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Electro-encephalography (EEG) and electro-oculography (EOG) are methods of
electrophysiological monitoring that have potentially fruitful applications in neuroscience,
clinical exploration, the aeronautical industry, and other sectors. These methods are often
the most straightforward way of evaluating brain oscillations and eye movements, as
they use standard laboratory or mobile techniques. This review describes the potential
of EEG and EOG systems and the application of these methods in aeronautics. For
example, EEG and EOG signals can be used to design brain-computer interfaces (BCI)
and to interpret brain activity, such as monitoring the mental state of a pilot in determining
their workload. The main objectives of this review are to, (i) offer an in-depth review of
literature on the basics of EEG and EOG and their application in aeronautics; (ii) to explore
the methodology and trends of research in combined EEG-EOG studies over the last
decade; and (iii) to provide methodological guidelines for beginners and experts when
applying these methods in environments outside the laboratory, with a particular focus
on human factors and aeronautics. The study used databases from scientific, clinical,
and neural engineering fields. The review first introduces the characteristics and the
application of both EEG and EOG in aeronautics, undertaking a large review of relevant
literature, from early to more recent studies. We then built a novel taxonomy model
that includes 150 combined EEG-EOG papers published in peer-reviewed scientific
journals and conferences from January 2010 to March 2020. Several data elements
were reviewed for each study (e.g., pre-processing, extracted features and performance
metrics), which were then examined to uncover trends in aeronautics and summarize
interesting methods from this important body of literature. Finally, the review considers
the advantages and limitations of these methods as well as future challenges.

Keywords: human factors, aeronautics, cognition, brain computer interface, signal processing, mental workload,

fatigue

INTRODUCTION

Electro-encephalography (EEG) and electro-oculography (EOG) are methods of
electrophysiological monitoring in neuroscience and clinical exploration. EEG and EOG
signals can be used in the design of brain-computer interfaces (BCI) that interpret brain activity.
Due to the fact that they are straightforward approaches to evaluating brain oscillations and eye
movements, and because they use standard laboratory and/or mobile techniques, EEG and EOG
have in recent years been applied to the aeronautical industry.
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This review describes the potential of these systems when
applied in aeronautics. The main objectives are, (i) to offer an
in-depth review of literature on the basics of EEG and EOG and
their application in aeronautics; (ii) to explore the methodology
and trends of research in combined EEG-EOG studies over
the last decade; and (iii) to provide methodological guidelines
for beginners and experts when applying these methods in
environments outside the laboratory, with a particular focus on
human factors and aeronautics.

The review is structured as follows: section Introduction first
describe EEG and EOG techniques, the main approaches to
acquiring signals, and the use of them in aeronautics, before
concluding with discussions of themotivations for applying them
to aeronautics, and a discussion of contributions to this field.
Section Methodology of the Review describes the methodology
used to construct the review and taxonomy table, respectively.
Section Results then presents the results of the review, including
the trend analyses. Finally, section Discussion discusses research
over the last decade with a focus on combined approaches to
EEG-EOG and the relevance of this approach to aeronautics.

Electroencephalography (EEG)
Origin of EEG Response
EEG is one of the most important methods of evaluating
brain disorders and monitoring the electrical behavior of the
brain. The EEG also has the major advantage of excellent
temporal resolution, which enables it to study neural activity at
a millisecond scale, and best approximates the neural timing.
EEG allows for the analysis of the various rhythms generated by
different cortical regions. The current produced by the electrical
activity of neurons reaches the surface of the scalp. EEG offers
a non-invasive method of recording the difference between the
potentials that are generated by neural sources and annoying
non-neural artifacts. As the signal induces important temporal
and spatial variations, the electrode positions are determined
using multiple channels settled by the international 10–20
standard. Recommendations for the use of EEG equipment in
assessments are provided by the International Federation of
Clinical Neurophysiology (Babiloni et al., 2020). The electrical
signal is diffused from electrodes placed on the scalp to an
external amplifier that intensifies the potentials. EEG signals are
commonly detected between 20 and 150 µV in the 0.5–60Hz
band (Binnie et al., 1982). The signal is constantly sampled
to provide a relevant temporal resolution to explore event-
related potentials (ERP) and the EEG power spectrum. In
research focused on frequency-based analyses (such as prefrontal
lateralization of alpha or beta bands), a sampling rate of 128Hz
can be sufficient. When the objective is high time precision
measurements (such as language-related high gamma activity),
the EEG should ideally collect data at a high sampling rate
(>500 Hz).

EEG analysis could be conducted in the time domain,
frequency domain, or time-frequency domain. Extracting
temporal features (e.g., amplitude, power, average periodicity,
and synchronization) provides useful qualitative information for
the classification. However, all of these temporal characteristics
do not describe the signal in its integrity. During a seizure, for

instance, the signal is not stable, and it is necessary to separate
the frequency components to classify the seizure. Therefore, in
addition to time-domain features, frequency domain exploration
is also needed to detect and classify all types of seizures. A time-
domain analysis provides better spatial information, thus poor
frequency content information is required for EEG classification.
The frequency-domain can provide time information when the
function is windowed. The choice of window size is the biggest
challenge in frequency analysis. Time-frequency analysis solves
these two problems. Some EEG investigations consider that
wavelet analysis is the best method for time-frequency analysis.
Generally, authors apply a series of transformations e.g., Fourier
transform (Radha et al., 2014), Short Time Fourier Transform
(Görür et al., 2003), Wavelet transform (Fraiwan et al., 2012),
Hilbert-Hung transform (Li et al., 2009), and Empirical Mode
Decomposition (Hassan and Bhuiyan, 2016). Spectral analyses,
based on Fourier Transform, are then commonly used to convert
the time function into different frequencies and to calculate the
amplitude in each frequency band. The frequency bands are
universally classified as the following: slow and sleep wave delta
(2–4Hz), arousal wave theta (4–8Hz), relaxation wave alpha (8–
12Hz), and active wave beta (13–32Hz). Sensorimotor rhythm
frequency bands (13–15Hz) are related to the sensorimotor
rhythm and entitled as low beta. Delta waves are commonly
frontally located in adults and posteriorly in children. Theta
waves are mainly recorded in frontal areas during low brain
activities, sleep, or drowsiness and cognitive processing. Alpha
waves are among the first rhythmic waves documented and are
recorded during relaxed conditions at decreased attention levels
and in a wakeful state. The alpha waves are located in the occipital
area and can be induced by closing eyes. Beta waves are often
recorded in frontal or central areas when the eyes are open
and are related to consciousness, alertness, arousal, and motor
behaviors (Barry and De Blasio, 2017). Cognitive processes such
as attention, learning, and diverse types of memory occur during
gamma frequencies (over 33Hz). Unconventional classifications
have also been analyzed in some studies (Caldwell et al., 2002;
Gevins et al., 2003; Dahlstrom and Nahlinder, 2009; Holm et al.,
2009; De Vico Fallani et al., 2012; Zhang et al., 2019a). It is
worth mentioning that the frequency limits of specific waves are
conventional, as there is no proper way of determining their
exact values.

