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Abstract— PID (Proportional-Integral-Derivative) controllers
are the most widely used control algorithms in different
industrial applications. Multirotor Unmanned Aerial Vehicles
(UAVs) are not an exception in this regard. This success is due
to the efficiency of this type of algorithms. In fact, they are
easy to understand, to tune and to implement. Added to that,
PID controllers perform surprisingly well in most operational
cases, even when those start to become challenging. But this
effectiveness becomes questionable when the conditions are
far from being nominal as we show in this study where we
compare PID with adaptive and disturbance observer-based
controllers for an under-actuated multirotor. We show that,
when the inertial and actuation properties of the UAV are
well modelled, good disturbance rejection capabilities can be
achieved by simply adding a disturbance observer to a PID
controller.

I. INTRODUCTION

Multirotor UAVs have numerous industrial applications
(aerial photography, mapping, inspection, etc.) that require
them to be operating autonomously in an outdoor envi-
ronment. These flying robots are nonetheless too sensitive
to aerodynamic disturbances, especially the under-actuated
ones. This is first of all due to the very nature of their
actuation which is based on aerodynamic thrust and torque
generated by accelerating air through rotating blades, so the
surrounding wind has a significant influence on the behaviour
and performance of the rotors. Secondly, wind measurement
is hard to have on this kind of vehicles because it interferes
with the air re-circulation induced by the rotors, added to
that most wind measurement technologies are based on static
calibration (of pressure with reference to the tilt angle for
example) and cannot capture the transient dynamics, this
becomes even harder on under-actuated UAVs that need
to constantly change their attitude to move. Furthermore,
the drag force caused by the interaction with wind is hard
to model because it has various forms and origins (blade
flapping, induced drag, transitional drag, profile drag and
parasitic drag, refer to [1] and references therein for more
details). Therefore, designing a controller to withstand such
disturbed conditions can be challenging. In most industrial
applications, PID controllers, or slightly enhanced versions
of PID, are used. And when tuned properly, reasonable
performances can be achieved.

In this study, we compare a PI position controller with
equivalently tuned Model Reference Adaptive (MRAC) and
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Active Disturbance Rejection Controllers (ADRC) during a
constant wind exposure scenario. We show that the resulting
performances from the latter two are comparable to the
augmentation of PI with a disturbance rejection term. We
then extend this analysis to the attitude dynamics, and we
add a torque disturbance rejection solution allowing to reach
even better performances and confirming that a substantial
part of the wind disturbance acts on the UAV as a torque.

The remainder of the paper is structured as follows:
firstly some relevant related work on disturbance rejection
is presented, then the position control design is detailed for
the different methods and some guidelines to tune them are
given, and lastly the experimental results are presented and
discussed.

II. LITERATURE ON DISTURBANCE REJECTION FOR
UAVS

Disturbance rejection for multirotor UAVs has been widely
considered using various control approaches. Most of these
techniques boil down to two main ideas that depend on the
error to be minimised: either a reference model tracking error
or an internal open-loop model one. In the first case, learning
techniques are employed (like adaptive or model predictive
control) and in the latter, disturbance observers or estimators
are used. More or less knowledge about the controlled system
is needed in both cases. But a model for the actuators is
almost always required.

Adaptive control techniques have been successfully used
for multirotor UAVs to resist to internal and external dis-
turbances. These are considered as additional uncertain pa-
rameters to be estimated. For instance, an adaptive position
controller is presented in [2] and a full SE(3) geometric
one is developed in [3] to track an available smooth position
and attitude trajectory. Several other adaptive control variants
were also designed for multirotor UAVs, like L1 adaptive
control that allows faster adaptation than basic adaptive
schemes while ensuring better stability margins ([4] and
[5]). Model Reference Adaptive Control was also employed
towards the same end in [6], [7] and [8] where some
robustifying modifications were introduced.

