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Abstract

Despite some notable counterexamples, the theoretical and empirical ex-
change between the fields of learning and memory is limited. In an at-
tempt to promote further theoretical exchange, I explored how learning
and memory may be conceptualized as distinct algorithms that operate on
a the same representations of past experiences. I review representational
and process assumptions in learning and memory, by the example of eval-
uative conditioning and false recognition, and identified important similar-
ities in the theoretical debates. Based on my review, I identify global match-
ing memory models and their exemplar representation as a promising can-
didate for a common representational substrate that satisfies the principle
of least commitment. I then present two cases in which exemplar-based
global matching models, which take characteristics of the stimulus material
and context into account, suggest parsimonious explanations for empiri-
cal dissociations in evaluative conditioning and false recognition in long-
term memory. These explanations suggest reinterpretations of findings that
are commonly taken as evidence for dual-representation models. Finally,
I report the same approach provides also provides a natural unitary ac-
count of false recognition in short-term memory, a finding which challenges
the assumption that short-term memory is insulated from long-term mem-
ory. Taken together, this work illustrates the broad explanatory scope and
the integrative and yet parsimonious potential of exemplar-based global
matching models.
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Chapter 1

Learning is not memory
FREDERIK AUST

learning and memory researchers, collectively, seem to be conducting
a gigantic, double-blind “conceptual replication.” The dominant posi-
tions on several central issues in [research on memory] have returned
to points that would have given the neobehaviorists and functionalists
well-founded feelings of déjà vu. (pp. 360-361, Hintzman, 1993)

Everyday language suggests that learning and memory can be used inter-
changeably to refer to the psychological study of how experiences are re-
tained and shape our behavior. For example, students similarly complain
about what they are required to learn or memorize. This misconception
caused me quite some confusion during the first sitting of my introduc-
tory course entitled “Learning”. The course would not, as I had expected,
cover how to effectively prepare for my exams, that is how to memorize ef-
fectively. Rather the course would primarily cover animal research on con-
ditioning. I remember being annoyed about the misleading course title and
jargon. Ironically, I later found out that James Mazur, the author of the rec-
ommended course book, was similarly confused when he signed up for his
first courses on learning (p. 1, Mazur, 2012). On the one hand, this anecdote
may be taken as an illustration of how jargon can obscure conceptual dis-
tinctions, especially when it repurposes everyday language expressions. At
a deeper level this anecdote also illustrates that how counterintuitive and
debatable the partition of psychological research into learning and memory
is. Despite broad substantive overlap and parallels in theoretical debates
the fields differ in experimental methodology and theorizing.

1



2 CHAPTER 1. LEARNING IS NOT MEMORY

The common definitions of learning and memory reveal some of these dif-
ferences. In psychological science the term memory may refer to one of
three concepts (Spear & Riccio, 1994): (1) the mental representation of a par-
ticular past experience, also refereed to as memory trace, (2) the structure
that stores the memory traces, and (3) the process by which memory traces
are formed, stored, and retrieved. As these definitions illustrate, mem-
ory research aims to investigate unobservable processes and structures that
serve to preserve information over time. In this sense, memory mediates
the effect of past experiences on behavior. In stark contrast, definitions of
learning are first and foremost concerned with observable events. Consider
the following common textbook definition1:

Learning refers to a relatively permanent change in behavior as a re-
sult of practice or experience (Lachman, 1997)

This definition demands an observable change in behavior for learning to
have occurred. It makes no reference to unobservable mental effects of past
experiences. Hence, research on learning requires no assumptions about or
interest in processes that mediate effects of past experiences on behavior
(De Houwer et al., 2013).

Although there is some theoretical convergence of research on learning and
memory, the illustrated disconnect largely persists. I will argue that both
fields have much to gain from theoretical exchange and suggest a broad
theoretical perspective to facilitate integrative theory building. Before ad-
dressing the mutual benefits of theoretical exchange between the fields
of learning and memory, it is useful to understand how these fields di-
verged despite their common research goal. In the following I will, there-
fore, briefly sketch the historical origins and epistemological differences
between research on learning and memory.

1Lachman (1997) criticizes this definition and proposes a process-focused alternative.
However, an improved functional definition has recently been proposed that avoids refer-
ring to unobservable mental processes (De Houwer et al., 2013). I present the less than
perfect textbook definition here because it is simple, common, and serves to illustrate the
traditional focus on observables in learning research.
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1.1 Historic origins

The divergence between the fields of learning and memory has historical
reasons that can be traced back to the dominant lines of thinking at the
time they emerged. Learning was first intensely studied when behavior-
ism dominated experimental psychology starting in the 1910s. Research
on memory only gained traction when behaviorism was challenged during
the cognitive revolution starting in the 1950s.

1.1.1 Behaviorist origins of learning research

behaviorism is the only road leading to science. [. . . ] behaviorism
must be looked upon as the rough scientific clay which all must shape
(p. vii, Watson, 1924)

The advent of behavioristic psychology—behaviorism—in the early 20th
century steered the focus of psychological research away from introspec-
tive methods and towards behavioral observations (Watson, 1924). The
central tenet of behaviorism was that the scientific method demands inter-
subjective verifiability. Thus, Watson argued that psychological science
should analyze observable events—stimuli and responses—rather than un-
observable events accessible only by introspection. The influential learning
researcher Burrhus Skinner made an even stronger antimentalist assertion:
Skinner argued that, in addition to being unserviceable as data, unobserv-
able events or latent states have no merit in predicting behavior and un-
necessarily complicate psychological theory. By the virtue of parsimony,
psychological theory should, therefore, explain behavior as a function of
tangible factors (Skinner, 1950; Skinner, 1985). Anything in between stimu-
lus and response was to be treated as a black box. Skinner’s position was
extreme even among behaviorists (e.g., Miller, 1959), but it serves to high-
light that important research on learning was conducted without particular
concern for unobservable entities such as memory.

The behaviorist preoccupation with observable stimuli and response regu-
larities also shaped the experimental methodology. The stated goal was to
identify general principles of learning that apply broadly across learning
situations and species (e.g., Skinner, 1938). To this end, behaviorists relied
heavily on animal research. The use of animals permitted greater control
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over the experimental environment, subject, and experimenter effects (but
see Rosenthal & Fode, 1963). It was further assumed that animal research
facilitated discovery of general principles due to reduced complexity of the
organism compared to humans.

Consequently, much of behaviorist learning research focused on basic
learning procedures (Jenkins, 1979). In classical conditioning procedures,
conditioned stimuli (CS) were paired with unconditioned stimuli (US)
that elicited inherent responses (referred to as unconditioned responses,
UR). Following repeated pairings the CS started to elicit a similar response
as the US, which was refereed to as the conditioned response (CR; for a
review see Bouton, 2007). The classic example is the procedure used in
the seminal studies by Pavlov (1927/1960) in which he sounded a bell
(CS) when feeding (US) dogs, which caused the dogs to salivate (CR) in
response to the bell sound even when no food was present. In operant
conditioning procedures, voluntary behavior is shaped by reinforcement,
that is, the positive or negative outcome of an action (for reviews see
Bouton, 2007; Pierce & Cheney, 2013).

However, in addition to these famous learning phenomena, behaviorists
also studied verbal learning in humans, the direct precursor to subsequent
memory research (Tulving & Madigan, 1970). Behaviorists interested in
verbal learning studied how verbal information is retained and how it af-
fects behavior. They built on the experimental methodology of rote learn-
ing spearheaded by Ebbinghaus (1885) and largely understood rote learn-
ing to be a form of stimulus-response (S-R) learning (Bower, 2000). For
example, forgetting was understood to be a form of extinction or renewal
of preexperimental associations. Paying tribute to the behaviorist tradition,
verbal learning researchers employed experimental paradigms with clearly
defined stimuli and associated responses. In serial learning paradigms,
participants learned lists of stimuli in order to later freely reproduce them
in the correct order. It was assumed each list element acted as stimulus and
prompted as response the production of the subsequent stimulus. In the
paired-associate paradigm participants studied lists of stimulus pairs and
were later cued with one element of each pair and asked to reproduce the
other. Especially the paired-associate paradigm bears obvious resemblance
to the well-known conditioning paradigms.

Much of behaviorist learning research assessed the effects of, for example,
stimulus characteristics, stimulus-response contingencies, and time on the
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frequency of responses (Skinner, 1950). The study of animals precluded
assessment of introspective reports and metacognitive judgments, but this
was no loss to behaviorists. And the behaviorist approach proved to be
very successful. Behaviorist learning researchers discovered fundamental
relations between environmental factors and behavior that guide the de-
velopment of interventions to modify behavior to this day.

1.1.2 Cognitivist revolution and memory research

Behaviorism [. . . ] must accommodate itself to accepting the impor-
tance of what goes on inside the “black box”, especially since we now
have methods for investigating its contents (p. 432, Shevrin & Dick-
man, 1980).

Notwithstanding its success the primacy of behaviorism toppled in the so-
called cognitive revolution. The work by Edward Tolman is often consid-
ered an early precursor of cognitivist psychology (Tolman & Honzik, 1930;
Tolman, 1948; Tolman et al., 1946). For example, Tolman et al. (1946) re-
peatedly placed a food reward at a designated finish location in a simple
maze until the rats learned the route. During a subsequent test run the
previously learned route to the food reward was blocked and the rats were
forced to choose one of 18 new alleys. In contrast to the dominant view that
learning creates associations between stimuli (S-S learning) or S-R learn-
ing, most rats chose the alley that provided the shortest route to the food
reward—no relearning was necessary. Tolman concluded that the rats had
formed cognitive maps of the maze in which particular locations were as-
sociated with rewards. Hence, he was convinced that his data could not be
explained by simple operant conditioning and necessitated consideration
of an unobservable spatial memory.

The advent of cognitivist psychology changed researchers’ view on human
experience and behavior as well as the questions they sought to answer. In
response to the seminal work by Miller (1956) and Neisser (1967) among
others, researchers started to think about mental processes in terms of in-
formation theory (Garner, 1962)—a view still commonplace today. Using
computers as metaphor, humans were construed as capacity-limited infor-
mation processors that analyze and encode information into neural activity
which is processed by mental programs, stored, and later retrieved to guide
behavior.



6 CHAPTER 1. LEARNING IS NOT MEMORY

Although the conceptual division of learning into acquisition and retrieval
was prevalent among behaviorists, they devoted little attention to the act
of retrieval:

recall was observable behavior whose measurable aspects simply
served to provide evidence about strength of associations. Moreover,
the act of recall was empirically neutral in that it did not affect the
state of the system; it was theoretically uninteresting because it could
not be studied independently of acquisition. (p. 352, Tulving &
Thomson, 1973)

In contrast, cognitivists considered information processing to be construc-
tive at all stages—encoding, processing, and retrieval (Neisser, 1967). This
view prompted new questions about how the information stored in mem-
ory is organized.

In an influential verbal learning experiment, Tulving (1962) investigated
the mental organization of studied material that in itself exhibits no obvi-
ous learnable structure. Tulving repeatedly presented a set of semantically
unrelated words such that across presentations each word was adjacent to
each other word equally often. After each presentation, participants were
asked to freely recall all words in any order- From a verbal learning perspec-
tive, it seemed unlikely that performance would improve across repeated
presentations due to the absence of repeated S-R contingencies. Tulving,
however, found that, across repeated presentations, participants’ recalled
the words in very similar sequences. And the more consistent their re-
call sequences the more words participants recalled. Participant actively
structured the study material beyond the sequential order, suggesting that
encoding entails transformations and interpretations of presented stimuli.

These free recall findings seemed difficult to explain in behaviorist terms.
It is not obvious what stimuli participants responded to when producing
the consistent recall sequences. Moreover, participants appeared associate
stimuli with unobserved responses. Tulving (1962) observed similar con-
sistent recall sequences across subjects, which suggested that participants
found structure in the superficially unstructured material. Besides demon-
strating the importance of unobserved processes during learning, this work
called into question the prevailing view that verbal learning was a form of
simple S-R learning. To further probe the structure of memory and the



1.1. HISTORIC ORIGINS 7

organization of knowledge, researchers started to employ different exper-
imental methods. Free recall paradigms quickly gained popularity to the
disadvantage of traditional behaviorist paradigms:

In just five years, between 1967 and 1972, the ratio of paired-
associative studies to free-recall studies in the index of the Journal
of Verbal Learning and Verbal Behavior dropped from 31:9 to 2:32.
(p. 370, Hintzman, 1993)

For example, in a study, which attracted wider interest only three decades
later, Deese (1959) investigated the cause of intrusion errors in free recall—
the seemingly random erroneous recall of words that had not been on the
study list. Revealing important organizational principles of memory, Deese
found that intrusions could be predicted from the frequency with which
the intruding words were freely produced as associates of the words on the
study list. This study was one of the first to investigate false memories, a
field of study that later attracted widespread attention and has served to
gauge the structure of memory.

Recognition testing was another popularized dependent measure that re-
mains influential until today. In its simplest form, participants are asked
to judge whether a stimulus was presented as part of the study list (old) or
not (new). Accordingly, this task is commonly referred to as old-new recog-
nition testing. Compared to recall measures, recognition testing is more
sensitive to weak memories and more economic than the even more sen-
sitive relearning method introduced by Ebbinghaus (1885) and Groninger
and Groninger (1980).

An important study on recognition of words was reported by Underwood
(1965). In addition to the customary old and new words, the list of memory
probes encompassed new words that were related to previously studied
words. These lures were, for example, antonyms (day and night), converg-
ing associates (bread and butter), or exemplars to a superordinates (oak and
tree). In line with the free recall findings by Deese (1959), Underwood (1965)
observed false recognition—increased rates of old-responses to lures com-
pared to unrelated new words. These findings swayed Underwood (1969),
a influential memory researcher and S-R learning theorist, towards cogni-
tivist encoding principles.

Another aspect of the computer-inspired information processor metaphor,
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limited processing capacity, sparked interest in short-term memory (Atkin-
son & Shiffrin, 1968; Bower, 2000). In his famous paper, Miller (1956)
proposed that human short-term memory was limited in capacity to ap-
proximately seven informational units, which he called chunks. Moreover,
Peterson and Peterson (1959) showed that even three-letter consonant syl-
lables were difficult to retain for more than a few seconds while partici-
pants counted to keep them from rehearsing the to-be-remembered mate-
rial. Causes for the fragility of short-term memory remain a central focus of
short-term memory research to this day (Cowan, 2001; Cowan et al., 2012;
Ma et al., 2014). It is seen as one of the key characteristics that sets short-
term memory apart from long-term memory (Cowan, 2008). I will later
return to this discussion in [Short-term memory].

Cognitivist ideas sparked new lines of research that adopted a different
vocabulary, metaphors, and experimental methodology. These shifts are
exemplified by the fact that the Journal of Verbal Learning and Verbal Behavior
was continued as Journal of Memory and Language in 1985. Yet, despite its
name, the cognitive revolution lacks properties of a scientific revolution as
commonly defined in the philosophy of science. The behaviorist paradigm
saw

no falsification, no drowning in a sea of anomalies, no ad hoc strategies
to save a degenerating research paradigm, and no inferior empirical
and conceptual problem-solving capacity (p. 105, O’Donohue et al.,
2003).

Rather, it reflects a widespread change in research trends and interests (also
see Hintzman, 1993; Roediger, 2004), which lead to a partitioning of the
field. As outlined above, research into memory became a new field that
fully embraced cognitivism and probed, among other things, the structure
of memory and knowledge representation. Learning researchers continued
to address questions about conditioning and the effects of predictive stim-
ulus relations on behavior. Behaviorist (or functional) learning research
is being continued (Roediger, 2004; for a brief primer on current develop-
ments see Stewart, 2016), but over time the majority of learning theorists
have adopted a more cognitivist perspective (e.g., p. 106, Holland, 1990).
Nonetheless the partitioning into learning and memory persists and has
seen only scant theoretical exchange (Hintzman, 1993; Tulving & Madigan,
1970).
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1.2 Epistemic di�erences

The diverging pretheoretical convictions, interests, and methods of tra-
ditional learning and memory research also entail epistemological differ-
ences. That is, learning and memory research sought explanations at dif-
ferent levels of analysis. It has been argued that these levels of analysis are
linked only loosely and are best addressed independently. By extension,
theoretical exchange seems unproductive. In the following I will briefly re-
view the concept of levels of analysis and why it provides no compelling
argument for independent theorizing. Finally, I will discuss different ap-
proaches to bridge levels of analysis.

1.2.1 Marr’s levels of analysis

Marr (1982) proposed that complex information-processing systems may
be explained at different, loosely related, levels. Drawing on the cognitivist
information-processor metaphor, he distinguished between the computa-
tional, representational and algorithmic, or implementation level2(Figure 1.1; see
Skinner, 1950, for a similar distinction). Computational level analyses aim
at providing a precise, ideally formal, description of the system’s input-
output mapping. Crucially, such a description comprises what is computed
and why the computation is appropriate (e.g., in the environmental context;
Bechtel & Shagrir, 2015; Shagrir & Bechtel, 2018). Representational and al-
gorithmic level analyses are concerned with how a system represents input
(and output) and what algorithms realize the computation to transform
one into the other. Analyses at the implementation level seek to explain
how the system is implemented in a physical medium, such as neurons.

To illustrate his distinction, Marr (1982) uses the example of a cash regis-
ter (p. 20ff.). At the computational level, the device performs addition of
positive and negative numbers. Answering why a cash register adds prod-
uct prices rather than multiplying them, requires an analysis of the task as
well as the environment and its affordances. Marr lists requirements that

2Marr (1982) was neither the first (e.g., Dennett, 1981; Glass et al., 1979; Newell, 1982)
nor the last (e.g., Anderson, 1990; Pylyshyn, 1984) to make this or similar distinctions. van
der Helm (2012) even likens Marr’s to Aristotle’s distinction between goal, method, and
means. In the following I’ll focus on Marr’s formulation because it is the best known in
cognitive science.
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Computations

Algorithms and
representations

Implementations

To-be-explained
phenomenon

...

... ... ...

... ... ...

Figure 1.1: Graphical representation of to top-down one-to-many hierarchy
of explanations according to Marr’s levels of analysis. Round nodes repre-
sent explanations and edges indicate the nesting between explanations at
different levels.
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we intuitively feel must be met when determining a final bill and derives
constraints that precisely define the computation:

1. If you buy nothing, it should cost you nothing [. . . ].
2. The order in which goods are presented to the cashier should not

affect the total. [. . . ]
3. Arranging the goods into two piles and paying for each pile sep-

arately should not affect the total amount you pay. [. . . ]
4. If you “buy” an item and then return it for a refund, your total

expenditure should be zero. (pp. 22-23, Marr, 1982)

At the representational and algorithmic level, product prices and final bill
are represented, for example, in the Arabic numeral system (rather than
Roman or binary) and addition is carried out by starting with the least sig-
nificant digit and “carrying” if the sum exceeds 9 (p. 23, Marr, 1982). Marr
notes that possible algorithms may be heavily constrained by the repre-
sentation and for any representation there may be multiple possible algo-
rithms that differ with respect to, for example, efficiency or robustness. The
implementation level may put additional constraints on the algorithm. For
example, a classic computer architecture may necessitate an algorithm that
operates serially rather than in parallel. But again, different physical im-
plementations need to be considered. Besides elucidating the differences
between explanations at each level, the example highlights levels mutually
constrain each other.

Past debates show that the exact level of analysis of an explanation is
debatable (pp. 194-195, McClamrock, 1991). It is important to understand,
however, that Marr’s levels of analysis constitute no postulate about the
actual number of levels of organization of any complex information-
processing system. They are adopted relative to a to-be-explained
phenomenon. Hence, Marr’s levels of analysis are probably best under-
stood as an idealization of a multiply nested structure of analysis levels
(pp. 194-195, McClamrock, 1991) or a continuous degree of abstraction.

In relative terms, it seems clear that behaviorist learning research, and cog-
nitivist research on learning and memory gravitate towards different levels
of analysis. The behaviorist focus on observables orients traditional learn-
ing research toward the computational level, whereas memory research
that probes the structure of memory and semantic knowledge is focused
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on the representational and algorithmic level. Cognitivist explanations of
learning have trended more towards the implementation level by invok-
ing (abstractions of) neurons and their associations as theoretical building
blocks. The affinity towards implementational explanations may be owed
to the legacy of influential behaviorist thinkers, who notoriously denied the
utility of a cognitive level of analysis:

In a behavioral account the whole organism responds, and it responds
to the world around it—for reasons which neurology, not cognitive
science, will eventually discover (p. 293). [. . . ] Cognitive science is
often only premature neurology (p. 300, Skinner, 1985).

1.2.2 Across-level comparisons

Marr (1982) posits that the levels of analysis are linked only loosely because
each level requires many considerations that are not informed by expla-
nations at the other levels. This claim has often been cited to argue that
theorizing should proceed independently at each level (and sparked de-
bates about the “right” level of analysis; Eliasmith & Kolbeck, 2015; Love,
2015; McClamrock, 1991). With this in mind, the disconnect between learn-
ing and memory research may seem unproblematic, sensible even. This
strict independence interpretation of Marr (1982), however, forgoes one of
the strengths of the approach (Eliasmith & Kolbeck, 2015). As previously
noted, Marr envisioned one-to-many correspondences when moving from
higher to lower levels of analysis, Figure 1.1. Any explanation at the com-
putational level is consistent with multiple competing representational and
algorithmic explanations. But constraints also arise from the bottom up
(Bechtel & Shagrir, 2015). The cash register example clearly demonstrates
constraints exerted across levels (“of course they are logically and causally
related” p. 25, Marr, 1982). It follows that complete understanding of a
phenomenon requires adequate explanations at each level.

Rather than theorizing independently, pragmatic epistemological plural-
ism may be more productive (van der Helm, 2012): Entertaining tentative
explanations at each level enables across-level comparisons that may in-
spire revisions or refinements. Initially, independent theorizing at each
level fosters diversity in thought and stimulates new research. After an
explanation at any given level survives initial falsification attempts and is
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tentatively retained, across-level comparisons should follow. In addition
to inspiring revisions, across-level comparisons can clarify the relationship
between explanations in the one-to-many hierarchy. Explanations that ap-
pear to contradict each other may, upon closer inspection, turn out to be
closely related, or vice versa. Hence, Marr’s distinction between levels of
analysis provides no compelling argument for the theoretical separation
of learning and memory research. After decades of scant theoretical ex-
change, tentative explanations have been proposed in both fields—across-
level comparisons of learning and memory explanations appear timely and
topical.

Which of Marr’s levels of analysis to address first and how to approach
across-level comparisons is subject to debate. Commonly discussed are
top-down (e.g., Griffiths et al., 2010; Marr, 1982) and bottom-up approaches
(e.g., Bower & Beeman, 1998; McClelland et al., 2010); more recently an
inside-out approach has been suggested (Love, 2015).

Marr (1982) stressed the importance of the computational level and sug-
gested a top-down approach to match the assumed one-to-many hierarchy
of explanations. His approach was motivated by the belief that it is not
feasible to recover the computed mathematical function from the detailed
neural implementation (cf. p. 200, Shagrir & Bechtel, 2018). Marr’s sug-
gested focus on a precise formal characterization of phenomena at the com-
putational level and top-down approach bears a remarkable resemblance
to Skinner’s thinking: Skinner (1950) advocated for formal characteriza-
tion of the relationship between manipulated variables and performance
and remained convinced (1985) that such precise characterizations formed
the basis for investigations into the neurological underpinnings of learning.
Among contemporary advocates of the top-down approach sensu Marr are
cognitive scientists working on a Bayesian probabilistic framework of cog-
nition (Griffiths et al., 2010), functional psychologists (e.g., Fiedler, 2016;
Houwer, 2011; Hughes et al., 2016), and some philosophers of science (Sha-
grir & Bechtel, 2018).

Critics of the top-down approach contend that the implementation level
is practically devalued as mere implementation in a physical medium (e.g.,
Smolensky, 1988). Consequently, the brain is mostly ignored and constraint
that arises from the neurological substrate is neglected (e.g., Love, 2015;
McClelland et al., 2010). Proponents of the bottom-up approach, such as
connectionist cognitive scientists (e.g., McClelland et al., 2010; Rogers &
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McClelland, 2014) or computational neurobiologists (e.g., Bower & Bee-
man, 1998), prefer to let algorithms, representations, and computations
emerge from sub-cognitive processes. Through emergence, the bottom-up
approach naturally adheres to constraints of the neurological substrate and
avoids incorrect assumptions about, for example, representational struc-
tures. An important challenge for the bottom-up approach is that it as-
sumes a detailed understanding and implementation of the basic neural
processes—incorrect or missing details yield incorrect emergent proper-
ties. Moreover, explanations at the implementation level quickly become
complicated and offer little direct insight into cognitive phenomena be-
yond “the outcome was caused by changes to neural connections” (French
& Thomas, 2015). The latter critique originally prompted Marr’s (1982) dis-
tinction between levels of analysis, as reflected in the famous quote:

trying to understand perception by studying only neurons is like try-
ing to understand bird flight by only studying feathers: It just cannot
be done (p. 27, Marr, 1982).

Recently, Love (2015) advocated for an inside-out approach—starting
across-level comparisons from the middle algorithmic and representa-
tion level—to combine the advantages of the top-down and bottom-up
approaches. The idea is that the algorithmic and representation level
simultaneously grants theoretical proximity to the computational and
implementation level and is thus most readily constrained. In downward-
directed comparisons, this proximity facilitates incorporating constraints
arising from the neurological substrate and select competing theories
based on the predicted neural activity (e.g., Mack et al., 2013). At the same
time, the algorithmic and representation level may produce more direct
and satisfying explanations of cognitive phenomena than the implemen-
tation level. In upward-directed comparisons, the proximity facilitates
comparisons with functional relationships between the environment and
behavior or, for example, normative rational accounts (e.g., Griffiths et al.,
2010), compared to the bottom-up approach.

It seems unlikely that any one approach to across-level comparisons is gen-
erally superior—a cynical observer might comment that the suggested ap-
proaches are rationalizations of their proponents’ preferred level of anal-
ysis. But given that the levels of analysis are mutually constraining, any
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attempt to incorporate constraints across levels can be productive (Bechtel
& Shagrir, 2015; McClamrock, 1991; van der Helm, 2012).

When attempting to connect largely disconnected fields of research, such
as learning and memory, an argument can be made for the inside-out ap-
proach: The algorithmic and representation level lends itself to relate ex-
planations of distant phenomena and explore commonalities. Considering
that computational-level explanations serve to delineate to-be-explained
phenomena (Shagrir & Bechtel, 2018), the precise mappings from input
to output, by necessity, have a narrow scope.3 For example, a computa-
tional level explanation of classical conditioning maps stimulus pairings to
conditioned responding. Such an explanation purposely does not apply to
associative memory tasks where stimulus pairings need to be mapped to
recall or recognition and confidence judgments. At the other end of the
spectrum, explanations at the implementation level, due to their complex-
ity may complicate the discovery of commonalities. Thus, the algorithmic
and representational level strikes a balance between abstraction and gener-
ality that is well suited to develop domain-general explanations.

More specifically with respect to the distinction between learning and
memory, an obvious question is whether they may be conceptualized as
distinct algorithms that operate on the same representation (cf. p. 707,
Nosofsky, 1988). As noted previously, learning and memory algorithms
necessarily differ to some extent. The assumed representation of stimuli
and pairings, however, is potentially domain-general. Discovery of
representational formats that are applicable to a broad range of phenom-
ena would be theoretically interesting because they serve as a basis for
broad-scoped, well-constrained, parsimonious explanations. According
to Marr’s principle of least commitment, a domain-general representation
likely stores stimulus information after minimal preprocessing because
unprocessed representations are conducive to the flexible deployment of
different algorithms to meet the demands of different tasks (pp. 485-486,
Marr, 1976). Thus, a promising broadly unifying theoretical approach to
learning and memory would be to identify a common representational

3Love (2015) contends that explanations at the computational level are not sufficiently
constrained. His analysis targets probabilistic models of cognition and their a priori as-
sumption of optimality or rationality in particular. However, as Shagrir and Bechtel (2018)
point out computational level analysis do not necessarily presuppose optimal procedures.
They only require that the procedures, optimal or not, are grounded in the environment
that the information-processing system operates in (p. 203).
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format and defer distinct processing steps to the response stage. For
example, the stimuli presented in classical conditioning and associative
memory paradigms may result in largely the same representations but the
way in which this information affects the observed behavior observed in
these tasks may differ. The perspective that follows from this simple idea
may facilitate integrative theory building and is a recurrent theme in the
work presented here. In the next chapter, I will review some examples of
theories that moved towards or fully adopted this perspective.

1.3 Nascent convergence

After a long period of scant theoretical exchange, theorizing in learning
and memory seem to be reapproaching one another. As previously noted,
a majority of learning researchers have become interested in cognitive rep-
resentational and algorithmic level analysis:

Most students of animal conditioning today agree that the more prof-
itable subjects of inquiry are the mental events, structures, and pro-
cesses that underlie conditioned behavior, and not the conditioned be-
havior itself. (p. 106; Holland, 1990)

This shift has resulted in debates about the representation of learned pre-
dictive relations (e.g., Hanus, 2016; Mitchell et al., 2009). As the structure of
knowledge has been the object of intense study in memory research, some
learning theorists have looked to models of episodic memory to develop
representational and algorithmic explanations of learning.

In particular, the broader class of global matching memory models, also
known as exemplar or instance models, has been the starting point for
much theorizing. Variants of global matching models have been success-
fully applied to a range of learning phenomena, such as associative learn-
ing (Jamieson et al., 2012), artificial grammar learning (Jamieson & Me-
whort, 2009a; Jamieson & Mewhort, 2010; Jamieson & Hauri, 2012), and
serial reaction-time task (Jamieson & Mewhort, 2009b). Moreover, a related
approach has been applied to a diverse set of effects from the contingency
learning literature (Schmidt et al., 2016). All these proposals aim to de-
velop a unifying theoretical account of learning and memory phenomena
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and propose that learning phenomena can be understood in terms of en-
coding and retrieval of episodic memory traces.

Conversely, memory theorists have, for example, taken inspiration from
the concept of prediction error, which is central to many learning theories.
At least since the influential Rescorla-Wagner model of classical condition-
ing (Miller et al., 1995; Rescorla & Wagner, 1972; Siegel & Allan, 1996), the
idea that performance in learning paradigms is driven by the discrepancy
between predicted and observed events has been very influential in the-
ories of learning and far beyond. Early on, the Rescorla-Wagner model
was considered as a model of performance in paired-associate tasks but
was abandoned when memory researchers focused on other tasks (Siegel
& Allan, 1996). More recently, the concept of prediction errors has been
adopted to explain how the continuous stream of events we experience is
segmented into separable episodes which are then stored in episodic long-
term memory (Zacks et al., 2007). In short, an episode is conceptualized as
a predictable set of events and that unexpected events signal the beginning
of a new episode.

Theorists gravitating more towards implementation level analyses have
also attempted to provide a unified perspective on learning and memory.
Connectionist or parallel distributed processing models rely heavily on the
insight that prediction error can guide learning of association strengths be-
tween neuron-like representational units (Rumelhart et al., 1987). Some of
the first applications of these models were in the domains of memory, cat-
egorization, and grammar learning (McClelland et al., 1987). Since then
the basic ideas of connectionist models have been developed into the in-
fluential Complementary Learning Systems framework (CLS; McClelland
et al., 1995; O’Reilly et al., 2014) and elaborated into neurophysiologically-
underpinned models of learning (e.g., O’Reilly & Rudy, 2001; Hebscher et
al., 2019) and episodic memory (Norman & O’Reilly, 2003; Hebscher et al.,
2019; Schapiro et al., 2017). Despite these impressive efforts, theoretical
exchange across the domains of learning and memory is scant.

The relationship between traditional research into learning and memory
was aptly summarized by Tulving and Madigan (1970):

the two subcultures share a common goal, but they talk different lan-
guages, ask different questions, use different methods, and have sworn
allegiance to different pretheoretical assumptions (p. 439, Tulving &
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Madigan, 1970)

These differences originate from diverging research interests that emerged
during the cognitive revolution. Learning research continued to focus on
stimulus-response contingencies and employed performance measures.
Memory research, on the other hand, conceptually separated encoding,
maintenance, and retrieval processes and probed the structure of knowl-
edge representations. To that end, memory researchers adopted new
experimental paradigms and measures, such as free recall, recognition,
and meta-cognitive judgments.

As learning researchers have become more interested in the representa-
tion of learned information, mutual theoretical exchange with memory re-
searchers has become more attainable. The algorithmic and representa-
tional level of analysis lends itself to explore the domain generality of the
assumed representations. I believe the fields of learning and memory have
much to gain from theoretical exchange. The behaviorist tradition of learn-
ing research may motivate in-depth considerations about characteristics of
the to-be-retained material and environment, which, in turn, may simplify
assumptions about the structure of memory. Similarly, tested formalized
theories of long-term memory, when applied to findings from learning re-
search, can inform debates about the complexity of learning processes that
parallel those in research on memory.

In what follows, I will first briefly review recent theoretical discussions
regarding the complexity of learning and memory processes (Chapter 2).
I will then present two cases in which insights from computational-level
analyses (i.e., regard for characteristics of the stimulus material and con-
text) combined with tested representational explanations of memory sug-
gest parsimonious explanations for empirical dissociations in evaluative
learning (Chapter 3) and episodic long-term memory (Chapter 4). These
explanations suggest reinterpretations of findings that are commonly taken
as evidence for dual-process models. Finally, I report an experiment that
shows that the model I apply to false recognition in long-term memory also
accounts for false recognition in short-term memory (Chapter 5). These
findings are consistent with unitary memory models and oppose the as-
sumption of a short-term memory that is insulated from long-term mem-
ory and operates on distinct representations. Taken together, this work il-
lustrates the broad explanatory scope of exemplar-based global matching
models.
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Chapter 2

Exemplars as least-committed
representations
FREDERIK AUST

One of the fundamental questions in the study of cognitive processes per-
tains to their dimensionality: Is the observed phenomenon driven by one
or more latent causes? This question has been posed for phenomena as di-
verse as learning, memory, reasoning, and decision making (Evans, 2008;
Mitchell et al., 2009; Yonelinas, 2002). Most theories can be broadly as-
signed to one of two categories: single- and dual-process theories, Fig-
ure 2.1. Single-process theories posit that all presented information enters
into one cognitive process that determines the appropriate response, Fig-
ure 2.1A. In contrast, dual-process theories posit that the presented infor-
mation engages one or both of two separable cognitive processes, which
may work in concert or opposition to shape behavior, Figure 2.1B and C.

Common among several influential dual-process theories is the assump-
tion that the two processes implement different trade-offs between infor-
mational fidelity and processing speed. The faster of the two processes
operates on abstract, lossy information that becomes available quickly and
enables rapid responding. The slower, more sophisticated process oper-
ates on richer information, is generally more accurate and accompanied
by a richer subjective experience, but takes longer to complete. Hence,
although the fast process yields accurate responses in many situations, it
is more automatic or heuristic and potentially error-prone than the slow
process. Given sufficient time to respond, the two processes may produce
response conflicts. Such conflicts are typically resolved in favor of the slow
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Figure 2.1: Visualization of the general structure of (A) single-process, (B)
dual-retrieval, and (C) dual-representation explanations in learning and
memory. Rectangles represent observables, ovals represent unobservable
cognitive events, and the rounded boxes indicate that retrieval cues may
be composed of a mixture of observable and unobservable features. Dou-
ble arrows indicate relatively fast processing; gray arrows indicate possi-
ble effect mechanisms assumed to be absent when inferring multiple latent
processes from functional dissociations. The comprehensive visualization
of interactions between measures and retrieval processes in panel A is ab-
breviated to bidirectional arrows in panels B and C.
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process. In some instances these conflicts have been described pointedly as
two minds in one brain (Evans, 2008; Rydell et al., 2006; p. 87, Brainerd &
Reyna, 2005) or, more martial, as a brain at war with itself (Stanovich, 2005;
cited from Evans, 2008).

In the following I will review the dominant single- and dual-process
perspectives in learning and memory and highlight the similarities in the
theoretical debates. To organize the debate, I will distinguish between
single-process models and two families of dual-process models—dual-
retrieval and dual-representation models. That is, I organize the models
along the processing stage to which they attribute the observed disso-
ciations: the information used to cue retrieval (single-process), distinct
retrieval processes (dual-retrieval), or distinct encoding processes (dual-
representation). I will argue that models that attribute dissociations
to later stages are more parsimonious and should be preferred until
refuted. In particular, dual-representation assumptions require evidence
of dissociations attributable only to encoding processes. Based on this
discussion and my review of the literature I conclude that the available ev-
idence currently does not necessitate dual-representations. I furthermore
highlight a common element in several theories of learning and memory:
They postulate a rich unitary representation of past events combined
with parallel similarity-based retrieval. That is, these theories attribute
empirical dissociations to the retrieval response stage. Based on these
considerations, I suggest that global matching models of memory and
their exemplar representation are promising candidates in the search for
common theoretical ground of learning and memory.

To illustrate, I focus on two specific phenomena, namely evaluative con-
ditioning and false recognition. For both, influential dual-representation
explanations are being discussed and both phenomena have had consider-
able impact on theoretical developments in their respective field at large.

Evaluative conditioning is a change in liking following pairings of the to-
be-evaluated object (conditioned stimulus, CS) and a valent event (uncon-
ditioned stimulus, US; De Houwer, 2007). In recent years, evaluative con-
ditioning has featured prominently in debates about the broad distinction
between single- and dual-process models of learning. Proponents of single-
process models have acknowledged that some of the most convincing ev-
idence for dual-process models has been reported in evaluative condition-
ing (Mitchell et al., 2009). Dual-process theories typically assume that CS-
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US pairings cause the formation of simple associative links that connect the
CS and the US. As this link is strengthened, for example through repeated
pairings, the liking of the CS converges to the valence of the US. These as-
sociative links are abstract and lossy in the sense that their strength is a sin-
gle summary statistic of the co-occurrence history. Qualifying information,
such as the relationship between CS and US, is lost. Via the so-formed links,
the CS elicits an immediate, intuitive response—either positive or negative
depending on the valence of the US. According to dual-process theories,
CS-US pairings additionally leave propositional representations that sub-
serve more complex reasoning processes. In contrast to associative links,
these propositions do include qualifications of the CS-US relationship and
are verifiable in the sense that they can be true or false. That is, proposi-
tional representations enable more nuanced, contextualized attitudes. For
an illustration of how these processes interact, consider an upcoming visit
to the dentist. The thought of visiting the dentist may evoke an immediate
negative response because such visits are associated with pain from drilling
or root canal treatments. Although dental treatments can be painful, they
undoubtedly serve to relieve acute pain and prevent future pain, more ag-
gressive treatments, and tooth loss. In light of these facts your overall atti-
tude towards regular visits to the dentist may be positive, despite the initial
negative gut response.

False recognition is the assertion that an object has been encountered be-
fore, when, in fact, it has not. In contrast to random guessing, false recog-
nition is caused by retrieval of fabricated, distorted, or misinterpreted in-
formation and may be accompanied by strong subjective feelings of confi-
dence (Brainerd & Reyna, 2005; Gallo, 2006). As outlined in the previous
chapter, false recall and false recognition have shaped theories of the or-
ganization of memory since the advent of the cognitive revolution (Under-
wood, 1965; Deese, 1959) and remain influential today. Especially, high-
confidence false memories continue to stimulate new theoretical develop-
ments (e.g., Diana et al., 2006; Brainerd et al., 2015; Brainerd & Reyna, 2018;
Brainerd et al., 2020). Dual-process theories commonly assume that experi-
enced events leave gist-like memory traces that represent an episode’s con-
ceptual, semantic, and associative features (e.g., Reyna & Brainerd, 1995b).
These gist-like traces are abstract and lossy in the sense that details of the
specific episode, such as accompanying sensory impressions and context,
are lost. When retrieved, gist-like traces cause an immediate sense of fa-
miliarity but provide little to no information about the origin of said famil-
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iarity. In addition to gist-like traces, experienced events may also leave a
more detailed trace of the episode, including perceptual and contextual de-
tails. When retrieved, these detailed traces induce a vivid remembrance of
the past episode including sensory impressions, such as smells. In contrast
to gist-like traces, these detailed traces can serve to distinguish between
previous episodes from similar but new events. For an illustration of how
these processes interact, again, consider a visit to the dentist. When asked
it may seem that, as usual, one attended the professional tooth cleaning
immediately prior to the prophylactic dental checkup. Only upon further
reflection—and retrieval of a detailed trace—one may remember that in
fact the professional tooth cleaning was canceled the day before the ap-
pointment.

2.1 From single- to dual-representations and back

The above examples make evident the similarities of dual-process assump-
tion in evaluative conditioning and false recognition. In both cases dual-
process theories assume a faster process that operates on abstract, lossy
information and a slower process that operates on richer information. Con-
flicts between these processes are typically resolved in favor of the slower
process. These similarities are, in part, attributable to parallels in the itera-
tive refinement of the theories in response to new evidence (p. 195, Mitchell
et al., 2009; p. 60 ff., Brainerd & Reyna, 2005; Brainerd & Reyna, 1998).
Both phenomena were initially explained solely by a fast process oper-
ating on lossy representations. To accommodate for new empirical ev-
idence, an additional slower process operating on more detailed repre-
sentations was assumed. Given the assumption of detailed representa-
tions the necessity of assuming additional abstract, lossy representations
became debatable—leading to the current discussion between single- and
dual-process proponents. As a result there is a close relationship between
competing single- and dual-process theories: dual-process theories often
extend a single-process theory. That is, they postulate one process that is
identical or closely related to the process posited by a competing single-
process theory.

Consider the case of evaluative conditioning. Initial theories of evaluative
conditioning were strongly inspired by contemporary theories of Pavlo-
vian conditioning. Indeed, EC, like other forms of learning, was initially



30 CHAPTER 2. LEAST-COMMITTED REPRESENTATIONS

understood in terms of simple associative links (Martin & Levey, 1978; De
Houwer et al., 2001; De Houwer, 2007; Hofmann et al., 2010). Hence, it
was assumed that EC was independent of more complex processes, such
as reasoning—the change in liking was conceived to be entirely intuitive.
The assumption of associative links was so deeply rooted that it was often
conflated with the observable effect and thought of as a defining feature of
EC (De Houwer, 2007). With heightened interest in cognition and new em-
pirical evidence, it has become increasingly clear that learning, including
Pavlovian conditioning, more broadly involves richer representation and
more complex processing (De Houwer, 2009; Shanks, 2007). The prominent
dual-process view that has come out of these considerations is that evalu-
ative conditioning involves both associative links and propositional repre-
sentations of CS-US pairings (e.g., Bar-Anan & Moran, 2018; De Houwer,
2007; Gawronski & Bodenhausen, 2006; Rydell & McConnell, 2006; Mc-
Connell & Rydell, 2014; Smith & DeCoster, 2000). The competing single-
process view fully embraces propositional representations and posits that
the additional assumption of simple associative links is unnecessary (De
Houwer, 2009; Mitchell et al., 2009; De Houwer, 2018).

