωk+1,D(τ, w) :=
∑

Q∈QD

Log
(
τ−α−Q
τ−α+

Q

)
− Log

(
w−α−Q
w−α+

Q

)
+ πi sgn(Q) + 2i arctan

(
Qw√
D

)
Q(τ, 1)k+1 ,

where w ∈ H− := {z ∈ C : Im(z) < 0}. We prove the following properties of Ωk+1,D.

Theorem I.2.8 (Theorem VII.1.1). Let τ ∈ H, w ∈ H−.

(1) The function Ωk+1,D is bimodular of weight (2k + 2, 0) that is

Ωk+1,D(τ + 1, w + 1) = Ωk+1,D(τ, w), Ωk+1,D

(
−1
τ
,− 1

w

)
= τ2k+2Ωk+1,D(τ, w).

(2) We have limw→−i∞Ωk+1,D(τ, w) = ψk+1,D(τ).
(3) We have limτ→i∞Ωk+1,D(τ, w) = 0.
(4) The functions Ωk+1,D are holomorphic with respect to τ and antiholomorphic with

respect to w.
(5) We have that Ωk+1,D(τ, τ) = 0.

In the course of proving part (5), we encounter the local cusp forms (see equations
(VII.7), (VII.20))

gk+1,D(τ) := Ê2k+2,D(τ, 0) =
∑

Q∈QD

sgn (Qτ )
Q(τ, 1)k+1 (I.12)

from Chapter VI, where we choose d = 1 in equation (I.10). We observe that gk+1,D
is an “odd analogue” of fk,D, which motivates to investigate gk+1,D along the lines of
[BKK15]. To this end, we define the “even analogue” (see Section VII.1)

G−k,D(τ) := 1
2
∑

Q∈QD

Q(τ, 1)kβ
(

Dv2

|Q(τ, 1)|2
; k + 1

2 ,
1
2

)
, (I.13)

5This terminology was introduced by Stienstra and Zagier [SZ06]. A definition can be found in
[BKMN21, Footnote 7].

16



I.2. STATEMENT OF OBJECTIVES

of F1−k,D from equation (I.6). Like F1−k,D, the function G−k,D is well-defined for
τ ∈ H \ ED (see Proposition VII.5.1). We show that both Eichler integrals (recall
equation (I.4)) of gk+1,D exist on its exceptional set ED (recall equation (I.7), compare
Proposition VII.4.4). Then, we offer the following properties of G−k,D.

Theorem I.2.9 (Theorem VII.1.2).

(1) The function G−k,D is a locally harmonic Maaß form of weight −2k with continu-
ously (however not differentially) removable singularities on ED.

(2) If τ ∈ H \ ED, then we have, with c∞ defined in equation (VII.23),

G−k,D(τ) = c∞ −
Dk+ 1

2 (2k)!
(4π)2k+1 Egk+1,D(τ) +Dk+ 1

2 g∗k+1,D(τ).

The last main result of Chapter VII realizes G−k,D as an output of a scalar-valued
theta lift by modifying a construction of Bringmann, Kane, and Viazovska [BKV13]. We
define our theta lift L∗−k as in Section VII.1, and the Maaß–Poincaré series P 1

2−k,m
as in

equation (VII.13)). Then, we have the following result.

Theorem I.2.10 (Theorem VII.1.3). Let τ ∈ H \ ED. We have

L∗−k

(
P 1

2−k,D

)
(τ) = D

1
4−

k
2 k!

3Γ
(
k + 1

2

)
(4π) k2 + 1

4
G−k,D(τ).

We describe and discuss the picture arising from some of the results from Chapters V
to VII in Section I.3.

I.2.7 Local weak Maaß forms and Eichler–Selberg type relations for
negative weight vector-valued mock modular forms

The content of the seventh and last main chapter is twofold. On one hand, we
prove the existence of so called Eichler–Selberg type relations in a broader context.
More precisely, we extend earlier results by Mertens [Mer16] in weights 1

2 ,
3
2 and for

scalar-valued functions to weights greater than two and for vector-valued functions. On
the other hand, we inspect the connection of local weak Maaß forms (see Definition
VIII.2.2) to theta lifts. This is motivated by work of Hövel [Höv12], who constructed
such forms in weight 0 using regularized theta lifts in a vector-valued framework. His
approach is independent from the scalar-valued and negative weight case of Bringmann,
Kane, and Kohnen [BKK15]. Both results appeared around the same time as well.

Let L be an even lattice of signature (r, s) with quadratic form Q and dual lattice
L′. We denote by Gr(L) the Grassmannian of r-dimensional subspaces of L⊗ R, and by

17
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λz, λz⊥ the orthogonal projections of λ ∈ L+ µ onto the linear subspaces spanned by
z, z⊥ (the orthogonal complement of z with respect to (·, ·)Q) respectively. To obtain
different weights while preserving modularity of the theta kernel, we let pr : Rr,0 → C,
and ps : R0,s → C be spherical polynomials, which are assumed to be homogeneous of
degree d+, d− ∈ N0 respectively. Put p⊗ := pr ⊗ ps, and let ψ : L ⊗ R → Rr,s be an
isometry. We take the “points” z := ψ−1(Rr,0) ∈ Z, z⊥ = ψ−1(R0,s), where Z ⊆ Gr(L)
is the set of all such subspaces on which Q is positive definite. Letting eµ, µ ∈ L′/L, be
the standard basis of C

[
L′/L

]
, we are now in position to define the theta kernel by

ΘL (τ, ψ, p⊗) := v
s
2 +d− ∑

µ∈L′/L

∑
λ∈L+µ

p⊗ (ψ(λ)) e2πi(Q(λz)τ+Q(λ
z⊥ )τ)eµ.

Following Borcherds [Bor98], ΘL is modular of weight k := r−s
2 + d+− d− with respect to

the Weil representation ρL for Mp2(Z) (see Section VIII.2). If R`κ denotes the usual Maaß
raising operator (see Subsections VI.2.5, VII.2.2, VIII.2.3,), and f is a weight k − 2j < 0
harmonic Maaß form with cuspidal shadow, j ∈ N0, for SL2(Z), then we consider the
theta lift

Ψreg
j (f, z) :=

∫ reg

F

〈
Rjk−2j(f)(τ),ΘL (τ, ψ, p⊗)

〉
vkdµ(τ).

Here, F is a fundamental domain for SL2(Z),
∫ reg indicates Borcherds’ regularization

of the integral (see Section VII.2), dµ(τ) is the usual hyperbolic measure, and the
dependence of the right hand side on z is captured by ψ.

Following Bruinier and Schwagenscheidt [BS21], we say that w ∈ Gr(L) is a special
point if w ∈ L⊗Q. Moreover, we let G +

P , ΛL
(
ψ, p⊗, j

)
be as in Subsection VIII.3.3, ΘN−

be as in Subsection VIII.2.7, and refer to Subsection VIII.2.6 for further notation.

Theorem I.2.11 (Theorem VIII.3.4). Let L be an even lattice of signature (r, s), w be a
special point defined by the isometry ψ, and p⊗ be as before. Let j ∈ N and k be such that
2j + 2− k > 2. Then the function

[
G +
P (τ),ΘN−(τ, ps)

]L
j
− ΛL(ψ, p⊗, j) is a holomorphic

vector-valued modular form of weight 2j + 2− k for ρL.

Moving to vector-valued local weak Maaß forms (see Defintion VIII.2.2), we let
Fm,k−2j,s be the vector-valued Maaß–Poincaré series of weight k−2j, indexm ∈ N\{Q(µ)},
and spectral parameter s (see Subsection VIII.2.5).

Theorem I.2.12 (Theorem VIII.1.2). Suppose that L is an even isotropic lattice of
signature (2, s). Then the lift Ψreg

j (Fm,k−2j,s, z) is a local weak Maaß form on Gr(L)
with eigenvalue

(
s− k

2
)(

1− s− k
2
)
under the Laplace–Beltrami operator on Gr(L) (see

Subsection VIII.2.2).
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The last main result of this chapter deals with an explicit scalar-valued example of the
previous theorem. Namely, we restrict ourselves to signature (1, 2), in which case there
is a correspondence between the vector-valued framework and the usual scalar-valued
setting on H by virtue of a result of Eichler and Zagier [EZ85, Theorem 5.4]. We choose
H`f−2`,N as input, where H` refers to the usual Cohen–Eisenstein series, and f−2`,N is
the N -th Duke–Jenkins [DJ08] basis form of weight −2` (both recalled in Section VIII.1).
Theorem I.2.13 (Theorem VIII.1.3). The function Ψreg

j

(
f−2`,NH`, z

)
is a local weak

Maaß form on H for every j ∈ N, ` ∈ N\{1}, and −m ≤ N ∈ N with exceptional set given
by the net of Heegner geodesics ⋃ND=1ED, and eigenvalue (1− k + j)(−j) = j

(
j − `− 3

2
)

under ∆−`− 1
2
.

At the very end of Chapter VIII, we sketch the steps to obtain Eichler–Selberg type
relations for the function f−2`,NH`. This concludes Chapter VIII, and this thesis.

I.3 Synopsis of Chapters V, VI, VII and a brief discussion
Let k ∈ 2N, and D > 0 be a non-square discriminant. We recall the definitions of

fk,D, F1−k,D, gk+1,D, and G−k,D from equations (I.5), (I.6), (I.12), and (I.13). We further
recall Petersson’s Poincaré series Pk from equation (I.11), and the Maaß–Poincaré series
P 1

2−k,m
from equation (VII.13).

Note that P 3
2−k,m

is of negative weight, and becomes the (weakly) holomorphic
Poincaré series of exponential type6 after mapping k 7→ 2− k. According to7 [BKV13,
(2.12)], both Poincaré series are related by

ξ 3
2−k

(
P 3

2−k,D

)
=
(
k − 1

2

)
Pk+ 1

2 ,D
.

Furthermore, Bringmann, Kane and Viazovska [BKV13] constructed certain (scalar-
valued) theta lifts, which lift the Poincaré series P 3

2−k,D
(resp. Pk+ 1

2 ,D
) to the functions

F1−k,D (resp. fk,D) after specializing to a certain spectral parameter there. As discussed
above, Theorem I.2.10 follows by a modification of their theta lift with a slightly modified
theta kernel.

In addition, Löbrich and Schwagenscheidt [LS22c, Theorem 4.2] connected P2k from
equation (I.11) and F1−k,D from equation (I.6). Explicitly, their result implies that

F1−k,D(τ) = (−1)k
(

2k − 2
k − 1

) ∑
Q∈QD/Γ

∫
SQ/ΓQ

P2k(z, τ)Q(z, 1)k−1dz

6See Definition VI.2.4 and Remark VI.2.6.
7A proof can be found in [BFOR17, Theorem 6.11] up to normalization and sign convention of m (see

Remark VI.2.6).
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after summing over Q ∈ QD/Γ there. This should be compared with Theorem I.2.7 noting
that we exchanged z and τ inside Petersson’s Poincaré series and switched between 2k
and 2k + 2.

We collect these results as well as [BKK15, Theorem 7.1] (which is equation (I.9)),
and some results from Chapters V to VII in the following diagram:

P 3
2−k,D

resp. P 1
2−k,D

F1−k,D G−k,D

P2k resp. P2k+2

fk,D gk+1,D

Pk+ 1
2 ,D

[BKV13]
Thm. 1.3

Thm.
I.2.10

[BKK15]
Thm. 7.1

twist summands
by sgn(Qτ )

Thm.
I.2.9

[LS22c]
Thm. 4.2

Thms.
I.2.6 &

I.2.7

twist summands
by sgn(Qτ )

[BKV13]
Thm. 1.1

Figure I.1: Synopsis of Chapters V, VI, VII

On one hand, it would be interesting to realize gk+1,D as a theta lift of some Poincaré
series as well. However, one can not simply twist the theta kernel used in [BKV13,
Theorem 1.1] by sgn

(
Qτ
)
, because this would yield a function with singularities in a

dense subset of H.
On the other hand, the diagram suggests that there might exist a connection between

fk,D and G−k,D evolving from a two variable automorphic form Pk, where Pk parallels
the role of Pk (see Remark VI.4 as well). This connection could be realized as a twisted
trace of cycle integrals again, which is motivated by [Koh85, Proposition 7], or in terms
of some other “bridging concept”. If such a connection exists, one could ask naturally
for the interplay between Pk and Pk, which would shed some light on a theory behind
locally harmonic Maaß forms from a more general perspective.
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Harmonic Maaß forms





Chapter II

Polar harmonic Maaß forms and
holomorphic projection

This chapter is based on a paper [MMR22] of the same title published in The
International Journal of Number Theory. This is joint work with Dr. Joshua Males and
Prof. Dr. Larry Rolen.

II.1 Introduction and statement of results
A recent paper by Mertens, Ono, and Rolen [MOR21] defined and investigated a new

type of mock modular form. Their construction is motivated by work of Hecke [Hec27],
whose results imply that the functions

1
2L (1− k, φ) +

∑
n≥1

∑
d|n

φ(d)dk−1

 qn, ∑
n≥1

∑
d|n

φ

(
n

d

)
dk−1

 qn
are holomorphic weight k modular forms on Γ0(N) with Nebentypus φ if k > 2, where φ
is any primitive Dirichlet character of modulus N satisfying φ(−1) = (−1)k. Here and
throughout, we let τ = u + iv ∈ H and q := e2πiτ . The notation L(s, φ) refers to the
Dirichlet L-function of φ. Mertens, Ono, and Rolen focussed on the case k = 2, and to
this end defined a different class of twisted and restricted versions of classical divisor
sums

σk−1(n) :=
∑
d|n

dk−1.

Since σk−1(n) is a Fourier coefficient of the classical holomorphic Eisenstein series Ek for
even k ≥ 2, they called these “mock modular Eisenstein series”. Following the setting of
[MOR21], let ψ be any non-trivial Dirichlet character of modulus Mψ > 1, define the set
of admissible “small” divisors

Dn :=
{
d | n : 1 ≤ d ≤ n

d
and d ≡ n

d
(mod 2)

}
,
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and the small divisor function

σsm
1,ψ(n) :=

∑
d∈Dn

ψ

((
n
d

)2 − d2

4

)
d.

In addition, let

λψ := 1− ψ(−1)
2 ∈ {0, 1},

depending on the parity of ψ, let χ−4 be the unique odd character of modulus 4, and we
recall Shimura’s theta function

θψ(τ) := 1
2
∑
n∈Z

ψ(n)nλψqn2
.

Then the main result of [MOR21] states that the function

E+(τ) := 1
θψ(τ)

αψE2(τ) +
∑
n≥1

σsm
1,ψ(n)qn


can be completed to a polar harmonic Maaß form of weight 3

2 − λψ on Γ0(4M2
ψ) with

Nebentypus ψ ·χλψ−4, where αψ is an implicit constant to ensure a certain growth condition.
That is, it has the transformation and analytic properties of a harmonic Maaß form, but
it may have poles on the upper half plane arising from θψ(τ) in the denominator. Similar
ideas have been utilized for specific examples before by Andrews, Rhoades, and Zwegers
[ARZ13], and by Bringmann, Kane, and Zwegers [BKZ14] for instance. Additionally,
the authors of [MOR21] presented some special choices of ψ where their polar harmonic
Maaß forms happen to have no poles on H, and offer a p-adic property of E+ for primes
p > 3.

A natural question is whether there are more classes of small divisor functions for
which a similar phenomenon to the setting of [MOR21] appears. Our two main results
give such generalizations. We let χ be a second Dirichlet character of modulus Mχ and
define our small divisor function by

σsm
2,χ(n) :=

∑
d∈Dn

χ

( n
d − d

2

)
ψ

( n
d + d

2

)
d2.

We stipulate that ψ is odd and fixed throughout, and thus omit the dependency of σsm
2,χ

on ψ. We moreover define F(τ) := F+(τ) + F−(τ), where

F+(τ) := 1
θψ(τ)

∑
n≥1

σsm
2,χ(n)qn, F−(τ) := i

π
√

2

∫ i∞

−τ

θχ (w)
(−i (w + τ))

3
2

dw.

We obtain the following result.
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Theorem II.1.1. If χ is even and non-trivial then the function F is a polar harmonic
Maaß form of weight 3

2 on Γ0
(

lcm
(
4M2

χ, 4M2
ψ

))
with Nebentypus χ · (ψ · χ−4)−1. Its

shadow is given by 1
2πθχ.

Including the possibility of χ = 1, where a constant term arises, requires adjustments
either in the holomorphic part F+ or in the nonholomorphic part F−. On one hand, we
may subtract the arising constant term from F− again. The shadow of F would be given
by the partial theta function

1
2π

∑
n≥1

qn
2 = 1

2πθ1(τ)− 1
4π .

In [BR16], it is proved that all one-dimensional partial theta functions are (strong)
quantum modular forms, which were first introduced by Zagier [Zag10]. Furthermore,
such partial theta functions are related to Appell–Lerch sums of level 2, to meromorphic
Jacobi forms, and closely to false theta functions as well. An exposition on the former
two connections was given by Bringmann, Zwegers, and Rolen in [BRZ16]. To state their
results, let ζ := e2πiz, and

ϑ(z; τ) :=
∑
n∈Z

q
n2
2 ζn = −iζ− 1

2 q
1
8

∞∏
j=0

(
1− qj+1

) (
1− ζqj

) (
1− ζ−1qj+1

)
be the standard Jacobi theta function of index and weight 1

2 . The second equality is
the Jacobi triple product identity, from which we deduce that ϑ(z; τ) has zeros precisely
in Zτ + Z as a function of z and all zeros are simple. Moreover, letting ` ∈ N, the
Appell–Lerch sum of level ` is defined by

A`(w, z; τ) := eπi`w
∑
n∈Z

(−1)`nq`
n(n+1)

2 e2πinz

1− e2πiwqn
.

The results of [BRZ16] can be specialized to our setting and read as follows.

Proposition II.1.2 ([BRZ16, Corollaries 1.2 and 1.5]).

(1) We have

∑
n≥1

qn
2 = −

∫ 1
2

− 1
2

e2πi(2t)A2

(
t− τ

2 , 0; τ
)

dt.

(2) Let fn(τ) be defined by the expansion [BRZ16, equation (2.5)]
1

ϑ(z; τ)2 =:
∑
n≥−2

fn(τ)(2πiz)n.
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Then it holds that

f−1(τ)
∑
n≥1

qn
2 + 2f−2(τ)

∑
n≥1

nqn
2 =

∫ 1
2

− 1
2

e2πi(2t)

ϑ
(
t− τ

2 ; τ
)2 dt,

and the functions f−1(τ), f−2(τ) both are known to be quasimodular forms (compare
[EZ85, Theorem 3.2], [BFOR17, Corollary 2.36], [BRZ16, p. 8]).

Zwegers provided the nonholomorphic completion of A` to a two-variable Jacobi
form of weight 1 and matrix index

(−` 1
1 0

)
, see [Zwe19, Theorem 4]. Moreover, a third

perspective arises from the close relation between partial and false theta functions.
Bringmann and Nazaroglu described the completion of false theta functions to functions
with certain Jacobi transformation properties in a recent paper [BN19]. In particular,
their result includes the completion for∑

n∈Z
sgn(n)q

n2
2 e2πinz,

where sgn(0) := 0.
On the other hand, we may compensate for the additional constant term by adjusting

the holomorphic part F+. Being more precise, we define G(τ) := G+(τ) + G−(τ), where

G+(τ) := 1
θψ(τ)

1
2
∑
n≥1

ψ(n)n2qn
2 +

∑
n≥1

σsm
2,1(n)qn

 ,
G−(τ) := i

π
√

2

∫ i∞

−τ

θ1 (w)
(−i (w + τ))

3
2

dw.

It turns out that the strategy of the proof of Theorem II.1.1 still applies, enabling us to
complete the picture (regarding even χ) by the following result.

Theorem II.1.3. The function G is a polar harmonic Maaß form of weight 3
2 on Γ0

(
4M2

ψ

)
with Nebentypus

(
ψ · χ−4

)−1. Its shadow is given by 1
2πθ1.

Rouse and Webb showed in [RW15] that the only modular forms on Γ0(N) with
integer Fourier coefficients and no zeros on H are eta quotients. In addition, Mersmann
and Lemke-Oliver completed the classification of theta functions which may be written as
such an eta quotient. We cite their results in the formulation of [MOR21, Theorem 1.2].

Theorem II.1.4 ([LO13,Mer91]). The only nontrivial primitive characters ψ for which
θψ is an eta quotient are contained in the set of Kronecker characters

Ψ :=
{(

D

·

)
: D ∈ {−8,−4,−3, 2, 12, 24}

}
.
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Combining Theorems II.1.1, II.1.3, and II.1.4 immediately yields the following corollary.
(Recall that there is no odd character of modulus 2.)

Corollary II.1.5. If ψ ∈ Ψ \ {(2
·
)}

is odd then F+ and G+ are mock theta functions.

The result of Theorem II.1.4 motivates us to investigate the odd choices ψ ∈ Ψ\{ (2
·

) }
in greater detail. To this end, letH(n) be the Hurwitz class number, counting the weighted
number of classes of positive definite binary quadratic forms of discriminant −n. Phrased
in todays terminology, Zagier discovered in [Zag75] that

H+(τ) := − 1
12 +

∑
n≥1

H(n)qn.

can be completed to a harmonic Maaß form H(τ) := H+(τ) − 1
4G−(τ) of weight 3

2
on Γ0(4). To see this, one may rewrite G− as in Lemma II.4.1 below, and compare
[BFOR17, Theorem 6.3] for instance. The function H is then often called Zagier’s weight
3
2 nonholomorphic Eisenstein series. A standard computation using the Sturm bound
yields the following.

Corollary II.1.6. Let ψ = χ−4. Then we have∑
n≥1

σsm
2,1(8n)q8n = −4θψ(τ)

∑
n≥1

H(8n− 1)q8n−1.

Or in other words, by definition of ψ = χ−4 and θψ,

σsm
2,1(8n) = 4

∑
j≥1

(2j−1)2<8n

(−1)j(2j − 1)H
(
8n− (2j − 1)2

)
.

In addition, we note that both the coefficients of θψH+ and the values of σsm
2,1 grow at

most polynomially. Based on the observations from the preceeding discussion we inquire
the following.

Question. For every ψ ∈ Ψ \ {(2
·
)}
, do there exist numbers 0 6= C, t ∈ Q, such that

C · G+(tτ)

generates a linear combination of Hurwitz class numbers on some arithmetic progression?

In the course of proving Theorem II.1.1 and Theorem II.1.3 we compute the holo-
morphic projection of a product similar to the structure of mixed harmonic Maaß forms.
However, we just rely on translation invariance and impose suitable growth conditions
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on the coefficients to ensure convergence. The resulting expression can be written in
terms of a particular class of Jacobi polynomials P(a,b)

r (sometimes also referred to as
hypergeometric polynomials.). For r ∈ N0, these polynomials are defined by

P(a,b)
r (z) := Γ(a+ r + 1)

r! Γ(a+ b+ r + 1)

r∑
j=0

(
r

j

)
Γ(a+ b+ r + j + 1)

Γ(a+ j + 1)

(
z − 1

2

)j
= Γ(a+ r + 1)

r! Γ(a+ 1) 2F1

(
−r, a+ b+ r + 1, a+ 1, 1− z

2

)
,

(II.1)

which can be found in [GR07, item 8.962] for example. Here, 2F1 denotes the usual Gauß
hypergeometric function. Then we have the following result.

Proposition II.1.7. Let kf ∈ R \ N, kg ∈ R \ (−N), such that κ := kf + kg ∈ N≥2. Let
α(m), β(n) be two complex sequences, and define1

f(τ) :=
∑
m≥1

α(m)mkf−1Γ(1− kf , 4πmv)q−m, g(τ) :=
∑
n≥1

β(n)qn.

Suppose that

(i) the function (fg)(r + iv) grows at most polynomially as v ↘ 0, where r ∈ Q, and
that

(ii) the function (fg)(iv) grows at most polynomially as v ↗∞.

Then the weight κ holomorphic projection of fg is given by

πκ (fg) (τ)

= −Γ(1− kf )
∑
m≥1

∑
n−m≥1

α(m)β(n)
(
nkf−1P(1−kf ,1−κ)

κ−2

(
1− 2m

n

)
−mkf−1

)
qn−m.

We provide two proofs of this result, which correspond to either definition of the
Jacobi polynomials. The first one relies on identities of the Gauß hypergeometric function,
while the second one relies on two Lemmas from [Mer16].
Remarks.

(1) Assuming the framework of mixed harmonic Maaß forms, some variants of this
result appear in [IRR14, Theorem 3.5], and [Mer16, Theorem 4.6]. Moreover, if
kg = 2− kf , then Pa,b0 (z) = 1. Therefore, working with regularized holomorphic
projection, our result includes [MOR21, Proposition 2.1].

1The function Γ(s, z) denotes the incomplete Gamma function, which will be introduced in Section
II.2.
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(2) Note that the summation conditions imply −1 < 1 − 2mn < 1. The asymptotic
behavior of the Jacobi polynomials inside (−1, 1) is well known and can be found
in [GR07, item 8.965] for instance.

(3) One may choose various other special values of half integral kf , kg, which simplify
the Jacobi polynomial and then the whole factor

nkf−1P(1−kf ,1−κ)
κ−2

(
1− 2m

n

)
−mkf−1.

This idea leads to other choices of polynomials P
(
n
d , d

) ∈ Q[X,Y ] than d2 in the
definition of σsm

2,χ such that

πκ

∑
n≥1

∑
d∈Dn

χ

( n
d − d

2

)
ψ

( n
d + d

2

)
P

(
n

d
, d

)
qn

+
∑
n≥1

∑
m≥1

α
(
m2
)
β
(
n2
)
m2(kf−1)Γ(1− kf , 4πm2v)qn2−m2

 = 0.

We demonstrate during the proofs of Theorem II.1.1 and II.1.3 how to rewrite the
corresponding generating function

∑
n≥1

∑
d∈Dn

χ

( n
d − d

2

)
ψ

( n
d + d

2

)
P

(
n

d
, d

)

to obtain a choice of P
(
n
d , d

) ∈ Q[X,Y ], which matches the factor involving the
Jacobi polynomial.

A second application of Proposition II.1.7 arises from p-adic properties of F+ and
G+. Mertens, Ono and Rolen proved such a property for their mock modular Eisenstein
series E+, see [MOR21, Theorem 1.4]. More precisely, the idea is to inspect the iterated
action of the U -operator( ∑

n�−∞
α(n)qn

) ∣∣∣ U(p) :=
∑

n�−∞
α(pn)qn

on θψ
(
p2aτ

) E+(τ) for every a ∈ N and p > 3 prime. (The notation ∑n�−∞ is explained
in Lemma II.2.7.) Then they showed that this is congruent to some meromorphic
modular form of weight 2. In our case Theorems II.1.1 and II.1.3 imply that the
products θψ(τ)F(τ) and θψ(τ)G(τ) are modular of weight 3 with Nebentypus χ or trivial
Nebentypus respectively. Therefore, we find a different result.
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Theorem II.1.8. Let a, b, p ∈ N and suppose that p is an odd prime. Then we have(
θψ
(
p2aτ

)
F+(τ)

) ∣∣∣ U (pb) ≡ 0
(
mod pmin(a,b)

)
,

and (
θψ
(
p2aτ

)
G+(τ)

) ∣∣∣ U (pb) ≡ 0
(
mod pmin(a,b)

)
.

The third remark on page 3 in [MOR21] states that “the generating function of σsm
1,ψ

can be given in terms of Appell–Lerch sums as studied by Zwegers” in [Zwe02,Zwe19]
(see also [Mer14b, Lemma 2]). This remark applies verbatim to the generating function
of σsm

2,χ as well, and we present a strategy which applies to both generating functions. Let
Dz := 1

2πi
∂
∂z , giving

(Dj
zA`)(w, z, τ) = eπi`w

∑
n∈Z

nj
(−1)`nq`

n(n+1)
2 e2πinz

1− e2πiwqn
.

for every integer j ≥ 0. Then we have the following result.

Proposition II.1.9. Suppose that χ is non-trivial and even. Additionally assume
Mψ |Mχ. Then we have that

∑
n≥1

σsm
2,χ(n)qn = 1

2

Mχ−1∑
b=1

χ(b)

×
Mχ−1∑
c=0

ψ(b+ c)qc(c+2b−Mχ) (MχDz + c)2A1
(
2Mχcτ, z, 2M2

χτ
) ∣∣∣

z=(2(b+c)−Mχ)Mχτ+ 1
2

.

Lastly, it is also likely that the function σsm
2,χ can be viewed as a Siegel theta lift in the

following way. A recent paper of Bruinier and Schwagenscheidt [BS20] investigated the
Siegel theta lift on Lorentzian lattices, and its connection to coefficients of mock theta
functions. In an isotropic lattice of signature (1, 1), for example, they obtained a formula
for the Siegel theta lift of a particular weakly holomorphic modular form evaluated at a
certain point in the Grassmanian in terms of the sum∑

r∈Z
r≡1 (mod 2)

H
(
4m− r2

)
.

Furthermore, in [ANBMS21], Alfes-Neumann, Bringmann, Males, and Schwagenscheidt
considered the same lift on a lattice of signature (1, 2), but with the inclusion of an
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iterated Maaß raising operator acting on the weakly holomorphic modular form. There,
we obtained an expression of the form (see [ANBMS21, Example 1.2])∑

n,m∈Z
n≡D (mod 2)

(
4D − 10n2 − 10m2

)
H
(
D − n2 −m2

)
.

The quadratic form in the Hurwitz class number is explained by the signature being (1, 2)
in this case, and the addition of the polynomial is a consequence of the iterated Maaß
raising operators.

In view of Corollary II.1.6, our smallest divisor function seems to lie at the interface
of these two situations, i.e. it is natural to expect that it can be realized as a theta
lift in signature (1, 1) where the lift includes iterated Maaß raising operators. Perhaps
this phenomenon can also be extended to further classes of small divisor functions - the
theta lift construction allows one to choose many examples of mock theta functions of
appropriate weight, not just the generating function for Hurwitz class numbers.

II.2 Preliminaries

II.2.1 Growth conditions and modular forms

To describe our various modular objects, we first require some terminology on growth
conditions, which can be phrased at all other cusps via suitable scaling matrices.

Definition II.2.1. Let

f(τ) :=
∑
n∈Z

cf (n)qn

with some complex coefficients cf (n). Then we say that

(1) the function f is holomorphic at i∞ if cf (n) = 0 for every n < 0,
(2) the function f is of moderate growth at i∞ if f ∈ O (vm) as v →∞ for some m ∈ N.

In other words f grows at most polynomially,
(3) the function f is of governable growth at i∞ if there exists Pf ∈ C

[
q−1] such that

for some δ > 0 we have

f(τ)− Pf (τ) ∈ O
(
e−δv

)
, v →∞.

The polynomial Pf is called the principal part of f . Equivalently, f is permitted to
have a pole at i∞.

(4) The function f is of linear exponential growth if f(τ) ∈ O(eδv) as v →∞ for some
δ > 0.
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To define the slash-operator, we take the principal branch of the holomorphic square
root throughout.

Definition II.2.2. Let k ∈ 1
2Z, φ be a Dirichlet character, and γ =

(
a b
c d

) ∈ SL2(Z).
Then the slash operator is defined as

(f |kγ) (τ) :=
{
φ(d)−1(cτ + d)−kf(γτ) if k ∈ Z,
φ(d)−1 ( c

d

)
ε2k
d (cτ + d)−kf(γτ) if k ∈ 1

2 + Z,

where
(
c
d

)
denotes the extended Legendre symbol, and

εd :=
{

1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4)

for odd integers d.

For the sake of completeness, we define the variants of modular forms appearing in
this chapter.

Definition II.2.3. Let f : H → C be a function, Γ ≤ SL2(Z) be a subgroup, φ be a
Dirichlet character, and k ∈ 1

2Z. Then we say that

(1) The function f is a modular form of weight k on Γ with Nebentypus φ if
(i) for every γ ∈ Γ and every τ ∈ H we have

(
f |kγ

)
(τ) = f(τ),

(ii) f is holomorphic on H,
(iii) f is holomorphic at every cusp.
We denote the vector space of functions satisfying these conditions by Mk(Γ, φ).

(2) If in addition f vanishes at every cusp, then we call f a cusp form. The subspace
of cusp forms is denoted by Sk(Γ, φ).

(3) If f satisfies the conditions (i) and (ii) from (1) and is allowed to have a pole at one
or more cusps, then we call f a weakly holomorphic modular form of weight k on Γ
with Nebentypus φ. The vector space of such functions is denoted by M !

k(Γ, φ).

Furthermore, we recall the following fact which we require throughout.

Lemma II.2.4. The following are true

θψ ∈
M 1

2
(Γ0(4M2

ψ), ψ) if λψ = 0,
S 3

2
(Γ0(4M2

ψ), ψ · χ−4) if λψ = 1.

A proof can be found in [Iwa97, Theorem 10.10] for instance. Finally, Corollary II.1.6
follows directly from the following result.
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Lemma II.2.5 (Sturm bound). Let f, g ∈Mk

(
Γ0(N), φ

)
, k > 1, and

m := [SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 + 1

p

)
.

Define B :=
⌊
km
12

⌋
, and denote by cf (n), cg(n) the coefficients of the q-expansions of f

and g respectively. If cf (n) = cg(n) for all n ≤ B then f = g.

A proof can be found in [Ste07, Corollary 9.20].

II.2.2 Harmonic Maaß forms and shadows

We define our main objects of interest.

Definition II.2.6. Let k ∈ 1
2Z, and choose N ∈ N such that 4 | N whenever k 6∈ Z. Let

φ be a Dirichlet character of modulus N .

(1) A weight k harmonic Maaß form on a subgroup Γ0(N) with Nebentypus φ is any
smooth function f : H→ C satisfying the following three properties:
(i) For all γ ∈ Γ0(N) and all τ ∈ H we have

(
f |kγ

)
(τ) = f(τ).

(ii) The function f is harmonic with respect to the weight k hyperbolic Laplacian
on H, explicitly

0 = ∆k(f) :=
(
−v2

(
∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

))
(f).

(iii) The function f has at most linear exponential growth at all cusps.
We denote the vector space of such functions by H !

k(Γ0(N), φ).
(2) If we restrict the growth condition (iii) to governable growth then the vector space

of such forms is denoted by Hcusp
k (Γ0(N), φ).

(3) A polar harmonic Maaß form is a harmonic Maaß form with isolated poles on the
upper half plane.

Remark. If we restrict the growth condition (iii) to moderate growth at all cusps, and
allow arbitrary eigenvalues in (ii), then f is a classical Maaß wave form.

During the following summary, we may assume that φ is trivial for simplicity, since
the generalization to a nontrivial Nebentypus is immediate.

Bruinier and Funke observed in [BF04] that the Fourier expansion of a harmonic
Maaß form2 naturally splits into two parts. One of them involves the incomplete Gamma

2Be aware that their terminology refers to our harmonic Maaß forms as “harmonic weak Maaß forms”
instead.
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function

Γ(s, z) :=
∫ ∞
z

ts−1e−tdt,

defined for Re(s) > 0 and z ∈ C. Specializing to principal values as a function of s, which
yields the single-valued principal branch, it can be analytically continued in s via the
functional equation

Γ(s+ 1, z) = sΓ(s, z) + zse−z,

provided that z 6= 0. As a function of the second argument, it has the asymptotic
behavior

Γ(s, v) ∼ vs−1e−v, |v| → ∞

for v ∈ R (see the paragraph following equation (I.3) for more details and some references).
We state their result in the formulation of [BFOR17, Lemma 4.3].

Lemma II.2.7. Let k ∈ 1
2Z \ {1} and f ∈ H !

k(Γ0(N)). Then f has a Fourier expansion
of the shape

f(τ) =
∑

n�−∞
c+
f (n)qn + c−f (0)v1−k +

∑
n�∞
n6=0

c−f (n)Γ(1− k,−4πnv)qn.

In particular, if f ∈ Hcusp
k (Γ0(N)) then f has a Fourier expansion of the shape

f(τ) =
∑

n�−∞
c+
f (n)qn +

∑
n<0

c−f (n)Γ(1− k,−4πnv)qn.

The notation ∑n�−∞ abbreviates ∑n≥mf for some mf ∈ Z. The notation ∑n�∞ is
defined analogously, and similar expansions hold at the other cusps.

We follow the following terminology from [BFOR17, Definition 4.4].

Definition II.2.8. We refer to the functions

f+(τ) :=
∑

n�−∞
c+
f (n)qn, f−(τ) := c−f (0)v1−k +

∑
n�∞
n6=0

c−f (n)Γ(1− k,−4πnv)qn

as the holomorphic part of f and to f− as its nonholomorphic part.
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In the same paper, Bruinier and Funke introduced the operator

ξk := 2ivk ∂
∂τ

= ivk
(
∂

∂u
+ i

∂

∂v

)
.

We summarize its relevant properties, see [BFOR17, Section 5] for example.

Lemma II.2.9. Let f be a smooth function on H. Then the ξ-operator satisfies the
following properties.

(1) We have ξk(f) = 0 if and only if f is holomorphic.
(2) The slash operator intertwines with ξk, that is we have

ξk (f |kγ) = (ξk(f)) |2−kγ

for every γ ∈ SL2(Z) if k ∈ Z or γ ∈ Γ0(4) if k ∈ 1
2Z \ Z respectively.

(3) The kernel of ξk restricted to Hcusp
k (Γ0(N)) or H !

k(Γ0(N)) is precisely the space
M !
k(Γ0(N)) in both cases.

(4) Let f ∈ H !
k(Γ0(N)). Assuming the notation of Lemma II.2.7 we have

ξk(f)(τ) = ξk
(
f−
)

(τ)

= (1− k)c−f (0)− (4π)1−k ∑
n�−∞

c−f (−n)n1−kqn ∈M !
2−k (Γ0 (N)) ,

and in particular if f ∈ Hcusp
k (Γ0(N)) then

ξk(f)(τ) = −(4π)1−k∑
n≥1

c−f (−n)n1−kqn ∈ S2−k (Γ0 (N)) .

In addition, we have ξk : H !
k(Γ0(N)) �M !

2−k
(
Γ0 (N)

)
.

The first item is simply a reformulation of the Cauchy–Riemann equations and the
second one is induced by the corresponding well known property for the Maaß lowering
operator

Lk := v2 ∂

∂τ
= 1

2v
2
(
∂

∂u
+ i

∂

∂v

)
.

We fix some more terminology, following [BFOR17, Definition 5.16] and the second
remark afterwards.

Definition II.2.10.

(1) A function f is called a mock modular form if f is the holomorphic part of a
harmonic Maaß form for which f− is nontrivial.
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(2) If f ∈ H !
k(Γ0(N)) then we refer to the form ξk(f) as the shadow of f+.

(3) In particular, f is called a mock theta function if f is a mock modular form of
weight 1

2 or 3
2 , whose shadow is a linear combination of unary theta functions.

Moreover, we study the following objects, which were introduced first in [DMZ12,
Section 7.3]. However, we follow the definition given in [BFOR17, Section 13.2].

Definition II.2.11.

(1) A mixed harmonic Maaß form of weight (k1, k2) is a function h of the shape

h(τ) =
n∑
j=1

fj(τ)gj(τ),

where fj ∈ H !
k1

and gj ∈M !
k2

for every j.
(2) Analogously, a mixed mock modular form of weight (k1, k2) is a function h of the

shape

h(τ) =
n∑
j=1

fj(τ)gj(τ),

where each fj is a mock modular form of weight k1 and gj ∈M !
k2

for every j.

We extend the last result of Lemma II.2.9 to mixed harmonic Maaß forms. It suffices
to consider products involving the nonholomorphic part of a mixed harmonic Maaß form.

