
Transformation of a PID Controller
for Numerical Accuracy†

N. Damouche1,∗ M. Martel2,∗ A. Chapoutot3,∗∗
∗ Université de Perpignan Via Domitia, DALI, Perpignan, France∗ Université Montpellier & CNRS, LIRMM, UMR 5506, Montpellier, France∗∗ ENSTA ParisTech, Palaiseau, France

Abstract

Numerical programs performing floating-point computations are very sensitive to the way formulas are
written. Several techniques have been proposed concerning the transformation of expressions in order to
improve their accuracy and now we aim at going a step further by automatically transforming larger pieces
of code containing several assignments and control structures. This article presents a case study in this
direction. We consider a PID controller and we transform its code in order to improve its accuracy. The
experimental data obtained when we compare the different versions of the code (which are mathematically
equivalent) show that those transformations have a significant impact on the accuracy of the computations.

Keywords: Numerical Accuracy, Semantics-Based Program Transformation, Floating-Point Arithmetic,
Validation of Numerical Programs.

1 Introduction

Numerical programs performing floating-point computations are very sensitive to

the way formulas are written. Indeed, small syntactic changes in the arithmetic

expressions which do not modify their mathematical meaning may lead to significant

changes in the result of their evaluation. This sensitivity to the way expressions

are written is due to the particularities of the floating-point arithmetic in which,

for example, addition is not associative or multiplication is not invertible [1,11,12].

In addition, it is very difficult to guess which writing of a formula gives the best

accuracy when evaluated with floating-point numbers. These last years, abstract

interpretation techniques [3,5] have been developed to infer safe approximations of

the round-off error on the result of a computation [2,6,7].

1 Email: nasrine.damouche@univ-perp.fr
2 Email: matthieu.martel@univ-perp.fr
3 Email: alexandre.chapoutot@ensta-paristech.fr
† This work was supported by the ANR Project ANR-12-INSE-0007 ”CAFEIN”.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 317 (2015) 47–54

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.10.006

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:nasrine.damouche@univ-perp.fr
mailto:matthieu.martel@univ-perp.fr
mailto:alexandre.chapoutot@ensta-paristech.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.10.006
http://dx.doi.org/10.1016/j.entcs.2015.10.006
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

Our work concerns the automatic transformation of floating-point computations

in order to improve their numerical accuracy. Several results have been obtained

concerning the transformation of expressions [9,10] and now we aim at going a

step further by automatically transforming larger pieces of code containing several

assignments and control structures.

This article presents a case study in this direction. We consider a PID controller

and we transform its code in order to improve its accuracy. More precisely, we take

an initial PID code and we apply to it several processings in order to generate other

PID programs which are mathematically equivalent to the initial one but more ac-

curate in computing. The first transformation only rewrites the assignments while,

in the second transformation, the loop is unfolded. While these transformations

are made by hand, they are applied systematically, in a way which we aim at au-

tomatizing in future work. The experimental data obtained when we compare the

executions of the three codes (which are mathematically equivalent) show that those

rewritings have a significant impact on the accuracy of the computations.

The rest of this article is organized as follows. Section 2 introduces the original

controller PID1. The transformations are done in Sections 3 and 4, yielding PID2 and

PID3. The experimental results are presented in Section 5 and Section 6 concludes.

2 Description of the PID Controller

In this section, we give a brief description of the original PID program of Listing 1.

This kind of algorithm is used in embedded and critical systems to maintain a

measure m at a certain value named setpoint c. The error being the difference

between the setpoint and the measure, the controller computes a correction based

on the integral i and derivative d of the error and also from a proportional error term

p. A weighted sum of these terms is computed. The weights are used to improve

the reactivity, the robustness and the speed of the program. The three terms are:

i) The proportional term p: the error e is multiplied by a proportional factor kp,

p = kp × e .

ii) The integral term i: the error e is integrated and multiplied by an integral

factor ki,

i = i+ (ki × e× dt) .

iii) The derivative term d: The error e is differentiated with respect to time and

is then multiplied by the derivative factor kd. Let eold denote the value of the

error at the previous iteration, we have:

d = kd× (e− eold)× 1

dt
.

In practice, there exists many other ways to compute the terms d and i. In our

implementation they are computed by Euler’s method and the rectangle method

N. Damouche et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 47–5448

Listing 1: Source code of PID1.
kp = 9.4514; ki = 0.69006; kd = 2.8454; invdt = 5.0; dt = 0.2;
m = 8.0; c = 5.0; eold = 0.0;
while true do

e = c - m;
p = kp * e;
i = i + ki * dt * e;
d = kd * invdt * (e - eold);
r = p + i + d;
eold = e; /* updating memory */
m = m + 0.01 * r; /* computing measure: the plant */

respectively. The transformations described in the next sections are independent of

these specific algorithms.