Disturbance observers have also been successfully applied
for disturbance estimation and cancellation on multirotor
UAVs. The observers can take several forms, and their
construction follows more or less equivalent philosophies
based on an internal open-loop model. Some works in this
context include the use of Extended State Observers ([9]
and [10]), Extended Kalman Filters [11], Sliding Mode
Disturbance Observers ([12]), Disturbance Observers ([13]

2021 European Control Conference (ECC)
June 29 - July 2, 2021. Rotterdam, Netherlands



and [14]), Finite-Time Convergence Disturbance Observer
([15]), Reduced-Order Disturbance Observer [16].

III. OVERVIEW OF POSITION CONTROL DESIGN

The position control algorithm of a multirotor UAV gen-
erates a desired 3D thrust force uT in the earth fixed frame
which gives the desired thrust in the UAV body frame, along
with the required tilt angle. By adding a yaw angle target, one
can obtain the direction cosine matrix (noted R) that fully
describes the desired orientation of the UAV. This rotation
matrix is sent to the attitude controller to use it as a reference
to track. So now we only focus on computing uT , knowing
that we can translate it into the desired orientation.

a) Assumption 1: We have of a model PV of the
actuators’ behaviour allowing to transform any static thrust
force T to an equivalent duty cycle PWM command u,
given a battery voltage V 1, and vice versa. This model
is a simple quadratic equation (for a fixed voltage) in the
case of a quadrotor. But it can be more complex for other
configurations to account for some aerodynamic interference
between rotors, see for example the coaxial case in [17].

The uncertainty on this map is modelled as a constant
multiplicative gain: T = ωPV (u) which can be transformed
to an additive one T = PV (u)+δPV (u) by having δ = ω−1

b) Assumption 2: The UAV mass is precisely known.
This might be a limitation for a real application where the
payload changes, but this is a different problem from the one
considered in this paper which is the rejection of external
disturbances2

c) Assumption 3: The UAV has a stable and well
controlled attitude.

Considering the above assumptions, the position dynamics
can be described by a linear system in the following form.{

ṗ = v

v̇ = G + 1
m (uT + Fd)

(1)

The integrator dynamics are also introduced (if used within
the control)

ṡ = r− p (2)

Where r is the position target, G =
[
0 0 g

]>
and

uT = R
[
0 0 −PV (u)

]>
(3)

Note that Fd encompasses all the force-like signals that
affect the UAV body dynamics and that are not coming from
the known actuators’ behaviour. So this term depends also on
v and u since it contains the drag forces and the uncertainty
on the rotors’ thrust model.

Fd = Fdrag(v,vwind) + δuT (4)

However, this dependency cannot be always exploited,
unless accurate drag models and wind measurements are

1When closed-loop controlled ESC are available, there is no need to
model the dependency on battery voltage, the actual rotors’ RPM can be
directly used to build the model of the thrust

2This internal uncertainty does affect the performances of the different
controllers and the adaptive one is the most suited to deal with it.

available. It can be partially exploited when adaptive control
is used as will be seen in the sequel. So for now all of these
nonlinear effects are kept lumped in Fd in order to be able
to compare the various approaches mutually.

From Equation (1) and Equation (2), position dynamics
can be written in the form of a linear system of the following
handy state-space form

Ẋ = AX + B (uT +mG + Fd) + Er (5)

Where X =
[
p v s

]>
A =

 03×3 13×3 03×3

03×3 03×3 03×3

−13×3 03×3 03×3


B =

[
03×3

1
m13×3 03×3

]>
and E =[

03×3 03×3 13×3

]>
if the integrator is used.

Otherwise, X =
[
p v

]>
A =

[
03×3 13×3

03×3 03×3

]
B =

[
03×3

1
m13×3

]>
and E = 06×3

The different controllers to be compared in this study fit
into the following common form

uT = ut + ud (6)

Where ut is the control signal component insuring stability
and trajectory following through feedback (and possibly
feed-forward) action and ud is the disturbance rejection part.