Lemma II.2.12. Let kf , kg ∈ R, κ := kf + kg, and let α(m), β(n) be two complex
sequences such that

f(τ) :=
∑
m≥1

α(m)mkf−1Γ(1− kf , 4πmv)q−m, g(τ) :=
∑
n≥1

β(n)qn

both converge absolutely. Then

ξκ (fg) (τ) = −(4π)1−kf vkg
∑
m≥1

α(m)qm
∑
n≥1

β(n)qn.

Proof. We have

(fg)(τ) =
∑
m≥1

∑
n≥1

α(m)mkf−1Γ(1− kf , 4πmv)β(n)qn−m

and
∂

∂v
Γ(a, v) = −va−1e−v.
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We compute that

ξκ
(
Γ(1− kf , 4πmv)qn−m

)
= ivκ

{
Γ(1− kf , 4πmv)2πi(n−m)qn−m

−i
[
−(4πmv)−kf e−4πmv4πmqn−m + Γ(1− kf , 4πmv)(−2π(n−m))qn−m

]}
= −vkg(4πm)1−kf e−4πmvqn−m

= −vkg(4πm)1−kf qme−2πinτ ,

and infer that

ξκ (fg) (τ) = −(4π)1−kf vkg
∑
m≥1

∑
n≥1

α(m)β(n)qmqn,

as claimed.

II.2.3 Holomorphic projection

We introduce the holomorphic projection operator. Its origin lies in the search for
an operator which preserves the (regularized) Petersson inner product. Although this
can be derived implicitly from the Riesz representation theorem, an explicit description
comes in handy quite often.

Definition II.2.13. Let f : H → C be a translation invariant function and k ∈ N≥2.
If f has at most moderate growth towards the cusps, then the weight k holomorphic
projection of f is defined by (see [BFOR17, equation (10.3)])

πk(f)(τ) := (k − 1)(2i)k
4π

∫
H

f (x+ iy) yk

(τ − x+ iy)k
dxdy
y2 ,

whenever the integral converges absolutely.

Furthermore, we require the following result.

Lemma II.2.14 (Lipschitz summation formula). For any r ∈ N≥2 we have that

∑
j∈Z

1
(w + j)r = (−2πi)r

(r − 1)!
∑
j≥1

jr−1e2πijw.

A short proof is due to Zagier and can be found in [BvdGHZ08, p. 16]. We summarize
two further properties of the holomorphic projection operator, both of which are proven
in [BKZ14, Section 3] for instance.
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Lemma II.2.15. Let f : H→ C be a translation invariant function of moderate growth
such that the integral defining πkf converges absolutely, and k ∈ N≥2. Then πk enjoys
the following properties.

(1) If f is holomorphic then πk(f) = f .
(2) If f is modular with some Nebentypus φ (but not necessarily holomorphic), then

πk(f) ∈
{
Mk (Γ0 (N) , φ) if k ∈ N≥3,

M2 (Γ0 (N) , φ)⊕M0 (Γ0 (N) , φ) · E2 if k = 2.

Therefore, the slash operator and πk commute if k ≥ 3.

II.3 Two proofs of Proposition II.1.7

During the first proof of Proposition II.1.7, we appeal to the following results.

Lemma II.3.1.

(1) If Re(b),Re(a+ b) > 0 and Re(c+ s) > 0 then∫ ∞
0

Γ(a, cz)zb−1e−szdz = caΓ(a+ b)
b(c+ s)a+b 2F1

(
1, a+ b, b+ 1; s

s+ c

)
.

(2) The hypergeometric function 2F1 satisfies

2F1(a, b, c; z) = (1− z)c−a−b 2F1(c− a, c− b, c; z),

and

2F1(a, b, c; z) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b, a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)
Γ(a)Γ(b) 2F1(c− a, c− b, c− a− b+ 1; 1− z).

The first identity is [GR07, item 6.455]. Both hypergeometric transformations can be
found in [GR07, page 1008].

First proof of Proposition II.1.7. The q-expansion of (fg)(τ) is given by

(fg)(τ) =
∑
m≥1

∑
n≥1

α(m)β(n)mkf−1Γ(1− kf , 4πmv)qn−m.
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We see that fg is translation invariant, and recall that it has moderate growth towards
all cusps by assumption, so πκ(fg) exists. Hence, we need to calculate

πκ (fg) (τ) = (κ− 1)(2i)κ
4π

∫
H

(fg) (x+ iy) yκ
(τ − x+ iy)κ

dxdy
y2 .

The integral converges since κ − 2 ≥ 0, and converges absolutely if κ > 2. Using the
translation invariance of fg, we rewrite the integral over H as∫

H

(fg) (x+ iy) yκ
(τ − x+ iy)κ

dxdy
y2 =

∫ ∞
0

∫ 1

0
(fg) (x+ iy)yκ−2∑

j∈Z

1
(τ − x+ iy + j)κdxdy,

and consequently

πκ (fg) (τ) = (κ− 1)(2i)κ
4π

∑
m≥1

∑
n≥1

α(m)mkf−1β(n)

×
∫ ∞

0

∫ 1

0
Γ(1− kf , 4πmy)yκ−2∑

j∈Z

1
(τ − x+ iy + j)κ e

2πi(n−m)(x+iy)dxdy.

By the Lipschitz summation formula and then Lemma II.3.1 (1), we infer that

πκ (fg) (τ) = (κ− 1)(2i)κ
4π

(−2πi)κ
(κ− 1)!

∑
m≥1

∑
n≥1

α(m)mkf−1β(n)

×
∫ ∞

0
Γ(1− kf , 4πmy)yκ−2

∫ 1

0

∑
j≥1

jκ−1e2πij(τ−x+iy)e2πi(n−m)(x+iy)dxdy

= (κ− 1)(2i)κ
4π

(−2πi)κ
(κ− 1)!

∑
m≥1

∑
n−m≥1

α(m)mkf−1β(n)(n−m)κ−1

×
∫ ∞

0
Γ(1− kf , 4πmy)yκ−2e−4π(n−m)ydy qn−m

= Γ(kg)
(κ− 1)!

∑
m≥1

∑
n≥m+1

α(m)β(n)(n−m)κ−1

nkg
2F1

(
1, kg, κ; 1− m

n

)
qn−m.

Finally, we apply the hypergeometric transformations from Lemma II.3.1 (2). Explicitly,

2F1

(
1, kg, κ; 1− m

n

)
= (κ− 1)

kf − 1 2F1

(
1, kg, 2− kf ; m

n

)
+ Γ(κ)Γ(1− kf )

Γ(kg)

(
1− m

n

)1−κ (m
n

)kf−1
,
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and

2F1

(
1, kg, 2− kf ; m

n

)
=
(

1− m

n

)1−κ
2F1

(
1− kf , 2− κ, 2− kf ; m

n

)
.

Thus, we arrive at

Γ(kg)
(κ− 1)!

(n−m)κ−1

nkg
2F1

(
1, kg, κ; 1− m

n

)
= Γ(kg)

(κ− 1)!

(
nkf−1 (κ− 1)

kf − 1 2F1

(
1− kf , 2− κ, 2− kf ; m

n

)
+ Γ(κ)Γ(1− kf )

Γ(kg)
mkf−1

)

= −Γ(1− kf )
(
nkf−1 Γ(kg)

(κ− 2)! Γ(2− kf ) 2F1

(
2− κ, 1− kf , 2− kf ,

m

n

)
−mkf−1

)

= −Γ(1− kf )
(
nkf−1P(1−kf ,1−κ)

κ−2

(
1− 2m

n

)
−mkf−1

)
,

and ultimately obtain

πκ (fg) (τ)

= −Γ(1− kf )
∑
m≥1

∑
n−m≥1

α(m)β(n)
(
nkf−1P(1−kf ,1−κ)

κ−2

(
1− 2m

n

)
−mkf−1

)
qn−m,

as desired.

The second proof of Proposition II.1.7 emphasizes that the hypergeometric function
specializes to some polynomial (the Jacobi polynomial), and it requires the following
identities.

Lemma II.3.2 ([Mer16, Lemmas 4.7, 5.1]). Define the homogeneous polynomial

Pa,b(X,Y ) :=
a−2∑
j=0

(
j + b− 2

j

)
Xj(X + Y )a−j−2 ∈ C[X,Y ].

of degree a− 2.

(1) Then we have∫ ∞
0

Γ(1− kf , 4πmy)yκ−2e−4πrydy

= −(4π)1−κm1−kf Γ(1− kf )(κ− 2)!
rκ−1

(
(r +m)1−kgPκ,2−kf (r,m)−mkf−1

)
.
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(2) If b 6= 1, 2, then

Pa,b(X,Y ) =
a−2∑
j=0

(
a+ b− 3
a− 2− j

)(
j + b− 2

j

)
(X + Y )a−2−j(−Y )j .

The first relies on the fact that κ = kf + kg is an integer. Full proofs of both items
can be found in Mertens’ thesis [Mer14a, Lemmas V.1.7, V.1.8].

Second proof of Proposition II.1.7. One copies the first proof until the application of the
Lipschitz summation formula, which produced the expression

πκ (fg) (τ) = (κ− 1)(2i)κ
4π

(−2πi)κ
(κ− 1)!

∑
m≥1

∑
n−m≥1

α(m)mkf−1β(n)(n−m)κ−1

×
∫ ∞

0
Γ(1− kf , 4πmy)yκ−2e−4π(n−m)ydy qn−m.

Next, one proceeds by writing

πκ (fg) (τ)

= −Γ(1− kf )
∑
m≥1

∑
n−m≥1

α(m)β(n)
(
n1−kgPκ,2−kf (n−m,m)−mkf−1

)
qn−m,

according to the first item of the previous lemma, and then writing

n1−kgPκ,2−kf (n−m,m) =
κ−2∑
j=0

(
kg − 1

κ− 2− j

)(
j − kf
j

)
nkf−1−j(−m)j

= Γ(kg)nkf−1

(κ− 2)! Γ(1− kf )

κ−2∑
j=0

(
κ− 2
j

)
1

j + 1− kf

(
−m
n

)j
= nkf−1P(1−kf ,1−κ)

κ−2

(
1− 2m

n

)
,

by virtue of the second item of the previous lemma. Summing up, one obtains

πκ (fg) (τ)

= −Γ(1− kf )
∑
m≥1

∑
n−m≥1

α(m)β(n)
(
nkf−1P(1−kf ,1−κ)

κ−2

(
1− 2m

n

)
−mkf−1

)
qn−m,

as claimed.
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II.4 Proof of Theorem II.1.1 and Theorem II.1.3
We collect the results needed to prove Theorem II.1.1 and Theorem II.1.3. We begin

by rewriting the definitions of F− and G−.

Lemma II.4.1. We have

F−(τ) = 2
Γ
(
−1

2

) ∑
m≥1

χ(m)mΓ
(
−1

2 , 4πm
2v

)
q−m

2
,

and

G−(τ) = 2
Γ
(
−1

2

) ∑
m≥1

mΓ
(
−1

2 , 4πm
2v

)
q−m

2 − 1
2πv 1

2
.

Proof. We compute

− (2π)−
1
2 i

∫ i∞

−τ

θχ (w)
(−i (w + τ))

3
2

dw = − (2π)−
1
2 i
∑
m≥1

χ(m)
∫ i∞

2iv

e2πim2(z−τ)

(−iz) 3
2

dz

= (2π)−
1
2
∑
m≥1

χ(m)
(∫ ∞

2v
x−

3
2 e−2πm2xdx

)
q−m

2

=
∑
m≥1

χ(m)m
(∫ ∞

4πm2v
t−

1
2−1e−tdt

)
q−m

2
,

and the first claim follows directly, since 2
Γ(− 1

2) = − 1√
π
. To prove the second claim, it

remains to separate the constant term of θ1, and next to calculate

i

π
√

2

∫ i∞

−τ

1
2

(−i (w + τ))
3
2

dw = − 1
2π
√

2

∫ ∞
2v

t−
3
2 dt = − 1

2πv 1
2
,

as asserted.

In addition, we have the following immediate corollary of Proposition II.1.7.

Corollary II.4.2. Let f(τ) := f+(τ) + f−(τ) be the splitting of f into its holomorphic
and nonholomorphic part. Assume the notation and hypotheses as in Proposition II.1.7.
Then

πκ (fg) (τ) =
(
f+g

)
(τ)

− Γ(1− kf )
∑
m≥1

∑
n−m≥1

α(m)β(n)
(
nkf−1P(1−kf ,1−κ)

κ−2

(
1− 2m

n

)
−mkf−1

)
qn−m.
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Moreover, we combine the properties of the slash-operator, the shadow operator, and
of the holomorphic projection operator. This yields a third preparatory result.
Proposition II.4.3 ([MOR21, Proposition 2.3]). Let f : H→ C be a translation invariant
function such that |f(τ)|vδ is bounded on H for some δ > 0. If the weight k holomorphic
projection of f vanishes identically for some k > δ + 1 and ξk(f) is modular of weight
2− k for some subgroup Γ < SL2(Z), then f is modular of weight k for Γ.
Proof. This is a straightforward adaption of [BKZ14, Proposition 3.5]. Let γ ∈ Γ. Then
the modularity of ξkf implies that

ξk (f |kγ − f) = ξk(f)|2−kγ − ξk(f) = 0.

Hence, f |kγ − f is holomorphic. This yields

f |kγ − f = πκ (f |kγ − f) = πκ (f) |kγ − πκ (f) ,

and by assumption the right hand side vanishes. This proves the claim.

Remark. The subtle growth conditions are required to include the case π2, and are clearly
satisfied if we deal with higher weight holomorphic projections, in which case the integral
defining πk converges absolutely.

Proof of Theorem II.1.1. We need to check the three conditions required by the definition
of a harmonic Maaß form.
(1) Growth conditions: Recall that θψ is a cusp form, namely it decays exponentially

towards all cusps. In turn, the function F+ admits at most linear exponential
growth towards all cusps. Note that in particular i∞ is a removable singularity of
F+, since i∞ is a simple zero of both θψ and θψF+. To inspect the nonholomorphic
part, we have (see [GR07, item 8.3357])

Γ
(
−1

2 , 4πm
2y

)
q−m

2 ∼
(
4πm2v

)− 3
2 e−2πm2v, v →∞,

and hence the function F− decays exponentially towards the cusp i∞. By the
transformation properties of θχ under the full modular group SL2(Z), we deduce
that F− is of moderate growth towards all cusps. This establishes the growth
condition required by Definition II.2.6.
As pointed out after Corollary II.1.6, the Fourier coefficients of θψF+ at i∞ are of
moderate growth, wherefore the growth of the function θψF+ towards any cusp is
moderate. One may see this by choosing suitable scaling matrices, whose action
yields additional polynomial factors in τ . Consequently, the growth of θψF is
moderate. This justifies the existence of π3 (θψF) as well as the application of
Proposition II.4.3 to θψF+ during the upcoming item.
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(2) The transformation law: First, we compute

n
1
2P(− 1

2 ,−2)
1

(
1− 2m

n

)
−m 1

2 = n
1
2

(1
2 + m

2n

)
−m 1

2 =

(
m

1
2 − n 1

2
)2

2n 1
2

.

Comparing our initial setting with Proposition II.1.7 and Lemma II.2.12, we need
to switch to squares above. By virtue of Lemma II.4.1 and the definition of θψ, we
have the coefficients

α
(
m2
)

= 2
Γ
(
−1

2

)χ(m), β
(
n2
)

= ψ(n)n.

We rewrite the generating function of σsm
2,χ as(

F+θψ
)

(τ) =
∑
n≥1

σsm
2,χ(n)qn =

∑
n≥1

∑
d∈Dn

χ

( n
d − d

2

)
ψ

( n
d + d

2

)
d2qn

=
∑
d≥1

∑
j≥d

j≡d (mod 2)

χ

(
j − d

2

)
ψ

(
j + d

2

)
d2qdj

=
∑
m≥1

∑
n−m≥1

χ(m)ψ(n) (n−m)2 qn
2−m2

,

and apply Corollary II.4.2 to obtain

π3 (Fθψ) (τ) =
(
F+θψ

)
(τ)−

∑
m≥1

∑
n−m≥1

χ(m)ψ(n) (m− n)2 qn
2−m2 = 0.

Furthermore, we apply Lemma II.2.12, obtaining

ξ3 (Fθψ) (τ) = −(4π)−
1
2

2
Γ
(
−1

2

)v 3
2
∑
m≥1

χ(m)qm2 ∑
n≥1

ψ(n)nqn2

= 1
2πv

3
2 θχ(τ) |θψ(τ)|2

θψ(τ) .

We observe that ξ3 (Fθψ) (τ) is modular of weight −1 for Γ0(4M2
χ) ∩ Γ0(4M2

ψ) =
Γ0
(

lcm
(
4M2

χ, 4M2
ψ

))
with Nebentypus χ · ψ−1 · χ−1

−4. Indeed, for any γ =
(
a b
c d

) ∈
Γ0
(

lcm
(
4M2

χ, 4M2
ψ

))
we have

ξ3 (Fθψ) (γτ) = 1
2π

v
3
2

|cτ + d|3
χ(d)(cτ + d)

1
2 θχ(τ)

∣∣∣ψ(d)χ−4(d)(cτ + d) 3
2 θψ(τ)

∣∣∣2
ψ(d)χ−4(d)(cτ + d) 3

2 θψ(τ)
= χ(d)ψ(d)−1χ−1

−4(d)(cτ + d)−1ξ3 (Fθψ) (τ).
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Finally, Proposition II.4.3 applies directly, because the growth conditions are met
thanks to absolute convergence. We deduce that Fθψ is modular of weight 3 with
respect to the same data, as desired.

(3) Harmonicity: Clearly, F+ is holomorphic away from the zeros of θψ. Hence, the
Cauchy–Riemann equations imply ∆ 3

2

(F+) = 0 directly. The computation for F−
is standard, so we only sketch its results. It holds that(

∂

∂u
+ i

∂

∂v

)
Γ
(
−1

2 , 4πm
2v

)
q−m

2 = − i2
e−2πm2(iu+v)

π
1
2mv

3
2

,(
∂2

∂u2 + ∂2

∂v2

)
Γ
(
−1

2 , 4πm
2v

)
q−m

2 = 3
4
e−2πm2(iu+v)

π
1
2mv

5
2

,

∆ 3
2

(F−) (τ) = −v2
(

3
4
e−2πm2(iu+v)

π
1
2mv

5
2

)
+ 3i

2 v
(
− i2

e−2πm2(iu+v)

π
1
2mv

3
2

)
= 0,

and thus ∆ 3
2
(F) = 0 away from the zeros of θψ.

Altogether, this completes the proof, since the shadow is a byproduct of the second
item.

We move to the proof of Theorem II.1.3.

Proof of Theorem II.1.3. The proof of Theorem II.1.3 uses the same ideas as the proof
of Theorem II.1.1, so we just emphasize the differences. Recall from Lemma II.4.1 that

G−(τ) = 2
Γ
(
−1

2

) ∑
m≥1

mΓ
(
−1

2 , 4πm
2v

)
q−m

2 − 1
2πv 1

2
.

Therefore, to compute π3(θψG−), it suffices to deal with the second term. We see that
− θψ(τ)

2πv
1
2
is translation invariant, vanishes at i∞, and has a removable singularity at all

other cusps inspecting the order of vanishing as v ↘ 0. Hence the integral defining its
weight 3 holomorphic projection exists and converges absolutely. The computation begins
exactly as in the proof of Proposition II.1.7 and we employ the Lipschitz summation
formula. This yields

π3

(
−θψ(τ)

2πv 1
2

)
= −2(2i)3

8π2

∑
n≥1

ψ(n)n
∑
j∈Z

∫ ∞
0

∫ 1

0

y
1
2 e2πin2(x+iy)

(τ − x+ iy + j)3 dxdy

= −8π
∑
n≥1

ψ(n)n
∑
j≥1

j2
∫ ∞

0

∫ 1

0
y

1
2 e2πi(n2(x+iy)+j(τ−x+iy))dxdy

= −8π
∑
n≥1

ψ(n)n5
(∫ ∞

0
y

1
2 e−4πn2ydy

)
qn

2 = −1
2
∑
n≥1

ψ(n)n2qn
2
,
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which also appeared in [Mer16, Lemma 4.4] in the framework of mixed harmonic Maaß
forms. Furthermore, it follows by Corollary II.4.2 (with identical parameters of the Jacobi
polynomial as in the proof of Theorem II.1.1) that

π3 (Gθψ) (τ) =
(
G+θψ

)
(τ)−

∑
m≥1

∑
n−m≥1

ψ(n) (m− n)2 qn
2−m2 − 1

2
∑
n≥1

ψ(n)n2qn
2
.

In addition, we note that

∑
n≥1

σsm
2,1(n)qn =

∑
d≥1

∑
j≥d

j≡d (mod 2)

ψ

(
j + d

2

)
d2qjd =

∑
m≥1

∑
n≥m+1

ψ(n)(n−m)2qn
2−m2

,

where we substituted d = n − m, j = n + m in the last equation. Collecting these
observations and inserting the definition of G+, we obtain

π3 (Gθψ) (τ) = 0.

Moreover,

ξ3 (Gθψ) (τ) = 1
2πv

3
2 θψ(τ)

∑
m≥1

qm
2 + 1

4πv
3
2 θψ(τ) = 1

4πv
3
2
|θψ(τ)|2
θψ(τ)

∑
m∈Z

qm
2
,

which is modular of weight −1 on Γ0
(
4M2

ψ

)∩Γ0(4) = Γ0
(

lcm
(
4, 4M2

ψ

))
= Γ0

(
4M2

ψ

)
with

Nebentypus
(
ψ · χ−4

)−1 by the same argument as in the proof of Theorem II.1.3. This
establishes weight 3 modularity of Gθψ via Proposition II.4.3 again.

Additionally, we clearly have

∆ 3
2

(
− 1

2πv 1
2

)
= 0,

and hence harmonicity is preserved. Finally, the growth properties of G+ towards all
cusps agree verbatim with F+. Summing up, this establishes the Theorem.

II.5 Proof of Theorem II.1.8

We move to the proof of Theorem II.1.8. To this end, we adapt the proof of
[MOR21, Theorem 1.4].
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Proof of Theorem II.1.8. We prove the first claim. On one hand, by the same computa-
tion as during the proof of Theorem II.1.1 we infer

π3
(
θψ
(
p2aτ

)
F(τ)

)
= θψ

(
p2aτ

)
F+(τ) +

∑
r≥1

 ∑
m,n≥1

(pan)2−m2=r

χ(m)ψ(n) (m− pan)2

 qr
=: g(τ).

Invoking Theorem II.1.1 and the properties of holomorphic projection we deduce that g
is a modular form of weight 3 on Γ0

(
lcm

(
4M2

ψp
2a, 4M2

χ

))
with Nebentypus χ. However,

clearly −I ∈ Γ0(N) for every level N and hence g vanishes identically (recall that χ is
assumed to be even throughout).

On the other hand, the inner sum can be rewritten as a sum over small divisors of r.
To this end, the set of admissible small divisors is given by

Dr(p) :=
{
d | r : 1 ≤ d ≤ r

d
, d ≡ r

d
(mod 2), d+ r

d
≡ 0 (mod 2pa)

}
,

and exactly as in the proof of Theorem II.1.1 we see that∑
m,n≥1

(pan)2−m2=r

χ(m)ψ(n) (m− pan)2 =
∑

d∈Dr(p)
χ

( n
d − d

2

)
ψ

( n
d + d

2pa
)
d2.

If we apply the operator U
(
pb
)
to g then we need to replace r by pbr everywhere above.

This produces the condition

d+ pbr

d
≡ 0 (mod 2pa)

in the set of admissible small divisors, which eventually forces

d ≡ 0
(
mod pmin(a,b)

)
,

since d is a divisor of r. Combining, we arrive at

0 = g(τ) = g(τ)
∣∣∣ U (pb) ≡ (θψ (p2aτ

)
F+(τ)

) ∣∣∣ U (pb) (
mod pmin(a,b)

)
,

as claimed.
The proof of the second claim is completely analogous. The character χ is trivial,

Mχ = 1, and one can remove the condition d ≡ r
d (mod 2) from the definition of the set

of admissible small divisors. However, this does not affect the rest of the proof and we
provided the necessary computations during the proof of Theorem II.1.3 essentially.
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II.6 Proof of Proposition II.1.9
We conclude this chapter with the proof of Proposition II.1.9.

Proof of Proposition II.1.9: The first step is to apply the geometric series. We compute∑
n≥1

σsm
2,χ(n)qn =

∑
m≥1

∑
n−m≥1

χ(m)ψ(n) (n−m)2 qn
2−m2

=
∑
m≥1

∑
s≥1

χ(m)ψ(m+ s)s2qs
2+2ms

=
∑
s≥1

∑
a≥0

Mχ−1∑
b=0

χ(b)ψ(s+ b)s2qs
2+2(aMχ+b)s − χ(0)ψ(s+ b)s2qs

2

=
Mχ−1∑
b=1

χ(b)
∑
s≥1

ψ(s+ b)s2 qs
2+2bs

1− q2Mχs
,

where we have used the assumption Mψ |Mχ after the substitution m = aMχ + b and
the assumption that χ is non-trivial in the last equation.

The second step is to convert the sum in s to a sum over Z instead of N. Note that

2
∑
s≥1

ψ(s+ b)s2 qs
2+2bs

1− q2Mχs
=
∑
s≥1

ψ(s+ b)s2 qs
2+2bs

1− q2Mχs
+
∑
s≤−1

ψ(−s+ b)s2 qs
2−2bs

1− q−2Mχs

=
∑
s≥1

ψ(s+ b)s2 qs
2+2bs

1− q2Mχs
+
∑
s≤−1

ψ(s− b)s2 q
s2+2Mχs−2bs

1− q2Mχs
,

using that ψ is odd. The key observation is
Mχ−1∑
b=1

χ(b)
∑
s≤−1

ψ(s− b)s2 q
s2+2Mχs−2bs

1− q2Mχs
=

Mχ−1∑
b=1

χ(b)
∑
s≤−1

ψ(s+ b)s2 qs
2+2bs

1− q2Mχs
.

by mapping b 7→Mχ − b and using that χ is even. Thus, we have

∑
n≥1

σsm
2,χ(n)qn = 1

2

Mχ−1∑
b=1

χ(b)
∑
s∈Z

ψ(s+ b)s2 qs
2+2bs

1− q2Mχs
,

since the constant term in s vanishes as well.
The third step is to substitute s = nMχ + c to isolate ψ from its s-dependency (recall

Mψ |Mχ), getting∑
n≥1

σsm
2,χ(n)qn = 1

2

Mχ−1∑
b=1

χ(b)
Mχ−1∑
c=0

ψ(b+ c)
∑
n∈Z

(nMχ + c)2 q
(nMχ+c)2+2b(nMχ+c)

1− q2Mχ(nMχ+c) ,

from which we read off the claim.
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Chapter III

Multidimensional small divisor
functions

This chapter is based on a paper [Mon21] of the same title published in Integers.

III.1 Introduction - One-dimensional case
In a recent paper [MOR21], Mertens, Ono, and Rolen defined and investigated a

new type of mock modular form, whose coefficients are given by a small divisor function.
We summarize their approach. As usual, we let τ = u + iv ∈ H and q := e2πiτ . Let
P`
(
n
d , d

) ∈ Q[X,Y ], and ψ, χ be Dirichlet characters of moduli Mψ, Mχ respectively. We
denote by χ−4 the unique odd Dirichlet character of modulus 4, and we define

Dn :=
{
d | n : 1 ≤ d ≤ n

d
and d ≡ n

d
(mod 2)

}
,

σsm
` (n) :=

∑
d∈Dn

χ

( n
d − d

2

)
ψ

( n
d + d

2

)
P`

(
n

d
, d

)
.

Additionally, we require Shimura’s theta-function

θψ(τ) := 1
2
∑
n∈Z

ψ(n)nλψqn2
, λψ := 1− ψ(−1)

2 ,

and recall that (see Lemma II.2.4 including a reference)

θψ ∈
M 1

2

(
Γ0
(
4M2

ψ

)
, ψ
)

if λψ = 0,
S 3

2

(
Γ0
(
4M2

ψ

)
, ψ · χ−4

)
if λψ = 1.

(III.1)

Furthermore, we recall the definition of a harmonic Maaß form1. An exposition on the
theory of harmonic Maaß forms can be found in [BFOR17], and the required facts for
this chapter are summarized in Section II.2.

1Be aware that there is no overall convention which terminology encodes which growth condition.
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CHAPTER III. MULTIDIMENSIONAL SMALL DIVISOR FUNCTIONS

Definition III.1.1. Let k ∈ 1
2Z, and choose N ∈ N such that 4 | N whenever k 6∈ Z.

Let φ be a Dirichlet character of modulus N .

(1) A weight k harmonic Maaß form on a subgroup Γ0(N) with Nebentypus φ is any
smooth function f : H→ C satisfying the following three properties:
(i) For all γ =

(
a b
c d

) ∈ Γ0(N) and all τ ∈ H we have

f(τ) = (f |kγ) (τ) :=
{
φ(d)−1(cτ + d)−kf(γτ) if k ∈ Z,
φ(d)−1 ( c

d

)
ε2k
d (cτ + d)−kf(γτ) if k ∈ 1

2 + Z,

where
(
c
d

)
denotes the extended Legendre symbol, and

εd :=
{

1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4).

(ii) The function f satisfies

0 = ∆k(f) :=
(
−v2

(
∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

))
(f).

(iii) The function f has at most linear exponential growth at all cusps.
(2) A polar harmonic Maaß form is a harmonic Maaß form with isolated poles on H.

Let 1 be the trivial character. Then the main result of [MOR21] reads as follows.

Theorem III.1.2 ([MOR21, Theorem 1.1]). Suppose that ψ = χ 6= 1, and that P1
(
n
d , d

)
=

d. Denote the corresponding small divisor function by σsm
1 , and by E2 the Eisenstein

series

E2(τ) := 1− 24
∑
n≥1

∑
d|n

dqn.

Define

E+(τ) := 1
θψ(τ)

αψE2(τ) +
∑
n≥1

σsm
1 (n)qn

 ,
E−(τ) := (−1)λψ (2π)λψ− 1

2 i

8Γ
(

1
2 + λψ

) ∫ i∞

−τ

θψ(w)

(−i(w + τ))
3
2−λψ

dw,

where αψ is an implicit constant depending only on ψ to ensure a certain growth condition.
Then the function E+ + E− is a polar harmonic Maaß form of weight 3

2 −λψ on Γ0
(
4M2

ψ

)
with Nebentypus ψ · χλψ−4.
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In analogy to the classical divisor sums σk(n), Mertens, Ono, and Rolen called their
function E+ a mock modular Eisenstein series with Nebentypus. Furthermore, they related
their result to partition functions for special choices of ψ, and proved a p-adic property
of E+, compare [MOR21, Corollary 1.3, Theorem 1.4].

In Theorem II.1.1 and Theorem II.1.3 of Chapter II, we discovered the polar harmonic
Maaß forms F and G adapting the construction from [MOR21]. Moreover, if ψ = χ−4,
χ = 1, then we related the holomorphic part G+ of G to Hurwitz class numbers, and
proved a p-adic property of F+, G+ as well, compare Corollary II.1.6 and Theorem II.1.8.

The proof of Theorems III.1.2, II.1.1 and Theorem II.1.3 is performed in three main
steps. To describe them, we let

Γ(s, z) :=
∫ ∞
z

ts−1e−tdt,

be the incomplete Gamma function, which is defined for Re(s) > 0 and z ∈ C. We refer
to the paragraph following equation (I.3) (and to Section II.2) for more details and some
references. As in Chapter II, we let

ξκ := 2ivκ ∂
∂τ

= ivκ
(
∂

∂u
+ i

∂

∂v

)
be the Bruinier–Funke operator of weight κ, and

πκ(f)(τ) := (κ− 1)(2i)κ
4π

∫
H

f (x+ iy) yk
(τ − x+ iy)κ

dxdy
y2 ,

be the weight κ holomorphic projection operator, whenever f is translation invariant, and
the integral converges absolutely. Moreover, we let

g(τ) :=
∑
n≥1

β (n) qn, f+(τ) := 1
g(τ)

∑
n≥1

σsm
` (n)qn,

f−(τ) :=
∑
m≥1

α (m)mkf−1Γ (1− kf , 4πmv) q−m, f(τ) := (f+ + f−)(τ).

Then we proceed as follows.

(I) Show that

πκ (fg) (τ) = 0.

To this end, we rewrite the definition of the given nonholomorphic part (see Lemma
II.4.1 for instance). Next, we recall the Jacobi polynomial P(a,b)

r of degree r
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and parameter a, b from equation II.1 (see Section III.4.1 as well), and utilize
Proposition II.1.7 (resp. Corollary II.4.2) from the previous chapter. In addition,
the holomorphic part f+g has to be rewritten as well, see the proof of Theorem
II.1.1 in Section II.4.

(II) We compute

ξκ (fg) (τ) = −(4π)1−kf vkg

∑
m≥1

α(m)qm
 g(τ),

and choose the coefficients α (m), β (n), such that this function is modular of weight
2− κ.

(III) Conclude that fg is modular of weight κ by [MOR21, Proposition 2.3] (which is
provided in Proposition II.4.3 as well). Lastly, verify harmonicity and the growth
property towards the cusps required by the definition of a harmonic Maaß form.

Finally, we mention one remark following Proposition II.1.7, which states that there
are more choices of half integral parameters kf , kg, which lead to other choices of
polynomials P`

(
n
d , d

)
in the definition of σsm

` , such that step (I) above works.
We refer to the first two sections of Chapter II for more details, and for overall

preliminaries introducing the aforementioned objects together with their key properties.

III.2 Statement of the result

We arrive at the following result by combining the lemmas from the Section III.3 as
outlined during Section III.1. The functions σsm

` and f` are defined at the beginning of
Section III.3.

Theorem III.2.1. Let ψ be an odd Dirichlet character, χ be an even and non-trivial
Dirichlet character. Let ` ∈ 2N + 2. Define P` as indicated in Corollay III.3.2, obtaining
the corresponding small divisor function σsm

` . Then the resulting function f` is a polar
harmonic Maaß form of weight 2− `

2 ∈ −N0 on Γ0
(
4M2

χ

) ∩ Γ0
(
4M2

ψ

)
with Nebentypus

χ · (ψ · χ−4)−1. Its shadow ξ2− `2

(
f`
)
is given by a non-zero constant multiple of θ`χ.

In other words, the technique presented in Chapter II, [MOR21] applies straightforward
in higher even dimensions, except for dimension two. We plan to find and investigate
applications of f` to other areas of number theory, such as combinatorics, as in the
one-dimensional case [MOR21, Corollary 1.3].
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III.3 Multidimensional Case
We fix ` ∈ N throughout. Let n = (n1, . . . , n`) ∈ N`. We recall the usual multi-index

conventions

n! := n1n2 · · ·n`, |n| := n1 + . . .+ n`, ‖n‖ :=
√
n2

1 + . . .+ n2
` .

We let ψ 6= 1, and consider

θψ(τ)` =
∑
n∈N`

ψ (n!) (n!)λψ q‖n‖2 .

Moreover, we relax our assumption to P` ∈ Q(X,Y ), and we let

Dn =
{
d ∈ N` : dj | nj , 1 ≤ dj ≤

nj
dj

, and dj ≡
nj
dj

(mod 2) for every 1 ≤ j ≤ `
}
,

as well as

σsm
` (n) :=

∑
d∈Dn

∏̀
j=1

χ

 nj
dj
− dj
2

ψ
 nj

dj
+ dj

2

 nj
dj
− dj
2

λχ  nj
dj

+ dj

2

λψ


× P`


∥∥∥∥∥∥
(
nj
dj

)
1≤j≤`

∥∥∥∥∥∥
2

, ‖d‖2
 .

Consequently,

f+
` (τ) := 1

θψ(τ)`
∑
n∈N`

σsm
` (n) q|n|,

f−` (τ) := 1
Γ (1− kf`)

∑
m∈N`

χ (m!) (m!)λχ ‖m‖2(kf`−1)Γ(1− kf` , 4π‖m‖2v)q−‖m‖2 ,

f`(τ) := (f+
` + f−` )(τ).

We insert this setting into the constructive method described in the first section, and
devote a subsection to each step.

III.3.1 First step

We verify that the first step continues to hold due to exactly the same proofs as
in Section II.3. We have to be careful regarding the summation conditions, which are
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determined one step after the application of the Lipschitz summantion formula. Explicitly,
we obtain

πκ
(
f−` θ

`
ψ

)
(τ) = −

∑
r≥1

∑
m,n∈N`

‖n‖2−‖m‖2=r

χ (m!) (m!)λχ ψ (n!) (n!)λψ

×
(
‖n‖2(kf`−1)P(1−kf` ,1−κ)

κ−2

(
1− 2‖m‖

2

‖n‖2

)
− ‖m‖2(kf`−1)

)
qr.

To match this expression with f+
` g, we rewrite the small divisor function. We substitute

a :=
( n1
d1

+ d1

2 , . . . ,

n`
d`

+ d`

2

)
, b :=

( n1
d1
− d1

2 , . . . ,

n`
d`
− d`
2

)
,

from which we deduce

d = a− b, a+ b =
(
nj
dj

)
1≤j≤`

, |n| = ‖a‖2 − ‖b‖2.

Thus,(
f+
` θ

`
ψ

)
(τ) =

∑
b∈N`

∑
a−b∈N`

χ (b!) (b!)λχ ψ (a!) (a!)λψ P` (‖a+ b‖, ‖a− b‖) q‖a‖2−‖b‖2 .

We transform the summation condition.
Lemma III.3.1. We have(
f+
` θ

`
ψ

)
(τ) =

∑
r≥1

∑
m,n∈N`

‖n‖2−‖m‖2=r

χ (m!) (m!)λχ ψ (n!) (n!)λψ P` (‖m+ n‖, ‖m− n‖) qr.

Proof. Note that if a− b ∈ N`, then

‖a‖2 − ‖b‖2 =
∑̀
j=1

(aj + bj)(aj − bj) ≥ 1.

Conversely, suppose ‖a‖2 − ‖b‖2 ≥ 1. Recall that nj = (aj + bj)(aj − bj) ∈ N for every
1 ≤ j ≤ ` by definition of f+, and aj + bj is always positive. Thus, (aj − bj) ≥ 1 for every
1 ≤ j ≤ `, which proves the lemma.

Hence, we achieve the following result by virtue of Proposition II.1.7.
Corollary III.3.2. If P` is defined by the condition

‖b‖2(kf`−1)P(1−kf` ,1−κ)
κ−2

(
1− 2‖a‖

2

‖b‖2

)
− ‖a‖2(kf`−1) = P` (‖a+ b‖, ‖a− b‖) ,

then we have πκ
(
f`θ

`
ψ

)
(τ) = 0.
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III.3.2 Second step

We summarize the result of a standard calculation.

Lemma III.3.3. We have

ξκ
(
f`θ

`
ψ

)
(τ) = − (4π)1−kf`

Γ (1− kf`)
v
k
θ`
ψ θχ(τ)` |θψ(τ)|2`

θψ(τ)`

away from the zeros of θψ.

Proof. By definition and linearity of ξκ, it holds that

ξκ
(
f−` θ

`
ψ

)
(τ) = ξκ

(
f−`

)
(τ) · θψ(τ)` + f−` (τ) · ξκ

(
θ`ψ

)
(τ)

= ξκ
(
f−`

)
(τ) · θψ(τ)`,

where the last step used that θ`ψ is holomorphic. Next, one computes2

ξκ
(
f−`

)
(τ) = − (4π)1−kf`

Γ (1− kf`)
v
k
θ`
ψ
∑
m∈N`

χ (m!) (m!)λχ q‖m‖2 ,

from which we infer the claim.

Combining the previous result with the modularity of Shimura’s theta function (see
equation (III.1)), and the fact that

Im (γτ) = v

|cτ + d|2

for every γ =
(
a b
c d

) ∈ SL2(Z) and every τ ∈ H, we obtain the following corollary.

