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Abstract: This paper proposes a new parametrization of very flexible aircraft structural ele-
ments to support geometric control studies. First, a sum of basis functions is used to calculate
the torsion and curvature distributions of a beam-like structural element. Secondly, the modal
functions are used to determine the attitude on SO(3) and the position of each point on the
element, assuming constant curvatures. Finally, a simulator implementation of the method is
described, along with numerical simplifying strategies.

1 INTRODUCTION

High-accuracy modeling and simulation of very flexible aircraft require extensive computing
power. To avoid unnecessary complexities during control design on aeroelastic platforms, sim-
plifications are done to reduce calculations. As described in Ref. [1], models can be divided
into three levels of fidelity: low, medium, or high. Naturally, distinct design tasks (e.g., con-
trol design, fatigue investigation, flight performance analysis) require different fidelity levels in
different modules. Pursuing a one-stop mathematical model for all design tasks across multiple
disciplines might yield computationally inefficient outcomes. This paper seeks a reasonable
abstraction level for nonlinear geometric control design purposes.

In the scientific literature, modeling and simulation tools range in varying fidelity and com-
putational cost levels. Notable examples are SHARPy [2], UM/NAST [3], and ASWING [4],
whose main goals are aeroelastic systems simulation and analysis. SHARPy and UM/NAST
can simulate structural dynamics and aerodynamics while offering models of different fidelity
levels through the interconnection of free-flying nonlinear beam-like elements. Additionally,
they can generate linearized systems around equilibrium points proper for high-dimensional
linear control design and frequency domain analysis. Finally, they offer plug-in interfaces in
varying levels of versatility for feedback controller simulation and analysis.

The aforementioned multidisciplinary simulators are composed of modules that each execute
specific functionalities. To achieve a simulator with such a level of complexity, the different
modules need to be developed and fit into a larger simulator architecture. A common shape
parametrization definition avoids potentially frequent and costly shape description translations
in-between modules. This article proposes a new curvature-based shape parametrization model
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fit for nonlinear geometric control. A similar curvature-based approach to structural modeling
is the Modal Rotations Method (MRM) [5], but the latter uses Finite Elements and the curva-
tures of linear displacement modes. This approach has been used in different studies, e.g., the
aforementioned simulators [2–4], and most other work based on Ref. [6], due to the possibility
of describing shapes beyond the linear domain.

The similarity between the tools and methods mentioned previously is that they all break down
the aircraft’s structural components and use either Finite Elements or discrete models to sim-
plify the analysis of individual beam-like structural element mechanics and their interactions.
By doing so, a large number of states are created. Subsequent studies are still possible on
higher-order systems at the expense of a substantial increase in required computing power.
Alternatively, model reduction techniques can generate lower-order models that are easier to
manipulate.

In our control design context, the main setback of model reduction methods is the difficulty
of comparing the resulting models created in different initial conditions. This calls for a new
reduction step whenever the system is too far from its previous operating point. While control
design for multiple models in multiple trim points is appropriate for gain-scheduling control
techniques, this work focuses on supporting nonlinear geometric methods, thus avoiding model
switching.

One alternative to reduce the number of system states is to find an appropriate nonlinear parametriza-
tion. To achieve this, constraints between variables need to be identified and introduced. Iden-
tified constraints are physical constraints and yield increased model fidelity given their implicit
existence. Introduced constraints are assumptions made about the system and affect the model’s
accuracy. Movement constraints and allowed spacial configurations are encoded herein through
superposition of carefully chosen basis functions.

The notion of wing shape superposition in SO(3), i.e., the group of rotations, is ill-defined since
SO(3) does not configure a vector space (e.g., rotations are not commutative). Reference [7]
artificially achieves superposition by adding up Euler angle basis functions. However, generat-
ing almost-global asymptotic stable controllers for Euler angles representation is complicated.
Therefore, we study curvatures and torsion constraints, which are naturally commutative, and
configure a coordinate-free vector space appropriate for geometric control.

This paper is organized as follows. The mathematical modeling considering the discussed con-
straints is presented in Sec. 2, and a simulator architecture suggestion is described in Sec. 3. To
conclude, Sec. 4 presents final remarks and ways forward.