Now consider the theoretical developments in false recognition. In the con-
structivist tradition, false recognition was initially thought to involve only
abstract lossy representations (Reyna & Brainerd, 1995b; p. 60 Brainerd &
Reyna, 2005). The central assumption was that an experienced event is
integrated with associated semantic information and inferences. Through
integration, the resulting representations emphasized the gist of the expe-
rience at the expense of detail (Reyna & Brainerd, 1995a; Reyna & Brain-
erd, 1995b). However, dissociations between memory and reasoning (that
is, inferential processes) as well as findings suggesting that rich, detailed
representations of experiences are retained in memory, motivated the de-
velopment of fuzzy-trace theory, an influential dual-process model of false
recognition (Reyna & Brainerd, 1995a; Reyna & Brainerd, 1995b; Brainerd
& Reyna, 2002; Brainerd et al., 1999). The theory posits the parallel forma-
tion of rich verbatim in addition to gist-like representations. The competing
single-process view, again, rejects the assumption of abstract, gist-like rep-
resentations and posits that only detailed representations of each episode
are retained (e.g., Arndt & Hirshman, 1998).

Thus, contrary to initially dominant theoretical positions, empirical find-
ings on learning and memory indicate that episodic memory retains rich,
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detailed representations of each experience. This insight sparked the ongo-
ing debate between single- and some dual-process theorists about the ne-
cessity of abstract, inherently lossy representations given their redundancy
with the rich, detailed representations.

2.2 Telling dual-representations from dual-retrieval

Before I review the current theoretical debates in learning and memory
with a focus on representational assumptions, I will briefly discuss what
constitutes evidence for multiple latent causes in general and multiple rep-
resentations in particular In doing so, I elaborate on the distinction be-
tween dual-retrieval and dual-representation models. As is typically the
case in psychology, understanding the processes that underlie learning and
memory is challenging because the constructs of interest are unobserv-
able. Therefore, robust conclusions must combine (1) functional investi-
gations of the number of irreducible dimensions underlying an observable
phenomenon and (2) theory-guided interpretation of the identified dimen-
sions. On their own, both approaches are limited.

A common approach to investigate the number of latent causes of a phe-
nomenon is to produce functional or task dissociations (e.g., Yonelinas,
2002). The idea is to identify separable cognitive processes by exploring
their profiles of functional characteristics (e.g., fidelity, forgetting rate, or
processing speed). As such, this approach presupposes tasks or experi-
mental conditions that quantify the operation of the cognitive processes.
Given a set of two such tasks, functional dissociations—and by extension
separable latent processes—are concluded from double dissociations: For
each task there is at least one manipulation that selectively influence per-
formance on that task, but not the other.

However, this logic of inferring latent multidimensionality from functional
dissociations is flawed for two reasons (Dunn & Kirsner, 1988; Dunn &
Kalish, 2018): First, double dissociations do not, in general, necessitate mul-
tiple latent causes (Dunn & Kirsner, 1988; Newell & Dunn, 2008). Second,
the logic underlying this approach rests on two critical assumptions that
are unlikely to hold in most applications (p. 96, Dunn & Kirsner, 1988).
Selective influence presupposes that a manipulation affects only one un-
derlying process and that this process in turn contributes to only one of the
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two tasks. Despite these flaws, there are numerous prominent examples
of selective influence assumptions in theoretically influential work in both
learning (e.g., Rydell et al., 2006; Hütter et al., 2012; Gawronski et al., 2014)
and memory (e.g., Dunn, 2008; Wixted & Mickes, 2010).

State-trace analysis is a logically consistent and less assumption-laden ap-
proach to inferring multiple latent causes by mapping the functional re-
lationship between two measures that ostensibly reflect the same process
(Bamber, 1979; Dunn & Kirsner, 1988; Dunn & Kalish, 2018). In contrast
to functional dissociations, none of the assumptions related to selective in-
fluence of the manipulation or underlying processes are required. State-
trace analysis only presupposes that the two measures are monotonically
related to the assumed single latent dimension. If this assumption holds,
both measures must be monotonically related; any departure from mono-
tonicity constitutes evidence for multiple latent dimensions.

State-trace analysis may be viewed as a computational-level analysis (Marr,
1982): a characterization of the functional relationship between two observ-
able quantities. Nonetheless, it provides insights into the latent dimension-
ality of a phenomenon—constraining algorithmic and representational ex-
planations. State-trace analysis in itself, however, yields no insight into the
nature of the latent dimensions. That is, it cannot differentiate among any
of the algorithmic and representational explanations consistent with the
functional-level analysis (p. 100, Dunn & Kirsner, 1988). What is more, and
will be central for the following discussion, not all results that necessitate
rejections of unidimensionality are relevant to the single- vs. dual-process
debates. As Dunn and Kirsner (1988) point out:

In one sense, rejection of the single-process model is trivial. It must
surely always be the case that two tasks, sufficiently different to be
interesting, cannot have all their component processes in common.
(p. 100)

Hence, whether a rejection of unidimensionality informs an algorithmic
and representational explanation depends on the combination of measures
and manipulations and cannot be judged without references to available
theories. As noted by Tulving and Bower (1974), “this restriction holds
regardless of what method is used” (pp. 296–297).
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2.2.1 Dissociations are ambiguous

The ambiguity inherent in the inferred multidimensionality has con-
tributed to the development of, as I will argue, unnecessarily complex
dual-representational assumptions to explain evaluative conditioning and
false recognition. Specifically, many dissociations that are interpreted as
evidence for multiple independent representations may similarly be ex-
plained by distinct algorithms that operate on a common representational
substrate (e.g., Hintzman, 1990). As Hintzman (1993) put it,

functional dissociations and stochastic independence between memory
tasks have been taken as evidence that different memory systems un-
derlie the tasks [. . . ]—but both functional dissociations and stochas-
tic independence can be easily derived from models assuming a single
memory system, so their diagnosticity is an illusion (p. 381)

Multidimensionality can be attributed to different stages of the cognitive
processing cascade. First consider single-process models, which posit that
stimulus information is represented in a unitary memory system and ac-
cessed via one retrieval mechanism, Figure 2.1A. Here, multidimensional-
ity may arise, for example, because the tasks or conditions used to probe the
cognitive architecture function as different cues to the retrieval mechanism.
Clark and Gronlund (1996) termed this information dissociations (p. 56). For
example, the measures may (inadvertently) add different contextual infor-
mation to the retrieval cue and thereby promote retrieval of different sub-
sets of available episodic representations. As noted by Dunn and Kirsner
(1988), such multidimensionality is trivial—it contributes to our under-
standing of the measures, but does not constrain the representations and al-
gorithms. To give a concrete example, information dissociations have been
suggested to underlie dissociations between explicit and implicit mem-
ory tasks (Humphreys, Bain, et al., 1989). In Chapter 3, I present evi-
dence that a context-based information dissociation may drive dissocia-
tions between liking and expectancy, which some consider evidence for
dual-representation models of evaluative conditioning.

Now consider dual-retrieval models, which again posit that stimulus in-
formation is represented in a unitary system but accessed via two distinct
retrieval mechanisms, Figure 2.1B. Here, multidimensionality may addi-
tionally be caused by two independent retrieval mechanisms or by one
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retrieval mechanism that produces two independent pieces of informa-
tion. Several memory theories propose that recognition memory is driven
by a memory-strength signal—experienced as unspecific familiarity—and
recollection—experienced as availability of specific memory content (e.g.,
Yonelinas, 2002; Malmberg, 2008; Wixted & Mickes, 2010). Although the
strength of memory and the retrieved memory content may be products
of the same retrieval process they are theoretically independent properties
(Hintzman, 1990). In fact, if pitted against one another memory-strength
and -content may promote opposite responses. Such is the case, when in
false recognition experiments a lure produces great memory-strength, but
there is a decisive mismatch between the lure and the retrieved memory
contents (e.g., Malmberg, 2008). This multidimensionality cannot be cast
as a trivial difference between tasks and informs our understanding of rep-
resentations or algorithms.

Finally, consider dual-representation models, which posit that stimulus
information engages two encoding mechanisms, which produce different
representations each of which is accessed by distinct retrieval mechanisms,
Figure 2.1C. Here, multidimensionality may additionally emerge as infor-
mation is being encoded into qualitatively different representations. As
outlined above, theories on evaluative conditioning and false recognition
share the assumption of two independent representations, one abstract
and lossy, one rich in detail. Distinguishing between dual-representation
and dual-retrieval models requires specific tests of separate encoding
processes. For example, some dual-representation theories of evaluative
learning posit that encoding of abstract link-based associations requires
next to no cognitive resources and proceeds even in the absence of stim-
ulus awareness. I will return to this issue shortly in my review of the
current theoretical debate in evaluative conditioning. Another approach to
testing dual-representation models is to preclude information or retrieval
dissociations by the design of the study. With this approach the robustness
of the conclusions critically hinge on knowledge about the to-be-tested
processes. I used this approach in the experiments discussed in Chapter 4
and Chapter 5.

In sum, when reviewing the evidence in support of dual-process mod-
els, it is important to clearly distinguish between dual-retrieval and dual-
representation models, Figure 2.1. This distinction helps to organize the
available evidence along the processing stages and outlines a path for in-
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cremental theory extension from late to early processing stages: For each
piece of evidence one should first consider whether it may be explained as
an information dissociation. If not, one should consider whether it can be
explained by different retrieval processes that operate on a unitary repre-
sentation. Only if neither of these explanations seem tenable should dual-
representations be invoked. Hence, the distinction between dual-retrieval
and -representation models focuses attention on specific evidence for dis-
tinct representations as opposed to retrieval mechanisms. More generally,
this distinction is useful for theorizing because it demands specification
of the representational assumptions. Lastly, it motivates scrutiny of the
measures to better understand the cues they may provide to the retrieval
mechanism(s).

2.3 Least-committed representations

Special attention to the evidence for dual representations is warranted be-
cause they constitute a strong, lavish assumption. Rich unprocessed repre-
sentations, as typically assumed by single-process and dual-retrieval mod-
els, allow the individual to meet the shifting demands of a complex en-
vironment (and are therefore conducive to integrative theorizing). Lossy
abstract representations on the other hand are less versatile. This is artic-
ulated in Marr’s principle of least commitment (pp. 485–486, 1976; cited
from pp. 598-599, 2008): At the time of stimulus encoding it is difficult to
foresee all relevant environmental demands and tasks. To some extent pre-
processing or information compression operations reflect a commitment
to a set of anticipated task demands. Such anticipatory commitment oc-
casions disproportionate costs if it needs to be undone in light of unfore-
seen task demands. In this sense, it is adaptive and efficient to encode
experiences in as rich a representation as the capacity of the system per-
mits. Thus, the principle of least commitment implies that assumptions
of abstract lossy representations require a strong theoretical rational. For
example, computational-level analyses may reveal environmental factors
that demand routine, fast, resource-saving responding. Such optimized
responding may be appropriate because the respective stimulus occurs fre-
quently or because it is critical for survival and must be guaranteed to func-
tion when the individual operates at her (e.g. attentional) capacity limit. As
alluded to before, another reason to assume more committed representa-
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tions is a system’s limited storage or processing capacity.

To focus attention on representational assumptions, in the remainder I
will refer to single-process and dual-retrieval models as least commitment
models, because they assume rich detailed representations, and to dual-
representation models as precommitment models1, because they posit the
formation of lossy abstract representation.

2.4 Evidence for precommitted representations

In the previous section, I have discussed the distinction between dual-
retrieval and dual-representation models and the importance of specific
evidence for multiple representations in general. Next, I will review the lit-
erature on learning and memory with a focus on representational assump-
tions. In doing so, I highlight a trend towards least commitment explana-
tions in both learning and memory.

2.4.1 Learning

As noted above, the assumption that learning is mediated by simple
associative links has for a long time been ingrained in theories of learning.
The paradigm-shifting success of the famous Rescorla-Wagner model of
conditioning (Miller et al., 1995; Rescorla & Wagner, 1972) appears to
support this assumption. Mitchell et al. (2009) and McLaren et al. (2014)
comprehensively discuss the arguments in favor of and against associative
links. Of particular relevance to my work is the observation that link-
based explanations of learning are fundamentally incompatibility with
remembering (e.g., Bouton, 1993; Jozefowiez, 2018; Lovibond & Shanks,
2002; Miller & Escobar, 2001; Mitchell et al., 2009). Miller and Escobar
(2001), for example, distinguished between acquisition- and performance-
focused models—which roughly correspond to pre- and least-commitment

1I borrow the term precommitment from research into decision making and negotiation
(Schelling, 1981; Strotz, 1955). It refers to the act of taking actions now to deliberately limit
future choice options. As such, precommitment is a strategy to safeguard the execution
of a rationally devised plan despite subsequently arising adverse conditions that distract
from the committed-to goal, such as changes in motivation or shifts in value perception.
Not unlike a general who burns a bridge after his troops have crossed over into enemy
territory (Schelling, 1981), precommitment limits the available options to ensure the staunch
response execution.
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models—and noted that associative links are compressed summaries of the
learning history and fundamentally incompatible with episodic memory:

people’s sense of remembering specific events is not illusionary.
Performance-focused models assume that these memories guide
behavior. Alternatively, people might retain summary statistics
as well as memories of specific past events, but use only summary
statistics to guide behavior. However, this would leave memories of
specific events as useless artifacts (which they might well be . . . ). But
such a conclusion is implausible given what is known about natural
selection. (p. 145, Miller & Escobar, 2001)

As I will note below, this reasoning bears a striking resemblance to recent
arguments made in favor of recent dual-retrieval models of recognition
memory (Wixted & Mickes, 2010).

But how can this call for performance-focused models, and least-
committed representations, be reconciled with the success of link-based
models such as the Rescorla-Wagner model? Jozefowiez (2018) has recently
argued convincingly that this seeming contradiction can be resolved by
recasting the model as a computational-level explanation of predictive
behavior. According to this view, the Rescorla-Wagner model does not
commit to an associative link representation:

A cognitive event cannot be both the retrieved memory of a past event
and, at the same time, the expectation of a future event. [. . . ] predic-
tions rely on memory but are not identical to them. [. . . ] Associations
in the Rescorla-Wagner model are predictions in disguise. (p. 23, Joze-
fowiez, 2018)

The most prominent alternative to associative links in theories of learn-
ing is a propositional representation (Mitchell et al., 2009). The underly-
ing assumption is that learning is a consequence of more basic cognitive
processes, such as attention, memory, and reasoning—that is, learning is a
memory-based reasoning process. Hence, these propositional explanations
inherit their assumption about representations and retrieval processes from
theories of memory. In particular, Mitchell et al. (2009) noted that MIN-
ERVA 2 (Hintzman, 1988; Hintzman, 1984; Hintzman, 1986), a simple but
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powerful model of episodic memory, may be the simplest model consistent
with their proposal (p. 187). In general, however, propositional models are
rather unspecific verbal models that do not commit to a particular memory
model. In Chapter 3, I present a first draft of a formalized explanation of
evaluative conditioning based on MINERVA 2.

As noted above, most theorists now agree that human learning involves
elaborate processing based on rich representations, typically assumed to
be in propositional format. Thus, the current single- vs. dual-process de-
bate revolves around the existence of associative links (Mitchell et al., 2009;
McLaren et al., 2014).

2.4.1.1 Evaluative conditioning

Evaluative conditioning has received special attention in recent years be-
cause proponents of propositional models have acknowledged that here
some of the most convincing evidence for associative links, and thus dual-
representations, has been reported (p. 191, Mitchell et al., 2009). Some of
the most influential dual-process theories of attitude learning are precom-
mitment models and assume that stimulus pairings cause the formation
of associative links as well as propositions at the time of encoding (e.g.,
Gawronski & Bodenhausen, 2006; Rydell & McConnell, 2006; Strack &
Deutsch, 2004; Wilson et al., 2000). To varying degrees these theories lean
on four central pieces of evidence: (1.) Dissociations between explicit (e.g.,
self-report) and implicit measures of liking (e.g., inferred from response-
latency), (2.) evaluative conditioning in the absence of conscious aware-
ness of CS-US contingencies during learning (Lovibond & Shanks, 2002;
Sweldens et al., 2014), (3.) evaluative conditioning effects that are not fully
moderated by relational information, and (4.) dissociations between ex-
pectancy and liking (e.g., De Houwer et al., 2001; Sweldens et al., 2014).

Explicit and implicit measures of liking were long assumed to reflect pre-
dominantly propositional and associative processes, respectively. Under
this assumption dissociations between explicit and implicit liking were
taken as evidence for dual representations. However, as discussed above,
this interpretation neglects the inherent ambiguity of these dissociations
(Clark & Gronlund, 1996; Hintzman, 1990; see Stewart, 2016, for a similar
argument from a functional perspective, p. 24). Accordingly, in a recent
review Corneille and Stahl (2019a) conclude
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The idea that the evaluative outcomes of distinct (propositional
vs. associative) learning systems are expressed through different
(direct vs. indirect) measures hardly withstands empirical evidence.
[. . . ] because indirect measures usually involve speeded responses,
they involve different retrieval and expression processes. (p. 183,
Corneille & Stahl, 2019a)

Associative link-formation is typically assumed to be fast and effortless and
should therefore proceed irrespective of conscious awareness of CS-US con-
tingencies. In contrast to initial reports of unconscious evaluative condi-
tioning, recent follow-up studies found little evidence for such claims when
contingency awareness was rigorously controlled (e.g., Heycke et al., 2017;
Heycke & Stahl, 2020; Moran et al., in press; Heycke et al., 2018; Heycke
et al., in prep; Högden et al., 2018; Pleyers et al., 2007; Stahl & Unkelbach,
2009; Stahl, Haaf, et al., 2016). For example, Rydell et al. (2006) repeatedly
presented an image of a fictitious man with valent descriptions of his be-
havior. Just before his image appeared on screen, a word, the valence of
which was opposite to that of the described behavior, was briefly flashed.
Because participants did not recognize the words after the learning phase, it
was assumed that the words were processed subliminally and, thus, could
only engage an effortless associative learning process. As a result of this
learning procedure, participants expressed inconsistent attitudes towards
the fictitious man: Self-reported liking corresponded to the valence of the
behavioral information; in contrast, when assessed with an Implicit Associ-
ation Test (IAT), liking reflected the opposite valence of the briefly flashed
words. This striking example has often been cited to support precommit-
ment claims (e.g., Rydell & McConnell, 2006; Peters & Gawronski, 2011;
Sweldens et al., 2014). In stark contrast, each of four replication studies
by Heycke et al. (2018) and Heycke et al. (in prep) contradict the original
result: Explicit and implicit liking consistently reflected the valence of the
described behaviors—there was no effect of the briefly flashed words. Al-
though not all replication studies of unconscious evaluative conditioning
yield such indisputable contradictory results (e.g., Moran et al., in press),
overall the evidence is weak (Corneille & Stahl, 2019a).

A key property of associative links is that, in contrast to propositions, they
ignore qualifying information about the relationship between CS and US
or the validity of information. Recently, several studies have reported EC
effects that are not (fully) moderated by relational information (e.g., Hey-
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cke & Gawronski, 2020; Hütter et al., 2012; Kukken et al., 2020; Moran
& Bar-Anan, 2013a; Moran et al., 2016), which may indicate a contribu-
tion of unqualified associative links. For example, Moran and Bar-Anan
(2013a) found that alien characters who stopped an unpleasant noise were
evaluated more favorably than alien characters who ended pleasant music.
However, response times in the IAT indicated opposite attitudes: partic-
ipants preferred alien characters that co-occurred with pleasant music to
those that co-occurred with an unpleasant noise—regardless of the qual-
ifying relational information. Although these results appear to support
dual-representations, an follow-up study, again, suggests that this post-
learning dissociation between measures most likely reflects different re-
sponse strategies afforded by the tasks (Bading et al., 2020)—a form of
information dissociation. Other authors have developed formal measure-
ment models (i.e., multinomial processing tree models, MPT) to more di-
rectly measure the contribution of relationally qualified and unqualified
liking components (Heycke & Gawronski, 2020; Hütter et al., 2012; Kukken
et al., 2020). But again, an as of yet unpublished study from our lab indi-
cates that key assumptions of the measurement procedure are violated and
that the results of these studies provide no evidence for associative link
formation.

Finally, dissociations between expectancy and liking in EC are theoreti-
cally interesting because the expressed expectancies are assumed to be in-
timately related to other predictive learning phenomena, such as Pavlo-
vian conditioning (Lovibond, 2004) and human associative learning more
generally (Mitchell et al., 2009). Hence, dissociations between expectancy
and liking indicate unique qualities of EC, which have been cited as evi-
dence for associative link-formation (e.g., Baeyens et al., 2009a; Gawron-
ski et al., 2014; Gawronski & Bodenhausen, 2006). The most commonly
cited expectancy-liking dissociation is the apparent resistance of EC to ex-
tinction. EC effects that survive repeated presentations of the CS in iso-
lation suggest that temporo-spatial co-occurrences between CSs and USs,
but not the predictive value of a CS, drive evaluative conditioning (e.g., De
Houwer et al., 2001; Sweldens et al., 2014). Accordingly, precommitment
theories posit that only CS-US contiguity drives associative link-formation
(Sweldens et al., 2014).

In Chapter 3, I report a series experiments that test a single-process ex-
planation of expectancy-liking dissociations: Lipp et al. (2010) argue that
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representations CS-US pairings include the (temporal) context. Critically,
they propose that evaluations of CSs are, by default, not contextualized
and reflect the entire learning history. In contrast, judgments of US ex-
pectancy, by default, are (temporally) contextualized and most strongly
reflect the recent learning history. Similar context-based explanations of
extinction have previously been proposed for Pavlovian conditioning and
oppose more traditional accounts that posit unlearning of associative links
(e.g., Amsel, 1967; Bouton, 1993; Capaldi, 1967; Rescorla, 2003). The de-
fault judgment strategies presumably are afforded by the tasks and, hence,
constitute an information dissociation. Additionally, I explore whether this
information dissociation account is consistent with the specific representa-
tional and retrieval assumptions of MINERVA 2. As argued by Jozefowiez
(2018), my results confirm that expectancy and liking can dissociate despite
being based on a unitary memory system (Hintzman, 1990) and support
recent conceptualizations of EC as memory-based judgments (Aust et al.,
2018; Gast, 2018; Stahl & Aust, 2018).

The above discussion shows that evidence for precommitment models of
EC is weak. Under scrutiny, some findings appear to be artifacts of the
methodology, others cannot be replicated, and still others can be more par-
simoniously explained in terms of information dissociations. Accordingly,
dual-process proponents are beginning to acknowledge the explanatory
scope of the least-commitment perspective and the importance of clearly
distinguishing between pre- and least-commitment explanations (e.g., Bar-
Anan & Moran, 2018; Gawronski & Bodenhausen, 2018; Hütter & Rother-
mund, 2020). Thus, evaluative conditioning currently appears to be well
within the scope of least-commitment (and single-process) models.

2.4.2 Recognition memory

The characterization of familiarity and recollection in dual-process models
of recognition memory is quite varied (for an overview see Yonelinas,
2002). Not unlike learning theories, precommitment models of recognition
memory posit that qualitatively different information drives familiarity
and recollection (e.g., Reyna & Brainerd, 1995b; Mandler, 1980): However,
in contrast to learning theories, there is some disagreement about the
mapping of the information to these processes. Earlier models assumed
that sensory or perceptual similarity between probe and memory trace



42 CHAPTER 2. LEAST-COMMITTED REPRESENTATIONS

drives familiarity whereas conceptual or elaborate information drives
recollection (Mandler, 1980). Current theories of false recognition posit the
opposite (Brainerd et al., 1999). Yonelinas (2002), however, notes that the
available evidence suggests that familiarity may be driven by both concep-
tual and perceptual information and, hence, simple information-process
mappings may be inadequate (p. 480). Studies that report perceptually
false recognition further support this assertion (e.g., Brainerd et al., 1995;
Koutstaal et al., 1999; Ly et al., 2013; Stahl, Henze, et al., 2016).

Single-process models assume that familiarity is a unidimensional memory
strength signal. From a single-process perspective, the view that memory
strength is exclusively based on abstract conceptual overlap is problematic.
Reminiscent of the associative-link critique by Miller and Escobar (2001),
Anderson and Bower (1972) noted that

The important feature to note about the strength theory of recognition
is that it is “ahistorical”; that is, it assumes that a subject makes recog-
nition decisions about an item not on the basis of detailed memory of
the past history [. . . ] It is this ahistorical character of strength theory
which is the source of all its weaknesses. (p. 98, cited from Wixted &
Mickes, 2010)

Hence, contemporary single-process theories propose a more complex in-
terpretation of familiarity: Rather than simply reflecting the strength of a
memory it is construed as an evidence signal that contains historical in-
formation about past events. That is, as in learning theory, single-process
proponents assume rich rather than abstract lossy episodic representations
and that (some of) this information is accessible. Wixted and Mickes (2010)
have argued that this view of familiarity aligns better with the dual-process
characterization of recollection than familiarity (p. 1026). Thus the cur-
rent debate revolves around the contribution of a lossy, ahistoric memory-
strength signal and precommitted representations (p. 205, Norman et al.,
2008). For recent discussions of the evidence for dual-processes in recog-
nition memory see Diana et al. (2006), Yonelinas and Parks (2007), Wixted
(2007), Parks and Yonelinas (2007), and Malmberg (2008). Although there
are several dual-retrieval models that assume least-committed representa-
tions (e.g., Hintzman et al., 1992; Humphreys, Bain, et al., 1989; Malmberg
et al., 2004; Malmberg, 2008), there are also several influential precommit-
ment models (e.g., Brainerd et al., 2015; Brainerd et al., 2019; McClelland
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et al., 1995; Norman & O’Reilly, 2003; Schapiro et al., 2017). In the remain-
der, I will focus on the evidence for dual-representations from research into
false recognition studies.

2.4.2.1 False recognition

Often the errors a subject makes were an important clue to how the
subject encoded the stimulus. (Miller et al., 1960)

As in research on perception, memory errors have informed theories of
memory (e.g. Underwood, 1965; Miller et al., 1960) and, in particular, the
finding of high-confidence false memories continue to challenge theories of
episodic memory (e.g., Brainerd et al., 2015; Diana et al., 2006; Brainerd &
Reyna, 2018; Malmberg, 2008).

Fuzzy-trace theory posits that two opponent processes contribute to true
and false recognition (Brainerd et al., 2019; Reyna & Brainerd, 1995a; Reyna
& Lloyd, 1997). Like most dual-process theories, one process, referred to as
gist memory, is conceptualized as unspecific familiarity, which promotes
true and false recognition and is driven by semantic, or conceptual similar-
ity between the probe and memory traces.2 The second process, referred
to as verbatim memory is thought of as a recollective process that evokes
a vivid and detailed remembrance of the past experience. As such, it pro-
motes true recognition but inhibits false recognition. Fuzzy-trace theory
makes the strong precommitment assumption that two encoding processes
operate independently, in parallel, and leave (multiple) gist and a verbatim
memory trace. At test, gist and verbatim traces presumably are retrieved
independently.

Three central empirical results are central to justify the assumption of in-
dependent gist and verbatim representations (chapter 3 and 4, Brainerd &
Reyna, 2005): Experimental research seems to indicate that (1.) meaning
(gist) can be processed faster than the surface features of a stimulus (e.g.,
Draine & Greenwald, 1998; Reicher, 1969; Wheeler, 1970) . This finding,
however, can be accounted for in single-process models that factor in dy-
namic perceptual processes at test (Brockdorff & Lamberts, 2000; Cox &

2Under some circumstances, strong gist activation can result in an erroneous reinstate-
ment of contextual details resulting in phantom recollection (i.e., vividly experienced, high-
confidence false memories; Brainerd et al., 2001).
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Shiffrin, 2017). Additional evidence comes from studies showing that (2.)
verbatim traces decay faster than gist traces (e.g., Toglia et al., 1999) and
that (3.) gist and verbatim memory can be selectively strengthened by pre-
senting an increasing number of new but gist-preserving items or by re-
peating study list items, respectively (e.g., Stahl & Klauer, 2009; Stahl &
Klauer, 2008). However, my research indicates that these findings may not
be beyond the scope of recent single-process and least-commitment mod-
els.

The claim that the gist of an item can be processed faster than its surface
features is noteworthy because it is typically assumed that, for example,
the letters that make up a word have to be processed before its meaning
emerges. If, however, the meaning of a word is processed prior to its surface
features, this would be strong evidence for parallel independent encoding
of gist and verbatim memory traces. Two effects are typically cited to sup-
port this claim. The word-superiority effect is defined as facilitated recogni-
tion of letters that are embedded in a word compared to letters presented in
isolation or as part of a non-word (Reicher, 1969; Wheeler, 1970). The con-
clusion that, therefore, meaning is processed in parallel to and faster than
the surface features is however challenged by the finding that letter recog-
nition is also facilitated in pronounceable but meaningless pseudowords
(Baron & Thurston, 1973). Another effect cited in support of independent
gist and verbatim encoding is unconscious semantic priming. For example,
a brief masked presentation of a male or female name modulates the speed
at which an immediately succeeding name can be classified as male or fe-
male (e.g., Draine & Greenwald, 1998). If the sex of the briefly presented
name is associated with the same sex as the succeeding name responding
is facilitated; conversely, responding is slowed when the names are associ-
ated with opposite sexes. The lingering influence of a subsequently unrec-
ognizable word may seem to suggest that, as claimed by fuzzy-trace the-
ory, meaning is preferentially processed and encoded even if surface fea-
tures (i.e., verbatim information) are not. By this logic unconscious prim-
ing effects should be limited to semantic information. This, however, is not
the case—surface features also modulate subsequent responding (e.g. Bod-
ner & Dypvik, 2005; Koechlin et al., 1999). Also, it is well established that
identifying verbatim information becomes unavailable faster than the gist
(see below). Such differential forgetting rates, rather than separate paral-
lel encoding processes, could underlie unconscious semantic priming (e.g.,
Potter et al., 2002; Potter, 1976). Critically, unconscious semantic priming
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can be explained by least-committed single-process models of recognition
that explicitly take perceptual processes at test into account (Cox & Shiffrin,
2017). If some features of the prime “leak over” into the representation of
the probe at test, they will bias the retrieval process—and yield an infor-
mation dissociation. Note, also, that it is controversial whether semantic
priming is possible in the absence of conscious prime processing, as ac-
knowledge by proponents of fuzzy-trace theory (p. 104, Brainerd & Reyna,
2005); for critiques see for example Merikle and Reingold (1998) and Shanks
and St. John (1994).

Ample evidence indicates that the details of an experience are forgotten
more rapidly than its gist (p.148 ff. Brainerd & Reyna, 2005; e.g., Reyna &
Titcomb, 1997). This finding is readily explained by assuming separate ver-
batim and gist traces that decay at different rates. However, some single-
process least-commitment models also predict different forgetting rates.
For example, when the gist of an item is instantiated by multiple study list
items (as is the case in the commonly used DRM lists, Deese, 1959; Roediger
& McDermott, 1995) the gist-repeating study list items strengthen the gist
more than the details of each individual item (Hintzman, 1986). It should
also be noted that some recent work calls into question the generality of
this finding. In contrast to studies using verbal material (e.g. words or
sentences; Kintsch et al., 1990; Koriat et al., 2003), details and gist seem
to decay at comparable rates for photographs of everyday objects (An-
dermane & Bowers, 2015). Similarly, pairwise associated person-object-
location-triplets appear to be forgotten in an all-or-none fashion (Joensen
et al., 2020).

Finally, there is convincing evidence that encoding manipulations can
selectively affect gist and verbatim memory. For example, gist memory
can be selectively strengthened by increasing the number of new but
gist-repeating items on the study list and verbatim memory can be
strengthened by repeating study list items (e.g., Stahl & Klauer, 2008; Stahl
& Klauer, 2009). In effect, increasing the number of new but gist-repeating
study list items increases true and false recognition. On the other hand, if
initially the gist of an episode is strongly encoded and recall strategies are
prevented, repeated presentation of study list items selectively increases
true recognition. Such increases in true recognition without corresponding
increases in false recognition challenged many single-process models
(p. 112, Brainerd & Reyna, 2005).
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In Chapter 4, I report an experiment that tests, whether a single-process
model can simultaneously account for the effects of selective influence ma-
nipulations of gist and verbatim memory. Contemporary single-process
models assume that strengthening episodic memory traces, for example
through repetition, causes them to become more distinct, which counter-
acts increases in false recognition—a process referred to as differentiation
(e.g., Criss, 2006; p. 170, Criss & Howard, 2015). I demonstrate a theoret-
ical correspondence between the Conjoint Recognition Model (Brainerd et
al., 1999; Brainerd et al., 2001), a formal implementation of fuzzy-trace the-
ory, and the Generalized Context Model (Nosofsky, 1986; Nosofsky, 1988;
Nosofsky, 2011a)—a least-committed single-process model. Moreover, I
show empirically that the Generalized Context Model is able to adequately
account for a multidimensional pattern of true and false recognition, which
was caused by established selective influence manipulations. These results
suggest that gist and verbatim retrieval may be better thought of as in-
dependent familiarity increments by partial and exact matches between
probes and memory traces in a unitary memory system.

As the above discussion shows, evidence for dual-representations in false
recognition is not compelling. The reported dissociations can be parsimo-
niously explained in terms of information (or retrieval) dissociations and
are, thus, within the scope of least-commitment models.

2.4.2.2 False recognition over the short-term

False memories are typically considered a phenomenon of long-term mem-
ory and studied with long lists or across relatively long-delays. How-
ever, recent studies have established that false recognition and recall can
be elicited with very similar methods in short-term memory (e.g., Atkins
& Reuter-Lorenz, 2008; Coane et al., 2007; Flegal et al., 2010). These find-
ings have raised questions about the interplay between short- and long-
term memory (e.g., Abadie & Camos, 2019). Traditionally, it has been as-
sumed that short- and long-term memory are fundamentally distinct, that
is, short-term memory presumably is insulated from long-term memory
and powered by different representations. That is to say, the distinction
between short- and long-term memory often involves dual-representation
assumptions that are similar to but in some aspects fundamentally differ-
ent from those in long-term memory. However, in recent years unitary
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memory models have become influential (e.g., Crowder, 1993; Jonides et
al., 2008; Nairne, 1990; Nairne, 2002). Accordingly, precommitment ex-
planations for false long-term memory, such as fuzzy-trace theory, have
been invoked to explain false short-term memory (Jou et al., 2016; Festini
& Reuter-Lorenz, 2013; Flegal & Reuter-Lorenz, 2014; Dimsdale-Zucker et
al., 2018; Abadie & Camos, 2019). Others have argued that least-committed
single-process models can also account for central short-term memory find-
ings (e.g., Kahana & Sekuler, 2002; Nosofsky et al., 2011; for a review see
Nosofsky, 2016). Consistent with unitary memory models, recent work in-
dicates that such models may provide a common basis to jointly explain
findings from both short- and longer-term memory (Nosofsky et al., 2020;
Nosofsky, Cox, et al., 2014; Schurgin et al., 2019). Accordingly, to extend the
account of false recognition form long- to short-term memory, in Chapter
5 I report an experiment that simultaneously employed selective influence
manipulations of gist and verbatim memory in a short-term memory task.
In support of unitary memory models, I find that the same model accounts
for false recognition over the long and short term.

2.5 Global exemplar matching

A common thread running through many of the successful single-process
and least-commitment models of learning and memory is that they are in-
stantiations of global matching models (Clark & Gronlund, 1996; Kelly et al.,
2017; and Osth & Dennis, 2020) or make similar assumptions. At the heart
of global matching models is the assumption that each episode leaves a
trace (an exemplar) in a unitary memory system—least-committed rep-
resentations of each episode are retained. Information is retrieved from
memory by matching the cue to each trace in parallel. The matching pro-
cess computes the similarity between the cue and each memory trace and
the aggregated cue-trace similarity is an index of the cues familiarity. Ad-
ditionally, some global matching models also specify a similarity-based
cued recall process that returns episodic information (e.g., Hintzman, 1984).
The described representational and algorithmic assumptions have allowed
global matching models to account for fast responses that, nonetheless are
affected by the entire contents in memory—a combination of constraints
that motivated dual-process models (pp. 38–39, Clark & Gronlund, 1996).
Although some empirical findings have challenged global matching mod-
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els (Criss & Howard, 2015; Osth & Dennis, 2020), contemporary advance-
ments provide powerful accounts of a wide range of phenomena as di-
verse as attention, learning, and memory (Cox & Shiffrin, 2017; Logan,
2002; Osth & Dennis, 2020; Schmidt et al., 2016). Even stern proponents
of dual-retrieval models acknowledge the power of these models (p. 491,
Yonelinas, 2002).

Core features of global matching models are also explicitly or implicitly
assumed by several influential models of learning. For example, configu-
ral theory of Pavlovian conditioning (Pearce, 2002) assumes that learning
results in CS representations that can be later activated (or retrieved) not
only by the same CS but also by similar CSs. The CS is matched, in par-
allel, to all representations in memory and the aggregate association be-
tween the activated representations and the US drives responding. At the
heart of configural theory is the assumption that compound CSs, which
consist of multiple stimuli, are represented configurations that are similar
but independent of their constituent stimuli. This assumption, again, mir-
rors representational assumptions of global matching models (e.g., Clark
& Gronlund, 1996; Kelly et al., 2017). Several models of attitude learning
and evaluative conditioning also assume parallel similarity-based retrieval
(De Houwer, 2018; p. 693 Gawronski & Bodenhausen, 2006; Mitchell et
al., 2009; p. 111, Smith & DeCoster, 2000). Much like in global matching
models, these assumptions predict that similar CS representations modu-
late conditioned responding and help to explain generalization and context
effects.

Thus, exemplar representations, combined with a global matching retrieval
mechanism, have proven to be a widely applicable approach to model di-
verse cognitive phenomena. Although exemplar models have their origins
in memory research, their assumptions mirror those of several influential
models of learning, which facilitates alignment with established theoretical
approaches. As such, the exemplar representation is a promising candidate
for a parsimonious alternative to dual-representation assumptions and a
common representational substrate for theories of learning and memory.

2.5.1 Benefits

But what are the benefits of adopting an exemplar representation and
a global matching perspective? As I noted in the previous chapter,
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discovery of representational formats that are consistent with to a broad
range of phenomena is interesting because they form a basis for broadly
applicable, well-constrained, parsimonious explanations. Thus, a unifying
theoretical approach to learning and memory needs to identify a common
representational format and defer distinct processing steps to the response
stage (also see p. 707, Nosofsky, 1988). A domain-general representational
format likely retains stimulus information after minimal preprocessing
(Marr, 1982). Exemplar representations are strong candidates for such
least-committed representations and, thus, a parsimonious alternative
to dual-representation assumptions in learning and memory (also see
Jozefowiez, 2018). As a result, this approach may serve as a basis for more
integrative theorizing. I believe that this kind of theoretical exchange is
mutually beneficial. The traditional focus of learning research on compu-
tational level explanations may expose further information dissociations
and thereby help to simplify assumptions about the structure of memory
[e.g., Houwer (2011); see Chapter 4 and Chapter 5]. Similarly, exemplar
representations and the well-formalized and principled mechanisms of
similarity-based global matching may serve to specify learning theories
and inform the debate between single- and dual-process models (Chapter
3).

Last but not least, as discussed at length above, robust conclusions about
the dimensionality of learning and memory require that empirical findings
are interpreted in the context of specific theories. Tulving and Bower (1974)
noted the importance of precise processing assumptions for theoretical in-
ferences from empirical results:

explication of the logic that relates experimental outcomes to state-
ments about properties of memory traces requires specific assumptions
about how the stored information is processed when it is retrieved. It
is only in the context of a particular process model that inferences can
be meaningfully drawn from the experimental data. This restriction
holds regardless of what method is used. (pp. 296–297)

Global matching models make well-tested, mathematically formalized as-
sumptions about representations and retrieval processes. Particularly, the
field of evaluative conditioning, where no formalized theories exist, could
benefit from exploring a more formalized approach to theorizing.
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By virtue of their formalization, they facilitate a detailed analysis of theo-
retical assumptions and comparison across theories. Model analysis and
the exploration of a model’s predictions help to build an intuition about
the mechanics of a model. What are the crucial assumptions that allow the
model to describe a pattern of results? Which assumptions are responsi-
ble for empirically unsupported predictions? Such detailed understanding
of the model mechanics promotes further theoretical developments. Hintz-
man (1990) pointedly highlights this benefit to mathematical formalization:

To have one’s hunches about how a simple combination of processes
will behave repeatedly dashed by one’s own computer program is a
humbling experience that no experimental psychologist should miss.
(p. 111)

A comparison of different formal models may help to pinpoint where
predictions diverge and thereby inform empirical tests of these theo-
ries. In other cases, a thorough theoretical analysis of the models may
reveal non-trivial commonalities or even mathematical equivalences (e.g.,
Humphreys, Pike, et al., 1989; Jones & Dzhafarov, 2014; Kellen & Klauer,
2019; Kelly et al., 2017). Understanding such commonalities can be infor-
mative to all theories involved. In the next chapter, I present a theoretical
model analysis that reveals how multidimensionality of true and false
recognition can arise in a single-process global matching model. These
findings suggest a parsimonious reinterpretation dual-representations in
fuzzy-trace theory.
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Chapter 3

A memory-based judgment account
of expectancy-liking dissociations in
evaluative conditioning
FREDERIK AUST, JULIA M. HAAF, & CHRISTOPH STAHL

Evaluative conditioning (EC) is a change in liking of neutral conditioned
stimuli (CS) following pairings with positive or negative stimuli (uncon-
ditioned stimulus, US). A dissociation has been reported between US ex-
pectancy and CS evaluation in extinction learning: When CSs are presented
alone subsequent to CS-US pairings, participants cease to expect USs but
continue to exhibit EC effects. This dissociation is typically interpreted as
demonstration that EC is resistant to extinction, and consequently, that EC
is driven by a distinct learning process. We tested whether expectancy-
liking dissociations are instead caused by different judgment strategies af-
forded by the dependent measures: CS evaluations are by default integrative
judgments—summaries of large portions of the learning history—whereas
US expectancy reflects momentary judgments that focus on recent events.
In a counterconditioning and two extinction experiments, we eliminated the
expectancy-liking dissociation by inducing nondefault momentary evalua-
tive judgments, and demonstrated a reversed dissociation when we addi-
tionally induced nondefault integrative expectancy judgments. Our findings
corroborated a-priori predictions derived from the formal memory model
MINERVA 2. Hence, dissociations between US expectancy and CS evalua-
tion are consistent with a single-process learning model; they reflect different
summaries of the learning history.
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Evaluative conditioning (EC) is a change in liking of neutral conditioned
stimuli (CS) following pairings with positive or negative unconditioned stim-
uli (US; De Houwer, 2011; Hofmann et al., 2010). For example, an initially
neutral brand logo (the CS) that is repeatedly paired with positive stim-
uli (the USs) in advertisement settings is later evaluated more positively
compared to initial evaluations or unpaired logos. In this sense, EC is con-
sidered to be a model of the effects of advertising (Biegler & Vargas, 2013),
and of attitude acquisition in general (De Houwer et al., 2001).