Corollary III.3.4. If χ 6= 1 then ξκ
(
f`θ

`
ψ

)
is modular of weight

`

(1
2 + λχ

)
− `

(1
2 + λψ

)
on Γ0

(
4M2

χ

) ∩ Γ0
(
4M2

ψ

)
with Nebentypus χ · (ψ · χ−4)−1.

Thus, we stipulate ψ to be odd, and χ to be even and non-trivial, getting

κ = 2− (−`) ∈ N≥2, kf` = 2− `

2 ,

as desired.
2Compare the proof of Lemma II.2.12 for some intermediate steps.

57
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III.3.3 Third step

We verify the two remaining conditions of a polar harmonic Maaß form.
Lemma III.3.5. Let τ ∈ H with θψ(τ) 6= 0. Then, the function f` = f+

` + f−` satisfies

0 = ∆kf`
(f`)(τ),

and has the required growth property of a polar harmonic Maaß form.
Proof. The first assertion follows by construction of f`. Since θ`ψ is of exponential decay
towards all cusps, the function f+

` admits at most linear exponential growth towards
all cusps. In particular, the cusp i∞ is a removable singularity of f+, because both
numerator and denominator vanish at i∞ of order `. In addition, the function f−` decays
exponentially towards i∞, since the incomplete Gamma function does (and it dominates
the powers of q). The transformation behaviour of θχ under the full modular group
SL2(Z) implies that f−` is of at most moderate growth towards all cusps. Indeed, choosing
suitable scaling matrices yields additional factors of polynomial growth inside the Fourier
expansion of f−` . This establishes the second assertion.

III.3.4 Conclusion

We justify the application of Proposition II.1.7, which proves Theorem III.2.1.

Proof of Theorem III.2.1. By definition, the Fourier coefficients of θ`ψf
+
` expanded at

i∞ are of moderate growth, whence the growth of θ`ψf
+
` towards any cusp has to be

moderate. Consequently, the growth of θ`ψf` towards any cusp is moderate according to
the proof of Lemma III.3.5. Thus, the assumptions in Proposition II.1.7 are satisfied by
θ`ψf`. Performing the outlined steps concludes the proof of Theorem III.2.1.

III.4 Numerical examples

III.4.1 An interlude on Jacobi polynomials

The Jacobi polynomials P(a,b)
r admit a representation in terms of of Gauß’ hyperge-

ometric function 2F1, see equation (II.1). This yields many identities between Jacobi
polynomials of “neighboring” degree r and parameters a, b, that is r ∈ {r − 1, r, r + 1}
and analogously for a, b. For instance, one could use Gauß contiguous relations, to obtain
such identities. In particular, this leads to a recursive characterization of the Jacobi
polynomials. More precisely, we have

P(a,b)
0 (z) = 1, P(a,b)

1 (z) = 1
2 (a− b+ (a+ b+ 2)z) ,
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and

c1(j)P(a,b)
j+1 (z) = (c2(j) + c3(j)z)P(a,b)

j (z)− c4(j)P(a,b)
j−1 (z),

where

c1(j) = 2(j + 1)(j + a+ b+ 1)(2j + a+ b), c2(j) = (2j + a+ b+ 1)
(
a2 − b2

)
,

c3(j) = (2j + a+ b)(2j + a+ b+ 1)(2j + a+ b+ 2),
c4(j) = 2(j + a)(j + b)(2j + a+ b+ 2).

III.4.2 Explicit examples

Note that the parallelogram law and the fact |n| = ‖a+ b‖‖a− b‖ yield

‖a‖2 = ‖a+ b‖2 + ‖a− b‖2
4 + ‖a+ b‖‖a− b‖

2 ,

‖b‖2 = ‖a+ b‖2 + ‖a− b‖2
4 − ‖a+ b‖‖a− b‖

2 .

Higher even dimensions

The case ` = 2 has to be excluded since kf` 6= 1. On one hand, if ` = 4 for instance,
we have

κ = 6, kf4 = 0,
P(1,−5)

4

(
1− 2‖a‖

2

‖b‖2
)

‖b‖2 − 1
‖a‖2 =

(‖a‖2 − ‖b‖2)5
‖a‖2‖b‖10 ,

and thus, we choose the function P4 as

P4 (‖a+ b‖, ‖a− b‖)

= ‖a− b‖5‖a+ b‖5(
‖a+b‖2+‖a−b‖2

4 + ‖a+b‖‖a−b‖
2

) (
‖a+b‖2+‖a−b‖2

4 − ‖a+b‖‖a−b‖
2

)5 .

Similarly, we compute (with x := ‖a‖, y := ‖b‖)

y−4 P(2,−7)
6

(
1− 2x

2

y2

)
− x−4 =

(
x2 − y2)7
x4y16

(
7x2 + y2

)
,

y−6 P(3,−9)
8

(
1− 2x

2

y2

)
− x−6 =

(
x2 − y2)9
x6y22

(
45x4 + 9x2y2 + y4

)
,

y−8 P(4,−11)
10

(
1− 2x

2

y2

)
− x−8 =

(
x2 − y2)11

x8y28

(
286x6 + 66x4y2 + 11x2y4 + y6

)
,
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CHAPTER III. MULTIDIMENSIONAL SMALL DIVISOR FUNCTIONS

from which we read off the corresponding definitions of P`.
Because of the aforementioned recursive nature of the Jacobi polynomials, the indi-

cated pattern continues to hold for every even dimension ` ∈ 2N + 2 by induction.

Higher odd dimensions

On the other hand, the case of dimension ` ∈ 2N≥2 − 1 produces more complicated
functions P`. For example, if ` = 3 we have κ = 5, kf3 = 1

2 , and

P( 1
2 ,−4)

3

(
1− 2‖a‖

2

‖b‖2
)

‖b‖ − 1
‖a‖

= −(‖a‖ − ‖b‖)4 (5‖a‖3 + 20‖a‖2‖b‖+ 29‖a‖‖b‖2 + 16‖b‖3)
16‖a‖‖b‖7 .

If ` = 5, we have κ = 7, kf5 = −1
2 , and

P( 3
2 ,−6)

5

(
1− 2‖a‖

2

‖b‖2
)

‖b‖3 − 1
‖a‖3 = 1

256‖a‖3‖b‖13

(
−693‖a‖13 + 4095‖a‖11‖b‖2

−10010‖a‖9‖b‖4 + 12870‖a‖7‖b‖6 − 9009‖a‖5‖b‖8 + 3003‖a‖3‖b‖10 − 256‖b‖13
)
.

We observe that we are left with odd powers of ‖a‖, ‖b‖ in both odd-dimensional cases.
If we keep the dependence of P` on ‖a± b‖, which ultimately justifies the terminology
“divisor function”, then odd powers obstruct a definition of P` via the parallelogram law
in these cases of `. Once more, an inductive argument via the recursive characterization
of the Jacobi polynomials extends this phenomenon to all odd dimensions ` ∈ 2N + 1.
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Chapter IV

Higher depth mock theta
functions and q-hypergeometric
series

This chapter is based on a paper [MMR21] of the same title published in Forum
Mathematicum. This is joint work with Dr. Joshua Males and Prof. Dr. Larry Rolen.

IV.1 Introduction and statement of results
The study of mock theta functions goes back to Ramanujan, who gave the first

examples in his enigmatic last letter to Hardy one hundred years ago. In 2002, Zwegers
[Zwe02] achieved a major breakthrough by providing nonholomorphic completions of
Ramanujan’s classical mock theta functions to modular objects. More precisely and in
todays terminology, he recognized Ramanujan’s mock theta functions as holomorphic
parts of so-called harmonic Maaß forms of weight 1

2 with shadow given by weight 3
2 unary

theta functions. More generally, his thesis provides a “Maaß–Jacobi form”, which is
roughly speaking a nonholomorphic generalization of classical Jacobi forms. We refer to
[BFOR17, Chapter 8] for a discussion of this perspective.

Since then, there has been an enormous amount of interest in, and new results related
to, mock theta functions and harmonic Maaß forms1. For example, the landmark paper of
Bringmann and Ono [BO10a] showed a deep connection between the ranks of partitions,
mock theta functions, and harmonic Maaß forms. To describe this, we define

R(α, β; q) :=
∑
n≥0

(αβ)nqn2

(αq; q)n(βq; q)n
,

where for n ∈ N ∪ {0,∞}

(a)n := (a; q)n :=
n−1∏
j=0

(
1− aqj

)
1A definition can be found in each Chapter I, II, III, or in [BFOR17, Chapter 4].
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CHAPTER IV. HIGHER DEPTH MOCK THETA FUNCTIONS

is the usual q-Pochhammer symbol and q := e2πiτ with τ ∈ H throughout. The function R
is the three-variable generalization of the partition rank generating function R(w,w−1; q

)
and was studied by Folsom [Fol16]. In particular, R is in essence a universal mock theta
function in the sense of Gordon and McIntosh [GM12]. That is, many of Ramanujan’s
original mock theta functions may be written as specializations of R, up to the addition
of a modular form - see [Fol16, p. 490], and also [BFR12, Theorem 3.1].

Returning to the discussion of the results by Bringmann and Ono [BO10a], they
showed that R(ζ, ζ−1; q

)
evaluated at an odd order root of unity ζ 6= 1 is a mock modular

form of weight 1
2 with a certain shadow. The knowledge of the modularity behaviour

then allows one to obtain deep arithmetical information on ranks of partitions, including
on their asymptotics and exact formulae [Bri09,BO06], as well as congruences that are
satisfied, in analogy to the famed Ramanujan congruences. Afterwards, Zagier [Zag09]
provided a new proof of Bringmann and Ono’s result on the rank generating function in
an expository paper, and his proof applies to an even order root of unity ζ 6= 1 as well.

Consequently, the investigation of q-hypergeometric series became a leitmotif in the
area of combinatorics as well as in the area of mock modular forms. In many cases, the
focus of active research in both of these fields originates in the investigation of some
peculiar explicit examples, which shed the first light on a new phenomenon or object. To
name one such example, Lovejoy and Osburn [LO13a,LO17] offered a new perspective
on some of the classical mock theta functions. In short, they discovered four examples of
double sum q-series which are also mock theta functions. In other words, their work can
be regarded as the observation that some (if not all) mock theta functions are double
sum q-series, which happen to collapse to single sums. Two such functions areM10 and
M17 in [LO17], explicitly given by

∑
n≥1

∑
n≥j≥1

(−1)j(−1)2nq
j2+j+n

(q2; q2)n−j (q2; q2)j−1 (1− q4j−2) ,

∑
n≥1

∑
n≥j≥1

(−1)j(−1)2nq
j2−j+n

(q2; q2)n−j (q2; q2)j−1 (1− q4j−2) .
(IV.1)

Both are expressible in terms of Zwegers’ µ-function (defined below) and ratios of classical
theta functions, see [LO17, Theorems 1.6, 1.7], and consequently are mock theta functions.

A second example of a new phenomenon or object is the notion of higher depth mock
modular forms, which arose parallel to the work of Lovejoy and Osburn. Roughly speaking,
classical mock modular forms can be viewed as preimages of (weakly) holomorphic modular
forms under the differential operator

ξk := 2ivk ∂
∂τ
, τ = u+ iv,

62



IV.1. INTRODUCTION AND STATEMENT OF RESULTS

introduced by Bruinier and Funke [BF04], and which is surjective on the space of weight
k harmonic Maaß forms. Since the kernel of ξk contains precisely the holomorphic
functions, this idea generalizes directly to mixed mock modular forms, which were first
defined in [DMZ12] (see [BFOR17, Definition 13.2] for a definition as well). Consequently,
weakly holomorphic modular forms can be regarded as mock modular forms of depth
zero. Now, one can define mixed mock modular forms of depth d inductively as preimages
of mixed mock modular forms of depth d− 1 under ξk (see Section IV.2.2 for a precise
definition). In other words, resembling the extension of holomorphic modular forms to
holomorphic quasimodular forms, higher depth mock modular forms extend the scope of
admissible images under ξk in a natural fashion. Recently, such forms were connected to
black holes by Alexandrov and Pioline [AP20], to the Gromov–Witten theory of elliptic
orbifolds [BKR18], and to indefinite theta functions on arbitrary lattices of signature
(r, n− r) - see [ABMP18] for the r = 2 case and [Naz18] for general r, each of which are
generalizations of Zwegers’ groundbreaking thesis [Zwe02] where r = 1. There are also
further applications after relaxing to the notion of higher depth quantum modular forms
[BKM19a,BKM19b,Mal20].

The q-hypergeometric structure of examples of mock theta functions is also crucial to
applications in geometry and topology. For instance, Nahm’s Conjecture asserts that
certain q-hypergeometric series are modular if and only if some associated elements of
a K-theoretic group (the Bloch group) is torsion. Zagier brilliantly proved this in the
case of rank 1 [Zag07]. While it turned out to not be true in higher rank cases (as
shown by Vlasenko and Zwegers [VZ11]), Calegari, Garoufalidis, and Zagier [CGZ17]
later showed that one direction of it was true in general. Their proof was closely related
to objects in knot theory. Indeed, there are procedures whereby knot diagrams produce
q-hypergeometric series of a similar shape as Ramanujan’s mock theta functions (see,
e.g., [GL15]). The proofs of the above cases of Nahm’s Conjecture relied on the same
sort of asymptotic analysis near roots of unity that Ramanujan employed to discover
the mock theta functions. It could have been in families like the one Zagier studied in
[Zag07] that some examples were mock modular, and not just modular, but they didn’t
happen to turn up there. However, such series in more general contexts may play a role in
more exotic modular constructions, motivating studies such as that in this chapter2. The
asymptotics of these knot q-series are closely connected to quantum modular forms and
the important Volume Conjecture which now seems to be heavily tied to modularity-type
properties [Zag10].

To our knowledge, all higher depth mock modular forms beyond the original sorts
considered in Zwegers’ thesis are constructed as indefinite theta functions, but not via
other means which were historically important in the development of the original mock

2Further related examples are discussed in a recent preprint by Wang [Wan22].
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modular forms. In light of these observations from combinatorics and topology, it is
natural to ask the following.

Question. Are there interesting q-hypergeometric depth ≥ 2 mock modular forms?

This chapter aims to answer this question and to propose a new structure inductively
extending Ramanujan’s original mock theta functions to a set of spaces of distinguished
higher depth mock modular forms.

Classical mock theta functions are special mock modular forms of depth one, whose
image under the ξ-operator is a linear combination of unary theta functions, wherefore
their weight is either 1

2 or 3
2 . In this chapter, we focus on a new class of objects closely

related to higher depth mixed mock modular forms, which we call higher depth mock
theta functions. We define them explicitly in Section IV.2.2, and we construct the first
examples of depth two mock theta functions. Being more precise, we focus on three of
Ramanujan’s order three mock theta functions throughout, given by

ν(q) :=
∑
n≥0

qn(n+1)

(−q; q2)n+1
, φ(q) :=

∑
n≥0

qn
2

(−q2; q2)n
, ρ(q) :=

∑
n≥0

qn
2

(q; q2)n
.

Note that we also cover the cases of the order three mock theta functions ω and ψ
implicitly3 by virtue of their simple relationships to those that appear here. Next, we
multiply each of the three mock theta functions by a certain specialization of R.

Our main result shows that these first examples of higher depth mock theta functions
arise as double-sum q-hypergeometric functions. Throughout we let ζ := e2πiz with z ∈ C,
and let [

m

n

]
q

:= (q; q)m
(q; q)m−n(q; q)n

be the q-binomial coefficient. We define

f1(z, τ) := (1 + ν(q))
(

1 + ζ

(1− ζ)(1 + q)R
(
ζ,−q; q2

))
,

f2(z, τ) := φ(q)
(

1 + ζ

(1− ζ)(1 + q2)R
(
ζ,−q2; q2

))
,

f3(z, τ) := ρ(q)
(

1 + ζ

(1− ζ)(1− q)R
(
ζ, q; q2

))
,

and have the following result.
3See [BFOR17, Appendix A.2], for instance
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Theorem IV.1.1. Let ζ be a root of unity. Then the functions fj for j ∈ {1, 2, 3} are each
mock theta functions of depth two. Furthermore, we have the following representations
as double-sum q-series:

(1) The function f1 can be written as

f1(z, τ) =
(
1 + q−1

) ∑
m,n≥0

(−1)n q2n2
ζn+m

[
m+ n

m

]
q2

(
− q2n

ζ ; q2
)
m

(1 + q2n−1) (−q; q2)m+2n
.

(2) The function f2 can be written as

f2(z, τ) = 2
∑

m,n≥0
(−1)n q2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(1 + q2n) (−q2; q2)m+2n
.

(3) The function f3 can be written as

f3(z, τ) =
∑

m,n≥0
(−1)n q2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(
1− q−1)

(1− q2n−1) (q; q2)m+2n
.

Remarks.

(1) We emphasize that the q-series on the right-hand side of Theorem IV.1.1 may be
viewed combinatorially as counting certain families of partitions, in analogy with
the depth one case. For succinctness, we do not provide explicit details here.

(2) We highlight that our results and the examples (IV.1) of Lovejoy, Osburn have a
similar shape. Further evidence of this connection is found in the fact that Zwegers’
µ-function essentially provides the completion of both the double-sum q-series in
equation (IV.1) and in Theorem IV.1.1.

Theorem IV.1.2. Each of the functions fj has a natural modular completion (see
Section IV.2.3).

Invoking different product formulae for single-sum q-hypergeometric functions may
yield a broader set of higher depth mock theta functions, as studied by Lovejoy and
Osburn [LO13b] and by Lovejoy [Lov14,Lov22]. In analogy to the depth one case, it is
clear that there is a combinatorial interpretation of the q-hypergeometric series described
in Theorem IV.1.1. Furthermore, the modularity properties yield asymptotics for the
coefficients using standard techniques, and we offer the following general question.

Question. What are the applications of higher depth mock theta functions?
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IV.2 Preliminaries
In this section we collect some preliminary results and definitions pertinent to the

rest of the chapter.

IV.2.1 q-hypergeometric series

We utilize the q-hypergeometric series

rφs (a1, . . . , ar; b1, . . . , bs; q; z) :=
∑
n≥0

(a1; q)n · · · (ar; q)n
(b1; q)n · · · (bs; q)n

zn

(q; q)n

(
(−1)nq

n(n−1)
2

)s−r+1
,

where r, s ∈ N0, and a1, . . . , ar, b1, . . . , bs, and q are complex parameters, and z is a
complex variable. Assuming that no factor

(
aj ; q

)
n
,
(
b`; q

)
n
vanishes, convergence of

rφs as a function of z is discussed by Oshima [Osh17]. Summarizing his exposition, if
0 < |q| < 1, its radius of convergence equals{

∞ if r ≤ s,
1 if r = s+ 1.

If |q| > 1 and a1 · · · arb1 · · · bs 6= 0, then its radius of convergence equals
∣∣∣ b1···bsqa1···ar

∣∣∣. The
case that |q| = 1 is discussed in [Osh17, Theorem 1.1].

The function rφs enables us to state a central formula in our work.

Lemma IV.2.1 ([Sri87, equation (2.10)]). We have

1φ1 (λ;µ; q;−z) 2φ1 (λ, 0;µ; q; ζ)

=
∑

m,n≥0
qn(n−1)

(λ; q)m+n
(
−qn zζ ; q

)
m

(µ
λ ; q

)
n

(µ; q)m+2n(µ; q)n
· ζm

(q; q)m
· (−λzζ)n

(q; q)n
. (IV.2)

In addition, we use Fine’s function [Fin88]

F (a, b; t; q) := 2φ1(aq, q; bq; q; t) =
∑
n≥0

(aq; q)n
(bq; q)n

tn, |q| < 1.

Due to its representation as a specialization of 2φ1, we see that F converges inside the unit
disc as a function of t. However, the function F as a function of t admits a meromorphic
extension outside the unit disc with simple poles at most at t = q−n, n ≥ 0, provided
that b 6= q−`, ` ≥ 1, according to [Fin88, p. 2].

The function F has the following transformation properties (among others).
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Lemma IV.2.2 ([Fin88, equations (4.4), (6.3), (12.3)]). It holds that

F (a, b; t; q) = b

b− at + (b− a)t
(1− bq)(b− at)F (a, bq; t; q), (IV.3)

F (a, b; t; q) = 1− b
1− tF

(
at

b
, t; b; q

)
. (IV.4)

(1− t)F (0, b; t; q) =
∑
n≥0

(bt)nqn2

(bq; q)n(tq; q)n
. (IV.5)

IV.2.2 Higher depth mock modular forms

Higher depth (mixed) mock modular forms arose from talks of Zagier and Zwegers,
work of Alexandrov, Banerjee, Manschot and Pioline [ABMP18], and of Nazaroglu [Naz18].
In the following, we specialize [BFOR17, Definition 13.2] to our framework.

Let Γ ⊆ SL2(Z) be a congruence subgroup, and letMk(Γ) be the space of holomorphic
modular forms of weight k on Γ. We say that a function f : H → C transforms like a
modular form of weight k on Γ, if for all γ ∈ Γ and all τ ∈ H we have

f(τ) =
{

(cτ + d)−kf(γτ) if k ∈ Z,(
c
d

)
ε2k
d (cτ + d)−kf(γτ) if k ∈ 1

2 + Z,

where
(
c
d

)
denotes the extended Legendre symbol, and

εd :=
{

1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4),

for odd integers d.

Definition IV.2.3. A modular completion of a function f : H→ C on Γ is a function
g : H→ C, such that f + g transforms like a modular form of some weight on Γ.

Note that a modular completion is not unique. Indeed, one may add a modular form
of suitable weight (or a more general automorphic function) to such a completion. Thus,
we emphasize that a natural modular completion g should provide new insight on the
obstruction towards modularity of the initial function f .

We observe that mock modular forms of depth one are precisely the mixed mock
modular forms. In a similar fashion, we now define higher depth mock theta functions.

Definition IV.2.4. Let Θ 1
2
(Γ), Θ 3

2
(Γ) be the space of unary theta functions of weight 1

2
or 3

2 on Γ, respectively. In addition, let M0
k(Γ) := Mk(Γ). For d > 0, the space Md

k(Γ) of
mock theta functions of depth d and weight k on Γ is the space of real-analytic functions
on H that
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(1) that admit a modular completion of weight k on Γ,
(2) have images under ξk that are contained in the space4(

Θ 1
2
(Γ)⊗Md−1

k− 1
2
(Γ)
)
⊕
(

Θ 3
2
(Γ)⊗Md−1

k− 3
2
(Γ)
)
,

(3) are of at most linear exponential growth towards the cusps of Γ.

Following Zagier [Zag09], we observe once more that mock theta functions of depth
one are precisely the classical mock theta functions multiplied by modular forms.

IV.2.3 Modular completions

In this section we collect the modular completions of ν, φ, ρ, and R. Suppose that
z1, z2 ∈ C \ (Zτ + Z). Zwegers [Zwe02] defined his µ-function by

µ
(
e2πiz1 , e2πiz2 ; τ

)
:=

eπiz1

−iq 1
8 e−πiz2(q; q)∞ (e2πiz2 ; q)∞ (e−2πiz2q; q)∞

∑
n∈Z

(−1)nq
n(n+1)

2 e2πinz2

1− e2πiz1qn
,

where we used the Jacobi triple product identity. To describe a natural modular comple-
tion of µ, we recall the error function

E(z) := 2
∫ z

0
e−πt

2dt

for z ∈ R, along with

R(z1; τ) :=
∑

n∈ 1
2 +Z

(
sgn(n)− E

((
n+ Im(z3)

v

)√
2v
))

(−1)n−
1
2 e−πin

2τ−2πinz1 .

Following Choi [Cho11], we additionally consider

U(α, β; q) :=
∑
n≥1

(
α−1; q

)
n

(
β−1; q

)
n
qn,

and

M(z1, z2, τ)

:= iq
1
8
(
1− e2πiz1

)
eπi(z2−z1)

(
e2πi(τ−z1); q

)
∞

(
e−2πiz2 ; q

)
∞
µ
(
e2πiz1 , e2πiz2 ; τ

)
.

4The symbol ⊗ refers to the usual tensor product of vector spaces.
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Lemma IV.2.5. The function R(e2πiz1 , e2πiz2 ; q
)
admits a completion given by

C(e2πiz1 , e2πiz2 ; q) := −q
1
8

2
(
1− e2πiz1

)
eπi(z2−z1)

×
(
e2πi(τ−z1); q

)
∞

(
e−2πiz2 ; q

)
∞
R(z1 − z2; τ) + U

(
e2πiz1 , e2πiz2 ; q

)
.

Proof. We follow an idea of Folsom, Ono, and Rhoades [FOR13, Section 3], which we
recall here for convenience. Ramanujan’s identity [AB09, p. 67, entry 3.4.7] can be
rewritten as

M(z1, z2, τ) = R
(
e2πiz1 , e2πiz2 ; q

)
+ U

(
e2πiz1 , e2πiz2 ; q

)
,

compare [Cho11, Theorem 4] as well. By Zwegers’ thesis [Zwe02, Theorem 1.11], the
modular completion ofM(z1, z2; τ) is given by

C(z1, z2; τ) := −q
1
8

2
(
1− e2πiz1

)
eπi(z2−z1)

(
e2πi(τ−z1); q

)
∞

(
e−2πiz2 ; q

)
∞
R(z1 − z2; τ).

This in turn produces the modular completion ofR as C(z1, z2; τ)+U(e2πiz1 , e2πiz2 ; q
)
.

The modular completions of Ramanujan’s mock theta functions are known by Zwegers’
thesis [Zwe02], and their representations in terms of µ (see [BFOR17]Appendix A.2, for
example). For convenience, we recall the modular completions here without proof.

Lemma IV.2.6. We have the following modular completions.

(1) The mock theta function ν(q) admits a completion given by

−q− 1
2R (2τ ; 12τ) .

(2) The mock theta function φ(q) admits a completion given by

−eπi8 q− 1
8R

(
−τ ; 3τ + 1

2

)
.

(3) The mock theta function ρ(q) admits a completion given by

−1
2q
− 3

4R (τ ; 6τ) .
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IV.3 Proof of Theorems IV.1.1 and IV.1.2
We prepare the application of equation (IV.2) with a lemma. First note that it is

easy to show that

1 + ν(q) = 1φ1
(
q2;−q; q2;−1

)
, (IV.6)

φ(q) = 1φ1
(
q2;−q2; q2;−q

)
, (IV.7)

ρ(q) = 1φ1
(
q2; q; q2;−q

)
. (IV.8)

Then we prove the following.

Lemma IV.3.1. We have the identities

2φ1
(
q2, 0;−q; q2; ζ

)
= 1 + ζ

(1− ζ)(1 + q)R
(
ζ,−q; q2

)
,

2φ1
(
q2, 0;−q2; q2; ζ

)
= 1 + ζ

(1− ζ) (1 + q2)R
(
ζ,−q2; q2

)
,

2φ1
(
q2, 0; q; q2; ζ

)
= 1 + ζ

(1− ζ)(1− q)R
(
ζ, q; q2

)
.

Proof. To verify the first equation, we first rewrite the left hand side in terms of Fine’s
function F , namely

2φ1
(
q2, 0;−q; q2; ζ

)
= F

(
0,−q−1; ζ; q2

)
.

Then by equation (IV.3) we find that

F
(
0,−q−1; ζ; q2

)
= 1 + ζ

1 + q2F
(
0,−q; ζ; q2

)
.

Next, by equation (IV.4), we obtain

F
(
0, ζ;−q; q2

)
= 1− ζ

1 + q
F
(
0,−q; ζ; q2

)
.

Thus,

F
(
0,−1; ζ; q2

)
= 1 + ζ

1− ζ F
(
0, ζ;−q; q2

)
.

Using equation (IV.5), we arrive at

F
(
0, ζ;−q; q2

)
= 1

1 + q

∑
n≥0

(−qζ)nq2n2

(ζq2; q2)n(−q3; q2)n

 = 1
1 + q

R
(
ζ,−q; q2

)
.
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Hence,

2φ1
(
q2, 0;−q; q2; ζ

)
= 1 + ζ

(1− ζ)(1 + q)R
(
ζ,−q; q2

)
,

as claimed.
To verify the second equation, we proceed analogously. Explicitly, we begin with

2φ1
(
q2, 0;−q2; q2; ζ

)
= F

(
0,−1; ζ; q2

)
.

Then, by equation (IV.3) we find that

F
(
0,−1; ζ; q2

)
= 1 + ζ

1 + q2F
(
0,−q2; ζ; q2

)
.

Next, by equation (IV.4), we obtain

F
(
0, ζ;−q2; q2

)
= 1− ζ

1 + q2F
(
0,−q2; ζ; q2

)
.

Thus,

F
(
0,−1; ζ; q2

)
= 1 + ζ

1− ζ F
(
0, ζ;−q2; q2

)
.

Using equation (IV.5) to inspect

F
(
0, ζ;−q2; q2

)
= 1

1 + q2

∑
n≥0

(−q2ζ)nq2n2

(ζq2; q2)n(−q4; q2)n

 = 1
1 + q2R

(
ζ,−q2; q2

)
.

This proves the second equation.
For the final equality in the lemma, we see that

2φ1
(
q2, 0; q; q2; ζ

)
= F

(
0, q−1; ζ; q2

)
.

By equation (IV.3) this is

F
(
0, q−1; ζ; q2

)
= 1 + ζ

1− qF
(
0, q; ζ; q2

)
.

Using equation (IV.4), we then have that

F
(
0, ζ; q; q2

)
= 1− ζ

1− qF
(
0, q; ζ; q2

)
.
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We obtain

F
(
0, q−1; ζ; q2

)
= 1 + ζ

1− ζ F
(
0, ζ; q; q2

)
.

Inspecting the final term more closely with equation (IV.5), we find that

F
(
0, ζ; q; q2

)
= 1

1− q

∑
n≥0

(ζq)nq2n2

(ζq2; q2)n(q3; q2)n

 = 1
1− qR

(
ζ, q; q2

)
.

Combining these yields the third equation, and thus the lemma is proven.

We now are able to prove our main theorems.

Proof of Theorem IV.1.1. We utilize equation (IV.2) to prove the representations of f1,
f2, and f3 as double-sum q-series. We begin with the first case. By Lemma IV.3.1 and
equation (IV.6) the left-hand side is 1φ1

(
q2;−q; q2;−1

)
2φ1

(
q2, 0;−q; q2; ζ

)
. We compute

by equation (IV.2) that

1φ1
(
q2;−q; q2;−1

)
2φ1

(
q2, 0;−q; q2; ζ

)
=

∑
m,n≥0

q2n(n−1)

(
q2; q2)

m+n

(
− q2n

ζ ; q2
)
m

(−q−1, q2)
n

(−q; q2)m+2n (−q; q2)n
· ζm

(q2; q2)m
·
(−q2ζ

)n
(q2; q2)n

=
∑

m,n≥0
(−1)nq2n2

ζn+m
[
m+ n

m

]
q2

(
− q2n

ζ ; q2
)
m

(−q−1; q2)
n

(−q; q2)n (−q; q2)m+2n

=
∑

m,n≥0
(−1)nq2n2

ζn+m
[
m+ n

m

]
q2

(
− q2n

ζ ; q2
)
m

(
1 + q−1)

(1 + q2n−1) (−q; q2)m+2n
.

Next, consider the second case. By Lemma IV.3.1 and equation (IV.7), the left-hand
side is 1φ1

(
q2;−q2; q2;−q)2φ1

(
q2, 0;−q2; q2; ζ

)
. Utilizing equation (IV.2), we obtain

1φ1
(
q2;−q2; q2;−q

)
2φ1

(
q2, 0;−q2; q2; ζ

)
=

∑
m,n≥0

q2n(n−1)

(
q2; q2)

m+n

(
− q2n+1

ζ ; q2
)
m

(−1; q2)
n

(−q2; q2)m+2n (−q2; q2)n
· ζm

(q2; q2)m
·
(−q3ζ

)n
(q2; q2)n

=
∑

m,n≥0
(−1)nq2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(−1; q2)
n

(−q2; q2)n (−q2; q2)m+2n

= 2
∑

m,n≥0
(−1)nq2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(1 + q2n) (−q2; q2)m+2n
.
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Finally, we prove the third case. By Lemma IV.3.1 and equation (IV.8) the left-hand
side is 1φ1

(
q2; q; q2;−q)2φ1

(
q2, 0; q; q2; ζ

)
. Utilizing equation (IV.2), we obtain

1φ1
(
q2; q; q2;−q

)
2φ1

(
q2, 0; q; q2; ζ

)
=

∑
m,n≥0

q2n(n−1)

(
q2; q2)

m+n

(
− q2n+1

ζ ; q2
)
m

(
q−1; q2)

n

(q; q2)m+2n (q; q2)n
· ζm

(q2; q2)m
·
(−q3ζ

)n
(q2; q2)n

=
∑

m,n≥0
(−1)nq2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(
q−1; q2)

n

(q; q2)n (q; q2)m+2n

=
∑

m,n≥0
(−1)nq2n2+nζn+m

[
m+ n

m

]
q2

(
− q2n+1

ζ ; q2
)
m

(
1− q−1)

(1− q2n−1) (q; q2)m+2n
.

This proves Theorem IV.1.1.

Finally, we conclude with the proof of Theorem IV.1.2.

Proof of Theorem IV.1.2. Combining Lemmas IV.2.5 and IV.2.6 immediately yields
modular completions of f1, f2, and f3 in the obvious fashion. For instance, since

f1(τ) = 1 + ν(q) + ζ

(1− ζ)(1 + q)R
(
ζ,−q; q2

)
+ ν(q) ζ

(1− ζ)(1 + q)R
(
ζ,−q; q2

)
,

a natural modular completion of f1 is given by

− 1− q− 1
2R(2τ ; 12τ) + ζ

(1− ζ)(1 + q)C
(
ζ,−q; q2

)
− q− 1

2R(2τ ; 12τ) ζ

(1− ζ)(1 + q)C
(
ζ,−q; q2

)
.

The cases of f2 and f3 are completely analogous. This proves that these functions are
indeed mock theta functions of depth two.
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Part B

Locally harmonic Maaß forms





Chapter V

Eisenstein series of even weight
k ≥ 2 and integral binary
quadratic forms

This chapter is based on a paper [Mon22a] of the same title published in Proceedings
of the American Mathematical Society.

V.1 Introduction and statement of results

Integral binary quadratic forms play a decisive role in the construction of many
modular objects, mainly to investigate various classes of theta functions. However,
they can also be utilized to construct another prominent class of modular objects,
namely families of Eisenstein series. We will define Eisenstein series associated to
some γ ∈ SL2(Z) \ {±1}, and call them elliptic, parabolic or hyperbolic respectively
corresponding to the motion γ induces on the upper half plane H. Although such
constructions go back to Petersson [Pet44] essentially, and the analytic continuation of
the classical parabolic Eisenstein series was established by Selberg [Sel56] and Roelcke
[Roe66,Roe67] some years later, similar results remained elusive in the other two cases.

A first breakthrough was made in weight 0 some years ago, which completes the picture
regarding analytic continuation to s = 1, and was established by Jorgenson, Kramer, von
Pippich, Schwagenscheidt, and Völz, compare [JKvP10, Theorem 4.2], [vP16, Section 4],
[vPSV21, Theorem 1.2], [Mat20, Appendix B]. Hence, it seems natural to ask whether
similar results hold in weight 2 or higher, overleaping the “point of symmetry” k = 1.
In a recent preprint [Mat20], Matsusaka investigated parabolic, elliptic, and hyperbolic
Eisenstein series in weight 2. In a second breakthrough, Bringmann and Kane [BK16]
provided the analytic continuation of Petersson’s weight 2 elliptic Poincaré series to s = 0,
which enabled Matsusaka [Mat20, Theorem 2.3] to extend this result to the weight 2
elliptic Eisenstein series.

Consequently, we focus on the case of hyperbolic Eisenstein series. If k = 2, Schwa-
genscheidt [Sch18, Remark 5.4.6] argued towards existence of the analytic continuation
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to s = 0, and Matsusaka [Mat20, equation (2.12)] conjectured its shape. We extend
Matsusaka’s setting to general even weight k ≥ 2, and embed his Eisenstein series into a
framework based on discriminants of integral binary quadratic forms. This enables us to
prove Matsusaka’s conjecture for any positive non-square discriminant in weight 2 by
computing the Fourier expansion of our hyperbolic Eisenstein series. To this end, we
adapt Zagier’s method [Zag75, Section 2], and appeal to results of Duke, Imamoḡlu, and
Tóth [DIT11].

We stipulate τ = u + iv ∈ H throughout, and introduce all involved objects and
terminology during sections V.2 to V.4 in detail.

Theorem V.1.1. Let γ ∈ SL2(Z) be hyperbolic and primitive. Then the function E2,γ(τ, s)
can be analytically continued to s = 0 and the continuation is given by

lim
s→0
E2,γ(τ, s)

= −2
∆(γ) 1

2

∑
m≥0

∑
Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ
jm(w) |dw|Im(w) q

m − −2
∆(γ) 1

2
trd,∆(γ)(1)E∗2(τ)

for any τ ∈ H. Here, trd,∆(γ)(1) is a twisted trace of cycle integrals given by

trd,∆(γ)(1) :=
∑

Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ

|dw|
Im(w) .

Furthermore, if v is sufficiently large, that is τ is located above the net of geodesics⋃
Q∈Q∆(γ)

SQ, then we have

lim
s→0
E2,γ(τ, s) = −2

∆(γ) 1
2

∑
Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ

( 1
2πi

∂j
∂τ (τ)

j(w)− j(τ) − E
∗
2(τ)

)
|dw|

Im(w) .

Remarks.

(1) The function E2,γ(τ, s) is a twisted trace of individual hyperbolic Eisenstein series,
which we denote by E2,γ(τ, s).

(2) We will indicate below that the analytic continuation of the weight 2 parabolic /
elliptic Eisenstein series to s = 0 is a harmonic / polar harmonic Maaß form. Such
forms generalize the notion of classical holomorphic modular forms by relaxing
analytical and growth conditions to a nonholomorphic setting. Theorem V.1.1
completes the picture in the sense that the resulting cycle integral is a locally
harmonic Maaß form of weight 2 in τ with Im(τ) sufficiently large. These objects
were introduced by Bringmann, Kane, and Kohnen in [BKK15] for weights 2− 2`,
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` ∈ N≥2, (see also [BFOR17, Section 13.4]), and independently by Hövel [Höv12]
for weight 0 in his PhD. thesis. Roughly speaking, such a form is a harmonic Maaß
form that is permitted to have singularities on the net of geodesics ⋃Q∈QD SQ. The
singularities occur due to the presence of a sign-function in [BKK15], and are called
“jumping singularities” (see Section VII.2 for a definition).

As a byproduct of our approach, we obtain the expansion of Ek,γ(τ, 0) for every even
weight k ≥ 4. This was known by Parson [Par93, Theorem 3.1] without the twisting. In
particular, if k ≥ 4 satisfies k ≡ 0 (mod 4), then the hyperbolic Eisenstein series Ek,γ(τ, 0)
is a holomorphic cusp form. In this case, the Fourier expansion of the twisted traces of
hyperbolic Eisenstein series of weight 4 | k > 2 was already established by Gross, Kohnen,
and Zagier [GKZ87, p. 517].

Theorem V.1.2. Let γ ∈ SL2(Z) be hyperbolic and primitive, and suppose k ≥ 4 is
even. Moreover, let Gm(τ, s) be the Niebur Poincaré series defined in equation (V.1) and
Definition VI.2.4 below. Then, we have

Ek,γ(τ, 0) = (−1) k2 2π k2

∆(γ) k4 Γ
(
k
4

)2
∑
m≥1

m
k
2−1 ∑

Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ
G−m

(
w,
k

2

) |dw|
Im(w) q

m.

We devote Section V.5 to the development of both theorems.

V.2 Preliminaries
Let us summarize some general framework first, more details can be found for example

in [Iwa97, Chapter 2] regarding hyperbolic geometry, and in [Zag81, § 8] regarding integral
binary quadratic forms.