Many studies on oscillations in brain dynamics have indicated
that during fatigue accumulation and sustained attention,
increased EEG power is detected in theta frequency bands in the
frontal, parietal, and central regions. Theta power increase has
been detected during working memory load situations (Klimesch
et al., 2007), visual tasks (Yamada, 1998), flight simulations
(Smith-Jentsch et al., 2001; Dussault et al., 2004; Borghini et al.,
2014), and air-traffic control simulations (Postma et al., 2005).
A decrease in the alpha is known to occur during complex and
cognitively demanding tasks. It has also been shown (Postma
et al., 2005) that alpha and beta bands are different between the
beginning and the end of a mental fatigue task. Increases in theta
and decreases in alpha oscillations have also been associated with
an increase in the accuracy of task performance (Klimesch et al.,
1999). Interestingly, such an increase in EEG power in the theta
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band can be used to characterize a single task from a multi-
task activity performed by pilots (Borghini et al., 2014). Varied
EEG approach montages are given in complex higher-order
cognitive operations.

EEG Approaches
Although great importance has been placed on classic unmovable
EEG montages, they have disadvantages in that they are much
bulkier and more time and effort consuming than the new
generation of wearable EEG. The concept of wearable EEG
improves upon the bulky and limited mobility of classic
montages, using small devices that can record EEG outside
of laboratory conditions. These miniaturized devices have the
advantage of being able to detect EEG signals for short or long
periods, for example when sleeping, which significantly improves
the brain-computer interface (BCI) monitoring method. The
importance of using the wireless EEG in BCI monitoring
is to maximize wearability, enabling unconstrained mobility,
usability, and reliability in operational environments.

As well as involving long preparation time and bulky
design, classical scalp-mounted EEG are not suited to situations
that involve environmental artifacts (e.g., aviation and space
operation, or patients with a cochlear implant or hearing aid;
Nogueira et al., 2019). To address these issues, novel EEG
technologies use tiny electrodes that are placed externally around
the ear (Debener et al., 2015; Bleichner and Debener, 2017) or
involve in-ear electrodes (Looney et al., 2011). The cEEGrid
electrode array (Debener et al., 2015) is a promising device with
10 electrodes printed onto a C-shaped flexible board, enabling
it to fit around and measure EEG data behind the ear. It also
uses a small amount of electrolyte electrode gel, which ensures
low-impedance contact between the cEEGrid electrodes and
the skin. The capacity is stable because the gel does not dry-
up. The cEEGrid electrode array is then connected to a micro
wireless amplifier and uses signal recordings from a cellphone.
This accessible design means that it has potential applications in
clinical settings, aeronautics, and other research areas.

With a reduced number of electrodes, the difference between
cEEGrid performance and scalp EEG performance can be
explained by the position of the reference electrode. The cEEGrid
uses a local reference, with ground and recording electrodes
allocated around the ear, giving out small signal amplitudes.
However, for a scalp EEG with a smaller number of electrodes
around the ear, the tip of the nose is used as a reference,
and its position is farther from the recording electrode, and
therefore gives higher amplitudes. In line with conventional
EEG results, Debener et al. (2015) identified ERPs and alpha
frequencies during an auditory oddball task with open eyes using
the cEEGrid. Advanced explorations proved that the cEEGrid can
detect neural signals to select the voice of a speaker with high
precision, and can be even used as a BCI monitor for hearing aids
(Mirkovic et al., 2016). Recently, the cEEGrid was successfully
used in decoding selective attention in normal hearing and
cochlear implant patients (Nogueira et al., 2019). Looney et al.
(2011) presented the in-ear EEG device. It records to the same
standards as the conventional scalp electrodes. However, the
device relies on custom-made hearing aid earplugs, which take a

wax impression of the ears (outer ear and external ear canal). The
important benefits of in-ear EEG includes easy set-up; time of
installation; accessibility for people with hair that is incompatible
with EEG recordings; and durability because they are fixed in
the ear canal. They are comfortable to wear, discreet, resembling
earphones, earbuds, and earplugs, and facilitating everyday use.
Contrary to scalp EEG, the in-ear EEG devices are easy to
place without the presence of experienced assistants. They are
held firmly in place and thus diminish motion artifacts. Since
the electrodes are fixed on the earpiece surface, they offer a
precise spatial positioning which decreases the inter-experiment
variability. The feasibility of in-ear EEG for cognitive assessment
has been studied in a few exploratory papers (Stochholm et al.,
2016; Von Rosenberg et al., 2016; Zibrandtsen et al., 2016), which
claim that in-ear EEG is a promising candidate for forthcoming
explorations based on human monitoring technology (BCI,
aviation, and space).

Despite advances in mobile EEG systems, around and in-
ear EEG have some drawbacks. Compared to conventional scalp
EEGs, these alternative systems have fewer electrodes and cover
much-reduced regions. Therefore, it is recognized that its brain
source analysis is less accurate than that of conventional scalp
EEG. Note that physiological artifacts caused by the electrical
activity of the skin are unavoidable, but may be relatively easy
to deal with by temporal filtering and other post-processing
procedures (Reis et al., 2014). The quality of the scalp EEG
signal depends on the connection between the amplifier input
and the skin surface. Wet electrodes based on conductive gel
guarantee low impedance levels (<10 kΩ). Given that dry
electrodes are placed on the skin without any gel application,
the dry EEG system typically results in larger impedance than
wet systems (Brown et al., 2010; Chen et al., 2014). To date,
few studies have directly compared the data quality between
these two systems. A recent study (Hinrichs et al., 2020) found
that the resting state EEG power and ERP were comparable
between the two systems. Di Flumeri et al. (2019) evaluated three
different dry electrode types when compared with wet electrodes
in terms of signal spectral features, mental state classification,
and usability. The dry electrodes included a gold-coated single
pin, multiple pins, and solid-gel electrodes. The results confirmed
the high quality achieved by dry electrodes. They offered the
same levels as wet electrodes with significantly reduced times of
montage and increased the comfort of users. Although the signal
quality is inevitably reduced, the dry electrodes are a reliable
system for non-clinical and goal-oriented investigations, such as
a comparison between two different mental states during real
flight conditions.

EEG in Aeronautics
Since the late 1950s, many studies have investigated changes in
EEG rhythms during flight conditions (Carl et al., 1959) despite
the noisy environment (e.g., vibration, wind, acoustic noise,
physiological artifacts, and important pilot physical movements).
The recorded EEG signals show specific features and changes in
the power spectrum of the various frequency bands associated
with flight performance (Carl et al., 1959). One EEG experiment
(Callan et al., 2015) conducted under real flight conditions,
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showed that the neural signature of inattentional deafness (e.g.,
inadvertently missing an auditory stimulus) was revealed by
a reduction in phase resetting in the alpha and theta band
frequencies. Sauvet et al. (2014) have used a single EEG
channel during real long-haul flights to detect low states of
vigilance. Another EEG study involved a critical scenario in
a flight simulator (Dehais et al., 2016), which detected the
existence of an early and unconscious gating mechanism based
on the association between the auditory alarm and the N100
and P300 amplitude. Di Stasi et al. (2016) analyzed the in-
flight EEG activity of military helicopter pilots during real
flights. They found that highly demanding procedures related
to takeoff and landing were associated with higher power
EEG frequency bands, whereas less demanding procedures were
associated with lower EEG power over the same frequency
bands. Several EEG investigations have focused on the mental
workload of the operator during a flight task execution. For
example, EEG revealed variations in alertness and could predict
lower performance caused by increased mental workload during
flight operations (Borghini et al., 2014). Theta changes were
observed over the frontal brain areas when comparing the
training improvements of novice pilots in flight simulation tasks
(Borghini et al., 2014).