A. Proportional-Integral (PI) Position Control

We consider the design of a Proportional-Integral con-
troller. The derivative term is implicit here because we
dispose of the velocity measurement (it is present in the state
X). {

ut = λr−KX

ud = 0
(7)

Where K =

kxp 0 0 kxv 0 0 kxi 0 0
0 kyp 0 0 kyv 0 0 kyi 0
0 0 kzp 0 0 kzv 0 0 kzi

.

λ = diag (λx, λy, λz) is chosen to make the low frequency
(DC) gain of the system equal to 1, it only adds zeros to the
system, so is important to shape the trajectory tracking re-
sponse but has no effect on stability or disturbance rejection.
And ud is the disturbance rejection term which is equal to
zero for PID controllers for which only the integrator term
has a disturbance attenuation effect.

B. Active Disturbance Rejection Position Control (ADRC)

Active Disturbance Rejection Control has been considered
as an alternative to PID. It is articulated around the idea of
estimating and rejecting a lumped disturbance term. The the-
ory behind is well described in [18]. The architecture of the
controller consists of a feedback error, a feed-forward term
and a disturbance rejection term obtained with an observer
(classically ESO Section III-B.2). The feed-forward term is
built using a Tracking Differentiator (TD) that transform a
step command to a smooth reference used in the error term.
So the first part of the control signal, in this case, is given
by

ut = m
(
v̇ref −K (X−Xref )− G

)
(8)



Such that

K =

kx1kx2 0 0 kx2 0 0
0 ky1k

y
2 0 0 ky2 0

0 0 kz1k
z
2 0 0 kz2

 (9)

and Xref =
[
pref vref

]>
is generated by a Tracking

Differentiator (TD) using the setpoint r.
The disturbance rejection part ud is computed by an

observer.
1) Disturbance Observer DO: The design of disturbance

observers is thoroughly described in [19]. Its main idea
is to estimate a filtered value of the actual disturbance.
Starting from Equation (5), the disturbance should be equal
to F∗d = B†

(
Ẋ− (AX + BuT + G)

)
, where B† =[

03×3 m13×3

]
. So, assuming we can access Ẋ, a distur-

bance estimator can be simply designed as a filter on F∗d

˙̂
Fd = LB†Ẋ− L

(
uT +mG + F̂d

)
(10)

Where L is the observer gain matrix (it can also be depending
on the state in the nonlinear case). However Ẋ (precisely v̇)
is unavailable (measurements from IMU accelerometers can
be used as in [20] but those are very noisy in our case), so
an auxiliary variable η =

∫
LB†Ẋdt is introduced and the

disturbance observer is then given by
F̂d = z + η

ż = −Lz− L (uT +mG + η)

η = mLv

(11)

The disturbance rejection term in Equation (6) is then simply

ud = −F̂d (12)

Notes:
• In this linear case, L simply corresponds to the first

order cut-off frequency (in rad.s−1) to be applied on
the actual disturbance signal.

L = 2πdiag (fx, fy, fz) (13)

where fx, fy and fz are frequencies in Hz.
• This observer uses only velocity measurements because

the force disturbance channel only affects the velocity
dimension

2) Extended State Observer ESO: The key feature of
ADRC is the Extended State Observer that can be seen, in
its linear form, as a Luenberger observer on an integral-chain
system where the disturbance is an additional state. So from
Equation (1), the corresponding 3D linear ESO is formulated
as follows 

˙̂p = v̂ + Lp (p− p̂)
˙̂v = 1

muT + ∆̂d + Lv (p− p̂)
˙̂
∆d = mLd (p− p̂)

(14)

The disturbance rejection term in Equation (6) is in this case

ud = −m
(
∆̂d − G

)
(15)

a) Notes:
• In this linear case, the observer gains can be directly

related to a frequency as in the DO case. One solution
is to compute the gains that place all the observer poles
in the same location corresponding to that frequency.
Which gives

Lp = 2πdiag (3fx, 3fy, 3fz)

Lv = (2π)2diag
(
3f2x , 3f

2
y , 3f

2
z

)
Ld = (2π)3diag

(
f3x , f

3
y , f

3
z

) (16)

• ESO uses the position measurement, which is usually
available and accurate for UAVs. Using velocity mea-
surement and applying a MIMO Generalized ESO as in
[21] makes the tuning of the observer harder and does
not bring better performance.