Most human associative learning phenomena can be accounted for by a
propositional process which presumably requires conscious awareness of
the to-be-learned regularities—the CS-US contingencies—to affect behav-
ior (Mitchell et al., 2009). It has been argued, however, that EC violates this
principle (Baeyens & De Houwer, 1995; De Houwer et al., 2001). Multiple
studies report that EC may occur without conscious awareness of CS-US
contingencies (Lovibond & Shanks, 2002; see Sweldens et al., 2014, for a
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recent review). Moreover, EC has been claimed to be resistant to extinc-
tion and, hence, to occur despite conscious awareness of the absence of
CS-US contingencies (Baeyens et al., 1988; Baeyens et al., 2005; Dwyer et
al., 2007; Hermans et al., 2002; Vansteenwegen et al., 2006). This dissoci-
ation between expectancy and liking cannot be readily explained by the
aforementioned propositional learning process; hence, EC was taken to in-
volve distinct processes that differ from those underlying other associative
learning phenomena (De Houwer et al., 2001). Consequently, dual-process
theories of attitude acquisition, which postulate an additional, automatic,
associative learning process (e.g., Gawronski & Bodenhausen, 2006; Rydell
& McConnell, 2006; Strack & Deutsch, 2004; Wilson et al., 2000), have be-
come popular among EC theorists.

Recent research has, however, cast doubt on whether these critical findings
hold, and if they do, whether a dual-process account is in fact necessary
to explain them. Overall, the evidence for EC without CS-US contingency
awareness is weak, with unintentional (incidental) EC perhaps best sup-
ported by the data (Sweldens et al., 2014; Corneille & Stahl, 2019b; Stahl,
Haaf, et al., 2016; Heycke et al., 2017; Heycke et al., 2018). The present study
investigates a recent single-process account of why EC appears to be resis-
tant to extinction (Lipp & Purkis, 2006; Lipp et al., 2010; Lipp et al., 2003).
We briefly review the central findings obtained with extinction procedures
in EC research and then suggest a parsimonious single-process model for
these findings. Next, we present three experiments that tested the model
predictions in a counterconditioning and an extinction procedure.

3.1 Resistance to extinction

Until recently, the majority of EC studies supported the interpretation that
EC is resistant to extinction (e.g. Baeyens et al., 1988; Baeyens et al., 2005;
Hermans et al., 2002). For example, Hermans et al. (2002) report a dissoci-
ation between CS evaluation and US expectancy in two experiments. The
authors used a common extinction procedure, in which CSs were paired
with USs in an acquisition phase and presented alone in a subsequent ex-
tinction phase. To assess the effect of the extinction procedure on EC, they
compared CS evaluations obtained after acquisition to those obtained af-
ter extinction. Hermans et al. (2002) found that EC was unaffected by the
extinction phase, whereas US expectancy was extinguished.
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The resistance of CS evaluation to extinction stands in contrast to the rapid
extinction of conditioned responses observed in Pavlovian conditioning
(Lovibond, 2004) and human associative learning more generally (Mitchell
et al., 2009). Dissociations between US expectancy and CS evaluation, as
those reported by Hermans et al. (2002), pointedly illustrate this contrast
and are central to the debate between single- and dual-process learning
theorists (e.g., Baeyens et al., 2009b). The latter suggests that, unlike US
expectancy, CS evaluation is driven by a distinct learning process that pre-
sumably reflects temporo-spatial co-occurrences between CSs and USs (CS-
US contiguity) but not the predictive value of a CS (statistical CS-US contin-
gencies; e.g., Sweldens et al., 2014). Hence, the dual-process account posits
that a change in the predictive value of a CS, for example due to extinction
learning, affects US expectancy but not CS evaluation.

In 2010, a meta-analysis by Hofmann et al. (2010) rekindled this debate:
their results indicated that EC is not, strictly speaking, resistant to extinc-
tion. They found a substantial reduction of EC in studies that assessed the
EC effect both after acquisition and then again after extinction. CS-alone
trials reduced the EC effect by 37% (i.e., from d = 0.85 to d = 0.53). This
finding is difficult to reconcile with conventional dual-process theories of
EC and, thus, motivated new research on the topic.

Gawronski et al. (2014), for example, suspected that extinction of EC may
be dependent on characteristics of the study procedure and tested their
hypothesis experimentally. They found no extinction when they compared
the EC effect between different groups of participants who evaluated CSs
only once, either after the acquisition or after the extinction procedure.
EC was (partly) extinguished only when participants evaluated CSs
twice—after the acquisition and after the extinction phase. Extinction was,
however, only observed in explicit evaluative ratings but not in affective
priming. Based on their results, Gawronski et al. (2014) argued that these
changes in CS evaluation do not reflect genuine changes in liking. Instead,
they argued that specific judgment-related nuisance processes (e.g., due to
repeated CS evaluation) may be responsible for the artifactual extinction
of EC in explicit evaluative ratings; the true underlying evaluative repre-
sentation was assumed to be unaffected by the extinction procedure, as
supported by the presumably less obtrusive evaluative priming measure.
Gawronski et al. (2014) argued that their finding resolves the contradiction
between the extinction effect found by Hofmann et al. (2010) and the re-
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sistance to extinction predicted by dual-process theories. They concluded
that any theoretical account has to explain how EC is largely resistant to
extinction.

Extinction learning is a prominent example of such an expectancy-liking
dissociation. A similar dissociation has been reported in countercondition-
ing procedures, in which CSs are associated with USs of opposing valence
in two subsequent parts of the learning procedure (Lipp & Purkis, 2006;
Lipp et al., 2010): At the end of this two-part learning procedure, partici-
pants exhibited no EC effects, although they continued to expect CSs and
USs to co-occur according to the regularity learned in the more recent sec-
ond part. This dissociative pattern is the opposite of the one observed in
extinction procedures, at the end of which participants (continue to) exhibit
EC effects but no longer expect the CS to co-occur with USs. Dual-process
theories explain this dissociation just as they explain the dissociation in ex-
tinction procedures: The associative learning process assumedly is driven
by CS-US contiguity and, thus, the predictive value of CSs is irrelevant to
their evaluation (Sweldens et al., 2014). Hence, no EC is to be expected
because CSs are paired with positive as often as with negative USs.

3.2 The temporal integration hypothesis

Single-process theories cannot explain resistance to extinction, and partic-
ularly the dissociation between US expectancy and CS evaluation, by re-
ferring to distinctive properties of separate learning systems. Additional
assumptions are necessary. Lipp et al. (2010) discussed a set of auxiliary as-
sumptions for the single-process account, which we will refer to as the tem-
poral integration hypothesis, to account for the expectancy-liking dissociation
(also see Lipp et al., 2003). They argue that US expectancy and CS evalu-
ations reflect different summaries of the same underlying representation.
The assumption is that memory stores a unitary representation of the CS-
US pairing, and that the learning history is conserved and organized along
a temporal dimension or by contextual properties. Moreover, it is assumed
that memory for CS-US pairings can be flexibly used to meet the (assumed)
task demands. Lipp et al. (2010) argue that, by default, CSs are evaluated
under consideration of the entire learning history—participants make inte-
grative evaluative judgments. In contrast, predictions or judgments of US
expectancy are made by default in reference to recent events—participants
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make momentary expectancy judgments. These opposite default judgment
strategies are assumed to be afforded by the tasks. Thus, Lipp et al. (2010)
proposed that the expectancy-liking dissociation is not indicative of two in-
dependent learning systems; instead, they propose that the dissociation is
caused by different default judgment strategies underlying US expectancy
versus CS evaluation responses.

The temporal integration hypothesis is inspired by a very similar idea pro-
posed in the field of causal learning. Collins and Shanks (2002) found a
dissociation between causal strength judgments and outcome prediction.
Participants viewed a series of trials showing imaginary laboratory records
that documented butterfly species’ reactions to radiation exposure. Ra-
diation caused genetic mutations in half of the butterflies and prevented
mutations in the others. Akin to a counterconditioning procedure, these
contingencies reversed in the middle of the experiment. Thus, across all
trials there was no causal relationship between radiation and mutation for
any butterfly species. Similar to US expectancy ratings in EC experiments,
intermittent predictions about the occurrence of genetic mutations closely
mirrored the changes in contingencies: Participants correctly predicted that
radiation would first cause but later prevent mutations, or vice versa. But
end-of-study causal strength ratings dissociated from participants’ last pre-
dictions: In causal strength ratings participants favored neither cause nor
prevention. Collins and Shanks (2002) further found that this dissociation
was affected by the frequency of these ratings. When participants repeat-
edly rated causal strength throughout the learning procedure, their end-of-
study ratings corresponded to their intermittent predictions.

To explain their findings, Collins and Shanks (2002) argued that partici-
pants can flexibly adopt different judgment strategies. For frequent judg-
ments, a momentary strategy is adopted in which ratings reflect only the
most recent information (i.e., that has been acquired since the last judg-
ment). In contrast, when judgments are made only at the end of a series
of events, an integrative strategy is adopted, in which ratings incorporate
information from the entire event series. Rather than being dichotomous,
these strategies can be thought of as smaller or larger averaging windows
used to aggregate information across time. Matute et al. (2002) explored
factors that cause participants to adopt a momentary or integrative judg-
ment strategy. They found that questions targeting the predictive value of
a stimulus induced momentary judgments, whereas questions about con-
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tiguity and causality induced integrative judgments. Moreover, they were
able to manipulate the adopted judgment strategy via postexperimental in-
structions. In short, this research implies that participants flexibly use the
learned information to meet the (assumed) demands of the task set by the
experimenter.

Building on the research by Collins and Shanks (2002), Lipp and Purkis
(2006) found that dissociations between US expectancy and CS evaluations
are similarly affected by the frequency of evaluative ratings. In a counter-
conditioning and an extinction procedure, participants provided pleasant-
ness ratings either twice (i.e., after each of the two learning phases) or only
once at the end. When only one final rating was collected, participants’ rat-
ings reflected averages across the entire learning procedure: In the counter-
conditioning procedure, participants exhibited no EC effect; whereas in the
extinction procedure, they exhibited a robust EC effect. In contrast, when
participants provided multiple ratings, their CS evaluations reflected only
the most recent CS-US contingencies, and the expectancy-liking dissoci-
ation was eliminated: In the counterconditioning procedure, participants
reported causal relationships between CSs and USs in accord with the con-
tingencies inherent in the respective part of the procedure, and they exhib-
ited EC effects corresponding to these causal judgments. In the extinction
procedure, participants reported no causal relationship after the extinction
phase, and, correspondingly, they now also failed to exhibited an EC effect.
In other words, the final expectations no longer dissociated from end-of-
study evaluations—the EC effect was successfully extinguished. Notably,
the extinguished EC effect reappeared when participants were asked to
evaluate the CSs again in a different context and response format at the
end of the study. Lipp et al. (2010) argued that their findings can be ex-
plained by the temporal integration hypothesis. They proposed that, when
asked repeatedly throughout the learning procedure, participants made
momentary judgments that reflected recent trends in CS-US contingencies
(i.e., showed EC in counterconditioning but not after extinction). On the
other hand, postexperimental pleasantness ratings in a different context
and response format were by default integrative judgments that reflected
the entire learning history (i.e, showed no EC in counterconditioning but
did show EC after extinction).

The temporal integration hypothesis may reconcile expectancy-liking dis-
sociations with single-process theories of EC, but the proposed auxiliary
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assumptions need to be tested rigorously. Previous research leaves room
for alternative explanations of the extinction of EC, and it has not tested
the effects of judgment strategies of US expectancy and CS evaluation con-
currently. Here we address those shortcomings. We tested two predic-
tions from the hypothesis’ core assumptions more stringently and without
allowing for alternative accounts in terms of demand effects induced by
multiple pleasantness judgments (as proposed, e.g., by Gawronski et al.,
2014). Remember that Lipp and Purkis (2006) elicited nondefault momen-
tary CS pleasantness judgments by collecting ratings intermittently dur-
ing the learning procedure. As argued by Gawronski et al., multiple inter-
mittent CS evaluations could alter the evaluative learning process or bias
response behavior by inducing demand characteristics and thereby artifi-
cially create momentary judgments. The present studies avoided this po-
tential confound by collecting CS evaluations (as well as, in Experiment 3,
expectancy judgments) only after the learning phase and thereby eliminate
alternative explanations in terms of demand characteristics.

If previous findings are indeed caused by judgment strategies, then (1) it
should be possible to manipulate these strategies for US expectancy and CS
evaluation after the learning procedure and without intermittent CS pleas-
antness judgments. Moreover, if the default judgment strategies for CS
pleasantness (Lipp & Purkis, 2006) and US expectancy (Collins & Shanks,
2002; Matute et al., 2002) are malleable, (2) the expectancy-liking dissocia-
tion in extinction learning should be reversible if one could elicit the oppo-
site nondefault judgment strategies. A concurrent cross-over manipulation
of judgment strategies for both US expectancy and CS pleasantness would
predict a double-dissociation pattern. Combined in a single experiment,
this constitutes a rigorous test of the temporal integration hypothesis. Con-
firmation of these double-dissociation predictions, while eliminating alter-
native accounts, would provide stronger support for the temporal integra-
tion hypothesis that goes well beyond that provided by previous studies.

3.3 MINERVA 2: A candidate single-process model

The temporal integration hypothesis does not specify how the learning his-
tory is conserved, how temporal organization is achieved, or how the in-
formation is summarized to perform judgment tasks. Mitchell et al. (2009)
postulated that human associative learning is based on memory for past
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events. They further suggested that MINERVA 2 (Hintzman, 1988; Hintz-
man, 1984; Hintzman, 1986), a simple but popular model of episodic mem-
ory, may be the simplest model consistent with a memory system support-
ing their propositional single-process view of human associative learning
(p. 187, Mitchell et al., 2009) (see also De Houwer, 1998; Klauer, 2009). In
an attempt to fill in the blanks of the temporal integration hypothesis, we
followed the suggestion by Mitchell et al. (2009) and adopted the memory
architecture formalized in MINERVA 2. We explore the theoretical position
that US expectancy and CS evaluation are memory-based judgments that
rely on a unitary representation of CS-US pairing episodes. Using a for-
malized model enables us to make more specific predictions than current
process theories of EC.

MINERVA 2 assumes that each CS-US pairing is stored as a trace in a uni-
tary memory system. Episodes are encoded in a feature-based manner.
Each memory trace consists of a series of slots, each of which indicates
whether a feature is present (or absent) in a given episode. In the present
application, subsets of these feature slots are dedicated to CS, US, and con-
text features. When memory is probed (i.e., when a judgment is made), the
stimulus and context features of the probe are simultaneously compared to
all traces in memory. Each memory trace is activated according to its sim-
ilarity to the memory probe. The recalled memory content is computed as
a weighted average of all memory traces, where similar and strongly acti-
vated traces receive a larger weight than dissimilar and weakly activated
traces. Hence, the recalled information is a mixture of all memory traces—
rather than reflecting one specific past episode.

In line with current theorizing in memory research (e.g., Howard & Ka-
hana, 2002; Zacks et al., 2007), we assume that the unitary memory system
holds information about the (temporal) context of all stored episodes. MIN-
ERVA 2 is not equipped with a dedicated mechanism to impose a temporal
structure on the stored episodes but such an organization can be achieved
by assuming that a changing context is encoded in each episode. This con-
ceptualization is consistent with mechanisms proposed in perceptual and
memory research, where it is suggested that the continuous flow of infor-
mation is automatically segmented and structured into discrete events (Za-
cks et al., 2007). Matute et al. (2011) have similarly invoked the concept of
temporal contexts in research on associative learning. They found that par-
ticipants spontaneously (i.e., without instructions) structure learning pro-
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cedures by creating temporal contexts. Participants then used these con-
texts to retrieve associative information to guide their behavior and inform
their prediction of future events. Thus, we assumed that the temporal or-
ganization of the learning history is retained via (perceived or internally
generated) contexts that structure the incoming information into meaning-
ful events. These assumptions allowed us to derive specific predictions for
the learning procedures implemented in the present studies.

3.4 The present study

The overarching goal of this research was to test whether a single-process
learning account can explain the expectancy-liking dissociation in EC.
Building on the work by Collins and Shanks (2002) as well as Lipp
and Purkis (2006), we tested the temporal integration hypothesis (Lipp
et al., 2010; Lipp et al., 2003), which posits that US expectancy and CS
pleasantness judgments are different summaries of a common underlying
representation of CS-US pairings. We attempted to modify the default
momentary and integrative judgment strategies for US expectancy and
CS pleasantness judgments after completion of the learning procedure
and without intermittent judgments. Moreover, we aimed at reversing
the expectancy-liking dissociation in extinction learning by inducing
nondefault integrative US expectancy and momentary CS pleasantness
judgments.

We conducted one counterconditioning and two extinction experiments
(see Table 1 for an overview).1 For the counterconditioning procedure in
Experiment 1, CS-US pairings were presented in two contexts: CSs were
paired with positive USs in the first, and with negative USs in the sec-
ond context, or vice versa. During the learning procedure, participants
provided intermittent US expectancy ratings. After learning, participants
judged CS pleasantness either without reference to learning contexts (to
elicit default integrative judgments) or for a specific context (to elicit mo-
mentary judgments). Experiment 2 used an extinction procedure and pre-
sented half of the CSs together with USs in the first but alone in the second
context. To hold the number of USs constant across contexts, the other
half of the CSs was presented alone in the first but with USs in the second

1We ran three additional experiments as part of this project, which will be reported else-
where. The data are available at https://github.com/methexp/rawdata.

https://github.com/methexp/rawdata
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context, thereby implementing a concurrent acquisition procedure. Exper-
iment 3 replicated and extended Experiment 2: Participants provided no
intermittent judgments but rated US expectancy only after completion of
the learning procedure, either for both learning contexts together (to elicit
integrative judgments) or for a specific context (to elicit default momentary
judgments).

.

3.5 Experiment 1

In parallel with Collins and Shanks (2002) and Lipp and Purkis (2006), we
first tested the temporal integration hypothesis and our memory-based
judgment simulation of EC with the expectancy-liking dissociation in a
counterconditioning procedure. If the assumptions of temporal integration
hypothesis hold, single-process theories of EC can account for this disso-
ciation by assuming that end-of-study CS evaluations are integrative judg-
ments, and accordingly, no EC effect is to be expected because the effects of
positive and negative CS-US pairings cancel each other out.

We first designed a simulation of a simplified counterconditioning proce-
dure to generate more specific predictions using MINERVA 2 (for details
see Appendix A.1). One CS was first paired with a positive and then with
a negative US, conversely, a second CS was first paired with a negative and
then with a positive US; a third CS was paired with a neutral US. Moreover,
we simulated context changes in between the first and second phase of the
learning procedure as well as prior to end-of-study CS pleasantness rat-
ings. Thus, we assumed participants would experience the end-of-study
rating procedure as different from the learning procedure. To predict US
expectancy and CS pleasantness ratings, we reasoned that the CS in ques-
tion and the current context act as cues to recall previous pairings with
USs. If the recalled memory content was positive we predicted an expecta-
tion of a positive USs and a positive CS evaluation. We, thus, predicted US
expectancy and CS pleasantness ratings based on the same information.

Our simulation predicted a pattern of results consistent with the tempo-
ral integration hypothesis, Figure 3.1A. During the learning procedure, the
valence of the recalled memory content closely followed the CS-US contin-
gencies. The recalled memory contents acquired the USs’ valence but due
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to the context change the CS-US pairings in the counterconditioning phase
quickly reversed the contents’ valence. Thus, for the last trial the simula-
tion predicted expectation of the US that had been paired with a given CS
in the second context.

More importantly, the same pattern was predicted for end-of-study
judgments when the learning contexts were reinstated. For example,
when a CS that had first been paired with a positive and then with a
negative US was presented in the first context, the valence of the retrieved
memory contents was positive. However, when the same CS was pre-
sented in the second context, the recalled information was negative. The
reinstated context features promoted the activation of memory traces
of episodes from the respective context. This contextualized retrieval
of CS-US pairings assumedly underlies momentary judgments of US
expectancy and CS pleasantness. For the new context—when no learning
context was reinstated—our simulation predicted that episodes from both
contexts contributed equally to the retrieved memory contents. Positive
and negative CS-US pairings effectively cancelled each other out. Thus,
the simulation predicted no EC effect in default integrative end-of-study
pleasantness ratings.

To conclude, in line with the temporal integration hypothesis, the simu-
lation of the counterconditioning procedure predicted momentary judg-
ments in intermittent US expectancy ratings and both momentary and in-
tegrative judgments in end-of-study CS pleasantness ratings, depending
on context cues. Hence, our single-process memory model simulation pro-
duced an expectancy-liking dissociation, which has been taken as evidence
for dual-process theories of EC: Marked US expectancies in the last trial
but no EC effect in end-of-study CS pleasantness ratings for the new con-
text. It, nonetheless, predicted EC effects in momentary end-of-study CS
pleasantness ratings when learning contexts are reinstated. Therefore, no
expectancy-liking dissociation is expected when comparing momentary US
expectancy to momentary CS pleasantness ratings.

We designed an experiment to test these predictions. We conducted a
counterconditioning experiment with intermittent US expectancy and
end-of-study CS pleasantness ratings in different contexts. We showed
participants a stream of pictures in which CSs were first paired with
positive and later with negative USs, or vice versa. In contrast to Lipp and
Purkis (2006) we asked participants to evaluate CSs only after completion
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of (rather than repeatedly during) the learning procedure. This procedural
change ruled out that intermittent CS pleasantness judgments affected
the evaluative learning process and artificially induced subsequent mo-
mentary judgments (e.g., via conversational logic demands). Participants
provided end-of-study CS pleasantness ratings without reference to
learning contexts (to elicit default integrative judgments) and for each
of the learning contexts (to elicit nondefault momentary judgments).
We expected (1) to observe the predicted expectancy-liking dissociation
between intermittent US expectancy ratings in the last trial on the one hand
and integrative end-of-study CS pleasantness ratings on the other hand,
but (2) to eliminate the expectancy-liking dissociation by demonstrating
EC effects that mirror US expectancy ratings in momentary end-of-study
CS pleasantness ratings.

3.5.1 Methods

We report how we determined our sample size, all data exclusions (if any),
all manipulations, and all measures in the study. The simulation code, ex-
perimental software2 and materials, data, and analysis scripts3 are avail-
able at https://osf.io/vnmby/.

3.5.1.1 Participants

We recruited 40 participants from our lab participant database via e-mail
for this experiment. Eligible volunteers were 18-60 years old, fluent in Ger-
man and (according to our database) had not participated in any studies
on evaluative conditioning for at least one year. Participants who aborted
the experiment were not included in the analyses. The sample size was de-
termined informally based on previous experience with EC experiments.
The data of three participants were lost due to a technical error leaving the
data of 37 participants for analysis. Participants’ mean age was 23.69 years
(SD = 6.50), 26 were female, 11 studied psychology or media psychology, all
participants declared intact color vision, and 9 reported to have had prior

2We created all experiments in OpenSesame (Mathôt et al., 2012).
3We used R (Version 3.6.3; R Core Team, 2017) and the R-packages afex (Version 0.23.0;

Singmann et al., 2017), BayesFactor (Version 0.9.12.4.2; Morey & Rouder, 2015), emmeans
(Version 1.3.5; Lenth, 2018), and papaja (Version 0.1.0.9997; Aust & Barth, 2017) for all anal-
yses and reporting.

https://osf.io/vnmby/
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knowledge about the CS pictures. We compensated participants with 8† or
course credit.

3.5.1.2 Apparatus and material

We conducted the experiment in five dimly lit and sound-attenuated
booths and presented all stimuli on a 17” CRT-monitor.

Because a seemingly random stimulus sequence, a large proportion of filler
stimuli, and a low proportion of valent stimuli, have been reported to be
conducive to (associative) EC (Jones et al., 2009), our learning procedure
consisted of a mixture of critical CS-US pairings and irrelevant filler trials.
Critical CS-US pairs consisted of 12 neutral cartoon characters taken from
Stahl and Heycke (2016) as CSs and 12 positive or 12 negative low-arousal
IAPS pictures as USs (Lang et al., 2008, Table A.1). All positive USs were
pictures of animals; all negative USs were pictures of humans. We intro-
duced the confound between US valence and category because we wanted
to rule out that intermittent US expectancy judgments affected the evalu-
ative learning process—the confound enabled us to assess US expectancy
without referring to US valence.

The filler trials consisted of six neutral CS-US pairs, three CS-CS pairs,
three individual CSs, three US-US pairs, as well as three individual USs
of intermixed valence, and six blank screens. For filler CSs, we used addi-
tional cartoon characters (Stahl & Heycke, 2016) and for filler USs, we used
IAPS pictures from two additional US categories. All neutral USs depicted
household items, and the intermixed USs depicted natural scenes (see Ta-
ble A.1 ). The filler stimuli were included to make contingency learning
more demanding, and to obscure the confound between US valence and
categories and thereby to further mitigate possible effects of intermittent
ratings on evaluative learning.

US expectancy has previously been assessed with predictive ratings (e.g. of
the extent to which participants expected a US following the presentation
of a CS, p. 224 Hermans et al., 2002; also see Vansteenwegen et al., 2006)
or causal questions (“To which extent (0–100%) does [the CS] cause the
[US] to appear?”, Lipp et al., 2010)(also see Collins & Shanks, 2002; Lipp
& Purkis, 2006). In the context of contingency learning, Matute et al. (2002)
found that predictive and causal questions elicit comparable integrative
judgments but that predictive questions more effectively elicit momentary
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judgments. Hence, we employed a predictive question: “Next time this
creature is presented, what type of picture will it be shown with?” Partici-
pants provided probability estimates for animal, human, and object on an
eleven-point scale ranging from 0% to 100%.

We collected CS pleasantness ratings on an 19-point scale ranging form very
unpleasant to very pleasant. To assess memory for CS-US pairs, we separately
tested recognition memory for US category and US identity for each CS.
For US category recognition, we presented individual CSs and participants
selected a US category in an 3-alternative forced-choice (3-AFC) task (e.g.,
“animal”, “human”, or “object”). For US identity recognition, participants
selected one US out of all USs from the correct US category in an 12-AFC.
We also performed a funnel debriefing to assess the extent to which par-
ticipants were aware of the purpose of the study and the hypotheses. The
debriefing served to inform the design of future incidental-learning stud-
ies; they are irrelevant to the present hypotheses.

3.5.1.3 Procedure and design

After obtaining informed consent, participants filled in demographic infor-
mation about gender, age, handedness, field of study, and visual impair-
ments. We then instructed participants that we would present a stream of
pictures in 2 £ 3 blocks and asked them to attend the stream carefully, to
detect regularities, and to memorize repeating pairs of pictures (for similar
instructions see e.g., Kattner & Green, 2015; Moran & Bar-Anan, 2013b;
Richter & Gast, 2017; Zanon et al., 2012). We warned that, during the
course of the study, we would test whether they had continuously attended
the stream. To distract from the contingency between CS and US valence,
we pretended that we were interested in participants’ vigilance while they
monitored images from surveillance cameras.
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Table 3.1: Illustration of our learning procedures in Experiments 1-3

Learning procedure Intermittent ratings End-of-study ratings

First context (A ) Second context (B) US expectancy CS pleasantness US expectancy

Experiment 1
Counterconditioning CS1 US+ CS1 US° CS1 (A ,B) CS1 (C ,B,A ) °

CS2 US° CS2 US+ CS2 (A ,B) CS2 (C ,B,A ) °
Experiment 2

Acquisition CS1 CS1 US+ CS1 (A ,B) CS1 (C ,B,A ) °
CS2 CS2 US° CS2 (A ,B) CS2 (C ,B,A ) °

Extinction CS3 US+ CS3 CS3 (A ,B) CS3 (C ,B,A ) °
CS4 US° CS4 CS4 (A ,B) CS4 (C ,B,A ) °

Experiment 3
Acquisition CS1 CS1 US+ ° CS1 (A “B “C ) CS1 (A “B “C )

CS2 CS2 US° ° CS2 (A “B “C ) CS2 (A “B “C )

Extinction CS3 US+ CS3 ° CS3 (A “B “C ) CS3 (A “B “C )

CS4 US° CS4 ° CS4 (A “B “C ) CS4 (A “B “C )

Note. Calligraphic font denotes context features; mapping of features to context was counterbalanced in all experi-
ments. In Experiments 1 and 2, participants provided end-of-study ratings for every context (within-subject manip-
ulation) but for only one randomly selected context in Experiment 3 (between-subject manipulation). CS = Condi-
tioned stimulus; US = Unconditioned stimulus
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The conditioning procedure consisted of two phases, Table 3.1. In the initial
acquisition phase, we paired 6 critical CSs with positive and the remaining
6 critical CSs with negative USs. In the subsequent counterconditioning
phase, critical CSs were paired with USs of the opposite valence. CSs were
randomly assigned to one of the two US valence orders. Filler CSs that were
paired with neutral USs in the first phase were paired with new neutral USs
in the second phase.

We created different contexts for the first and second phase to standard-
ize participants’ temporal organization of the learning history (Matute et
al., 2011) and facilitate later reference to each phase in targeted questions
about particular portions of the learning procedure. The context features—
background color and CS position—were randomly assigned to the first or
second phase for each participant. The background color of the screen was
either yellow or blue; CSs were presented either on the left or right side of
the screen, with USs on the opposite side.

Both phases consisted of three subblocks, interrupted by self-paced breaks.
In each of the subblocks, we presented all critical and filler trials three
times. The stimulus sequence entailed no immediate stimulus repetitions
but was otherwise random. In each trial, CSs were presented alone for 500
ms and then jointly with USs for another 1000 ms. Each CS was paired
with only one US to facilitate accurate memory for pairings. For CS-CS or
US-US pairs, one stimulus was randomly chosen to act as CSs; the second
stimulus acted as US. There was no delay between trials (Jones et al., 2009).
The conditioning procedure consisted of 648 trials (216 with critical CSs),
and lasted approximately 20 minutes.

During the learning procedure, we intermittently presented CSs and asked
participants to report their current US expectancy: “With what probability
would you expect a photograph of a human [animal/object] with this crea-
ture?” In each subblock, we randomly selected six of the 18 CS-US pairs
(including neutral pairs). Participants made US expectancy judgments on
a random trial following the third and final presentation of the selected CS-
US pair in each subblock. (i.e., ratings in the first subblock reflected partic-
ipants’ expectations after three CS-US pairings, ratings in the second sub-
block reflected participants’ expectations after six, etc.). In the subblocks of
the subsequent counterconditioning phase, we used the same CS-US pair
selection as in the acquisition phase. For example, if we selected a CS-
US pair for US expectancy ratings in the first subblock of the acquisition
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phase, we selected the same pair in the first subblock of the countercondi-
tioning phase. Thus, participants reported their US expectancy twice for
every CS-US pair, and three subblocks elapsed before the second rating.
Each participant provided 36 US expectancy ratings, yielding 3 ratings per
experimental condition.

Following the learning procedure, participants provided pleasantness rat-
ings for each CS. Akin to the postexperimental rating condition by Lipp and
Purkis (2006), we collected a first rating in a new context. In this new con-
text, we presented CSs in the center of the screen on a black background
and asked “How pleasant or unpleasant do you find this creature[, cur-
rently]?” That is, there was no reference to learning contexts. We then
collected CS pleasantness ratings for the context of the second and then of
the first phase. We reinstated the respective context features (background
color and CS position) and asked participants “How pleasant did you find
this creature during the second [first] half?” Each participant provided 54
pleasantness ratings (including CSs from neutral CS-US pairs), yielding 3
ratings per experimental condition.

Next, we assessed participants’ memory for CS-US pairs. We tested pairing
memory for the second and then for the first phase. The order served
to minimize memory interference and because pairing memory for the
counterconditioning phase was of particular interest. After every response,
we immediately tested participants’ US identity recognition for the same
CS-US pair. We probed memory for CS-US pairs in a new random order
for each participant and context. Each participant provided 36 US category
and US identity recognition responses (including neutral CS-US pairs),
yielding 6 responses per experimental condition.

Finally, we administered the funnel debriefing, participants rated the pleas-
antness of each US category (human, animal, and object) from memory (i.e.,
the USs were not presented again), and indicated whether they had previ-
ously been familiar with the cartoon characters. On average, participants
took 56.53 minutes (SD = 18.02) to complete the study.

Due to an error in the randomization procedure, we used the same as-
signment of CSs to US valence orders for all participants, with two con-
sequences. First, the CSs assigned to the US valence orders systematically
differed in pleasantness: CSs that were first paired with negative and later
with positive USs were more pleasant a priori (M = 5.52,SD = 0.92) than CSs
first paired with positive and later with negative USs (M = 4.38,SD = 1.00).
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This confound is unlikely to endanger our conclusions because it works
against our predictions of an EC effect in the acquisition context and the ab-
sence of an EC effect in the new context. Our remaining predictions largely
concern changes in CS pleasantness across contexts within each set of CS-
US pairs, for which the confound is irrelevant. Second, CSs were paired
with a random US in the acquisition phase, but in the counterconditioning
phase some specific CS-US pairs were more likely than others. Mean US
pleasantness and arousal were however comparable across conditions and
closely matched the means of all USs of the corresponding category (Ta-
ble A.2). In sum, the error in the randomization procedure is vexing and
subpar but unlikely to affect our results or conclusions.

3.5.2 Data analysis

For all analyses, we averaged participants’ responses across items. We com-
bined US expectancy ratings for each of the three US categories into a sin-
gle measure of expectancy of the correct US by subtracting the ratings for
incorrect categories from those for the correct category. For example, for
CSs paired with pictures of objects, we calculated a US expectancy score
x̄ expectancy = x̄ object° (x̄ human+ x̄ animal) for every participant in every cell of
the experimental design.

We performed ANOVAs and base our inference on p values and 95%
confidence intervals as well as Bayes factors. For the frequentist analyses
we always report Greenhouse-Geisser corrected degrees of freedom. For
planned contrasts and post hoc comparisons, we compared least squares
means (Lenth, 2018). To infer equivalence between two condition means,
we performed two one-sided t tests (TOST; Lakens, 2017; Rogers et al.,
1993; Wellek, 2002). In the TOST procedure the analyst defines a region of
equivalence around the null value. She compares the mean difference to
the upper and lower bound of this region of equivalence using one-sided
tests or a 90% confidence interval. The means are deemed equivalent if the
difference between them is significantly larger than the lower bound and
significantly smaller than the upper bound. For reasons of brevity only the
result of the test that yields the larger p value is reported. Thus, in case of
a significant TOST the analyst rejects the hypothesis that an effect is of a
given size or larger. We adopted symmetric equivalence regions in units
of standardized mean differences for within-participant comparisons of
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¢±0.3dr to reject small effects (Lakens, 2017). The ↵-level for all frequentist
analyses was .05; p values were corrected for multiple comparisons where
applicable.

For Bayesian ANOVAs we used default multivariate Cauchy priors with
a scaling parameter of r = 0.5 on the fixed effects (Rouder et al., 2012); for
Bayesian t tests we used a default Cauchy prior with a scaling parameter
of r =

p
2/2 on the effect size dz (Rouder et al., 2009). All Bayes factors were

estimated to a precision of ±5%. Bayes factors quantify the evidence for an
effect relative to the null hypothesis of no effect in the data at hand (e.g,
Wagenmakers et al., 2010). We use BF10 to denote evidence for an effect
relative to the null hypothesis of no effect and BF01 to denote evidence for
the null hypothesis of no effect relative to an effect. For example, BF10 >
1 is evidence for the presence of an effect, whereas BF01 > 1 is evidence
for the absence of an effect. Bayes factors are readily interpretable as a
graded measure of evidence. We will, however, follow the suggestion by
Kass and Raftery (1995) to consider 1/3 < BF < 3 “not worth more than a
bare mention” (p. 777). We do not report our prior beliefs in the hypotheses
described here (prior odds; for discussion see Rouder et al., 2012). The
interested reader may form their own prior beliefs and use the reported
Bayes factors to determine their posterior belief in the hypotheses.

3.5.3 Results

In the following, we focus on the results for US expectancy and CS pleasant-
ness ratings. See Appendix A.2 for analyses of participants’ CS-US pairing
memory.

3.5.3.1 US expectancy

We analyzed expectancies of the correct US using a 2 (US valence order:
US+ US° vs. US° US+) £ 2 (Context: First vs. Second) £ 3 (Pairings: 3 vs. 6.
vs. 9) repeated-measures ANOVA. To facilitate the comparisons between
predicted and observed US expectancy as well as between US expectancy
and CS pleasantness, Figure 3.1B depicts a difference score between ex-
pectancies of positive and negative US.

As expected, participants quickly learned the CS-US contingencies. The
number of repetitions of CS-US pairings affected expectancy of the correct
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US, F (1.59,57.20) = 25.45, MSE = 0.22, p < .001, ¥̂2

G
= .073, BF10 = 2.31£ 10

8.
Follow-up tests indicated that expectancy of the correct US increased from
three to six CS-US pairings, ¢M = .27, 95% CI [.19, 1], t (72) = 5.56, p < .001,
BF10 = 4.14£10

5 (one-tailed), but remained unchanged from six to nine CS-
US pairings, ¢M = .05, 90% CI [-.04, .15], t (72) =°2.07, p = .042 (equivalence
test adjusted for two comparisons), BF01 = 2.49. There was weak evidence
that our experimental manipulations had no other effects, all p ∏ .145, all
BF01 ∏ 3.89. To conclude, participants’ expectancy for the correct US built
up during and reached a plateau toward the end of each learning phase. At
the end of the experiment participants expected CSs to be accompanied by
the US that they had last been paired with.

3.5.3.2 CS pleasantness

We analyzed CS pleasantness ratings using a 2 (US valence order: US+ US°
vs. US° US+) £ 3 (Referenced context: First vs. Second vs. None) repeated-
measures ANOVA.

As predicted, referring to and reinstating learning contexts affected
CS pleasantness ratings differently depending on US valence order,
F (1.18,42.31) = 17.63, MSE = 10.32, p < .001, ¥̂2

G
= .083, BF10 = 2.19 £ 10

6,
Figure 3.1B. Follow-up tests provided some evidence that in the new
context participants made comparable CS pleasantness ratings for both US
valence orders, ¢M = °0.12, 90% CI [-1.15, 0.91], t (103.46) = °1.41, p = .081

(equivalence test), BF01 = 5.52. When we compared participants’ ratings
for the first and second context, we observed both the predicted increase
in perceived pleasantness for CSs that were first paired with negative
and then with positive USs, ¢M = 2.41, 95% CI [1.64, 1], t (115.91) = 5.15,
p < .001, BF10 = 3.50£ 10

4 (one-tailed), and the predicted decrease for CSs
that were first paired with positive and then with negative USs, ¢M = 2.39,
95% CI [1.61, 1], t (115.91) = 5.10, p < .001, BF10 = 5.90£ 10

3 (one-tailed).
Moreover, we found an EC effect for the first context, ¢M = 2.19, 95%
CI [1.16, 1], t (103.46) = 3.53, p < .001, BF10 = 31.21 (one-tailed), and a
reversed EC effect for the second context, ¢M = 2.62, 95% CI [1.59, 1],
t (103.46) = 4.22, p < .001, BF10 = 153.33 (one-tailed). Participants’ prior
knowledge about CSs did not affect these results, F (1.17,41.10) = 0.03,
MSE = 10.61, p = .898, ¥̂2

G
= .000, BF01 = 5.51. Thus, although we observed

no EC effect when we asked participants to report CS pleasantness in a
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Figure 3.1: Simulated and observed US expectancy and CS pleasantness
ratings for Experiment 1. Blue triangles indicate CSs paired with positive
USs in the first and negative USs in the second context; red circles indicate
CSs paired with negative USs in the first and with positive USs in the sec-
ond context. A Mean normalized memory echo of valence-coding features
predicted by MINERVA 2 indicative of the overall valence of the retrieved
memory contents. The left plot shows valence retrieved during the learn-
ing procedure, the right plot shows the valence retrieved after completion
of the learning procedure. Error bars represent 95% confidence intervals. B

The left plot shows observed differences in mean US expectancy during the
learning procedure. Positive values indicate expectancy for positive USs,
negative values indicate expectancy for negative USs. The right plot shows
observed mean CS pleasantness ratings after completion of the learning
procedure. Error bars represent 95% within-subject confidence intervals;
CS = Conditioned stimulus, US = Unconditioned stimulus.
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new context at the end of the experiment, referring to and reinstating the
learning contexts revealed changes in CS pleasantness throughout the
learning procedure.

3.5.4 Discussion

The results of our counterconditioning experiment confirm the predictions
derived from the temporal integration hypothesis and our simulation.
First, we found the predicted expectancy-liking dissociation: Partici-
pants reported marked US expectancies throughout and, critically, at the
end of the learning procedure—they expected CSs to appear with the
most recently paired USs. In contrast, when participants provided CS
pleasantness judgments immediately after the completion of the learning
procedure and without reference to learning contexts, we found no EC
effect. Second, participants made the predicted contextualized CS pleas-
antness judgments: We observed an EC effect for the initial acquisition
context and a reversed EC effect for the counterconditioning context. These
momentary CS pleasantness judgments reflected the changes in CS-US
contingencies and corresponded to the intermittent US expectancy ratings.
Hence, eliciting nondefault momentary evaluative judgments eliminated
the expectancy-liking dissociation.