Workload perception was shown to be dependent on the
level of experience, the abilities, or just the individual differences
between pilots. The EEG was sensitive to workload level variance
between novice and expert aircraft pilots during the execution
of the identical task (Doppelmayr et al., 2008; Parasuraman and
Jiang, 2012).

Recent studies exploring Air Traffic Controllers (Bernhardt
et al., 2019) have computed an EEG-based workload index
that could differentiate between task workload requirements
exploring front-parietal brain function. Yet, EEG exploration
has achieved traction in aviation and space operations, current
studies face challenges related to the intrusive and bulky nature
of the equipment (Caldwell et al., 2002), the discomfort of long
preparation time, and dependence on gel electrodes (e.g., wet
electrodes). In a recent study, Dehais et al. (2019) tested a dry
EEG system on pilots during the low and high load traffic patterns
associated with the passive auditory oddball. Analysis of ERPs
and frequency characteristics has confirmed that dry EEG can
be used to study cognition during highly ecological and noisy
conditions. Recent developments in dry electrodes (Liao et al.,
2012) allow them to reduce preparation time by eliminating the
conductive gel or saline patch and preparing the skin to reduce
the contact impedance. Some dry electrodes use a ring model
with pins to touch the scalp (Hairston et al., 2014), while other dry
electrodes use foam-based supplies covered in conductive textile
materials. Other promising non-contact electrode techniques
enable weak biopotentials to be amplified using a contact-free
electrode-skin.

Electro-Oculograghy (EOG)
Origin of EOG Response
The EOGmethod recognizes the differences in potential changes
induced by eye movements between two electrodes placed either
horizontally or vertically around the eyes. Early eye movement

studies revealed that the human eye is an electric dipole,
comprising a positively charged cornea and a negatively charged
retina (Anderson, 1937).When the eyeball moves in the direction
of the electrode, the electrical potential increases and it decreases
when the eye moves in the other direction. The voltage variation
between the poles is known as corneoretinal potential and varies
between 0.4 and 1mV. The acquired potential varies based on
the viewing angle, up to an angle of 30 degrees (Anderson, 1937).
When the eyes do not move and are fixed, the potential does
not vary. When the eye moves in the direction of the sensor,
the potential greatly increases. Importantly, for people who are
blind, or when people have their eyes are closed, the electrical
changes remain. There are many configurations for electrode
placement. Commonly, the horizontal electrodes are placed at the
external borders of the eyes while the vertical ones are positioned
above and below the eye (Singh and Singh, 2012). The horizontal
EOG signal is the difference of the voltage between horizontal
electrodes and the vertical EOG signal is the subtraction of the
voltage between the vertical electrodes. Usually, the reference
electrode is placed on the forehead (Barea et al., 2002) in the
middle of the eyes (Yamagishi et al., 2006) or on the mastoids
(Pettersson et al., 2013). Other atypical electrode placements have
been extensively tested such as six electrodes positioned above
and below both the eyes (Pettersson et al., 2013). Some typical
and atypical electrode placements are presented in Figure 1.

Other studies have used a headband to place electrodes close to
the skin and minimize noise, but without measuring the vertical
eye movements (Chang, 2019). Adopting this technique, Yan
et al. (2013) positioned five electrodes, one horizontal and one
vertical around each eye in addition to the reference. Kanoh
et al. (2015) placed electrodes near nasion and on both sides
of the rhinion, which correspond to the bridge and nose pads
of eyewear. Another remarkable placement was proposed by
Manabe et al. (2013), who pioneered in-ear EOG signal detection
by testing different material- electrode combinations that are
suitable for daily use. They highlighted the relation between the
in-ear electrical signal and eyemovement but did not estimate the
accuracy of the eye position. Favre-Felix et al. (2017) proposes a
novel fitted ear EOG device that uses a single model taken from
the participant’s ear canals. Interestingly, they found a strong
correlation between conventional EOG and ear EOG signals.
Hence, ear EOG can be used to accurately estimate eye gaze in
real-time situations, which is particularly relevant for aeronautics
and the hearing aid industry. For example, a visually directed
hearing aid could be faster and easier to manipulate than a
hearing aid piloted by other conventional tools like a pointer or
remote control (Hart et al., 2009).

In addition to these techniques, numerous tests have explored
the placement options for mobile electrodes that measure
changes in EOG voltage. JinsMeme (JINS Inc., Japan) implanted
an EOG amplifier into eyeglasses. BioPac (CA, USA) connected
a mobile EOG device to a stationary system (MP160) with
wireless communication. Some other EOG systems have been
connected to a wheelchair (Rajesh, 2014) or fixed into goggles
that can be used in everyday environments (Bulling et al., 2009).
One study (Acuna et al., 2014) has shown that a low-cost EOG
system (<50 euros) can give good results for eye tracking. The
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FIGURE 1 | Six different electrode positions, used to measure EOG. The blue circles indicate the locations of horizontal and vertical EOG electrodes. The yellow circle
(A) Standard placement with 4 electrodes, (B) Frontal placement, (C) One-side two-electrode placement, (D) Two-side symmetrical 4-electrode placement, (E) Nasal
two-electrode placement, (F) Near-ear two-electrode placement indicates the reference electrode.

performance achieved by this system is different depending on
whether one considers vertical or horizontal movements; the
monitoring of the latter being much more precise. Thus, an EOG
system gives an accuracy of <3◦ on the horizontal plane (with
movements ranging from −50◦ to +50◦), and an accuracy of
<4◦ on the vertical plane (movements ranging from −10◦ to
+10◦). For larger vertical movements (from −30◦ to +30◦), the
imprecision increases to 11◦. Other systems could be used as an
alternative way of measuring combined EEG and EOG including
Muse (Toronto, Canada), Melomind (Paris, France), Open BCI
(Brooklyn, NY, USA), and Emotiv system (San Francisco, USA).
They present several advantages over conventional wired, bulky
EEG devices in that they are economical, portable, and easy
to use. In summary, the main reason for such diversity in
electrode placement is due to the specificity of each experimental
paradigm and whether other equipment is associated with EOG.
Largely, these systems recognize eye movements with accuracy
and further investigation of electrode placement and the quality
of the EOG signal will be the subject of future research.