C. Model Reference Adaptive Control (MRAC)

In the previous observer-based approaches, the disturbance
is inferred from the input and output of the open-loop physi-
cal system, which makes sense because the force disturbance
enters the system from the same channel as the control input
(which is also a force since we dispose of a model for the
rotors). The adaptive approach only focuses on the closed-
loop behaviour and considers to be a disturbance everything
that makes the controlled closed-loop system deviate from a
predefined desired behaviour given by a reference model.

MRAC control can also be broke down to the same two
parts introduced in Equation (6). The first has the same form
as the PI controller Equation (7) (even if the integrator is not
necessarily used, i.e. when X =

[
p v

]>
).

ut = λ̂r− K̂X−mG (17)

The parameters λ̂ and K̂ are possibly non constant, however
since we are assuming that the UAV mass is known, the
linear part of the position dynamics is no longer uncertain
and one can use constant control parameters λ and K.

Now using Equation (5), Equation (6) and Equation (17),
and introducing the reference model as

Ẋm = AmXm + Bmr (18)

such that Am = A −BK Bm = λB + E 3, we end up
with the following error (e = X−Xm) dynamics

ė = Ame + B (ud + Fd)

And the structure of the new disturbance rejection term will
depend on the way Fd is modelled and here any known
internal structure and state dependence of the disturbance
can come in handy. Let us assume that Fd can be written as

Fd = Θ>Φ (X,uT ) (19)

Such that Θ ∈ IR3np×3 is an unknown bounded parameter
matrix with a bounded rate of change and Φ : IR9× IR3 →
IR3np×1 is a known regressor vector. The regressor vector

3These two equations allow to compute a reference model if the control
gains are known and vice versa to have the ideal gains if a reference model
is known, both of these approaches are used in this work



consists of basis functions that the designer expects the
nonlinear terms to follow, this can be done in light of
Equation (4): the drag force could be written as combina-
tion of linear and quadratic terms of the velocity. As for
the unknown wind speed part in the drag force it could
be treated as a constant an exogenous disturbance (since
wind measurement is not available), and the uncertainty on
the rotors model could also be included by adding uT to
the regressor. The disturbance rejection term is simply the
following:

ud = −Θ̂
>

Φ (X,uT ) (20)

Leading to ė = Ame + B
(
Θ̃
>

Φ
)

, where Θ̃ = Θ− Θ̂

Updating the adaptive parameters is done based on Lya-
punov stability theory, it leads to the following adaptive law

˙̂
Θ = ΓProj

(
Θ̂,Φe>PB

)
(21)

Where Γ is a symmetric positive-definite adaptive gain
matrix (also called learning rate) that we choose diagonal
and P is a symmetric positive-definite matrix that solves
the Lyapunov equation PAm + A>mP = −Q where Q is
a symmetric definite-positive design matrix. The projector
operator Proj (defined in [22] or [23] for example) forces
the estimated parameters to stay below a chosen upper limit
θ̂max. This is important to make sure the parameters stay
within a known bounded domain.