V.2.1 Fractional linear transformations

Let γ =
(
a b
c d

) ∈ SL2(Z) =: Γ. The group Γ acts on H ∪ R ∪ {i∞} by Möbius
transformations. We write j(γ, τ) := cτ + d for the usual modular multiplier, and
summarize some standard facts on the classification of motions.

(1) An element γ ∈ Γ \ {±1} is called parabolic if |tr (γ)| = 2. We have a unique fixed
point aγ of γ, called a cusp, and located in Q ∪ {i∞}. The stabilizer of each cusp
is conjugate to the stabilizer of i∞, which is generated by T := ( 1 1

0 1 ) up to sign. In
other words γ = ±σaγTnσ−1

aγ for some n ∈ Z \ {0}, where σaγ is a scaling matrix of
the cusp, namely it satisfies σaγ∞ = aγ . Points are moved by γ along horocycles,
that are circles in H tangent to R.
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(2) An element γ ∈ Γ is called elliptic if |tr (γ)| < 2. Recall that any elliptic fixed point
wγ is Γ-equivalent to either i or ω := e

πi
3 . Letting S :=

( 0 −1
1 0

)
, U := TS =

( 1 −1
1 0

)
,

we see that Γi =
{
1, S, S2, S3}, Γω =

{
1, U, . . . , U5}. Points are moved by γ along

circles centered at wγ .
(3) An element γ ∈ Γ is called hyperbolic if |tr (γ)| > 2. Recall that γ has precisely two

different fixed points wγ , w′γ , located on the real axis. Writing Γwγ ,w′γ = ±〈ηwγ ,w′γ 〉,
there exists a scaling matrix σwγ ,w′γ ∈ SL2(R) such that σwγ ,w′γ0 = wγ , σwγ ,w′γ∞ =
w′γ , and σ−1

wγ ,w′γ
ηwγ ,w′γσwγ ,w′γ = ±( y 0

0 y−1
)
for some y ∈ R>0. Points are moved by γ

along hypercycles, that are lines and circle arcs intersecting R at non-perpendicular
angles.

V.2.2 Integral binary quadratic forms

Let Q be an integral binary quadratic form, and the terminology “quadratic form”
abbreviates such forms throughout. The group Γ acts on the set of quadratic forms
by

(
Q ◦ ( a bc d ))(x, y) := Q(ax + by, cx + dy), and this induces an equivalence relation,

which we denote by ∼. Moreover, the actions of Γ on H and on quadratic forms are
compatible, in the sense that (Q ◦ γ) (τ, 1) = j(γ, τ)2Q(γτ, 1). Sometimes, we abbreviate
[a, b, c] := ax2 + bxy + cy2, and we denote its discriminant b2 − 4ac by ∆([a, b, c]).
One can check that the discriminant is invariant under ∼. For every D ∈ Z, we let
QD := {Q : ∆(Q) = D} be the set of all quadratic forms with discriminant D. If D 6= 0
the set QD/Γ is finite, and its cardinality is called the class number h(D). If D ≡ 0 (mod 4)
or D ≡ 1 (mod 4), then QD/Γ is non-empty.

V.2.3 Heegner geodesics

Let Q 6= 0 be a quadratic form. If ∆(Q) > 0 then we associate to Q the Heegner
geodesic SQ := {τ ∈ H : a |τ |2 + bRe(τ) + c = 0}, which joins the two distinct zeros of
Q(τ, 1). If a = 0, then the second point is given by − c

b .

V.2.4 Quadratic forms associated to γ ∈ Γ
In addition, we define Qγ(x, y) to be the quadratic form cx2+(d−a)xy−by2 associated

to γ =
(
a b
c d

) ∈ Γ. We set ∆(γ) := ∆ (Qγ) = tr (γ)2 − 4, and observe that the sign of
∆(γ) depends precisely on hyperbolicity, parabolicity, or ellipticity of γ respectively.
Futhermore, we note that Q−γ(x, y) = Qγ−1(x, y) = −Qγ(x, y). Hence, we invoke a
sign-function on quadratic forms. Namely, we define

sgn ([a, b, c]) :=
{

sgn(a) if a 6= 0,
sgn(c) if a = 0.
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This will cause a difference in the case of positive discriminant only.

Lemma V.2.1. Suppose ∆(Q) ≤ 0. Then Q ∼ −Q implies Q = 0.

See [Völ18, p. 21] (final paragraph) as well.

V.2.5 Genus characters

This subsection follows the exposition given by Gross, Kohnen, and Zagier in [GKZ87,
p. 508]. Let Q = [a, b, c] be a quadratic form. We observe that ∼ preserves gcd (a, b, c)
as well. We would like to define a Γ-invariant function on QD (assume D ≡ 0 (mod 4) or
D ≡ 1 (mod 4)). If D 6= 0, let d be a fundamental discriminant dividing D, and let

(
d
·
)

be the Kronecker symbol. In addition, an integer n is represented by Q if there exist x,
y ∈ Z, such that Q(x, y) = n. This established, we define

χd ([a, b, c]) :=


(
d
n

)
if gcd (a, b, c, d) = 1, [a, b, c] represents n, gcd (d, n) = 1,

0 if gcd (a, b, c, d) > 1.

One can verify that such an integer n always exists, and the definition is independent from
its choice. Since equivalent quadratic forms represent the same integers, this function is
indeed invariant under ∼. The choice d = 1 yields the trivial character. The definition
of χd

(
[a, b, c]

)
extends to D = 0 by choosing d = 0 in this case, compare the proof of

Lemma V.3.5. Additional properties of χd are summarized in [GKZ87, Propositions 1, 2].

V.3 Construction of Eisenstein series

V.3.1 Eisenstein series associated to a quadratic form

This construction is based on the following two observations, and follows [Mat20].

Lemma V.3.1. Let γ ∈ Γ \ {±1}, and Qγ be the associated quadratic form to γ.

(1) The zeros of Qγ(τ, 1) are precisely the fixed points of γ in H ∪ R.
(2) The equivalence class of Qγ(τ, 1) is precisely the set

{
QM−1γM (τ, 1) : M ∈ Γ

}
.

We observe that division by Qγ(·, 1) and averaging over equivalence classes of Qγ(·, 1)
modulo its zeros provides a function of weight 2. Consequently, we define the following
functions.

83



CHAPTER V. EISENSTEIN SERIES OF EVEN WEIGHT K ≥ 2

Definition V.3.2. Let γ ∈ Γ \ {±1}, k ∈ 2N, τ ∈ H, Re(s) > 1− k
2 , and w(γ) be the

set of fixed points of γ. Then we define

Ek,Q0(τ, s) :=
∑
Q∼Q0

sgn (Q)
k
2 vs

Q(τ, 1) k2 |Q(τ, 1)|s
,

Ek,γ(τ, s) := Ek,Qγ (τ, s) =
∑

M∈ Γ/Γw(γ)

sgn (QM−1γM )
k
2 vs

QM−1γM (τ, 1) k2
∣∣∣QM−1γM (τ, 1)

∣∣∣s .
We establish convergence.

Lemma V.3.3. For every k ∈ 2N the series defining Ek,Q(τ, s) converges absolutely and
locally uniformly for τ ∈ H and Re(s) > 1− k

2 .

Proof. This follows by results of Petersson [Pet48, Satz 1, Satz 4, Satz 6].

However, Ek,γ is not modular yet, because the sign-function is not invariant under
equivalence of quadratic forms. The circumvention of this obstruction depends on the
motion γ induces.

V.3.2 Eisenstein series associated to a given discriminant

Let D ≡ 0 (mod 4) or D ≡ 1 (mod 4). If D 6= 0, we let d be the positive fundamental
discriminant dividing D, else we set d = 0. We average over QD. Henceforth, we twist
the average by a genus character, and split the sum into equivalence classes (recall that
such a character descends to QD/Γ).

Definition V.3.4. Let γ ∈ Γ \ {±1}, k ∈ 2N, τ ∈ H, Re(s) > 1− k
2 . Then we define

Ek,D(τ, s) :=
∑

06=Q∈QD/Γ
χd (Q)Ek,Q(τ, s),

Ek,γ(τ, s) := Ek,∆(γ)(τ, s) =
∑

06=Q∈Q∆(γ)/Γ

χd (Q)Ek,Q(τ, s).

We establish convergence again.

Lemma V.3.5. For every k ∈ 2N, τ ∈ H, and Re(s) > 1− k
2 the series defining Ek,D(τ, s)

converges absolutely and locally uniformly.

Proof. If D = 0, then χ0(Q) = 0 except if Q is primitive, and represents ±1. Thus, we
reduce to the quadratic forms

[± c2, 2cd,±d2] for any coprime pair (c, d) ∈ Z2. But such
a quadratic form is equivalent to either [−1, 0, 0] or [1, 0, 0]. If D 6= 0 the class number
h(D) is finite. This proves the claim.
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V.4 Parabolic and elliptic Eisenstein series

V.4.1 Parabolic case

It suffices to study the case γ = Tn, n 6= 0. Let M = ( ∗ ∗c d ) ∈ Γ/Γ∞ . We compute

M−1TnM =
(

1 + cdn d2n
−c2n 1− cdn

)
, QM−1TnM (τ, 1) = −nj(γ, τ)2.

Hence, using sgn(n) = n
|n| , we recover the usual real-analytic Eisenstein series

Ek,γ(τ, s) = Ek,Tn(τ, s) = 1
|n|s+ k

2

∑
M∈ Γ/Γ∞

Im(Mτ)s
j(M, τ)k .

For any parabolic motion γ 6= 1, we infer that

Ek,γ(τ, s) = 2
∑

M∈ Γ/Γ∞

Im(Mτ)s
j(M, τ)k .

Modularity

Clearly Ek,γ is modular of weight k according to the cocycle property of the modular
multiplier, that is j(M1M2, τ) = j(M1,M2τ)j(M2, τ) for every M1, M2 ∈ Γ and every
τ ∈ H.

Analytic continuation

It is a classical fact that Ek,γ can be continued meromorphically to the whole s-plane,
see [Sel56, p. 76-79], [Roe67, p. 293]. Be aware of the fact that Roelcke [Roe66, equation
(1.6)] uses the automorphy factor

( j(γ,τ)
|j(γ,τ)|

)−k, whence his initial domain of convergence is
Re(s) > 1 for every k ∈ R.

If k > 2, then we may simply insert s = 0, and obtain the classical holomorphic
modular Eisenstein series

Ek,γ(τ, 0) =
∑

gcd(c,d)=1

1
(cτ + d)k

.

If k = 2, then we utilize Hecke’s trick (see Zagier [BvdGHZ08, p. 19-20]) and the
Fourier expansion of E2,T±1(τ, s) (see Iwaniec [Iwa97, p. 51]), to achieve

lim
s↘0
Ek,γ(τ, s) = 2E∗2(τ) := 2

(
E2(τ)− 3

πv

)
:= 2

1− 24
∑
n≥1

∑
d|n

dqn − 3
πv

 .
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This is the holomorphic Eisenstein series of weight 2 completed by adding − 3
πv , and thus

a harmonic Maaß form of weight 2. A good exposition on the theory as well as on the
applications of harmonic Maaß forms can be found in [BFOR17].

V.4.2 Elliptic case

Recall that any elliptic motion is conjugate to either S or U , so it suffices to deal with
those two cases, up to a change of sign and class numbers. Those cases correspond to
discriminants −4 and −3 respectively, and both class numbers are equal to 1. Reduced
primitive representatives are [1, 0, 1], [1, 1, 1], and the genus character of both forms
equals 1. Hence, it suffices to investigate1 Ek,S and Ek,U . To this end, we define the
following function.

Definition V.4.1. Let τ, z ∈ H be Γ-inequivalent, and Re(s) > 1− k
2 , k ∈ 2N. Then, let

Ek (τ, z, s) :=
∑
M∈Γ

Im(z)s+ k
2 Im(Mτ)s

j(M, τ)k (Mτ − z) k2 (Mτ − z) k2 |(Mτ − z) (Mτ − z)|s
.

Modularity

The function Ek enjoys the following properties.

Lemma V.4.2.

(1) If γ = S or γ = U , then sgn (QM−1γM ) = 1 for any M ∈ Γ, and

Ek,γ(τ, s) = Im(wγ)−s− k2∣∣Γwγ ∣∣ Ek (τ, wγ , s) .

in both cases.
(2) For any M ∈ Γ we have

Ek (Mτ, z, s) = j(M, τ)kEk (τ, z, s) , Ek (τ,Mz, s) = Ek (τ, z, s) .

Proof. Both items can be checked by computation, and we provide the main steps.

(1) Suppose γ = S (resp. γ = U) and wγ = i (resp. wγ = ω). Letting M =
(
a b
c d

) ∈ Γ,
we compute

QM−1SM (τ, 1) =
(
a2 + c2

)
τ2 + 2 (ab+ cd) τ + b2 + d2,

QM−1UM (τ, 1) =
(
a2 + c2 − ac

)
τ2 + (2ab+ 2cd− ad− bc) τ + b2 + d2 − bd,

1Note that the two cases do not cover the more general case of Ek,Q(τ, s) with ∆(Q) < 0. However,
one may reuse the function Ek(τ, z, s) to deal with this case.
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which implies the first claim, and additionally

j(M, τ)2 (Mτ − wγ) (Mτ − wγ) = QM−1γM (τ, 1)

in both cases. The second claim follows directly.
(2) One checks the following two identities. For every M1, M2 ∈ Γ and every τ, z ∈ H

we have

j(M1, τ)j(M1, τ) = |j(M1, τ)|2 , j(M2, z)(τ −M2z) = j
(
M−1

2 , τ
) (
M−1

2 τ − z
)
.

Modularity in τ follows directly by the cocycle property of the modular multiplier.
To show modularity in z we substitute M1 = M3M2, and see that(
|j(M3, z)|2s+k |j(M3,M2τ)|2s j(M3M2, τ)k

× j(M−1
3 ,M3M2τ)k

j(M3, z)
k
2 j(M3, z)

k
2

∣∣∣∣∣j(M−1
3 ,M3M2τ)2

j(M3, z)j(M3, z)

∣∣∣∣∣
s)−1

= 1
j(M2, τ)k .

This proves the second item.

Analytic continuation in weight 2

To describe the analytic continuation we recall one of Petersson’s Poincaré series.

Definition V.4.3. Let τ, z ∈ H be Γ-inequivalent, and Re(s) > 1− k
2 , k ∈ 2N. Then, let

Pk (τ, z, s) :=
∑
M∈Γ

Im(z)s+ k
2

j(M, τ)k |j(M, τ)|2s (Mτ − z) k2 (Mτ − z) k2 |Mτ − z|2s
.

The series Pk enjoys the following transformation properties.

Lemma V.4.4. Let M ∈ Γ. Then

Im(Mτ)sPk (Mτ, z, s) = j(M, τ)kvsPk (τ, z, s) , Pk (τ,Mz, s) = Pk (τ, z, s) .

Proof. This follows by the same argument as in the case of Ek (τ, z, s).

The analytic continuation of P2 to s = 0 was established by Petersson [Pet44], and
to Re(s) > −1

4 by Bringmann and Kane [BK16, Theorem 3.1]. To describe it, let j(τ)
be Klein’s modular invariant for Γ. Then Asai, Kaneko, and Ninomiya discovered in
[AKN97, Theorem 3] the Fourier expansion

1
2πi

∂j
∂τ (τ)

j(w)− j(τ) =
∑
m≥0

jm(w)qm, Im(τ) > Im(w),
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where jm(w) is the unique element in C [j(w)] of the shape

jm(w) = e−2πimw +O
(
e2πiw

)
.

In [BKLOR18], the authors proved that the functions jm(w) form a Hecke system, namely
if Tm denotes the normalized Hecke operator, then

j0(w) = 1, j1(w) = j(w)− 744, jm(w) = Tm (j1) (w).

Afterwards, they simplified the expressions from [BK16, Theorem 3.1], based on earlier
work of Duke, Imamoḡlu, and Tóth [DIT11, Theorem 5], and proved that

lim
s↘0

P2(τ, z, s) = −2π
( 1

2πi
∂j
∂τ (τ)

j(z)− j(τ) − E
∗
2(τ)

)
.

Matsusaka [Mat20, Theorem 2.3] extended the latter result to E2(τ, z, s), especially

lim
s↘0

E2(τ, z, s) = −2π
( 1

2πi
∂j
∂τ (τ)

j(z)− j(τ) − E
∗
2(τ)

)
,

which in turn provides the analytic continuation of E2,γ(τ, s) in the elliptic case.

Remark. Note that the analytic continuation is a polar harmonic Maaß form of weight 2
on Γ in τ . The poles are located on Γz. Such forms satisfy all conditions of an ordinary
harmonic Maaß form, but are permitted to have poles in H. See [BFOR17, Section 13.3]
for more details.

V.5 Hyperbolic Eisenstein series

Let γ ∈ Γ be hyperbolic. Thus ∆(γ) > 0, and ∆(γ) is not a square. The two fixed
points wγ , w′γ of γ are real quadratic irrationals, which are Galois conjugate to each
other. The geodesic SQγ is an arc in H connecting wγ and w′γ (equivalently, the two zeros
of Qγ(τ, 1)), which is perpendicular to R.

V.5.1 Fourier expansion in general

We suppose in addition that γ is primitive throughout, that is the stabilizer Γwγ ,w′γ
is infinite cyclic, and generated by γ.
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Fourier expansion of Ek,γ
We appeal to Zagier’s method [Zag75, Section 2]. We recall the double coset decom-

position Γwγ ,w′γ\Γ/Γ∞, and unfold

Ek,γ(τ, s) =
∑

M1∈Γwγ,w′γ \Γ/Γ∞

∑
M2∈〈T 〉

sgn (Q(M1M2)−1γ(M1M2))
k
2 Im(M1M2τ)s

j(M1M2, τ)kQγ(M1M2τ, 1) k2 |Qγ(M1M2τ, 1)|s
.

We observe that the innermost sum is one-periodic, and hence has a Fourier expansion

Ek,γ(u+ iv, s) =
∑

a∈Z\{0}

∑
b (mod 2a)[

a,b,
b2−∆(γ)

4a

]
∼Qγ

∑
m∈Z

cm(v, s)e2πimu

with coefficients

cm(v, s)

=
∫ ∞
−∞

vs sgn (a)
k
2 e−2πimx(

a(x+ iv)2 + b(x+ iv) + b2−∆(γ)
4a

) k
2
∣∣∣a(x+ iv)2 + b(x+ iv) + b2−∆(γ)

4a

∣∣∣sdx.

We abbreviate

λ :=
√

∆(γ)
2 |a| > 0,

and substitute x+ iv =: it− b
2a . We infer

cm(v, s) = −iv
se2πim( b

2a+iv)

(−1) k2 |a| k2 +s

∫ v+i∞

v−i∞

e2πmt

(t2 + λ2)
k
2 |t2 + λ2|s

dt.

Splitting the integral at v ± iλ and majorizing each, we obtain the following result.
Lemma V.5.1. If Re(s) > 1− k

2 , then the integral expression defining cm(v, s) converges
absolutely.

Fourier expansion of Ek,γ
Now, we turn our interest to the Fourier expansion of Ek,γ . We let d be the positive

fundamental discriminant dividing ∆(γ), and in addition, we let

WQ(m, a) :=
∑

b (mod 2a)[
a,b,

b2−∆(γ)
4a

]
∼Q

eπim
b
a , a ∈ Z \ {0}, m ∈ Z, Q ∈ Q∆(γ),
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which is a so called quadratic Weyl sum. Now, the additional averaging over Q∆(γ)/Γ
comes in handy.
Lemma V.5.2. Let m ∈ Z. Then we have

2
∑

Q∈Q∆(γ)/Γ

χd(Q)
∑
a≥1

WQ(m, a) =
∑

Q∈Q∆(γ)/Γ

χd(Q)
∑

a∈Z\{0}
WQ(m, a)

=
∑

Q∈Q∆(γ)/Γ

χd(Q)
∑

a∈Z\{0}
WQ(−m, a).

Proof. We prove the first equality, and observe that a 7→ −a yields∑
b (mod −2a)[

−a,b, b
2−∆(γ)
−4a

]
∼Q

eπim
b
−a =

∑
b (mod 2a)[

−a,b, b
2−∆(γ)
−4a

]
∼Q

eπim
−b
a =

∑
b (mod 2a)[

−a,−b, b
2−∆(γ)
−4a

]
∼Q

eπim
b
a

by reordering summands. We compute

∆
([
−a,−b, b

2 −∆(γ)
−4a

])
= (−b)2 − 4(−a)b

2 −∆(γ)
−4a = ∆(γ).

Furthermore, we have χd(−Q) = sgn (d)χd(Q). Indeed, suppose that Q represents some
n, and gcd (d, n) = 1. Then −Q represents −n, and gcd (d,−n) = 1. This enables us to
write

(
d
−n
)

=
(
d
−1
)(
d
n

)
, and

(
d
−1
)

= sgn(d) = 1. In other words, changing the sign of Q
permutes quadratic forms of discriminant ∆(γ) up to equivalence. The second equality
follows analogously.

We deduce that (λ =
√

∆(γ)
2a )

Ek,γ(τ, s)

= −2ivs

(−1) k2
∑
m∈Z

∑
Q∈Q∆(γ)/Γ

χd(Q)
∑
a≥1

WQ(m, a)
a
k
2 +s

∫ v+i∞

v−i∞

e2πmt

(t2 + λ2)
k
2 |t2 + λ2|s

dt qm.

We re-establish convergence.
Lemma V.5.3. Suppose Re(s) > 1 − k

2 . Then the Fourier expansion of Ek,γ(τ, s)
converges absolutely.

Before the proof, we rewrite the Fourier expansion of Ek,γ . To this end, we define d′
by 0 < ∆(γ) = dd′ with d fundamental, and recall the Salié sum

Tm(d, d′, c) :=
∑

b (mod c)
b2≡dd′ (mod c)

χd

([
c

4 , b,
b2 − dd′

c

])
e2πi( 2mb

c ).
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We observe that

Tm(d, d′, 4a)

= 2
∑

b (mod 2a)
b2≡dd′ (mod 4a)

χd

([
a, b,

b2 − dd′
4a

])
eπi(

mb
a ) = 2

∑
Q∈Q∆(γ)/Γ

χd(Q)WQ(m, a).

Thus, we arrive at

Ek,γ(τ, s) = −ivs

(−1) k2
∑
m∈Z

∑
a≥1

Tm(d, d′, 4a)
a
k
2 +s

∫ v+i∞

v−i∞

e2πmt

(t2 + λ2)
k
2 |t2 + λ2|s

dt qm.

Proof of Lemma V.5.3. We utilize the Weil bound

Tm(d, d′, 4a)� gcd
(
d′,m2d, 4a

) 1
2 (4a)ε

for any ε > 0, compare [AD20, p. 1545] for instance. Hence, we have∣∣∣∣∣∣
∑
a≥1

Tm(d, d′, 4a)
a
k
2 +s

∣∣∣∣∣∣�
∑
a≥1

aε

a
k
2 +Re(s)

by bounding gcd
(
d′,m2d, 4a

)� 1 (see [DIT11, p. 965] as well), which converges absolutely
for any s ∈ C with Re(s) > 1− k

2 . We conclude by Lemma V.5.1.

V.5.2 Evaluation at s = 0
Let

Jµ(x) :=
(
x

2

)µ∑
j≥0

(−1)j
j! Γ(µ+ j + 1)

(
x

2

)2j

be the usual J-Bessel function. We compute the inverse Laplace transform from above.

Lemma V.5.4. Let ρ > 0, m ∈ Z. Then

1
2πi

∫ v+i∞

v−i∞

e2πmt

(t2 + λ2)ρdt =


√
π

Γ(ρ)
(
πm
λ

)ρ− 1
2 Jρ− 1

2
(2πλm) if m > 0,

0 if m ≤ 0.

Proof. The case m > 0 follows directly by item [AS72, item 29.3.57]. If m ≤ 0, we see
that the poles of the integrand are on the imaginary axis, to the left of the contour of
integration. Hence, we may deform the contour to the right up to i∞ without including
any poles, see [Koh85, p. 249]. Since m ≤ 0, the integrand is holomorphic at i∞ as well,
and the claim follows by Cauchy’s Theorem.
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Next, we invoke the I-Bessel function Iµ(x) := i−µJµ(ix) to define the auxiliary
function

φm(y, s) :=

y
s if m = 0,

2π
√
|m| y Is− 1

2
(2π |m| y) if m ∈ Z \ {0}.

Averaging this function gives rise to the Niebur Poincaré series [Neu73,Nie73]

Gm(τ, s) :=
∑

M∈ Γ/Γ∞

φm (Im(Mτ), s) e2πimRe(Mτ), Re(s) > 1. (V.1)

The analytic properties of Gm can be easily derived from its Fourier expansion, see
[DIT11, pp. 969-970] for instance. In particular, Gm(·, s) is invariant under the action of
Γ on H. Moreover, recall the notation ΓQ for the stabilizer of the two zeros of Q. The
main ingredient is the following result due to Duke, Imamoḡlu, and Tóth.

Lemma V.5.5 ([DIT11, Proposititon 4]2.). Let Re(ρ) > 1, m ∈ Z, ∆(γ) = dd′ > 0 with
d > 0 fundamental, and d 6= d′. Then, we have

Γ(ρ)
2ρΓ

(ρ
2
)2 ∑

Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ
Gm(w, ρ) |dw|Im(w)

=


√

2π |m| 12 ∆(γ) 1
4
∑

0<c≡0 (mod 4)
Tm(d,d′,c)

c
1
2

Jρ− 1
2

(
4π
√
m2∆(γ)
c

)
if m 6= 0,

2ρ−1∆(γ)
ρ
2
∑

0<c≡0 (mod 4)
T0(d,d′,c)

cρ if m = 0.

Remark. Note that Duke, Imamoḡlu, and Tóth [DIT11], and Matsusaka [Mat20, p. 10]
use different notations regarding the cycle integral. This is caused by a different choice of
generators of ΓQ. Let Q = [a, b, c] be a given primitive quadratic form, and let t, u ∈ N be
the smallest solutions to Pell’s equation t2 −∆(Q)u2 = 4. Then, the authors of [DIT11]
employed the generator ηQ = ±

(
t+bu

2 cu

−au t−bu
2

)
, while Matsusaka works with ΓQγ = ±〈γ〉.

The associated quadratic form QηQ to ηQ is given by [−au,−bu,−cu] = −uQ.

Recall that Tm(d, d′, c) = T−m(d, d′, c) by Lemma V.5.2. We deduce from Lemma
V.5.4 and V.5.5 that the Fourier coefficients corresponding to m 6= 0 are all regular at
s = 0, and vanish for every m < 0. To inspect the coefficient corresponding to m = 0, we
separate the cases k ≥ 4 even and k = 2.

2See also [DIT16, Lemma 4], [AD20, equation (2-7)]
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The case k ≥ 4 even

If k ≥ 4 is even, then G0(τ, ρ) is regular at ρ = k
2 . Hence, the Fourier coefficient

corresponding to m = 0 vanishes at s = 0 by Lemma V.5.4. In other words, Ek,γ(τ, 0) is
holomorphic and vanishes at the cusp. Thus,

Ek,γ(τ, 0) = (−1) k2 2 k+3
2 π

k
2 +1

∆(γ) k−1
4 Γ

(
k
2

) ∑
m≥1

m
k−1

2
∑
a≥1

Tm(d, d′, 4a)
2
√
a

J k−1
2

(
πm

√
∆(γ)
a

)
qm,

and by Lemma V.5.5, we ultimately obtain that

Ek,γ(τ, 0) = (−1) k2 2π k2

∆(γ) k4 Γ
(
k
4

)2
∑
m≥1

m
k
2−1 ∑

Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ
G−m

(
w,
k

2

) |dw|
Im(w) q

m.

This proves Theorem V.1.2.

The case k = 2

We first suppose that m ≥ 1. Then we define for Re(s) > 1

jm(τ, s) := G−m(τ, s)− 2m1−sσ2s−1(m)
π−s−

1
2 Γ
(
s+ 1

2

)
ζ(2s− 1)

G0(τ, s),

which has an analytic continuation up to Re(s) > 1
2 (see [DIT11, p. 970]). On one hand,

the left hand side specializes at s = 1 to (see [DIT11, equation (4.11)])

jm(τ, 1) = jm(τ) = q−m +O(q),

which we encountered during the weight 2 elliptic case already. On the other hand,

lim
s→1

(s− 1)G0(τ, s) = 3
π
, lim

s→1
(s− 1)ζ(2s− 1) = 1

2 ,

from which we infer (see [AD20, p. 1545] as well)

lim
s→1

2m1−sσ2s−1(m)
π−s−

1
2 Γ
(
s+ 1

2

)
ζ(2s− 1)

G0(τ, s) = 24σ1(m).

Combining, we arrive at the Fourier coefficients

−2
∆(γ) 1

2

∑
m≥1

∑
Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ
(jm(w) + 24σ1(m)) |dw|Im(w) q

m.
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Secondly, we consider the case m = 0, namely the Fourier coefficient

i
∑
a≥1

T0(d, d′, 4a)
as+1

∫ v+i∞

v−i∞

vs

(t2 + λ2) |t2 + λ2|sdt.

By Lemma V.5.5, the pole of
∑
a≥1

T0(d, d′, 4a)
aρ

= 2Γ (ρ)
∆(γ)

ρ
2 Γ
(ρ

2
)2 ∑

Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ
G0 (w, ρ) |dw|Im(w) .

at ρ = 1 is simple, while

f(ρ) :=
∫ v+i∞

v−i∞

ivρ−1

(t2 + λ2) |t2 + λ2|ρ−1 dt

has a zero at ρ = 1 by Lemma V.5.4. We perform a Taylor expansion of f around 1, and
note that only the term (ρ− 1)df

dρ
∣∣
ρ=1 survives in the limit ρ→ 1. We compute

df
dρ
∣∣∣
ρ=1

= i

∫ v+i∞

v−i∞

vρ−1 log
(

v
|t2+λ2|

)
|t2 + λ2|ρ−1 (t2 + λ2)

∣∣∣∣∣
ρ=1

dt = i

∫ v+i∞

v−i∞

log(v)− log
(∣∣t2 + λ2∣∣)

t2 + λ2 dt

= −i
∫ v+i∞

v−i∞

log
(∣∣t2 + λ2∣∣)
t2 + λ2 dt =

∫ ∞
−∞

log
(∣∣(v + it)2 + λ2∣∣)
(v + it)2 + λ2 dt.

We expand the integrand around λ = 0, which yields

df
dρ
∣∣∣
ρ=1

=
(
−1
v

arctan
(
t

v

)
+ log

(
v2 + t2

)
+ 1

t− iv

) ∣∣∣∣∣
t=∞

t=−∞

+O
(
λ2
)

= −π
v

+O
(
λ2
)
.

Recalling the definition of λ, we express the error as O
( 1
a2
)
. Thus, the additional sums

over a caused by the expansion with respect to λ are all regular at ρ = 1 due to the proof
of Lemma V.5.3. Hence, letting ρ→ 1 annihilates all error terms. Invoking Lemma V.5.5
and the residue of G0(w, ρ) at ρ = 1 once more, we obtain

−2
∆(γ) 1

2

∑
Q∈Q∆(γ)/Γ

χd(Q)
∫

SQ/ΓQ

3
πv

|dw|
Im(w) .

In conclusion, we have shown that the analytic continuation of E2,γ(τ, s) to s = 0
exists, and indeed equals the shape which Matsusaka conjectured in [Mat20, equation
(2.12)] for an individual hyperbolic Eisenstein series Ek,γ(τ, s). This proves Theorem
V.1.1.
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V.6. REFERENCES

Remark. In [DIT10, equation (16)], Duke, Imamoḡlu, and Tóth related Parson’s Poincaré
series [Par93] with the generating function F (z,Q) of cycle integrals of functions fk,m,
where the functions fk,m generalize the functions jm to any even weight k (compare
[DIT10, Theorem 1, equation (8)]. Since we realized the Fourier coefficients as cycle
integrals of G−m

(
w, k2

)
, there might be a relation between them.
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Chapter VI

Locally harmonic Maaß forms of
positive even weight

This chapter is based on a paper [Mon22b] of the same title accepted for publication
in Israel Journal of Mathematics.

VI.1 Introduction and statement of results
In 1975, Zagier [Zag75] defined the function

fk,D(τ) :=
∑

Q∈QD

1
Q(τ, 1)k , τ = u+ iv ∈ H := {z ∈ C : Im(z) > 0} ,

to investigate the Doi–Naganuma lift. Here and troughout, QD is the set of all integral
binary quadratic forms of discriminant D ∈ Z, and k ≥ 2. On one hand, if D > 0,
Zagier proved that they define holomorphic cusp forms of weight 2k for Γ := SL2(Z), and
computed their Fourier expansions. On the other hand, if D < 0, Bengoechea [Ben13]
proved that these are meromorphic cusp forms with respect to the same data, namely
meromorphic modular forms which decay like cusp forms towards i∞. The poles are
precisely the CM points (sometimes called Heegner points instead) of discriminant D,
and of order k.

Parson [Par93, Theorem 3.1] investigated Zagier’s fk,D-function based on an individual
equivalence class

[
Q0
]
∼ ∈ QD/Γ of indefinite integral binary quadratic forms, and twisted

it by a sign function. More precisely, she defined

fk,Q0(τ) :=
∑
Q∼Q0

sgn (Q)
Q(τ, 1)k , sgn(Q) = sgn ([a, b, c]) :=

{
sgn(a) if a 6= 0,
sgn(c) if a = 0.

Due to the presence of the sign function, we have a non-zero error to modularity, which
is a finite sum, and explicitly given by (see Lemma VII.3.3 as well)

Fk,Q0(τ) := fk,Q0(τ)− τ−2kfk,Q0

(
−1
τ

)
= 2

∑
[a,b,c]=Q∼Q0

sgn(ac)<0

sgn (Q)
Q(τ, 1)k .
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In other words, the function fk,Q0 is a modular integral of weight 2k for the rational
period function Fk,Q0(τ). We refer the reader to the work of Knopp [Kno90] for more
details.

In Chapter V, we investigated a certain class of Eisenstein series

Ek,D(τ, s) :=
∑

06=Q0∈QD/Γ
χd (Q0)

∑
Q∼Q0

sgn (Q)
k
2 Im(τ)s

Q(τ, 1) k2 |Q(τ, 1)|s
, (VI.1)

for any k ∈ 2N, which arises by applying Hecke’s trick to Parson’s construction. The
function χd is a genus character (defined in Section VI.2). By results of Petersson
[Pet48, Satz 1, Satz 4, Satz 6], the sum converges absolutely for any s ∈ C with
Re(s) > 1− k

2 . Like in the case of fk,D, the behaviour of Ek,D(τ, s) is dictated by the sign
of D, and consequently we distinguish between hyperbolic (D > 0), parabolic (D = 0),
and elliptic (D < 0) Eisenstein series. This terminology comes from the fact that one
can associate a quadratic form to any γ ∈ Γ \ {±1}1, and the sign of its discriminant
depends precisely on hyperbolicity, parabolicity, or ellipticity of γ. Although we focus
on the case of weights k ∈ 2N, one may also consider different weights. For instance,
all three types of Eisenstein series were studied by Jorgenson, Kramer, von Pippich,
Schwagenscheidt, and Völz for weight k = 0, see [JKvP10, Theorem 4.2], [vP16, Section
4], [vPSV21, Theorem 1.2].

Chapter V as well as the present one are devoted to the hyperbolic case. Letting D > 0
be a non-square discriminant, and d be a positive fundamental discriminant dividing D,
we computed the Fourier expansion of hyperbolic Eisenstein series for any integral weight
k ∈ 2N at s = 0 to prove a conjecture of Matsusaka [Mat20b, equation (2.12)] about
their analytic continuation in weight 2. This computation extends earlier work by Gross,
Kohnen, and Zagier [GKZ87, p. 517], who dealt with weights 4|k > 2 not involving the
sign function. In turn, the computation for weights k ∈ 2N relies mainly on results of
Duke, Imamoḡlu, and Tóth [DIT11] after appealing to Zagiers work [Zag75, Appendix 2]
on the Fourier expansion of his aforementioned function. Furthermore, we computed the
analytic continuation E2,D(τ, 0) explicitly. Up to the addition of the completed Eisenstein
series E∗2 and some constants, it agrees with another modular integral with rational
period function, which was studied by Duke, Imamoḡlu, and Tóth in [DIT10].

In addition, one can inspect the automorphic object arising from the analytic con-
tinuation to s = 0. On one hand, the parabolic and elliptic (twisted) Eisenstein series
extend to an ordinary and a polar harmonic Maaß form respectively in weight 2. (We
define all occuring types of Maaß forms in Section VI.2.) While the parabolic case is
known by Roelcke [Roe66,Roe67] and Selberg [Sel56], the elliptic case was proven by
Matsusaka in [Mat20b, Theorem 2.3] by combining results of Bringmann and Kane

1Explicitly given by Qγ(x, y) := cx2 + (d− a)xy − by2 for γ = ( a bc d ) ∈ Γ.
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[BK16] and of Bringmann, Kane, Löbrich, Ono, and Rolen [BKLOR18]. On the other
hand, the hyperbolic Eisenstein series E2,D(τ, 0) (with D, d as above) coincides with
a locally harmonic Maaß form for any τ with sufficiently large imaginary part. This
raises the natural question towards the obstruction of Ek,D(τ, s) to coincide with a local
automorphic form, whenever the imaginary part of τ is not sufficiently large. To this
end, we relate Ek,D(τ, s) to the completed hyperbolic Eisenstein series

Êk,D(τ, s) :=
∑

06=Q0∈QD/Γ
χd (Q0)

∑
Q∼Q0

sgn (Qτ )
k
2 Im(τ)s

Q(τ, 1) k2 |Q(τ, 1)|s
, (VI.2)

Qτ = [a, b, c]τ := 1
v

(
a |τ |2 + bu+ c

)
,

outside the net of Heegner geodesics

ED :=
⋃

[a,b,c]=Q∈QD

{
τ ∈ H : a |τ |2 + bu+ c = 0

}

by adding a correction term to Ek,D(τ) (see equation (VI.4)). A possible connection of
our correction term to quantum modular forms (introduced by Zagier [Zag10]) is stated
in Section VI.3.

In particular, the function Êk,D(τ, s) is modular of weight k outside ED. To describe
the result, we let Cκ(h,Q) be the weight κ cycle integral of h associated to Q (defined
in equation (VI.3)), where h is modular of weight κ. Moreover, we let Pk(z1, z2) be a
Poincaré series due to Petersson [Pet48] (see Definition VI.2.4), whose properties are
collected in Lemma VI.2.5 below. We refer the reader to Subsection VI.2.7 for definitions
of our local automorphic forms.

Theorem VI.1.1. Let 0 < k ≡ 2 (mod 4), and τ ∈ H \ ED. Let D > 0 be a non-square
discriminant, and d be a positive fundamental discriminant dividing D.

(1) The function Ê2,D(τ, 0) is a locally harmonic Maaß form of weight 2 for Γ with
exceptional set ED as a function of τ .

(2) If 2 < k ≡ 2 (mod 4) then Êk,D(τ, 0) is a local cusp form of weight k for Γ with
exceptional set ED as a function of τ .

(3) Moreover, we have the alternative representation

Êk,D(τ, 0) =
∑

Q∈QD/Γ
χd(Q)


−2
D C0

(
1

2πi
∂j
∂τ

(τ)
j(·)−j(τ) − E∗2(τ), Q

)
if k = 2,

C(k,D)C2−k (Pk(τ, ·), Q) if k > 2,

where C(k,D) is an explicit constant provided in equation (VI.8).
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Remarks.

(1) The cycle integral C2k
(
P2k(·, τ), Q

)
was computed by Löbrich, Schwagenscheidt

[LS22c]. Let Q0 ∈ QD, and F1−k,Q0 be the locally harmonic Maaß form introduced
by Bringmann, Kane, and Kohnen [BKK15] (see Section VI.2.7) with summation
restricted to quadratic forms equivalent to Q0 under Γ. Then [LS22c, Theorem 4.2]
states that

F1−k,Q0(τ) = (−1)k
(

2k − 2
k − 1

)
D

k
2−

1
2C2k (P2k(·, τ), Q0) .