2 MODELING

2.1 Structural elements

Based on Ref. [8], we model the aircraft wing deformation as a 1-dimensional specialized beam
element but with only three local strain degrees of freedom: torsion (or twist), in-plane bending,
and out-of-plane bending (we drop the span-wise extension degree of freedom for simplicity).
The element’s neutral axis uses a reference curve to track the structural element shape. A
coordinate s determines the position along the reference curve, sweeping from 0 to the beam
element length. The plane perpendicular to the curve in the neutral position is assumed to stay
perpendicular to the curve independently of the element’s deformation.
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When discussing the beam element deformation, two related notions will be important: the de-
scriptions of torsion and curvature from differential geometry space curves and the definitions
of twist and bending from continuum mechanics. Torsion and curvature are two scalar fields
necessary to determine a space curve shape. According to the fundamental theorem of space
curves, this concept is similar to the idea of strain in Ref. [9]. This space curve describes the
deformed shape of the reference curve (also denominated herein the neutral axis). And the de-
formation of the reference curve infers both twist and bending, which determine the distribution
of strain and stress present along the beam element.

2.2 Reference frames
From the reference curve, a reference frame is defined as follows: the x-axis aligns with the
reference curve on the wing (torsion direction), the y-axis points to the leading edge (out-of-
plane bending direction), and the z-axis points to the result of their cross-product (in-plane
bending direction).

Figure 1: Reference frames of three different points on the reference curve at a deformed shape.

2.3 Deformation Modeling
Attitudes along the reference curve will be represented by a deformation map D(s, t) : R2 →
SO(3), where s ∈ R, t ∈ R, and D ∈ SO(3) are, respectively, the wing station (continuous)
arc length coordinate (see Fig. 1), time instant, and local rotation deformation. The first partial
derivative of interest is

∂

∂t
D(s, t) = −[Ω(s, t)×]D(s, t) (1)

where Ω ∈ R3 is the wing station angular velocity, and [Ω×] is its associated left vector product
operator. This value is what a rate-gyro sensor attached to that station would read. The second
partial derivative of interest is

∂

∂s
D(s, t) = −[K(s, t)×]D(s, t) (2)

where K ∈ R3 is the wing station total curvature (the grouping of torsion τ and curvature κ),
and [Ω×] is its associated left vector product operator. At this point, we define a total twist
decomposition as

K(s, t) =
N∑
i=1

Ki(t)K̃i(s) (3)
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where K̃i(s) ∈ R3 and Ki(t) ∈ R are, respectively, N total curvature basis functions and
associated total curvature weights.

2.4 Static Shape Determination

For a given set of total curvature basis functions and weights, the reference curve shape needs
to be determined. The variation of deformation map D is described by Eq. (2). Once D is
determined, the space curve is established by integrating the x-axis vector times ds along the
reference curve. Since the x-axis is present on the top row of the D matrix, it will be equivalent
to the first column of DT . Hence, we get

p(s, t) =

∫ s

0

DT (S, t)

10
0

 dS (4)

where p ∈ R3 maps the position of the reference curve in relation to its origin (s = 0). An
interesting feature is that Eq. (2) does not always have an analytical solution. Therefore, for its
computation, we propose the following approximation.

2.5 Constant Total Curvature Elements Approximation

An approximation is made by dividing the beam element into smaller discrete pieces. This paper
assumes constant curvature along the pieces (e.g., the average between the total curvatures at
the edge of the piece). Accordingly, we use the following known result [9]

D(s) = e−[K×]sD0 (5)

where K is the constant total curvature value and D0 is the SO(3) attitude matrix at s = 0 along
the reference curve. Terms dependent on time t have been ignored since this analysis focuses
on static shape determination. Since matrix [K×] is skew-symmetric by definition, the whole
exponential term will be skew-symmetric. For the exponential of skew-symmetric matrices, the
Rodrigues’ Rotation Formula yields

e−[K×]s = I3 −
sin (αs)

α
[K×] +

1− cos (αs)

α2
[K×]2 (6)

where α is the total curvature Euclidean norm. For notation simplicity, torsion τ is represented
as Kx and curvature κ is represented in its y and z projections. Therefore,

α =
√
K2

x +K2
y +K2

z (7)

Once the calculation for the deformation map D is done, then the reference curve shape is
calculated using Eq. (4) to obtain

p(s) =

∫ s

0

DT
0

(
e−[K×]S

)T 10
0

 dS (8)

where the time t is omitted due to the static calculation hypothesis. After rearrangement, we
obtain

p(s) = DT
0

∫ s

0

(
e−[K×]S

)T
dS

10
0

 (9)
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Using the Rodrigues’ rotation formula, applying the transpose and using the α definition from
Eq. (7), we obtain

p(s) = DT
0

(
I3

∫ s

0

dS +
[K×]

α

∫ s

0

sin (αS)dS +
[K×]2

α2

∫ s

0

(1− cos (αS)) dS
)10

0

 (10)

Solving the integrals above yields

p(s) = DT
0

(
sI3 +

[K×]

α

(− cos (αs) + 1)

α
+

[K×]2

α2

(
s− sin (αs)

α

))10
0

 (11)

Finally, taking advantage of the special relation for left vector product operators, i.e.,