One of the well-known limitations of standard MRAC is
that the high gain direct adaptation laws induce oscillations
when the adaptation gains Γ are increased, leading to high-
frequency control inputs that can saturate actuators and excite
higher-order dynamics. Several solutions exist in the litera-
ture to reduce this effect. The one we chose is the so-called
optimal MRAC [24] where a damping-like term is added to
the adaptation laws. This term is computed by solving an
optimal control problem where the cost is the weighted long
term tracking error, which results is an additive damping
factor on the adaptive law defined as follows

˙̂
Θ = ΓProj

(
Θ̂,Φ

(
e>P− νΦ>ΘB>PA−1m

)
B
)

(22)

To our knowledge this is the first experimental validation of
the optimal MRAC.

IV. EXPERIMENTAL CONDITIONS

The considered system is a MK-quadrotor with the fol-
lowing physical characteristics.
• Mass m = 1.5 kg
• Moments of Inertia Ix = 0.015 kgm2, Iy = 0.014
kgm2 and Iz = 0.0294 kgm2

• Actuators: Brushless electric motors attached to rigid
fixed pitch propellers that can spin up to 5000 rpm
producing a maximal thrust of about 7 N . The Electrical
Speed Controllers (ESC) operate in open loop and their
dynamics can be approximated with a first-order linear
model of a time constant equal to 0.1 s.

The position controller is implemented on a ground station
computer that communicates with the UAV in offboard mode

through Wi-Fi. The communication time delay is about 40
ms. Attitude control is embedded in a PX4 Pixhawk® Au-
topilot, it consists of a geometric attitude controller cascaded
with a PID controller for the rates. Full pose measurements
are provided by an Optitrack® motion capture system running
at 50 Hz.

Wind disturbance is generated by 1-meter diameter fans
blowing each a mean airspeed of 4 m/s at a one-meter
distance from the fan plane. In order to maximise the wind
disturbance, three fans were placed as shown in Figure 1.

Fig. 1: Configuration of the used wind generators

In this configuration, a wind speed of about 5 m/s was
reached (measured using an anemometer) at a one-meter
distance from the fans and a height corresponding to their
centre.

V. CONTROL TUNING

A controller’s performance varies considerably with its
parameters tuning. This makes comparing different con-
trollers tricky. It is possible nonetheless to request equivalent
theoretical performances from the controllers. To do so, we
propose an equivalent and unified time dependent criteria
on position target step response in order to allow a fair
comparison between the controllers.

A. PI Controller

Let the closed-loop poles be noted for any of the
three decoupled subsystems (x, y and z axes) as −p and
−ω0

(
ξ ± j

√
1− ξ2

)
. Where p, ω0 and ξ are all positive

real numbers and ξ < 1. We dispose then of three degrees
of freedom, to make the choice easier let us set p = ξω0 and
in this way ω0 will determine the bandwidth of the closed-
loop system. In order to set these poles, we chose ξ = 0.9,
we are then left with one degree of liberty that we set based
a time performance criterion (95% response time to a step
target), we chose tr95% = 3s.

B. ADRC controller

The Tracking Differentiator (cf. Section III-B) allows to
obtain the reference dynamics to be followed. The observer
gains can be computed by choosing a cutoff frequency using
Equation (16). This choice is based on a trade-off between
fast estimation and measurement noise amplification. Added
to noise, the time delay in the control loop leads to oscil-
lations and adds another limit on the observer dynamics. In



our case, a good trade-off is found for a frequency equal to
1.1Hz.

ADRC contains also feedback terms (on the tracking
errors) (cf. Equation (8)). Those can also be linked to a
cut-off frequency, when the structure of K is given by
Equation (9), as kq1 = 4πξtft and kq2 = 4π2f2t , where
q ∈ {x, y, z}, ξt and ft define the damping and frequency
(Hz) of the reference tracking dynamics. A good choice is
to set the damping to 0.9 and the frequency to half of the
one used for the observer.

C. MRAC controller

The reference model for the MRAC (and Integral MRAC)
controller is chosen to achieve the same time step response
given by the Tracking Differentiator (or by the PI pole
placement when the integrator term is added). The choice
of the adaption gain Γ is fully experimental: the value is
augmented progressively until oscillations start to appear
meaning that we are close to the robustness bound.