In other words, a cycle integral of Pk in either of its arguments yields a local
automorphic form in the other argument.

(2) A natural splitting of z2 7→ Pk(z1, z2) into meromorphic and non-meromorphic
parts is due to Bringmann and Kane [BK20, equation (3.6)].

(3) Choosing d = 1, the function Ê2κ+2,D(τ, 0), κ ∈ 2N, also appears in equation (VII.7),
and further properties of it are stated in Section VII.4. In particular, Ê2κ+2,D(τ, 0)
can be “lifted” to a locally harmonic Maaß form of weight −2κ, whose properties
are discussed in Theorem VII.1.2.

As an application of Theorem VI.1.1, we would like to highlight a possible connection
to twisted central L-values. This goes back to Kohnen [Koh85, Proposition 7, Corollary
3], who established an identity between the Petersson inner product of a cusp form
with Zagiers fk,D-function, and such L-values for positive even weights. More recently,
Kohnen’s work was utilized by Ehlen, Guerzhoy, Kane, and Rolen [EGKR20, Theorem
1.1] to prove a criterion on the vanishing of certain twisted L-values under some technical
conditions. Their argument relies on the theory of locally harmonic Maaß forms, and
in particular on the connection of the fk,D-function to the locally harmonic Maaß form
F1−k,D, see Section VI.2.7. (In addition, the theory of theta lifts comes in handy to
ensure existence of an analytic continuation of F1−k,D to the case k = 1.) Being more
precise, the form F1−k,D splits into three components (see [BKK15, Theorem 7.1]). Two
of them are a holomorphic and a nonholomorphic Eichler integral of the fk,D-function,
while the third component is a so called local polynomial, which captures the behaviour
of F1−k,D between different connected components of H\ED. The idea in [EGKR20] now
is to formulate a condition on the local polynomial of F1−k,D, evaluated at two special
points on the real axis, and relate this conditions to the twisted central L-values via the
work of Kohnen, and of Bringmann, Kane, and Kohnen. Since the function Êk,D(τ, 0) is
a twisted version of the function f k

2 ,D
, and since we found a connection of Êk,D(τ, 0) to a

locally harmonic Maaß form (resp. local cusp form), we expect that Êk,D(τ, 0) may serve
as a “building block” to detect the vanishing of suitable twisted L-values as well. This
inspection is motivated by our remarks following Theorem VI.1.1.
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VI.2 Preliminaries
We let q := e2πiτ troughout.

VI.2.1 Integral binary quadratic forms

Let Q be an integral binary quadratic form, and we abbreviate such forms by the
terminology “quadratic form” throughout. We call a quadratic form primitive if its
coefficients are coprime. The full modular group Γ acts on the set of quadratic forms by
letting (

Q ◦ ( a bc d )) (x, y) := Q(ax+ by, cx+ dy),

and this action induces an equivalence relation, which we denote by ∼. Moreover, the
action of Γ on H by fractional linear transformations is compatible with the action of Γ
on the set of quadratic forms, in the sense that(

Q ◦ ( a bc d )) (τ, 1) = (cτ + d)2Q(γτ, 1).

A quadratic form Q may be written as [a, b, c], and we denote its discriminant by
D := b2−4ac. One can check that equivalent quadratic forms have the same discriminant.
The set QD/Γ is finite, whenever D 6= 0, and its cardinality is called the class number
h(D). If D ≡ 0 (mod 4) or D ≡ 1 (mod 4), then QD/Γ is non-empty. To simplify notation,
we identify an equivalence class in QD/Γ with any representative of it throughout. A good
reference on this is Zagier’s book [Zag81].

VI.2.2 Genus characters

We follow the exposition given by Gross, Kohnen, and Zagier in [GKZ87, p. 508]. Let
Q = [a, b, c] be a quadratic form, and observe that gcd (a, b, c) is invariant under ∼ as
well. For any D 6= 0, let d be a fundamental discriminant dividing D, and stipulate d = 0
if D = 0. We say that an integer n is represented by Q if there exist x, y ∈ Z, such that
Q(x, y) = n, and recall the the Kronecker symbol

(
d
·
)
. This established, an extended

genus character associated to D is given by

χd ([a, b, c]) :=


(
d
n

)
if gcd (a, b, c, d) = 1, [a, b, c] represents n, gcd (d, n) = 1,

0 if gcd (a, b, c, d) > 1.

One can check that such an integer n always exists, and that the definition is independent
from its choice. Since equivalent quadratic forms represent the same integers, a genus
character descends to QD/Γ. If d = 1, the character is trivial, and if d = 0, we have
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χ0(Q) = 0 except Q is primitive, and represents ±1. In the latter case, we note that such
a quadratic form is equivalent to either [−1, 0, 0] or [1, 0, 0]. Lastly, we have

χd(−Q) = sgn(d)χd(Q)

for every d 6= 0, linking the two choices ±d. We refer the reader to [GKZ87, Proposition
1 and 2] regarding additional properties of χd.

VI.2.3 Heegner geodesics

Once more, let Q = [a, b, c] ∈ QD, and suppose that D > 0. Hence, Q is indefinite,
and Q(τ, 1) has the two distinct zeros

−b−D 1
2

2a ,
−b+D

1
2

2a ∈ R ∪ {∞}.

If a = 0, then the second zero is given by − c
b . We associate to Q the Heegner geodesic

SQ :=
{
τ ∈ H : a |τ |2 + bu+ c = 0

}
,

which connects the two zeros of Q(τ, 1). On one hand, if D is a square and a 6= 0, then
both zeros are rational. In other words, one zero of Q(τ, 1) is Γ-equivalent to ∞, and
SQ is a straight line in H, perpendicular to R, based on the second zero. Moreover, the
stabilizer

ΓQ := {γ ∈ Γ: Q ◦ γ = Q}
is trivial in this case. On the other hand, if D > 0 is not a square and a 6= 0, then both
zeros of Q(τ, 1) are real quadratic irrationals, which are Galois conjugate to each other.
The geodesic SQ is an arc in H, which is perpendicular to R, and SQ is preserved by ΓQ.

We stipulate that D is a positive non-square discriminant. We obtain infinitely many
connected components on H, and finitely many such components in a fundamental domain
for Γ, because the class number of D is finite. Since D is not a square, each geodesic SQ
divides H into a bounded and an unbounded component, and we denote the bounded
component (“interior”) of H \ SQ by AQ. Moreover, there is precisely one unbounded
connected component in a fundamental domain for Γ, to which we refer as the region
“above” the net of geodesics.

Furthermore, we introduce the characteristic funtion

1Q(τ) :=
{

1 if τ ∈ AQ,
0 if τ 6∈ AQ,

whenever τ ∈ H\ED. Variants of 1Q appear in [Sch18, Corollary 5.3.5], and in [Mat20a, p.
8]. We collect the properties of our sign functions.
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Lemma VI.2.1.

(1) For every γ ∈ Γ, we have

Qγτ = (Q ◦ γ)τ .

(2) We have that τ ∈ AQ if and only if

sgn(Q) sgn (Qτ ) < 0.

(3) If τ ∈ H \ ED then the sign functions sgn(Q), sgn
(
Qτ
)
, and 1Q(τ) are related by

sgn (Qτ ) = sgn(Q) (1− 21Q(τ)) .

Proof. It suffices to check the first item for the two generators

S :=
(

0 −1
1 0

)
, T :=

(
1 1
0 1

)

of Γ. Indeed, we calculate that

QSτ = a |Sτ |2 + bRe (Sτ) + c

Im (Sτ) =
a
∣∣∣− 1

τ

∣∣∣2 − b u
|τ |2 + c

v
|τ |2

= c |τ |2 − bu+ a

v
= [c,−b, a]τ

= (Q ◦ S)τ ,

and

QTτ = a |τ + 1|2 + bRe(τ + 1) + c

Im(τ + 1) = a
(
(u+ 1)2 + v2)+ b(u+ 1) + c

v

= [a, 2a+ b, a+ b+ c]τ = (Q ◦ T )τ .

The second item is stated as a sentence directly in front of [LS22c, Lemma 4.4], and
follows by [BKK15, equations (5.1), (7.12)]. The third item follows by a case by case
analysis using the second item. Indeed, suppose that sgn(Q) = 1. Then the second item
implies that

sgn (Qτ ) =
{
−1 if τ ∈ AQ,
+1 if τ 6∈ AQ,

and this coincides with sgn(Q)
(
1− 21Q(τ)

)
. The case sgn(Q) = −1 follows in the same

manner.

103



CHAPTER VI. LOCALLY HARMONIC MAAß FORMS

VI.2.4 Cycle integrals

Let Q = [a, b, c] ∈ QD with D > 0 not a square. If Q is primitive, and t, r ∈ N are
the smallest solutions to Pell’s equation t2 −Dr2 = 4, the stabilizer ΓQ is generated by

±
(

t+br
2 cr

−ar t−br
2

)
.

If Q is not primitive, one may divide its coefficients by gcd(a, b, c) to obtain a generator.
The weight k cycle integral of a smooth function h, which transforms like a modular

form of weight k, is defined as2

Ck(h,Q) := D
1
2−

k
4

∫
SQ/ΓQ
h(z)Q(z, 1)

k
2−1dz. (VI.3)

The integral is oriented counterclockwise if sgn(Q) > 0, and clockwise if sgn(Q) < 0.
We collect the properties of cycle integrals in the following lemma, which can be

proven by calculation, and the fact that ΓQ only depends on the equivalence class of Q.
Lemma VI.2.2. Let f : H→ C be smooth, and suppose that f is modular of weight k.
Let Q be a quadratic form of positive, non-square discriminant. Then the weight k cycle
integral Ck(f,Q) is a class invariant, namely it depends only on the equivalence class of
Q under ∼. Additionally, the weight k cycle integral Ck(f,Q) is invariant under modular
substitutions of the integration variable.

Hence, SQ/ΓQ projects to a circle in a fundamental domain of Γ. The beautiful article
[DIT11] due to Duke, Imamoḡlu, and Tóth provides a good reference on Heegner geodesics
as well as on cycle integrals.

VI.2.5 Maaß forms and modular forms

We recall the definition of various classes of Maaß forms appearing in this chapter.
The slash operator is given by

(
f |k

(
a b
c d

))
(τ) :=

{
(cτ + d)−kf(γτ) if k ∈ Z,(
c
d

)
ε2k
d (cτ + d)−kf(γτ) if k ∈ 1

2 + Z,

where
(
c
d

)
denotes the Kronecker symbol, and

εd :=
{

1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4),

for odd integers d.
2The normalization by D 1

2−
k
4 is ommitted by some authors.
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Definition VI.2.3. Let k ∈ 1
2Z, choose N ∈ N such that 4 | N whenever k 6∈ Z, and let

f : H→ C be smooth.

(1) We say that f is a weight k harmonic Maaß form for Γ0(N), if f satisfies the
following three properties:
(i) For all γ ∈ Γ0(N) and all τ ∈ H we have

(
f |kγ

)
(τ) = f(τ).

(ii) The function f is harmonic with respect to the weight k hyperbolic Laplacian
on H, that is

0 = ∆k(f) :=
(
−v2

(
∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

))
(f).

(iii) The function f is of at most linear exponential growth towards all cusps of
Γ0(N).

(2) A polar harmonic Maaß form is a harmonic Maaß form, which is permitted to
posses isolated poles on the upper half plane.

(3) A weak Maaß form satisfies conditions (i) and (iii) of a harmonic Maaß form, but
is allowed to have an arbitrary eigenvalue under ∆k.

To study his forms [Maa49], Hans Maaß introduced the Maaß lowering and raising
operators3 [Maa52]

Lk := −2iv2 ∂

∂τ
= iv2

(
∂

∂u
+ i

∂

∂v

)
, Rk := 2i ∂

∂τ
+ k

v
,

which decreases or increases the weight of a weak Maaß form by 2, and increases the
eigenvalue under the hyperbolic Laplace operator by 2− k or k respectively. A proof can
be found in [BFOR17, Lemma 5.2] for instance. For any n ∈ N0, we let

L0
κ := id, Lnκ := Lκ−2n+2 ◦ . . . ◦ Lκ−2 ◦ Lκ,

R0
κ := id, Rnκ := Rκ+2n−2 ◦ . . . ◦Rκ+2 ◦Rκ

be the iterated Maaß lowering and raising operators respectively.
Bruinier and Funke [BF04] introduced the shadow operator

ξk := 2ivk ∂
∂τ

= ivk
(
∂

∂u
+ i

∂

∂v

)
to study harmonic Maaß forms. They proved that the Fourier expansion of a harmonic
Maaß form splits naturally into a holomorphic and a nonholomorphic part.

3Be aware that some authors shift their dependence on k, such as Maaß himself.
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We define M !
k as the space of weakly holomorphic modular forms of weight k, and it

turns out that M !
k is precisely kernel of ξk restricted to weight k harmonic Maaß forms.

Analogously, a meromorphic modular form of weight k can be regarded as an element
of the kernel of ξk restricted to weight k polar harmonic Maaß forms. The space of
holomorphic modular forms of weight k is denoted by Mk ⊆M !

k. More details on various
Maaß forms and their properties can be found in [BFOR17] for instance.

VI.2.6 Poincaré series

A first class of examples of (weakly) holomorphic modular forms, and of Maaß forms
is given by constructing suitable Poincaré series. Such functions arise by averaging
a specific auxiliary function (“seed”). Various seeds then lead to various examples of
Poincaré series.

Definition VI.2.4.

(1) For any m ∈ Z, and any κ ∈ N>2, let

Pκ,m(τ) :=
∑

γ∈ Γ/Γ∞

qm
∣∣
κ
γ.

be the weight κ Poincaré series of exponential type.
(2) Let Mµ,ν be the usual M -Whittaker function, m ∈ Z \ {0}, and define the seed

gm(τ, s) := Γ(s)
Γ(2s)M0,s− 1

2
(4π |m| y)e2πimu.

Then the Niebur Poincaré series [Nie73,Neu73] is given by

Gm(τ, s) :=
∑

γ∈ Γ/Γ∞

gm(τ, s)
∣∣
0γ, Re(s) > 1.

(3) More generally, define the seed

ϕκ,m(τ) := (− sgn(m))1−κ(4π |m| v)−κ2
Γ(2− κ) Msgn(mκ)κ2 ,

1−κ
2

(4π |m| v)e2π sgn(κ)mu

for any m ∈ Z \ {0}, and κ ∈ −1
2N. We require the Maaß–Poincaré series of

negative integral weight κ ∈ −N, which are defined as

Φκ,m(τ) :=
∑

γ∈ Γ/Γ∞

ϕκ,m(τ)
∣∣
κ
γ.
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(4) We encounter one of Petersson’s Poincaré series [Pet50], namely let ·|k,z1 be the
weight k-operator acting on z1, and let k ∈ N>2. Then we define

Pk(z1, z2) := Im(z2)k−1 ∑
γ∈Γ

( 1
(z1 − z2)(z1 − z2)k−1

) ∣∣∣
k,z1

γ

= Im(z2)k−1 ∑
γ∈Γ

( 1
(z1 − z2)(z1 − z2)k−1

) ∣∣∣
2−k,z2

γ.

Remarks.

(1) Note that the functions Φκ,m (taken from [BFOR17, Definition 6.10]) and Pκ,m from
equation (VII.13) (taken from [BKV13, Section 2]) are normalized differently, and
use opposite signs of the index m ∈ Z. Up to these conventions, the Maaß–Poincaré
series Φκ,m becomes the Poincaré series of exponential type Pκ,m in the case of
weight κ > 2 (by [BCLO10, item 13.18.2] for example).

(2) Following Hecke’s trick, the function Φκ,m admits an analytic continuation to κ = 0
by introducing a spectral parameter s in the summation, and this continuation
coincides with Gm(τ, s). We refer the reader to [FO08] (and [BFOR17, p. 97]) for
more details.

We summarize their properties.

Lemma VI.2.5.

(1) The function Pk,m is a holomorphic cusp form for any m > 0, and a weakly
holomorphic modular form for any m < 0.

(2) The function Gm(τ, s) is a weak Maaß form of weight 0 and eigenvalue s(1 − s)
with respect to τ .

(3) The function Φκ,m(τ) is a harmonic Maaß form of weight κ. It decays like a cusp
form towards all cusps inequivalent to i∞, and the principal part at the cusp i∞ is
given by ϕκ,m(τ)qm.

(4) The function Pk(z1, z2) is a polar harmonic Maaß form of weight 2− k in z2, and a
meromorphic modular form of weight k without a pole at the cusp in z1. Moreover,
the singularities of Pk(z1, z2) as a function of either argument are the Γ-orbits of
the other argument.

Proof. To check the claimed growth conditions, one has to compute the Fourier expansions
and investigate the constant term in each expansion. We provide references for each item.

(1) This can be found in [BFOR17, Theorems 6.8, 6.9] for example.
(2) This is computed in [Fay77, Theorem 3.4] (see [Gol79, equation (1.13)], [DIT11, p.

19] as well).

107



CHAPTER VI. LOCALLY HARMONIC MAAß FORMS

(3) This can be found in [BFOR17, pp. 97]. The projection to Kohnen’s plus space
was calculated in [BO07, Theorem 2.1].

(4) The statement in z1 is due to Petersson [Pet50], see [BK20, Proposition 3.3] as well.
The statement in z2 is proven in [BK20, Proposition 3.2]. The claim dealing with
the singularities of Pk follows by its definition.

Modularity is obvious, and the analycicity condition is straightforward to check due to
absolute convergence of each series.

We refer the reader to the exposition in [BK20] for more details on Pk and related
functions.

VI.2.7 Locally harmonic Maaß forms and local cusp forms

In [BKK15], Bringmann, Kane, and Kohnen introduced locally harmonic Maaß forms
for k > 1, which were independently investigated for k = 1 (i. e. weight 0) by Hövel
[Höv12] in his PhD thesis as well. We follow [BKK15] here.

Definition VI.2.6. A locally harmonic Maaß form of weight k for Γ with exceptional
set X ( H is a function f : H→ C, which satisfies the following properties:

(1) For all γ ∈ Γ and all τ ∈ H we have
(
f |kγ

)
(τ) = f(τ).

(2) For every τ ∈ H \X, there exists a neighborhood of τ , in which f is real-analytic
and ∆k(f) = 0.

(3) For every τ ∈ X, we have

f(τ) = 1
2 lim
ε↘0

(f(τ + iε) + f(τ − iε)) .

(4) The function f exhibits at most polynomial growth towards the cusp i∞, namely
f ∈ O(vδ) for some δ > 0.

The points in the exceptional set X are called jump singularities due to a wall-crosing
behaviour between any two connected components of H \ X (see Section VII.2 for a
definition as well). This definition is motivated by the peculiar first example

F1−k,D(τ) := 1
2
∑

Q∈QD

sgn (Qτ )Q(τ, 1)k−1β

(
Dv2

|Q(τ, 1)|2
; k − 1

2 ,
1
2

)
,

where D > 0 is a non-square discriminant, and β(x; r, s) refers to the incomplete β-
function (see [BCLO10, item 8.17.1] for example). We observe that “locality” is caused
precisely by the presence of the sign function in the definition of F1−k,D, and indeed
Bringmann, Kane, and Kohnen proved that F1−k,D satisfies their definition with weight
2− 2k ∈ −2N and exeptional set ED.
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Definition VI.2.7. A local cusp form of weight k for Γ with exceptional set X ( H is a
function f : H→ C, which satisfies the following properties:

(1) For all γ ∈ Γ and all τ ∈ H we have
(
f |kγ

)
(τ) = f(τ).

(2) For every τ ∈ H \X, there exists a neighborhood of τ , in which f is holomorphic.
(3) For every τ ∈ X, we have f(τ) = 1

2 limε↘0 (f(τ + iε) + f(τ − iε)).
(4) The function f vanishes as τ → i∞.

Altogether, this motivates the definition and inspection of Êk,D(τ, s).

VI.2.8 The functions E∗2 , j, and jm

The holomorphic Eisenstein series are given by

Ek(τ) := Pk,0(τ) = 1− 2k
Bk

∑
n≥1

∑
`|n

`k−1qn,

where Bk is the k-th Bernoulli number. If k ≥ 4 is even then Ek ∈ Mk(Γ), and E2 is
quasimodular. We define

E∗2(τ) := E2(τ)− 3
πv
,

and observe that E∗2 is a harmonic Maaß form of weight 2 for Γ (see [BFOR17, Lemma
6.2]). The modular invariant for Γ is the function

j(τ) := E4(τ)3

∆(τ) ∈M
!
0(Γ),

where

∆(τ) := q
∏
n≥1

(1− qn)24 = E4(τ)3 − E6(τ)2

1728 ∈ S12(Γ)

is the normalized modular discriminant function. We have

1
2πi

∂j

∂τ
(τ) = −E4(τ)2E6(τ)

∆(τ) ∈M !
2(Γ),

which can be verified by Ramanujan’s differential system [BvdGHZ08, Proposition 15]

1
2πi

∂E2
∂τ

= E2
2 − E4

12 ,
1

2πi
∂E4
∂τ

= E2E4 − E6
3 ,

1
2πi

∂E6
∂τ

= E2E6 − E2
4

2 .
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As an intermediate result, one can check that

1
2πi

∂∆
∂τ

= E2(τ)∆(τ).

For every m ≥ 0, let jm(τ) be the unique function in the space M !
0(Γ) having a Fourier

expansion of the form q−m +O(q). For instance, we have

j0(τ) = 1, j1(τ) = j(τ)− 744, j2(τ) = j(τ)2 − 1488j(τ) + 159768,

and the set {jm : m ≥ 0} is a basis for M !
0. This was proven by Asai, Kaneko, and

Ninomiya [AKN97], and they additionally established the expansion

1
2πi

∂j
∂τ (τ)

j(w)− j(τ) =
∑
m≥0

jm(w)qm, Im(τ) > Im(w).

Alternatively, the functions jm can be constructed following [BKLOR18]. More precisely,
the authors proved that the functions jm form a Hecke system, that is if Tm denotes the
normalized Hecke operator, then define j0, j1 as above, and extend inductively by

jm = Tm (j1) .

VI.3 Hyperbolic Eisenstein series
Let D > 0 be a non-square discriminant, d be a positive fundamental discriminant

dividing D, and k ∈ 2N. We recall the definition of our two hyperbolic Eisenstein series
from equations (VI.1), (VI.2), and the fact that both converge absolutely for any s ∈ C
with Re(s) > 1− k

2 .
Remark. Let dhyp be the hyperbolic distance (see [Iwa02, p. 7] for example), and Q ∈ QD.
Then, we have

|Q(τ, 1)|
v

= D
1
2 cosh (dhyp(τ, SQ)).

A proof of this idendity can be found in [Völ18, Lemma 2.5.4]. Note that z ∈ SQ if and
only if dhyp (z, SQ) = 0.

By Theorem V.1.1, the function E2,D possesses an analytic continuation to s = 0.
Along the lines of Lemma VI.2.1 (3), we define

Ẽk,D(τ, s) :=
∑

Q0∈QD/Γ
χd (Q0)

∑
Q∼Q0

sgn (Q)
k
21Q(τ)vs

Q(τ, 1) k2 |Q(τ, 1)|s
.
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Remark. In [Zag10], Zagier introduced the notion of quantum modular forms, and discusses
various examples. In addition to his paper, we refer the reader to [BFOR17, Chapter
21] for a discussion and more recent connections of such forms to the theory of modular
forms as well as of Maaß forms. In particular, Zagier’s second example involves the
quantum modular form∑

Q=[a,b,c]∈QD
a<0

max{Q(x, 1), 0}5 =
∑

Q=[a,b,c]∈QD
a<0<Q(x,1)

Q(x, 1)5, x ∈ Q,

which appears also in his earlier paper [Zag99]. Recall that we have 1Q(τ) = 1 if and
only if sgn(Q) sgn(vQτ ) = −1. As the zeros of Q(τ, 1) are quadratic irrationals, the limit
limτ→x

1
Q(τ,1) exists for every x ∈ Q. Furthermore, we note that

lim
τ→x

(vQτ ) = lim
τ→x

(
a |τ |2 + bu+ c

)
= Q(x, 1).

Altogether, this suggests that there might be a connection of the rational function (letting
d = 1 here)

x 7→ lim
τ→x
Ẽ2k−2,D(τ, 0) =

∑
Q∈QD

sgn(Q) sgn(Q(x,1))=−1

sgn(Q)k−1

Q(x, 1)k−1 = −2
∑

Q=[a,b,c]∈QD
a<0<Q(x,1)

1
Q(x, 1)k−1

to quantum modular forms for certain weights k.
We combine Lemma VI.2.1 with Theorem V.1.1.

Proposition VI.3.1. Assume that 0 < k ≡ 2 (mod 4), τ ∈ H \ ED, and Re(s) > 1− k
2 .

(1) The function Êk,D(τ, s) is modular of weight k, and we have

Êk,D(τ, s) = Ek,D(τ, s)− 2Ẽk,D(τ, s). (VI.4)

(2) The function Ê2,D(τ, s) has an analytic continuation to s = 0.
(3) The identity (VI.4) holds in the case that k = 2 and s = 0 as well.

Proof. The first item is a direct consequence of Lemma VI.2.1. Thus, it suffices to
show that Ẽ2,D(τ, s) has an analytic continuation to s = 0 to prove the second item.
To this end, we observe that Ẽk,D(τ, s) vanishes above the net of geodesics ED, and
coincides locally with Ek,D(τ, s) up to some non-zero constant in any bounded connected
component of H \ ED. Hence, one may obtain a Fourier expansion of Ẽ2,D locally by
Theorem V.1.1. (The computation was presented in Chapter V). This establishes the
existence of Ê2,D(τ, 0) via the identity (VI.4) from the first item, and in addition proves
the third item by uniqueness of the limit.
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Moreover, we recall the Fourier expansion of Ek,D(τ, 0) for higher weights from
Theorem V.1.2. Since Ek,D converges absolutely on H at s = 0 for any k ≥ 4 even, we
may rearrange its Fourier expansion, and study the integrand

f(w, τ) :=
∑
m≥1

m
k
2−1G−m

(
w,
k

2

)
qm, w ∈ ED, τ ∈ H,

inside the cycle integral. In other words, we may rewrite the Fourier expansion from
Theorem V.1.2 as

Ek,D(τ, 0) = (−1) k2 2π k2

D
k+2

4 Γ
(
k
4

)2
∑

Q∈QD/Γ
χd(Q)C0(f(·, τ), Q).

We obtained an alternative representation of the Fourier expansion of E2,D(τ, 0) already
if τ is located in the unbounded component of a fundamental domain for Γ. The main
ingredient to prove the second claim of Theorem VI.1.1 is to find such an representation
in the case of higher weights under the same assumption on τ .
Proposition VI.3.2. Let 2 < k ≡ 2 (mod 4), let D > 0 be a non-square discriminant,
and d be a positive fundamental discriminant dividing D. Suppose that v is sufficiently
large, that is τ is located above the net of geodesics ED. Then Ek,D(τ, 0) coincides with
the function ∑

Q∈QD/Γ
χd(Q)C2−k (Pk(τ, ·), Q)

up to an explicit non-zero constant, which is provided in equation (VI.8).
Remark. Let Wµ,ν be the usual W -Whittaker function. Inserting the Fourier expansion
of G−m, next comparing with the Fourier expansion of Pk,m (see the proof of Lemma
VI.2.5 for a list of references), and rearranging further, one obtains

f(w, τ) =
Γ
(
k
2

)
Γ(k)

∑
m≥1

m
k
2−1M0, k2−

1
2
(4π |m| Im(w))e−2πimRe(w)qm

+ 22−kπ−
k
2 Γ(k)

(k − 1)Γ
(
k
2

) sin
(
π

2 (1− k)
)

Im(w)1− k2 (Ek(τ)− 1)

+ i−k
∑
n6=0
|n| k−1

2 W0, k2−
1
2
(4π |n| Im(w)) (Pk,n(τ)− qn) e−2πinRe(w).

However, we may not split the final sum involving Pk,n(τ)−qn into two separate sums over
n, since the resulting expressions would not converge with respect to τ . This emphasizes
the error to modularity of Ek,D from a different viewpoint.
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VI.4 Proof of Theorem VI.1.1
We begin with the proof of Proposition VI.3.2. To this end, we write w = x+iy ∈ SQ/ΓQ

for the integration variable of the cycle integral, and collect three intermediate results
first. In case of ambiguity, we specify the variable a Maaß operator shall act on by an
additional subscript next to the weight. The first step is the following relation between
G−m and Φ2−k,−m.

Lemma VI.4.1. We have

L
k
2−1
0 (G−m)

(
w,
k

2

)
= C1(k)Γ(k)

(8π |m|) k2−1
Φ2−k,−m(w), C1(k) :=

k−4
2∏
j=0

(k + 2j).

Proof. By absolute convergence of the series defining G−m, we may differentiate the seed
directly. We calculate that

L
`
2 +1
0

(
M0, k2−

1
2
(4π |m| y)e−2πimx

)
=

`
2∏
j=0

(k + 2j)
(
y

2

) `
2 +1

M `
2 +1, k2−

1
2
(4π |m| y)e−2πimx

for every ` ∈ 2N0. We compare this with the definition of the seed ϕκ,m, and choose
` = k − 4. This yields the claim.

The second step is to connect this result to the Fourier expansion of Ek,D(τ, 0). Thus,
we need an identity involving (iterated) Maaß operators and cycle integrals. This was
performed by Alfes-Neumann and Schwagenscheidt [ANS20], generalizing earlier results
of Bringmann, Guerzhoy, and Kane [BGK14,BGK15]. To simplify the notation, we omit
the weights of the cycle integrals temporarily.

Lemma VI.4.2 ([ANS20, Theorem 1.1]). Let h : H→ C be a smooth function, which
transforms like a modular form of weight 2− 2κ ∈ 2Z for Γ. Then we have the identity

C(L2−2κ(h), Q) = C(R2−2κ(h), Q) = C(ξ2−2κ(h), Q).

Moreover, if h is a weak Maaß form of weight 2− 2κ with eigenvalue λ, then we have

C
(
Rκ−`2−2κ(h), Q

)
= ((κ+ `)(κ− `− 1)− λ) C

(
Rκ−`−2

2−2κ (h), Q
)
, if ` ≤ κ− 2, (VI.5)

C
(
L−κ−`+2

2−2κ (h), Q
)

= ((κ+ `)(κ− `− 1)− λ) C
(
L−κ−`2−2κ (h), Q

)
, if ` ≤ −κ. (VI.6)

Note that the conditions on ` in equations (VI.5), (VI.6) include the cases R0
2−2κ and

L0
2−2κ. Thus, we may insert a suitable chain of raising or lowering operators in our cycle

integrals and compensate for that by factors in κ, ` from equations (VI.5), (VI.6).
The third step is to utilize an identity due to Bringmann and Kane [BK20].
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Lemma VI.4.3 ([BK20, equations (3.10), (3.11)]). We have∑
m≥1

Φ2−k,−m(w)qm = i

2π (2i)k−1Pk(τ, w),

whenever

Im(τ) > max
(

Im(w), 1
Im(w)

)
.

Remark. By work of Kohnen [Koh85] and of Kohnen and Zagier [KZ81], the Shimura
[Shi73] and Shintani [Shi75] lifts between integral and half integral weight cusp forms
both admit a representation as a (scalar-valued) theta lift with kernel function (k ∈ N>2)

Ω(z, τ) :=
∑
D>0

Dk− 1
2 fk,D(z)qD. (VI.7)

In particular, Ω is a weight 2k cusp form of level 1 with respect to z, and a weight k + 1
2

cusp form of level 4 in the so-called Kohnen’s plus space (see Section VII.2) with respect
to τ by virtue of a result of Vignéras [Vig77]. Moreover, Katok [Kat85] proved that
fk,D can be written as a hyperbolic Poincaré series4. The cited result by Bringmann
and Kane from Lemma VI.4.3 now can be viewed as a natural “parabolic analogue” of
the “hyperbolic summation formula” (VI.7) provided that Im(τ) > max

(
Im(w), 1

Im(w)
)
,

because Φ2−k,−m is constructed as a certain parabolic Poincaré series.
Now, we are in position to prove Proposition VI.3.2.

Proof of Proposition VI.3.2. Since τ is assumed to be located above the net of geodesics,
the assumption from Lemma VI.4.3 is satisfied for every w ∈ ED. (Im(w) is bounded
from below and above.) In addition, Pk has no poles for such τ and w.

We invoke Lemma VI.4.2, and employ equation (VI.6) backwards and iteratively to
the integrand

f(w, τ) =
∑
m≥1

m
k
2−1G−m

(
w,
k

2

)
qm,

from the Fourier expansion of Ek,D. Here, we keep τ fixed, and take κ = 1, λ = k
2
(
1− k

2
)
,

and ` = −1,−3, . . . ,−k
2 + 2 using that k ≡ 2 (mod 4). This produces the constant

C2(k) :=
−1∏

`=− k2 +2
` odd

1
(1 + `)(−`)− k

2

(
1− k

2

) .
4Her result is summarized in [BKK15, equation (3.6)] as well. An excellent exposition on various types

of Poincaré series, including the hyperbolic ones, can be found in a paper by Imamoḡlu and O’Sullivan
[IO09].
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To indicate the steps, we keep the constants until the last equation. Combining, we have

Ek,D(τ, 0) = (−1) k2 2π k2

D
k
4 Γ
(
k
4

)2
∑

Q∈QD/Γ
χd(Q)C0

(
L0

0,·f(·, τ), Q
)

= (−1) k2 2π k2C2(k)

D
k
4 Γ
(
k
4

)2
∑

Q∈QD/Γ
χd(Q)C2−k

(
L
k
2−1
0,· f(·, τ), Q

)

= (−1) k2 2π k2C2(k)

D
k
4 Γ
(
k
4

)2
C1(k)Γ(k)
(8π) k2−1

∑
Q∈QD/Γ

χd(Q)C2−k

∑
m≥1

Φ2−k,−m(·)qm, Q


= (−1) k2 2π k2C2(k)

D
k
4 Γ
(
k
4

)2
C1(k)Γ(k)
(8π) k2−1

i

2π (2i)k−1 ∑
Q∈QD/Γ

χd(Q)C2−k (Pk(τ, ·), Q) .

The constant in front of the final sum simplifies to

C(k,D) := (−1)kΓ(k)

2 k2−2D
k
4 Γ
(
k
4

)2C1(k)C2(k). (VI.8)

This establishes the propostition.

We conclude this section and the chapter with the proof of Theorem VI.1.1.

Proof of Theorem VI.1.1.
(1) The case k = 2 was shown in Chapter V in the unbounded component of H\ED for
E2,D(τ, 0). Since Êk,D(τ, 0) = Ek,D(τ, 0) in the unbounded component by definition
of 1Q, the result of Chapter V extends to Êk,D(τ, 0) in the unbounded component
of H \ED directly. Now, we can use modularity of Êk,D(τ, 0) to obtain the claim in
the other connected components of H \ ED.

(2) Suppose that 2 < k ≡ 2 (mod 4). Modularity follows by Lemma VI.2.1 (1), and
Êk,D(τ, 0) is holomorphic outside ED. The limit condition on ED can be verified as
in the proof of Proposition VII.4.2, which adapts [BKK15, Proposition 5.2]. The
vanishing at i∞ either follows by sgn(Qτ ) = sgn(Q) in the unbounded component
and cuspidality of fk,D, or by the Fourier expansions of Ek,D(τ, 0) and Ẽk,D(τ, 0).

(3) We prove the explicit representation of Êk,D(τ, 0) outside ED. If τ is located above
the net of geodesics ED, we have Êk,D(τ, 0) = Ek,D(τ, 0). We apply Propostion
VI.3.2, and obtain the claimed representation of Êk,D above the net of geodesics.
Finally, the representation extends to every connected component of H \ ED by
virtue of weight k modularity of both sides of the claimed identity.
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Chapter VII

A modular framework of functions
of Knopp and indefinite binary
quadratic forms

This chapter is based on a preprint [BM22] of the same title submitted for publication.
This is joint work with Prof. Dr. Kathrin Bringmann.

VII.1 Introduction and statement of results
Throughout the chapter D > 0 is a non-square discriminant, k ∈ 2N, Qd denotes the

set of integral binary quadratic forms Q = [a, b, c] of discriminant d ∈ Z, and H is the
complex upper half-plane. In 1975, Zagier [Zag75] introduced the functions1

fκ,D(τ) :=
∑

Q∈QD

1
Q(τ, 1)κ , τ ∈ H,

and proved that they are cusp forms if κ > 1 (if κ = 1, one may use Hecke’s trick, see
[Koh85, p. 239]). To name a few prominent applications of the fκ,D’s, they are coefficients
of the holomorphic kernel function of the Shimura [Shi73] and Shintani [Shi75] lifts due
to [Koh85] (see Remark VI.4 as well), and they are closely related to central L-values by
[KZ81]. Their even periods are rational according to [KZ84].

Over 30 years ago, Knopp [Kno90, equation (4.5)] found a term-by-term preimage of
each fκ,D under the Bol operator D2k−1 [BOR08], where D := 1

2πi
∂
∂τ (compare Proposition

VII.3.1 (2)). To ensure convergence after summing over Q ∈ QD, he changed the sign of
k in his result afterwards, which lead to (here and throughout Log denotes the prinicpal
branch of the complex logarithm)

ψk+1,D(τ) :=
∑

Q∈QD

Log
(
τ−α−Q
τ−α+

Q

)
Q(τ, 1)k+1 , α±[a,b,c] := −b±

√
D

2a ∈ R. (VII.1)

1We define fκ,D in Zagier’s original normalization, which differs from the normalization used in
[BKK15] for instance.
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He furthermore stated that ψk+1,D(τ + 1) = ψk+1,D(τ), and the behaviour of ψk+1,D
under modular inversion2 (see [Kno90, equation (4.6)]). Correcting a typo there, we find
that (see Proposition VII.3.1 (3))

τ−2k−2ψk+1,D

(
−1
τ

)
− ψk+1,D(τ)

=
∑

Q∈QD

log
∣∣∣∣α+

Q

α−Q

∣∣∣∣
Q(τ, 1)k+1 − 2πi

∑
Q=[a,b,c]∈QD

a<0<c

1
Q(τ, 1)k+1 . (VII.2)

On the one hand, we observe that ψk+1,D is holomorphic and vanishes at i∞ (this
follows by Proposition VII.3.1 (1) and (VII.18)). On the other hand, ψk+1,D itself is
not modular. Hence, it is natural to “complete” ψk+1,D. Setting H− := −H throughout,
completions of ψk+1,D are bimodular forms3 Ωk+1,D of weight (2k + 2, 0) defined on
H×H− such that

lim
w→−i∞

Ωk+1,D(τ, w) = ψk+1,D(τ). (VII.3)

Here we construct such completions explicitly. Firstly, we note that the final sum
appearing in (VII.2) is finite, because b2 + 4 |ac| = D > 0 has only finitely many integral
solutions. This leads to Knopp’s modular integrals with rational period functions [Kno78].
Roughly speaking, period polynomials describe the obstruction of modularity of Eichler
integrals [Eic57] (defined in (VII.8)) of cusp forms, and Knopp generalized this notion to
rational functions instead of polynomials. Such functions are called modular integrals.
Parson [Par93] defined such modular integrals by

ϕk+1,D(τ) := 1
2
∑

Q∈QD

sgn(Q)
Q(τ, 1)k+1 =

∑
Q=[a,b,c]∈QD

a>0

1
Q(τ, 1)k+1 , (VII.4)

sgn ([a, b, c]) := sgn(a)

and we recall her result on the ϕk+1,D’s in Lemma VII.3.3. Secondly, we define

Qw := 1
Im(w)

(
a |w|2 + bRe(w) + c

)
, SQ := {τ ∈ H : Qτ = 0}, ED :=

⋃
Q∈QD

SQ,

for w ∈ C \ R, Q ∈ QD, as well as the functions

ρk+1,D(τ, w) :=
∑

Q∈QD

Log
(
w−α−Q
w−α+

Q

)
Q(τ, 1)k+1 , λk+1,D(τ, w) := 2i

∑
Q∈QD

arctan
(
Qw√
D

)
Q(τ, 1)k+1 . (VII.5)

2We alert the reader to the fact that Knopp used the older convention T = ( 0 −1
1 0 ).