[K×]2 = KKT − α2I3 (12)

and by rearranging terms, we have

p(s) = DT
0

(
sKKT

α2
− [K×] (cos (αs)− 1)

α2
− sin (αs)[K×]2

α3

)10
0

 (13)

The method proposed above is a numerical method derived from the Euler method. Alterna-
tively, for a pure first-order Euler method a function f would be defined as

∂

∂s
D(s) = −[K(s)×]D(s) = f(s,D(s)) (14)

The first-order Euler method considers f(s,D(s)) constant on the whole discrete segment. In
our proposal, instead, the total curvature K was considered constant. This assumption reshaped
the equation to allow for an exponential solution that can be calculated by the relatively simple
Rodrigues’ rotation formula.

Another benefit of the proposed method is that D(s) won’t numerically diverge from SO(3).
This happens because the exponential of a skew-symmetric matrix is part of SO(3), and D0

is already part of SO(3). By consequence, the result of their multiplication D(s) is also in
SO(3). This is already expected for D(s); nevertheless, other numerical solutions may diverge
faster from orthogonal matrices, requiring more frequent corrective procedures. Because of the
aforementioned advantages, this numerical method has been chosen for this study.

3 SIMULATOR

During this study, a static simulator was coded to simulate the wing’s deformed shape. This
simulator is intended to be the first part of a larger aeroelastic simulator, similar to the ones
mentioned in the introduction but with the specific objective of facilitating control analysis and
design. Currently, the simulator is only capable of calculating the static shape based on the
equations shown in Sec. 2.5.
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Albeit only able to run static conditions, for the time being, the code separates two types of
inputs: time-varying (represented as ellipses in Fig. 2) and constant (represented as rounded
rectangles in Fig. 2). Time-varying inputs include the total curvature basis weights (Ki(t) from
Eq. (3)), which will represent the shape states of the final dynamic simulator. Constant inputs
includes properties inherent to the wing, such as the total curvature basis functions (K̃i(s) from
Eq. (3)) or the attachment point (or where s = 0) for the structural element under analysis.

As outputs, the simulator provides both the reference curve position in relation to its origin
(p(s) from Eq. (13)) and the deformation map (D(s) from Eq. (5)).

Figure 2: Current simulator diagram.

Figure 3: Simulator example output with an exaggerated first bending mode.

3.1 Small-angle approximations

Another possible simplification when using the Rodrigues’ Rotation Formula, shown for our
specific case in Eq. (6), is to apply two different small-angle approximations. The first one is
the sine function approximation sin (θ) ≈ θ on the second term of the equation

e−[K×]s = I3 − s[K×] +
1− cos (αs)

α2
[K×]2 (15)

6



IFASD-2022-158

The second approximation that can be used is cos (θ) ≈ 1− θ2

2
, resulting in

e−[K×]s = I3 − s[K×] +
(s[K×])2

2
(16)

Similarly, the curve shape calculation (Eq. (13)) can also be simplified to read

p(s) = DT
0

(
sKKT

α2
+

[K×]s2

2
− s[K×]2

α2

)10
0

 (17)

One more employment of the left vector product property shown in Eq. (12) yields

p(s) = DT
0

(
sI3 +

[K×]s2

2

)10
0

 (18)

The angle under consideration in the approximation is the multiplication of α (the total curvature
Euclidean norm) by s (the beam element length). As a result, the length of the segments of
constant total curvature can be dynamically chosen to always keep the total segment angle
inside an acceptable range for the approximation. The user’s expected precision should define
this range.

3.2 Parallel computation

One advantage of the proposed formulation is that the calculation of each section is independent
of its neighbours. This enables each section calculation to be done in parallel, decreasing the
necessary computing time. By lowering the computational load, the hardware requisites will
also be lesser, facilitating the implementation of this algorithm into an embedded system if
needed in optimization solvers for control purposes.

4 CONCLUSIONS

This article aims to present a preliminary study on a new parametrization specifically developed
to facilitate geometric control design and analysis. The necessary modeling has been described,
explaining the structural element properties, the reference frames used in the modeling, the
equations behind the deformation map, and the deformed static shape. Since the equation does
not have analytical solutions, an approximation using smaller elements with constant total cur-
vature has been shown to allow the implementation of the method in question. Then, more
details on an implementation example has been presented, discussing numerical and implemen-
tation strategies that can be used to facilitate the creation of a demonstrator.

Further work needs to be done to enrich the formulation described. An estimation algorithm
must be developed to allow for the total curvature weights estimation, allowing for a live shape
estimation for active control purposes. Then, structural and aerodynamics equations need to be
added to allow the execution of dynamic simulations. Adaptions and checks will be done to the
shape estimator to account for changes related to a dynamic application.
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