For this study, a proper adaptation behaviour value was
found for γ = 50 (Γ = diag(γ)) while introducing the
optimal modification with a coefficient ν = 0.1 in order
to remove the oscillating behaviour and ensure robustness.

D. Conclusion

By following the tuning instructions given above, one
can say that the three controllers are designed to produce
equivalent performances based on time-dependent criteria.
However, it is worth noticing that each algorithm has a
unique characteristic: PI has the integral term, ADRC has a
disturbance observer, and MRAC has nonlinear terms. So the
time performance analogy made here is only approximate.

Another more adequate criteria like the norm of the
applied control effort might also be considered, however
the relationship with the control parameters would not be
straightforward, so it cannot be used at the control design
stage unless some optimisation tuning method is used. This
is an interesting idea to explore in order to make the
comparison fairer.

VI. EXPERIMENTAL RESULTS

A simple hovering scenario is considered, the wind is
blowing along the y axis, the wind fans are turned on
during about 30 seconds creating a step like disturbance. The
performance of the controllers is evaluated by considering
the position holding capability.

A. Force Disturbance Rejection Results

The estimated force disturbance during wind application
for the test scenario described above can be seen in Figure 2.
Note that this estimation has a valid physical interpretation
because the UAV mass and rotor’s thrust are quite well
known. One can also see that the drone is not perfectly
centred and the force imbalance is also estimated, along with
the thrust uncertainty (force on z).

Three types of criteria are used: the maximum position
error MaxAE, the mean absolute position error MAE and
the mean squared position error MSE.
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Fig. 2: Estimated force disturbance (ESO) - Fans on/off
timestamps t = 25s/55s

The different controllers to be compared can be repre-
sented using the Venn diagram in Figure 3.

PIADRC MRAC
PI 
+ 

Observer

Integral
MRAC

Fig. 3: Venn Diagram of the compared controllers

PI ADRC MRAC
MAE (cm)

[
0.94 3.58 0.53

] [
0.88 2.16 0.85

] [
0.45 1.72 1.02

]
MSE (cm)

[
1.13 5.25 0.72

] [
1.13 3.68 1.23

] [
0.55 2.69 1.29

]
MaxAE (cm)

[
2.81 15.63 2.67

] [
3.31 16 6.38

] [
1.86 9.50 4.01

]
TABLE I: Performance Comparison between PI, ADRC and
MRAC ([XYZ] errors)
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Fig. 4: Performance Comparison between PI, ADRC and
MRAC - 3D Position Error

1) PI vs ADRC vs MRAC: It is interesting to see from
Table I and Figure 4 that the PI controller performs better
than the MRAC controller in terms of the maximum error
and of the coupling induced on the disturbance-free axes (x
and z).

2) Integral Term Effect: By adding an integral term to
MRAC, adapting its reference model to a third-order one
with the same time response, and without changing the
adaptation rates, the performances are substantially improved
as shows Table II. This effect of the integral term is not



surprising from a linear systems frequency analysis point
of view. In fact, although the two systems have the same
time response, they do not attenuate signals outside their
frequency bandwidth alike. The integrator adds more atten-
uation at higher frequencies.

PI I −MRAC
MAE (cm)

[
0.94 3.58 0.53

] [
0.58 1.44 0.51

]
MSE (cm)

[
1.13 5.25 0.72

] [
0.77 2.07 0.67

]
MaxAE (cm)

[
2.81 15.63 2.67

] [
2.24 8.01 2.44

]
TABLE II: Performance Comparison between PI and Integral
MRAC ([XYZ] errors)

3) I-MRAC vs ADRC: Both controllers lead to compara-
ble performances as shown in Table III and Figure 5. Integral
MRAC might be preferable because it leads to less coupling,
although the maximum error is smaller for ADRC. It should
be noted that these performances depend on the adaptation
and estimation parameter values, and no clear comparison
between both disturbance estimation approaches has been
established in this paper.
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Fig. 5: Comparison between Integral MRAC and ADRC
controller - 3D Position Error