3We slightly modify the initial definition by Stienstra and Zagier [SZ06] to include the domain H×H−.
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for w ∈ H−. We refer to Propositions VII.3.2 and VII.3.4 for some of their properties.
Thirdly, we define

Ωk+1,D(τ, w) := ψk+1,D(τ)− ρk+1,D(τ, w) + 2πiϕk+1,D(τ) + λk+1,D(τ, w), (VII.6)

on H×H− and have the following results.

Theorem VII.1.1. Let τ ∈ H, w ∈ H−.

(1) The functions Ωk+1,D are bimodular of weight (2k + 2, 0) that is

Ωk+1,D(τ + 1, w + 1) = Ωk+1,D(τ, w), Ωk+1,D

(
−1
τ
,− 1

w

)
= τ2k+2Ωk+1,D(τ, w).

(2) Condition (VII.3) holds.
(3) We have

lim
τ→i∞

Ωk+1,D(τ, w) = 0.

(4) The functions Ωk+1,D are holomorphic with respect to τ and antiholomorphic with
respect to w.

(5) We have that

Ωk+1,D(τ, τ) = 0.

Remark. During the proof of Theorem VII.1.1 (5), we show that

Log
(
τ − α−Q
τ − α+

Q

)
− Log

(
τ − α−Q
τ − α+

Q

)
+ πi sgn(Q) + 2i arctan

(
Qτ√
D

)
= 0.

This implies that the Ωk+1,D’s have representations on H×H as well, and these repre-
sentations coincide with the functions

ωk+1,D(τ, z) := ψk+1,D(τ)−
∑

Q∈QD

Log
(
z−α−Q
z−α+

Q

)
Q(τ, 1)k+1 , (τ, z) ∈ H×H.

The ωk+1,D’s satisfy

ωk+1,D(τ + 1, z + 1) = ωk+1,D(τ, z), ωk+1,D

(
−1
τ
,−1

z

)
= τ2k+2ωk+1,D(τ, z),

lim
z→i∞

ωk+1,D(τ, z) = ψk+1,D(τ).
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In the course of proving Theorem VII.1.1 (5), we encounter the functions (see (VII.20))

gk+1,D(τ) :=
∑

Q∈QD

sgn(Qτ )
Q(τ, 1)k+1 , (VII.7)

which are local cusp forms. That is, they behave like cusp forms of weight 2k + 2 outside
ED, however, in addition, have jumping singularities4 on ED; see Definition VI.2.7 and
Proposition VII.4.1 for details. By Theorem VI.1.1, the functions gk+1,D can be written
in terms of traces of cycle integrals.

Next, we construct negative weight analogues G−k,D of the gk+1,D’s along the lines of
[BKK15]. This is natural, because the gk+1,D’s are “odd” positive weight analogues of
the fκ,D’s, and the fκ,D’s recently motivated the definition of new automorphic objects
by Bringmann, Kane, and Kohnen [BKK15]. To be more precise, we let β(x; s, w) :=∫ x

0 t
s−1(1−t)w−1dt, x ∈ (0, 1], Re(s), Re(w) > 0, be the incomplete β-function, τ = u+iv

throughout, and we define

G−k,D(τ) := 1
2
∑

Q∈QD

Q(τ, 1)kβ
(

Dv2

|Q(τ, 1)|2
; k + 1

2 ,
1
2

)
, τ ∈ H \ ED.

In the spirit of Knopp’s initial preimage of fk,D under the Bol operator (without an
additional sign change of k), it turns out that G−k,D is a preimage of gk+1,D under the
Bol operator as well as the shadow operator ξκ := 2ivκ ∂

∂τ due to Bruinier and Funke
[BF04] (up to constants). Such a behaviour is impossible in the situation of a (globally
defined) non-trivial harmonic Maaß form with cuspidal shadow5. If f is a cusp form of
weight 2k + 2, then preimages under D2k+1 and ξ−2k, respectively, are provided by the
holomorphic and nonholomorphic Eichler integrals (see (VII.24))

Ef (τ) := −(2πi)2k+1

(2k)!

∫ i∞

τ
f(w)(τ − w)2kdw,

f∗(τ) := (2i)−2k−1
∫ i∞

−τ
f (−w)(w + τ)2kdw.

(VII.8)

To be able to insert the local cusp forms gk+1,D into each integral in (VII.8), we work in
a fundamental domain of SL2(Z), in which we have just finitely many equivalence classes
of geodesics SQ. Integrating piecewise, both Eichler integrals of gk+1,D are well-defined
on H \ ED. In addition we ensure in Proposition VII.4.4 that both Eichler integrals of
gk+1,D exist on ED. This established, we prove the following properties of G−k,D. We
refer the reader to Subsection VII.2.3 for definitions.

4We explain this terminology in Section VII.2.
5One may overcome this by weakening the growth condition in Definition VII.2.6 to linear exponential

growth. See [BFOR17, Theorem 6.15] for an example of such a harmonic Maaß form.
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Theorem VII.1.2.

(1) The functions G−k,D are locally harmonic Maaß forms of weight −2k with continu-
ously (however not differentially) removable singularities on ED.

(2) If τ ∈ H \ ED, then we have, with c∞ defined in equation (VII.23),

G−k,D(τ) = c∞ −
Dk+ 1

2 (2k)!
(4π)2k+1 Egk+1,D(τ) +Dk+ 1

2 g∗k+1,D(τ).

The functions G−k,D are outputs of a theta lift. To motivate this, we parallel a
construction of Bringmann, Kane, and Viazovska [BKV13]. We employ Borcherds
[Bor98] regularization of the Petersson inner product 〈·, ·〉reg for Γ0(4) (see Section VII.2),
and define the theta kernel6 (z = x+ iy, w ∈ H−)

θ∗−k(τ, z) := yk+1 ∑
d∈Z

∑
Q∈Qd

|Qτ |Q(τ, 1)ke−
4π|Q(τ,1)|2y

v2 e−2πidz. (VII.9)

The function θ∗−k transform like modular forms of weight 1
2 −k in z, and of weight −2k in

τ , see Lemma VII.2.8. Thus, they give rise to the theta lift (F a weight 1
2 − k harmonic

Maaß form with cuspidal shadow)

L∗−k(F )(τ) :=
〈
F, θ∗−k(−τ , ·)

〉reg
.

It suffices to compute L∗−k on the Maaß–Poincaré series P 1
2−k,m

(defined in equation
(VII.13)) as they generate the space of harmonic Maaß forms with cuspidal shadows.

Theorem VII.1.3. Let τ ∈ H \ ED. We have, with Γ the usual Γ-function

L∗−k

(
P 1

2−k,D

)
(τ) = D

1
4−

k
2 k!

3Γ
(
k + 1

2

)
(4π) k2 + 1

4
G−k,D(τ).

VII.2 Preliminaries

VII.2.1 Integral binary quadratic forms and Heegner geodesics

The modular group SL2(Z) acts on Qd by (
(
a b
c d

) ∈ SL2(Z))

Q ◦
(
a b
c d

)
(x, y) := Q(ax+ by, cx+ dy).

6We use the variable τ for integral weight, and z for half-integral weight. This is opposite to the
notation in [BKV13].
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The action of SL2(Z) on H is compatible with the action of SL2(Z) on Qd, in the sense
that7

(Q ◦ γ) (τ, 1) = j(γ, τ)2Q(γτ, 1), j

((
a b
c d

)
, τ

)
:= cτ + d (VII.10)

Since D > 0 is not a square, the two roots α±Q of Q ∈ QD are real-quadratic and
connected by the Heegner geodesic SQ. We orientate SQ counterclockwise (resp. clockwise)
if sgn(Q) > 0 (resp. sgn(Q) < 0). The orientation of SQ in turn determines the sign one
catches if τ jumps across SQ. More precisely, one has sgn(Q) sgn(Qτ ) < 0 if and only
if τ lies in the bounded component of H \ SQ. The unbounded connected component
of H \ ED is the unique such component containing i∞ on its boundary. We refer the
reader to the beautiful article by Duke, Imamoḡlu, and Tóth [DIT11, Section 4] for more
on Heegner geodesics.

We next collect some results, which we utilize throughout. The following lemma is
straightforward.

Lemma VII.2.1. For Q ∈ Qd, d ∈ Z, we have

dv2 +Q2
τv

2 = |Q(τ, 1)|2 .

To determine the weights of our functions, the following lemma is useful.

Lemma VII.2.2. For every Q ∈ QD and γ ∈ SL2(Z), we have

(Q ◦ γ)τ = Qγτ ,
Im(γτ)
|Q(γτ, 1)| = v

|(Q ◦ γ)(τ, 1)| .

We also require the following elementary lemma.

Lemma VII.2.3. Let U ⊆ C be open. Assume that f : U → C is real-differentiable and
satisfies f(τ) = f(τ). Then

∂

∂τ
f (τ) = ∂

∂τ
f(τ).

The following differentiation rules are obtained by a direct calculation.

Lemma VII.2.4. Let Q ∈ QD.
(1) We have

v2 ∂

∂τ
Q−τ = i

2Q(−τ , 1), v2 ∂

∂τ
Qτ = i

2Q(τ , 1), v2 ∂

∂τ

Q(τ, 1)
v2 = iQτ .

7A good reference is for example Zagier’s book [Zag81, § 8].
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(2) We have

∂

∂τ

v2

Q(τ , 1) = iv2Qτ
Q(τ , 1)2 , 2iv2 ∂

∂τ
Qτ = Q(τ, 1), iv2 ∂

∂τ

Q(τ , 1)
v2 = Qτ .

Letting Q′(τ, 1) := ∂
∂τQ(τ, 1), the following lemma can be verified by direct calculation.

Lemma VII.2.5. Let Q ∈ QD and τ ∈ H. We have

Qτv + ivQ′(τ, 1) = Q(τ, 1), Q′(τ, 1)2 − 2Q′′(τ, 1)Q(τ, 1) = D.

VII.2.2 Maaß forms and modular forms

We collect the definitions of various automorphic objects appearing in this chapter;
see [BFOR17] for more details on various types of harmonic Maaß forms. Let κ ∈ 1

2Z, and
N := 1 if κ ∈ Z and N := 4 if κ /∈ Z. The slash operator is defined as (

(
a b
c d

) ∈ Γ0(N))

f(τ)
∣∣
κ

(
a b
c d

)
:=
{

(cτ + d)−κf(γτ) if κ ∈ Z,(
c
d

)
ε2κ
d (cτ + d)−κf(γτ) if κ ∈ 1

2 + Z,

where
(
c
d

)
is the extended Legendre symbol, and for d odd εd := 1 if d ≡ 1 (mod 4) and

εd := i if d ≡ 3 (mod 4). The weight κ hyperbolic Laplace operator is given as

∆κ := −v2
(
∂2

∂u2 + ∂2

∂v2

)
+ iκv

(
∂

∂u
+ i

∂

∂v

)
.

We require various classes of modular objects.

Definition VII.2.6. Let f : H→ C be a real-analytic function.

(1) We call f a (holomorphic) modular form of weight κ for Γ0(N), if f satisfies the
following:
(i) We have f |κγ = f for all γ ∈ Γ0(N).
(ii) The function f is holomorphic on H.
(iii) The function f is holomorphic at the cusps of Γ0(N).

(2) We call f a cusp form of weight κ for Γ0(N), if f is a modular form that vanishes
at all cusps of Γ0(N).

(3) We call f a weight κ harmonic Maaß form with cuspidal shadow for Γ0(N), if f
satisfies the following:
(i) For every γ ∈ Γ0(N) and every τ ∈ H we have that f |κγ = f .
(ii) The function f has eigenvalue 0 under ∆κ.
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(iii) There exists a polynomial Pf ∈ C
[
q−1] (the principal part of f) such that

f(τ)− Pf (τ) = O
(
e−δv

)
as v → ∞ for some δ > 0, and we require analogous conditions at all other
cusps of Γ0(N).

Forms in Kohnen’s plus space have the additional property that their Fourier expansion
is supported on indices n satisfying (−1)κ− 1

2n ≡ 0, 1 (mod 4) with κ ∈ Z + 1
2 .

We remark that ∆κ splits as

∆κ = −ξ2−κ ◦ ξκ, (VII.11)

which in turn implies that a harmonic Maaß form with cuspidal shadow naturally
splits into a holomorphic and a nonholomorphic part. The operator ξκ annihilates the
holomorphic part, while the Bol operator D1−κ, κ ∈ −N0, annihilates the nonholomorphic
part (since our growth condition rules out a nonholomorphic constant term in the Fourier
expansion). Letting ` ∈ N, the Bol operator can be written in terms of the iterated Maaß
raising operator

(−4π)`−1D`−1 = R`−1
2−` := R`−2 ◦ . . . ◦R2−`+2 ◦R2−`, (VII.12)

R0
2−` := id, Rκ := 2i ∂

∂τ
+ κ

v
.

This identity is called Bol’s identity, a proof can for example be found in [BFOR17, Lemma
5.3].

VII.2.3 Locally harmonic Maaß forms

In [BKK15], so-called locally harmonic Maaß forms, were introduced (for negative
weights). See also [Höv12] for the case of weight 0.

Definition VII.2.7 ([BKK15, Section 2]). A function f : H → C is called a locally
harmonic Maaß form of weight κ with exceptional set ED, if it obeys the following four
conditions:

(1) For every γ ∈ SL2(Z) we have f |κγ = f .
(2) For all τ ∈ H \ ED, there exists a neighborhood of τ , in which f is real-analytic

and in which we have ∆κ(f) = 0.
(3) For every τ ∈ ED, we have that f(τ) = 1

2 limε→0+(f(τ + iε) + f(τ − iε)).
(4) The function f exhibits at most polynomial growth towards i∞.
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We say that a function f : H \ ED → C has jumping singularities on ED if

lim
ε→0+

(f(τ + iε)− f(τ − iε)) ∈ C \ {0}

for τ ∈ ED. Note that this limit depends on the geodesic SQ on which τ is located. If

lim
ε→0+

(f(τ + iε)− f(τ − iε)) = 0

for all τ ∈ ED, then we say that f has continuously removable singularities on ED.

VII.2.4 A theta lift and Poincaré series

A fundamental domain of Γ0(4) truncated at height T > 0 is given by

FT (4) :=
⋃

γ∈Γ0(4)\SL2(Z)
γFT ,

where

FT :=
{
z ∈ H : |x| ≤ 1

2 , |z| ≥ 1, y ≤ T
}
.

Let f and g satisfy weight κ modularity for Γ0(4) and let dµ(τ) := dudv
v2 . Borcherds

regularization of the Petersson inner product of f and g is given by

〈f, g〉reg :=
∫ reg

Γ0(4)\H
f(w)g(w) Im(w)κdµ(w) := lim

T→∞

∫
FT (4)

f(w)g(w) Im(w)κdµ(w),

whenever the limit exists. Although the definition of FT (4) depends on a set of represen-
tatives of SL2(Z)/Γ0(4) , the inner product is independent of this choice.

We next define the Poincaré series appearing in Theorem VII.1.3, and follow the
exposition from [BKV13, Section 2]8. We let ·|pr denote the projection operator into
Kohnen’s plus space (see e.g. [BFOR17, equation (6.12)]). We furthermore let Mµ,ν be
the usual M -Whittaker function, and define

Mκ,s(t) := |t|−κ2 Msgn(t)κ2 ,s−
1
2
(|t|).

We then define the Maaß–Poincaré series of weights κ ∈ −N + 1
2 and indices m ∈ N

projected into Kohnen’s plus space as (see [BKV13, equation (2.12)]), with Γ∞ :=
{± ( 1 n

0 1 ) : n ∈ Z},

Pκ,m(z) := (4πm)
κ
2

Γ(2− κ)
∑

γ∈Γ∞\Γ0(4)

(
Mκ,1−κ2 (−4πmy)e−2πimx

) ∣∣∣
κ
γ
∣∣∣pr. (VII.13)

8We remind the reader of Remark VI.2.6.
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The functions Pκ,m converge absolutely and are harmonic Maaß forms with cuspidal
shadow, see [BFOR17, Theorem 6.11].

We lastly summarize the transformation behaviour of the theta kernel from equation
(VII.9).
Lemma VII.2.8.
(1) The function z 7→ θ∗−k(τ, z) is modular of weight 1

2 − k and is in Kohnen’s plus
space.

(2) The function τ 7→ θ∗−k(τ, z) is modular of weight −2k.
Proof.
(1) This follows by a result of Vignéras [Vig77]. The application of her result in this case

can be found in [BKZ14, Section 2]. This part is also contained in [BKV13, Section
2] (up to a local sign factor).

(2) This follows by Lemma VII.2.2 and equation (VII.10).

VII.3 Proof of Theorem VII.1.1

VII.3.1 Knopp’s claims on ψk+1,D

We now discuss the initial claims of Knopp on ψk+1,D.
Proposition VII.3.1.
(1) The functions ψk+1,D converge absolutely on H and uniformly towards i∞.
(2) For n ∈ N, we have

D2n−1
(

Log
(
τ − α−Q
τ − α+

Q

)
Q(τ, 1)n−1

)
= −i(2π)2n−1(n− 1)!2Dn− 1

2
1

Q(τ, 1)n .

(3) The functions ψk+1,D satisfy ψk+1,D(τ + 1) = ψk+1,D(τ) and (VII.2).
Proof.
(1) Let Q = [a, b, c] and suppose that v > 1. Since α±Q ∈ R are the zeros of Q, we have

Q(τ, 1) = a(τ − α+
Q)(τ − α−Q) and v > 1 implies that

∣∣∣τ − α+
Q

∣∣∣ > 1. Using |a| ≥ 1
gives ∣∣∣∣∣Log

(
τ − α−Q
τ − α+

Q

)∣∣∣∣∣ ≤
∣∣∣∣∣∣∣log

 |Q(τ, 1)|
|a|
∣∣∣(τ − α+

Q

)∣∣∣2

∣∣∣∣∣∣∣+ π ≤ |log |Q(τ, 1)||+ π,

and (1) thus follows by the properties of fκ,D for κ > 1 (see [Zag75]).
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(2) We proceed by induction on n. The claims for n = 1 and n = 2 follow by computing

∂

∂τ
Log

(
τ − α−Q
τ − α+

Q

)
= −

√
D

Q(τ, 1) , (VII.14)

∂3

∂τ3

(
Log

(
τ − α−Q
τ − α+

Q

)
Q(τ, 1)

)
= D

3
2

Q(τ, 1)2 ,

utilizing Lemma VII.2.5 for n = 2. To proceed with the induction step, we define
for n ∈ N

fn(τ) := Log
(
τ − α−Q
τ − α+

Q

)
Q(τ, 1)n−1, cn := (−1)n(n− 1)!2.

Since Q is a polynomal of degree 2, we have, using the Leibniz rule,

∂2n+1

∂τ2n+1 fn+1(τ) = ∂2n+1

∂τ2n+1 (fn(τ)Q(τ, 1))

= f(2n+1)
n (τ)Q(τ, 1) + (2n+ 1)f(2n)

n (τ)Q′(τ, 1) + (2n+ 1)nf(2n−1)
n Q′′(τ, 1).

To apply the induction hypothesis, we write f
(2n)
n (τ) = ∂

∂τ f
(2n−1)
n (τ). Combining

with the second identity of Lemma VII.2.5 then yields

∂2n+1

∂τ2n+1 fn+1(τ) = −n
2cnD

n+ 1
2

Q(τ, 1)n+1 .

Simplifying gives the claim.
(3) Translation invariance of ψk+1,D follows immediately from equation (VII.10) and

the fact that

[a, b, c] ◦
(

1 1
0 1

)−1

= [a,−2a+ b, a− b+ c].

Again using (VII.10) and the fact that

[a, b, c] ◦
(

0 −1
1 0

)−1

= [c,−b, a],

we obtain that

τ−2k−2ψk+1,D

(
−1
τ

)
− ψk+1,D(τ) =

∑
Q∈QD

Log
(
− 1
τ
− b−

√
D

2c

− 1
τ
− b+

√
D

2c

)
− Log

(
τ−−b−

√
D

2a

τ−−b+
√
D

2a

)
Q(τ, 1)k+1 .
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Next, we recall that for z, w ∈ C \ R

Log(z)− Log(w) = Log
(
z

w

)
+ i

(
Arg(z)−Arg(w)−Arg

(
z

w

))
. (VII.15)

Choosing z = − 1
τ
− b−

√
D

2c

− 1
τ
− b+

√
D

2c
, w = τ−−b−

√
D

2a

τ−−b+
√
D

2a
yields

z

w
=

(
− 1
τ − b−

√
D

2c

) (
τ − −b+

√
D

2a

)
(
− 1
τ − b+

√
D

2c

) (
τ − −b−

√
D

2a

) =
α+
Q

α−Q
= sgn(ac)

∣∣∣∣∣α
+
Q

α−Q

∣∣∣∣∣ .
Hence Arg(z) = Arg(sgn(ac)w) and thus Arg(z) − Arg(w) − Arg( zw ) vanishes
whenever sgn(ac) = 1. Therefore the corresponding terms do not contribute to
Arg(z)−Arg(w)−Arg( zw ). If sgn(ac) = −1, we extend Log by its principal value
Log(x) = log |x|+ πi for x ∈ R−. Then we use that

Arg(−w)−Arg(w) = − sgn(Im(w))π, (VII.16)

and Arg( zw ) = π. Hence, Arg(z)−Arg(w)−Arg( zw ) vanishes if sgn(ac) = −1 and
Im(w) < 0. To determine the sign of Im(w), we calculate that

τ − α−Q
τ − α+

Q

=
α+
Qα
−
Q −

(
α+
Q + α−Q

)
u+ u2 + v2∣∣∣τ − α+

Q

∣∣∣2 −
i
(
α+
Q − α−Q

)
v∣∣∣τ − α+

Q

∣∣∣2
= 1∣∣∣τ − α+

Q

∣∣∣2
(
vQτ
a
− i
√
D

a
v

)
. (VII.17)

Consequently, we have Im(w) > 0 if and only if a < 0. We conclude by (VII.15)
and (VII.16) that

Arg(z)−Arg(w)−Arg
(
z

w

)
=
{
−2π if a < 0 < c,

0 otherwise.

Thus

τ−2k−2ψk+1,D

(
−1
τ

)
− ψk+1,D(τ) =

∑
Q∈QD

Log
(
α+
Q

α−Q

)
Q(τ, 1)k+1 − 2πi

∑
Q∈QD
a<0<c

1
Q(τ, 1)k+1 .
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By mapping Q 7→ −Q, we arrive at

∑
Q∈QD

Log
(
α+
Q

α−Q

)
Q(τ, 1)k+1 =

∑
Q∈QD

log
∣∣∣∣α+

Q

α−Q

∣∣∣∣
Q(τ, 1)k+1 + πi

∑
Q=[a,b,c]∈QD
sgn(ac)=−1

1
Q(τ, 1)k+1

=
∑

Q∈QD

log
∣∣∣∣α+

Q

α−Q

∣∣∣∣
Q(τ, 1)k+1 .

Remark. By (VII.17) the branch cut of Log(w−α
−
Q

w−α+
Q

) is the interval [α−Q, α
+
Q] or [α+

Q, α
−
Q].

VII.3.2 The functions ρk+1,D, ϕk+1,D, and λk+1,D

Adapting the proof of Proposition VII.3.1 (1), (3) we deduce the following results.

Proposition VII.3.2. Let τ ∈ H, w ∈ H−.

(1) The functions ρk+1,D converge absolutely on H × H− and uniformly as τ → i∞
resp. w → −i∞.

(2) We have

lim
w→−i∞

ρk+1,D(τ, w) = 0, lim
τ→i∞

ρk+1,D(τ, w) = 0.

(3) The functions ρk+1,D satisfy

ρk+1,D(τ + 1, w + 1) = ρk+1,D(τ, w),

and

τ−2k−2ρk+1,D

(
−1
τ
,− 1

w

)
− ρk+1,D(τ, w)

=
∑

Q∈QD

log
∣∣∣∣α+

Q

α−Q

∣∣∣∣
Q(τ, 1)k+1 + 2πi

∑
Q=[a,b,c]∈QD

a<0<c

1
Q(τ, 1)k+1 .

We next cite Parson’s [Par93] result on her modular integral ϕk+1,D.
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Lemma VII.3.3 ([Par93, Theorem 3.1]). The functions ϕk+1,D satisfy

ϕk+1,D(τ + 1) = ϕk+1,D(τ),

and

τ−2k−2ϕk+1,D

(
−1
τ

)
− ϕk+1,D(τ)

= −
∑

Q=[a,b,c]∈QD
ac<0

sgn (Q)
Q(τ, 1)k+1 = 2

∑
Q=[a,b,c]∈QD

a<0<c

1
Q(τ, 1)k+1 .

Furthermore, we have

lim
τ→i∞

ϕk+1,D(τ) = 0.

We continue with some properties of λk+1,D.

Proposition VII.3.4. Let τ ∈ H, w ∈ H−.

(1) The functions λk+1,D converge absolutely on H×H−, and uniformly as τ → i∞
resp. w → −i∞.

(2) The funtions λk+1,D are bimodular of weight (2k + 2, 0), that is

λk+1,D (τ + 1, w + 1) = λk+1,D (τ, w) , λk+1,D

(
−1
τ
,− 1

w

)
= τ2k+2λk+1,D (τ, w) .

(3) We have

lim
w→−i∞

λk+1,D(τ, w) = −2πiϕk+1,D(τ), lim
τ→i∞

λk+1,D(τ, w) = 0.

(4) We have

λk+1,D(τ, w) =
∑

Q∈QD

Log
(

1+iQw√
D

1−iQw√
D

)
Q(τ, 1)k+1 =

∑
Q∈QD

Log
(
−

Qw√
D
−i

Qw√
D

+i

)
Q(τ, 1)k+1 .

Proof.

(1) By the definition of λk+1,D in (VII.5), we have

|λk+1,D(τ)| ≤ 2
∑

Q∈QD

∣∣∣arctan
(
Qw√
D

)∣∣∣
|Q(τ, 1)|k+1 ≤ π

∑
Q∈QD

1
|Q(τ, 1)|k+1 .

The claim follows by the absolute convergence of the fκ,D’s on H.
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(2) Bimodularity is a direct consequence of Lemma VII.2.2 and equation (VII.10).
(3) The assumption that D is not a square guarantees that the sum defining λk+1,D

runs over quadratic forms Q = [a, b, c] with ac 6= 0. To prove the first assertion, we
observe that

Qw√
D
� a Im(w)

as Im(w)→ −∞, and hence

lim
w→−i∞

arctan
(
Qw√
D

)
= −π2 sgn(Q).

The first claim follows by the definition of ϕk+1,D in (VII.4). As a 6= 0, we have
1

|Q(τ,1)|k+1 → 0 for τ → i∞. The second claim follows by (1).
(4) The claim follows by rewriting the arctangent in (VII.5).

VII.3.3 Proof of Theorem VII.1.1

We conclude this section with the proof of Theorem VII.1.1.

Proof of Theorem VII.1.1.

(1) This follows by combining Propositions VII.3.1 (3), VII.3.2 (3), and VII.3.4 (2)
with Lemma VII.3.3.

(2) This follows by combining (VII.6) with Propositions VII.3.2 (2) and VII.3.4 (2).
(3) Proposition VII.3.1 (1) along with

lim
τ→i∞

Log
(
τ − α−Q
τ − α+

Q

)
= 0 (VII.18)

implies that ψk+1,D is cuspidal. By Propositions VII.3.2 (2), VII.3.4 (3), and
Lemma VII.3.3, every function defining Ωk+1,D in (VII.6) is cuspidal (with respect
to τ).

(4) As each function defining Ωk+1,D in (VII.6) is holomorphic as a function of τ ,
we obtain the assertion with respect to τ directly. To verify that Ωk+1,D is anti-
holomorphic as a function of w, we compute by Lemmas VII.2.1 and VII.2.4 (1)
that

2i ∂
∂w

arctan
(
Qw√
D

)
= −

√
D

Q(w, 1) .
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By (VII.14), we deduce that

2i ∂
∂w

arctan
(
Qw√
D

)
= ∂

∂w
Log

(
w − α−Q
w − α+

Q

)
.

By (VII.5) and (VII.6), we conclude that

∂

∂w
Ωk+1,D(τ, w) = 0.

(5) We first inspect the functions ψk+1,D − ρk+1,D. By definitions (VII.1) and (VII.5)
we have

ψk+1,D(τ)− ρk+1,D(τ, τ) =
∑

Q∈QD

Log
(
τ−α−Q
τ−α+

Q

)
− Log

(
τ−α−Q
τ−α+

Q

)
Q(τ, 1)k+1 .

We note that

Log
(
τ − α−Q
τ − α+

Q

)
− Log

(
τ − α−Q
τ − α+

Q

)
≡ Log


(
τ − α−Q

) (
τ − α+

Q

)
(
τ − α+

Q

) (
τ − α−Q

)
 (mod 2πi),

and we determine the multiple of 2πi now. From (VII.17), we deduce that(
τ − α−Q

) (
τ − α+

Q

)
(
τ − α+

Q

) (
τ − α−Q

) =
Qτ√
D
− i

Qτ√
D

+ i
.

We use (VII.15) and hence need to compute

Log
(
τ − α−Q
τ − α+

Q

)
− Log

(
τ − α−Q
τ − α+

Q

)
− Log


(
τ − α−Q

) (
τ − α+

Q

)
(
τ − α+

Q

) (
τ − α−Q

)


=i

Arg
(
τ − α−Q
τ − α+

Q

)
−Arg

(
τ − α−Q
τ − α+

Q

)
−Arg


(
τ − α−Q

) (
τ − α+

Q

)
(
τ − α+

Q

) (
τ − α−Q

)
 .

(VII.19)

Note that for z ∈ C \ R

Arg(z)−Arg (z)−Arg
(
z

z

)
= π (1− sgn (Re(z))) sgn (Im(z)) .
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We use this for z = τ−α−Q
τ−α+

Q

. By (VII.17), (VII.19) thus becomes πi(sgn(Qτ )−sgn(Q)).
We infer that

ψk+1,D(τ)− ρk+1,D(τ, τ) =
∑

Q∈QD

Log
(

Qτ√
D
−i

Qτ√
D

+i

)
Q(τ, 1)k+1 + πi

∑
Q∈QD

sgn (Qτ )− sgn(Q)
Q(τ, 1)k+1 .

Combining with (VII.4) gives

ψk+1,D(τ)− ρk+1,D(τ, τ) + ϕk+1,D(τ, τ)

=
∑

Q∈QD

Log
(

Qτ√
D
−i

Qτ√
D

+i

)
Q(τ, 1)k+1 + πi

∑
Q∈QD

sgn (Qτ )
Q(τ, 1)k+1 , (VII.20)

which is modular of weight 2k + 2 by (VII.10) and Lemma VII.2.2. To finish the
proof, we inspect λk+1,D(τ, τ). Combining Qτ = −Qτ with Proposition VII.3.4 (4)
yields

λk+1,D(τ, τ) = −
∑

Q∈QD

Log
(
−

Qτ√
D
−i

Qτ√
D

+i

)
Q(τ, 1)k+1 .

By (VII.16), we obtain

Log

 Qτ√
D
− i

Qτ√
D

+ i

− Log

− Qτ√
D
− i

Qτ√
D

+ i

 = −πi sgn(Qτ ),

from which we conclude the claim using (VII.6).

VII.4 The function gk+1,D

VII.4.1 Local cusp forms

Recall the definition of gk+1,D in (VII.7) and Definition VI.2.7.
Remark. Let d(z, w) denote the hyperbolic distance between z, w ∈ C with y Im(w) > 0.
Since D > 0, we have (with τ[a,b,c] := − b

2a + i
2|a|
√
D) Qτ√

D
= cosh(d(τ, τQ)). This yields

an alternative representation of gk+1,D as well as of λk+1,D.
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We next prove our claim for gk+1,D.

Proposition VII.4.1. The functions gk+1,D are local cusp forms.

Proof. We observe that the gk+1,D’s converge absolutely on H utilizing absolute con-
vergence of the fκ,D’s. We directly deduce that the gk+1,D’s are holomorphic. Using
Lemma VII.2.2 and (VII.10) shows that the gk+1,D’s are modular of weight 2k + 2. If
v >

√
D
2 , then sgn(Qτ ) = 1. Thus, cuspidality of the gk+1,D’s follows by cuspidality of

the fκ,D’s for κ > 1. The local behaviour and the jumping singularities are dictated by
sgn(Qτ ).

VII.4.2 The local behaviour of gk+1,D

We next provide the behaviour of gk+1,D on ED.

Proposition VII.4.2. If τ ∈ ED, then we have that

lim
ε→0+

(gk+1,D(τ + iε)− gk+1,D(τ − iε)) = 2
∑

Q∈QD
Qτ=0

sgn(Q)
Q(τ, 1)k+1 .

Remark. The sum on the right-hand side is finite by [BKK15, Lemma 5.1 (1)].

Proof of Proposition VII.4.2. We adapt the proof of [BKK15, Proposition 5.2]. We write

gk+1,D(τ ± iε) =

 ∑
Q∈QD
Qτ=0

+
∑

Q∈QD
Qτ 6=0

 sgn(Qτ±iε)
Q(τ ± iε, 1)k+1 .

Absolute convergence of Zagier’s fk,D function implies that gk+1,D converges absolutely
on H and uniformly towards i∞, which permits us to interchange the sums with the limit,
and argue termwise in the following. If Qτ 6= 0, then τ ± iε are in the same connected
component of H \ ED for ε > 0 sufficiently small. Combining with [BKK15, equation
(5.4)], we deduce that for ε > 0 sufficiently small

sgn([a, b, c]τ+iε) = sgn([a, b, c]τ−iε) = δ sgn(a),

where

δ := sgn
(∣∣∣∣τ + iε+ b

2a

∣∣∣∣−
√
D

2 |a|

)
= sgn

(∣∣∣∣τ − iε+ b

2a

∣∣∣∣−
√
D

2 |a|

)
= ±1.
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Thus

lim
ε→0+

( sgn(Qτ+iε)
Q(τ + iε, 1)k+1 −

sgn(Qτ−iε)
Q(τ − iε, 1)k+1

)
= lim

ε→0+
δ

( sgn(Q)
Q(τ + iε, 1)k+1 −

sgn(Q)
Q(τ − iε, 1)k+1

)
= 0.

If Qτ = 0, then τ ± iε are in different connected components of H \ ED for all ε > 0.
This is justified by [BKK15, equation (5.6)], namely

∣∣∣∣τ − iε+ b

2a

∣∣∣∣−
√
D

2 |a| <
∣∣∣∣τ + b

2a

∣∣∣∣−
√
D

2 |a| = 0 <
∣∣∣∣τ + iε+ b

2a

∣∣∣∣−
√
D

2 |a|

for every ε > 0. Combining with [BKK15, equation (5.4)] implies that sgn(Qτ±iε) =
± sgn(Q), and consequently

lim
ε→0+

( sgn(Qτ+iε)
Q(τ + iε, 1)k+1 −

sgn(Qτ−iε)
Q(τ − iε, 1)k+1

)
= 2 sgn(Q)

Q(τ, 1)k+1 .

We next inspect the sum appearing in Proposition VII.4.2.

Lemma VII.4.3. The sum

∑
Q∈QD
Qτ=0

sgn(Q)
Q (τ, 1)k+1

does not vanish identically on ED.

Proof. Let τ ∈ ED. Then we have τ ∈ SQ for some Q ∈ QD. On the one hand, the sum
in the lemma has a pole of order k + 1 > 0 at α±Q, and hence both limits

lim
τ→α±

Q
τ∈SQ

∣∣∣∣∣ ∑
Q∈QD
Qτ=0

sgn(Q)
Q (τ, 1)k+1

∣∣∣∣∣
tend towards ∞. On the other hand, the sum is continuous on SQ, and the contribution
from the terms corresponding to Q 6= Q is finite at α±Q.
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VII.4.3 The local behaviour of Egk+1,D and g∗k+1,D

We next prove that the Eichler integrals of gk+1,D exist on ED.
Proposition VII.4.4. Let τ ∈ ED. Then we have

lim
ε→0+

(
Egk+1,D(τ + iε)− Egk+1,D(τ − iε)

)
= −2(2πi)2k+1

(2k)!

∫ i∞

0

∑
Q∈QD
Qτ+w=0

sgn(Q)
Q(τ + w, 1)k+1w

2kdw,

and

lim
ε→0+

(
g∗k+1,D(τ + iε)− g∗k+1,D(τ − iε)

)
= − 2

(2i)2k+1

∫ i∞

2iv

∑
Q∈QD
Qτ−w=0

sgn(Q)
Q(τ − w, 1)k+1w

2kdw.

Remark. As remarked after Proposition VII.4.2, the sums inside the integrals on the
right-hand sides of Propostion VII.4.4 are finite. They can be written as integrals over a
bounded domain, because the integrands vanish as soon as9 Im(τ + w) >

√
D
2 or τ − w

moves out of H. If τ ±w /∈ ED, then the sums are in fact empty. Hence, the integrals on
the right-hand side of Propostion VII.4.4 exist.

Proof of Proposition VII.4.4. As τ±iε /∈ ED for every ε > 0, we utilize (VII.7). Changing
variables gives

lim
ε→0+

(
Egk+1,D(τ + iε)− Egk+1,D(τ − iε)

)
= −(2πi)2k+1

(2k)! lim
ε→0+

∫ i∞

0

∑
Q∈QD

( sgn(Qτ+iε+w)
Q(τ + iε+ w, 1)k+1 −

sgn(Qτ−iε+w)
Q(τ − iε+ w, 1)k+1

)
w2kdw,

and

lim
ε→0+

(
g∗k+1,D(τ + iε)− g∗k+1,D(τ − iε)

)
= 1

(2i)2k+1 lim
ε→0+

− ∫ i∞

2i(v+ε)

∑
Q∈QD

sgn (Qτ−w+iε)
Q(τ − w + iε, 1)k+1w

2kdw

+
∫ i∞

2i(v−ε)

∑
Q∈QD

sgn (Qτ−w−iε)
Q(τ − w − iε, 1)k+1w

2kdw

 ,
9If Im(τ + w) >

√
D
2 , then τ + w lies in the unbounded component of H \ ED.
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where we use that Qz = −Qz in the case of g∗k+1,D.
We consider the holomorphic Eichler integral first, and justify interchanging the

limits ε→ 0+ with the holomorphic Eichler integral. By (VII.7), gk+1,D vanishes at i∞,
and converges uniformly towards i∞ as the sign-function is bounded (using that fκ,D
converges uniformly towards i∞ for κ > 1). By virtue of modularity of gk+1,D, both
assertions hold towards 0 as well. In other words, the integral converges uniformly, and
this permits the exchange of the limit ε→ 0+ with the integral. We infer that

lim
ε→0+

(
Egk+1,D(τ + iε)− Egk+1,D(τ − iε)

)
= −(2πi)2k+1

(2k)!

∫ i∞

0
lim
ε→0+

(gk+1,D(τ + w + iε)− gk+1,D(τ + w − iε))w2kdw.

If τ+w /∈ ED, then the limit inside the integral vanishes, because τ+w+iε and τ+w−iε
are in the same connected component for ε sufficiently small. If τ + w ∈ ED, then we
apply Proposition VII.4.2 to obtain

lim
ε→0+

(
Egk+1,D(τ + iε)− Egk+1,D(τ − iε)

)
= −2(2πi)2k+1

(2k)!

∫ i∞

0

∑
Q∈QD
Qτ+w=0

sgn(Q)
Q(τ + w, 1)k+1w

2kdw.