The temporal integration hypothesis posits that repeated judgments affect
the adopted judgment strategy but do not affect evaluative learning. Re-
search on contingency learning has shown that nondefault integrative con-
tingency judgments can be elicited after completion of the learning pro-
cedure (Collins & Shanks, 2002; Matute et al., 2002). Our findings ex-
tend these conclusions to CS pleasantness judgments. In this experiment,
participants rated CS pleasantness only after completion of the learning
procedure—they made no CS pleasantness judgments during the learn-
ing procedure. This approach is an improvement over previous studies
in which CS pleasantness was assessed repeatedly during the learning pro-
cedure (e.g., Blechert et al., 2008; Lipp & Purkis, 2006; Lipp et al., 2010)
because it precludes that intermittent CS pleasantness judgments affected
the evaluative learning process.

While our findings corroborate the dissociability of US expectancy and CS
liking, they raise questions about the common dual-process interpretation
of the expectancy-liking dissociation. The finding that US expectancy extin-
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guishes while EC is resistant to extinction is commonly interpreted as evi-
dence for a second associative learning process . In contrast, MINERVA 2
instantiates a candidate process-model of the single-process learning ac-
count (Mitchell et al., 2009). Drawing on the additional assumptions pro-
posed by the temporal integration hypothesis (Lipp et al., 2010), the simula-
tion illustrates that MINERVA 2 can predict the observed expectancy-liking
dissociation in counterconditioning. Hence, absence of EC effects despite
US expectancy can be explained by a single learning process.

Taken together, our findings support the assumptions of the temporal inte-
gration hypothesis that EC yields a single representation of CS-US pairings
that informs both US expectancy and CS liking, and that their dissociation
is caused by different default judgment strategies.

3.6 Experiment 2

The expectancy-liking dissociation reported in extinction procedures (e.g.,
Lipp & Purkis, 2006; Hermans et al., 2002) is the reverse of the dissociative
pattern in the counterconditioning procedure: At the end of the learning
procedure, participants no longer express US expectancies, but still exhibit
an EC effect. As in Experiment 1, our reasoning was that inducing nonde-
fault momentary judgments of CS pleasantness, by referring to and rein-
stating the learning contexts, would reveal extinction of EC effects.

We again began by simulating a simplified acquisition and an extinction
procedure using MINERVA 2. The simulation method and assumptions
were the same as for Experiment 1. In the extinction procedure, we paired
CSs with USs in the first but presented them alone in the second context, Ta-
ble 3.1. Conversely, in the acquisition procedure, we presented CSs alone in
the first, and subsequently paired them with USs in the second context (see
De Houwer et al., 2000, for a similar approach). The CS-alone trials in the
first context served to equate the number of CS-US pairings and valenced
stimuli in the two contexts and, thus, to avoid attentional disengagement
or mood effects.

The simulation predicted a pattern of results in line with the temporal in-
tegration hypothesis (Figure 3.2A): During the learning procedure, the va-
lence of the retrieved memory contents closely followed the CS-US con-
tingencies. In the acquisition procedure, the recalled memory contents re-
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mained neutral during the initial CS-alone trials but quickly acquired the
USs’ valence during the subsequent CS-US pairing trials. Conversely, in
the extinction procedure, the recalled memory contents acquired the USs’
valence during CS-US pairing trials but quickly returned to a neutral base-
line as a result of the combined context change and CS-alone trials. Thus,
for the last trial of the acquisition procedure the simulation predicted ex-
pectations of the USs that had last been paired with CSs; in the last trial
of the extinction procedure the simulation predicted the absence of a US
expectancies.

The same pattern was predicted for end-of-study pleasantness judgments
when the learning contexts were reinstated. For example, when a CS in
the extinction procedure was presented in the first context—the context
in which it was paired with a positive US—the valence of the retrieved
memory contents was positive. However, when the same CS was pre-
sented in the second context—the context of CS-alone trials—the valence
of the retrieved memory contents was neutral. In the new context—when
no learning context was reinstated—the valence of the retrieved memory
contents was comparable for CSs in the acquisition and extinction proce-
dure. Furthermore, in both procedures the valence of the retrieved memory
contents in the new context was comparable to that for the CS-US pairing
context4. Hence, the simulation predicted comparable EC effects for de-
fault integrative end-of-study pleasantness ratings in the acquisition and
extinction procedures. It also predicted comparable EC effects for momen-
tary end-of-study pleasantness ratings in the CS-US pairing context and
integrative ratings in the new context. Note that these predictions pertain
to the current experimental design. As illustrated by the faint symbols in
Figure 3.2A, the predictions differ for a design without a concurrent acqui-
sition procedure or neutral CS-US pairs. We will return to this point in the
General discussion.

4Subsequent exploration identified two procedural factors that, in conjunction with the
similarity-based retrieval mechanism of MINERVA 2, contribute to this prediction: (1) In
the CS-US pairing context, the valence of the retrieved memory contents decreases as the
number of neutral stimulus presentations in that context increases. This is because the
retrieval cue for the CS-US pairing trials encompasses context features and, thus, to some
degree activates all memory trace from that context (interference). (2) Conversely in the
new context, the valence of the retrieved memory contents increases relative to the CS-US
pairing context because the interference from neutral stimulus presentations is decreased.
The attenuated interference is a consequence of the unique features of the new context, the
nonlinear relationship between probe-trace similarity and trace activation, as well as the
normalization of the echo contents.
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In sum, the simulation predicted momentary judgments in intermittent US
expectancy ratings; the momentary or integrative nature of judgments in
end-of-study CS pleasantness ratings depended on the choice of context
cues. Thus, our single-process memory model simulation predicted the
well known expectancy-liking dissociation in extinction: No US expectancy
in the last trial of the learning procedure but an EC effect in end-of-study CS
pleasantness ratings without reference to the learning contexts. It further-
more predicted that extinction of EC could nonetheless be demonstrated in
momentary end-of-study CS pleasantness ratings by referencing and rein-
stating the context of CS-alone trials. Hence, no expectancy-liking dissocia-
tion is expected when comparing momentary US expectancy to momentary
CS pleasantness ratings. These predictions are in line with the explanation
of the expectancy-liking dissociation proposed by the temporal integration
hypothesis.

Based on the methodology of Experiment 1, we designed an experiment
to test these predictions. We showed participants a stream of pictures in
which CSs were either presented alone and subsequently paired with va-
lent USs (acquisition procedure) or, conversely, paired with USs and subse-
quently presented alone (extinction procedure; see Table 3.1). We expected
(1) to observe the predicted expectancy-liking dissociation between inter-
mittent US expectancy ratings in the last trial of the learning procedure
and end-of-study CS pleasantness ratings without reference to the learning
contexts, but (2) to eliminate the expectancy-liking dissociation by demon-
strating extinction of EC in momentary end-of-study CS pleasantness rat-
ings when learning contexts are referenced and reinstated.

3.6.1 Methods

The experimental method, data analysis plan, and the following hypothe-
ses were preregistered (https://osf.io/vnmby/registrations/): In the ex-
tinction procedure, we predicted (1) the expectancy for the US that had
been paired with a given CS to extinguish towards the last trial, whereas
we predicted (2) an EC effect in end-of-study CSs pleasantness ratings in
the new context (i.e. resistance to extinction in integrative CS pleasantness
judgments). Furthermore, we predicted a reduced EC effect for end-of-
study CS pleasantness ratings in the context of CS-alone trials, compared
to (3) the new context and (4) the context of CS-US pairing trials. We, ad-

https://osf.io/vnmby/registrations/
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ditionally, wanted to test whether (5) EC effects in the new context were
comparable to those for the CS-US pairing context. The last hypothesis was
introduced to investigate the meta-analytical finding that the extinction of
EC in default integrative end-of-study judgments exists but is small (Hof-
mann et al., 2010). Experimental design, materials, and procedure followed
those of Experiment 1 except for the following changes.

3.6.1.1 Participants

To maximize the efficiency and informativeness of our study, we performed
a sequential Bayesian analysis while the data were being collected (Rouder,
2014). Thus, the number of participants was not fixed a priori. We set a
minimum sample size of n = 20 (Schönbrodt et al., 2015) and planned to
collect data until they provided strong evidence (BF10 > 10 or BF01 > 10) for
or against our five hypotheses of primary interest or until we ran out of
money (800†). We calculate Bayes factors at the end of each day of data
collection.

We recruited 55 new participants. As preregistered we excluded one par-
ticipant who performed the category recognition task at chance level, that
is, they responded correctly to 25% or less of all category recognition ques-
tions. We assumed that at-chance category recognition is indicative of inat-
tention because we instructed participants specifically to attend to pairings
and detect regularities. We excluded one additional participant with a se-
vere vision impairment, who was allowed to participate to obtain course
credit. Thus, we stopped collecting data after 53 valid participants. At this
point the data provided strong evidence for hypotheses 1-4. We deviated
from our preregistered sampling plan and stopped data collection before
the data provided an informative test of hypothesis 5 because it was not rel-
evant to our theoretical predictions. The results of our Bayesian analysis are
not affected by the premature termination of the data collection (Rouder,
2014). Participants’ mean age was 22.24 years (SD = 3.34), 39 were female,
8 studied psychology or media psychology, all participants declared intact
color vision, and 19 reported to have prior knowledge about the CS pic-
tures.
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3.6.1.2 Material

We adapted the 3-AFC US category recognition response format to the
extinction procedure: Because the procedure included CS-alone trials, we
added an additional “nothing” response option by which participants
could indicate that a CS had not been paired with a US.

3.6.1.3 Procedure and design

For each participant we randomly assigned a positive, neutral, or negative
US to each CS; the CS-US pair was then randomly assigned to the acqui-
sition or extinction procedure. CSs in the acquisition procedure were pre-
sented alone in the first context and paired with USs in the second context.
Conversely, in the extinction procedure, CSs were paired with USs in the
first context and presented alone in the second context.

Instructions and assessment of our dependent measures were the same as
in Experiment 1. However, we did not assess US identity recognition if CSs
had been presented alone in a given context. Because each CS was paired
with a US in only one of the two contexts, participants provided 18 US
identity recognition responses, yielding 3 per experimental condition.

On average, participants took 51.15 minutes (SD = 7.04) to complete the
study.

3.6.2 Results

Preregistered analyses (labeled confirmatory) will be followed by addi-
tional (exploratory) analyses. See Appendix A.2 for analyses of partici-
pants’ CS-US pairing memory.

3.6.2.1 US expectancy

3.6.2.1.1 Confirmatory analyses We analyzed expectancies of the correct
US using a 3 (Valence: Positive vs. Neutral vs. Negative) £ 2 (Learning proce-
dure: Acquisition vs. Extinction) £ 2 (Context: First vs. Second) £ 3 (Pairings:
3 vs. 6. vs. 9) repeated-measures ANOVA. As in Experiment 1, partici-
pants quickly learned the CS-US contingencies, Figure 3.2B. As predicted,
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we found strong evidence that changes in expectancy of the correct US cate-
gory across referenced contexts differed between acquisition and extinction
procedures, BF10 = 2.85£10

182. We observed this pattern irrespective of the
valence of the US, BF01 = 23.05. Planned contrasts indicated that, averaged
across US valences, expectancy for the correct US category after the ninth
pairing increased from the first to the second context in the acquisition pro-
cedure (M = 0.85 95% HDI [0.76, 0.94], BF10 = 7.29 £ 10

21, one-tailed) but
decreased in the extinction procedure, M = °0.67 95% HDI [°0.80, °0.55],
BF10 = 5.08£10

12, one-tailed. The data provided no noteworthy evidence as
to whether participants had a residual expectancy for the correct US cate-
gory at the end of the extinction procedure, M = 0.06 95% HDI [0.00, 0.12],
BF01 = 1.14, one-tailed. In sum, following CS-US pairings participants ex-
pected the correct US but US expectancy declined rapidly when CSs were
subsequently presented alone.

Additionally, learning of CS-US contingencies proceeded faster in the sec-
ond than the first context (BF10 = 27.50), regardless of US category valence
(BF01 = 50.74) perhaps due to familiarization with the learning procedure.
We found no noteworthy evidence for any other effects of our experimental
manipulations, all BF01 ∏ 1.87.

3.6.2.1.2 Exploratory analyses Although participants may have retained
some expectancy of the correct US at the end of the extinction procedure,
this expectancy was markedly higher in the acquisition than in the extinc-
tion procedure, M = 0.71 95% HDI [0.61,0.82], BF10 = 1.06£10

16 (one-tailed).

3.6.2.2 CS pleasantness

3.6.2.2.1 Confirmatory analyses As a measure of the EC effect, we calcu-
lated difference scores between mean evaluative ratings of CSs that were
paired with positive and negative USs (x̄ EC = x̄ US+°x̄ US°) for every partici-
pant in every cell of the experimental design. We analyzed EC effects using
a 2 (Learning procedure: Acquisition vs. Extinction) £ 3 (Referenced context:
First vs. Second vs. None) repeated-measures ANOVA. As predicted, refer-
ring to and reinstating learning contexts affected the EC effect differently
depending on the learning procedure, BF10 = 360.74, Figure 3.2B. Planned
contrasts indicated that when participants rated CS pleasantness in the new
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context, we found strong evidence for an EC effect in the extinction proce-
dure, M = 2.42 95% HDI [1.38, 3.50], BF10 = 1.79£10

3 (one-tailed). Moreover,
we found evidence that this EC effect was comparable to the EC effect in
the acquisition procedure, M = 0.32 95% HDI [0.00, 1.14], BF01 = 12.30 (one-
tailed). When we compared EC effects for the first and second context, we
observed both the predicted increase in the acquisition, BF10 = 1.79£ 10

5

(one-tailed), as well as the predicted decrease in the extinction procedure,
BF10 = 6.77£10

3 (one-tailed). Critically, in the extinction procedure, the EC
effect was reduced when participants rated CSs for the context of CS-alone
trials compared to the new context, BF10 = 74.23 (one-tailed). We found
only relatively weak evidence indicating that our learning procedure may
not have extinguished the EC effect completely, M = 1.17 95% HDI [0.19,
2.09], BF10 = 4.60. The comparison between the EC effects for the context
of CS-US pairing trials and the new context was inconclusive, BF01 = 2.03.
Similarly, in the acquisition procedure, the EC effect was reduced when
participants rated CSs for the context of CS-alone trials compared to the
new context, BF10 = 576.00 (one-tailed). The comparison between the EC
effect for the context of CS-US pairing trials and the new context was again
inconclusive, BF01 = 1.87. In sum, we found that the EC effect appeared to
be resistant to extinction when participants rated CS pleasantness in a new
context after completion of the learning procedure; but we found a reduced
EC effect when we referenced and reinstated the context in which CS had
been presented alone.

3.6.2.2.2 Exploratory analyses We additionally compared the EC effects
between learning procedures for each of the contexts. In the first con-
text, participants exhibited a larger EC effect in the extinction than in the
acquisition procedure, M = 2.77 95% HDI [1.26, 4.29], BF10 = 122.86 (one-
sided). In the second context, the comparison was inconclusive, M = 1.14

95% HDI [0.01, 2.37], BF01 = 1.34 (one-sided). We found evidence indicating
that participants’ prior knowledge about CSs did not affect our findings,
BF01 = 8.27.

3.6.3 Discussion

Our results again confirm the predictions derived from the temporal inte-
gration hypothesis and our simulation. First, we replicated the expectancy-
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Figure 3.2: Simulated and observed US expectancy and CS pleasantness
ratings for Experiment 2. Blue triangles indicate CSs paired with positive
USs; red circles indicate CSs paired with negative USs. A Mean normal-
ized memory echo of valence-coding features predicted by MINERVA 2
indicative of the overall valence of the retrieved memory contents. The left
plot shows valence retrieved during the learning procedure, the right plot
shows the valence retrieved after completion of the learning procedure.
Faint symbols represent simulated ratings for a variant of our paradigm
without the acquisition procedure or neutral CS-US trials. Error bars repre-
sent 95% confidence intervals. B The left plot shows observed differences
in mean US expectancy during the learning procedure for acquisition (top)
and extinction (bottom) procedures. Positive values indicate expectancy
for positive USs, negative values indicate expectancy for negative USs. The
right plot shows observed mean CS pleasantness ratings after completion
of the learning procedure for acquisition (top) and extinction (bottom) pro-
cedures. Error bars represent 95% within-subject confidence intervals; CS
= Conditioned stimulus, US = Unconditioned stimulus.
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liking dissociation: In the last trial of the learning procedure, participants
reported markedly higher US expectancies in the acquisition than in the
extinction procedure. In contrast, when participants provided CS pleas-
antness judgments in a new context after the completion of the learning
procedure (i.e., when learning contexts were not referenced), the EC effects
did not differ between the acquisition and extinction procedure. Second,
when we referenced and reinstated learning contexts participants again
made contextualized CS pleasantness judgments: We observed extinction
of the EC effect when participants evaluated CSs in the context of the CS-
alone trials. These momentary CS pleasantness ratings, again, reflected the
changes in CS-US contingencies and corresponded to the intermittent US
expectancy ratings. Thus, as predicted, we elicited momentary CS pleas-
antness ratings and thereby eliminated the expectancy-liking dissociation.
As in Experiment 1, this effect was obtained in the absence of potentially
problematic intermittent CS pleasantness ratings. Jointly, our simulation
and experimental findings provide further evidence that expectancy-liking
dissociations can be explained as the result of different judgment strategies.

In Experiment 1 and 2, we assessed CS pleasantness repeatedly in different
learning contexts. The repeated assessment may have introduced demand
effects: Based on conversational norms, participants may have assumed
that repeated ratings under varying conditions are expected to yield dif-
ferent responses. This also applies to intermittent US expectancy ratings.
Moreover, these intermittent US expectancy ratings created a focus on CS-
US pairings and US prediction. Although foci on pairings (e.g., Vansteen-
wegen et al., 2006; Vervliet et al., 2005; Fiedler & Unkelbach, 2011; Förderer
& Unkelbach, 2012; Hu et al., 2017) and on US prediction (e.g., Kattner &
Green, 2015; Kattner, 2014; Zanon et al., 2012) are prevalent in EC research,
it may limit the generalizability of our findings, and could be argued to im-
pede automatic associative processes (Olson & Fazio, 2001). We addressed
these limitations in Experiment 3.

3.7 Experiment 3

Our previous experiments indicate that the expectancy-liking dissociations
in counterconditioning and extinction procedures are caused by different
default judgment strategies and can be eliminated by inducing nondefault
momentary CS pleasantness judgments. A comprehensive test of the tem-
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poral integration hypothesis, however, requires a concurrent manipulation
of default judgment strategies for both US expectancy and CS pleasant-
ness. The hypothesis predicts that, when judgment strategies are equated,
US expectancy and CS pleasantness ratings should exhibit the same pattern
of results. As a corollary, in an extinction procedure a comparison of non-
default integrative US expectancy and momentary CS pleasantness judg-
ments should reveal a reversed expectancy-liking dissociation—extinction
of EC effects despite continued US expectancy. Experiment 3 was a final
test of the temporal integration hypothesis in which we concurrently ma-
nipulated the judgment strategies for US expectancy and CS pleasantness
ratings.

As for CS pleasantness ratings, we assessed US expectancies only after
completion of the learning procedure in a momentary fashion separately
for each learning context, as well as in an integrative fashion in a new
context. For this procedure, MINERVA 2’s predictions match those of Ex-
periment 2. Hence, we expected to observe (1) identical patterns for end-
of-study US expectancy and CS pleasantness ratings and (2) a reversed
expectancy-liking dissociation (Figure 3.2A).

3.7.1 Methods

The experimental method, data analysis plan, and the following hypothe-
ses were preregistered (https://osf.io/vnmby/registrations/): In the ex-
tinction procedure, we predicted (1) persistent US expectancy in end-of-
study judgments that referred to both learning contexts (i.e. resistance to
extinction in integrative US expectancy judgments). Moreover, we pre-
dicted lower US expectancy ratings for the context of CS-alone trials when
compared to (2) the context of CS-US pairing trials as well as (3) to both
learning contexts. For CS pleasantness ratings, we predicted the same pat-
tern: Despite the extinction procedure, we expected to observe (4) an EC ef-
fect in end-of-study judgments in the new context. Moreover, we expected
(5) a reduced EC effect for end-of-study CS pleasantness ratings for the con-
text of CS-alone trials compared to the new context and (6) the context of
CS-US pairing trials.

Experimental design, materials, and procedure followed those of Experi-
ment 2 except for the following changes.

https://osf.io/vnmby/registrations/
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3.7.1.1 Participants

As in Experiment 2, we performed a sequential Bayesian analysis with min-
imum sample size of n = 20 per between subject condition (N = 120). We set
out to collect data until they provided strong evidence for or against our
six hypotheses of primary interest or until we ran out of money (1920†).

We recruited 273 new participants. As preregistered, we excluded 17 par-
ticipants who performed the category recognition task at chance level, 57
participants who performed poorly at the identification task during the
learning procedure (below Q1°1.5£IQR, i.e. at least one incorrect response;
see Procedure), and one participant who aborted the experiment. Thus, we
stopped collecting data after 202 valid participants. At this point the data
provided strong evidence for hypotheses 1, 2, and 5. Participants’ mean age
was 23.61 years (SD = 6.41), 146 were female, and 32 studied psychology or
media psychology. 7 participants reported vision impairments: five were
red-green color blind, one had astigmatism and another had a blind eye. 74
participants reported to have prior knowledge about the CS pictures.

3.7.1.2 Material

In contrast to Experiment 2, we did not collect intermittent US expectancy
ratings. Instead, we asked participants to categorize USs (“What do you see
right now?”) in a 4-AFC task as photographs of either humans, animals, or
objects or to indicate that no US was presented. The categorization task
served to engage participants during the learning procedure in a manner
comparable with our previous experiments. Analogous to CS pleasantness
ratings, participants judged US expectancy for each CS after completion of
the learning procedure for different contexts. We instructed participants
that they would repeat a few trials from the learning procedure. We pre-
sented only the CSs and asked “With what probability would you expect
a photograph of a human [animal/object] with this creature?” Previous
studies have similarly assessed expectancy retrospectively by asking par-
ticipants to graph the evolution of their US expectancy during the learning
procedure (e.g., Raes et al., 2011; Vansteenwegen et al., 2005; Vervliet et
al., 2005). To elicit momentary judgments, we noted that these trials were
drawn from the first (second) half of the experiment. To elicit integrative
judgments, we instructed participants that the trials were “selected ran-
domly from the first and second half of the experiment” with equal prob-
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ability. We noted that CSs would be shown in the center on neutral back-
ground to obscure which half of the experiment the trials were drawn from.

3.7.1.3 Procedure and design

In each of the six subblocks of the learning procedure, we collected US
categorization responses for one CS from every US valence (including neu-
tral CS-US pairs) following the third presentation of the CS-US pair. We
removed the CS, but the US—if a US had been presented—remained on
screen until participants responded. We made this task deliberately easy to
avoid drawing too much attention to USs and away from CSs during the
learning procedure.

After completion of the learning procedure, participants rated US ex-
pectancy and CS pleasantness for each CS. In contrast to Experiment 2, the
context for CS pleasantness and US expectancy ratings was manipulated
between participants, i.e., participants rated each CSs only for one context.
We, thus, collected 3 US expectancy and CS pleasantness ratings per
experimental condition and 18 per participant. Additionally, we manipu-
lated the order of US expectancy or CS pleasantness ratings to control for
possible order effects (Heycke et al., 2017).

On average, participants took 49.62 minutes (SD = 12.71) to complete the
study.

3.7.2 Results

Preregistered analyses (labeled confirmatory) will be presented first, fol-
lowed by additional (exploratory) analyses. In addition to the analyses
presented here, we repeated all analyses with a modified set of exclusion
criteria: We included participants who made no more than one incorrect
response in the intermittent US identification task—some participants re-
ported accidentally clicking the wrong button—but excluded three partic-
ipants who invariably used the scale mid-point in CS pleasantness ratings
(see the online supplemental material). By and large, we found the same re-
sults; we indicate noteworthy changes in the exploratory analyses sections.
See Appendix A.2 for analyses of participants’ CS-US pairing memory.
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3.7.2.1 US expectancy

3.7.2.1.1 Confirmatory analyses We analyzed expectancies of the correct
US using a 3 (Valence: Positive vs. Neutral vs. Negative) £ 2 (Learning
procedure: Acquisition vs. Extinction) £ 3 (Referenced context: First vs. Sec-
ond vs. Both) £ 2 (DV order: CS pleasantness first vs. US expectancy first)
ANOVA with repeated measurements on the first two factors. As pre-
dicted, we found strong evidence that the changes in US expectancy across
contexts differed between acquisition and extinction procedures, BF10 =
1.03£10

33, Figure 3.3. We observed this pattern irrespective of US valence
(BF01 = 66.72) and of whether US expectancy was assessed before or after
CS pleasantness, BF01 = 8.50. We therefore analyzed all data and averaged
across US valences.

As predicted, planned contrasts indicated that expectancy for the correct
US category increased from the first to the second learning context in the
acquisition procedure (BF10 = 11.19, one-tailed) but decreased in the extinc-
tion procedure, BF10 = 6.12 £ 10

4 (one-tailed). When we referenced both
learning contexts, we found strong evidence that participants expected the
correct USs despite the previous extinction procedure, M = 0.37 95% HDI
[0.26, 0.48], BF10 = 1.18£10

7, one-tailed. The comparisons of US expectancy
for both contexts versus the second context was inconclusive in both acqui-
sition (BF10 = 1.38, one-tailed) and extinction procedures, BF10 = 1.92 (one-
tailed). There was no noteworthy evidence to suggest that there was any
other effect of our manipulations, BF01 ∏ 1.54. In sum, participants’ end-
of-study US expectancies corresponded to CS-US contingencies when we
referenced and reinstated the learning contexts.

3.7.2.1.2 Exploratory analyses Because we found no conclusive evidence
for or against integrative judgments in the preregistered between-
participant comparisons of ratings for the second and the new context,
we additionally compared the differences between the acquisition and
extinction procedures for all referenced contexts. For the first learning
context, participants expressed higher expectancy for the correct US in the
extinction than in the acquisition procedure, M = 0.37 95% HDI [0.25,0.48],
BF10 = 2.97 £ 10

6 (one-sided). This pattern was reversed in the second
context: Participants expressed higher expectancy for the correct US in the
acquisition than in the extinction procedure, M = 0.24 95% HDI [0.14,0.33],
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BF10 = 9.85£10
3 (one-sided). Critically, when we referenced both learning

contexts we found some evidence that expectancy for the correct US did
not differ between acquisition and extinction procedures, M = 0.03 95%
HDI [0.00,0.07], BF01 = 5.55 (one-sided). These additional analyses indicate
that, like the EC effect, US expectancy appeared to be resistant to extinction
when we referenced both learning contexts. Hence, we conclude that we
successfully elicited integrative US expectancy judgments.

Compared to the intermittent ratings in Experiments 1 and 2, participants
reported expecting USs in the context of CS-alone trials and overall their
expectancies were less pronounced. Further analyses suggested that this
reflects memory confusions of the learning contexts.

3.7.2.2 CS pleasantness

3.7.2.2.1 Confirmatory analyses We analyzed EC effects using a 2 (Learn-
ing procedure: Acquisition vs. Extinction) £ 3 (Referenced context: First
vs. Second vs. None) £ 2 (DV order: CS pleasantness first vs. US ex-
pectancy first) ANOVA with repeated measurements on the first factor. As
predicted, referring to and reinstating learning contexts affected the EC
effect differently depending on the learning procedure, BF10 = 1.45£ 10

3,
Figure 3.3. This finding was not affected by the order of DVs (BF01 = 5.30)
and, thus, we analyzed all data. End-of-study CS pleasantness ratings in
the new context provided some evidence for an EC effect in the extinction
conditions, M = 0.99 95% HDI [0.20, 1.80], BF10 = 4.35 (one-tailed). More-
over, we found evidence, albeit weak, that this EC effect was of comparable
magnitude in the extinction and acquisition procedure, M = 0.60 95% HDI
[0.00, 1.52], BF01 = 4.64 (one-tailed). When we compared participants’ CS
pleasantness ratings for the first and second context, we observed both the
predicted increase in the EC effect in the acquisition procedure, BF10 = 19.44

(one-tailed), as well as the predicted decrease in the extinction procedure,
BF10 = 38.71 (one-tailed). In the extinction procedure, the EC effects for
the context of CS-alone trials and the new context were of comparable
magnitude , BF01 = 5.10 (one-tailed). EC in the context of CS-alone trials
was not extinguished completely, M = 1.31 95% HDI [0.34, 2.29], BF10 = 7.19;
but we found evidence for partial extinction. The EC effect was clearly
larger in the context of CS-US pairing trials than in the new context,
BF10 = 88.80, in line with the meta-analytic finding. Similarly, in the
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acquisition procedure, the EC effect for the context of CS-US pairing trials
was larger than for the new context, BF10 = 10.95. The comparison between
the EC effect for the context of CS-alone trials and the new context was,
however, inconclusive, BF01 = 1.70 (one-tailed). We found no noteworthy
evidence for any other effects of our manipulations, BF10 ∑ 2.82. In sum, we
found some indication that EC effects were comparable in the acquisition
and extinction procedures when participants rated CS pleasantness in the
new context after completion of the learning procedure. We also observed
the predicted extinction of EC in nondefault momentary CS pleasantness
judgments: The EC effect was larger for the context of CS-US pairing trials
than for the context of CS-alone trials.

3.7.2.2.2 Exploratory analyses Additionally, in the first learning context
participants exhibited a larger EC effect in the extinction than in the acqui-
sition procedure, M = 2.24 95% HDI [0.80, 3.70], BF10 = 22.69 (one-sided).
This pattern reversed in the second context: Participants exhibited a larger
EC effect in the acquisition than in the extinction procedure, M = 2.30 95%
HDI [0.82, 3.68], BF10 = 28.47 (one-sided). The data were uninformative as
to whether participants’ prior knowledge about CSs affected these findings,
BF01 = 1.85.

In the exploratory analysis using the modified set of exclusion criteria (n =
229), we found stronger evidence in support of an EC effect in the new
context in the extinction procedure, BF10 = 11.60 (one-tailed). In this larger
sample we also found stronger evidence indicating that the magnitude of
this EC effect was comparable in the extinction and the acquisition proce-
dure, BF01 = 7.03 (one-tailed).

3.7.3 Discussion

Experiment 3 replicated and extended our previous findings in the absence
of both intermittent US expectancy ratings and repeated end-of-study as-
sessment of US expectancy or CS pleasantness across different contexts.
We successfully elicited momentary US expectancy judgments by referring
to and reinstating the learning contexts that adequately reflected the CS-
US contingency changes: In both learning procedures, participants’ US
expectancy was larger in the context of CS-US pairing trials than in the
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Figure 3.3: US expectancy and CS pleasantness ratings at the end of Exper-
iment 3. The left plot shows observed differences in mean US expectancy
for acquisition (top) and extinction (bottom) procedures. Positive values in-
dicate expectancy for positive USs, negative values indicate expectancy for
negative USs. The right plot shows observed mean CS pleasantness ratings
after completion of the learning procedure for acquisition (top) and extinc-
tion (bottom) procedures. Error bars represent 95% within-subject confi-
dence intervals; CS = Conditioned stimulus, US = Unconditioned stimulus.
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context of CS-alone trials. Following extinction learning, participants re-
ported residual US expectancies in the context of CS-alone trials, but US ex-
pectancy was higher in the acquisition procedure. Critically, US expectancy
in the acquisition and extinction procedures was comparable when we ref-
erenced both learning contexts, reflecting a nondefault integrative judg-
ment strategy.

As predicted by the temporal integration hypothesis and our simulation,
CS pleasantness ratings exhibited the same pattern of results: In both learn-
ing procedures, EC effects were larger in the context of CS-US pairing trials
than in the context of CS-alone trials. Following extinction learning, partic-
ipants’ ratings exhibited a residual EC effect in the context of CS-alone tri-
als, but the effect was markedly higher in the acquisition procedure. Again,
when no learning context was referenced the EC effect was comparable be-
tween acquisition and extinction procedures, reflecting the default integra-
tive judgment strategy.

In summary, the extinction procedure showed the well-known expectancy-
liking dissociation between default momentary US expectancy ratings and
integrative CS pleasantness ratings. Conversely, we found the reversed
dissociation between nondefault integrative US expectancy and momen-
tary CS pleasantness ratings. Thus, after equating judgment strategies, US
expectancy and CS pleasantness exhibited the same pattern of results. We
conclude that expectancy-liking dissociations can be accounted for by dif-
ferences in default judgment strategies and do not necessitate two distinct
learning systems.

3.8 General Discussion

To explain expectancy-liking dissociations in EC (e.g. Baeyens et al., 1988;
Baeyens et al., 2005; Hermans et al., 2002) with a single learning process,
Lipp et al. (2010) proposed that US expectancy and CS pleasantness rat-
ings afford different default judgment strategies: US expectancy ratings
reflect momentary whereas CS pleasantness ratings reflect integrative sum-
maries of the learning history. We tested this temporal integration hypoth-
esis by manipulating participants’ judgment strategies after completion of
the learning procedure in a counterconditioning and two extinction exper-
iments. Under default conditions (i.e., momentary US expectancy and in-
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tegrative CS pleasantness judgments), we replicated two expectancy-liking
dissociations: Counterconditioning produced no EC effects although par-
ticipants US expectancies reflected the contingencies in the second part of
the learning phase; conversely, extinction produced EC effects in the ab-
sence of US expectancies. Our findings corroborate that these dissociations
were caused by the difference in strategies. First, we eliminated these dis-
sociations by equating the judgment strategies across measures: CS pleas-
antness ratings corresponded to the respective US expectancy ratings after
we elicited (nondefault) momentary CS pleasantness judgments (i.e., by re-
ferring to and reinstating the context of the initial or opposed CS-US pair-
ings in the counterconditioning procedure in Experiment 1, or the context
in which CSs had been presented alone as in the extinction procedures of
Experiments 2 and 3). Furthermore, we reversed the expectancy-liking dis-
sociation in the extinction paradigm by contrasting (nondefault) integra-
tive US expectancy with (nondefault) momentary CS pleasantness judg-
ments. Results showed extinction of EC but resistance to extinction of US
expectancy. Our findings demonstrate that the expectancy-liking dissoci-
ations reported in the literature can be produced as the result of different
judgment strategies afforded by the dependent measures. Hence, contrary
to previous interpretations, expectancy-liking dissociations do not necessi-
tate a second learning process; they can be parsimoniously explained by a
single learning process.

Amending and extending Lipp et al. (2010)’s temporal-integration hypoth-
esis, we illustrate how the learning history can be conserved and utilized
to perform judgment tasks: Based on previous theorizing (Mitchell et al.,
2009), we instantiated learning and retrieval processes by the unitary
episodic memory model MINERVA 2 (Hintzman, 1988; Hintzman, 1984;
Hintzman, 1986), which enabled us to make specific predictions for both
US expectancy and CS evaluations that were subsequently corroborated
by our experiments.

3.8.1 Additional findings and limitations

Hofmann et al. (2010) found partial extinction of EC in studies that as-
sessed the EC effect both after the acquisition and again after the extinc-
tion phase. At first glance, this finding may seem to contradict the results
of our simulation (Figure 3.2A), which predicted comparable CS pleasant-
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ness ratings for intermittent ratings at the end of the acquisition procedure,
integrative end-of-study ratings, as well as momentary ratings in the CS-
US pairing context, However, this discrepancy is due to procedural factors.
For learning procedures that elicit momentary CS evaluations via repeated
ratings, MINERVA 2 predicts partial extinction. In such cases, postextinc-
tion ratings should more strongly reflect recent CS-alone trials. Moreover,
the model predictions also depend on other aspects of the experimental
designs, such as the presentation of neutral stimuli (e.g., CS-alone trials
or neutral CS-US pairs) during the initial acquisition phase in the present
studies. This is because the common context causes activation of neutral
stimuli, which in turn attenuate CS pleasantness ratings. As illustrated by
the faint symbols in Figure 3.2A, MINERVA 2 predicts the partial extinc-
tion effect for designs without neutral stimuli during the initial acquisition
phase.

In the present studies, we manipulated learning contexts overtly. However,
we believe that our findings also pertain to evaluative learning without
context manipulations. Lipp and Purkis (2006) found that using paper and
pencil rather than a computer for end-of-study valence assessment is suf-
ficient to elicit integrative CS pleasantness judgments without any explicit
context manipulation. Similar renewal effects have been found in social im-
pression formation (AAB renewal; Gawronski et al., 2010, Experiment 4).
Hence, the standard end-of-study evaluation assessment may act as con-
text change, affect judgment strategies, and produce renewal effects. More-
over, we assume that in the absence of explicitly induced context changes,
participants spontaneously generate and use temporal contexts to struc-
ture the incoming information and that these contexts can affect behavior
(Matute et al., 2011; Zacks et al., 2007). Due to the use of external contexts,
contextualization in our study may have been more pronounced but—we
assume—not qualitatively different from previous studies. We plan to test
these assumptions in future research.

Yet another type of context has been employed in studies on feature-
positive learning in EC—another procedure that has produced an
expectancy-liking dissociation (Baeyens et al., 1996; Baeyens et al., 1998).
In this paradigm, a CS was paired with a negative US only in the pres-
ence of (or subsequent to) a feature stimulus; in its absence, the CS was
presented alone. EC effects were obtained both when the CS was rated in
the presence and absence of the feature stimulus—even when participants
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correctly reported the stimulus contingencies. For such a procedure,
MINERVA 2 predicts a reduced, albeit nonzero, EC effect when the CS is
rated in the absence compared to the presence of the feature stimulus. If
the nonsignificant reduction, which has so far been obtained only with
relatively small samples (Baeyens et al., 1996; Baeyens et al., 1998), proves
robust in high-powered studies, it is a finding that challenges our model
and may necessitate further refinement.

Comparing our findings to those from studies on social impression for-
mation also reveals a potentially interesting inconsistency (for a review
see Gawronski et al., 2018). In their counterconditioning-like paradigm,
Gawronski et al. (2010) found that participants’ evaluations in a new con-
text reflected the valence of the initially presented information (ABC re-
newal), whereas the present studies instead found neutral evaluations. In-
terestingly, Gawronski et al. (2018) also failed to observe those renewal
effects in preliminary EC studies (p. 43). Although social impression for-
mation and EC procedures differ in many aspects, we speculate that atten-
tional processes may explain the contradictory results. Our model assumed
constant attention to context—we informed participants that the learning
procedure consisted of two phases. If, instead, we assume that attention
to context increases in the second context—as do Gawronski et al. (2018)—
our model predicts ABC renewal. Conversely, when Gawronski et al. (2010)
enhanced attention to the first context, ABC renewal was eliminated (Ex-
periment 4). The effects of attention to, and encoding of, context features
is closely linked to the above considerations about the different types of
context manipulations and deserves further study.

3.8.2 Implications

3.8.2.1 The role of dependent measures

We demonstrate the expectancy-liking dissociation in extinction learning—
as well as its reversal—while holding encoding constant and manipulating
only the retrieval or judgment process. Somewhat relatedly, Gawronski et
al. (2014) interpreted the meta-analytical finding of a small reduction of EC
due to extinction (Hofmann et al., 2010) as an artifact of judgment-related
nuisance processes. They argued that extinction procedures do not affect
the underlying evaluative representations. Our results corroborate the im-
portance of judgment processes in evaluative responses, but they also high-
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light that similar judgment processes affect expectancy judgments. With
this in mind, the expectancy-liking dissociations and the resistance to ex-
tinction of EC can similarly be construed as an artifact of judgment-related
processes. Resistance to extinction appears to reflect different judgment
strategies rather than characteristics of separable learning systems.

More generally, our findings illustrate that conclusions about latent pro-
cesses require a good understanding, and careful experimental treatment,
of the dependent measures. Dissociations taken to imply the operation of
different learning processes may alternatively be explained by differences
in retrieval or performance processes that bear on the assessed variable.
Without a good understanding of the dependent measures (i.e., without an
established measurement theory), contrasting these measures runs the risk
of comparing apples and oranges. Instead, stronger and more direct tests
of dual-process claims can be achieved if the outcomes of experimental ma-
nipulations that selectively target the two postulated processes are assessed
and compared on a single dependent variable.

3.8.2.2 Explicit versus implicit measures

Another dissociation often discussed in the EC literature is the one between
direct measures, such as ratings, and indirect measures, such as evaluative
priming. In research on extinction, these dissociations have often been in-
terpreted as evidence for dual-processes theories (e.g., Gawronski et al.,
2014; Kattner & Green, 2015). This interpretation rests on the assumption
that ratings primarily reflect explicit learning and priming measures re-
flect implicit learning. Challenging this assumption, EC studies have rou-
tinely used direct measures to assess implicit learning (e.g., Olson & Fazio,
2001; Hütter et al., 2012); and effects supporting explicit learning have been
obtained on indirect measures (e.g., EC requires awareness; Pleyers et al.,
2007; Stahl et al., 2009). A recent review of implicit-explicit dissociations
in attitude learning concludes that there is little evidence for the assump-
tion of a link between learning mode and expression mode (Corneille &
Stahl, 2019b). Taken together, these findings illustrate that dissociations be-
tween direct and indirect measures are often absent; and where obtained,
they would merely be consistent with dual-process assumptions but fail to
corroborate them.

Gawronski et al. (2014) reported that extinction reduced EC effects on the
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direct evaluative ratings but did not affect the indirect evaluative priming
measure. According to the temporal integration hypothesis, the extinction
of EC on the direct measure reflects its context-sensitivity: When repeat-
edly asked to evaluate the CSs following acquisition and again after extinc-
tion, this repetition induces a momentary judgment strategy—participants’
latter ratings reflected primarily the information encoded during the ex-
tinction phase. Assuming that the resistance to extinction inferred from
evaluative priming is not merely an artifact of the measure’s inferior relia-
bility and sensitivity, a possible explanation is that judgment strategies can
be adapted more readily for explicit ratings than in evaluative priming.
In contrast to direct expressions of attitudes, context-sensitive responses
require considerable effort in evaluative priming measures (on top of task-
specific knowledge and strategies; Klauer & Teige-Mocigemba, 2007; Teige-
Mocigemba & Klauer, 2008). Thus, a more targeted manipulation may be
necessary to modify the default integrative judgment strategy in evalua-
tive priming. The research reviewed by Gawronski et al. (2018) suggests
momentary judgments can be elicited in indirect measures by introduc-
ing context manipulations similar to ours. To the degree that such context
effects indeed affect indirect measures, our findings should generalize to
these measures.