EOG Approaches
The main eye movements captured with EOG are fixations and
saccades (Singh and Singh, 2012). Fixational movement is an
attempt to capture the steady image on the retina. Depending
on the quality of the processed information and the current
cognitive load, fixation can last between 100 and 1,000ms,
with a mean range of 200–500ms. The saccade movement
changes the eye direction around the field of view and brings
the object of interest into the foveal region. Saccades are
characterized by a simultaneous and rapid change of the eye
position between two fixation points. The duration of saccades
is determined by the angular distance the eye travels during
the movement. The saccades involve distinct patterns in the
EOG signal. They are relatively easy to identify as the deflected
amplitudes are above the common high-frequency noise level,
and they are short (in duration). When the target is slowly
moving, smooth pursuit movement allows us to maintain focus.
Smooth pursuit eye movements are typically initiated with a
delay of 100–180ms relative to the onset of an unpredictable
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motion (Lisberger and Westbrook, 1985). It is difficult to
distinguish these movements on EOG recordings because it can
be confounded with linear signal drift. Othermovements (such as
vestibulo-ocular movements and optokinetic nystagmus) allow
for the gaze to stabilize during head and body movement.
Nystagmus is a rhythmic, often rapid, involuntary eye movement
that takes place when the head moves rapidly and the eyes move
in response to the moving fluid in the vestibular system (Kang
and Shaikh, 2017). Physiological nystagmus occurs during the
motions of the head (vestibular nystagmus), or in the presence
of patterns in the visual field (optokinetic nystagmus). It is
often accompanied by a feeling of disorientation or vertigo and
can be a reliable indicator of vestibular pathology. Vergence
movements rotate the eyes inwards and outwards, with slow
10◦/s disconjugate movements. They allow the visual system to
incorporate deep targets, permitting the perception of the world
across three dimensions (Alvarez et al., 2005). Even if the eyeballs
participate in the contraction of medial and lateral rectal muscles
until the paired images are projected onto the fovea, they will
activate shared and independent nerve regions. While saccadic
and vergence eye movements rely on different muscles to restore
the globes, they will activate both shared and distinct neural areas
(Semmlow et al., 1998).

Numerous algorithms exist for detecting and modeling
oculomotor parameters including eye blink, saccade direction,
and fixation. Nolan et al. (2010) developed a fully automated
statistical thresholding method that detects and classifies a
portion of the signal as an eye blink if the potential of the
portion exceeds the threshold. Niemenlehto (2009) analyzed
EOG signals by exploring a detection method of a constant
false alarm rate that detects saccades. Pettersson et al. (2013)
detected eye blinks and saccades by identifying the threshold
of the temporal derivative of the EOG signal. Behrens et al.
(2010) explored the deviation of the eye-movement acceleration
of the EOG signals. Toivanen et al. (2015) computed a real-
time algorithm EOG signal that automatically detects blinks,
saccades, and fixations and analyzes the temporal features of
these reflexes. Although EOG signals have a good signal-to-noise
ratio, due to their large amplitude and the relative ease with
which they can detect saccades and blinks (Skotte et al., 2007),
they are continuously contaminated by physiological artifacts
such as electromyography (EMG). EMG artifacts are detected
when the participant moves their facial muscles or body during
EOG recording, such as jaw clenching, raising an eyebrow, or
smiling. The forms and amplitudes of these artifacts depend
on the types of movement, the position of the electrode, and
sampling rates. High-frequency noise and smooth waveforms are
beyond the potential range of eye movement-related signals and
are usually differentiated. Median and low-pass filters are the
most commonly used techniques to preserve these noises while
retaining edge. The filters are based on split windows with varied
cut-off frequencies and can be used for either online and/or
offline analysis.

Besides EOG, other eye-tracking techniques include photo-
and video-oculography, or scleral research lenses (Duchowski,
2017). These techniques allow the capture of eye movements
with greater precision than EOG but involve complex set-ups

(flight deck video-camera integration, for instance) and involve
processing pipelines that demand a large amount of power
(computer vision algorithms). Alternatively, EOG is a technique
associated with simple electrodes that can be embedded in a
headset, providing good insights into the mental state and brain
activity of a participant with lower consumption of energy and
simpler processing pipelines, which are useful in aeronautics.

EOG in Aeronautics
The assessment of eye movements is particularly relevant for
aeronautic (Peysakhovich et al., 2018) and neuro-ergonomic
applications (Peysakhovich et al., 2019). Given the EOG’s
capacity to detect eye movements, it is an excellent candidate to
be embedded into aeronautical systems. A number of important
studies have related eye movement analysis to fatigue, mental
workload, and cognitive performance in pilots. One of the most
important causes of aviation accidents is provoked by human
errors e.g., drowsiness or fatigue (Velazquez, 2018). Pilot fatigue
and loss of control are considered by the Federal Aviation
Administration as one of four common aviation hazards (Federal
Aviation Administration, “Risk Management Handbook: U.S.
Department of Transportation,” 2016). For example, a study
described how two pilots from a commercial aircraft missed
the target airport because both were sleeping (Borghini et al.,
2014). Thus, EOG is considered to be an effective and predictive
tool in detecting drowsiness markers such as a reduction in
performance, and changes in the frequency of eye blinking (Oken
et al., 2006). Interestingly, eye movement analysis can serve as a
reference for the mental workload and state of pilots (Di Nocera
et al., 2007). It has been shown that the workload reflected by eye
fixation distribution varies according to the phases of the flight.
The highest workload was noted during takeoff and landing,
and the lowest during the cruise phase (Di Nocera et al., 2007).
Brams et al. (2018) discuss how the gaze behavior of expert pilots
differs from that of novices, suggesting relevant information
about basic processes that explain the successful performance
of expert pilots in flight. The authors explain that the expert
pilots have expanded visual range that analyzes the global scene
using the field of view next to the fovea, and that they then shift
their attention to the pertinent area (Gegenfurtner et al., 2011).
Experts have larger saccades that cover more areas and spend
less time focusing on task-related regions. In addition to the
important capacity to process information frommultiple sources,
this ability is also related to advanced cognitive performances.
The gaze behavior of fighter pilots during flight conditions also
varies according to altitude and speed (Svensson et al., 1997).
An augmented workload can induce a lower percentage of eye
fixation distribution outside and a higher percentage of fixation
on the tactical display.

In addition to investigating the eye movement patterns
underlying cognitive functions, alternative EOG (around the ear)
may be a promising tool in real aeronautic environments. In
numerous activities such as air traffic control or piloting an
aircraft, the operators are equipped with peripherals (typically
headsets). As the EOG requires only a few electrodes, it does not
obstruct the visual field nor does it unnecessarily illuminate the
eyes with infrared light. Therefore, this technique is convenient
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for head-mounted peripherals such as the audio headset used
by pilots. Moreover, exploring EOG integration in control
and communication peripherals may enhance human-system
interaction and make psycho-physiological monitoring possible
(e.g., based on blink rate or saccades). Such an approach could
have numerous applications in aeronautics (fighters, helicopters,
and unmanned aerial vehicle operation), naval systems, and
control-command centers.

Motivations and Contributions
Although a large number of surveys are published for EEG
and EOG in several fields, to the best of our knowledge, we
have not identified any exhaustive review that summarizes a
taxonomy of combined EEG-EOG studies. To bridge this gap,
this work analyzes and categorizes developments from the last
decade, examining published literature on combined EEG-EOG
in different applications related to aeronautics.

This non-exhaustive review analyzes literature from the oldest
to the most recent relevant studies. Section Introduction presents
EEG and EOG signals, their methodological approaches, and
a summary of their application in aeronautics. This section
could be particularly beneficial for beginners in the field
of electrophysiology.