3 How to Get a More Accurate PID?

In this section, we detail the different steps needed to transform the original PID,

named PID1, into a new equivalent program named PID2. The main idea consists

of developing and simplifying the expressions of PID1 and inlining them within the

loop, in order to extract the constant expressions and to reduce the number of

operations. At the nth iteration of the loop, we have:

pn = kp × en ,

in = in−1 + ki × en × dt ,

dn = kd × (en − en−1)× 1

dt
.

If we inline the expressions of pn, in and dn in the formula of the result expression

rn and after extracting the common factors, we get:

rn = en ×
(
kp + kd × 1

dt

)
+ i0 + ki × dt×

n∑
i=1

ei − kd × en−1 × 1

dt
. (1)

Then we remark that there exists some constant sub-expressions in Equation (1).

So, we compute them once before entering into the loop. We have:

c1 = kp + kd × 1

dt
, c2 = ki × dt , c3 = kd × 1

dt
.

Next, we record in a variable s the sum s =
∑n−1

i=0 ei which adds the different errors

from e0 to en−1. Finally, we have:

rn = R+ in with R = c1 × en − c3 × en−1 .

Our PID2 algorithm is given in Listing 2.

N. Damouche et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 47–54 49

Listing 2: Source code of PID2.
kp = 9.4514; ki = 0.69006; kd = 2.8454; invdt = 5.0; dt = 0.2;
m = 8.0; c = 5.0; eold = 0.0; R = 0.0; s = 0.0;
c1 = kp + kd * invdt; c2 = kd * invdt; c3 = ki * dt;
while true do

e = c - m;
i = i + c2 * e;
R = (c1 * e) - (c3 * eold);
r = R + i;
eold = e;
m = m + 0.01 * r;

4 How to Get an Even More Accurate PID?

The initial PID can be transformed even more drastically by unfolding the loop.

In our case, we arbitrarily choose to unfold it four times in order to keep for each

execution the sum of the last four errors. Then, we change the order of the oper-

ations, either by summing the terms pairwise, or in increasing or decreasing order.

The process applied to get the third PID algorithm, named PID3, is given in the

following. Let us start by unfolding four times the integral term, as usually done

by static analyzers or compilers:

in−1 = in−2 + ki × dt× en−1 in−2 = in−3 + ki × dt× en−2
in−3 = in−4 + ki × dt× en−3 in−4 = in−5 + ki × dt× en−4

We inline the previous expressions in in. We obtain:

in = in−5 + (ki × dt× en−4) + (ki × dt× en−3) + (ki × dt× en−2)
+ (ki × dt× en−1) + (ki × dt× en) (2)

with in−5 = i0 + ki × dt×∑n−5
i=1 ei . Equation (2) can be even more simplified, we

have:

in = i0 + ki × dt×
n−5∑
i=1

ei + (ki × dt× ((((en−4 + en−3) + en−2) + en−1) + en)) .

Now, if we come back to the result expression after having done some manipulations,

like developing the derivative and factorizing, we obtain as final expression:

rn = en ×
(
kp + kd × 1

dt

)
+ i0 + ki × dt×

n−5∑
i=1

ei − kd × 1

dt
× en−1

+ ki × dt× ((((en−4 + en−3) + en−2) + en−1) + en) .

Denoting by s =
(
((en−4 + en−3) + en−2) + en−1

)
, k1 = kp +

(
kd × 1

dt

)
, k2 = ki × dt

N. Damouche et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 47–5450

and k3 = kd × 1
dt , the final expression of rn is:

rn = R+ i+ k2 ×
(
s+

n−5∑
i=1

ei
)

with R = (en × k1)− (k3 × en−1) .

The complete code of PID3 is given in Listing 3. Remark that, the transformation

proposed in this section leads to a larger program requiring more memory for its ex-

ecution. While it allows more transformations it may be irrelevant in some contexts

where memory is critical.

5 Experimental Results

Let us focus now on the execution of the three PID programs. In our Python

implementation using the GMPY2 library for multiple precision computations, our

results show that there is a significant difference between PID1, PID2 and PID3
as soon as on the second or third digit of the decimal values of the result. To

better visualize these results, the curves corresponding to the three PID algorithms

are given in Figure 1. We can observe a significant difference between the curves

corresponding to the three PID, mainly between 0 and 150 of the x-axis.

Figure 2 shows the difference between PID1 and PID3. This difference, which is

important, is computed with many precisions. So, the same behavior was observed

by using 24, 53 and 50000 bits of the mantissa. The error between PID1 and PID3
oscillates between −0.1 and 0.25 while the value ranges between 5 and 8.

We also observe that the differences between PID1 and PID2 are negligible. Con-

cerning PID1 and PID3, we can remark that a small syntactic change in the code

indeed yields an important difference in term of accuracy. For example, let us take

the following expression r of PID1 and let us just inline the three terms p, i and d

and factorize e in it. Initially, r = p + i + d and we obtain after factorizing:

r′ = e×
(
kp + ki × dt+ kd × 1

dt

)
+ i0 −

(
kd × 1

dt
× eold

)
.