Our aim was not to conclusively rule out the existence of a second learn-
ing process. Specific conditions may, for example, allow for an additional
implicit misattribution (IM) of unconditioned evaluative responses to the
paired CSs (Olson & Fazio, 2001). In contrast to our stimulus-stimulus (S-
S) learning account, IM postulates stimulus-response (S-R) learning—links
between CSs and evaluative responses. Other properties of CS-US pair-
ings, such as context, should be inconsequential for IM; it therefore can-
not readily explain the contextualized EC effects we observed. Our proce-
dure realized some conditions that are taken to promote IM (a seemingly
random stream of stimuli and incidental learning of US valence; Hütter &
Sweldens, 2013; Jones et al., 2009) but it could be adapted to further bolster
misattribution of evaluative responses. Specifically, incidental instructions,
together with simultaneous onset of CS and US (Hütter & Sweldens, 2013)
may reveal context-insensitive IM.
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3.8.2.3 Memory models that account for learning phenomena

Traditionally, learning and memory have often been studied by separate
research communities. However, as illustrated by Tolman’s notion of mem-
ory as latent learning, it has been clear that these phenomena are overlap-
ping as the effects studied in learning research must be mediated by (some
form of) memory. The present study is one of several that sketch how to in-
tegrate learning phenomena into established memory theorizing. Here we
recast EC—traditionally construed as a learning phenomenon—in terms of
episodic memory theory. We view evaluative learning as encoding and re-
trieval of episodic knowledge that may later be used to construct adaptive
judgments.

Jamieson et al. (2012) have proposed a related account of associative learn-
ing based on an adapted memory model called Minerva-AL. The crucial
difference between MINERVA 2 and Minerva-AL resides in the encoding
mechanism: Instead of passively encoding episodes, Minerva-AL assumes
that CSs evoke predictions about USs and that only discrepancies between
predictions and observed events—the prediction error—is stored in mem-
ory. Although Minerva-AL makes the same representational assumptions
and posits the same retrieval mechanisms as MINERVA 2, the discrepancy-
encoding mechanism results in a model that is closely related to classical
learning models such as the Rescorla-Wagner model (Rescorla & Wagner,
1972; Miller et al., 1995; Siegel & Allan, 1996).

Minerva-AL was developed to account for phenomena in classical condi-
tioning, which is believed to be a highly intentional learning procedure in
which outcome expectations drive responses (Mitchell et al., 2009). Such
conditions may encourage and even require continuous predictions and
error monitoring. In EC, however, incidental paradigms, which obfuscate
CS-US contingencies, are of particular relevance to the single- vs. dual-
process debate (Olson & Fazio, 2001; Stahl & Heycke, 2016; Corneille &
Stahl, 2019b). It is unclear whether and how participants generate and test
predictions about CS-US associations in incidental paradigms; passive en-
coding of CS-US pairings, as assumed by MINERVA 2, may be a more ap-
propriate assumption here. While MINERVA 2 predicted our findings de-
spite the intentional learning instructions and intermittent US expectancy
ratings, extending our approach to other paradigms and effects may neces-
sitate modifications or additional assumptions. Comparing MINERVA 2
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and Minerva-AL and exploring their limitations with respect to EC and
classical conditioning is an interesting direction for future research.

It has long been known that MINERVA 2 requires additional assumptions
to account for some of the critical empirical findings in recognition mem-
ory. For example, recall strategies have to be assumed to account for some
findings in associative recognition (Clark & Gronlund, 1996). Yet, MIN-
ERVA 2, and the class of global-matching models to which it belongs, have
been influential. The fact that the model predicted the outcomes of our ex-
periments is an encouraging first indication that MINERVA 2 and related
memory models (Clark & Gronlund, 1996; Humphreys, Pike, et al., 1989;
Shiffrin & Steyvers, 1997; Kelly et al., 2017) are viable candidates for pro-
cess models of EC that merit further exploration.
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Chapter 4

An exemplar-familiarity
interpretation of verbatim and gist
memory in false recognition
FREDERIK AUST, ROSCOE F. J. W. ARAUJO, & CHRISTOPH STAHL

False recognition has been attributed to representations of semantic gist or
the summed similarity to all memory traces. Fuzzy-trace theory postu-
lates that each episode leaves independent verbatim and gist memory traces.
These independent representations dissociate true and false recognition: Gist
traces are conceptual summaries; their retrieval induces (veridical and illu-
sory) familiarity that can cause false recognition. Verbatim traces are detailed
reflections of an episode; their retrieval induces vivid remembrance that
support true recognition. In contrast to fuzzy-trace theory, global-matching
memory models postulate that each episode leaves only one trace in a uni-
tary storage. Dissociations between true and false recognition result from dif-
ferent patterns of probe-trace similarities: False recognition results from de-
ceptive familiarity caused by partial matches with similar (but non-identical)
traces. Exact matches are unique to true recognition and make an indepen-
dent contribution to strength of familiarity.
We demonstrate a formal correspondence between estimates of verbatim and
gist memory obtained from the Conjoint-Recognition Model and the contri-
bution of exact and partial matches to the familiarity predicted by the Gen-
eralized Context Model. We fit both models to experimental results, which
strongly suggests that multiple independent causes contribute to true and
false recognition. In line with our theoretical model analysis, both models
were able to account for the observed data. Taken together, our theoretical
model analysis and model fits suggest that gist and verbatim retrieval may
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reflect incremental contributions to familiarity by partial and exact matches
between probes and memory traces.

Research into false recognition has informed theoretical questions about
episodic memory (Brainerd & Reyna, 2005; Gallo, 2006). The most promi-
nent approach to study false recognition is the Deese-Roediger-McDermott
paradigm (DRM; Roediger & McDermott, 1995; Deese, 1959). In the DRM
paradigm, participants study lists of words that are semantically related to
one critical word (e.g, chilly, hot, wet, winter, freeze, heat, snow, and winter
are all associated with cold). If a critical word is not presented, it is referred
to as critical non-presented word or, more concisely, as lure. False recog-
nition is typically defined as the rate at which lures are endorsed as old
as compared to the rate of old-responses to new unrelated words. True
recognition is assessed by presenting some critical words during the study
phase. When presented again at test, the critical word is typically referred
to as target. False recognition is, however, not limited to DRM material and
can similarly be studied using, for example, categorized word lists (e.g.,
Buchanan et al., 1999; Pierce et al., 2005), photographs of similar everyday
objects (e.g., Stark et al., 2013; Andermane & Bowers, 2015), pictures of ab-
stract novel objects (e.g., Koutstaal et al., 1999; Pidgeon & Morcom, 2014),
or merely perceptually similar words (Schacter et al., 1997) or drawings
(Stahl, Henze, et al., 2016).

Despite many notable similarities there are systematic differences between
true and false memories (Jou & Flores, 2013) and these differences have in-
formed theories of episodic memory. False recognition has been typically
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been attributed to conceptual gist (Reyna & Brainerd, 1995a), semantic as-
sociations (Roediger et al., 2001; Underwood, 1965), or inter-item similar-
ities (Arndt & Hirshman, 1998). Additionally, it has been proposed that
participants sometimes use meta-cognitive or memory-based strategies to
discount deceptively familiar lures (Brainerd et al., 2003; Roediger et al.,
2001; Roediger & McDermott, 2000; Schacter et al., 1999). For a compre-
hensive overview of theoretical accounts we refer readers to Brainerd and
Reyna (2005) and Gallo (2006).

Although it is commonly assumed that multiple processes contribute to
true and false recognition, the nature of these processes remains contested.
A fundamental disagreement is between single- and dual-trace theories.
Fuzzy-trace theory is an influential dual-trace account that posits that each
episode leaves independent gist and verbatim traces (Reyna & Brainerd,
1995a). While the conceptual gist of an episode is assumed to factor in both
true and false recognition, detailed verbatim information is assumed to be
unique to true recognition. In contrast, global matching memory models
posit that episodes leave only one trace. Here it is assumed that partial
matches between probes and memory traces factor in both true and false
recognition, but exact matches are unique to true recognition (Arndt & Hir-
shman, 1998). Despite their conceptual similarity, global matching accounts
of false recognition have been discounted based on empirical dissociations
between true and false recognition.

In this article, we formalize the conceptual similarity between fuzzy-trace
theory and global matching models as instantiated by the Conjoint-
Recognition Model (CRM; Brainerd et al., 1999; Brainerd et al., 2001)
and the Generalized Context Model (GCM; Nosofsky, 1986; Nosofsky,
1988; Nosofsky, 2011a). The results of this theoretical model analysis are
consistent with previous suggestions that gist and verbatim retrieval may
reflect incremental contributions of partial and exact matches between
probes and traces in episodic memory. We test and confirm the adequacy
of this global matching account empirically in an experiment designed to
selectively influence the memory-related CRM parameters.

In the remainder of the introduction, we briefly outline how fuzzy-trace
theory and global matching models account for dissociations between true
and false recognition and examine some of the arguments cited in favor of
fuzzy-trace theory’s dual-trace assumption. We then motivate our exper-
imental study by reviewing and formally relating CRM parameters to the
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memory probe familiarity predicted by GCM.

4.1 True and false recognition dissociate

It is widely accepted that true and false recognition are driven by two oppo-
nent processes (Reyna & Brainerd, 1995a; Reyna & Lloyd, 1997). This con-
clusion is drawn from a large body of research showing that true and false
recognition (1) are uncorrelated, (2) can be manipulated independently of
one another (single dissociations), and (3) exhibit opposite effects (double
dissociations; p. 66, Brainerd & Reyna, 2005), such as the opposite develop-
mental trajectories of these processes during childhood during childhood
(Brainerd et al., 2008). These findings are thought to be caused by two pro-
cesses that work in concert in true recognition but in opposition in false
recognition. One process is typically conceptualized as a memory signal
resulting from semantic, associative, or feature overlap between the mem-
ory probe and traces of past episodes (Arndt & Hirshman, 1998; Reyna
& Brainerd, 1995a; Roediger et al., 2001). The memory signal becomes
stronger as the overlap between probe and memory traces increases and
promotes, both, true and false recognition. The second process promotes
only true recognition and inhibits false recognition. Theoretical concep-
tions of this second process are less consistent and include memory-based
and meta-cognitive explanations.

Fuzzy-trace theory, an influential account of false recognition, provides a
memory-based account of the inhibitory process (Brainerd & Reyna, 1998;
Reyna & Brainerd, 1995a; Reyna & Lloyd, 1997). Specifically, the theory
postulates that each episode leaves independent gist and verbatim mem-
ory traces. Gist traces represent the meaning and relational stimulus in-
formation; they are conceptual summaries. Retrieval of gist races induces
(true and illusory) familiarity that promotes both true and false recognition.
In contrast, verbatim traces are detailed representations of an episode, in-
cluding perceptual detail and surface features. Retrieval of verbatim traces
induces vivid remembrance of past events, which promotes true but pre-
vents false recognition. If a memory probe causes retrieval of a matching
verbatim trace, the vivid remembrance provides strong support for a previ-
ous encounter with the probe (e.g., the stimulus was part of the study list).
If, however, the memory probe causes retrieval of a conflicting verbatim
trace, the vivid remembrance can discredit the memory probe as similar
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to but different from a previous experiences. This process is commonly
referred to as recollection rejection (Brainerd et al., 2003).

4.2 Dissociations from unitary representations

The success of fuzzy-trace theory and its dual-trace explanation of oppo-
nent processes appears to contradict single-trace models. But while the
dual-trace assumption is consistent with dissociations between true and
false recognition, it is not necessitated by them. Such dissociations may
similarly be explained by meta-cognitive response strategies (Dodson &
Schacter, 2001; Roediger et al., 2001), dissociations between different in-
formation in compound memory traces (p. 56, Clark & Gronlund, 1996;
Cowan, 1998), different retrieval operations (e.g., global match and content
retrieval, Greve et al., 2010; Hintzman, 1987; Humphreys, Bain, et al., 1989),
and possible other causes. Deciding between these alternative explanations
requires more detailed considerations of the dissociative evidence. Propo-
nents of fuzzy-trace theory have argued that the available evidence cannot
be explained by meta-cognitive strategies (Reyna & Lloyd, 1997). However,
dissociations of information in compound memory traces or dissociations
between retrieval operations are less easily discounted.

Cowan (1998) early on criticized the idea of independent verbatim and gist
traces and cautioned these might be best understood as distinct informa-
tion in compound memory traces with different relevance to the memory
task (p. 149; also see p. 56, Clark & Gronlund, 1996). Cowan noted that
in many situations both interpretations yield very similar predictions—
especially for verbal material. Reyna and Brainerd (1998) discount this
information dissociation account by referencing studies that demonstrate
dissociations between memory and reasoning tasks that used verbal mate-
rial. However, as we will address next, task dissociation can be explained
by different retrieval operations or decision rules and are, thus, in principle
compatible with compound-trace models.

Whereas fuzzy-trace theory posits that recollection rejection relies on re-
trieval of independently encoded verbatim traces, it can also be construed
as cued recall operation (recall-to-reject; Hintzman et al., 1992; Humphreys,
Bain, et al., 1989; Malmberg, 2008). In short, a matching operation may
compare a memory probe to the contents of memory. Matching yields a
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mnemonic strength signal that summarizes the overall closeness of the
match—similar traces increment the strength signal more than dissimilar
traces. This strength signal elicits feelings of familiarity and drives simple
recognition decisions. As the strength signal contains no details about the
past events, a second retrieval operation is required for reproductive tasks,
such as cued recall. Retrieval yields a (more or less) faithful representation
of the past as returned by memory. Hintzman (1987) demonstrated that
matching and retrieval may yield independent (single dissociation) or
even negatively related performance on recognition and cued recall tasks
(double dissociation). In false recognition paradigms, a lure may be
strategically used as a recall cue and the retrieved details may expose the
lure as similar but new. Hence, the assumption of recollection rejection
does not presuppose dual memory traces.

The broader argument here is that, depending on the task, the contents of
memory may be cued and summarized in different ways. Such operations
may yield responses that dissociate not because they rely on different mem-
ory systems or independent traces but because of the qualitatively different
operations or decision rules applied to a “common representational sub-
strate” (p. 707, Nosofsky, 1988, on dissociations between categorization and
recognition tasks). This view follows Marr’s principle of least commitment,
which states that an adaptive flexible system should operate on the avail-
able information at the last possible moment (i.e., at the response stage) to
avoid having to undo previous processing (pp. 485-486, Marr, 1976).

To summarize, the previous discussion illustrates that empirical single and
double dissociations of true and false recognition are consistent with but
do not necessitate the assumption of independent memory traces for gist
and verbatim information. Such dissociations may be caused by dissocia-
tions of information in compound traces, or retrieval operations, or both.
Distinguishing between single- and dual-trace representations requires ex-
perimental control of the retrieval operations (i.e. recollection rejection) and
a specification of the single-trace representation. Global matching memory
models are obvious candidates for the latter.
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4.3 Global matching memory models

In contrast to fuzzy-trace theory, compound-trace global matching mem-
ory models postulate that each episode leaves only one memory trace (e.g.,
Clark & Gronlund, 1996; Hintzman, 1986; Shiffrin & Steyvers, 1997). These
models attribute dissociations between true and false recognition to the in-
formation in memory traces. Each trace compounds item and context in-
formation. At test, the probe is matched against the contents of memory.
The resulting strength signal reflects a summary of the similarity between
the probe all traces of past episodes. Dissociations in recognition perfor-
mance due to context information are ubiquitous, but item information
alone may dissociate memory performance. For example, Arndt and Hirsh-
man (1998) argued that in the global matching model MINERVA 2 (Hintz-
man, 1986) dissociations between true and false recognition can result from
item-related probe-trace similarities: False recognition results from decep-
tive familiarity caused by partial matches between lures and similar but
different memory traces. Exact matches, by definition, are unique to true
recognition and should, thus, make an independent contribution to the fa-
miliarity of targets. Accordingly, MINERVA 2 correctly predicted that (1)
increasing the number of similar items on a study list increases false recog-
nition more than true recognition, (2) increasing presentation duration of
the study list increases true but not false recognition (single dissociation),
and (3) increasing the similarity between target and lure can increase false
recognition but decrease true recognition (double dissociation).

In terms of fuzzy-trace theory, global matching models posit that gist ac-
tivation corresponds to partial matches of features shared between lures
and studied items, whereas verbatim activation reflects an increment of the
match signal caused by features that distinguish lures from studied items—
or lures from targets, respectively. This characterization of gist and verba-
tim activation is theoretically interesting because it suggest a mutually ben-
eficial unifying relationship between fuzzy-trace theory and global match-
ing models. Fuzzy-trace theory has stimulated ample empirical and theo-
retical work on the interplay of gist and verbatim memory. For example, a
recently proposed framework specifies how task demands moderate the in-
teraction of gist and verbatim information (Brainerd et al., 2019). The math-
ematical model and its parent theory, however, offer no account of how
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encoding and retrieval processes operate.1 Conversely, global matching
models provide detailed explanations of how information is encoded and
how inter-item similarities factor into matching and retrieval processes. But
the elaboration of the task-dependent interaction of these processes could
benefit from the theoretical developments inspired by fuzzy-trace theory.
Moreover, establishing a relationship with fuzzy-trace theory may broaden
the applicability of global matching models research on reasoning (Reyna
& Brainerd, 1995b; for an example see Dougherty et al., 1999).

The plausibility of the global matching account and its construal of gist
and verbatim memory, however, presupposes descriptive adequacy, which
in turn depends on the assumed inter-item similarities. Simulations, such
as those reported by Arndt and Hirshman (1998), typically make conve-
nient ad hoc assumptions about the inter-item similarities (also see Shiffrin
& Steyvers, 1997). This is somewhat unsatisfying for two reasons. First, the
similarity structure of the material is at the heart of the assumed matching
(and retrieval) process and, thus, an important source of constraint. Sim-
ulating inter-item similarities adds auxiliary assumptions and free param-
eters, which can artificially increase a model’s flexibility. Within plausible
limits, inter-item similarities are effectively estimated to maximize the fit
between simulation and observation. Second, Johns and Jones (2010) re-
cently demonstrated that, in the case of lexical semantics, many simulated
similarity distributions deviate from those of empirical estimates. Com-
pared to simulated similarities the empirical distributions are more heavily
skewed towards fewer high-similarity word pairs, which constitutes a vio-
lation of the simulation assumptions. Immediately relevant to the current
discussion, Johns and Jones (2010) chose an experiment on false recognition
to showcase how inappropriate assumptions about inter-item similarities
can affect simulation results. When they constrained MINERVA 2 by using
empirically estimated similarities the fit between simulated and observed
data was substantially reduced; what is worse, the simulation diverged
qualitatively from the observed data. The results by Johns and Jones (2010)
raise doubts about the MINERVA 2 account of false recognition and call for
more rigorous assessment of the global matching account.

Instead of MINERVA 2, we focus on the Generalized Context Model (GCM;
Nosofsky, 1986; Nosofsky, 1988; Nosofsky, 2011a)—a different but related

1More generally, threshold models, such as the mathematical specification of fuzzy-trace
theory, have rarely inspired the development of more detailed models of encoding and
retrieval operations (p. 341, Malmberg, 2008).
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global matching model. GCM is a well-tested, successful global matching
model of recognition in long- and short-term memory (Nosofsky, Cox, et
al., 2014; Nosofsky et al., 2020; also see Nosofsky, Cao, Cox, et al., 2014),
as well as categorization, and has previously been applied to false recog-
nition paradigms (Zaki & Nosofsky, 2001; see also van Vugt et al., 2013).
Moreover, the model takes empirical similarity estimates into account and
its formalism obviates the need for simulations, which allows us to fit it to
observed data using conventional methods. In short, GCM is a seasoned
broad-scoped representative of global matching models that is well-suited
to assess the adequacy of the false recognition account. Next, we review
and compare the mathematical specification of fuzzy-trace theory and the
GCM before we test the descriptive adequacy of the global matching ac-
count.

4.4 Theoretical model analysis

In the following, we briefly review the Conjoint-Recognition Model (CRM;
Brainerd & Reyna, 1998; Brainerd et al., 1999; Brainerd et al., 2001), a for-
malization of fuzzy-trace theory for recognition memory, as well as the
GCM. We then show how exact and partial matches in make independent
contributions to the matching signal and how they relate to gist and verba-
tim memory in CRM.

4.4.1 Conjoint-Recognition model

As we have discussed, fuzzy-trace theory is a dual-trace theory that posits
that each episode leaves independent gist and verbatim memory traces.
Gist traces represent the meaning and relational stimulus information,
whereas verbatim traces are detailed representations that include percep-
tual detail and surface features. The independence of gist and verbatim
trace is central to the explanatory principles of fuzzy-trace theory (p. 84 ff.,
Brainerd & Reyna, 2005). Specifically, it is assumed that gist and verbatim
traces are encoded in parallel and retrieved independently. For example,
remembering your last visit to a microbrewery (gist trace) implies nothing
about the probability that you also remember details such as the fruity
mango savor of the pale ale you had (verbatim trace) and vice versa. The
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subjective and behavioral consequences of independent retrieval, how-
ever, are asymmetric: The more informative verbatim trace presumably
always trumps the gist trace. Because verbatim retrieval of your pale ale
experience encompasses the corresponding gist of the episode (a visit to a
microbrewery) the possible retrieval of the gist trace has no effect. In case
the retrieved gist and verbatim traces are in conflict, it is assumed that the
decision is always determined by the more informative verbatim trace (e.g.
“I did not drive my car home; I remember stopping at a cash machine to
pay the cab driver”)—an instance of recollection rejection.

To measure the contribution of gist and verbatim traces to observed behav-
ior, fuzzy-trace theory has been formalized in a measurement model, the
CRM (Brainerd et al., 1999; Brainerd et al., 2001). CRM is a multinomial
processing-tree (MPT) model that estimates the conditional probabilities
of successful gist G and verbatim V retrieval as well as the probability of
guessing old b when both retrieval processes fail (see Figure 4.1). CRM is
a measurement model in the sense that it specifies the processes that con-
tribute to the observed behavior and how they affect observed responses,
but it has nothing to say about how each of these process operates. In this
sense, CRM is closer to the computational than the representational and
algorithmic level of analysis (Marr, 1982). We view CRM as a useful mea-
surement tool rather than a detailed theory of recognition memory.

CRM incorporates a recollection rejection process V
(L) (i.e., verbatim re-

trieval given a lure) and allows for targets and lures to differ with respect to
their effectiveness as cues for gist and verbatim retrieval. The latter consid-
eration is implemented by means of order-constraints on the model param-
eters. With reference to the encoding specificity principle (Tulving & Thom-
son, 1973), it is assumed that, compared to targets, lures are more effective
retrieval cues for gist traces (i.e., G

(L) > G
(T )) but, conversely, that targets

are more effective retrieval cues for verbatim traces, V
(L) < V

(T ). Guessing
is assumed to affect all probe types the same, i.e. b

(T ) = b
(L) = b

(N ). Due
to the large number of model parameters relative to observed indepen-
dent responses, CRM cannot be estimated in a standard false recognition
paradigm. To increase the number of observations, it is necessary to either
manipulate how participants map old and new responses onto the different
probe types (Brainerd et al., 1999), to introduce a third new but similar re-
sponse option (Stahl & Klauer, 2008), or to make simplifying assumptions.

Wherever possible, CRM assumptions have been tested and model param-
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Figure 4.1: Visualization of the Simplified Conjoint Recognition model for
old-new-recognition. Rectangles on the left represent memory probe types;
rectangles on the right represent observed responses. Ovals represent la-
tent cognitive states, which are sequentially traversed along the branches
of the processing tree. The model parameters V , G , and b represent the
conditional probabilities of state transitions for targets (T), lures (L), or new
distractors (N), respectively. In the current application, we assume negli-
gible retrieval of verbatim traces for lure probes (i.e., recollection rejection,
V

(L) = 0) and comparable effectiveness of lures and targets for gist retrieval,
G

(L) =G
(T ).
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eters have been validated in selective-influence studies (e.g., Brainerd et al.,
1999; Brainerd et al., 2001; Stahl & Klauer, 2008; Stahl & Klauer, 2009). Se-
lective influence is the gold standard for testing whether a model parame-
ter reflects a circumscribed psychological construct. The rationale is that
experimental manipulations which can be assumed to target one of the
psychological constructs should (1) selectively influence the correspond-
ing model parameter but (2) none of the other parameters. If only the
targeted model parameter responds to a selective influence manipulation,
the parameter is thought to be a valid indicator of the psychological con-
struct. For example, repeating targets on the study list (verbatim repeti-
tion) should selectively strengthen verbatim memory whereas increasing
the number of study list items related to a lure (gist repetition) should se-
lectively strengthen gist memory.

Despite its intuitive appeal successful selective influence does not neces-
sitate the assumption of multiple latent causes (Dunn & Kirsner, 1988;
Newell & Dunn, 2008). Because a rigorous test of the descriptive adequacy
of global matching models should involve data that demonstrably involve
multiple latent causes, we adopted the more rigorous approach to map
out multiple latent dimensions in the bivariate state-trace space of true
and false recognition (for details see Selective influence experiment).
An appealing property of state-trace analysis is that it requires minimal
assumptions, most notably that the observed responses are monotonically
related to their assumed single latent cause. For example, we would have
to assume that true and false recognition are both monotonically related
to the memory strength signal generated by the matching process. While
this assumption holds in old-new-recognition, it is violated in the common
approaches used to estimate the full CRM, namely manipulating the
mapping of response options to probe types or using an old-similar-new
response format. Hence, establishing multiple latent causes via state-trace
analysis requires simplifications of the full CRM.

4.4.1.1 Simplifying assumptions

We designed an experiment that allowed us to introduce simplifying
assumptions to CRM which render it applicable to old-new-recognition
responses. Specifically, our study lists were random sequences of pho-
tographs of everyday objects from various categories (e.g., apples, bagels,



4.4. MODEL ANALYSIS 131

and beach balls); in all but one condition we presented multiple exemplars
from each category. Photographs were randomly selected to serve as study
list items, targets, lures, or new memory probes. This design justifies
two simplifying assumptions without distorting the core properties of
CRM. First, we assumed negligible a rate of recollection rejection, i.e.
V

(L) = 0. This assumption is tenable theoretically as well as empirically.
Theoretically, a lure can be rejected via recollection only if verbatim traces
are retrieved for all studied category instances and is therefore unlikely
to be successful or convincing when multiple category exemplars have
been studied as part of a long randomly intermixed study list. Moreover,
empirical estimates of recollection rejection, as measured by V

(L), typically
cannot be distinguished from 0 (Stahl & Klauer, 2008; Stahl & Klauer,
2009). Second, we assumed that targets and lures are equally effective
retrieval cues for gist traces, i.e. G

(L) = G
(T ). Again this assumptions is

tenable theoretically as well as empirically. For stimulus material, such as
DRM lists, where inter-item associations are low on the study list but each
item is strongly associated with the critical word, it is clear that lures cue
retrieval of a list’s gist more effectively than studied items. It is not clear
why the same should be the case, when all items are exemplars from a
common category and lures are selected at random. Accordingly, several
previous studies report indistinguishable empirical estimates of G

(L) and
G

(T ) (Stahl & Klauer, 2008; Stahl & Klauer, 2009).

It is worth noting that any violations of our assumptions have predictable
effects. Non-negligible contributions of recollection rejection biases esti-
mates of G

(L) downwards. Manipulations that selectively strengthen ver-
batim retrieval and improve recollection rejection would, therefore, reduce
G

(L) estimates. Better gist retrieval for lures compared to targets biases es-
timates V

(T ) downwards. Consequently, selectively strengthening gist re-
trieval would reduce V

(T ) estimates. In sum, a selective influence manipu-
lation that has the opposite effect on V and G estimates indicates a violation
of our simplifying assumptions.

The simplified model posits that true recognition results from either ver-
batim or gist retrieval and guessing, whereas false recognition results from
gist retrieval and guessing; old-responses to unrelated new items reflect
only guessing. These assumptions are reflected in the following model
equations of the probabilities for old-responses to targets, lures, and new
unrelated probes:
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p(“Old” | T) =V + (1°V )G + (1°V )(1°G)b (4.1)

p(“Old” | L) =G + (1°G)b (4.2)

p(“Old” | N) = b. (4.3)

4.4.2 Generalized context model

GCM is a single-trace theory that postulates that each episode leaves one
memory trace (Nosofsky, 1986; Nosofsky, 1988; Nosofsky, 2011a). Each
trace compounds item and context information. When a memory probe is
presented, the similarity ¥(xi , y j ) between the i th probe x and each memory
trace y is determined. The weighted sum of all J similarities is the memory
strength signal, or familiarity f , which informs the recognition judgment,

fi =
JX

j=1

m j¥(xi , y j )

Each similarity is weighted by the memory strength m j of the trace, which
is typically assumed to decay with lag as a power-function. Hence, a large
number of moderately similar memory trace may yield a strength signal
that is comparable to that of a few highly similar traces. For example, you
may be inclined to affirm that you tried the coffee lager at the microbrew-
ery, either because you did, or because you tried a variety of lagers, coffee
stouts, and coffee porters.

To reach a decision, the strength signal is compared to a response criterion
k,

p(“Old” | xi ) =
f
∞

i

f
∞

i
+k∞

where k ∏ 0. The response-scaling parameter ∞ modulates the extremity
of the predicted probabilities for any given familiarity and response crite-
rion (McKinley & Nosofsky, 1995; Nosofsky, 2011a; Nosofsky & Zaki, 2002).
Psychologically response scaling can be thought of as a response caution
parameter (Nosofsky & Palmeri, 1997). That is, ∞ can be transformed to an
error tolerance Æ for accidentally choosing the response, which is less likely
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given the probe familiarity (Navarro, 2007). As response caution increases
error tolerance decreases and the response probability is increasingly bi-
ased towards 0 if k > fi or 1 if k < fi . Note that alternative interpretations
of ∞ have been suggested (e.g., Ashby & Maddox, 1993; Navarro, 2007).

In contrast to CRM, GCM specifies how memory probes are matched to the
contents of memory. Each item is represented in a K -dimensional similarity
space with similar items positioned close by and dissimilar items far apart.
The dimensions of this space depend on the stimulus material and can rep-
resent elementary visual properties such as color, size, and line width, or
higher-level semantic dimensions. The similarity space of the material and
each items position are estimated by multidimensional scaling (MDS) of,
for example, pairwise similarity ratings. In accordance with Shepard’s law
of generalization (1987), the psychological similarity between the probe
and a memory trace is assumed to decrease exponentially as the scaled
distance d in similarity space increases,

¥(xi , y j ) = exp(°c ·d(xi , y j )
p

)

where c ∏ 0 and reflects an individual’s sensitivity to dissimilarity. Increas-
ing c decreases psychological similarity between probe and trace. The pa-
rameter p must be positive and determines the shape of function that re-
lates distances to similarity. p = 1 yields an exponential similarity gradient,
whereas p = 2 yields a Gaussian similarity gradient.

Finally, it is assumed that participants selectively attend stimulus dimen-
sions to maximize task performance. In GCM, selective attention is formal-
ized as a distortion of the similarity space by expanding or compressing the
K dimensions and thereby modulating the distances,

d(xi , y j ) =
h KX

k=1

wk |xi k ° y j k |r
i

1/r

where wk represents attention weights that scale the kth dimension. The
distance is formalized as Minkowski distance, for which the parameter r

must be positive and determines the form of the distance metric. r = 1

yields city block distances, whereas r = 2 yields euclidean distances. In
most applications, p and r set to fixed values based on a prior assumptions,
that is, they are typically not free parameters (Nosofsky, 2011a).
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As noted previously, GCM is a successful model of recognition in long-
and short-term memory (Donkin & Nosofsky, 2012b; Nosofsky & Palmeri,
2014; Nosofsky, Cox, et al., 2014; Nosofsky, Cao, Cox, et al., 2014; Nosof-
sky, 2011b), as well as categorization, and has previously been applied to
false recognition paradigms (Zaki & Nosofsky, 2001; see also van Vugt et
al., 2013). Due to the comparably detailed specification of the matching
process, GCM is typically considered a process model, that is closer to the
representational and algorithmic than the computational level of analysis
(Marr, 1982).

4.4.3 Decision rule as a bridge

Next, we formally derive a prediction about the correspondence between
CRM parameters and GCM familiarities. These predictions suggests a
theoretical bridge between single-trace and dual-trace representations, that
is, a bridge between the memory strength signal predicted by GCM (and
possibly global matching models more generally) and gist and verbatim
retrieval. Note that GCM relates to participants’ responses to individual
items, whereas CRM relates to aggregate responses to the three probe
types.2 The following formulas apply to individual items, but we expect
them to hold in aggregate at the person level.

Owing to their different specificity, bridging CRM and GCM requires some
abstraction. We, therefore, relate the models at the decision stage. Given
that gist and verbatim retrieval proceed independently and in parallel, the
CRM model equations formalize how the available information is used to
reach a decision. Solving these equations for the model parameters yields,

2It is technically possible to extend the CRM modelling framework to estimate item-
specific effects on model parameters. This would allow to empirically examine the formal
correspondence at the level of individual responses. In the subsequent application of CRM
we decided not to estimate item-specific effects for theoretical and practical reasons. As we
have discussed, fuzzy-trace theory is a computational-level explanation that is silent with
respect to the details of the retrieval process. Hence, item-specific effects on model parame-
ters would estimated without regard for stimulus properties and, critically, the interactions
between stimuli. Without any constraint item-specific effects would only serve a descrip-
tive purpose without informing the model comparison. The lack of constraint also poses a
practical challenge. Unless the number of items is small relative to the number of partic-
ipants, estimates of item-specific effects (and their interactions) are bound to be imprecise
and, thus, uninformative, due to the large number of possible combinations.
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V = p(“Old” | T)°p(“Old” | L)

1°p(“Old” | L)
G = p(“Old” | L)°p(“Old” | N)

1°p(“Old” | N)
b = p(“Old” | N)

For GCM, we ignore, for the moment, the process that produces the mem-
ory strength signal, which feeds into the decision rule. We assume three
signal strengths for each probe type,

p(“Old” | T) = f
(T)

∞

f (T)∞ +k∞
p(“Old” | L) = f

(L)
∞

f (L)∞ +k∞
p(“Old” | N) = f

(N)
∞

f (N)∞ +k∞

where f
(T) ∏ f

(L) ∏ f
(N). By substitution the CRM parameters can now be

re-expressed in terms of familiarities,

V = f
(T)

∞ ° f
(L)

∞

f (T)∞ +k∞
(4.4)

G = f
(L)

∞ ° f
(N)

∞

f (L)∞ +k∞
(4.5)

b = f
(N)

∞

f (N)∞ +k∞
. (4.6)

This result is consistent with the previously suggested global matching
account of dissociations between true and false recognition (Arndt &
Hirshman, 1998). Gist-based false recognition (as estimated by G) reflects
the increased familiarity of lures ( f

(L)) compared to unrelated new probes,
f

(N). Exact matches between probes and memory traces, by definition, are
unique to true recognition. Therefore, the increased familiarity of targets
f

(T) compared to lures f
(L) (as estimated by V ) contributes independently

to true recognition.

Conversely, this result suggests an alternative interpretation for CRM pa-
rameters. Estimates of gist activation (G) reflect the partial increment in lure
familiarity attributable to partial matches. Similarly, estimates of verbatim
activation (V ) reflect the partial increment in target familiarity attributable
to matching features that distinguish lures from studied items—or lures
from targets, respectively.

Because our analysis is limited to the decision rule the above relationship
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between CRM and GCM is in some sense trivial. However, with some
additional assumptions, the above equations can be further examined at
the level of inter-item similarities, see Appendix B.1 for details. The fol-
lowing simplified expressions only apply to the special case where ∞ = 1

and m j = m j 0 , but highlight the separable contributions of exact and par-
tial matches. We assume that the study list is composed of sublists of re-
lated items and that any item can serve as memory probe, as is the case in
study lists composed of exemplars from various categories (e.g., Buchanan
et al., 1999; Pierce et al., 2005; Stark et al., 2013; Andermane & Bowers,
2015). Note that these are the same conditions that justify our simplifying
assumption that G

(L) =G
(T ) in the CRM. Under these conditions the numer-

ator in Equation (4.5) expands to

f
(L) ° f

(N ) º
PX

p=1

¥(L,rp )
| {z }

partial match

°¥(N ,rp ) (4.7)

where L is a lure, N a new unrelated distractor, and rp are traces of study list
items from the same sublist as the lure. The summed similarities between
lure L and related traces rp represents the contribution of partial matches,
which is corrected for the summed similarity of the same traces in response
to a new unrelated distractor N .

Similarly, the numerator in Equation (4.4) can be specified as

f
(T ) ° f

(L) ºO[ ¥(T,T
§

)| {z }
exact match

°¥(L,T
§

)] (4.8)

where O is the number of identical T
§ traces from repeated presentations

during study. The summed similarity between target T and its correspond-
ing traces T

§ represents the contribution of exact matches, which is cor-
rected for the summed similarity of the same traces in response to a lure
L. The correction yields an estimate of the incremental contribution of ex-
act matches over partial matches. When encoding is noise-free, ¥(T,T

§
) =

¥(T,T ) = 1 and further simplifies to

f
(T ) ° f

(L) ºO[1°¥(L,T
§

)]

where 1°¥(L,T
§

) is the dissimilarity between L and T
§. This result has two
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implications: First, because every episode leaves a new trace in memory the
corrected familiarity of targets should increases linearly with the number of
target presentations. This constraint can, however, be relaxed by assuming
that repeated study increases the memory strength of targets. Second, the
above shows that traces of related study list items (i.e., items from the same
sublist, rp) are irrelevant to the numerator of V —they do however factor in
the denominator. As Equations (4.7) and (4.8) show, in terms of GCM, G es-
timates the incremental familiarity of lures due to features shared by sublist
items, whereas V estimates the incremental familiarity due to features that
distinguish between lures and target traces.

The above predictions contradict fuzzy-trace theory and previously
reported results with respect to the effect of the selective influence ma-
nipulations. Fuzzy-trace theory predicts that repeating a target on the
study list should increase estimates of V but not G . According to Equa-
tions (4.5) and (4.7), additional target traces, like any other related traces,
increase f

(L), which in turn increases estimates of G . Hence, GCM predicts
that target repetitions increase true as well as false recognition.

More recent memory models posit that memory traces become differen-
tiated and, thus, less similar to related items with repeated study (Criss,
2006; Criss & Koop, 2015; Shiffrin & Steyvers, 1997; McClelland & Chap-
pell, 1998). In GCM, differentiation may be thought of as increased dissim-
ilarity sensitivity c for target traces T

§. Such sharpening of target traces
could prevent an increase in G and false recognition through a reduction
of ¥(L,T

§
). In other words, differentiation would allow true recognition to

be selectively influenced, see Appendix B.1.1. Thus, it is to be expect that
differentiation may be necessary to account for the selective influence of
target repetitions.

Fuzzy-trace theory further predicts that increasing the number of related
items on the study list increases estimates of G but not V . GCM predicts
that additional related items increase both lure familiarity f

(L) and target
familiarity f

(T ). According to Equation (4.4) the increase in f
(T ) may yield

reduced estimates of V because the relative contribution of exact matches to
target familiarity decreases relative to the contribution of partial matches.
The extent of the reduction in V depends on the relative magnitude of exact
and partial match contributions to f

(T ) and may additionally be modulated
by response scaling, i.e., allowing for ∞ > 1. Hence, we speculate that con-
straining ∞ = 1 may limit GCM’s ability to account for selective influence
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manipulations.

The plausibility of the derived expressions is conditional on GCM’s ability
to describe true and false recognition as well as the less constrained CRM.
Assessing the hypothesized correspondence between CRM and GCM, thus,
requires an empirical test of the descriptive adequacy of GCM for true and
false recognition. As the previous discussion indicates, a selective influ-
ence study of CRM parameters, which allows to distinguish between mul-
tiple latent causes of true and false recognition, constitutes a challenging
empirical test for GCM.

4.5 Interim summary

Empirical data strongly suggest that multiple latent causes contribute to
true and false recognition but the nature of these causes continues to be de-
bated. An important disagreement is between single- and dual-trace the-
ories. Fuzzy-trace theory assumes that independent storage and retrieval
of verbatim or gist traces for each episode are responsible for dissociations
between true or false recognition. Global matching models, on the other
hand, assume that each episode leaves a single trace in a unitary storage.
At test, exact and partial matches between probes and memory traces make
separable contributions to the mnemonic strength signal and recognition
responses. There is considerable conceptual overlap between the distinc-
tions of partial versus exact matches and of gist versus verbatim traces, and
thus, between the posited latent dimensions: Gist may be conceptualized
as a partial match between a probe and traces in memory, whereas verbatim
information may be thought of as exact matches. If there is, indeed, a close
correspondence between these concepts, global matching model should be
able to account for the effects of selective influence manipulations on the
gist and verbatim retrieval. Such a finding would suggest that V and G

parameters in CRM may estimate the contributions of exact and partial
matches to probe familiarity rather than independent retrieval of verbatim
and gist traces. We ran an experiment to test this possibility.
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4.6 Selective influence experiment

We designed a selective influence experiment that conforms to the assump-
tions of our model specifications. The presented study list consisted of
sublists of photographs of exemplars from everyday object categories. For
each participant exemplars were randomly selected to serve as target, lure,
or new unrelated probe. To selectively influence gist retrieval we manipu-
lated the number of category exemplars on the study list (gist repetition) and
to selectively influence verbatim retrieval (verbatim repetition) we presented
targets repeatedly during study (p. 111-112, Brainerd & Reyna, 2005). Both
manipulations have been used in previous selective influence studies (e.g.,
Stahl & Klauer, 2008; Stahl & Klauer, 2009). To verify the selective influence
of our manipulation on gist and verbatim retrieval, we estimated gist and
verbatim retrieval using our simplified CRM. Further, to establish that our
manipulations create a challenging test bed for the GCM, we performed a
state-trace analysis to test whether our results necessitate multiple latent
causes (Dunn & Kirsner, 1988; Newell & Dunn, 2008). Taking into account
empirical estimates of inter-item similarities, we then fit GCM to the ob-
served responses to test the model’s descriptive adequacy (Johns & Jones,
2010). To foreshadow the results, our selective influence manipulation was
successful and GCM produced acceptable fits to the observed data.

4.6.1 Method

We performed an old/new-recognition experiment with selective influence
manipulations targeting G and V parameters of the CRM.

4.6.1.1 Participants

Sixty students of the University of Cologne, sampled from our lab database,
participated in the experiment in exchange for 7† or course credit (see Table
4.1 for sample demographics). All participants provided informed consent.