The review presents a novel taxonomy model for classifying
different approaches to EEG and EOG by emphasizing the
extracted features, the applied pre-processing treatment, and
the performance metrics. The studies belonging to each main
category are sub-categorized as per the corresponding domain of
application. Sections Methodology of the Review and Results are
particularly beneficial for expert researchers in the field. Sections
Discussion and Limitations and Conclusions Outline Insights
and research directions as a means of providing guidelines for
beginner and expert researchers who are interested in combined
EEG-EOG studies in the future.

This review is useful for both beginners and experts in this
field. It is intended to be a time- and resource- saving guide for
those searching for exploration of neuro-physiological correlates
in aeronautics. On the one hand, this review is beneficial for
beginners who may easily explore specific literature on EEG
and EOG from basic approaches to aeronautics applications in a
single document and investigate it by spending less effort. On the
other hand, it is useful for expert researchers who may explore
the literature to discover trends and methodologies for exploring
brain and eye signals. Experts may explore these approaches as
valuable tools and could be useful in building and analyzing
experimental paradigms.

METHODOLOGY OF THE REVIEW

Peer-reviewed journal articles in the English language and
conference papers published on PubMed for the decade from
2010 to 2020 (January 2010-March 2020) were identified as
targets for our review. The database was last queried on March
23, 2020. Search items related only to studies combining EEG
and EOGmethods in experiments. This filtered selection resulted
in 249 studies that were then included or excluded according
to subsequent criteria. The inclusion criteria were: (i) combined

EEG-EOG studies; (ii) original research papers; and, (iii) that
the experiments involved human subjects. The exclusion criteria
were: (i) review, methodology, and proof-of-concept papers; (ii)
dataset publications; (iii) animal model experiments; and, (iv)
studies focusing solely on EEG or EOG.

Article titles were examined to evaluate the relevance of a
selected article. If the title did not noticeably specify whether it
corresponds to the inclusion and exclusion criteria, the abstract
was then considered. Lastly, during the full paper examination
and data gathering process, an article that did not meet the
criteria was excluded. Non-peer reviewed papers, such as arXiv or
BiorXiv electronic preprints were considered as a possible source
of bias. Thus, preprints that had not been peer-reviewed were not
selected. Finally, 150 studies were included in our final database.
We constructed a data extraction table containing several data
items related to our investigation question, according to previous
comments with a similar scope and the author’s past work in
the field.

A taxonomy table was used to classify and describe the
included items for each selected study. The first section is the
justification category that emphasizes the domains of application
of the included studies (e.g., sleep, BCI, signal processing,
cognition, and driving). This valuable information allows an
understanding of the scope of the research and also enabled
us to determine trends in the analysis. The second section
shows the bibliographic reference attributed to each study. The
third section shows the name of the first author, giving a
specific identification for each paper in the database. The fourth
section outlines the year of publication, which is relevant for
our selection criteria and statistical analysis. The fifth section
regroups the number of subjects in each study to give a quick
overview of the coherence of the relative main findings. The
sixth section covers the publication category of the article, such
as whether it was a journal article or a conference publication.
These first six sections indicate the types of included papers and
the main selected items. The seventh section includes all relevant
information about the EEG and EOG data. This comprises the
category of EEG and EOG equipment used, in addition to the
different extracted features.

Standard EEG and standard EOG sections refer to classic
wet electrode gels that are not mobile, while non-standard
refers to dry wearable electrodes and any other equipment that
is different from the standard category. Features Classification
(Table 1) refers to the properties of the analyzed EEG and
EOG signal. The content of this dataset includes the support
of the statistical analysis relevant to the critical component of
our discussion. The EEG features an extraction section and
covers the signal processing methodology that was analyzed
in each study, including the waveband frequency Delta (2–
4Hz), Theta (4–8Hz), Alpha (9–13Hz), Beta (14–32Hz),
Gamma (over 33Hz), the ERP, or the basic raw signal.
The EOG feature extractions consist of the explored signal
processing for eye movements including blinks, saccades,
fixations, raw signal, or whether the EOG was used as an
artifact handling methodology. Polysomnography is a multi-
parameter test based on several different types of physiological
signals called polysomnograms used in sleep diagnosis. Here,
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Noureddin 2012 13 • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ Carl et al. (2012)

Carl 2012 3 • ◦ • ◦ • • • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ • ◦ • ◦ Cannon et al. (2012)

Cannon 2012 NM ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ Casson and
Rodriguez-Villegas (2012)

Casson 2012 15 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Kong et al. (2013)

Kong 2013 NM ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ Bizopoulos et al. (2013)

Tan 2013 12 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ Tan et al. (2013)

Kim 2013 144 • ◦ • ◦ • • • • • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • Kim et al. (2013)

Klein 2013 55 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ Klein and Skrandies (2013)

Pettersson 2013 3 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ • Pettersson et al. (2013)
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TABLE 1 | Continued

EEG EEG features EOG EOG features Pre-proc. Perf. metrics
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Reference

Zeng 2014 40 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Zeng and Song (2014)

Barry 2014 20 • ◦ • ◦ • • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • Barry et al. (2015)

Sameni 2014 NM • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Sameni and Gouy-Pailler
(2014)

Jaleel 2014 2 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • • • • • ◦ Jaleel et al. (2014)

Bou assi 2014 3 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ • • ◦ Assi et al. (2014)

Torres-
Valencia

2014 32 ◦ • • ◦ • • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ Torres-Valencia et al. (2014)

Verma 2014 32 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ Verma and Tiwary (2014)

MacDonald 2014 16 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ MacDonald and Barry (2014)

Lee 2014 75 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Lee et al. (2014)

Laszlo 2014 6 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Laszlo et al. (2014)

Hsu 2015 9 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Hsu (2015)

Winkler 2015 21 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ ◦ ◦ • ◦ Winkler et al. (2015)

Gordon 2015 10 • ◦ • ◦ • • ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Gordon et al. (2015)
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Chang 2015 24 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ • • • ◦ Chang et al. (2016)

Wang 2016 3 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ Wang et al. (2016)

Di Flumeri 2016 10 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Di Flumeri et al. (2016)

Bai 2016 10 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ • Bai et al. (2016)

Javed 2017 11 • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Javed et al. (2017)

Liu 2017 5 • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Liu et al. (2017)

Kleifges 2017 40 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • ◦ Kleifges et al. (2017)

Barthélemy 2017 15 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Barthélemy et al. (2017)

Delisle-
Rodriguez

2017 6 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ ◦ • • ◦ Delisle-Rodriguez et al.
(2017)

Tuncer 2018 NM • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ Arslan Tuncer and Kaya
(2018)

Zennifa 2018 11 • ◦ • ◦ • • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • ◦ Zennifa et al. (2018)

Issa 2019 27 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • • ◦ • ◦ • • • ◦ Issa and Juhasz (2019)

Jia 2019 7 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ Jia and Tyler (2019)

S
le
ep

Stochholm 2016 18 ◦ • ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ • • ◦ Stochholm et al. (2016)

Singh 2014 608 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ Singh et al. (2014)