Now, we treat the nonholomorphic Eichler integrals, and first split one of them as∫ i∞

2i(v−ε)

∑
Q∈QD

sgn (Qτ−w−iε)
Q(τ − w − iε, 1)k+1w

2kdw

=
(∫ 2i(v+ε)

2i(v−ε)
+
∫ i∞

2i(v+ε)

) ∑
Q∈QD

sgn (Qτ−w−iε)
Q(τ − w − iε, 1)k+1w

2kdw.

We note that

lim
ε→0+

∫ 2i(v+ε)

2i(v−ε)

sgn (Qτ−w−iε)
Q(τ − w − iε, 1)k+1w

2kdw = 0,

because the integrand is bounded in the domain of integration, which has measure 0 as
ε→ 0+. Hence, it remains to consider the integral from 2i(v + ε) to i∞. If τ − w /∈ ED,
then we have

lim
ε→0+

∫ i∞

2i(v+ε)

(
− sgn (Qτ−w+iε)
Q(τ − w + iε, 1)k+1 + sgn (Qτ−w−iε)

Q(τ − w − iε, 1)k+1

)
w2kdw = 0,
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as in the previous case, because τ − w ± iε are in the same connected component for ε
sufficiently small. If τ − w ∈ ED, then we obtain

lim
ε→0+

∫ i∞

2i(v+ε)

∑
Q∈QD

(
− sgn (Qτ−w+iε)
Q(τ − w + iε, 1)k+1 + sgn (Qτ−w−iε)

Q(τ − w − iε, 1)k+1

)
w2kdw

= −2
∫ i∞

2iv

∑
Q∈QD
Qτ−w=0

sgn(Q)
Q(τ − w, 1)k+1w

2kdw

by Proposition VII.4.2 exactly as in the previous case.

VII.5 The function G−k,D and the proof of Thm. VII.1.2

VII.5.1 Convergence of G−k,D
We first establish convergence of G−k,D.

Proposition VII.5.1. The sum defining G−k,D converges compactly for every τ ∈ H\ED,
and does not converge on ED.

Proof. If τ ∈ H \ ED, then sgn(Qτ ) = ±1 and thus the claim follows directly by
[BKK15, Proposition 4.1] after summing over all narrow equivalence classes there. (The
class number of positive discriminants is finite.) If τ ∈ ED, then the incomplete β-function
reduces to a constant depending only on k according to Lemma VII.2.1. Hence, the sum
defining G−k,D does not converge on ED as the sum is infinite and β(1; k+ 1

2 ,
1
2) 6= 0.

VII.5.2 Behaviour of G−k,D under differentiation

We inspect the behaviour of G−k,D under differential operators.

Proposition VII.5.2. Let τ ∈ H \ ED.

(1) We have

ξ−2k(G−k,D) = Dk+ 1
2 gk+1,D.

(2) We have

D2k+1(G−k,D) = −D
k+ 1

2 (2k)!
(4π)2k+1 gk+1,D.
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(3) We have

∆−2k(G−k,D) = 0.

Define

g[1]
n (τ) := Q(τ, 1)nβ

(
Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)
, n ∈ N0.

The proof of Proposition VII.5.2 is based on the following three technical lemmas.

Lemma VII.5.3. We have for n ∈ N0

g
[1]
n+1(τ) =

n+ 1
2

n+ 1Q(τ, 1)g[1]
n (τ)− Dn+ 1

2

n+ 1
v2n+2 |Qτ |
Q (τ , 1)n+1 .

Proof. By [BCLO10, item 8.17.20], we have that

β(x; a, b)
β(1; a, b) = β(x; a+ 1, b)

β(1; a+ 1, b) + xa(1− x)b
aβ(1; a, b) .

This gives that

β

(
Dv2

|Q(τ, 1)|2
;n+ 3

2 ,
1
2

)

=
β
(
1;n+ 3

2 ,
1
2

)
β
(
1;n+ 1

2 ,
1
2

)
β

(
Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)
−

(
Dv2

|Q(τ,1)|2
)n+ 1

2
(
1− Dv2

|Q(τ,1)|2
) 1

2

n+ 1
2

 .
Using Lemma VII.2.1, we compute(

Dv2

|Q(τ, 1)|2
)n+ 1

2
(

1− Dv2

|Q(τ, 1)|2
) 1

2

= Dn+ 1
2 v2n+2 |Qτ |

|Q(τ, 1)|2n+2 ,

and since β(1;n+ 3
2 ,

1
2 )

β(1;n+ 1
2 ,

1
2 ) = n+ 1

2
n+1 , we obtain the claim.

Lemma VII.5.3 motivates to define the auxiliary function

g[2]
n (τ) := Dn− 1

2 v2n |Qτ |
Q (τ , 1)n .

The second technical lemma treats the image of g[2]
n+1 under differentiation.
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Lemma VII.5.4. We have for n ∈ N

∂2n+1

∂τ2n+1 g
[2]
n (τ) = 0.

Proof. We prove the claim by induction. If n = 1, then the claim follows by applying
Lemma VII.2.4 (1) three times.

For the induction step, Lemma VII.2.4 (1) yields that

∂

∂τ

(
v`+2Qτ

)
= − i2`v

`+1Qτ + i

2v
`Q (τ , 1)

for every ` ∈ N0. Noting that ∂`+2

∂τ`+2 (v`Q(τ , 1)) = 0, we obtain

∂`+2

∂τ `+2

(
v`+1Qτ

)
= − i2(`+ 1) ∂

`+1

∂τ `+1

(
v`Qτ

)
.

Consequently, we find that

∂2n+3

∂τ2n+3 g
[2]
n+1(τ) = −D(2n+ 2)(2n+ 1)

4Q (τ , 1)
∂2n+1

∂τ2n+1 g
[2]
n (τ).

The right-hand side vanishes by the induction hypothesis, as desired.

The third lemma contains the main technical claim.

Lemma VII.5.5. We have for n ∈ N0

∂2n+1

∂τ2n+1 g
[1]
n (τ) = i(−1)n+1Dn+ 1

2 (2n)! sgn(Qτ )
22nQ(τ, 1)n+1 .

Proof. We prove the lemma by induction.
Step 1: The case n = 0
We apply the Fundamental Theorem of Calculus, Lemma VII.2.1, and Lemma VII.2.4,
yielding

∂

∂τ
β

(
Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)
= − iD

n+ 1
2 v2n sgn(Qτ )

|Q(τ, 1)|2nQ(τ, 1)
(VII.21)

for every n ∈ N0. In particular, this proves the desired identity for n = 0.
Step 2: The case n = 1
Using (VII.21) and the first identity of Lemma VII.2.5, we compute that

R−2n
(
g[1]
n (τ)

)
= −2nQτ

g
[1]
n (τ)
Q(τ, 1) + 2Dn+ 1

2 v2n sgn(Qτ )
Q (τ , 1)nQ(τ, 1) .
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Lemma VII.5.3 with n 7→ n− 1 gives

g
[1]
n (τ)
Q(τ, 1) =

n− 1
2

n
g

[1]
n−1(τ)− Dn− 1

2

n

v2n sgn(Qτ )Qτ
Q (τ , 1)nQ(τ, 1) .

Plugging into the previous equation and applying Lemma VII.2.1 yields

R−2n
(
g[1]
n (τ)

)
= −(2n− 1)Qτg[1]

n−1(τ) + 2Dn− 1
2 v2n−2 sgn(Qτ )
Q (τ , 1)n−1 .

We compute

R2−2n

(
2Dn− 1

2 v2n−2 sgn(Qτ )
Q (τ , 1)n−1

)
= 0,

R2−2n
(
Qτg

[1]
n−1(τ)

)
= QτR2−2n

(
g

[1]
n−1(τ)

)
− g[1]

n−1(τ)Q (τ , 1)
v2

by Lemma VII.2.4 (1). We infer that

R2−2n ◦R−2n
(
g[1]
n (τ)

)
= −(2n− 1)

(
QτR2−2n

(
g

[1]
n−1(τ)

)
− g[1]

n−1(τ)Q (τ , 1)
v2

)
.

Now, we suppose that n = 1. Then the previous equation gives

R0 ◦R−2
(
g

[1]
1 (τ)

)
= −QτR0

(
g

[1]
0 (τ)

)
+ g

[1]
0 (τ)Q (τ , 1)

v2 .

We then compute, using (VII.21)

R0
(
g

[1]
0 (τ)

)
= 2i ∂

∂τ
β

(
Dv2

|Q(τ, 1)|2
; 1
2 ,

1
2

)
= 2D 1

2 sgn(Qτ )
Q(τ, 1) .

Combining this with the previous equation we obtain

R2 ◦R0 ◦R−2
(
g

[1]
1 (τ)

)
= R2

(
−2Qτ

D
1
2 sgn(Qτ )
Q(τ, 1) + β

(
Dv2

|Q(τ, 1)|2
; 1
2 ,

1
2

)
Q (τ , 1)
v2

)
.

By Lemma VII.2.4 (1) and (VII.21), we calculate that

∂

∂τ

(
−2Qτ

D
1
2 sgn(Qτ )
Q(τ, 1) + β

(
Dv2

|Q(τ, 1)|2
; 1
2 ,

1
2

)
Q (τ , 1)
v2

)

= − iQ (τ , 1)
v2

D
1
2 sgn(Qτ )
Q(τ, 1) + 2Qτ

D
1
2 sgn(Qτ )
Q(τ, 1)2 Q′(τ, 1)− iD

1
2 sgn(Qτ )
Q(τ, 1)

Q (τ , 1)
v2

+ i

v3β

(
Dv2

|Q(τ, 1)|2
; 1
2 ,

1
2

)
Q (τ , 1) .
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Hence, by Lemma VII.2.1 and the first identity of Lemma VII.2.5

R2 ◦R0 ◦R−2
(
g

[1]
1 (τ)

)
= 4D 3

2 sgn(Qτ )
Q(τ, 1)2 .

We can directly conclude the claim using Bol’s identity (VII.12).
Step 3: Application of Lemmas VII.5.3 and VII.5.4 and reducing to 2n + 2
derivatives
Employing Lemma VII.5.3 and Lemma VII.5.4 with n 7→ n+ 1 yields

∂2n+3

∂τ2n+3 g
[1]
n+1(τ) =

n+ 1
2

n+ 1
∂2n+3

∂τ2n+3

(
Q(τ, 1)g[1]

n (τ)
)
. (VII.22)

By equation (VII.21), we compute that

∂

∂τ

(
Q(τ, 1)g[1]

n (τ)
)

= (n+ 1)Q(τ, 1)nQ′(τ, 1)β
(

Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)
− iDn+ 1

2 v2n sgn(Qτ )
Q (τ , 1)n .

We observe that the final term gets annihilated by differentiating 2n+ 1 times and thus

n+ 1
2

n+ 1
∂2n+3

∂τ2n+3

(
Q(τ, 1)g[1]

n (τ)
)

=
(
n+ 1

2

)
∂2n+2

∂τ2n+2

(
Q(τ, 1)nQ′(τ, 1)β

(
Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

))
.

Step 4: Reducing to 2n+ 1 derivatives
By equation (VII.21), we furthermore calculate that

∂

∂τ

(
Q(τ, 1)nQ′(τ, 1)β

(
Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

))

= nQ(τ, 1)n−1Q′(τ, 1)2β

(
Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)

+Q(τ, 1)nQ′′(τ, 1)β
(

Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)
− iQ(τ, 1)nQ′(τ, 1)D

n+ 1
2 v2n sgn(Qτ )

|Q(τ, 1)|2nQ(τ, 1)
.

By the first identity of Lemma VII.2.5, the final term may be rewritten as

−iQ(τ, 1)nQ′(τ, 1)D
n+ 1

2 v2n sgn(Qτ )
|Q(τ, 1)|2nQ(τ, 1)

= −D
n+ 1

2 v2n−1 sgn(Qτ )
Q (τ , 1)n + Dn+ 1

2 v2n |Qτ |
Q (τ , 1)nQ(τ, 1) .
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Again the final term gets annihilated upon differentiating 2n+ 1 times. Consequently,
we obtain, by the second identity of Lemma VII.2.5,

n+ 1
2

n+ 1
∂2n+3

∂τ2n+3

(
Q(τ, 1)g[1]

n (τ)
)

=
(
n+ 1

2

)
∂2n+1

∂τ2n+1

(
DnQ(τ, 1)n−1β

(
Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)

+(2n+ 1)Q(τ, 1)nQ′′(τ, 1)β
(

Dv2

|Q(τ, 1)|2
;n+ 1

2 ,
1
2

)
+ Dn+ 1

2 v2n |Qτ |
Q (τ , 1)nQ(τ, 1)

)

=
(
n+ 1

2

)
∂2n+1

∂τ2n+1

(
Dn

g
[1]
n (τ)
Q(τ, 1) + (2n+ 1)Q′′(τ, 1)g[1]

n (τ) + Dg
[2]
n (τ)

Q(τ, 1)

)
.

Step 5: Application of the induction hypothesis
We use Lemma VII.5.3 with n 7→ n− 1, to obtain

g
[1]
n (τ)
Q(τ, 1) =

n− 1
2

n
g

[1]
n−1(τ)− g

[2]
n (τ)

nQ(τ, 1) ,

and hence, using step 4,

n+ 1
2

n+ 1
∂2n+3

∂τ2n+3

(
Q(τ, 1)g[1]

n (τ)
)

=
(
n+ 1

2

)
∂2n+1

∂τ2n+1

(
D

(
n− 1

2

)
g

[1]
n−1(τ) + (2n+ 1)Q′′(τ, 1)g[1]

n (τ)
)
.

The induction hypothesis for n and n− 1, and the fact that Q′′(τ, 1) is independent of τ ,
then gives

n+ 1
2

n+ 1
∂2n+3

∂τ2n+3

(
Q(τ, 1)g[1]

n (τ)
)

=
(−1)niDn+ 1

2
(
n+ 1

2

)
(2n)! sgn(Qτ )

4n

(
1
n

∂2

∂τ2
1

Q(τ, 1)n − (2n+ 1) Q′′(τ, 1)
Q(τ, 1)n+1

)
.

Step 6: Simplifying the expressions
Using the second identity of Lemma VII.2.5, we compute

1
n

∂2

∂τ2
1

Q(τ, 1)n − (2n+ 1) Q′′(τ, 1)
Q(τ, 1)n+1 = D(n+ 1)

Q(τ, 1)n+2 .
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Inserting this into the result from step 5 yields

n+ 1
2

n+ 1
∂2n+3

∂τ2n+3

(
Q(τ, 1)g[1]

n (τ)
)

=
(−1)ni

(
n+ 1

2

)
(n+ 1) (2n)!Dn+ 3

2 sgn(Qτ )
4nQ(τ, 1)n+2 .

By equation (VII.22), we ultimately arrive at the claim of the lemma (with n 7→ n+1).

We are now ready to prove Proposition VII.5.2.

Proof of Proposition VII.5.2.

(1) By Lemma VII.2.3 and equation (VII.21), we obtain

∂

∂τ
β

(
Dv2

|Q(τ, 1)|2
; k + 1

2 ,
1
2

)
= iDk+ 1

2 v2k sgn(Qτ )
|Q(τ, 1)|2kQ(τ , 1)

.

This implies the claim.
(2) Lemma VII.5.5 implies that

1
2D

2k+1
(
g

[1]
k (τ)

)
= −D

k+ 1
2 (2k)!

(4π)2k+1
sgn(Qτ )
Q(τ, 1)k+1 ,

from which we deduce the claim by (VII.7).
(3) The claim follows directly from (VII.11) along with part (1) and (VII.7).

VII.5.3 Further properties of G−k,D and the proof of Theorem VII.1.2

We prove the local behaviour of G−k,D first. Similar as in the proof of Proposition
VII.4.2, we obtain.

Proposition VII.5.6. Let τ ∈ ED.
(1) We have

lim
ε→0+

(G−k,D(τ + iε)− G−k,D(τ − iε)) = 0.

(2) We have
1
2 lim
ε→0+

(G−k,D(τ + iε) + G−k,D(τ − iε)) = G−k,D(τ).

(3) We have

lim
ε→0+

(
∂

∂τ
G−k,D(τ + iε)− ∂

∂τ
G−k,D(τ − iε)

)
= iDk+ 1

2 v2k ∑
Q∈QD
Qτ=0

sgn(Q)
Q (τ , 1)k+1 .
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Secondly, we require the constant from [BKK15, equation (4.2), (7.3)] (using a different
normalization)

c∞ := πDk+ 1
2

22k(2k + 1)
∑
a≥1

∑
0≤b<2a

b2≡D (mod 4a)

1
ak+1 , (VII.23)

which can be evaluated using a result of Zagier [Zag77, Proposition 3].
As a third ingredient, we have, for every τ ∈ H \ ED,

ξ−2k
(
g∗k+1,D(τ)

)
= gk+1,D(τ), D2k+1

(
g∗k+1,D(τ)

)
= 0,

ξ−2k
(
Egk+1,D(τ)

)
= 0, D2k+1

(
Egk+1,D(τ)

)
= gk+1,D(τ).

(VII.24)

The third claim follows by holomorphicity of Egk+1,D , while the second claim holds as
g∗k+1,D (as a function of τ) is a polynomial of degree at most 2k by (VII.8). The first
and fourth claim follow by a standard calculation using the integral representations from
(VII.8) directly. Now, we are ready to prove Theorem VII.1.2.

Proof of Theorem VII.1.2. We prove part (2) first, and use it to prove part (1) afterwards.

(2) We define

f(τ) := G−k,D(τ) + Dk+ 1
2 (2k)!

(4π)2k+1 Egk+1,D(τ)−Dk+ 1
2 g∗k+1,D(τ).

Combining Proposition VII.5.2 with (VII.24), we deduce that

ξ−2k(f) = D2k+1(f) = 0.

Hence, f is a polynomial in τ of degree at most 2k. By Proposition VII.5.6 (1),
G−k,D has no jumps on ED. Thus, we may freely select an arbitrary connected
component of H \ED to compute f . Choosing the connected component of H \ED
containing i∞, we are in the same situation as in the induction start during the
proof of [BKK15, Theorem 7.1]. In other words, the function f is in fact constant,
and this constant was computed in [BKK15, Lemma 7.3]. We infer that f coincides
with c∞.

(1) We verify the four conditions in Definition VII.2.7.
(i) Modularity of weight −2k follows by Lemma VII.2.2 and equation (VII.10).
(ii) Local harmonicity with respect to ∆−2k outside ED is Proposition VII.5.2 (3).
(iii) The required behaviour on ED is given in Proposition VII.5.6 (2).
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(iv) The function G−k,D is of at most polynomial growth towards i∞ by virtue
of its splitting in Theorem VII.1.2 (2). Being more precise, gk+1,D admits a
Fourier expansion of the shape ∑n≥1 c(n)e2πinτ , where the Fourier coefficients
c(n) depend on the connected component of H \ ED in which τ is located.
Letting Γ(s, y) denote the incomplete Γ-function, we obtain for v � 1

Egk+1,D(τ) =
∑
n≥1

c(n)
n2k+1 e

2πinτ ,

g∗k+1,D(τ) =
∑
n≥1

c(n)
(4πn)2k+1 Γ(2k + 1, 4πnv)e−2πinτ .

We observe that the holomorphic Eichler integral vanishes as τ → i∞, and
the same holds for the nonholomorphic Eichler integral due to [BCLO10, §
8.11 (i)]. This proves that

lim
τ→i∞

G−k,D(τ) = c∞.

Proposition VII.5.6 (1) yields that the singularities of G−k,D on ED are continuously
removable. Combining Proposition VII.5.6 (3) with Lemmas VII.2.3 and VII.4.3
shows that G−k,D has no differentiable continuation to ED. This completes the
proof.

VII.6 Proof of Theorem VII.1.3

We finish this chapter with the proof of Theorem VII.1.3.

Proof of Theorem VII.1.3. We follow [BKV13, Sections 4, 5] and shift k 7→ k + 1 in
the calculations there. The treatment of Borcherds regularization can be adapted from
[BKV13, Section 4] to our case straightforwardly. This implies that the integral over the
unbounded region of FT (4) vanishes as T → ∞, while the truncated integral over the
bounded region converges to the usual Petersson inner product as T →∞. We may use
the usual unfolding argument and the computation of the integral over the real part both
exactly as in [BKV13, Section 4]. Combining, this yields

L∗−k

(
P 1

2−k,D

)
(τ) = 1

6Γ
(
k + 3

2

)
(4πD) k2 + 1

4

∑
Q∈QD

|Qτ |Q(τ, 1)kI
(

Dv2

|Q(τ, 1)|2
)
,
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where (compare [BKV13, equation (5.2)])

I(t) :=
∫ ∞

0
M 1

2−k,
k
2 + 3

4
(−x)e

x
2−

x
t x−

1
2 dx.

The evaluation is permitted, since τ /∈ ED gives Dv2

|Q(τ,1)|2 < 1 by Lemma VII.2.1, so the
series on the right-hand side converges. This can be seen directly after rewriting I in
the upcoming sentence, and comparing with Proposition VII.5.1. The integral I can be
evaluated mutans mutandis as in [BKV13], giving

I(t) = k!
(
k + 1

2

)
(1− t)− 1

2 t
1
2β

(
t; k + 1

2 ,
1
2

)
.

We conclude the theorem by Lemma VII.2.1.
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Chapter VIII

Local weak Maaß forms and
Eichler–Selberg type relations for
negative weight vector-valued
mock modular forms

This chapter is based on a preprint [MM21] recommended for publication in Pacific
Journal of Mathematics. This is joint work with Dr. Joshua Males.

VIII.1 Introduction and statement of results

Theta lifts have a storied history in the literature, receiving a vast amount of attention
in the past few decades with applications throughout mathematics. In this chapter, we
are concerned with generalizations of the Siegel theta lift originally studied by Borcherds
in the celebrated paper [Bor98]. The classical Siegel lift maps half-integral weight modular
forms to those of integral weight, and has seen a wide number of important applications.
For example, in arithmetic geometry [BZ22,ES18], deep results in number theory [BO10b],
fundamental work of Bruinier and Funke [BF04], among many others.

More recently, Bruinier and Schwagenscheidt [BS21] investigated the Siegel theta lift
on Lorentzian lattices (that is, even lattices of signature (1, n)), and in doing so provided
a construction of recurrence relations for mock modular forms of weight 3

2 , as well as
commenting as to how one could provide a similar structure for those of weight 1

2 , thereby
including Ramanujan’s classical mock theta functions.

In the last few years, several authors have also considered so-called “higher” Siegel
theta lifts of the shape (k := 1−n

2 , j ∈ N0)∫ reg

F

〈
Rjk−2j(f),ΘL(τ,z)

〉
vkdµ(τ)

where Rnκ := Rn−2 ◦Rn−4 ◦ · · · ◦Rκ is an iterated version of the Maaß raising operator
Rκ := 2i ∂∂τ + κ

v , f is weight k− 2j harmonic Maaß form with cuspidal shadow, and ΘL is
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the standard Siegel theta function associated to an even lattice L of signature (1, n). Here
and throughout, τ = u + iv ∈ H and z ∈ Gr(L), the Grassmanian of L. Furthermore,
〈·, ·〉 denotes the natural bilinear pairing. For example, they were considered by Bruinier
and Ono (for k = 0, j = 1) in the influential work [BO13], by Bruinier, Ehlen, and Yang
in in the breakthrough paper [BEY21] in relation to the Gross–Zagier conjecture, and by
Alfes-Neumann, Bringmann, Males, and Schwagenscheidt in [ANBMS21] for n = 2 and
generic j.

In [Mer14], Mertens investigated the classical Hurwitz class numbers, denoted by
H(n) for n ∈ N. Using techniques in (scalar-valued) mock modular forms, he gave an
infinite family of class number relations for odd n, two of which are
∑
s∈Z

H
(
n− s2

)
+ λ1(n) = 1

3σ1(n),
∑
s∈Z

(
4s2 − n

)
H
(
n− s2

)
+ λ3(n) = 0, (VIII.1)

where λk(n) := 1
2
∑
d|n min(d, nd )k and σk is the usual k-th power divisor function. Because

of their close similarity to the classical formula of Kronecker [Kro60] and Hurwitz [Hur85]∑
s∈Z

H
(
n− s2

)
− 2λ1(n) = 2σ1(n),

and those arising from the Eichler–Selberg trace formula, Mertens referred to the rela-
tionships (VIII.1) as Eichler–Selberg type relations. More generally, let [·, ·]ν denote the
ν-th Rankin–Cohen bracket (see Section VIII.2). In general, the Rankin–Cohen bracket
[f, g] is a mixed mock modular form of degree ν. It is of inherent interest to determine
its natural completion, say Λ, to a holomorphic modular form. Then following Mertens
[Mer16], we say that a (mock-) modular form f satisfies an Eichler–Selberg type relation
if there exists some holomorphic modular form g and some form Λ such that

[f, g]ν + Λ

is a holomorphic modular form. In the influential paper [Mer16], Mertens showed the
beautiful result that all mock-modular forms of weight 3

2 with holomorphic shadow satisfy
Eichler–Selberg type relations, using the powerful theory of holomorphic projection and
the Serre–Stark theorem stating that unary theta series form a basis for the spaces of
holomorphic modular forms of the dual weight1 1

2 . In particular, Mertens explicitly
describes the form Λ which completes the Rankin–Cohen brackets.

Following previous examples, to demonstrate the statement, let H denote the gen-
erating function of Hurwitz class numbers, let ϑ(τ) = ∑

n∈Z q
n2 , where qn = e2πinτ

1Mertens also provided results for mock theta functions in weight 1
2 , but since there is no analogue of

Serre–Stark in the dual weight 3
2 this is a real restriction.
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throughout. Then Mertens’ results show that [Mer16, pp. 377]

[H, ϑ]ν + 2−2ν−1
(

2ν
ν

)2
∑
r≥1

∑
m2−n2=r
m,n≥1

(m− n)2ν−1 qr +
∑
r≥1

r2ν+1qr


is a holomorphic modular form of weight 2ν + 2 for all ν ≥ 1, and a quasimodular form
of weight 2 if ν = 0.

In [Mal22], Males combined techniques of [ANBMS21, BS21] during a further in-
vestigation of the higher Siegel lift on Lorentzian lattices. This lift was shown to be
central in producing certain Eichler–Selberg type relations in the vector-valued case,
providing an analogue of the scalar-valued weight 3

2 case of Mertens. We remark that the
shape of the form Λ in the case of signature (1, 1) is very close to that of Mertens (see
[Mal22, Theorem 1.1]), though we do not recall it here to save on complicated definitions
in the introduction.

In the current chapter, we develop the theory for even generic signature (r, s) lattices
L and more general modified Siegel theta functions as in Borcherds [Bor98], and consider
the lift

Ψreg
j (f, z) :=

∫ reg

F

〈
Rjk−2j(f)(τ),ΘL(τ, ψ, p⊗)

〉
vkdµ(τ),

where ΘL is a modified Siegel theta function as in Borcherds [Bor98], essentially obtained
by including a certain polynomial p⊗ in the summand of the usual vector-valued Siegel
theta function. We require p⊗ to be homogenous and spherical of degree d+ ∈ N0
in the first r variables, and d− ∈ N0 in the last s variables (see Section VIII.2.7 for
precise definitions). Here, ψ is an isometry which in turn defines z - see Section VIII.2.7.
Modifying the theta function in this way preserves modular properties of ΘL, while
allowing us to obtain different weights of output functions. Furthermore, since the case
j = 0 is well-understood in the literature, we assume throughout that j > 0. We remark
that the signature (1, 2) with j = 0 case has also been studied in [Cra15,CF21].

In particular, we evaluate the higher lift in the now-standard ways of unfolding in
Theorem VIII.3.2, as well as recognizing it as a constant term in the Fourier expansion
of the Rankin–Cohen bracket of a holomorphic modular form and a theta function (up
to a boundary integral that vanishes for a certain class of input functions) in Theorem
VIII.3.3. For the second of these theorems, we use that at special points w, one may
define positve- and negative-definite sublattices P := L ∩w and N := L ∩w⊥. In the
simplest case, which we assume for the introduction, we have that L = P ⊕N . Then the
theta series splits as ΘL = ΘP ⊗ΘN , where ΘP is a positive definite theta series, and
ΘN a negative definite one. Then we let G+

P be the holomorphic part of a preimage of ΘP
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under ξκ := 2ivκ ∂
∂τ . For the sake of simplicity, we assume that G+

P + g in the statement
of Theorem VIII.1.1 is bounded at i∞ in the introduction; we overcome this assumption
in Theorem VIII.3.4 and offer a precise relation there. Following the ideas of [Mal22],
by comparing these two evaluations of our lift and invoking Serre duality, we obtain the
following theorem.
Theorem VIII.1.1. Let L be an even lattice of signature (r, s), with associated Weil
representation ρL. Let g be any holomorphic vector-valued modular form of weight
2− ( r2 + d+) for ρL. Suppose that G+

P + g is bounded at i∞. Then G+
P + g satisfies an

explicit Eichler–Selberg type relation. In particular, the form Λ is explicitly determined.
The concept of so-called locally harmonic Maaß forms was introduced by Bringmann,

Kane, and Kohnen in [BKK15]. These are functions that behave like classical harmonic
Maaß forms, except for an exceptional set of density zero, where they have jump
singularities. Since their inception, locally harmonic Maaß forms have seen applications
throughout number theory, for example in relation to central values of L-functions of
elliptic curves [EGKR20], as well as traces of cycle integrals and periods of meromorphic
modular forms [ANBMS21,LS22b] among many others. Examples of such locally harmonic
Maaß forms are usually achieved in the literature via a similar theta lift machinery to
that studied here. In addition to the direction of Theorem VIII.1.1, we also discuss the
action of the Laplace–Beltrami operator on the lift Ψreg

j in Theorem VIII.4.2. In doing
so, we prove the following theorem, thereby providing an infinite family of local weak
Maaß forms (and locally harmonic Maaß forms) in signatures (2, s). To state the result,
we let Fm,k−2j,s be a Maaß–Poincaré series as defined in Section VIII.2.5.
Theorem VIII.1.2. Let L be an even isotropic lattice of signature (2, s). Then the lift
Ψreg
j (Fm,k−2j,s, z) is a local weak Maaß form on Gr(L) with eigenvalue (s− k

2 )(1− s− k
2 )

under the Laplace–Beltrami operator.
We provide an example of an input function to our lift. To this end, we specialize our

setting to signature (1, 2), in which case vector-valued modular forms can be identified
with the usual scalar-valued framework on the complex upper half plane, and in particular
Gr(L) ∼= H. (We explain the required choices in Section VIII.5.) In 1975, Cohen [Coh75]
defined the generalized class numbers

H(`− 1, |D|) :=


0 if D 6= 0, 1 (mod 4),
ζ(3− 2`) if D = 0,
L
(
2− `,

(
D0
·

))∑
d|j µ(d)

(
D0
d

)
d`−2σ2`−3

(
j
d

)
else,

where D = D0j
2, as well as their generating functions

H`(τ) :=
∑
n≥0

H(`, n)qn, ` ∈ N \ {1}.
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Here, ζ refers to the Riemann zeta function, L(s, χ) to the Dirichlet L-function twisted
by a Dirichlet character χ, and µ is the Möbius function. The functions H` are known
as Cohen–Eisenstein series today, and can be viewed as half integral weight analogues
of the classical integral weight Eisenstein series. Note that the numbers H(2, n) are
precisely the Hurwitz class numbers introduced above, and H2 = H. Cohen proved that
H` ∈M`− 1

2
(Γ0(4)), the space of scalar-valued modular forms of weight 1

2 on the usual
congruence subgroup Γ0(4), and the coefficients satisfy Kohnen’s plus space condition by
definition. We refer the reader to [BFOR17, equations (2.13), (2.14), (2.15), Corollary
2.25] for more details on the Cohen–Eisenstein series.

However, evaluating our lift requires negative weight, and a non-constant principal
part of the input function. To overcome both obstructions, we let

f−2`,N (τ) = q−N +
∑
n>m

c−2`(N,n)qn, N ≥ −m,

m :=
{
b−2`

12 c − 1 if − 2` ≡ 2 (mod 12),
b−2`

12 c else,

be the unique weakly holomorphic modular form of weight −2` for SL2(Z) with such
a Fourier expansion. An explicit description of f−2`,N was given by Duke and Jenkins
[DJ08], and by Duke, Imamoḡlu, and Tóth [DIT10, Theorem 1]. Our machinery now
enables us to obtain Eichler–Selberg type relations for the weakly holomorphic function
f−2`,N (τ)H`(τ) along the lines of [Coh75, Section 6], as well as the following variant of
Theorem VIII.1.2.

Theorem VIII.1.3. The lift Ψreg
j

(
f−2`,NH`, z

)
is a local weak Maaß form on H for

every j ∈ N, ` ∈ N \ {1}, and −m ≤ N ∈ N with exceptional set given by the net of
Heegner geodesics

N⋃
D=1

{
z = x+ iy ∈ H : ∃a, b, c ∈ Z, b2 − 4ac = D, a |z|2 + bx+ c = 0

}
,

and eigenvalue (1− k + j)(−j) = j
(
j − `− 3

2
)
under ∆−`− 1

2
.

Remarks.

(1) Theorem VIII.1.3 generalizes immediately to any weakly holomorphic modular form
g. The exceptional set is given by the union of geodesics of discriminant D > 0, for
which the coefficient of g at q−D is non-zero.

(2) Recently, Wagner [Wag18] constructed a pullback of H` under the ξ-operator,
namely a harmonic Maaß form H` of weight −` + 1

2 on Γ0(4) that satisfies
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ξ 1
2−`

(H`) = H`+2. An explicit definition of H` can be found in [Wag18, equations
(1.5), (1.6)]. However, H` is a harmonic Maaß form with non-cuspidal shadow,
and we restrict ourselves to a more restricitve growth condition in Section VIII.2.3
to ensure convergence of our lift. It would be interesting to investigate different
regularizations of our lift, and in particular lift the function H`.

VIII.2 Preliminaries

We summarize some facts, which we require throughout.

VIII.2.1 The Weil representation

We recall that j
((
a b
c d

)
, τ
)

= cτ + d, and define the metaplectic double cover

Γ̃ := Mp2(Z) :=
{

(γ, φ) : γ ∈ SL2(Z), φ : H→ C holomorphic, φ2(τ) = j(γ, τ)
}
,

of SL2(Z), which is generated by the pairs

T̃ :=
((

1 1
0 1

)
, 1
)
, S̃ :=

((
0 −1
1 0

)
,
√
τ

)
,

where we fix a suitable branch of the complex square root throughout. Furthermore, we
define Γ̃∞ as the subgroup generated by T̃ .

We let L be an even lattice of signature (r, s), and Q be a quadratic form on L with
associated bilinear form (·, ·)Q. Moreover, we denote the dual lattice of L by L′, and
the group ring of L′/L by C

[
L′/L

]
. The group ring C

[
L′/L

]
has a standard basis, whose

elements will be called eµ for µ ∈ L′/L. We recall that there is a natural bilinear form
〈·, ·〉 on C

[
L′/L

]
defined by 〈eµ, eν〉 = δµ,ν .

Equipped with this structure, the Weil representation ρL of Γ̃ associated to L is
defined on the generators by

ρL
(
T̃
)

(eµ) := e(Q(µ))eµ, ρL
(
S̃
)

(eµ) :=
e
(

1
8(s− r)

)
√
|L′/L|

∑
ν∈L′/L

e(−(ν, µ)Q)eν ,

where we stipulate e(x) := e2πix throughout. We let L− := (L,−Q), and call ρL− the
dual Weil representation of L.
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VIII.2.2 The generalized upper half plane and the invariant Laplacian

We follow the exposition in [Bru02, Subsections 3.2, 4.1], and let the signature of L
be (2, s) here. We assume that L is isotropic, i.e., that it contains a non-trivial vector x
of norm 0, and by rescaling we may assume that it is primitive, that is if x = cy for some
y ∈ L and c ∈ Z then c = ±1. Note that for s ≥ 3 all lattices contain such an isotropic
vector (see [Bor98, Section 8]).

Let z ∈ L be a primitive norm 0 vector, and z′ ∈ L′ with (z, z′)Q = 1. Let
K := L ∩ z⊥ ∩ z′⊥. Let d ∈ K be a primitive norm 0 vector, and d′ ∈ K ′ with
(d,d′)Q = 1. It follows that D := K ∩d⊥∩d′⊥ is a negative definite lattice, and we write

Z =
(
d′ −Q(d′)d

)
z1 + z2d+ z3d3 + . . .+ z`d` =: (z1, z2, . . . , z`) ∈ K ⊗ C,

since z3d3 + . . .+ z`d` ∈ D⊗C. Each zj has a real part xj and a imaginary part yj , and
we note that

Q(Y ) := Q(y1, . . . , y`) = y1y2 − y2
3 − y2

4 − . . .− y2
` .

This gives rise to the generalized upper half plane

H` := {Z ∈ K ⊗ C : y1 > 0, Q(Y ) > 0} ∼= Gr(L).

Letting

∂µ := ∂

∂zµ
= 1

2

(
∂

∂xµ
− i ∂

∂yµ

)
, ∂µ := ∂

∂zµ
= 1

2

(
∂

∂xµ
+ i

∂

∂yµ

)
,

it can be shown that the invariant Laplacian on H` has the coordinate representation
[Nak82]

Ω :=
∑̀
µ,ν=1

yµyν∂µ∂ν −Q(Y )

∂1∂2 + ∂1∂2 −
1
2
∑̀
µ=3

∂µ∂µ

 .
VIII.2.3 Maaß forms

Let κ ∈ 1
2Z, (γ, φ) ∈ Γ̃, and consider a function f : H → C

[
L′/L

]
. The modular

transformation in this setting is captured by the slash-operator

f |κ,ρL (γ, φ)(τ) := φ(τ)−2κρ−1
L (γ, φ)f(γτ),

which leads to vector-valued Maaß forms as follows [BF04].
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Definition VIII.2.1. Let f : H→ C
[
L′/L

]
be smooth. Then f is a weight κ weak Maaß

form with cuspidal shadow with respect to ρL if it satisfies the following three conditions.

(1) We have f |κ,ρL (γ, φ)(τ) = f(τ) for every τ ∈ H and every (γ, φ) ∈ Γ̃.
(2) The function f is an eigenfunction of the weight κ hyperbolic Laplace operator,

which is explicitly given by

∆κ := −v2
(
∂2

∂u2 + ∂2

∂v2

)
+ iκv

(
∂

∂u
+ i

∂

∂v

)
.

(3) There exists a polynomial2 in q denoted by Pf : {0 < |w| < 1} → C[L′/L] such that
f(τ)− Pf (q) ∈ O (e−εv) as v →∞ for some ε > 0.

We call f a harmonic Maaß form with cuspidal shadow if the eigenvalue equals 0.

We write Hcusp
κ,L for the vector space of weight κ harmonic Maaß forms with cuspidal

shadows with respect to ρL, and M !
κ,L ⊆ Hcusp

κ,L for the subspace of weakly holomorphic
vector-valued modular forms. The subspace S!

κ,L ⊆M !
κ,L collects all forms that vanish at

all cusps, and such forms are referred to as weakly holomorphic cusp forms.
Bruinier and Funke [BF04] proved that a weight κ 6= 1 harmonic Maaß form with cusp-

idal shadow f decomposes as a sum f = f+ +f− of a holomorphic and a nonholomorphic
part, whose Fourier expansions are of the shape

f+(τ) =
∑

µ∈L′/L

∑
n∈Q

n�−∞

c+
f (µ, n)qneµ, f−(τ) =

∑
µ∈L′/L

∑
n∈Q
n<0

c−f (µ, n)Γ (1− κ, 4π |n| v) qneµ,

where Γ(t, x) :=
∫∞
x ut−1e−udu, x > 0, denotes the incomplete Gamma function (see the

paragraph following equation (I.3) and Section II.2 for more details and references).
Harmonic Maaß forms with cuspidal shadow can be inspected via the action of various

differential operators. We require the antiholomorphic operator

ξκ := 2ivκ ∂
∂τ
,

as well as the Maaß raising and lowering operators

Rκ := 2i ∂
∂τ

+ κ

v
, Lκ := −2iv2 ∂

∂τ
.