4.6.1.2 Material

We used categorized photographs of everyday objects from the Massive
Memory database (Brady et al., 2008). The database contains 240 categories,
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Table 4.1: Summary of participant demographics.

Age

Category size n Mean SD Min Max German Female Psychology

4 vs. 8 30 25.33 7.33 19 46 93.33 73.33 80.00
1 vs. 11 30 26.90 9.20 18 50 93.33 83.33 86.67

consisting of 16 exemplars each, and provides estimates of within-category
inter-items similarities derived from MDS (Hout et al., 2014). Photographs
from different categories served as primacy and recency buffers.

4.6.1.3 Procedure

The experimental procedure consisted of study, retention, and test phases.
During the study and test phase, participants worked on computers in indi-
vidual booths and instructions were displayed on the computer screen. We
instructed participants to memorize a series of photographs as we would
later test their memory. Study lists consisted of 1280 items selected from a
subset of 160 categories and was enclosed by eight primacy and eight re-
cency buffer items. The subset of 160 categories as well as the exemplars
from each category were selected at random for each participant. We var-
ied the number of target presentations (once vs. five times) to selectively
influence verbatim retrieval as assessed by the V parameter in CRM. We
further varied the category size, i.e., the number of exemplars from each
category, to selectively influence gist retrieval as assessed by the G param-
eter in CRM. Both manipulations were within-participants. The strength
of the category size manipulation differed between two groups of partic-
ipants: One half studied either 4 or 8 exemplars per category, the other
half studied either 1 or 11 exemplars. Hence, the study list consisted of the
same number of categories and items in both groups. The subset of 160 cat-
egories was equally distributed among the within-participant conditions
at random. Each photograph was presented for 1 s with an inter-stimulus
interval of 200 ms totaling 27 minutes.

Following a 25 minute retention interval, in which participants worked on
a paper-pencil intelligence test, we administered the recognition test. We
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presented one exemplar from all 240 categories in an old-new-response for-
mat. The exemplar from each category served one of three probe types:
target, lure, or new unrelated distractor. A target probe was an exemplar
that was included on the study list, whereas a lure was a randomly selected
exemplar from a study-list category that had not been presented during the
study phase. New unrelated distractors were exemplars from the 80 cate-
gories that were not used to compose the study phase. We used only one
exemplar per category during the recognition test. Thus, we collected 20
responses to targets and lures in each of the four within-participant condi-
tions and 80 responses to new unrelated distractors . New unrelated dis-
tractor categories can not be matched to a target presentation or category
size condition because we presented no exemplars from these categories.
The probe type manipulation was, thus, not fully crossed with the selective
influence manipulations.

To summarize, the experiment realized a 2 probe type (target, lure) £ 2 target
presentations (once, five times) £ 2 category size (small, large) £ 2 category
size strength (4 vs. 8, 1 vs. 11) design. We varied the strength of the cat-
egory size manipulation between participants. New unrelated distractors
constituted an additional probe type condition that was not crossed with
the other within-participant factors.

4.6.1.4 Data analysis

We report Bayes factors as relative measures of evidence for our statistical
and cognitive models (e.g, Wagenmakers et al., 2010). The Bayes factor may
be equally interpreted as a models prior predictive accuracy or as relative
likelihood of the observed data given the model and the specified prior dis-
tributions on its parameters. Hence, Bayes factors are directly interpretable
as graded measures of evidence.

We used R (Version 3.6.3; R Core Team, 2017) and the R-packages bridge-
sampling (Version 0.6.0; Gronau & Singmann, 2018), and papaja (Version
0.1.0.9997; Aust & Barth, 2017) for all our analyses.

4.6.1.4.1 State-trace analysis The fact that experimental manipulations
selectively influence model parameters does not rule out that the observed
data can be explained by a single latent cause (Dunn & Kirsner, 1988;
Newell & Dunn, 2008). To test whether our results rule out a single latent
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cause, we performed state-trace analyses (Dunn & Kirsner, 1988). State-
trace analysis allows testing hypotheses about the latent dimensionality
of the observed data with minimal assumptions. Applied to true and
false recognition (i.e., old-responses to targets and lures) the logic goes as
follows: Assume that true and false recognition are mediated by a single
latent dimension, such as a unidimensional mnemonic strength signal.
Further assume that the probability of endorsing targets and lures as old
is a monotonic function of this latent dimension. Then it follows that true
and false recognition must be monotonically related, i.e., the rank order of
condition means should be the same. The rank order of conditions for true
and false recognition can be visualized in a bivariate state-trace plot—a
scatter plot of condition means. Any violation of monotonicity necessitates
the assumption of at least one additional, functionally independent, latent
dimension.

State-trace analysis requires specification of three analytic factors. The state
factor consists of two levels that make up the axes of the bivariate state-
trace plot—here true and false recognition. The dimension factor maps to an
experimental manipulation that interacts with the state factor to affect the
latent dimensionality, e.g. by creating a single dissociation. According to
fuzzy-trace theory, the number of target presentations should only affect
true recognition. Hence, we defined the number of target presentations
as dimension factor. The trace factor constitutes an auxiliary experimental
manipulation. Because two data points are non-diagnostic with respect to
monotonicity the trace factor is used to generate additional data points.
The trace factor is assumed to have a monotonic effect on both states and
in both dimensions. We defined the category size as trace factor because
CRM and GCM agree that true and false recognition should increase with
category size irrespective of the number of target presentations.

Monotonic regression and null hypothesis significance testing (NHST) can
be used to test whether true and false recognition are non-monotonically
related (e.g., Kalish et al., 2016). This approach, however, is problematic
for two reasons. Models of non-monotonic relationships are clearly
more flexible than models of monotonic relationships because no rank
order constraints apply. It is not clear that NHST adequately penalizes
non-monotonic models for their greater flexibility. Secondly, existing
NHST approaches do not readily provide evidence for the equality of rank
orders and are therefore not well-suited to support the hypothesis of a
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single latent dimension. We, therefore, performed Bayesian inference by
model comparison using Bayes factors (Prince et al., 2012; Davis-Stober
et al., 2016). Bayes factors naturally take model flexibility into account and
quantify evidence in favor of either hypothesis.

The Bayesian approach further allows to incorporate additional assump-
tions based on prior knowledge. Specifically, based on prior experimental
evidence the monotonic effect of the trace factor (category size) can be en-
forced as an additional order constraint on the condition means in both the
monotonic and non-monotonic model (Davis-Stober et al., 2016). The ad-
ditional trace constraint focuses hypothesis testing on the model character-
istics of interest and increases the diagnosticity of the model comparison.
We verified the consistency of our data with the trace assumption by com-
paring a trace to a non-trace model, which did not enforce a monotonic
effect of the trace factor. We analyzed true and false recognition rates on
the unlimited probit scale, placed uniform priors on all condition rank or-
ders (Davis-Stober et al., 2016), and analyzed the two groups of participants
separately.

Because neither monotonicity nor non-monotonicity in state-trace space are
necessarily preserved when responses are averaged across participants we
analysed participants’ data separately (Prince et al., 2012). Individual con-
sideration of participants implies the question whether conclusions hold
for all participants. For example, we may ask “Do participants’ responses
unanimously violate monotonicity and hence support multiple latent di-
mensions?” Davis-Stober et al. (2016) recently proposed a non-parametric
aggregated Bayes factor (ABF) to test this hypothesis. In short, averaging
of non-monotonic outcome spaces can yield some but not every monotonic
shape. If the averaged data exhibit a rank order that cannot result from
individual non-monotonic rank orders, we can conclude that at least one
participant’s responses favor a single latent dimension. Unfortunately, this
test of homogeneity is asymmetric. If, conversely, the aggregated data ex-
hibit a rank order that is consistent with individual non-monotonic rank
orders, we cannot infer that the data of all participants unanimously favor
multiple latent dimensions. It does, however, provide a minimal test of the
unanimity assumption required to compute the group Bayes factor (GBF)
that synthesizes the evidence by multiplying Bayes factors for individual
participants (Prince et al., 2012; Davis-Stober et al., 2016; also see Klaassen
et al., 2018). We additionally report the averaged evidence, that is the geo-
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metric mean of the group Bayes factor (gGBF), which does not rely on the
unanimity assumption (p. 2283; Klaassen et al., 2018). gGBF provides an
estimate of the evidence expected for newly sampled participants.

4.6.1.4.2 Cognitive modelling We implemented CRM and GCM as
Bayesian hierarchical models and estimated the joint posterior distribu-
tion of parameters by No-U-Turn sampling. To ensure convergence to
the stationary distribution we monitored sampler diagnostics and set a
criterion of R̂ < 1.01. To compare models using Bayes factors we estimated
their marginal likelihoods using Warp-III bridge sampling (Gronau et al.,
2017; Gronau & Singmann, 2018). We quantified the estimation error from
25 repeated sampling runs and report 2.5% and 97.5% qunatiles when
the estimation error exceeds 5%. Note that comparisons of non-nested
models was not possible because CRM was fit to responses aggregated
across items (Binomial likelihood) whereas GCM was fit to responses to
individual items (Bernoulli likelihood). For prior settings and details on
quantitative model fit assessment see Appendix B.2.

4.6.1.4.2.1 Conjoint recognition model We implemented the hierarchical
CRM using the latent-trait approach with random participant effects
(Klauer, 2010). We assumed that the probability of guessing “old” was un-
affected by our category size strength manipulations and, thus, constrained
b to be equal across groups. To evaluate the success of our selective in-
fluence manipulations we additionally specified order-constraint model
variants by reparameterization. Priors for the reparameterized model were
latent-trait approximations to the uninformative priors derived by Heck
and Wagenmakers (2016). Order- and equality-constraints were enforced
at the participant level where possible.

In the application of MPT models it is customary to test whether the model
predictions deviate from the observed category frequencies. We visually
compared posterior predictive distributions of each model to the observed
data (Chapter 6, Gelman et al., 2015). We additionally quantified model
fit by computing posterior predictive p values from summary T statistics
(Equations 17 and 18, Klauer, 2010) for participant means, condition means,
and the variance-covariance structure.
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4.6.1.4.2.2 Generalized context model The model structure of our hi-
erarchical GCM implementation closely followed that of the latent-trait
CRM. Because GCM parameters are constrained to be positive, we trans-
formed latent parameters using the exponential function—instead of the
probit transformation used to obtain probabilities in CRM. Hence, we
implemented GCM as a hierarchical log-normal model.3

As noted above, in the calculation of the psychological similarity, some
parameters are typically set to fixed values based on prior assumptions
(Nosofsky, 2011a). The parameter r determines the distance metric. Fol-
lowing the standard assumption for integral stimulus dimensions, we set
r = 2 yielding the Euclidean distance (e.g., Nosofsky, 2011a). We further
assumed that our 1 s presentation duration was sufficient to yield largely
accurate, distinguishable stimulus representations. We, therefore, specified
an exponential similarity gradient by setting p = 1 (Nosofsky, 2011a).

Besides these standard assumptions, we introduced two additional simpli-
fying assumptions. Ideally, one MDS solution of the entire stimulus space
would be derived to estimate the dimensionality of the psychological sim-
ilarity space K and the pairwise distances between stimuli d(xi , y j ). How-
ever, deriving this solution for the large stimulus set at hand is impractical
(see Nosofsky et al., 2018, for an impressive effort to derive a solution for
360 photographs of rocks from 30 subtypes). Hout et al. (2014) provide
similarity ratings for exemplar pairs within each category of our stimulus
material—albeit not for stimulus pairs from different categories. Hence,
we estimated stimulus dimensionality and distances from category-wise
MDS solutions. Based on visual inspections of plots of Kruskal’s Stress,
explained variance, and mean correlations of distances we assumed that
all similarity spaces can be approximated by three component dimensions,
i.e., K = 3. Without distance estimates for stimuli from different categories
the model cannot predict old-responses to new unrelated distractors, i.e.,
exemplars from new categories. We therefore estimated an additional aux-
iliary parameter dinter, common to all participants, as a stand-in for any
d(xi , y j ) where xi and y j are exemplars from different categories. Owing
to the category-wise MDS the derived component dimensions are not com-

3We also implemented GCM as a hierarchical Gamma model (Bartlema et al., 2014) and
compared the results for the most important model variants. The results were highly sim-
ilar. Because the log-normal model structure more readily allows for the incorporation of
parameter correlations and is computationally more tractable, we decided to adopt this
approach.
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parable across categories. Practical considerations aside, it seemed implau-
sible that one set of attentional weights is optimal for all categories. We,
therefore, made the simplifying assumption that participants attended all
dimensions equally, i.e. wk = 1. The assumption that participants optimally
distribute attention across the component dimensions is at the core of GCM
(e.g., Nosofsky, 1991). Although some recent studies indicate that in some
applications attention weights play only a minor role (e.g., Nosofsky et al.,
2011), setting wk = 1 may impair the models ability to fit the data. Finally,
we assumed that the long retention interval as well as primacy and recency
buffers largely mitigate differential effects of forgetting on memory traces
and set m j = 1. The resulting model has three parameters per participant: a
dissimilarity sensitivity c, a response criterion k, and the response-scaling
parameter ∞.

Our theoretical model analysis suggests that GCM may need to allow for
traces to become differentiated through repeated study to account for se-
lective influence manipulations on V . Whereas differentiation is the conse-
quence of mechanistic assumptions in more recent memory models (Mc-
Clelland & Chappell, 1998; Shiffrin & Steyvers, 1997), differentiation is
most readily incorporated into GCM in a more descriptive fashion. Specif-
ically, we allowed for increased dissimilarity sensitivity c

0 = c± for target
traces T

§ when targets were presented five times, see Appendix B.1.1. Al-
though in most previous applications c was held constant for all exemplars,
recent work suggests that it may vary with experimental factors, such as
study-test lag (Nosofsky et al., 2011; Nosofsky & Gold, 2016; Nosofsky &
Gold, 2016). Finally, we considered the possibility that repeating targets on
the study list could also increase memory strength, that is, we added an
additional parameter m

0 = mØ for target traces T
§ when targets were pre-

sented five times (cf. Nosofsky et al., 2011; Nosofsky & Gold, 2016). The
most complex model, thus, had five free parameters per participant in ad-
dition to dinter, which was common to all participants.

Because we suspected that freely varying c and m with the number of tar-
get presentations would grant GCM an undue flexibility, we explored an-
other model variant in which we constrained the parameters to be equal,
i.e. ∏= m = c and ∏0 = m

0 = c
0. When c and m are estimated independently

for a number of study-test lags, the parameters tend to be highly correlated
(Nosofsky et al., 2011; Nosofsky & Gold, 2016). It is an established finding
that the decrease in memory strength with lag follows a power function—
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the “power-law of memory strength” (Donkin & Nosofsky, 2012a). A close
inspection of the c estimates varying with study-test lag reveals that their
decrease is also well described by a power-function. What is more, when
c and m are put on a common scale, their power-functions are almost in-
distinguishable, Figure 4.2. Because the scale of m is essentially arbitrary,
we reasoned that an equality constraint may be tenable. Incidentally, set-
ting memory strength equal to dissimilarity sensitivity can be interpreted
as scaling the exponential similarity gradient such that it conforms to the
probability density function of the exponential distribution. This has the
psychologically plausible implication that an increase in c reduces the ac-
tivation of dissimilar or moderately similar memory traces and simultane-
ously increases activation for very similar or identical memory traces [cf.
Criss (2006); also see Figure 4.7].

Nosofsky & Gold (2016)

Nosofsky et al. (2011)
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Figure 4.2: Comparison of dissimilarity sensitivity c and memory strenght
m estimates reported by Nosofsky et al. (2011) and Nosofsky and Gold
(2016). Parameter estimates are z-standardized to ensure comparable scal-
ing. Both parameters decrease with study-test lag according to a com-
mon power function (A). Consequently, the estimates are almost identical,
R

2 = .98, 90% CI [0.89,0.99], F (1,6) = 239.04, p < .001 (B). The solid line rep-
resents the estimated regression line with confidence interval; the dashed
line represents the main diagonal with intercept b0 = 0 and slope b1 = 1.
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4.6.2 Results

We first present the results of our state-trace analysis before proceeding
with the results from applying the cognitive models.

4.6.2.1 State-trace analysis

Evidence for non−trace
and non−monotonic models

Evidence for trace
and monotonic models

gG
BF
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Figure 4.3: Bayes factors for individual participants in favor of the trace
model (T) representing the assumption that true and false recognition al-
ways increase as studied category size increases in both dimensions rela-
tive to the non-trace model (NT), which posits a violation of the trace as-
sumption in at least one dimension (T vs. NT) or in favor of a monotonic
model of true and false recognition (M) relative to a non-monotonic model
(NM) with (M vs. NM | T) and without incorporating the trace assump-
tion (M vs. NM). Higher values indicate support for trace and monotonic
models. Participants are ordered according to their evidential value for the
monotonic relative to the non-monotonic model given the trace assump-
tion. Big unfilled points represent the geometric mean of the group Bayes
factor (gGBF).

The results of the Bayesian state-trace analysis of the probit-transformed
proportions of participants’ old-responses are shown in Figures 4.3. While
the data of most participants supported the non-monotonic model and
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hence multiple latent dimensions the evidence was modest. To make the
model comparisons more informative we incorporated the trace assump-
tion into the monotonic and non-monotonic models. The assumption is
that increasing the number of exemplars in a category increases true and
false recognition regardless of whether the target was presented once or
five times. In line with our prior expectations, this additional assumption
was almost unanimously supported in the group that received the strong
category size manipulation, which contrasted 1 to 11 exemplars per cate-
gory, gGBF

(1 vs. 11)
T/NT = 4.34. In the group that received the weak category size

manipulation, which contrasted 4 to 8 exemplars per category, the evidence
was ambiguous, gGBF

(4 vs. 8)
T/NT = 1.40. However, when combined across par-

ticipants the evidence overwhelmingly favored the trace over the non-trace
model GBF

(4 vs. 8)
T/NT = 26,152.92- and GBF

(1 vs. 11)
T/NT = 1.34£10

19-to-1, respectively.
We additionally tested whether the groups’ aggregated data indicated that
any participant’s responses violated the trace assumption. For the strong
category size manipulation the aggregated data provided evidence against
individual violations ABF

(1 vs. 11)
T/U = 14.01. For the weak category size manip-

ulation the model comparison was inconclusive, ABF
(4 vs. 8)
U/T = 1.98. Taken

together, these results support the trace assumption.

Incorporation of the trace assumption increased the evidence for the
non-monotonic model for all except one participant yielding almost
unanimous support for the non-monotonic model and hence multiple
latent dimensions. Across both category size strength conditions only
two participants’ responses favored the monotonic model, albeit weakly,
gGBF

(4 vs. 8)
(NM/M)|T = 6.33 and gGBF

(1 vs. 11)
(NM/M)|T = 4.05. Taken together the evidence

of all participants’ overwhelmingly favored the non-monotonic model
GBF

(4 vs. 8)
(NM/M)|T = 1.12£10

24- and GBF
(1 vs. 11)
(NM/M)|T = 1.67£10

18-to-1, respectively.
We again analysed the aggregated data to test whether any participants’
responses violated non-monotonicity. For the strong category size manip-
ulation the aggregate data provided evidence against individual violations
ABF

(1 vs. 11)
(NM|T)/U = 14.02. For the weak category size manipulation the model

comparison was inconclusive, ABF
(4 vs. 8)
U/(NM|T) = 1.97

4. In sum, these results
suggest that multiple latent dimensions underlie the observed pattern of
true and false recognition. Hence, our data provide a challenging test for

4Note that the aggregate Bayes factors for the trace and the non-monotonic constraints
are very similar because the models make largely the same predictions. The convex hull of
the the trace constraint encompasses the convex hull of the non-monotonic constraint and
consists of only 2.47% unique extremal vertices.
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Table 4.2: Median posterior parameter estimates of the population
probability medians eµ(µ) (95% HDI in parentheses) for the minimally
constrained Conjoint Recognition model M CRM

0
.

Target presented Category size V G

Once 4 0.33 [0.25, 0.41] 0.12 [0.08, 0.16]
8 0.32 [0.24, 0.40] 0.22 [0.17, 0.26]

Five times 4 0.91 [0.87, 0.94] 0.11 [0.07, 0.15]
8 0.87 [0.80, 0.92] 0.24 [0.19, 0.28]

Once 1 0.28 [0.20, 0.36] 0.04 [0.01, 0.07]
11 0.32 [0.21, 0.42] 0.30 [0.24, 0.36]

Five times 1 0.89 [0.83, 0.94] 0.09 [0.05, 0.12]
11 0.89 [0.84, 0.94] 0.27 [0.21, 0.33]

Note. We constrained the populations means of the parameter b for
guessing “old” to be equal across groups, eµ(b) = .02 95% HDI [.01, .03].

the single-trace GCM.

4.6.2.2 Cognitive models

4.6.2.2.1 Conjoint-recognition model We first fit the simplified conjoint
recognition model to the data. As a baseline we fit an unconstrained
model M CRM

0
with µ(V ), V , and µ(G) parameters free to vary across groups

and conditions. We compared this baseline model to constrained models
to assess the effect of our selective influence manipulations. First, we
constrained V to increase from one than five target presentation within
participants but to be unaffected by category size, M CRM

V
. We specified

an additional model, which constrained µ(V ) of the corresponding target
presentation conditions to be equal across groups, M CRM

V £ . Second, we
constrained G to be unaffected by the number of target presentations,
but to increase with category size within participants, M CRM

G
. Again, we

specified an additional model, which constrained µ(G) to also increase with
category size across groups, M CRM

G£ . Finally, to assess the joint success
of our selective influence manipulations we combined both constraints,
M CRM

V £G£.

The CRM with guessing parameters µ(b) constrained to be equal across
groups was able to describe the data, suggesting that varying the strength
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of the category size manipulation had no noticeable effect on participants’
guessing behavior (Figures 4.4 and B.2).

The estimates of the group-level model parameters suggested that our
selective influence manipulations had the predicted effects, Table 4.2.
First, presenting targets repeatedly increased estimates of average ver-
batim memory whereas increasing the category size did not. This
conclusion was confirmed by our model comparisons. Relative to
the unconstrained model, the data supported the group-wise selective
influence of increasing the number of target presentations on V by
BFV /0 = 4.70£ 10

12
[9.04£ 10

11
, 4.87£ 10

13
]-to-1. Additionally constraining

µ(V ) to be equal across groups for one and five target presentations was
supported BFV £/V = 45.10 [15.42, 121.68]-to-1. Conversely, increasing the
category size increased estimates of average gist memory whereas pre-
senting targets repeatedly did not. Again, this conclusion was confirmed
by our model comparison Relative to the unconstrained model, the data
supported the group-wise selective influence of increasing increasing the
category size on G by BFG/0 = 7.56£ 10

7
[7.10£ 10

6
, 9.88£ 10

8
]-to-1. Addi-

tionally constraining µ(G) to increase with category size across groups was
supported BFG£/G = 2.66 [0.24, 26.97]-to-1. Jointly, all constraints were sup-
ported by the data BFV £G£/0 = 7.02£10

21
[1.11£10

21
, 4.87£10

22
]-to-1 relative

to the unconstrained model and BFV £G£/V £ = 3.31£10
7

[1.38£10
7

, 9.03£10
7

]-
to-1 or BFV £G£/G£ = 3.49£ 10

13
[5.19£ 10

12
, 1.48£ 10

14
]-to-1 relative to the

models constraining either V and µ(V ) or G and µ(G), respectively. Visual
inspection (Figure 4.4) and quantitative assessment of posterior predictions
indicated that all models describe the data adequately, Figure B.2.

Of all selective influence effects, only the the increase of µ(G) with category
size across groups (M CRM

G£ ) was not clearly favored over the the model that
enforced the order constraint only for G within participants. The estimates
of the unconstrained model suggest that this may reflect an interaction with
the number of target presentations. The estimates of µ(G), as predicted, in-
crease with category size when targets were presented once. When targets
were presented five times, however, estimates of µ(G) were more similar for
small (1 or 4) and large categories (8 or 11). However, given that the es-
timated evidence covered a range from inconclusive to moderately strong
we would caution not to over-interpret this descriptive difference.

Taken together these results suggest that the multiple latent dimensions
identified by our state-trace analysis are consistent with independent ver-
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Figure 4.4: State-trace plot of averaged (top) and individual responses (bot-
tom) and posterior predictions of M CRM

V £G£. From each group we show the
two participants with strongest support for the non-monotonic (top row)
and monotonic models (bottom row, see Figure 4.3). Points represent av-
erage observed rates of “Old”-responses; error bars indicate 95% bootstrap
confidence intervals based on 10,000 bootstrap samples. Ellipses represent
multivariate normal-approximations to 95% credible regions posterior pre-
dictions. The inset shows the proportion of “Old”-responses to unrelated
new probes; kernel density estimates represent the posterior predictions.
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batim and gist representations.

4.6.2.2.2 Generalized context model Global matching models posit that
the multiple latent dimensions are the result of separable contributions of
exact and partially matched memory traces. To assess the adequacy of this
alternative account, we next fit the GCM to the data. As a baseline, we fit an
unconstrained model M GCM

0
with parameters µ(c), µ(c

0
), µ(m

0
), µ(k), and µ(∞)

free to vary across groups. We compared this baseline model to three con-
strained models. First, we constrained the population means of all parame-
ters to be equal across groups M GCM

£ to test whether the strength of the cat-
egory size manipulation affects retrieval or decision processes rather than
being fully attributable to the contents of participants’ memory. Based on
our theoretical model analysis, we additionally tested whether response-
scaling and differentiation are necessary to account for the selective influ-
ence manipulations. We constrained ∞ = 1, effectively removing response
scaling from the model (M GCM

∞ ) and we constrained ±= 1 (M GCM
±

) or Ø= 1

(M GCM
Ø

). Finally, we compared these models to the model that constrained
memory strength and dissimilarity sensitivity to be equal, M GCM

∏
.

The estimates of the group-level model parameters suggested that
the strength of the category size manipulation had little effect on
the model parameters, Table 4.3. Indeed constraining the popula-
tion means of all parameters to be equal across groups was sup-
ported by the data BF£/0 = 6.28 £ 10

5
[1.32 £ 10

4
, 2.07 £ 10

7
]-to-1. In

line with our theoretical model analysis, differentiation was favored
BF0/± = 1.06£10

41
[2.37£10

40
, 5.57£10

41
]-to-1 relative to the model without

it. Inspection of the posterior predictions confirmed differentiation was
necessary to account for the selective influence of repeated target presenta-
tions on true recognition. Repeated target presentations also affected mem-
ory strength; the data favored an increase in memory strength for targets
that were presented five times BF0/Ø = 1.29£10

26
[6.96£10

24
, 1.74£10

28
]-to-1

relative to the model that simply added new traces to memory. Inspection
of the posterior predictions revealed that the models that did not allow for
increase in memory strength were unable to predict the high frequency
of “Old”-responses to targets that had been presented five times. When
assuming an increase in memory strength with repeated target presen-
tations, the removal of response scaling from the model was favored
BF∞/0 = 577.08 [18.95, 6,706.38]-to-1.
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Table 4.3: Median posterior parameter estimates
of the population means in natural scale exp(µ(µ)

)

(95% HDI in parentheses) for the unconstrained
Generalized Context Model (M GCM

0 ) and the con-
straint where ∏= c = m, M GCM

∏
.

Category size

Parameter 4 vs. 8 1 vs. 11

MGC M

0
c 1.25 [1.07, 1.43] 1.24 [1.09, 1.38]
c
0

8.95 [3.77, 16.46] 4.61 [2.48, 7.77]
m

0
5.61 [2.82, 9.72] 5.59 [2.94, 9.04]

k 5.84 [3.55, 9.44] 6.39 [3.66, 10.43]
∞ 0.88 [0.71, 1.07] 0.89 [0.73, 1.06]

MGC M

∏
∏ 1.28 [1.11, 1.46] 1.21 [1.07, 1.36]
∏0

8.17 [4.21, 13.77] 4.69 [2.61, 7.88]
k 4.00 [3.10, 5.05] 3.52 [2.66, 4.53]
∞ 0.81 [0.69, 0.93] 0.94 [0.79, 1.12]

Note. We additionally estimated a common av-
erage inter-category distance for both groups,
dinter = 8.08 95% HDI [7.44, 8.81] and dinter = 8.07

95% HDI [7.39, 8.76] respectively, see Figure B.3.
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As evident from Figure 4.5, the favored model M GCM
£ , which assumes

the same group-level parameters across groups, exhibits some quantitative
misfit, but clearly reproduces a pattern of results that is consistent with
two latent dimensions. In the group with the stronger category size ma-
nipulation (1 vs. 11 exemplars) the model predicts too much false recog-
nition when eleven exemplars were presented and targets were presented
five times. Also when more than one category exemplar was presented,
the model predicts too little true and too much false recognition. However,
keeping in mind the constraint exerted by the inter-item similarities as well
as our simplifying assumptions, overall the fit of the GCM to the multi-
dimensional outcome space is satisfactory both for individuals and at the
group level.

The winning model, however, was M GCM
∏

, which constrained mem-
ory strength and dissimilarity sensitivity to be equal. It was fa-
vored BF∏/0 = 1.15 £ 10

3
[29.87, 9,603.22]-to-1 relative to the uncon-

strained model. Again, constraining the population means of all
parameters to be equal across groups was supported by the data
BF∏£/∏ = 8.98£10

3
[4,762.81, 26,185.69]-to-1. The predictions of the model

were almost indistinguishable from those of the unconstrained model.

Finally, we assessed the correspondence between CRM and GCM by in-
specting individual participants’ V , G , and b estimates. We compared es-
timates from CRM to estimates calculated from GCM’s posterior predicted
mean response probabilities per conditions, Figure 4.6. In accordance with
the previous results there were some divergences. For example, due to the
over-prediction of “Old”-responses to lures there was a tendency for GCM
produce larger G estimates than CRM. In the group with the weaker cate-
gory size manipulation (4 vs. 8 exemplars) GCM estimates of G were more
variable than those from CRM. For V , the estimates produced by GCM tend
to be slightly lower compared to those from CRM, because GCM predicts to
few old-response to repeatedly presented targets. However all things con-
sidered, the estimates of verbatim and gist activation derived from CRM
and GCM are well correlated.
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Figure 4.5: State-trace plot of averaged (top) and individual responses (bot-
tom) and posterior predictions of M GCM

£ . From each group we show the
two participants with strongest support for the non-monotonic (top row)
and monotonic models (bottom row, see Figure 4.3). Points represent av-
erage observed rates of “Old”-responses; error bars indicate 95% bootstrap
confidence intervals based on 10,000 bootstrap samples. Ellipses represent
multivariate normal-approximations to 95% credible regions posterior pre-
dictions. The inset shows the proportion of “Old”-responses to unrelated
new probes; kernel density estimates represent the posterior predictions.
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Figure 4.6: Scatter plot of verbatim retrieval (V ), gist retrieval (G), and
guessing probabilities (b) as estimated from the Conjoint-Recognition
Model (CRM, M CRM

0
) and calculated from the posterior predictions of the

Generalized Context Model (GCM, M GCM
0 ). The estimation uncertainty

represents the standard deviation of each parameters posterior distribution
from the GCM. Lines show weighted linear regression predictions of CRM
parameters from GCM estimates using estimation uncertainty as observa-
tion weights. Ribbons represent the 95% confidence interval of expected
values.
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4.7 Discussion

We have examined the formal relationship between two influential single-
and dual-trace accounts of true and false recognition—fuzzy-trace theory
and global matching memory models. Our results suggest that what
fuzzy-trace theory conceptualizes as independent gist and verbatim traces
may in fact reflect incremental contributions of partial and exact matches
between probes and memory traces. We then tested the global matching
account empirically in a study designed to selectively influence CRM
parameters. State-trace analysis of our selective influence manipulations
confirmed that multiple latent dimensions contributed to the observed
true and false recognition responses. CRM fits confirmed that these latent
dimensions were consistent with independent gist and verbatim traces.
However, in line with our theoretical model analysis, the single-trace GCM
also produced satisfactory fits to the observed responses. Our empirical
results, thus, support the possibility that independent gist and verbatim
activation may reflect partial and exact matches between probes and
memory traces. Put differently, gist traces may reflect features shared
between lures and study list items, whereas verbatim traces may reflect
those features (combinations) unique to study list items.

Our findings demonstrate single dissociations between true and false
recognition do not necessitate dual trace assumptions or independent
retrieval processes. Critically, GCM accounted for our results without
making ad hoc assumptions about the distribution of inter-item similar-
ities. This potentially puts GCM at odds with MINERVA 2, which has
been found to be unable to account for true and false recognition in the
DRM paradigm when the number of associates is manipulated (Johns &
Jones, 2010). The different outcomes for GCM and MINERVA 2 may be
theoretically informative, but at this time we can only speculate about the
cause of the discrepancy. Given the close relationship between stimulus
representations in both models (Kelly et al., 2017), the diverging findings
may be attributable to differences in encoding and retrieval mechanics.
Differentiation and increases in memory strength are an obvious candidate
causes. Another reason for the diverging results may be the stimulus
material. Kelly et al. (2017) modeled responses to DRM lists, whereas we
used categorical photographs of everyday objects. It is possible that the
semantic similarity structure of DRM lists is a more challenging constraint
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for global matching models. Future research should examine whether our
findings generalize to different stimulus materials.

The close correspondence between CRM and GCM we observed encour-
ages further exploration. For example, we have discussed how global
matching models may account for double dissociations between true
and false recognition. If the opponent process of recollection rejection
is conceptualized as cued recall, manipulations that improve recall of
targets, such as target priming, may increase true but decrease false
recognition. However, even without assuming recollection rejection,
similar dissociations may, in principle, result from the differentiation of
memory traces. Another mechanism that may yield double dissociations
is a change in dissimilarity sensitivity across groups. For example, Reyna
and Kiernan (1994) observed higher true but lower false recognition in
older compared to younger participants. Such a pattern could result from
greater dissimilarity sensitivity in older participants combined with a more
stricter response criterion (Nosofsky & Zaki, 1998). Further exploration
of these alternative accounts for key findings in false recognition are an
interesting avenue for future research.

Finally, a key postulate of fuzzy-trace theory is that verbatim traces are for-
gotten at a faster rate than gist traces (p. 84, Brainerd & Reyna, 2005). In
terms of global matching models, these different temporal dynamics of ex-
act and partial matches are to be expected. In false recognition paradigms,
memory probes match many memory traces partially, but only a few traces
exactly. In other words, partial matches or gist representations are more
redundant and thus less directly affected by forgetting. Further, because
the activation of memory traces decrease exponentially as dissimilarity be-
tween probe and trace increases, the contribution of exact matches to the
summed similarity will be disproportionately affected by forgetting. A
particularly influential finding on the forgetting rates of gist and verbatim
traces are so-called false recognition sleeper effects: As time passes, true
recognition decreases whereas false recognition increases. Brainerd and
Reyna (2005) note

This effect is only possible under the assumption that verbatim and
gist traces have opposite effects on false-memory reports, and it is
therefore a highly diagnostic result with respect to that assumption.
(p. 151)
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But recent research, suggesting that not only memory strength, but also
dissimilarity sensitivity decreases over time (Nosofsky et al., 2011; Nosof-
sky & Gold, 2016), offers an alternative account for this sleeper effect. For
simplicity, consider our model that constraints memory strength and dis-
similarity sensitivity to be equal. As time passes, the similarity gradient
flattens out and approaches a uniform distribution, Figure 4.7. This causes
a substantial decrease in activation for exact matches and hence in V . De-
pending on the similarity between lure and memory trace, activation for
partial matches may decrease if the lure is highly similar, but activation
may also non-negligibly increase if the lure is moderately similar. Thus,
GCM and potentially other global matching models may offer an alterna-
tive account for false recognition sleeper effects. Take together, it appears
that the global matching account of false recognition can accommodate the
key principles of fuzzy-trace theory.

4.7.1 Implications for Fuzzy-Trace Theory

Fuzzy-trace theory is an influential theory with great heuristic value which
inspired many accurate predictions about true and false recognition. The
single-trace conceptualization we propose takes nothing away from these
achievements. Similarly, our results should not be interpreted as a threat
to the utility of CRM as a measurement model. As our theoretical model
analysis and empirical assessment suggest CRM model parameters appear
to closely correspond to the incremental contributions of partial and exact
matches between probes and memory traces. While GCM, and other global
matching models, may provide a more complete account of the matching
process, CRM is a more readily applicable measurement model because it
does not require information about inter-item similarities and it can be fit
to observed responses using well-developed easy-to-use estimation proce-
dures. As such, CRM is a useful measurement tool regardless of the validity
of the dual-trace assumption.

Our suggested reconceptualization of gist and verbatim activation is
largely consistent with their functional interpretation put forth when the
model was first introduced (Brainerd et al., 1999). In the original formu-
lation, CRM parameters were functionally labelled as reflecting similarity
(S = G) and identity judgments (I = V ). In global-matching terms, gist
activation reflects partial matches between probes and memory traces and
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Figure 4.7: Change in similarity gradient as memory strength and dissim-
ilarity sensitivity decrease in our model M GCM
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ison, the grey filled curve represents the empirical distribution of within-
category distances for the color photographs used in our experiment.
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elicits similarity judgments, whereas verbatim activation reflects exact
matches and elicits identity judgments.

Critically, the global matching interpretation of gist and verbatim memory
may help to clarify some theoretical and empirical questions. A conceptual
difficulty of separate verbatim and gist traces is the potential ambiguity of
an episodes gist. For any given episode, gist could be extracted at different
levels of abstraction. In our initial example of a visit to a microbrewery,
the gist could simply be about a night out with friends, having beers with
friends, or a beer tasting event at the local microbrewery. If gist is extracted
immutably at encoding, it is not clear how one of the many potential gists
is selected.

Similarly, the global matching interpretation of gist and verbatim activation
readily accounts for perceptual false recognition. According to fuzzy-trace
theory, gist traces represent the semantic, conceptual, and associative com-
ponents of an episode, whereas verbatim traces represent perceptual and
contextual details. This distinction is difficult to reconcile with the empiri-
cal finding of false recognition of lures that share only perceptual features
with the studied material. Several studies have found false recognition
for orthographically or phonologically similar but semantically unrelated
lures (e.g., hate, mate, late, fate; Schacter et al., 1997; Brainerd et al., 1995;
Budson et al., 2003; Ly et al., 2013; Shiffrin et al., 1995). A recent study
suggests that perceptual false recognition is also possible for perceptually
similar but conceptually unrelated drawings (Stahl, Henze, et al., 2016). To
account for these findings, fuzzy-trace theory needs to soften its distinction
between gist and verbatim representations and allow for the representation
of a perceptual gist.

The global-matching view resolves both these challenges. Viewing gist ac-
tivation as a partial match between the probe and memory traces obviates
the need to settle on any gist interpretation for a given episode and readily
accounts for perceptual false recognition. In this sense, what we have dis-
cussed as a dichotomy between exact and partial matches, of course, con-
stitutes a continuum that implies a similar gist-verbatim-continuum. Thus,
we agree with Cowan (1998), who, in his commentary on the paper that
first introduced fuzzy-trace theory, cautioned that

We may use the distinction between verbatim and gist information as
a useful simplification that allows a better understanding of memory,
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but let us resist the assumption that the data require a sharp division
between the two in principle. (p. 149)

4.7.2 Future research

Before any strong conclusions can be drawn, more work is needed to ex-
plore the generality of our findings. For example, in light of previous re-
ports (Johns & Jones, 2010), it should to be tested whether GCM can ac-
count for data from the DRM paradigm. If GCM continues to perform ad-
equately, the global matching perspective suggests novel empirical tests
and paves the way for theoretical exchange with related models of mem-
ory and areas of research. For example, GCM has been extended to predict
response times in addition to rates of old-responses (Donkin & Nosofsky,
2012a; Nosofsky & Palmeri, 2014). Such joint prediction of response rates
and latencies may be used to test the global matching account in future ap-
plications. CRM currently makes no predictions about response latencies.

In our experiment, repeated presentation of study list items increased true
recognition but had no effect on false recognition. In contrast, other studies
report that repeated presentations decreased false recognition (pp. 111-112,
Brainerd & Reyna, 2005). As we have demonstrated, GCM requires a dif-
ferentiation extension to account for the selective influence on true recog-
nition. In differentiation models (McClelland & Chappell, 1998; Shiffrin &
Steyvers, 1997), differentiation emerges mechanistically as a consequence
of encoding noise and corrective trace updating. According to these me-
chanics, differentiation may increase or decrease false recognition depend-
ing on target-lure similarity as well as the proportion of study list items that
are strengthened via repeated study (Criss, 2006, also see Figure 4.7). These
factors may explain the inconsistencies in the reported effects of repeated
study on false recognition and suggest an informative test of the global
matching account of false recognition. Again, such detailed predictions do
not follow from CRM or fuzzy-trace theory.

Relatedly, the necessity of a differentiation process may motivate more
principled extensions of GCM. We approximated differentiation as greater
item-specific dissimilarity sensitivity (and an increase in memory strength)
because GCM assumes noise-free encoding. A close relative of GCM,
the noisy exemplar model (NEMo; Kahana & Sekuler, 2002), allows
for encoding noise and may thus provide a starting point to develop a
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differentiation mechanism. The model assumes that encoding noise takes
the form of multivariate Gaussian noise on the stimulus representation
in multidimensional space. Differentiation could, for example, be im-
plemented by a reduction of the variance of the noise distribution as a
function of repeated study.

4.7.3 Conclusion

We have formalized the previously suggested correspondence between
gist and verbatim activation postulated by fuzzy-trace theory and partial
or exact matches between probes and memory traces postulated global
matching models. Our results confirm the correspondence between these
mnemonic components of true and false recognition. Taken together,
the formal model correspondence and the results of our model fitting
exercise suggest that verbatim and gist retrieval estimates can be viewed
as measures of partial and exact memory matches. This reinterpretation of
gist and verbatim activation is more than a reformulation of fuzzy-trace
theory. It suggests new directions for empirical as well as theoretical
research.
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Chapter 5

An exemplar-familiarity model of
false recognition over the short term
FREDERIK AUST & CHRISTOPH STAHL

False recognition can be elicited over the short and long term by presenting
lists of semantically related words. This suggests that semantic and categor-
ical relations, traditionally considered to be represented in long-term mem-
ory, also affect short-term memory. Hence, false recognition in short-term
memory poses a problem to models positing that short-term memory is in-
sulated from long-term memory. Because of their similarity short-term false
recognition has been explained by established dual-process theories of long-
term memory, most notably Fuzzy-Trace theory. Here we test an alterna-
tive exemplar-familiarity account, the Generalized Context Model (GCM).
We conducted an experiment, with photographic and verbal material, and
combined selective influence manipulations of gist and verbatim memory.
We observed false recognition with all materials and found that our manip-
ulations selectively affected estimates of gist and verbatim activation of the
Conjoint-Recognition model. Finally, we show that GCM is able to account
for the observed true and false recognition rates. We conclude that GCM is a
serious alternative to dual-process accounts of false recognition in short-term
memory.