ADRC I −MRAC
MAE (cm)

[
0.50 1.518 1.01

] [
0.58 1.44 0.51

]
MSE (cm)

[
0.65 2.23 1.27

] [
0.77 2.07 0.67

]
MaxAE (cm)

[
2.15 7.45 3.69

] [
2.24 8.01 2.44

]
TABLE III: Comparison between Integral MRAC and ADRC
([XYZ] errors)

4) Augmentation of PI: If the state-dependent terms of
I-MRAC are removed, this controller can be seen as a mere
augmentation of PI. So an easy alternative to MRAC or
ADRC is to add a disturbance estimation term to PI. And
as show Figure 6 and Table IV, it is difficult to choose the
best alternative. Note that adaptive control here is not used
to its full potential, namely estimating internal uncertainties.
Since the system is quite well known, designing observers
(based on open-loop errors) is relevant and with no surprise
leads to almost the same performance as an estimator based
on optimising a closed-loop error. Additionally, we notice
that no obvious performance difference between using DO

and ESO is seen (both are linear). ESO is preferred though
because it uses position measurements that are less noisy and
more accurate than velocity.
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Fig. 6: Performance Comparison between Different PI Dis-
turbance Augmentations - 3D Position Error

PI + ESO PI +DO PI +Adaptive
MAE (cm)

[
0.78 1.65 0.68

] [
0.67 1.53 0.53

] [
0.62 1.14 0.59

]
MSE (cm)

[
0.97 2.23 0.90

] [
0.89 2.24 0.68

] [
0.79 2.21 0.80

]
MaxAE (cm)

[
3.07 8.66 3.13

] [
2.39 9.85 2.55

] [
2.12 9.57 3.67

]
TABLE IV: Performance Comparison between Different
Disturbance Augmentation ([XYZ] errors)

B. Torque Disturbance Rejection Results

The used wind fans do not generate a laminar aerodynamic
flow, and because of the interaction with the rotors’ airflow, it
turns out that, in addition to forces, the multirotor is subject
to torque disturbances that cannot be neglected. In light of
the position control analysis, an easy and efficient torque
disturbance rejection solution is to augment the used PID
attitude controller with an extended state observer (assuming
the inertia of the UAV is known), the results of this mod-
ification are shown here. For this comparison the PI gains
were computed using tr95% = 2s, faster than the one used
for the previous comparisons.

PIpos PIpos + ESOatt

MAE (cm)
[
0.56 2.31 0.53

] [
0.71 1.95 0.52

]
MSE (cm)

[
0.75 3.94 0.74

] [
0.94 2.99 0.69

]
MaxAE (cm)

[
2.72 14.05 3.52

] [
3.50 7.78 2.49

]
TABLE V: Comparison between PI and Integral MRAC
([XYZ] errors)

From Table V and Figure 7, it is clear that adding
torque rejection to the attitude controller makes a big dif-
ference, mostly on the maximum error where about 50%
improvement can be noticed. This confirms that the wind
disturbance seen by the UAV consists of both force and
torque components. The estimated torque disturbance during
wind application is shown below Figure 8.

VII. CONCLUSION

A comparative experimental study between various UAV
multirotor control algorithms was presented. We focused
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on observer-based control and adaptive control, and we
compared them to a baseline PI controller. The different
controllers were tuned equivalently based on the same step
time response criterion. The experimental results showed that
adding integral action to the adaptive controller significantly
improved the disturbance rejection performance. Added to
that, disturbance observers appeared to bring effective distur-
bance rejection capabilities, mostly because the UAV system
is well known, they also can be used in combination with a
PID controller which brings equivalent performances to inte-
gral adaptive control. Finally, adding a disturbance observer
to the attitude controller led to a significant performance
improvement.
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