The operator ξκ defines a surjective map from Hcusp
κ,L to S!

2−κ,L− [BF04]. In particular, it
intertwines with the slash operator introduced above, and the space M !

κ,L is precisely the
kernel of ξκ when restricted to Hcusp

κ,L .
2Such a polynomial is called the principal part of f .
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The operators Rκ and Lκ increase and decrease the weight κ by 2 respectively, but
do not preserve the eigenvalue under ∆κ. For any n ∈ N0, we let

R0
κ := id, Rnκ := Rκ+2n−2 ◦ . . . ◦Rκ+2 ◦Rκ,

L0
κ := id, Lnκ := Lκ−2n+2 ◦ . . . ◦ Lκ−2 ◦ Lκ

be the iterated Maaß raising and lowering operators, which increase or decrease the
weight κ by 2n.

Remark. If one relaxes the growth condition (3) to linear exponential growth, that is
f(τ) ∈ O(eεv) as v → ∞ for some ε > 0, then f− is permitted to have an additional
(constant) term of the form c−f (µ, 0)v1−κeµ. In this case, ξκ maps such a form to a weakly
holomorphic modular form instead of a weakly holomorphic cusp form.

VIII.2.4 Local Maaß forms

Locally harmonic Maaß forms were introduced by Bringmann, Kane, and Kohnen
[BKK15] for negative weights, and independently by Hövel [Höv12] for weight 0. We
generalize the exposition by Bringmann, Kane, and Kohnen here, and provide a definition
in our setting on Grassmannians and for arbitrary eigenvalues.

Definition VIII.2.2. A local weak Maaß form of weight κ with closed exceptional set
X ( H` of measure zero is a function f : H` → C

[
L′/L

]
, which satisfies the following four

properties:

(1) For all (γ, φ) ∈ Γ̃ and all Z ∈ H` it holds that f |κ,ρL (γ, φ)(Z) = f(Z).
(2) For every Z ∈ H` \X, there exists a neighborhood of Z, in which f is real-analytic

and an eigenfunction of Ω.
(3) We have

f(Z) = 1
2 lim
ε↘0

(
f
(
Z + (iε, 0, . . . , 0)T

)
+ f

(
Z − (iε, 0, . . . , 0)T

))
for every Z ∈ X.

(4) The function f is of at most polynomial growth towards all cusps.

Paralleling the definition of harmonic Maaß forms, we call a local weak Maaß form locally
harmonic if the eigenvalue from the second condition is 0.
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VIII.2.5 Poincaré series

Weakly holomorphic Poincaré series

Following Knopp and Mason [KM04, Section 3], we let m ∈ Z, κ ∈ 1
2N satisfying

κ > 2, µ ∈ L′/L, and define

Fµ,m,κ(τ) := 1
2

∑
(γ,φ)∈Γ̃∞\Γ̃

(e((m+ 1)τ)eµ) |κ,ρL (γ, φ).

The authors of [KM04] proved that Fµ,m,κ converges absolutely, and that it defines a
weakly holomorphic modular form of weight κ for ρL. In addition, they computed the
Fourier expansion of Fµ,m,κ, which is of the shape

Fµ,m,κ(τ) =
∑

ν∈L′/L

δµ,νqm+1 +
∑
n≥0

c(n)qn+1

 eν .

The Fourier coefficients c(n) can be found in [KM04, Theorem 3.2] explicitly.

Maaß–Poincaré series

We recall an important example of harmonic Maaß forms with cuspidal shadows. To
this end, let κ ∈ −1

2N, let Mµ,ν be the usual M -Whittaker function (see [BCLO10, §
13.14]), and define the auxiliary function

Mκ,s(y) := |y|−κ2 Msgn(y)κ2 ,s−
1
2
(|y|), y ∈ R \ {0} .

We averageMκ over Γ̃ as usual with respect to the parameters µ ∈ L′/L, m ∈ N \ {Q(µ)},
and κ, s. This yields the vector-valued Maaß–Poincaré series [Bru02]

Fµ,m,κ,s(τ) := 1
2Γ(2s)

∑
(γ,φ)∈Γ̃∞\Γ̃

(Mκ,s(4πmv)e(−mu)eµ) |κ,ρL (γ, φ).

By our choice of parameters and taking cosets, the series converges absolutely. The
eigenvalue under ∆κ is given by (s− κ

2 )(1− s− κ
2 ). Hence if s = κ

2 or s = 1− κ
2 , then

we have Fµ,m,κ,s ∈ Hcusp
κ,L . The principal part of Fµ,m,κ,s is given by e(−mτ)(eµ + e−µ) in

this case, and ξκ(Fµ,−m,κ,s) is a weight 2− κ cusp form.
Furthermore, the Maaß–Poincaré series have the following useful property thanks to

their simple principal part.
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Lemma VIII.2.3. Let f ∈ Hcusp
κ,L with κ ∈ −1

2N, and principal part

Pf (τ) =
∑

µ∈L′/L

∑
n<0

c+
f (µ, n)e(nτ)eµ ∈ C [L′/L] [e(−τ)] .

Then, we have

f(τ) = 1
2
∑

µ∈L′/L

∑
m>0

c+
f (µ,−m)Fµ,m,κ,1−κ2 (τ).

Additionally, we require the following computational lemma, which is taken from
[ANBMS21, Lemma 2.1], and follows inductively from [BEY21, Proposition 3.4].

Lemma VIII.2.4. For any n ∈ N0 it holds that

Rnκ (Fµ,m,κ,s) (τ) = (4πm)n
Γ
(
s + n+ κ

2
)

Γ
(
s + κ

2
) Fµ,m,κ+2n,s(τ).

VIII.2.6 Restriction, trace maps, and Rankin–Cohen brackets

As before, we fix an even lattice L. We let Aκ,L be the space of smooth functions
f : H→ C

[
L′/L

]
, which are invariant under the weight κ slash operator with respect to

the representation ρL. Moreover, let K ⊆ L be a finite index sublattice. Hence, we have
L′ ⊆ K ′, and thus L/K ⊆ L′/K ⊆ K′/K. This induces a map L′/K → L′/L, given by µ 7→ µ̄.
If µ ∈ K′/K, f ∈ Aκ,L, g ∈ Aκ,K , and µ is a fixed preimage of µ̄ in L′/K, we define

(fK)µ :=
{
fµ̄ if µ ∈ L′/K,

0 if µ 6∈ L′/K,

(
gL
)
µ̄

=
∑

α∈L/K
gα+µ,

The following lemma may be found in [BY09, Section 3].

Lemma VIII.2.5. In the notation above, there are two natural maps

resL/K : Aκ,L → Aκ,K , trL/K : Aκ,K → Aκ,L,

f 7→ fK g 7→ gL

satisfying 〈
f, gL

〉
= 〈fK , g〉

for any f ∈ Aκ,L, g ∈ Aκ,K .
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Let κ, ` ∈ 1
2Z, f ∈ Aκ,K , g ∈ A`,L. Writing

f =
∑
µ

fµeµ, g =
∑
ν

gνeν ,

and letting n ∈ N0, we define the tensor product of f and g as well as the n-th Rankin–
Cohen bracket of f and g as

f ⊗ g :=
∑
µ,ν

fµgνeµ+ν ∈ Aκ+`,K⊕L,

[f, g]n := 1
(2πi)n

∑
r,s≥0
r+s=n

(−1)rΓ(κ+ n)Γ(`+ n)
Γ(s+ 1)Γ(κ+ n− s)Γ(r + 1)Γ(`+ n− r)f

(r) ⊗ g(s),

where f (r) and g(s) are usual higher derivatives of f and g. Then we have the following
vector-valued analogue of [BEY21, Proposition 3.6].

Lemma VIII.2.6. Let f ∈ Hcusp
κ,L1

and g ∈ Hcusp
`,L2

. For n ∈ N0 it holds that

(−4π)nLκ+`+2n ([f, g]n) = Γ(κ+ n)
n! Γ(κ) Lκ(f)⊗Rn` (g) + (−1)nΓ(`+ n)

n! Γ(`) R
n
κ(f)⊗ L`(g).

Finally, we have the following lemma, which can be verified straightforwardly (see
[ANBMS21, Proof of Theorem 4.1]).

Lemma VIII.2.7. Let h be a smooth function, g be holomorphic, and κ, ` ∈ R. Then it
holds that

R`−κ(vκg ⊗ h) = vkg ⊗R`(h).

VIII.2.7 Theta functions and special points

We fix an even lattice L of signature (r, s), and extend the quadratic form on L to
L⊗ R in the natural way. We denote the orthogonal projection of λ ∈ L+ µ onto the
linear subspaces spanned by z and its orthogonal complement with respect to (·, ·)Q by
λz and λz⊥ respectively. In other words, we have

L⊗ R = z ⊕ z⊥, λ = λz + λz⊥ .

Let Gr(L) be the Grassmannian of r-dimensional subspaces of L⊗R. Let Z ⊆ Gr(L) be
the set of all such subspaces on which Q is positive definite. One can endow Z with the
structure of a smooth manifold.
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Let pr : Rr,0 → C, and ps : R0,s → C be spherical polynomials, which are homogeneous
of degree d+, d− ∈ N0 respectively. Define

p⊗ := pr ⊗ ps,

and let ψ : L⊗ R→ Rr,s be an isometry. We set

z := ψ−1(Rr,0) ∈ Z, z⊥ = ψ−1(R0,s).

For a positive-definite lattice (K,Q) of rank n, and a homogeneous spherical polyno-
mial p of degree d, we define the usual theta function

ΘK(τ, ψK , p⊗) :=
∑
λ∈K′

p⊗(ψK(λ))e (Q(λ)τ) ,

where ψK is the isometry associated to K. It is a holomorphic modular form of weight
n
2 + d for ρK . If the isometry is trivial, we write ΘK(τ, p⊗).

Following Borcherds [Bor98] and Hövel [Höv12], we define the general Siegel theta
function as follows.3

Definition VIII.2.8. Let τ ∈ H and assume the notation above. Then we put

ΘL(τ, ψ, p⊗) := v
s
2 +d− ∑

µ∈L′/L

∑
λ∈L+µ

p⊗(ψ(λ))e (Q(λz)τ +Q(λz⊥)τ) eµ.

One can check that the function ΘL converges absolutely on H× Z. The following
result is [Höv12, Satz 1.55], which follows directly from [Bor98, Theorem 4.1].

Lemma VIII.2.9. Let (γ, φ) ∈ Γ̃. Then we have

ΘL(γτ, ψ, p⊗) = φ(τ)r+2d+−(s+2d−)ρL(γ, φ)ΘL(τ, ψ, p⊗).

Thus, we define

k := r − s
2 + d+ − d−.

The following terminology is borrowed from [BS21].

Definition VIII.2.10. An element w ∈ Gr(L) is called a special point if it is defined
over Q that is w ∈ L⊗Q.

3In fact, Borcherds considered a slightly more general theta function, where the polynomial p does
not necessarily vanish under ∆κ. For us however, this more general case would not yield spherical theta
functions as we desire.
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We observe that if w is a special point, then w⊥ is a special point as well. This yields
the splitting

L⊗Q = w ⊕w⊥,

which in turn yields the positive and negative definite lattices

P := L ∩w, N := L ∩w⊥.

Clearly, P ⊕N is a sublattice of L of finite index, and according to Lemma VIII.2.5, the
theta functions associated to both lattices are related by

ΘL = (ΘP⊕N )L.

We identify C
[
(P⊕N)′/(P⊕N)

]
with C

[
P ′/P

]⊗ C
[
N ′/N

]
, and let ψP , ψN be the restrictions

of ψ onto P , N , respectively. Consequently, we have the splitting

ΘP⊕N (τ, ψ, p⊗) = ΘP (τ, ψP , pr)⊗ v
s
2 +d−ΘN−(τ, ψN , ps)

at a special point w, which can be verified straightforwardly. Furthermore, we ob-
serve that ΘP (τ, ψP , pr) is holomorphic and of weight r

2 + d+ as a function of τ , while
v
s
2 +d−ΘN−(τ, ψN , ps) is of weight − s

2 − d− with respect to τ .

VIII.2.8 Serre duality

The following result can be found in [LS22a, Proposition 2.5] for instance.

Proposition VIII.2.11 (Serre duality). Let L be an even lattice, and κ ∈ 1
2Z. Assume

that

g(τ) =
∑

h∈L′/L

∑
n≥0

cg(h, n)e(nτ)eh

is bounded at the cusp i∞. Then g is a holomorphic modular form of weight κ for the
Weil representation ρL if and only if we have∑

h∈L′/L

∑
n≥0

cg(h, n)cf (h,−n) = 0

for every weakly holomorphic modular form f of weight 2− κ for ρL.

VIII.3 The theta lift
We consider the theta lift Ψreg

j (f, z) and evaluate it in two different ways. Using
Serre duality goes back to Borcherds [Bor99].
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VIII.3.1 Evaluation in terms of 2F1

We begin by evaluating the higher modified lift as a series involving Gauss hypergeo-
metric functions as follows.

Evaluating the theta lift of Maaß–Poincaré series for general spectral param-
eters

Let s ∈ C be such that

Fm,κ,s(τ) :=
∑

µ∈L′/L

Fµ,m,κ,s(τ)

converges absolutely, that is Re(s) > 1− κ
2 .

Theorem VIII.3.1. We have

Ψreg
j (Fm,k−2j,s, z) = (4πm)j+1−k− s2−d

− Γ
(
s + k

2

)
Γ
(
k+s

2 + d− − 1 + s
)

2Γ(2− k + 2j)Γ
(
s + k

2 − j
) ∑

µ∈L′/L

∑
λ∈L+µ
Q(λ)=−m

× p⊗(ψ(λ))
(

Q(λ)
Q (λz⊥)

) k+s
2 +d−−1+s

2F1

(
k + s,

k + s

2 + d− − 1 + s; 2s; Q(λ)
Q (λz⊥)

)
.

Remark. Choosing the homogeneous polynomial in the theta kernel function to be the
constant function 1 and computing the action of Rjk−2j on Fm,k−2j,s by Lemma VIII.2.4,
this result becomes [Bru02, Theorem 2.14].

Proof. We summarize the argument from [Bru02, Theorem 2.14] for convenience of the
reader. We need to evaluate

Ψreg
j (Fm,k−2j,s, z) =

∫ reg

F

〈
Rjk−2j(Fm,k−2j,s)(τ),ΘL(τ, ψ, p⊗)

〉
vkdµ(τ).

Consequently, we compute the action of the raising operator first, and have

Ψreg
j (Fm,k−2j,s, z) = (4πm)j

Γ
(
s + k

2

)
Γ
(
s + k

2 − j
) ∫ reg

F

〈
(Fm,k,s)(τ),ΘL(τ, ψ, p⊗)

〉
vkdµ(τ)
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by Lemma VIII.2.4. Secondly, we insert the definitions of both functions, and unfold the
integral, obtaining

Ψreg
j (Fm,k−2j,s, z) =

(4πm)jΓ
(
s + k

2

)
2Γ(2− k + 2j)Γ

(
s + k

2 − j
) ∑
µ∈L′/L

∑
λ∈L+µ

p⊗(ψ(λ))

×
∫ 1

0

∫ ∞
0

(4πmv)−
k
2M− k2 ,s−

1
2
(4πmv)e(−mu)e (Q(λz)τ +Q(λz⊥)τ)v

s
2 +d−+k−2dvdu.

Third, we compute the integral over u using that e(w) = e(−w), and that

∫ 1

0
e(−mu)e (−Q(λz)u−Q(λz⊥)u) du =

{
1 if Q(λz) +Q(λz⊥) = −m,
0 else.

Hence, we obtain

Ψreg
j (Fm,k−2j,s, z) =

(4πm)j− k2 Γ
(
s + k

2

)
2Γ(2− k + 2j)Γ

(
s + k

2 − j
) ∑
µ∈L′/L

∑
λ∈L+µ
Q(λ)=−m

p⊗(ψ(λ))

×
∫ ∞

0
M− k2 ,s−

1
2
(4πmv)e−2πv(Q(λz)−Q(λ

z⊥ ))v
s+k

2 +d−−2dv.

The integral is a Laplace transform. Using that m
2m + Q(λz)−Q(λ

z⊥ )
2m = Q(λz⊥)

Q(λ) along with
[BCLO10, item 13.23.1], it evaluates∫ ∞

0
M− k2 ,s−

1
2
(4πmv)e−2πv(Q(λz)−Q(λ

z⊥ ))v
k+s

2 +d−−2dv

=
(4πm)1− k+s

2 −d
−Γ
(
k+s

2 + d− − 1 + s
)

(
Q(λz)−Q(λ

z⊥ )
2m + 1

2

) k+s
2 +d−−1+s

× 2F1

k + s,
k + s

2 + d− − 1 + s; 2s; 1
1
2 + Q(λz)−Q(λ

z⊥ )
2m

 .
We recall Q(λ) = Q(λz)+Q(λz⊥) = −m, and rewrite the argument of the hypergeometric
function to

m

2m + Q(λz)−Q(λz⊥)
2m = Q (λz⊥)

Q(λ) .
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Thus, we arrive at

Ψreg
j (Fm,k−2j,s, z) = (4πm)j+1−k− s2−d

− Γ
(
s + k

2

)
Γ
(
k+s

2 + d− − 1 + s
)

2Γ(2− k + 2j)Γ
(
s + k

2 − j
) ∑

µ∈L′/L

∑
λ∈L+µ
Q(λ)=−m

× p⊗(ψ(λ))
(

Q(λ)
Q (λz⊥)

) k+s
2 +d−−1+s

2F1

(
k + s,

k + s

2 + d− − 1 + s; 2s; Q(λ)
Q (λz⊥)

)
,

as claimed.

Combining the previous result with Lemma VIII.2.3 yields the following consequence.

Corollary VIII.3.2. Let j ∈ N0, and f ∈ Hcusp
k−2j,L. Assume that k − 2j < 0. Then we

have

Ψreg
j (f, z) =

(4π)j+1−k− s2−d
−
j! Γ

(
s
2 + d− + j

)
4Γ(2− k + 2j)

∑
λ∈L′
Q(λ)<0

c+
f (λ, Q(λ))p⊗(ψ(λ))

× |Q(λ)|2j+1−k

|Q(λz⊥)| s2 +j+d− 2F1

(
1 + j,

s

2 + d− + j; 2− k + 2j; Q(λ)
Q(λz⊥)

)
.

Proof. Since the weight of f is negative, we have

f(τ) = 1
2
∑

h∈L′/L

∑
m≥0

c+
f (h,−m)Fh,m,k−2j,1− k2 +j(τ)

according to Lemma VIII.2.3, and we observe that the term corresponding to m = 0
will vanish due to c+

f (h, 0) = 0 by our more restrictive growth condition on Maaß forms.
Consequently, we have

Ψreg
j (f, z) = 1

2
∑

µ∈L′/L

∑
m>0

c+
f (µ,−m)Ψreg

j

(
Fµ,m,k−2j,1− k2 +j , z

)
.

We insert the spectral parameter s = 1− k−2j
2 into Theorem VIII.3.1, which yields the

claim.

VIII.3.2 Evaluation in terms of the constant term in a Fourier expansion

We let

CT
( ∑
n�−∞

a(n)qn
)

:= a(0),
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and determine the lift as such a constant term in a Fourier expansion plus a certain
boundary integral that vanishes for a certain class of input function.

Theorem VIII.3.3. Let f ∈ Hcusp
k−2j,L and w be a special point, and G+

P be the holomorphic
part of a preimage of ΘP under ξ2−( r2 +d+). Then we have

Ψreg
j (f,w) =

j!(4π)jΓ
(
2− r

2 − d+)
Γ
(
2− r

2 − d+ + j
) (

CT
(〈

fP⊕N (τ),
[
G+
P (τ),ΘN−(τ)

]
j

〉)
−
∫ reg

F

〈
Lk−2j (fP⊕N ) (τ),

[
G+
P (τ),ΘN−(τ)

]
j

〉
v−2dτ

)
.

Remark. In general, the coefficients of G+
P are expected to be transcendental. However, in

weight 1
2 and 3

2 the function G+
P may be chosen to have rational coefficients - a situation

which is expected to also hold for ξ-preimages of CM modular forms. It is therefore
expected that one obtains rationality (up to powers of π) of the modified higher lift
only in these cases, and stipulating that f is weakly holomorphic meaning that the final
integral vanishes.

By a slight abuse of notation, we write ΘL(τ,w, p⊗) for the theta function evaluated
at an isometry ψ that produces a special point w.

Proof of Theorem VIII.3.3. We restrict to special points w ∈ Gr(L). This enables us to
write 〈

Rjk−2j(f)(τ),ΘL(τ,w, p⊗)
〉

=
〈
Rjk−2j(fP⊕N )(τ),ΘP⊕N (τ,w, p⊗)

〉
.

Next, we use that the raising and lowering operator are adjoint to each other (see
[Bru02, Lemma 4.2]), which gives

Ψreg
j (f,w) =

∫ reg

F

〈
fP⊕N (τ), Lj−1

k

(
ΘP⊕N (τ,w, p⊗)

)〉
vk−2dτ.

We observe that the boundary terms disappear in the same fashion as during the proof
of [Bru02, Lemma 4.4]. Next, we rewrite

Ψreg
j (f,w) = (−1)j

∫ reg

F

〈
fP⊕N (τ), Rj−k

(
ΘP⊕N (τ,w, p⊗)vk

)〉
v−2dτ,

and recall that

ΘP⊕N (τ,w, p⊗) = ΘP (τ, pr)⊗ v
s
2 +d−ΘN−(τ, ps) = v

s
2 +d−ΘP (τ, pr)⊗ΘN−(τ, ps).
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Consequently, we obtain

Rj−k

(
ΘP⊕N (τ,w, p⊗)vk

)
= Rj−k

(
vk+ s

2 +d−ΘP (τ, pr)⊗ΘN−(τ, ps)
)

= vk+ s
2 +d−ΘP (τ, pr)⊗

(
Rjs

2 +d−
(
ΘN−

)
(τ, ps)

)
,

by Lemma VIII.2.7. In particular we note that vk+ s
2 +d−ΘP (τ, pr) has weight−k− s

2−d− =
− r

2 − d+.
We choose a preimage GP of ΘP (τ, pr) under ξ2−( r2 +d+), namely

ΘP (τ, pr) = ξ2− r2−d+ (GP ) (τ) = v−
r
2−d

+
L2− r2−d+ (GP ) (τ),

which yields

Rj−k

(
ΘP⊕N (τ,w, p⊗)vk

)
= L2− r2−d+ (GP ) (τ)⊗Rjs

2 +d−
(
ΘN−

)
(τ, ps).

We apply the computation of the Rankin–Cohen brackets given in Lemma VIII.2.6 noting
that L`

(
ΘN−

)
= 0, and that it suffices to deal with the holomorphic part G+

P of GP (both
by virtue of holomorphicity in computing the Rankin–Cohen bracket). Thus,

Rj−k

(
ΘP⊕N (τ,w, p⊗)vk

)
= j!(−4π)jΓ(2− k)

Γ (2− k + j) v−
s
2−d

−
L2−k+ s

2 +d−+2j

([
G+
P (τ),ΘN−(τ, ps)

]
j

)
.

Hence, the theta lift becomes

Ψreg
j (f,w)

=
j!(4π)jΓ

(
2− r

2 − d+)
Γ
(
2− r

2 − d+ + j
) ∫ reg

F

〈
fP⊕N (τ), L2−k+2j

([
G+
P (τ),ΘN−(τ, ps)

]
j

)〉
v−2dτ.

The last step is to apply Stokes’ Theorem, compare the proof of [Bru02, Lemma 4.2] for
example, which yields

Ψreg
j (f,w)

=
j!(4π)jΓ

(
2− r

2 − d+)
Γ
(
2− r

2 − d+ + j
) (

lim
T→∞

∫ 1+iT

iT

〈
fP⊕N (τ),

[
G+
P (τ),ΘN−(τ, ps)

]
j

〉
v−2dτ

−
∫ reg

F

〈
Lk−2j (fP⊕N ) (τ),

[
G+
P (τ),ΘN−(τ, ps)

]
j

〉
v−2dτ

)
,

utilizing again that boundary terms vanish. We observe that the left integral can be
regarded as the Fourier coefficient of index 0 in the Fourier expansion of the integrand,
see the bottom of page 14 in [BS21]. This proves the claim.
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We end this section by noting that to obtain recurrence relations, as in [BS21], one
would need to compute the Fourier expansion of the lift. In general, this is a lengthy
but straightforward process, and since we do not require it in this chapter we omit the
details. In essence, one follows the calculations of Borcherds [Bor98] by using Lemma
VIII.2.4. A resulting technicality is to then take care of the different spectral parameter.
One may overcome this by relating the coefficients of Maaß–Poincaré series to those with
other spectral parameters, again using the action of the iterated Maaß raising operator
as in Lemma VIII.2.4.

VIII.3.3 Proof of Theorem VIII.1.1

We now prove a refined version of Theorem VIII.1.1. To this end, we define the
function

ΛL(ψ, p⊗, j) :=
(4π)1− r2−d

+Γ
(
s
2 + j + d−

)
Γ
(
2− r

2 − d+ + j
)

4Γ(2− k + 2j)Γ
(
2− r

2 − d+)
×

∑
m≥1
λ∈L′

Q(λ)=−m

p⊗(ψ(λ)) |Q(λ)|2j+1−k

|Q(λz⊥)| s2 +j+d− 2F1

(
1 + j,

s

2 + j + d−; 2− k + 2j; Q(λ)
Q(λz⊥)

)
qm

for j > 0. We write

G+
P (τ) =

∑
µ∈L′/L

∑
n�−∞

a(n)qneµ,

and furthermore define

G +
P (τ) := G+

P (τ)−
∑

µ∈L′/L

∑
n<0

a(n)Fµ,n−1,2j+2−k(τ).

Since one may add any weakly holomorphic modular form of appropriate weight for
ρL to G+

P , Theorem VIII.1.1 follows directly from the following result (noting that the
linear combination of Maaß–Poincaré series may change).

Theorem VIII.3.4. Let L be an even lattice of signature (r, s), let p be as before, and w
be a special point defined by the isometry ψ. Let j > 0 and k be such that 2j + 2− k > 2.
Then the function [

G +
P (τ),ΘN−(τ, ps)

]L
j
− ΛL(ψ, p⊗, j)

is a holomorphic vector-valued modular form of weight 2j + 2− k for ρL.

170



VIII.3. THE THETA LIFT

Remarks.
(1) This provides the general vector-valued analogue, assuming that the lattice is

chosen such that 2j + 2− k > 2, of Mertens’ scalar-valued results in weight 1
2 and

3
2 [Mer16].

(2) Note that the slight correction of G+
P by Poincaré series was missing in [Mal22].

(3) In certain cases the hypergeometric function may be simplified (for example, the
n = 1 case as in [BS21,Mal22], which yields a form very similar to Mertens’ scalar-
valued result). It appears to be possible that one should be able to prove the
same results via holomorphic projection acting on vector-valued modular forms
(see [IRR14]) in much the same way as Mertens’ original scalar-valued proofs in
[Mer16].

Proof of Theorem VIII.3.4. Let f be a weakly holomorphic form of weight k − 2j with
Fourier coefficients c+

f . By construction, the form G +
P is holomorphic at i∞, and hence

CT
(〈

fP⊕N (τ),
[
G +
P (τ),ΘN−(τ, ps)

]L
j

〉)
contains only the Fourier coefficients of non-positive index of f . We note that Lk−2j(f) =
0, and subtract the resulting expressions of the lift from Corollary VIII.3.2 and Theorem
VIII.3.3. We obtain

0 = CT
(〈

fP⊕N (τ),
[
G +
P (τ),ΘN−(τ, ps)

]L
j

〉)
− (4π)1− r2−d

+Γ
(
s
2 + j + d−

)
Γ
(
2− r

2 − d+ + j
)

4Γ(2− k + 2j)Γ
(
2− r

2 − d+) ∑
m≥1
λ∈L′

Q(λ)=−m

c+
f (λ,−m)p⊗(ψ(λ))

× |Q(λ)|2j+1−k

|Q(λz⊥)| s2 +j+d− 2F1

(
1 + j,

s

2 + j + d−; 2− k + 2j; Q(λ)
Q(λz⊥)

)
.

The Rankin–Cohen bracket is bilinear, and a linear combination of vector-valued Poincaré
series is modular itself. We apply Proposition VIII.2.11 and the claim follows.

In a similar way to [Mer16, Corollary 5.4], we obtain the following structural corollary
by rewriting Theorem VIII.3.4, keeping the same notation as throughout this chapter.
Corollary VIII.3.5. Let θ denote the space generated by all ΘN− functions of weight
s
2 + d− for ρN−. Then the equivalence classes ΛL(ψ, p⊗, j) + M !

2j+2−k,L generate the
C-vector space [

Mmock
2j+2−k,P , θ

]L
j

/
M !

2j+2−k,L

.
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VIII.4 The action of the Laplace–Beltrami operator
In this section, we prove Theorem VIII.1.2. To this end, we compute the action of

the Laplace–Beltrami operator on the lift, and show that for certain spectral parameters,
we obtain a local weak Maaß form. We recall that the signature of L is assumed to be
(2, s) here. Moreover, we observe that our Siegel theta function ΘL and the Siegel theta
function inspected by Bruinier depend in the same way on Z, and thus the following
result applies.

Proposition VIII.4.1 ([Bru02, Proposition 4.5]). The Siegel theta function ΘL(τ,Z, p⊗)
considered as a function on H×H` satisfies the differential equation

Ω
(
ΘL(τ,Z, p⊗)v

`
2
)

= −1
2∆k

(
ΘL(τ,Z, p⊗)v

`
2
)
.

Our next step is to inspect the action of Ω on our theta lift. By Lemma VIII.2.3 it
suffices to investigate

Ψreg
j (Fm,k−2j,s,Z) =

∫ reg

F

〈
Rjk−2j(Fm,k−2j,s)(τ),ΘL(τ,Z, p⊗)

〉
vkdµ(τ).

Let

H(m) :=
⋃

µ∈L′/L

⋃
λ∈µ+L
Q(λ)=−m

λ⊥ ⊆ Gr(L),

which collects the singularities of Ψreg
j (Fm,k−2j,s,Z) as a function of Z. We apply the

previous proposition to our theta lift, which yields a variant of [Bru02, Theorem 4.6].

Theorem VIII.4.2. Let Z ∈ H` \H(m), and Re(s) > 1− k
2 . Then it holds that

Ω
(
Ψreg
j

)
(Fm,k−2j,s,Z) =

(
s− k

2

)(
1− s− k

2

)
Ψreg
j (Fm,k−2j,s,Z).

Proof. First, we note that

Ω
(
Ψreg
j

)
(Fm,k−2j,s,Z) =

∫ reg

F

〈
Rjk−2j(Fm,k−2j,s)(τ),Ω

(
ΘL(τ,Z, p⊗)v

`
2
)〉
vk−

`
2 dµ(τ),

because all partial derivatives with respect to Z converge locally uniformly in Z as
T →∞ (see [Bru02, p. 99]). By the previous proposition, we infer that

Ω
(
Ψreg
j

)
(Fm,k−2j,s,Z)

= −1
2

∫ reg

F

〈
Rjk−2j(Fm,k−2j,s)(τ),∆k

(
ΘL(τ,Z, p⊗)v

`
2
)〉
vk−

`
2 dµ(τ).
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By the splitting ∆k = Rk−2Lk, and the adjointness of both operators (see [Bru02, Lemmas
4.2 to 4.4]), we obtain

Ω
(
Ψreg
j

)
(Fm,k−2j,s,Z)

= −1
2

∫ reg

F

〈
∆k

(
Rjk−2j(Fm,k−2j,s)

)
(τ),ΘL(τ,Z, p⊗)v

`
2
〉
vk−

`
2 dµ(τ).

Lastly, we observe that ∆k and Rjk−2j commute by virtue of Lemma VIII.2.4. Namely,
we have

∆k

(
Rjk−2j (Fm,k−2j,s)

)
(τ) =

(
s− k

2

)(
1− s− k

2

)
Rjk−2j(Fm,k−2j,s)(τ),

and this establishes the claim by rewriting〈
Rjk−2j(Fm,k−2j,s)(τ),ΘL(τ,Z, p⊗)v

`
2
〉
vk−

`
2 =

〈
Rjk−2j(Fm,k−2j,s)(τ),ΘL(τ,Z, p⊗)

〉
vk

again.

We end this section by proving Theorem VIII.1.2.

Proof of Theorem VIII.1.2. By Theorem VIII.4.2, the lift is an eigenfunction of the
Laplace Beltrami operator with the quoted eigenvalue. Since Ψreg

j (Fm,k−2j,s,Z) is an
eigenfunction of an elliptic differential operator, it is real-analytic in Gr(L) outside of
H(m). The other conditions for the lift to be a vector-valued local weak Maaß form can
be easily seen by applying the proof of [BKV13, Theorem 1.1] mutatis mutandis. When
s = k

2 or s = k
2 − 1 we obtain locally harmonic Maaß forms.

VIII.5 Cohen–Eisenstein series

VIII.5.1 Proof of Theorem VIII.1.3

We specialize the framework from Section VIII.2 following [BS21, Section 4.4] (or
[Sch18, Section 2.2]). We fix the signature (1, 2) and the rational quadratic space

V :=
{
X = ( x2 x1

x3 −x2 ) ∈ Q2×2
}
,

with quadratic form Q(X) = det(X). The Grassmannian of positive lines in V ⊗ R can
be identified with H via

λ(x+ iy) = 1√
2y

(
−x x2+y2

−1 x

)
.
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We choose the lattice

L :=
{(

b c
−a −b

)
: a, b, c ∈ Z

}
,

with dual lattice

L′ =
{(

b
2 c

−a − b2

)
: a, b, c ∈ Z

}
.

We observe that L′ can be identified with the set of integral binary quadratic forms
of discriminant det

(
b
2 c

−a − b2

)
= −1

4(b2 − 4ac). Furthermore, L′/L ∼= Z/2Z with quadratic

form x 7→ −1
4x

2.
According to [BS21, p. 22], it holds that

Q

((
b
2 c

−a − b2

)
x+iy

)
= 1

4y2

(
a(x2 + y2) + bx+ c

)2
,

Q

((
b
2 c

−a − b2

)
(x+iy)⊥

)
= − 1

4y2

∣∣∣[a, b, c](x+ iy, 1)
∣∣∣2.

We remark that both are invariant under modular substutions. By a result from Eichler
and Zagier [EZ85, Theorem 5.4], the space of vector-valued modular forms of weight k
for ρL is isomorphic to the space M+

k (Γ0(4)) of scalar-valued modular forms satisfying
the Kohnen plus space condition via the map

f0(τ)e0 + f1(τ)e1 7→ f0(4τ) + f1(4τ).

This enables us to use scalar-valued forms as inputs for our theta lift.

Proof of Theorem VIII.1.3. As outlined between Theorems VIII.1.2 and VIII.1.3, the
function f := f−2`,NH` is of weight −` − 1

2 < 0 for Γ0(4), has non-constant principal
part at the cusp i∞, and its image under ξ is trivial, hence in particular cuspidal. This
enables us to apply Corollary VIII.3.2 to f . To this end, we have the parameters

k = −1
2 + d+ + d−, k − 2j = −`− 1

2 , j = `+ d+ + d−

2 ,

and the hypergeometric function from Theorem VIII.3.1 becomes

2F1

(
`+ 2 + d+ + d−

2 ,
`+ 2 + d+ + 3d−

2 ,
5
2 + `,

4my2

|[a, b, c](z, 1)|2
)
.
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Inspecting the parameters, we have the condition `+ d+ + d− ∈ 2N by j ∈ N, and
combining with d+, d− ∈ N0, ` ∈ N \ {1}, the smallest possible values are (`, d+, d−) =
(2, 0, 0), (2, 2, 0), (2, 1, 1), (2, 0, 2). For example, the corresponding hypergeometric
functions for the cases (`, d+, d−) = (2, 0, 0), (2, 1, 1) are

2F1

(
2, 2, 9

2 , z
)

= −35(11z − 15)
12z3 − 35

(
2z2 − 7z + 5

)
arcsin (

√
z)

4z 7
2
√

1− z
,

2F1

(
3, 4, 9

2 , z
)

= −35(8z2 − 26z + 15)
128z3(z − 1)2 + 105

(
8z2 − 12z + 5

)
arcsin (

√
z)

128z 7
2
√

1− z(z − 1)2
,

and the other cases are of similar shape. Analogous expressions can be obtained for
higher integer parameters via Gauß’ contiguous relations for the hypergeometric function,
which can be found in [BCLO10, § 15.5 (ii)] for instance.

We infer a local behaviour as sketched between Theorems VIII.1.1 and VIII.1.2 by
virtue of (4m = D = b2 − 4ac)

arcsin
( √

Dy

|az2 + bz + c|

)
= arctan

∣∣∣∣∣
√
Dy

a |z|2 + bx+ c

∣∣∣∣∣ ,
which in turn follows by(

b2 − 4ac
)
y2 +

(
a |z|2 + bx+ c

)2
=
∣∣∣az2 + bz + c

∣∣∣2 ,
compare [BKK15, Section 3] for both identities. The denominator a |z|2 + bx+ c vanishes
if and only if z is located on the Heegner geodesic associated to Q = [a, b, c]. Since the
principal part of f is given by

N∑
n=0

H(`, n)qn−N +O
(
qm+1

)
, m =

{
b−2`

12 c − 1 if − 2` ≡ 2 (mod 12),
b−2`

12 c else,

we conclude that f has the exceptional set
N⋃
D=1

{
z = x+ iy ∈ H : ∃a, b, c ∈ Z, b2 − 4ac = D, a |z|2 + bx+ c = 0

}
.

In other words, the exceptional set of f is a finite union of nets of Heegner geodesics.
Furthermore, we recall that the spectral parameter in Corollary VIII.3.2 is s = 1− k−2j

2 ,
and hence the eigenvalue under ∆−`− 1

2
is(

s− k

2

)(
1− s− k

2

)
= (1− k + j) (−j) = j

(
j − `− 3

2

)
.

This proves the Theorem.
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VIII.5.2 Eichler–Selberg type relations for Cohen–Eisenstein series

Eichler–Selberg type relations for Cohen–Eisenstein series could be obtained as follows.
On one hand, the input function f(τ) = f−2`,N (τ)H`(τ) is weakly holomorphic, thus we
do not need to deal with the additional term∫ reg

F

〈
Lk−2j (fP⊕N ) (τ),

[
G+
P (τ),ΘN−(τ)

]
j

〉
v−2dτ

arising from Theorem VIII.3.3. On the other hand, the function ΛL from Section VIII.3.3
simplifies to

ΛL(ψ, p⊗, j) =
43d−π

1
2−d

+Γ (j + 1 + d−) Γ
(

3
2 − d+ + j

)
Γ
(
`+ 1

2

)
Γ
(

3
2 − d+

) ∑
D≥1

∑
Q∈QD

p⊗(ψ(Q))

× D`+ 3
2 y2+2j+2d−

|Q(z, 1)|2+2j+2d− 2F1

(
`+ 2 + d+ + d−

2 ,
`+ 2 + d+ + 3d−

2 ,
5
2 + `,

Dy2

|Q(z, 1)|2
)
qD,

where QD denotes the set of integral binary quadratic forms of discriminant D. After
evaluating the hypergeometric function as in the previous proof, one may follow our proof
of Theorem VIII.3.4, namely subtract the two evaluations of Ψreg

j (f, z) from each other,
and apply Serre duality to the resulting expression. Computing the principal part of G+

P

in addition, this yields the desired result. However, we do not pursue this here explicitly
as the resulting expression is rather lengthy.
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