False memories are typically considered a phenomenon of long-term mem-
ory and studied with long lists or across relatively long retention intervals.
However, recent studies have established that false recognition and recall
can similarly be elicited over with much shorter lists and brief retention
intervals (e.g., Coane et al., 2007; Atkins & Reuter-Lorenz, 2008; Flegal et
al., 2010). These findings suggest a close relationship between short- and
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long-term memory (e.g., Abadie & Camos, 2019) and support the idea of
a unitary memory in which the same operating principles govern remem-
bering over the short- and long-term (e.g., Brown et al., 2007; Crowder,
1993; Jonides et al., 2008; Nairne, 1990; Nairne, 2002). In this spirit, here
we used the Generalized Context Model (GCM; Nosofsky, 1986; Nosofsky,
1988; Nosofsky, 2011a), a process model of categorization and long-term
recognition memory, to model short-term false recognition. To challenge
the model, we simultaneously strengthened individual study list items via
repeated presentation and varied the number of related study list items. By
and large, the model was able to account for the effects of our manipula-
tions across three different materials.

5.1 False recognition over the short term

Short-term false memories can be elicited with a variety of procedures.
Most studies have adapted the classic Deese-Roediger-McDermott
paradigm (DRM; Deese, 1959; Roediger & McDermott, 1995) and pre-
sented lists of words that are strongly associated with one word that is
not presented during study—the lure. As in long-term memory, these con-
verging associations yield substantial rates of false memories in old-new
recognition (e.g., Atkins & Reuter-Lorenz, 2008; Flegal et al., 2010; Festini
& Reuter-Lorenz, 2013), serial recognition (Macé & Caza, 2011; Tse et al.,
2011), recall (Atkins & Reuter-Lorenz, 2008; Dimsdale-Zucker et al., 2018),
and serial recall paradigms (Tehan, 2010; Tse et al., 2011). Additionally,
converging associates slow response times to lures (Coane et al., 2007;
Jou et al., 2016). Moreover, false memories in short-term memory can be
elicited by visual or verbal presentation of word lists (Macé & Caza, 2011;
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Olszewska et al., 2015), with simultaneous (e.g., Atkins & Reuter-Lorenz,
2008; Flegal et al., 2010) or sequential list presentation (e.g., Flegal &
Reuter-Lorenz, 2014; Olszewska et al., 2015; Jou et al., 2016), but also with
visual material, such as photographs of or stylized faces (van Vugt et al.,
2013; Iidaka et al., 2014). These studies show that false memories can be
elicited with similar methods over the short- and long-term.

Besides demonstrating the robustness and generality of false memories
over the short term, these studies indicate that the effect is guided by sim-
ilar principles as apply over the long term. For example, false recognition
increases with the length of DRM lists (Coane et al., 2007; Jou et al., 2016),
decreases when participants are directed to forget converging associates
(Festini & Reuter-Lorenz, 2013), and increases when study and test modal-
ity mismatch (an encoding-specificity effect; Olszewska et al., 2015). More-
over, direct comparisons of false memories over the short and long term
suggest that false recognition rates, as well as the subjective phenomenol-
ogy (as measured by confidence ratings and remember/know judgments),
are similar (Flegal et al., 2010; Flegal & Reuter-Lorenz, 2014). These find-
ings indicate that similar operating principles underlie short- and long-
term false recognition (see also p. 309, Nosofsky et al., 2011; Cowan, 1999)
and support the stronger assumption that the same processes govern short-
and long-term memory (e.g., Brown et al., 2007; Crowder, 1993; Jonides et
al., 2008; Nairne, 1990; Nairne, 2002).

While there is growing support for a unitary verbal short- and long-term
memory representation, the case is less clear for visual short- and long-
term memory (for a review see Brady et al., 2011). Two important char-
acteristics that presumably are unique to short-term memory are its high
fidelity of the representation (e.g., Zhang & Luck, 2008), a fundamentally
limited capacity (Cowan, 2001; Ma et al., 2014). Recently, these properties
of visual short-term memory have been extensively studied with a psy-
chophysical adjustment method referred to as continuous report (Bays et
al., 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Participants view
color patches and, at test, are asked to report these colors on a circular
color wheel. The deviation of participants responses from the true value
is recorded and the distribution of deviations across trials characterizes the
fidelity of participants memory representations. Because the distribution is
symmetric, Gaussian-like with fat tails, some have argued that it is a mix-
ture that can be decomposed into to types of responses: (1) On some trials
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the to-be-reported color is represented in memory and participants report
the contents of memory to the best of their ability. These responses provide
insight into the fidelity of the underlying representations. (2) Owing to its
limited capacity, on other trials the to-be-reported color is not represented
in memory—the memory “slots” are filled with other items. Hence, par-
ticipants guess randomly and responses are distributed uniformly along
the color wheel. In this and other paradigms, direct comparisons of short-
and long-term memory have revealed a higher fidelity of short-term mem-
ory (e.g., Biderman et al., 2019; Schurgin & Flombaum, 2015; Schurgin &
Flombaum, 2018). The lower fidelity of long-term memory, as well as the
slot-like architecture that is assumed to underlie guessing in short-term
memory, indicate structural differences that separate short- and long-term
memory.

Recently, it has been argued that guessing in continuous report paradigms
and the fidelity differences between short- and long-term memory can be
explained by combining well-established functional characteristics of per-
ception and memory (Miner et al., 2019; Schurgin et al., 2019). The univer-
sal law of generalization (Shepard, 1987) posits that perceived similarity
decreases exponentially as stimuli become more different in, for example,
size or color. When combined with the standard assumption that long-term
memory is well characterized in terms of signal detection theory, the fat-
tailed response-error distribution in the continuous report paradigm can
be explained by memory strength and the similarity structure of the stimu-
lus material (Schurgin et al., 2019). Thus, no guessing or slot-like memory
structure need to be assumed. Accordingly, Miner et al. (2019) found that
the state-trace space of guessing and fidelity estimates is consistent with a
common underlying cause and that this common cause is well character-
ized as memory-strength. Under this view, the different fidelities of short-
and long-term memories are a natural consequence of different memory
strengths—as memory strength decreases, fidelity decreases. It follows that
comparisons of memory fidelity across the short and long term must equate
for memory strength. Miner et al. (2019) show that the fidelity of long-term
memory can be as high as that of short-term memory if, for example, long-
term memory items are strengthened by repetition. The increase in fidelity
(or precision) of long-term memory is a phenomenon referred to as differ-
entiation in the literature on long-term memory (Criss, 2006; Criss & Koop,
2015). Taken together, this work provides a compelling unitary storage ac-
count for a broad range of continuous report data.
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The continuous report paradigm assesses short-term memory for an iso-
lated elementary stimulus dimension, such as color. Evidence on false
recognition in verbal short-term memory, however, suggests similar prin-
ciples in short- and long-term memory with respect to semantic or cate-
gorical relations between stimuli. Extending this work to visual short-term
memory requires more complex stimulus material. Recent investigations
using photographs of categorically and semantically related stimuli have
yielded conflicting findings. Quinlan and Cohen (2016) found no increase
in short-term memory capacity when stimuli were members of a common
category compared to unrelated stimuli. That is, participants appeared to
be unable to efficiently chunk the information by exploiting category mem-
bership as organizing principle. This implies that visual short-term mem-
ory may be insulated from long-term memory and lead Quinlan and Cohen
(2016) to conclude that short-term memory is “precategorical.” In contrast,
O’Donnell et al. (2018) did find increased capacity when stimuli were se-
mantically related. In long-term memory, it is well established that seman-
tic and categorical relations among visual stimuli affect memory perfor-
mance and, in particular, can increase both true and false recognition (see
Chapter 4). Thus, under a unitary memory view lists composed of mul-
tiple category exemplars should also increase true and false recognition in
short-term memory. In the current study, we therefore used both verbal and
photographic stimuli to assess the influence of semantic and category-level
information on verbal and visual short-term memory.

5.2 Models of short-term false recognition

False recognition in short-term memory appears to follow similar oper-
ating principles as long-term false recognition. Hence, explanations for
false long-term memory have been invoked to explain false memory over
the short-term—namely fuzzy-trace theory (Reyna & Brainerd, 1995a) and
the activation monitoring framework (McDermott & Watson, 2001; Roedi-
ger & McDermott, 2000; Roediger et al., 2001). Fuzzy-trace theory as-
sumes that two encoding processes operate in parallel to create indepen-
dent representations of an episodes gist and a verbatim details. At test,
gist and verbatim traces presumably are retrieved independently. This
dual-representation assumption fundamentally contradicts single-process
models, such as global matching models of long-term memory (Clark &
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Gronlund, 1996; Kelly et al., 2017; and Osth & Dennis, 2020). For exam-
ple the Generalized Context Model (GCM; Nosofsky, 1986; Nosofsky, 1988;
Nosofsky, 2011a), or its extension the Exemplar-based Random Walk Model
(EBRW; Nosofsky & Palmeri, 1997; Nosofsky & Palmeri, 2014), assume that
every episode leaves a trace in a unitary memory. At test, the probe is
matched against all memory traces in parallel and the summed similar-
ity of all traces is an index of memory strength and subjective familiarity.
GCM and its variants can account for several key findings from short-term
memory (e.g., Kahana & Sekuler, 2002; Nosofsky et al., 2011; for a review
see Nosofsky, 2016). Consistent with unitary memory models, recent work
indicates that such models may provide a common basis to jointly explain
findings from both short- and longer-term memory (Nosofsky et al., 2020;
Nosofsky, Cox, et al., 2014; Schurgin et al., 2019).

In Chapter 4, we presented a formal correspondence between the Conjoint
Recognition Model (CRM; Brainerd et al., 1999; Brainerd et al., 2001), a
formal implementation of fuzzy-trace theory, and the GCM. Moreover, we
showed empirically that GCM is able to adequately account for true and
false recognition in a selective influence study of CRM parameters in vi-
sual long-term memory. Selective influence manipulations aim at affect-
ing a circumscribed psychological construct, while leaving other involved
constructs unaffected. Specifically, repeating targets on the study list (ver-
batim repetition) should selectively strengthen verbatim memory whereas
increasing the number of study list items related to a lure (gist repetition)
should selectively strengthen gist memory (e.g., Stahl & Klauer, 2008; Stahl
& Klauer, 2009). We found that, in combination, verbatim and gist repeti-
tion revealed a pattern of true and false recognition that necessitates multi-
ple latent causes and, thus, provides a challenging testbed to test the GCM-
account of false recognition. Based on a theoretical model analysis we im-
plemented a simple differentiation mechanisms in GCM as an increase of
item-specific dissimilarity sensitivity and an increase in memory strength
with repeated study (Criss, 2006; Shiffrin & Steyvers, 1997). With this exten-
sion GCM captured the multicausal pattern of true and false recognition.

Together these results suggest that gist and verbatim retrieval may be bet-
ter thought of as independent familiarity increments by partial and exact
matches between probes and memory traces in a unitary memory system.
Here, we used the same approach to test this single-process account of false
recognition in short-term memory. We combined selective influence ma-
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nipulations of gist and verbatim memory in a short-term memory task and
fit both CRM and GCM to the data.

5.3 The current study

To summarize, in light of current debates about the influence of seman-
tic and categorical relations between stimuli on visual short-term memory,
we performed a short-term false recognition experiment with categorical
verbal and photographic materials. To further test, whether verbal and
visual short-term memory follow similar principles as long-term memory,
we used selective influence manipulations of gist and verbatim memory
and fit CRM and GCM to the responses. We previously fit GCM data
from a long-term false recognition experiment with photographic material.
Here, we extend this work by testing whether GCM can also account for
false recognition in short-term memory with both photographic and verbal
material. Moreover, given that we previously found that repeated study
causes memory traces to become differentiated, we sought to test whether
differentiation also occurs in short-term memory.

5.4 Methods

We performed an old/new-recognition experiment with selective influence
manipulations targeting G and V parameters of the CRM. The general pro-
cedure was an adaptation of the procedure used by Flegal et al. (2010).

5.4.1 Participants

Eighty-one students of the University of Cologne, sampled from our
lab database to be fluent in German, participated in the experiment in
exchange for 7† or course credit. Participants’ mean age was 25.33 years
(SD = 7.39), 25.33% were female, 87.65% were native speakers, and 33.33%
studied psychology. All participants provided informed consent.
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5.4.2 Material

We constructed each study list from one of three categorized materials: col-
ored object photographs, greyscale object photographs, and words. For
colored photographs we used the Massive Memory database (Brady et al.,
2008). The database consists of 240 categories of 16 everyday objects. We
used greyscale photographs from the database provided by Migo et al.
(2013), which consists of 50 categories of 25 everyday objects. Empirical es-
timates of similarities for exemplars within each category are available for
both databases (Hout et al., 2014; Migo et al., 2013). Finally, as verbal mate-
rial we used 72 categorized lists of 5 words each used by Stahl and Klauer
(2008) in their selective influence studies of the simplified CRM. Using the
spatial arrangement method (Hout et al., 2013) we estimated the similar-
ities for exemplars within each category via multidimensional individual
difference scaling of 34-36 participants (M = 35.18, SD = 0.83). Based on vi-
sual inspections of plots of Kruskal’s Stress, we assumed that all similarity
spaces can be adequately approximated by three component dimensions.

We used distinct lists of items as primacy and recency buffers. For col-
ored and greyscale object photographs we sampled from 128 colored and
88 greyscale images of road signs, respectively. For words we sampled from
a list of 128 given names. No road signs or given names were included in
either of the databases of study list items.

5.4.3 Procedure

Participants worked on computers in individual booths. Instructions, stim-
ulus presentation, response collection were fully computerized. The ex-
perimental procedure consisted of a short-term and a subsequent surprise
long-term recognition phase.

Each short-term recognition trial consisted of a short study list presenta-
tion, an intervening math equation verification task, and the recognition
test. To construct the study lists we sampled six exemplars from two stim-
ulus categories. On every trial, one category served as the small the other as
the large category, Figure 5.1. We presented one exemplar from the small
but four exemplars from the large category. Fuzzy-trace theory predicts
that the increase in category size selectively increase gist retrieval, as as-
sessed by the G parameter in CRM. Moreover, we always repeated one
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exemplar—either the exemplar from the small category or a randomly se-
lected exemplar from the large category. Fuzzy-trace theory predicts that
repeated target presentations selectively increase verbatim retrieval, as as-
sessed by the V parameter in CRM. In the following we refer to trials in
which the exemplar from the small category was repeated as negative as-
sociation trials because we expected a negative association between true
and false recognition for the small and large categories, respectively. Con-
versely, we expected a positive association between true and false for the
small and large categories for trials in which an exemplar from the large
category was repeated; we therefore refer to these trials as positive associa-
tion trials.

At the beginning of each trial we presented a fixation cross for 1.5 s fol-
lowed by a rapid succession of study list items. We presented words for 250
ms and images for 750 ms with no inter-stimulus interval (e.g., Nosofsky et
al., 2011). The rapid visual presentation served to discourage subjects from
rehearsing the material. Words were displayed in lower case. We randomly
presented one or two buffer items prior to and two or three subsequent to
the six critical memory items.
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Figure 5.1: Diagram of the short-term recognition procedure for the word material. In positive association trials, we pre-
sented one exemplar from the small category (rectangles) but four exemplars from the large category (ovals), one of which
was repeated. In negative association trials, we repeated the exemplar from the small category and presented each of the
four exemplars from the large category only once. Following a 4 s-retention interval filled with an equation verification task,
we presented one of three memory probes. We randomly probed the small or the large category with a previously presented
item (target), an unpresented exemplar from the same category (lure), or a new item from an unpresented category (new).
We presented study lists in random order; word stimuli were in German. Shapes represent different stimulus categories.
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We instructed participants to closely follow and memorize the study list
items as we would subsequently test their memory. The short-term recog-
nition test probed participants memory for either the small or large cat-
egory, Figure 5.1. We probed participants memory with either a previ-
ously presented exemplar (target), a related exemplar from the same cat-
egory (lure), or an unrelated exemplar from a new category (new unrelated
probe). Word probes were displayed in upper case. We asked participants
to decided whether the displayed stimulus was old or new as fast and as ac-
curately as possible. We then, displayed a four-level confidence scale and
asked participants to indicate how confident they were in their response
ranging from very unsure to very sure.1

In the intervening equation verification task, each equation consisted of
multiplication or division of two integers a and b and subsequent addition
or subtraction of a third integer c, where a 2 [2,81], b 2 [2,9], c 2 [2,9]. The
correct result of the equation, too, was always an integer. The displayed
result was correct on half of the trials and deviated from the correct result
randomly by no more than 10. For example, the to-be-verified math equa-
tion may have been 56/8+ 4 = 13. 500 ms after display onset, we asked
participants to decide whether the display equation was correct as fast and
accurately as possible. We gave immediate feedback for at least 500 ms
by coloring the selected response green or red if it was correct or incor-
rect, respectively. Responses slower than 3.5 s were treated as incorrect; a
countdown beneath the equation indicated the remaining time to respond.
Overall the equation verification task lasted 4 s.

Participants completed the short-term recognition task separately for each
stimulus material. Due to the varying number of categories available for
the three stimulus materials the number trials differed between the blocks.
For colored objects and words, we used 72 categories. We randomly se-
lected 64 categories to construct the 32 study lists and reserved the remain-
ing 8 categories for new unrelated memory probes. We unevenly assigned
the 32 study lists to the three memory probe types: 12 targets, 12 lures, and
8 new unrelated probes. We distributed the 12 target and lure study lists
evenly across the four combination of category size (1 vs. 4) and number of
target presentations (once vs. twice), yielding three trials each. The 8 new
unrelated probe trials were evenly assigned to positive and negative asso-
ciation trials, yielding four trials each. To increase the number of observa-

1For reasons of brevity, we do not report analyses of confidence judgments here.
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tion, participants completed a second run through the three stimulus ma-
terials in the same order with everything else randomized anew—totaling
six blocks.

After completion of the short-term recognition phase, participants un-
knowingly entered an approximately 20-minute retention interval for the
subsequent surprise long-term recognition phase. During the retention
interval participants completed a second unrelated experiment on eval-
uative conditioning (Stahl & Heycke, 2016). The long-term recognition
task followed the same procedure as the short-term recognition task. We
treated all short-term recognition study lists as targets for the long-term
recognition task. However, we only used items as targets that had not been
probed during the short-term recognition task.2

To summarize, the experiment realized a 2 (Probe type: Target vs. Lure) £
2 (Target presentations: Once vs. Twice) £ 2 (Category size: 1 vs. 4) £ 3 (Ma-
terial: Color photos vs. Greyscale photos vs. Words) within-participant de-
sign. Unrelated new distractors constituted an additional probe type con-
dition that was only crossed with material but not with the other within-
participant factors. Overall, the duration of the experiment was approxi-
mately 95 minutes.

5.4.4 Data analysis

Our data analysis approach corresponds to the one used in Chapter 4 ex-
cept where noted otherwise. We report Bayes factors as relative measures
of evidence for our statistical and cognitive models (e.g, Wagenmakers et
al., 2010). The Bayes factor may be equally interpreted as a model’s prior
predictive accuracy or as relative likelihood of the observed data given the
model and the specified prior distributions on its parameters. Hence, Bayes
factors are directly interpretable as graded measures of evidence. When
Bayes factors are not available, we rely on posterior inference and compare
marginal 95% highest density interval (HDI) estimates.

We used R (Version 3.6.3; R Core Team, 2017) and the R-packages afex
(Version 0.23.0; Singmann et al., 2017), BayesFactor (Version 0.9.12.4.2;
Morey & Rouder, 2015), bridgesampling (Version 0.6.0; Gronau & Singmann,
2018), dplyr (Version 0.8.4; Wickham & Francois, 2016), drake (Version

2We do not report analyses of the long-term recognition task here.
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7.12.4; Landau, 2018), emmeans (Version 1.3.5; Lenth, 2018), ggplot2 (Version
3.2.1; Wickham, 2016a), papaja (Version 0.1.0.9997; Aust & Barth, 2017),
purrr (Version 0.3.3; Wickham, 2016b), and tidyr (Version 1.0.2; Wickham,
2017) for all our analyses.

5.4.4.1 Cognitive modelling

As in the previous chapter, we implemented CRM and GCM as Bayesian
hierarchical models and estimated the joint posterior distribution of pa-
rameters by No-U-Turn sampling. To compare models using Bayes factors
we estimated their marginal likelihoods using Warp-III bridge sampling
(Gronau et al., 2017; Gronau & Singmann, 2018). We quantified the esti-
mation error from 25 repeated sampling runs and report 2.5% and 97.5%
qunatiles when the estimation error exceeds 5%.

5.4.4.1.1 Conjoint recognition model We assumed that the probability of
responding “Old” was the same for positive and negative association trials
and, therefore, constrained b to be equal across trial types. Our ANOVA
analysis of observed responses and by the fit of the model to data indicated
that this assumption is tenable.

5.4.4.1.2 Generalized context model In the absence of distance estimates
for stimuli from different categories, we estimated three auxiliary param-
eters d

(m)

inter, common to all participants, as a stand-in for any d(xi , y j ) in
material m, where xi and y j are exemplars from different categories. As
in our previous application, we assumed that our primacy and recency
buffers mitigate the differential effects of forgetting on memory traces and
assumed constant memory strength for all items. Inspection of true recog-
nition responses supported this assumption. Furthermore, we assumed
that on each trial, only the current study list items entered the global match-
ing process. That is, we did not model possible interference from previous
trials across the course of the experiment.

While fitting the model, we observed non-trivial misfit for the word ma-
terial. Based on research that suggests visually presented verbal material
may be processed in an all-or-none fashion (Swagman et al., 2015), we hy-
pothesized that participants may have experienced attentional lapses dur-
ing the rapid study list presentation. We reasoned that attentional lapses
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would manifest as random guessing at test (cf., p. 381, Donkin & Nosofsky,
2012b; p. 140; van den Berg et al., 2014). Hence, we estimated the probabil-
ity of attentional lapses plapse by modelling trial-wise response probabili-
ties as a mixture of memory-based responses—as predicted by GCM—and
randomly guessing old with probability p = .5.

5.5 Results
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Figure 5.2: Rate of “Old”-responses as a function of category size and num-
ber of target presentations for each material. Based on previous research we
predicted that the number of target presentations would increase “Old”-
response rates to targets but not to lures. Additionally, we predicted that
“Old”-response rates to targets and lures would increase with category
size. Unrelated new probes do not fully conform to the factorial experi-
mental design because they cannot be ascribed to one of the two presented
categories. Hence, there is no corresponding target and the category size
is zero. They can, however, be ascribed to positive and negative associa-
tion trials, see Procedure for details. We expected no difference in “Old”-
response rates between trial types. Point represent condition means, error
bars represent bootstrap confidence intervals based on 10,000 samples.

5.5.1 False recognition rates

True and false recognition is typically quantified relative to the baseline
of “Old”-response rates to unrelated new probes to account for guessing
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Table 5.1: Adjusted false recognition rates for conditions when targets were pre-
sented once on the study list.

Category size Material M 95% CI t (80) padj BF10

1 Words 0.04 [0.01, 1] 2.78 .010 8.69

Greyscale photos 0.43 [0.37, 1] 14.52 < .001 2.04£10
21

Color photos 0.26 [0.21, 1] 10.52 < .001 1.30£10
14

4 Words 0.19 [0.14, 1] 8.31 < .001 8.19£10
9

Greyscale photos 0.69 [0.62, 1] 22.63 < .001 2.97£10
33

Color photos 0.50 [0.44, 1] 17.08 < .001 3.26£10
25

Note. The rate of false recognition was adjusted by subtracting “Old”-response
rates to unrelated new probes from those of lures. padj = p-values Bonferroni-
adjusted for 3 comparisons within each category size; for the Bayesian analysis we
used a scale of r =

p
2/2 for the prior distribution. All tests are one-sided.

or memory background noise. Unrelated new probes do not fully con-
form to the factorial experimental design because they cannot be ascribed
to one of the two presented categories. Hence, there is no corresponding
target and the category size is zero. They can, however, be ascribed to
positive and negative association trials, see Procedure for details. We ex-
pected no difference in “Old”-response rates between trial types. Hence,
we first analyzed response rates to unrelated new probes to rule out any
differences between positive and negative association trials, Figure 5.2. A
2 (Trial type: Positive vs. negative association) £ 3 (Material: Color photos
vs. Greyscale photos vs. Words)-ANOVA3 provided evidence against any
difference in “Old”-response rates between trial types. Overall, the “Old”-
response rate to unrelated new probes was low, M = 0.04, 95% CI [0.04, 1],
t (80) = 8.12, p < .001, BF10 = 1.35£10

3. The Bayesian analysis indicated that
the data supported absence of a main effect of trial type (F (1,80) = 0.85,
MSE = 0.01, p = .359, ¥̂2

G
= .002, BF01 = 6.39) as well as an interaction with

material, F (1.69,135.06) = 1.13, MSE = 0.01, p = .319, ¥̂2

G
= .003, BF01 = 10.44.

Finally, “Old”-response rates appeared to be comparable across materials,
F (1.86,148.41) = 1.35, MSE = 0.01, p = .262, ¥̂2

G
= .006, BF01 = 8.54.

For all subsequent analyses, we assessed the rate of adjusted false recog-

3For the Bayesian analysis we used a scale of r = 0.5 for the prior distribution, because
we expected, if any, small effects.



188 CHAPTER 5. SHORT-TERM FALSE RECOGNITION

Table 5.2: Pairwise comparisons of adjusted “Old”-response rates between category size
4 and 1 for target and lure probes and each material.

Probe type Material ¢M 95% CI t (80) p padj BF10

Lure Words 0.13 [0.10, 1] 6.56 < .001 < .001 4.63£10
6

Greyscale photos 0.24 [0.20, 1] 9.56 < .001 < .001 1.97£10
12

Color photos 0.25 [0.22, 1] 12.40 < .001 < .001 3.81£10
17

Target Words 0.07 [0.04, 1] 3.65 < .001 .008 96.14
Greyscale photos 0.06 [0.03, 1] 3.79 < .001 < .001 148.59
Color photos 0.04 [0.02, 1] 2.85 .003 .001 10.45

Note. padj = p-values Bonferroni-adjusted for 3 comparisons within each probe type; for
the Bayesian analysis we used a scale of r =

p
2/2 for the prior distribution. All tests are

one-sided.

nition by subtracting “Old”-response rates to unrelated new probes from
those to lures. To compare our findings to the results of previous studies
we examined adjusted false recognition rates when targets were presented
only once, Table 5.1. We detected false recognition in all conditions. Word
lists with four exemplars yielded false recognition rates that were compara-
ble to those previously reported for DRM lists (e.g, Abadie & Camos, 2019;
Atkins & Reuter-Lorenz, 2008; Flegal et al., 2010); for color and greyscale
photos of everyday objects, however, we found considerably larger rates.
Moreover, we detected false recognition even when the study lists included
only a single related item, albeit for words the evidence for false recogni-
tion was weak.

5.5.2 Target repetition and category size

Next, we assessed the effects of our experimental manipulations on ad-
justed rates “Old”-responses in a 2 (Probe type: Target vs. Lure) £ 2 (Target
presentations: Once vs. Twice) £ 2 (Category size: 1 vs. 4) £ 3 (Material: Color
photos vs. Greyscale photos vs. Words)-ANOVA. The number of target pre-
sentations affected adjusted “Old”-response rates to target and lure probes
differently, F (1,80) = 24.00, MSE = 0.03, p < .001, ¥̂2

G
= .007, BF10 = 179.93.

As predicted, adjusted “Old”-response rates for targets increased when we
presented targets on the study list twice rather than once, ¢M = 0.13, 95%
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CI [0.11,1], t (80) = 10.60, p < .001, BF10 = 1.82£10
14. Unlike in previous ex-

periments on long-term memory, repeated presentations also increased the
adjusted rates for lures, although not as much as to targets, ¢M = 0.06, 95%
CI [0.03,1], t (80) = 3.91, p < .001, BF10 = 215.76. As predicted, the adjusted
“Old”-response rates also increased when we increased the category size
from 1 to 4 exemplars, but the magnitude of the effect varied across com-
binations of probe types and materials, F (1.78,142.80) = 9.18, MSE = 0.03,
p < .001, ¥̂2

G
= .006, BF10 = 9.89, Table 5.2. The response rate increase for tar-

gets was modest and the difference between materials small. The effect on
lures, in comparison to targets, was 2–5 times larger and differed substan-
tially between materials: For words the effect was only half of that for color
and greyscale photographs. The data provided moderate to overwhelming
evidence for the absence of other interaction effects, Table C.1.

To summarize, we found false recognition with all materials even when
only a single related category exemplar was presented as part of the study
list. As predicted, increasing the category size from one to four exemplars
caused a large increase in false recognition and a small increase in true
recognition. Conversely, presenting a target on the study list a second time
caused a large increase in true recognition but also a small increase in false
recognition.

5.5.3 State-trace analysis
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Figure 5.3: Bayes factors for individual participants in favor of the trace
model (T) representing the assumption that true and false recognition al-
ways increase as studied category size increases in both dimensions rela-
tive to the non-trace model (NT), which posits a violation of the trace as-
sumption in at least one dimension (T vs. NT) or in favor of a monotonic
model of true and false recognition (M) relative to a non-monotonic model
(NM) with (M vs. NM | T) and without incorporating the trace assump-
tion (M vs. NM). Higher values indicate support for trace and monotonic
models. Participants are ordered according to their evidential value for the
monotonic relative to the non-monotonic model given the trace assump-
tion. Big unfilled points represent the geometric mean of the group Bayes
factor (gGBF).
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Table 5.3: Results of the Bayesian state-trace analysis for each stimulus material.

Trace model Monotonic trace model

Material gGBFT/NT GBFT/NT ABF gGBF(M/NM)|T GBF(M/NM)|T ABF

Color photos 1.91 6.40£10
22 13.50 1.07 169.60 1.25£10

°3

Greyscale photos 1.85 4.27£10
21 12.57 1.02 4.78 1.71

Words 1.50 2.16£10
14 14.22 0.93 2.36£10

°3 0.06

Note. The trace model (T) constrains true and false recognition to increase as studied category size
increases in both dimensions and is complementary to the non-trace model (NT). The monotonic
model (M | T) enforces a monotonic association between true and false recognition and is com-
plementary to the non-monotonic model (NM | T); both models additionally enforced the trace
constraint. gGBF = geometric mean of the group Bayes factor; GBF = group Bayes factor; ABF =
non-parametric aggregated Bayes factor in favor of homogeneity relative to heterogeneity.
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The results of the Bayesian state-trace analysis of the probit-transformed
proportions of participants’ “Old”-responses are shown in Figures 5.4 and
5.3; the statistical results are summarized in Table 5.3. We analyzed the data
for each material separately.

Individual participants’ responses were barely informative to the com-
parison of monotonic and non-monotonic models. To increase the
informational value of the model comparison we incorporated the trace
assumption into both models. As expected, this additional assumption was
supported by most participants’ data in all materials. In particular colored
and greyscale objects revealed that most participants’ responses con-
formed to predictions of the trace model; only four participant’s responses
to words and two participants’ responses to greyscale objects provided
modest evidence for a violation of the trace assumption. Accordingly,
the aggregated data indicated that no participant’s responses violated
the trace assumption, ABF

(Words, T) = 14.22, ABF
(Greyscale photos, T) = 12.57,

ABF
(Color photos, T) = 13.50. In aggregate the data overwhelmingly favored

the trace model, GBF
(Words)
T/NT = 2.16 £ 10

14, GBF
(Greyscale photos)
T/NT = 4.27 £ 10

21,

GBF
(Color photos)
T/NT = 6.40£10

22.

Unfortunately, incorporation of the trace constraint did not improve the
evidential value of our analyses. The geometric group Bayes factors for
all materials were inconclusive. In aggregate the data strongly favored the
non-monotonic model GBF(NM/M)|T = 422.94-to-1 for words but favored the
monotonic model GBF(M/NM)|T = 4.78-to-1 and GBF(M/NM)|T = 169.60-to-1
for greyscale and color photos, respectively. Note that the group Bayes
factor assumes homogeneity of participants’ responses, that is, that the
true association between true and false recognition of all participants is ei-
ther monotonic or non-monotonic. However, the aggregated data provided
substantial evidence against homogeneous monotonicity for the color pho-
tographs (ABF

(M|T) = 1.25 £ 10
°3) and was inconclusive for the greyscale

photographs, ABF
(M|T) = 1.71.

To summarize, while the responses to the categorized word lists provide
evidence for multiple latent causes. The results are less clear cut for color
and greyscale photographs but favor a single latent dimension. Hence,
accounting for the observed responses to categorized words constitutes a
strong test of the single-process global matching perspective of false recog-
nition. Responses to greyscale and colored objects on the other hand do
themselves do not necessitate the assumption of a second latent variable
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and, hence, are a priori consistent with single-process models. As the next
section will show, this does not, however, guarantee that a specific instan-
tiation of a single-process model will be able to adequately describe the
results.

5.5.4 Cognitive modelling

We fit a simplified version of the conjoint recognition model (see Chapter
4) to test the selective influence of our experimental manipulations on the
memory-related parameter estimates. We then fit the Generalized Context
Model to explore the models ability to describe the observed results.

5.5.4.1 Conjoint-recognition model

Based on our previous work, we used the model with constraints on V

and G (M CRM
V G

) as a baseline for our model comparisons. This model con-
strained V to increase from one to two target presentations within partic-
ipants, while being unaffected by category size. It also constrained G to
be unaffected by the number of target presentations, but to increase from
category size 1 to 4 within participants. We compared this baseline model
to models that relaxed either the constraint on V , but maintained the con-
straint on G (M CRM

G
), or relaxed the constraint on G , but maintained the

constraint on V (M CRM
V

). We did not constrain parameters across materi-
als.

The baseline CRM with guessing parameters b constrained to be equal
across trial types within participants described the data well—in accor-
dance with our previous analysis that found no difference in “Old”-
response rates between trial types, Figure 5.4A.

The estimates of the population-level model parameters suggested that
our selective influence manipulations, by and large, had the predicted ef-
fects, Table 5.4. First, repeating targets on the study list increased esti-
mates of verbatim memory whereas increasing the category size did not.
Conversely, increasing the category size increased estimates of gist mem-
ory whereas presenting targets repeatedly did not. These conclusions were
also confirmed by our model comparisons. The constraint on V was over-
whelmingly supported BFV G/G = 6.08£10

18
[1.19£10

16
, 6.39£10

20
]-to-1 and
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Table 5.4: Median posterior parameter estimates of the population probability me-
dians eµ(µ) (95% HDI in parentheses) for the minimally constrained Conjoint Recog-
nition model M CRM

0
.

Material Target presented Category size G V

Color photos Once 1 .25 [.20, .31] .71 [.63, .78]

Once 4 .53 [.46, .60] .64 [.54, .72]

Twice 1 .32 [.26, .37] .90 [.85, .94]

Twice 4 .62 [.56, .68] .89 [.82, .95]

Greyscale photos Once 1 .44 [.38, .51] .66 [.56, .76]

Once 4 .75 [.68, .82] .69 [.52, .83]

Twice 1 .51 [.44, .57] .90 [.84, .95]

Twice 4 .77 [.71, .83] .87 [.77, .95]

Words Once 1 .03 [.01, .06] .57 [.51, .64]

Once 4 .18 [.13, .24] .58 [.50, .65]

Twice 1 .09 [.06, .13] .74 [.68, .80]

Twice 4 .20 [.14, .25] .81 [.75, .87]

Note. We constrained the populations means of the parameter b for guessing
“Old” to be equal across trial types within participants, eµ(b)

Color photos = .03 [.02, .04],

eµ(b)

Greyscale photos = .04 [.02, .05], eµ(b)

Words = .05 [.03, .07].
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Figure 5.4: State-trace plot of averaged responses and posterior predic-
tions of M CRM

V G
(A) and M GCM

0
(B). Points represent average observed rates

of old-responses; error bars indicate 95% bootstrap confidence intervals
based on 10,000 bootstrap samples. Ellipses represent multivariate normal-
approximations to 95% credible regions posterior predictions. The inset
shows the rate of “Old”-responses to unrelated new probes for positive (X-
axis) and negative association trials (Y-axis).



196 CHAPTER 5. SHORT-TERM FALSE RECOGNITION

the constraint on G was supported BFV G/V = 1.20£10
9

[1.27£10
7

, 1.43£10
11

]-
to-1. Visual inspection (Figure 5.4A) and quantitative assessment of pos-
terior predictions indicated that all models describe the data adequately,
Figure C.1.

Taken together these results support the validity of the gist and verbatim
memory estimates in short-term false recognition. Thus, these results
further support the applicability of models of long-term recognition to
paradigms with much shorter study lists and retention intervals. Finally,
the CRM fits indicate that the multiple latent dimensions identified by our
state-trace analysis for the word material are consistent with independent
verbatim and gist representations.

5.5.4.2 Generalized context model

Global matching models posit that the multiple latent dimensions are the
result of separable contributions of exact and partially matched memory
traces, see Chapter 4. To assess the adequacy of this alternative account,
we next fit the GCM M GCM

0
with parameters µ(c), µ(c

0
), µ(m

0
), µ(k), µ(∞), and

µ(b) free to vary across materials. For comparison we fit a model that con-
strained memory strength and dissimilarity sensitivity to be equal, M GCM

∏
.

Estimates of the population-level model parameters indicate that process-
ing of words differed from that of color and greyscale photographs, Ta-
ble 5.5. For color and greyscale photographs, parameter estimates were
similar.4 In the unconstrained model M GCM

0
, the most notable descriptive

difference was a slightly larger memory strength for color photographs—
but the interval estimates indicated no difference. Nonetheless, only for
color photographs the increase in memory strength differed from the base-
line value of 1. In M GCM

∏
, the same difference was evident in ∏, but again

the interval estimates overlapped. The estimates suggest that a common
set of parameters may suffice to account for the responses to both pho-
tographic materials. The estimates of the lapse rates plapse were low and
provided only limited evidence for a pure guessing state as the posterior
probability amassed at zero.

4Not that estimates of average inter-category distance dinter and lapse rates plapse trade-
off to explain “Old”-responses to unrelated new exemplars and, therefore, the estimates for
dinter are likely unreliable as also indicated by the large estimate uncertainty—except for
color photographs where we used an informative prior based on or previous work.
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Table 5.5: Median posterior parameter estimates of the population
means in natural scale exp(µ(µ)

) and exp(µ(pl apse )
) (95% HDI in paren-

theses) for the unconstrained Generalized Context Model (M GCM
0 )

and the constraint model assuming ∏= c = m, M GCM
∏

.

Materials

Parameter Color photos Greyscale photos Words

MGC M

0
c 1.42 [1.18, 1.68] 1.78 [1.40, 2.18] 3.65 [3.05, 4.42]
c
0

1.82 [1.33, 2.58] 1.81 [1.40, 2.32] 4.23 [2.96, 8.98]
m

0
2.71 [1.61, 4.30] 1.13 [0.77, 1.96] 1.09 [0.78, 1.64]

k 0.28 [0.18, 0.38] 0.20 [0.12, 0.28] 0.72 [0.58, 0.86]
∞ 0.90 [0.74, 1.09] 1.14 [0.92, 1.36] 1.63 [1.21, 2.13]
plapse 0.04 [0.02, 0.07] 0.04 [0.02, 0.08] 0.12 [0.08, 0.16]
dinter 6.26 [5.88, 6.61] 6.15 [4.05, 11.09] 4.59 [2.22, 10.49]

MGC M

∏
∏ 1.23 [1.01, 1.48] 2.07 [1.63, 2.59] 3.90 [3.24, 4.76]
∏0

1.41 [1.09, 1.88] 2.07 [1.63, 2.59] 4.60 [3.26, 7.28]
k 0.45 [0.36, 0.55] 0.56 [0.41, 0.72] 9.64 [7.43, 12.22]
∞ 0.99 [0.82, 1.17] 1.01 [0.82, 1.22] 1.32 [1.00, 1.68]
plapse 0.04 [0.01, 0.06] 0.04 [0.01, 0.07] 0.12 [0.08, 0.15]
dinter 6.19 [5.83, 6.53] 4.64 [3.49, 7.01] 4.44 [2.18, 9.79]
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Parameter estimates for words, on the other hand, were markedly different.
Estimates of dissimilarity sensitivity, the criterion k, and the probability of
lapses plapse was higher than for the photographic materials. Given re-
cent evidence that word identification may be an all-or-none process (e.g.,
Swagman et al., 2015; Aust & Stahl, 2016), it seems plausible that the rapid
presentation rate in the current study may have caused a non-negligible
lapse rate and, at the same time, high discriminability when the stimuli
were processed.

In sum, the estimates corroborate the results of our state-trace analysis and
suggest that the multidimensionality of responses to the word material
may be due to attentional lapses and consequent random guessing. Com-
pared to our results in long-term memory, the only notable difference was
the absence of a differentiation effect, as indicated by the negligible differ-
ences between c and c

0 or ∏ and ∏0.

The fit of the unconstrained model M GCM
0

is shown in Figure 5.4B—the pre-
dictions of the constrained model M GCM

∏
were highly similar. The model

exhibited some quantitative misfit. Mirroring our findings from long-term
memory, for color photographs the model again predicted too little true
and too much false recognition when more than one category exemplar
was presented. For color photographs and words there was a tendency to
over-predict “Old” responses to unrelated new distractors. However, keep-
ing in mind the constraint exerted by the inter-item similarities as well as
our simplifying assumptions, we conclude that the fit of the GCM to the
group-level data is satisfactory.

5.6 Discussion

The aim of this study was to assess the influence of categorical relations be-
tween stimuli on verbal and visual short-term memory. To do so, we per-
formed a short-term false recognition experiment with categorical verbal
and photographic materials. In an extension of prior work on long-term
memory, we used selective influence manipulations of gist and verbatim
memory and fit CRM and GCM to the responses. First, we observed false
recognition effects following a filled 4 s-retention interval for all materials,
even when the study list included only one exemplar from the probed cat-
egory. Particularly the latter finding is noteworthy because to our knowl-
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edge all previous studies on false recognition in short-term memory pre-
sented at least 4 related items. As we will discuss shortly, it remains an
open question to what extent encoding noise rather than semantic or cat-
egorical interference contributes to these effects. Second, as expected we
found that presenting 4 instead of 1 category exemplar increased true as
well as false recognition; CRM parameter estimates confirmed that these in-
creases reflected a selective influence on gist memory. Moreover, we found
that that presenting study list items twice instead of once also increased
true as well as false recognition. Although this result seems to contradict
the hypothesized selective influence on verbatim memory, CRM parameter
estimates indicated that the data supported a selective influence on verba-
tim memory.