Olsen 2017 853 • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ Olsen et al. (2017)

Korkalainen 2019 1044 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ • ◦ Korkalainen et al. (2019)

Tagluk 2010 21 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ • ◦ Tagluk et al. (2010)

Haavisto 2010 20 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • Haavisto et al. (2010)
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TABLE 1 | Continued

EEG EEG features EOG EOG features Pre-proc. Perf. metrics
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Reference

Krakovska 2011 20 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ Krakovská and Mezeiová
(2011)

Kempfner 2011 20 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Kempfner et al. (2011)

Liang 2011 20 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • • • ◦ • ◦ Liang et al. (2011)

Charbonnier 2011 13 • ◦ • ◦ • • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ • ◦ Charbonnier et al. (2011)

Yamaguchi 2011 26 • ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Yamaguchi et al. (2011)

Christensen 2012 20 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ • ◦ Christensen et al. (2012)

Kempfner 2012 16 ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ • • ◦ Kempfner et al. (2012)

Pan 2012 20 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ • ◦ Pan et al. (2012)

Khalighi 2012 8 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Khalighi et al. (2012)

Arnin 2013 3 ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Arnin et al. (2013)

Kempfner 2013 40 ◦ • • ◦ • • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Kempfner et al. (2013)

Camfferman 2013 41 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • Camfferman et al. (2013)

Christensen 2014 115 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ Christensen et al. (2014)

Koch 2014 76 • ◦ • ◦ • • • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Koch et al. (2014)

Glos 2014 11 • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Glos et al. (2014)

S
le
ep

Guenole 2014 10 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Guénolé et al. (2014)

Zhang 2014 20 • ◦ • ◦ • • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Zhang et al. (2014)

Fietze 2015 50 • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ Fietze et al. (2015)

Kuo 2015 18 • ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Kuo et al. (2016)

Müller 2015 21 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Müller et al. (2015)

Yaghouby 2015 42 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ • • ◦ Yaghouby and Sunderam
(2015)

Scarlatelli-
Lima

2016 56 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • Scarlatelli-Lima et al. (2016)

Rezaei 2017 11 • ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Rezaei et al. (2017)

Supratak 2017 20 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ Supratak et al. (2017)

Reed 2017 9 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ • • ◦ • • ◦ Reed et al. (2017)

Klok 2018 100 ◦ • • ◦ • • • ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Klok et al. (2018)

Shustak 2018 9 • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Shustak et al. (2018)

Krauss 2018 40 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Krauss et al. (2018)

Nguyen 2018 18 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Nguyen et al. (2018)
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TABLE 1 | Continued

EEG EEG features EOG EOG features Pre-proc. Perf. metrics
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Andreotti 2018 19 ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • Andreotti et al. (2018)

Whitehead 2018 115 • ◦ • ◦ • • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Whitehead et al. (2018)

Dimitriadis 2018 20 • ◦ • ◦ • • • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ • • ◦ ◦ • ◦ Dimitriadis et al. (2018)

Zhimin 2018 61 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Zhimin et al. (2018)

Lee 2018 NM ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Lee et al. (2018)

Rosales-
Lagarde

2018 13 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • Rosales-Lagarde et al. (2018)

Gharbali 2018 10 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Gharbali et al. (2018)

Gunnarsdottir 2018 38 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Gunnarsdottir et al. (2018)

S
le
ep

Koch 2018 27 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ • • ◦ Koch et al. (2019)

Guragain 2019 18 ◦ • • ◦ • • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ • • ◦ ◦ • ◦ Guragain et al. (2019)

Cooray 2019 106 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • • ◦ Cooray et al. (2019)

Sun 2019 86 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ Sun et al. (2019)

Yildirim 2019 61 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ • ◦ Yildirim et al. (2019)

Sokolovsky 2019 20 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ Sokolovsky et al. (2019)

Jiang 2019 42 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ Jiang et al. (2019)

Gunnarsdottir 2020 22 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Gunnarsdottir et al. (2020)

Khushaba 2011 31 • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ Khushaba et al. (2011)

Åkerstedt 2013 18 • ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ Åkerstedt et al. (2013)

Hallvig 2014 33 • ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ • Hallvig et al. (2014)

Gharagozlou 2015 12 • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ Gharagozlou et al. (2015)

D
riv
in
g Nguyen 2016 11 • ◦ • ◦ • • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • • ◦ Nguyen et al. (2017)

Ahn 2016 11 • ◦ • ◦ • • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ Ahn et al. (2016)

Wang 2019 12 • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • Wang et al. (2019)

List of all references from 2010 to 2020 that used combined EEG-EOG methods. The references are classified by domain of application.
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Belkhiria and Peysakhovich Combined EEG-EOG Decade Review

FIGURE 2 | Focus of the studies, gathering papers according to their domain of application. N, Number of studies that fit in a category according to the central focus.

polysomnography was included in the taxonomy as an extracted
feature from sleeping studies that analyzed both EEG and
EOG signals.

RESULTS

A total of 150 papers were selected for inclusion in this review.
Our search methodology returned 121 journal papers and 29
conference papers that met our criteria. We noted that the
article papers were published in different journals; however,
all the conference papers were only published in numerous
years of the International Conferences of the Institute of
Electrical and Electronics Engineers (IEEE). The included papers
have combined EEG-EOG in various domains of application
(see Figure 2). Most studies focused notably on sleep, signal
processing, and BCI categories, respectively 34, 33, and 21% of
the total selected studies. Sleep category concerns EEG and EOG
data for sleep classification in healthy and clinic patients as well as
using deep learning for classification of sleep stages and disorders.

The signal processing category regroups the development of
tools, such as analyzing, modifying, and synthesizing signals,
handling artifacts, learning features, and training models. BCI
category groups the manipulation of hybrid EEG-EOG systems
as a valuable communication tool for monitoring computers,
wheelchairs, or a robotic exoskeleton. Seven percent of the
selected studies belong to the cognition category. They were
particularly related to analyzing the performance of attention and
cognition. The remaining papers (5%) explored different analyses
of driving with conditions such as sleep deprivation or fatigue.

Figure 3 indicates the evolution of EEG-EOG investigations
since 2010 in each domain of application.We did not observe any
clear tendency apart from a growing concern for BCI. The first 3
months of 2020 associated with the years 2019 and 2018 alone
account for 42% of the total selected publications. Nevertheless,
given the relatively small number of publications to date, it is too
early to draw conclusions about trends.

The number of subjects included in each study varies
expressively across the different domains of application (see
Figure 4). Seventy-five percent of the included datasets contained
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FIGURE 3 | The number of publications for each domain of application per year.

fewer than 30 participants. Some studies have datasets with
a higher number of participants with at least 600 subjects
(Singh et al., 2014; Olsen et al., 2017; Korkalainen et al., 2019),
while others included studies used datasets with <5 subjects,
particularly in BCI and signal processing categories.