Despite the success of our selective influence manipulations, state-trace
analyses indicated that the observed true and false recognition rates for
the photographic materials were not diagnostic with respect to the number
of latent causes. Only responses to the verbal material favored multiple
latent causes. These findings indicate that, in particular, responses to the
verbal material provide a challenging testbed for the GCM-account of false
recognition. Indeed, as in our previous work in long-term memory, GCM
was able to describe the observed rates of true and false recognition to the
photographic material adequately but exhibited non-trivial misfit for the
verbal material. Additionally exploration suggests that this misfit may be
attributed to attentional lapses during the rapid study list presentation that
result in random guessing at test. We further discuss the implications of
this finding below. After making an allowance for attentional lapses, GCM
described the our results adequately albeit the fits could have been closer. It
is worth noting, however, that the fits reported are likely a lower bound be-
cause we relied on group-level estimates of inter-item similarities form an
independent sample rather than individual estimates for each participant
(p. 289, Nosofsky et al., 2011).

5.6.1 Theoretical implications

As we have shown in Chapter 4, in long-term memory GCM requires a
differentiation extension to account for the selective increase in true recog-
nition caused by presenting targets five times compared to once. Here, we
tested whether differentiation also occurs over the short term. Our results
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indicate that presenting targets twice compared to once caused no notable
differentiation of memory representations as also indicated by observed the
increase in false recognition. At this point the implications of this finding
remain somewhat ambiguous. On the one hand it is possible that a single
target repetition is insufficient to produce detectable differentiation effects.
In line with this interpretation in our experiment on long-term false recog-
nition we presented targets five times—a typical procedure in the study of
differentiation (e.g., Criss, 2006; Criss, 2010; Criss et al., 2012). Also, the
rapid presentation of the study list may have been less conducive to mem-
ory consolidation and differentiation than the slower presentation rate and
longer inter-stimulus intervals typically used in long-term memory exper-
iments. On the other hand, a lack of differentiation could be indicative of
a qualitative difference between the operating principles and processes of
short- and long-term memory. Exploring these issues further is an interest-
ing avenue for future research.

The contribution of random guessing due to loss of information from short-
term memory performance has been a corner stone of recent theorizing
on short-term memory, and in particular visual short-term memory (e.g.,
Adam et al., 2017; Bays et al., 2009; Miner et al., 2019; van den Berg et al.,
2012; Zhang & Luck, 2008). As noted above, in our modelling we made
an allowance for random guessing at test. Resembling the debate in visual
short-term memory, the CRM naturally predicts random guessing, whereas
GCM assumes that all responses are based on a memory signal and ordi-
narily denies any role of random guessing. It could be argued that by in-
corporating a guessing process in GCM we have fundamentally altered the
nature of the model. We would counter this assertion by pointing out that
we attribute the cause for random guessing to the encoding stage, rather
than to a maintenance failure as assumed by slots-models of short-term
memory. Specifically, we assume that during the rapid visual presentation
of study list items, participants on some trials fail to attend the stimulus dis-
play and hence do not encode the items into memory (cf., p. 381, Donkin
& Nosofsky, 2012b; p. 140; van den Berg et al., 2014). Our analysis indicate
that such attentional lapses affect primarily processing of verbal material
but less so of photographs. This finding is in line with research suggesting
that, in contrast to images, words may be processed in an all-or-none fash-
ion (Swagman et al., 2015). Moreover, an as-of-yet unpublished experiment
from our lab shows that under the conditions of the current experiment
photographs may be partially or noisily encoded, whereas words are not
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(Aust & Stahl, 2016). These findings, too, suggest that words are either rep-
resented fully and accurately or not at all and substantiate the assumption
that random guessing may have contributed to our results. Hence, our as-
sumption of attentional lapses and random guessing at test are not at odds
with the nature of GCM or models of short-term memory that posit the
absence of guessing due to loss of information from short-term memory.

The results from our unpublished experiment further indicate that encod-
ing noise likely contributed to the high rates of false recognition for photo-
graphic material observed here. It remains to be seen to what degree the ob-
served false recognition rates are caused by semantic and categorical sim-
ilarity or encoding noise—especially those for study lists, which included
only one exemplar from the probed category. Based on the robust false
recognition effects for verbal material, we are however confident that our
results are not solely the result of encoding noise. Also, our unpublished
results indicate the need for a refinement to our modelling approach: GCM
assumes error-free encoding, but this assumption appears to be violated,
at least under the current rapid encoding conditions. The Noisy Exemplar
Model (Kahana & Sekuler, 2002) is closely related to GCM and relaxes this
assumption. We leave it for future research to explore whether model fits
can be improved by accounting for encoding noise.

5.6.2 Conclusions

We have presented the results from an experiment on visual and verbal
false recognition over the short-term. Our results are consistent with previ-
ous research which suggests that short-term false recognition follows very
similar principles as in long-term memory. Moreover, we demonstrated
that GCM, a global matching model that successfully accounts for a va-
riety of findings from short- and long-term memory, can also account for
short-term false recognition. Thus, we conclude that the fits reported here
indicate that GCM is a serious alternative to dual-process accounts of false
recognition in short-term memory and, we hope, will inspire further re-
search.
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Conclusions
FREDERIK AUST

In Chapter 1, I laid out the motivation for my work: Despite some no-
table counterexamples, the theoretical and empirical exchange between the
fields of learning and memory is limited. I discussed the historical origins
and epistemological difference that arguably contributed to this disconnect.
Learning and memory research traditionally sought explanations at differ-
ent levels of analysis—the computational level and the representational
and algorithmic level, respectively (Marr, 1982). I rejected the argument
that different levels of analysis prevent or oppose theoretical exchange and
argued that both fields have much to gain from joint efforts to explain their
respective phenomena. Contemporary learning researchers, like memory
researchers, are interested in representations and algorithms and I identi-
fied explanations at this level as a promising starting point for integrative
theoretical work.

In the work presented here, I explored whether learning and memory may
be conceptualized as distinct algorithms that operate on the same represen-
tation of past experiences (cf. p. 707, Nosofsky, 1988). The identification of
a representational format that is applicable to a broad range of phenomena
would be theoretically interesting because it may serve as a basis for
broad-scoped, integrative, well-constrained, explanations. In Chapter
2, I reviewed representational and process assumptions in learning and
memory, by the example of evaluative conditioning and false recognition,
and identified important similarities in the theoretical debates. Both
fields distinguish between single- and dual-process models. Among those
dual-process models a finer distinction can be made between dual-retrieval
models and dual-representation models. Dual-retrieval models assume
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that dissociations arise at the response stage of the processing cascade and
are due to different retrieval mechanisms. Dual-representation models,
in contrast, attribute dissociations to different encoding processes that
yield qualitatively distinct representations. I argued that models which
attribute dissociations to later stages are more parsimonious and should
be preferred until refuted and based on my review of the literature I
concluded that the available evidence currently does not necessitate
dual-representations.

Finally, I identified a common element in several successful theories of
learning and memory: They postulate an informationally rich unitary
representation of past events combined with parallel similarity-based
retrieval. This representational format satisfies Marr’s principle of least
commitment, which states that a domain-general representation likely
stores stimulus information after minimal preprocessing because un-
processed representations are conducive to the flexible deployment of
different algorithms to meet the demands of different tasks (pp. 485-486,
Marr, 1976). Thus, a rich unitary representation is conducive to an integra-
tive theoretical approach to learning and memory. Specifically, I identified
global matching memory models and their exemplar representation as a
promising candidate for a common representational substrate that satisfies
the principle of least commitment.

I then presented two cases in which exemplar-based global matching mod-
els, which take characteristics of the stimulus material and context into
account, suggest parsimonious explanations for empirical dissociations in
evaluative conditioning (EC; Chapter 3) and long-term false recognition
(Chapter 4). These explanations suggest reinterpretations of findings that
are commonly taken as evidence for dual-process and in particular dual-
representation models.

In EC, dissociations between US expectancy and CS evaluation are typi-
cally interpreted as demonstration that EC is resistant to extinction, and
consequently, that EC is driven by a simple association-based learning pro-
cess. We tested whether these results are instead, information dissociations
that are caused by different affordances of the dependent measures. Based
on this hypothesis, we conducted simulations using the exemplar-based
global matching model MINERVA 2, which were subsequently corrobo-
rated by three experiments. The results suggest that CS evaluations are by
default integrative judgments—summaries of large portions of the learning
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history—whereas US expectancy reflects momentary judgments that focus
on recent events. As the simulations showed, the different summaries can
be retrieved from memory by using and reinstating appropriate contex-
tual cues. Hence, dissociations between US expectancy and CS evaluation
are consistent with single-process memory models and do not necessitate
dual-representation assumptions.

Dissociations between true and false recognition are often attributed to in-
dependent verbatim and gist memory traces. Gist traces are conceptual
summaries; their retrieval promotes true as well as false recognition. In
contrast, verbatim traces are detailed reflections of an episode and sup-
port only true recognition. In a theoretical model analysis and an exper-
iment we illustrate that a simpler exemplar-based global-matching expla-
nation can also account for these findings. We argue that dissociations be-
tween true and false recognition result from distinct patterns of probe-trace
similarities: False recognition results from deceptive familiarity caused by
partial matches with similar (but non-identical) traces. Exact matches, on
the other hand, are unique to true recognition and make an independent
contribution to familiarity. This explanation is corroborated by an ade-
quate fit of the Generalized Context Model (GCM) to our experimental
data. Hence, dissociations between true and false recognition are consis-
tent with a single-process memory models and do not necessitate dual-
representation assumptions.

Finally, I report an experiment that shows that GCM also accounts for false
recognition in short-term memory (Chapter 5). False recognition in short-
term memory poses a problem to models positing that short-term memory
is insulated from long-term memory and thereby rule out effects of seman-
tic and categorical relations on memory performance. In contrast, unitary
memory models naturally account for false recognition effects in short- and
long-term memory. Illustrating the broad explanatory scope of exemplar-
based global matching models, GCM was able to account for the rates of
true and false recognition observed in our experiment. Hence, GCM can
account for false recognition over the short and long term and is thus a
candidate for a unitary memory model.

Taken together, this work provides further evidence that it is not necessary
to assume dual-representations; in all cases, we were able to reattribute
dissociations, which had previously been located at encoding, to the re-
sponse stage. Moreover, our modeling results illustrates the broad explana-
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tory scope and the integrative potential of exemplar-based global matching
models.

6.1 Future directions

These findings are encouraging but need to be developed further. In Chap-
ter 3, we presented a first attempt to formalize a memory-based model
of EC. As discussed, this model must be considered a proof-of-principle.
More theoretical as well as experimental work is needed to develop this
approach into a full theory of EC (Stahl & Aust, 2018). An important next
step is to identify a set of experimental results that define the scope of the
phenomenon and could serve as benchmarks for theories of EC (cf. Ober-
auer et al., 2018; Jamieson et al., 2012). Such a set of benchmarks would
enable further simulation work that could inform the refinement of our
model. More broadly, I expect that the elaboration of an exemplar-based
account of EC, and the identification of information dissociations, will en-
courage more careful considerations about the measures used to asses atti-
tudes or liking and how participants use them. The so-gained knowledge
about the dependent measures will in turn help to further develop formal
process models of EC that are needed to investigate how the information
that drives evaluations is represented:

The process models that would help make sense out of data on trace
features need not be complex or highly sophisticated or “correct.” But
they must enter the picture in some form. Even a bad process model
is better than none at all. It would help make clear the logic of the
method of specifying trace properties, aid com- munication, and facili-
tate cross-comparisons of data obtained with different methods. More-
over, it can be improved, revised, or re- placed with a better one. A
nonexistent model cannot. (p. 297, Tulving & Bower, 1974)

Similarly, in Chapter 4 we derived theoretically, and corroborated empir-
ically, the need for a differentiation mechanism in GCM. Inspired by an
observation in previous research, we proposed a psychologically plausi-
ble and mathematically simple implementation by scaling the exponential
similarity gradient to a proper probability density function. Although this
proposal was in part inspired by previous research, strongly supported by



6.1. FUTURE DIRECTIONS 215

our data, and fit the data of our subsequent experiment in short-term mem-
ory, it needs to be tested further. First, it should be confirmed that fixing the
scaling of the similarity gradient does not impair the models ability to ac-
count for previous results, for example from categorization or perception.
It is encouraging that our differentiation mechanism does not change the
predictions of the model unless a subsets of memory traces are selectively
strengthened, for example by extended training, or weakened, for exam-
ple by study-test lag. Hence, an obvious next step is to explore whether
the model can still explain the results from previous experiments that ex-
amine forgetting or selectively strengthen subsets of the study material.
Second, as previously discussed in differentiation models (McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997), differentiation emerges mech-
anistically as noisily encoded memory traces are updated with additional
study. It would be interesting to explore the functional relationship be-
tween the differentiation effects in these models and our implementation
in GCM. Relatedly, it could be interesting to explore more principled exten-
sions of GCM based on related models that allow for noisy representations
(e.g., Kahana & Sekuler, 2002).

At a broader level, our findings on long-term memory highlight the impor-
tance of computational level analysis. The detailed analysis of the stimulus
space that is necessary to apply GCM was a critical to its success. Using es-
sentially the same approach Schurgin et al. (2019) were recently able to de-
velop a compelling unitary storage account for a broad range of short-term
memory data called Target Confusability Competition (TCC). The success
of these models shows that a disregard of the precise characteristics of the
environment can result in overly complex cognitive process assumptions.
Or, put differently,

By concentrating on purely cognitive-processing stages, researchers
have largely ignored the fact that allegedly cognitive phenomena (bi-
ases, preparedness for learning) can be already built into the environ-
mental stimulus input that impinges on the human mind. (p. 69,
Fiedler, 2016)

In Chapter 5, we demonstrated that GCM can account for short-term false
recognition and suggest that GCM may be a serious contender for a unitary
model of short- and long-term memory. Although this contention is sup-
ported by independent research (Nosofsky, Cox, et al., 2014; Nosofsky et
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al., 2020), it too requires additional testing. Following the approach taken
in previous research, it would be interesting to test whether the model can
simultaneously account for short- and long-term false recognition in the
same subjects. Such modeling may also further elucidate the role of differ-
entiation in short-term memory, which we were unable to explore conclu-
sively. Finally, it will be interesting to see how GCM relates to the recently
proposed TCC (Schurgin et al., 2019) given that both models make very
similar assumptions about stimulus representations.

6.2 On the parsimony of least commitment

I want to end with some brief thoughts on the parsimony of least-
committed representations. Exemplar models of memory have an
impressive record accounting for findings from domains as diverse as
attention, learning, categorization, and memory (Cox & Shiffrin, 2017; Lo-
gan, 2002; Osth & Dennis, 2020; Schmidt et al., 2016). These achievements
are, of course, the best testament to the potential of exemplar representa-
tions. I have additionally argued from a system design perspective, that
exemplars satisfy Marr’s principle of least commitment and, thus, qualify
as domain-general representational format. However, it is precisely this
assumption of retaining rich memory traces of each episode that may seem
prohibitive with respect to the models theoretical parsimony as well as
psychological and biological plausibility.

In the context of single- and dual-process models one may be skeptical
that a single-process model with least-committed representations and
complex processing capabilities would be more parsimonious than a dual-
representation model that assumes an inflexible process with simple lossy
representations. Although dual-representation models are not necessarily
more complex, as I noted in Chapter 2, there is typically a close relationship
between competing theories: dual-process models postulate one process
that is identical or closely related to the process posited by a competing
single-process model. That is, the second inflexible process with simple
lossy representations is an add-on that necessarily increases the complexity
of the model. Thus, although parsimonious dual-representation models
are conceivable, in practice least-committed single-process models are
more parsimonious.
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But are exemplar representations psychologically and biologically plau-
sible? Does it make sense to assume that every experience leaves a dis-
tinct trace in memory and is retrievable with an appropriate memory cue?
Could such a memory system be implemented in the brain? A recent theo-
retical analysis shows that MINERVA 2 and other exemplar models can be
implemented as distributed neural models (Kelly et al., 2017). Moreover,
through a combination of neuroanatomical and -computational methods,
the dentate gyrus of the hippocampus has been identified as a likely locus
of the formation of exemplar-like representations (Kumaran et al., 2016).
Although more often than not we complain about lapses, distortions, and
other failures, by introspection most people can attest to the impressive
storage capacity of human memory. The ability to retain detailed represen-
tations of large numbers of objects and scene has also been demonstrated in
experimental studies (e.g., Brady et al., 2008; Konkle et al., 2010). But prob-
ably the most convincing case for the massive capacity of human memory
is made by individuals with highly superior autobiographical memories
(HSAM; Parker et al., 2006). These individuals exhibit an impressive mem-
ory for events of their own life. Given a date they can name the day of
the week, the clothes they wore, and details of what happened without
practice or the use of mnemonics. For those details that are independently
verifiable LePort et al. (2012) found the reports to be correct 97% of the time.
Interestingly, the memory of HSAM individuals may not be fundamentally
different from that of normal healthy adults. A series of false memory stud-
ies revealed that HSAM individuals are no less susceptible to false memo-
ries caused by post-event misinformation or associatively related word lists
(Patihis et al., 2013). Hence, exemplar representations cannot be dismissed
by appealing to the implausibility of the implementation in the brain.

Despite their merits and evidence in favor of rich representations, efforts to
identify simpler representational formats should continue. A well-adapted
cognitive architecture matches the complexity of its representations to the
informational value of the environment:

There is a point where too much information and too much informa-
tion processing can hurt. Cognition is the art of focusing on the rele-
vant and deliberately ignoring the rest. (p. 20-21, Gigerenzer & Todd,
1999)

The key to optimizing psychological fitness is to develop appropriately rich
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representations.
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Appendix A

Appendix to Chapter 3

A.1 MINERVA 2 simulation method

We assumed that trials were encoded as combinations of stimulus and con-
text features. CSs and USs consisted of 10 unique features coded as 1.
Hence, for simplicity we assumed that all stimuli were unrelated to each
other. For USs 10 additional features coded stimulus valence with 1 for
positive, -1 for negative, and 0 for neutral or no valence. The contexts were
represented by 10 common and 20 distinguishing features. For the first
context, 10 distinguishing features were coded as 1, indicating the pres-
ence of some contextual features, and the remaining 10 features were coded
as -1, indicating the absence of other contextual features. The coding was
reversed for the second context. The context for end-of-study pleasant-
ness ratings was represented by the 10 common and 40 unique features,
all coded as 1—the distinguishing context features of the learning proce-
dure were coded as 0. Thus, we assumed participants would experience
the end-of-study rating procedure as markedly different from the learning
procedure.

We further assumed that participants’ memory initially contained informa-
tion unrelated to the experiment. This assumption was implemented by
starting with a memory containing 100 episodes where each feature was
randomly coded as -1, 0, or 1. Each CS-US pairing was appended to the
memory as a new trace and features were correctly encoded into memory
with a probability of p = 0.60 or as 0 otherwise. We simulated 10 trials for
each context (i.e. acquisition and counterconditioning or extinction). Each
simulation was repeated 30 times.
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To predict US expectancy and CS pleasantness ratings, we reasoned that the
CS in question and the current context act as cues to recall previous pair-
ings with USs. Hence, we used the CS and context to probe memory and
computed the normalized memory echo, in which features range from -1
to 1. The normalized memory echo represents the recalled information—a
mixture of all learning episodes involving the CS. We then determined the
valence of the recalled content by averaging across the recalled valence-
coding features. If the recalled content was positive we predicted an expec-
tation of a positive US and a positive CS evaluation. Thus, we predicted
US expectancy and CS pleasantness ratings based on the same informa-
tion. This approach is essentially equivalent to predicting US expectancy
from orthogonal category-specific features (e.g., human, animal, or object
features).

A.2 CS-US pairing memory

Here we report the analysis of participants’ US category and US identity
recognition responses.

A.2.1 Experiment 1

We analyzed US category and identity recognition responses using 2
(US valence order: US+ US° vs. US° US+) £ 2 (Context: First vs. Second)
repeated-measures ANOVAs.

Overall, US category recognition was quite accurate. We observed a small
recency effect, that is, US category recognition was somewhat better for
the second (M = .87, SD = .19) than for the first context (M = .78, SD = .22),
F (1,36) = 10.44, MSE = 0.03, p = .003, ¥̂2

G
= .051, BF10 = 76.76. We found no

noteworthy evidence for any other effects of our experimental manipula-
tions, all p ∏ .245, all BF01 ∏ 2.62.

A one-way repeated-measures ANOVA of end-of-study pleasantness rat-
ings of US categories indicated that participants remembered the valence
of the US categories, F (1.85,66.57) = 115.47, MSE = 4.48, p < .001, ¥̂2

G
= .710,

BF10 = 3.71£10
27. Without any exemplars available, participants rated the

animal category as more pleasant than the object category, ¢M = 2.81, 95%
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CI [1.94, 3.68], t (36) = 6.54, p < .001, BF10 = 5.01£10
6, and the human cate-

gory as less pleasant than the object category, ¢M = °4.32, 95% CI [°5.23,
°3.42], t (36) =°9.67, p < .001, BF10 = 2.26£10

14. Thus, recognition memory
for US categories may be indicative of participants’ US valence memory.
Note, however, that participants rated US categories after the US identity
recognition assessment during which we presented arrays containing all
exemplars from each US category.

Recognition accuracy for the specific USs that had been paired with CSs
followed a similar pattern. Overall, US identity recognition was quite ac-
curate in both the first (M = .73, SD = .25) and the second context, M = .82,
SD = .23. However, the observed recency effect in US identity recognition
appeared to be largely due to CSs that had first been paired with positive
and then with negative USs, F (1,36) = 9.48, MSE = 0.03, p = .004, ¥̂2

G
= .029,

BF10 = 26.39. Participants were less accurate to recognize the positive USs
that had been paired with CSs in the first learning phase than the cor-
responding negative USs from the first phase, ¢M = 0.17, 95% CI [0.08,
0.26], t (36) = 4.33, p < .001 (adjusted for two comparisons), BF10 = 219.60.
There was some evidence, however, that there was no recency effect for
CSs that had first been paired with negative USs and later with positive
USs, ¢M = 0.01, 90% CI [°0.06, 0.07], t (36) =°1.93, p = .061 (equivalence test
adjusted for three comparisons), BF01 = 5.45.

The memory-based judgment perspective assumes that EC requires mem-
ory of CS and US valence. We tested whether the observed changes in CS
pleasantness across contexts was contingent on memory for CS-US pairs.
Due to the overall high memory accuracy only small subsamples were
available to test our hypotheses. Nonetheless, we found some evidence
that the observed EC effects were contingent on memory for US categories,
F (1,6) = 7.67, MSE = 6.52, p = .032, ¥̂2

G
= .113, BF10 = 5.68. This finding also

corroborates that US category recognition is indicative of US valence mem-
ory. Our analyses regarding the role of memory for US identity were incon-
clusive, F (1,11) = 2.31, MSE = 5.29, p = .157, ¥̂2

G
= .008, BF01 = 1.60.
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A.2.2 Experiment 2

A.2.2.1 Confirmatory results

We analyzed US category recognition accuracy using 2 (Valence: Positive
vs. Negative) £ 2 (Learning procedure: Acquisition vs. Extinction) £ 2 (Con-
text: First vs. Second) repeated-measures ANOVA. As in Experiment 1, US
category recognition was quite accurate. However, participants better re-
membered that no US had been presented (M = .92, SD = .18 and M = .93,
SD= .20 for acquisition and extinction, respectively) than the correct US cat-
egory when a CS had been paired with a US, M = .80, SD= .31 and M = .80,
SD = .29 for acquisition and extinction, respectively, BF10 = 1.66£10

12. Be-
yond the recognition advantage for US absence, we found evidence indi-
cating that recognition performance was comparable between the learning
procedures, BF01 = 7.69. We found no noteworthy evidence for any other
effects of our experimental manipulations, all BF10 ∑ 2.21.

We analyzed US identity recognition accuracy using 2 (Valence: Positive
vs. Negative) £ 2 (Learning procedure: Acquisition vs. Extinction) repeated-
measures ANOVA. US identity recognition, too, was quite accurate in both
acquisition (M = .87, SD = .26) and extinction procedures, M = .85, SD =
.27. We found no noteworthy evidence for any effects of our experimental
manipulations, all BF10 ∑ 1.39.

A.2.2.2 Exploratory results

As in Experiment 1, a one-way repeated-measures ANOVA of end-of-study
pleasantness ratings of US categories indicated that participants remem-
bered the valence of US categories, BF10 = 5.96 £ 10

51. Without any ex-
emplars available, participants rated the animal category as more pleas-
ant than the object category, BF10 = 5.88£10

14, and the human category as
less pleasant than the object category, BF10 = 1.63£10

29. Thus, recognition
memory for US categories may be indicative of participants’ US valence
memory.

Memory for CS-US pairings was too accurate to test whether the observed
differences in EC effects across referenced contexts was contingent on
memory for CS-US pairs.
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A.2.3 Experiment 3

A.2.3.1 Confirmatory analyses

We analyzed US category recognition accuracy using 2 (Valence: Positive
vs. Negative) £ 2 (Learning procedure: Acquisition vs. Extinction) £ 2 (Con-
text: First vs. Second) £ 2 (DV order: Pleasantness first vs. Expectancy first)
ANOVA with repeated-measures on the first three factors. Again, US cat-
egory recognition was quite accurate. We found that the effect of con-
text on US category memory differed between learning procedure, BF10 =
1.29£10

14. Unlike in Experiment 2, we found evidence indicating that the
recognition advantage for US absence was dependent on the learning pro-
cedure, BF10 = 250.44. Participants best remembered that a US was absent
in the acquisition procedure (M = .89, SD = .26); however, memory for US
absence in the extinction procedure (M = .78, SD = .34) was comparable to
the memory for the correct category when a CS had been paired with a US
(M = .76, SD = .31, and M = .74, SD = .32 for acquisition and extinction, re-
spectively). These results were not affected by DV order, BF01 = 8.13; we
found evidence that there were no other effects of our experimental manip-
ulations, all BF01 ∏ 6.19.

We analyzed US identity recognition accuracy using 2 (Valence: Positive
vs. Negative) £ 2 (Learning procedure: Acquisition vs. Extinction) £ 2 (DV
order: Pleasantness first vs. Expectancy first) ANOVA with repeated-
measures on the first two factors. US identity recognition, too, was quite
accurate in both acquisition (M = .85, SD = .28) and extinction procedure
(M = .85, SD = .28). We found weak evidence suggesting that memory for
negative USs (M = .87, SD = .26) was better than for positive USs (M = .83,
SD= .29, BF10 = 3.46) but there was no noteworthy evidence indicating that
any other experimental manipulation affected US identity recognition, all
BF10 ∑ 1.80.

A.2.3.2 Exploratory analyses

As in the previous experiments, a one-way repeated-measures ANOVA of
end-of-study pleasantness ratings of US categories indicated that partici-
pants remembered the valence of the US categories, BF10 = 2.11£10

150. Par-
ticipants remembered the animal category as more pleasant than the object
category, BF10 = 4.04£10

34, and human category as less pleasant than object
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category, BF10 = 1.15£ 10
79. Thus, recognition memory for US categories

may be indicative of participants’ US valence memory.

Memory for CS-US pairings again was too accurate to test whether the ob-
served differences in EC effects across referenced contexts was contingent
on memory for CS-US pairs.

A.3 Normative IAPS ratings for USs

Table A.1: Identifiers of IAPS pictures used in CS-US and as
filler USs with mean normative pleasure and arousal ratings
(standard deviations in parentheses).

CS-US pairs

Positive Neutral Negative US-US pairs

1610 7000 2750 9280
1604 7035 2312 5970
1620 7002 3300 5611
1600 7009 2900.1 5250
1750 7004 2276 5660
1500 7233 2753 5870
1460 7090 2110 5720
1721 7080 9041 5780
1540 7006 9331 9000
1440 7175 2399
1463 7705 2100
1590 7025 2455

Pleasure 7.56 (0.44) 4.97 (0.17) 3.12 (0.49) 5.61 (1.94)
Arousal 4.15 (0.57) 2.53 (0.40) 4.36 (0.28) 3.95 (0.74)

Note. IAPS = International Affective Picture System (Lang,
Bradley, & Cuthbert, 2008), CS = Conditioned stimulus, US =
Unconditioned stimulus

A.3.1 References

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International
affective picture system (IAPS): Affective ratings of pictures and instruction
manual (Technical Report A-8). University of Florida, Gainesville, FL.
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Table A.2: Weighted means (and standard devi-
ations) of normative US pleasantness in Experi-
ment 1.

Valence Pleasure Arousal

Acquisition
Positive 7.55 (0.42) 4.23 (0.44)
Negative 2.81 (0.48) 4.54 (0.36)

Counterconditioning
Positive 7.54 (0.42) 4.20 (0.45)
Negative 2.82 (0.44) 4.52 (0.37)

Note. Normative ratings from Lang et al. (2008).
US = Unconditioned stimulus
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Appendix B

Appendix to Chapter 4

B.1 Gist and verbatim activation from inter-item similarities

In the following, we examine the global matching interpretation of gist and
verbatim activation at the level of inter-item similarities. We assume that
the study list is composed of sublists of related items and that any item
can serve as memory probe, as is the case in study lists composed of exem-
plars from various categories (e.g., Buchanan, Brown, Cabeza, & Maitson,
1999; Andermane & Bowers, 2015; Pierce, Gallo, Weiss, & Schacter, 2005;
Stark, Yassa, Lacy, & Stark, 2013). Further, we assume that ∞ = 1 to enable
expansion of the summed probe-trace similarities f : The familiarity for a
lure xi = L drawn randomly from the non-studied exemplars of a category
expands to

f
(L) =

JX

j=1

¥(L, y j )

=
PX

p=1

¥(L,rp )

| {z }
partial matches

+
QX

q=1

¥(L,uq )

where rp are related traces of items from the same sublist and uq are un-
related traces of items from different sublists. The sum of similarities be-
tween the lure L and the related traces rp represents the contribution of
partial matches.

Similarly, the familiarity for a new unrelated distractor xi = N drawn ran-
domly from the non-studied sublists expands to
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f
(N ) =

PX

p=1

¥(N ,rp )+
QX

q=1

¥(N ,uq )

Assuming that items from different sublists exhibit no systematic similarity
to items of the lure’s sublist, it follows that

QX

q=1

¥(N ,uq ) º
QX

q=1

¥(L,uq ) º
QX

q=1

¥(T,uq )

where T is a target probe1, the numerator for G in Equation (4.5) simplifies
to

f
(L) ° f

(N ) º
PX

p=1

¥(L,rp )°¥(N ,rp )

We expand the summed similarity for a target T to an additional addend
for exact matches,

f
(T ) =

PX

p=1

¥(T,rp )+
QX

q=1

¥(T,uq )

=
OX

o=1

¥(T,T
§

)

| {z }
exact matches

+
P
0X

p 0=1

¥(T,r
0
p 0)

| {z }
partial matches

+
QX

q=1

¥(T,uq )

where T
§ is the trace left by T during study list presentation and r

0
p 0 are

other related traces of study list items from the same sublist. Given that
sublist items can be randomly selected to serve as target or lure,

P
0X

p 0=1

¥(T,r
0
p 0) º

P
0X

p 0=1

¥(L,r
0
p 0)

the numerator for V in Equation (4.4) simplifies to

1The approximate equality of summed similarities between any sublist item and all stud-
ied items from other sublists implies a mnemonic interpretation of the b parameter in the
CRM (pp. 169-170; Brainerd, Reyna, & Mojardin, 1999)
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f
(T ) ° f

(L) º
OX

o=1

¥(T,T
§

)°¥(L,T
§

)+
P
0X

p 0=1

¥(T,r
0
p 0)°¥(L,r

0
p 0)

ºO[¥(T,T
§

)°¥(L,T
§

)]

ºO[1°¥(L,T
§

)]

B.1.1 E�ects of di�erentiation

Besides emphasizing the separable contributions of exact and partial
matches to true and false recognition, the above expressions clarify the
effect of differentiation. First, consider the effect of differentiation on the
incremental contribution of exact matches (V ). As implemented here,
differentiation yields a steeper similarity gradient for repeatedly studied
items, ¥(xi , yi ) > ¥(xi , yi )

± = exp(°c± ·d(xi , y j )), where ±> 1. Knowing that 0
< ¥(L,T

§
) < 1, the following clearly shows that estimates of V increase as

the differentiation factor ± increases,

f
(T ) ° f

(L) ºO[¥(T,T
§

)
±°¥(L,T

§
)
±

]

ºO[1°¥(L,T
§

)
±

]

Expansion of the simplified numerator of Equation (4.5), which we pre-
sented above, shows that differentiation also reduces estimates of G (to a
much smaller extent b).

f
(L) ° f

(N ) ºO[¥(L,T
§

)
±°¥(N ,T

§
)
±

]+
P
0X

p 0=1

¥(L,r
0
p 0)°¥(N ,r

0
p 0)

Because by definition ¥(L,T
§

) > ¥(N ,T
§

), differentiation attenuates ¥(L,T
§

)

more than ¥(N ,T
§

).

While GCM requires differentiation to account for selective influence of
repeated study on true recognition, it is important to note that GCM can
produce two-dimensional response patterns without differentiation, Fig-
ure B.1.
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Figure B.1: State-trace plot of averaged (top) and individual responses (bot-
tom) and posterior predictions of M GCM

£± . From each group we show the
two participants with strongest support for the non-monotonic (top row)
and monotonic models (bottom row, see Figure 4.3). Points represent av-
erage observed rates of old-responses; error bars indicate 95% bootstrap
confidence intervals based on 10,000 bootstrap samples. Ellipses represent
multivariate normal-approximations to 95% credible regions posterior pre-
dictions. The inset shows the proportion of old-responses to unrelated new
probes; kernel density estimates represent the posterior predictions.
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51(12), 2442–2449. https://doi.org/10.1016/j.neuropsychologia.
2012.12.014

B.2 Cognitive modelling details

In the following we provide additional information on prior specification
and model fits for CRM and GCM.

B.2.1 Conjoint-Recognition Model

Based on previous results and inspection of prior predictions we specified
an informed prior on µ(b) but used standard uninformative priors for the
latent memory parameters for the g th group and hth condition,

µ(b) ªN (°1.3,0.5)

µ(V )

g h
ªN (0,1)

µ(G)

g h
ªN (0,1)

For standard deviations and parameter correlations we used vaguely infor-
mative priors,

æ(µ)

g h
ªG (2,3)

≠g ªL K J (2)

B.2.1.1 Model fit

In the application of multinomial processing-tree models it is customary
to test whether model predictions deviate from the observed category fre-
quencies by means of G

2 tests. In the Bayesian hierarchical modeling frame-
work model fit is often assessed visually and quantitatively (Chapter 6, Gel-
man et al., 2015). We visually compared posterior predictive distributions
of each model to the observed data and computed summary T statistics to
quantify model fit (Equations 17 and 18, Klauer, 2010). Posterior predictive
checks, both visual and quantitative, rely on comparisons of observed data
nobs to new data generated from the model after it has been fit to the data.
Thus, for each posterior sample of person-level parameters µ a new data

https://doi.org/10.1016/j.neuropsychologia.2012.12.014
https://doi.org/10.1016/j.neuropsychologia.2012.12.014
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set npr ed is generated randomly from the model. To quantify deviations of
the data from model predictions a summary statistic T (n,µ) is computed for
observed and predicted data. Model fit is assessed based on the estimated
probability p that T (npr ed

,µ) > T (nobs
,µ). A small value of p indicates that

the observed data deviate strongly from data that are plausible given the
model.

We assessed the fit of our models with respect to three aspects of the data:
participant-level frequency of old responses (TP ), mean frequency of old
responses across participants (TM ), and covariance of frequency of old re-
sponses (TCov ). For TP and TM we calculated expected frequencies of old
responses for participant i in condition k as n̂i k = Nk P (Ci k |µi ), where Nk is
the number of observed responses. TP was defined as

TP (n,µ) =
X

i k

(ni k ° n̂i k )
2

n̂i k

,

where ni k is the observed frequency of old responses by participant i in
condition k. TM was defined accordingly by averaging response frequen-
cies across participants, i.e. n.k = 1

n

P
n

i=1
ni k and n̂.k = 1

n

P
n

i=1
n̂i k . Similarly,

deviations from the expected covariance of frequencies are quantified as

TCov (n,µ) =
X

k

X

l

(sk,l ° æ̂k,l )
2

p
æ̂k,k æ̂l ,l

,

where s is the observed and æ̂ the expected variance-covariance matrix. æ̂ is
calculated from expected frequencies n̂i k and n̂i l ; variances on the diagonal
are corrected2 by addition of

P
i npk (1°pk )

n
£ (n °1)

n
.

B.2.2 Generalized Context model

Based on previous results and inspection of prior predictions we specified
vaguely informative priors on all unconstrained parameter means of the
g th group,

2The term used by Klauer (2010) additionally corrects the expected covariances between
response categories within each independent multinomial processing tree. Because we
modeled the proportion of old responses as binomial outcome this correction was omitted.
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Figure B.2: Posterior predictive p-values for means at participant- and
group-level as well as the variance-covariance matrix of participant means
as predicted by our Conjoint Recognition Model variants. Error bars repre-
sent upper bound 95% Monte Carlo confidence intervals (Rosenthal, 2017).
The vertical line indicates a posterior predictive p-value of 0.05. All models
describe the data adequately.
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log(µ(c)

g
+0.5) ªN (0.1,0.5)

©°1
(1/µ(±)

g
) ªN (°0.26,0.23)

log(µ(m
0
)

g
) ªN (1,1)

log(µ(k)

g
+0.33) ªN (1,0.67)

log(µ
(∞)

g +0.5) ªN (0.1,0.5)

log(dinter +3) ªN (1,0.67)

For standard deviations and parameter correlations we again used vaguely
informative priors,

æ(c)

g
ªG (2,5)

æ(±)

g
ªG (2,3)

æ(±)

m0 ªG (2,3)

æ(k)

g
ªG (2,3)

æ
(∞)

g ªG (2,5)

≠g ªL K J (2)

B.2.2.1 Inter-category distance estimate

Without distance estimates for stimuli from different categories the GCM
cannot predict old-responses to new distractors, i.e., exemplars from new
categories. We, therefore, estimated an auxiliary parameter dinter as a
stand-in for any d(xi , y j ) where i and j were from different categories.
The obtained estimate of dinter = 8.08 95% HDI [7.44, 8.81] is in a psy-
chologically plausible range. Figure B.3 shows the posterior distribution
in comparison to the empirical distribution of within-category distances
obtained from MDS of similarity ratings from Hout, Goldinger, & Brady
(2014). The inter-category distance is estimated to be considerably larger
than all within-category distances. The inset of Figure B.3 shows a normal
quantile-quantile plot comparing the distribution of within-category
distances to a normal distribution. In line with the results reported by
Johns & Jones (2010) for lexical semantics, the distribution is substantially
skewed towards fewer high-similarity word pairs.
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Figure B.3: Estimates of distances between study list items in psychological
similarity space. The yellow distribution represents the the kernel density
estimate of all pairwise within-category distances obtained from the multi-
dimensional scaling (MDS) of similarity ratings from Hout et al. (2014). The
solid purple distribution represents the posterior distribution for the aux-
iliary parameter dinter, a stand-in for any distance d(xi , y j ) where xi and y j

are items from different categories, in the fitted Generalized Context Mod-
els (GCM). The inset shows a normal quantile-quantile plot comparing the
distribution of within-category distances to a normal distribution.
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Table C.1: Analysis of variance results for adjusted “Old”-response rates.

Effect F df
GG

1
df

GG

2
MSE p ¥̂2

G
BF10

Material 189.33 1.99 159.22 0.09 < .001 .269 4.52£10
143

Target presentations 71.63 1 80 0.06 < .001 .044 7.74£10
19

Category size 266.64 1 80 0.03 < .001 .085 3.69£10
40

Probe type 768.24 1 80 0.11 < .001 .471 4.93£10
290

Material £ Target presentations 2.17 1.96 156.94 0.05 .118 .003 0.16
Material £ Category size 4.53 1.97 157.82 0.03 .013 .003 0.21
Target presentations £ Category size 2.29 1 80 0.03 .135 .001 0.17
Material £ Probe type 49.17 1.82 145.45 0.05 < .001 .048 7.03£10

20

Target presentations £ Probe type 24.00 1 80 0.03 < .001 .007 179.93
Category size £ Probe type 82.47 1 80 0.04 < .001 .031 3.14£10

13

Material £ Target presentations £ Category size 1.19 1.99 159.16 0.02 .308 .001 0.05
Material £ Target presentations £ Probe type 2.21 1.96 156.86 0.03 .114 .001 0.10
Material £ Category size £ Probe type 9.18 1.78 142.80 0.03 < .001 .006 9.89
Target presentations £ Category size £ Probe type 0.22 1 80 0.03 .641 .000 0.11

Material £ Target presentations £ Category size £ Probe type 1.10 1.98 158.26 0.02 .336 .001 0.06

Note. The rate of false recognition was adjusted by subtracting “Old”-response rates to unrelated new probes from those to
lures. For the Bayesian analysis we used a scale of r =

p
2/2 for the prior distribution.



C.1. ADDITIONAL RESULTS 273

Table C.1 summarizes the ANOVA results of the adjusted “Old”-response
rates in our experiment.
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Figure C.1: Posterior predictive p-values for means at participant- and
group-level as well as the variance-covariance matrix of participant means
as predicted by our Conjoint Recognition Model variants. Error bars repre-
sent upper bound 95% Monte Carlo confidence intervals (Rosenthal, 2017).
The vertical line indicates a posterior predictive p-value of 0.05. All models
describe the data adequately. The increase in fit for the variance-covariance
structure is likely due to an overly informative prior setting that needs to
be explored further.

When fitting the CRM to our data, we assessed the fit of each model with
respect to three aspects of the data: participant-level frequency of old re-
sponses (TP ), mean frequency of old responses across participants (TM ),
and covariance of frequency of old responses (TCov ; for details see Chapter
4). As shown in Figure C.1, all models describe the data adequately.
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