When reviewing our included studies, we regrouped some of
the common pre-processing steps employed (Figure 5A). The
pre-processing methodology presented some routine steps, such
as bandpass filtering, downsampling, windowing, interpolating
the bad channels, computing the average reference, or removing
line noise. Eighty-seven percent of the selected studies used
band-pass filters and notch filters that allow the extraction
of characteristic signals located in the stimulus frequency and
that remove noise and artifacts. Forty-seven percent of studies
describe artifact handling, which consisted of eliminating certain
types of noise, such as eyes and muscle artifacts. Seventeen
percent of the studies downsampled the signal acquired at a
higher sampling rate to 256Hz or less. Even when deleting the
noise might be essential to achieving relevant EEG decoding
efficiency, 9% of the included studies did not explicitly mention
pre-processing steps. The distribution of the selected pre-
processing steps according to each domain of application is
shown in Figure 6A. In particular, the filtering process was
employed by studies in BCI (n = 26), sleep (n = 43), and signal
processing (n = 45). Artifact handling was mostly used in signal
processing (n = 34) and sleep (n = 18) domains. Downsampling
was used in BCI, sleep (n = 7), and signal processing (n =

7) categories.

When assessing the performance of signal processing in the
selected studies (Figure 5B), we were not surprised to find that
most of them applied common metrics that are derived from
confusion matrices. We classified the performance metrics into
the component that emerged from the included studies: accuracy
estimation (54%), sensitivity and specificity values (23%), false
positive and/or false negative detection (22%), classification score
(F1-score, Kappa score or Support Vector Machine score) (18%),
an approximation of error correction (15%), and other non-
common metrics (31%).

The distribution of the selected performance metrics
according to each domain of application is shown in Figure 6B.
As expected, we noted an important evaluation of accuracy
in the BCI (n = 23), signal processing (n = 21), and sleep
(n= 33) domains.

Figure 5C details the performed analysis on the registered
EEG signals from the included studies. The evaluation revealed
the following extracted features: raw signal (40%), alpha
frequency (27%), polysomnography (20%), beta frequency (18%),
theta frequency (17%), ERPs (17%), gamma frequency (10%), and
delta frequency (6%).

The distribution of the EEG extracted features according to
each domain of application is shown in Figure 6C. Particularly,
alpha, beta, and theta frequencies were investigated in sleep and
signal processing domains. ERPs were analyzed in BCI (n = 10),
cognition (n = 5), and signal processing domains (n = 11). The
raw signal was used in the majority of the domains BCI (n =

16), signal processing (n = 29), and sleep (n = 12). As expected,
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FIGURE 4 | The number of studies and subjects per domain of application. Each bar represents the number of studies and the number of subjects for each domain in
database of this review.

polysomnography was exanimated principally in sleep studies
(n= 29).

The classification of the extracted features from the registered
EOG signals showed the following results: blinks (33%), raw
signal (30%), artifact removal (27%), polysomnography (20%),
saccades (7%) and fixation (3%) (Figure 5D). The analysis of
blinks movements was particularly present in BCI (n = 17) and
algorithms (n = 21) studies. The artifact removal was majority
used in algorithms (n= 24) and equally used in BCI and sleep (n
= 6). The raw signal was analyzed in BCI, (n = 11), algorithms
(n= 16) and sleep (n= 13).

DISCUSSION

The objective of this work is to present a comprehensive
summarized review of combined EEG-EOG studies and a
taxonomy model of the last decade. Our taxonomy model
presents an overview of classification by domains of application:
sleep, BCI, signal processing, cognition, and driving. It is worth
mentioning that these identified categories are significantly
relevant to research in the exploration of human factors in
the aeronautical industry and neural engineering. Figures 2–5
present the distribution of combined EEG-EOG papers of
the taxonomy according to domains of application, while
Figure 6 illustrates the different methodological approaches. The
motivation behind this is to derive trends about how each
feature type and domain of application have been investigated.
This may assist researchers in exploring human factors and

the identification of feature types in future combined EEG-
EOG work. Here, we discuss the most relevant outcomes from
our results section and review the involvement of the different
findings highlighted above in aeronautics. We also provide
recommendations for combined EEG-EOG studies to facilitate
extension in the field. Finally, we present some limitations in our
work and future perspectives.

Sleep and fatigue prediction are the main challenges explored
in investigations on human factors. In this context, one of
the outcomes of this review was the identification of EEG
and EOG features that may help to detect unintentional sleep
in airline pilots. Our results highlight relevant features that
help to study aspects related to the sleep of pilots, aiming
to improve safety conditions. For example, typical markers
of sleep are the disappearance of the alpha rhythm and the
appearance of roving eye movements. Fatigue, irregular, and
long working hours, and time zone crossings can change sleep-
wake cycles, alert levels, and affect pilot decisions during a
flight. These issues cause excessive sleepiness, unintentional
sleep, and increase the risk of accidents. Some investigations
with airline pilots observed that this working environment
typically exposes several sleep and health issues, particularly
extreme sleepiness, unintentional naps, and fatigue (Petrie and
Dawson, 1997; Wright and McGown, 2001). However, such
studies are still incipient, and knowing the characteristics of sleep
prediction is necessary in supporting safety policies and working
practices. The tasks performed by pilots are complex and involve
several functions, including cognitive, technical, and relationship
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FIGURE 5 | Percentage of the methodology employed in the selected EEG-EOG studies. (A) Pre-processing procedures, (B) identified performance metrics, (C) EEG
extracted features, and (D) EOG extracted features.

skills. They involve concentration, the ability to work under
pressure, adaptation to operational modifications, teamwork, the
prediction of the consequences, the interpretation of signals, and
quick decisions (Itani, 2009). When excessive sleepiness occurs,
such skills may be impaired, thereby affecting flight safety. Ingre
et al. (2014) have observed that unintentional sleep in pilots may
compromise the safety of flights. Therefore, the ability to observe
and predict fatigue provides a significant benefit in avoiding
incidents and accidents.

Fatigue and sleepiness decrease task-related activity in the
frontal and parietal regions and also reduce activity in and
connectivity with, the extrastriate visual cortex during tasks
that require visuospatial attention (Chee, 2010). These neural
changes affect the behavior of pilots, for example, theymight miss
specific visual or auditory stimulus. This disturbance alternates
the top-down allocation of attentional resources, such as the
attentional orientation of a target. Sleep disorders during flights
impair sustained attention because of the decreased activity of
the dorsolateral prefrontal cortex and parietal sulcus (Kong and
Soon, 2012). According to these neural alterations, our review
suggests that combined EEG-EOG analysis may provide useful
information in evaluating sleep and sleep-related disorders in
pilots during flights. Future research could focus on improving
EOG models and conduct a comprehensive evaluation of the
content of various EOG results, studying the proportion of slow

eyemovement, rapid eyemovements, and no eyemovements, the
time distribution, and mixtures of slow/fast/no eye movements.

Figure 3 revealed the distribution of combined EEG-EOG
works each year since 2010. Although the absolute number
of combined EEG-EOG studies is relatively smaller compared
to other single EEG (Bonanni et al., 2016) or eye movement
applications (Hodgson et al., 2019), there is an important amount
of interest in combined EEG-EOG studies. Unexpectedly, we
were unable to draw conclusions about trends in the number
of studies. We only observed that the first 3 months of 2020
associated with the years 2019 and 2018 alone account for 42%
of total BCI publications. Due to the relatively small number of
publications to date, it is too early to make assumptions about
trends, but a possible explanation for this could be that BCI
technology is rapidly gaining attention from scientists, engineers,
clinicians, and the general public. The initial applications of BCI
aimed to rehabilitate patients with neuromuscular diseases such
as amyotrophic lateral sclerosis and injuries to the spinal cord.
Here, we observed various patterns in BCI techniques, including
EEG based spelling system (Lee et al., 2018), control of cursors
(He et al., 2020), robotic arms (Zhang et al., 2019b), prostheses
(Soekadar et al., 2015), wheelchairs (Huang et al., 2019), and
other complex devices.

In aeronautics, passive BCIs have been successfully used to
detect and characterize several operator mental states such as
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FIGURE 6 | Methodology applied choices in each domain of application. (A) Pre-processing methodology, (B) performance metrics, (C) EEG extracted features, (D)
EOG extracted features.

workload and fatigue (Zander et al., 2010; Khan and Hong, 2015;
Roy and Frey, 2016). Functional Near-InfraRed Spectroscopy
(fNIRS) connectivity based on passive BCI metrics has been
explored to detect a pilot’s engagement when undertaking
automated and manual landing scenarios (Verdière et al.,
2018). Analysis confirmed that these two situations contrast,
as manual landing led to significantly higher subjective NASA-
TLX scores than automated landing. Designing a system capable
of measuring continuous monitoring based on eyes and brain
signal features or detecting an operator’s degraded states would
enhance both safety and performance. The achievements of
BCI tend to be that it improves aeronautic performance in
time-critical situations by decoding an operator’s neural activity
associated with the act. As brain activity precedes motor
performance (Belkhiria et al., 2019), the decoded output in
real time could ameliorate the operator’s action. Our review
showed that some EEG-EOG studies used online BCI to detect
error-related potentials and reduce error-rate, improving overall
performance. While these methods are promising, they have not
been tested in aeronautics. An interesting study (Callan et al.,
2016) used magnetoencephalography (MEG) and BCI to explore
neuroadaptive automation to reduce a pilot’s time response to a
hazardous event by decoding their perceptual-motor intentions.
The BCI system succeeded in decoding motor intention faster
than manual control in response to a change in attitude
while ignoring ongoing motor and visual induced activity
related to piloting the airplane. While this system used 400
channels, the authors expressed the possibility of making a

dedicated real-time system working with mobile EEG. Such
signal processing handling methods could separate artifacts
from brain-related activity in flight even in an open cockpit
biplane (Callan et al., 2016). In the future, research in combined
EEG-EOG systems could use a BCI-decoder to distinguish
between brain activity that responds to changes in the visual
field and motor intention in a flight simulator or even in
real aircraft.

Our analysis shows that the number of subjects included in
each study varies across the different domains of application. It
should also be highlighted that database availability is different
from one domain to another. We noted that the most important
datasets come from clinical investigations of conditions such
as epilepsy, Parkinson’s Disease, and sleep disorders. However,
in other fields with more exploratory goals, studies rely on
data registered in laboratory settings with a limited number
of participants (e.g., 30 participants). Some studies explained
that the reduced number of subjects is due to experimental
conditions, time, and device limitations (Al-Hudhud et al., 2019).
Further studies should use more strict inclusion and exclusion
criteria for their datasets. This may generate a more robust
statistical result.

Figures 5, 6 show methodologies of data pre-processing,
various extracted features from EEG and EOG signals, and
performance metrics. The literature shows that performance
metrics, including accuracies classification, determine computer-
based analysis in various applications (Acharya et al., 2011). The
objective is to construct algorithms that overcome recognized
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methods (Faust et al., 2010). Here, most of the selected studies
used an offline or an online system. Commonly, the system
involves three consecutive processing steps: (i) pre-processing
(Kalayci and Özdamar, 1995; Rao and Derakhshani, 2005); (ii)
feature extraction (Tyagi and Nehra, 2018); and (iii) classification
(Wang et al., 2014b). All of the selected studies explored
at least one parameter from the processing pipeline steps
(Table 1). Recent advances in signal processing analysis provide
a powerful tool for modeling complex probability distributions
by automatically discovering intermediate abstractions from a
huge amount of basic features. Deep machine learning and
artificial intelligence have shown great promise in helping
make sense of EEG signals due to their capacity to learn
good feature representations from raw data (Dehais et al.,
2018). In that sense, the number of aeronautics publications
applying these techniques to EEG signal processing has seen
an exponential increase in recent years. The increasing interest
in methodologies for processing EEG-EOG signal data (e.g.,
deep learning, machine learning, and artificial intelligence)
in relation to human factors noticeably reflects an emergent
interest in these kinds of approaches. Research in aeronautic
sensors and signal processing systems (e.g., EEG and EOG)
is exploring revolutionary improvements, potentially enhancing
civil and military applications in fighter planes, helicopters, and
the remote operation of drones. Yet another trend in sensor
and signal processing involves blending artificial intelligence and
machine learning into system designs and the incorporation
of electrophysiological sensors and associated signal processing
methods into equipment, such as aviation headsets, may enhance
operational safety (Wilson et al., 2020).

LIMITATIONS AND CONCLUSIONS

The review presented state-of-the-art research on the
characteristics and applications of both EEG and EOG
signals in aeronautics. Our taxonomy and statistical analysis
described a number of operational mechanisms, such as
extracted features, pre-processing treatment, and performance
metrics. We discussed how these methodologies could be
adopted by researchers examining human factors and
aeronautics. The effectiveness of combining EEG and EOG
as a psycho-physiological tool is unequivocal. However,
numerous challenges still need to be resolved. An exciting and
unprecedented approach would be the assessment of both eye
movement and brain activity during novel paradigms using

dry electrodes that are integrated into existing control and
communication peripherals. An equipped headset measuring
real-time EEG and EOG may pose a great challenge in terms
of applicability and generalizability to both commercial and
scientific research into mobile EEG devices. This method would
improve human-system interaction by making it possible to
follow up on data about eye movements and use it to determine
the psycho-physiological state of a person. Studies combining
both EEG and EOG technologies and a review of the application
of these in several fields, including in laboratory and real-world
situations, are of particular value, as these technologies could be
of interest in areas using both visual and auditory information
simultaneously through headphones and gaze inputs, including
in aeronautics, helicopters, teleoperation drones, naval systems,
and control-command centers.

Despite the clear value of data collected and presented here,
this review has some limitations. First, despite the use of a
well-founded methodology to identify pertinent studies on the
topic; the review did not cover all existing papers. It is also
important to stress the error risk that could occur as a result
of the inclusion methodology. Even though we examined 150
studies among a wider pool of 255 from Pubmed research, this
is an exhaustive list nor should we undervalue the relevance
of the studies that were not included. Second, in managing
the length of the review, we limited our analysis to the main
domains of applications. However, some studies could involve
two or more application domains. Some topics could overlap,
such as BCI and signal processing (Daly et al., 2015; Ivorra et al.,
2018). We did consider categorizing another field of application
related to clinical applications. However, this would have moved
the focus away from aeronautics. Finally, as with any literature
review, new articles are being published and new trends are being
established and future studies should eventually be added to
the analysis.
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