With this simple modification, the difference in accuracy is already important,

as shown in Figure 3 which gives the difference between r and r′ and between m

and m′ for the first iterations of the loop.

Listing 3: Source code of PID3.
kp = 9.4514; ki = 0.69006; kd = 2.8454; invdt = 5.0; dt = 0.2;
R = 0.0; S = 0.0; s = 0.0; m = 8.0; c = 5.0; eold= 0.0;
e1 = e2 = e3 = e4 = 0.0; k1 = kp + kd * invdt; k2 = ki * dt; k3 = kd * invdt;
while true do

e = c - m;
i = i + k2 * e;
R = (k1 * e) - (k3 * eold);
S = s + (e4 + (e3 + (e2 + e1)));
r = R + i + (k2 * S);
eold= e; e4 = e3; e3 = e2; e2 = e1; e1 = e;
m = m + 0.01 * r;

N. Damouche et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 47–54 51

6 Conclusion

In this article, our attention focused on the transformation of a standard PID Con-

troller. We believe that it is possible to obtain automatically the entire transforma-

tion going from PID1 to PID2 and to PID3 (see sections 3 and 4) by using systematic

and general rules independent of the sample program used in this case study. These

rules include the inlining of expressions, partial evaluation and loop unfolding. The

results obtained when running the three codes show that these transformations

impact significantly the accuracy of the results (several percents).

Currently, we are developing a software, based on the rules mentioned in the

former paragraph as well as rewriting rules for the expressions (associativity, com-

mutativity, etc.) This tool aims at taking as input an initial program, like PID1, and

at generating automatically other PID programs that are equivalents mathematically

and more precise.

A key issue concerns the combinatory explosion which occurs during the trans-

formation process since many rules my be used at each step. A full exploration

of the set of equivalent programs is not realistic and we aim at developing more

tractable techniques using abstractions.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 50 100 150 200 250 300 350 400 450 500

Measure m1 of PID1
Measure m2 of PID2
Measure m3 of PID3

Fig. 1. Value of the measure m in the three PID algorithms.

N. Damouche et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 47–5452

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250 300 350 400 450 500

Difference between PID1 and PID3

Fig. 2. Difference between the values of the measure m in PID1 and PID3.

It r r’ m m’

1 −71.449234 −71.449242 7.285508 7.285508

2 −12.165627 −12.993700 7.163851 7.155571

3 −19.748718 −21.010429 6.966364 6.945466

4 −17.074722 −18.747597 6.795617 6.757990

5 −16.089169 −18.077232 6.634725 6.577218

6 −14.934349 −16.752943 6.485382 6.409688

7 −13.892138 −15.672437 6.346460 6.252964

8 −12.913241 −14.609431 6.217328 6.106869

9 −12.000034 −13.609982 6.097328 5.970769

10 −11.147227 −12.662717 5.985856 5.844142

Fig. 3. Comparaison between results r and r′ and between the corresponding measures m and m′.

References

[1] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std 754-2008 edition, 2008.

[2] Alexandre Chapoutot. Interval slopes as a numerical abstract domain for floating-point variables. In
Static Analysis - 17th International Symposium, SAS 2010, Perpignan, France, September 14-16, 2010.
Proceedings, volume 6337, pages 184–200. Springer, 2010.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction of approximations of fixed points. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238–252. ACM Press,
New York, NY, 1977.

[4] P. Cousout and R. Cousot. Systematic design of program transformation frameworks by abstract
interpretation. In Principles of Programming Languages, pages 178–190. ACM, 2002.

[5] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and V. Védrine. Towards an industrial use of
FLUCTUAT on safety-critical avionics software. In Formal Methods for Industrial Critical Systems,
volume 5825 of Lecture Notes in Computer Science, pages 53–69. Springer, 2009.

N. Damouche et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 47–54 53

[6] Eric Goubault. Static analysis by abstract interpretation of numerical programs and systems, and
FLUCTUAT. In Static Analysis - 20th International Symposium, SAS 2013. Proceedings, volume
7935, pages 1–3. Springer, 2013.

[7] Eric Goubault and Sylvie Putot. Static analysis of finite precision computations. In Verification, Model
Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011. Proceedings,
volume 6538, pages 232–247. Springer, 2011.

[8] Arnault Ioualalen and Matthieu Martel. A new abstract domain for the representation of
mathematically equivalent expressions. In Static Analysis Symposium (SAS’12), volume 7460 of Lecture
Notes in computer Science, pages 75–93. Springer Verlag, 2012.

[9] Matthieu Martel. Semantics-based transformation of arithmetic expressions. In Static Analysis, 14th
International Symposium, SAS 2007, Proceedings, volume 4634, pages 298–314. Springer, 2007.

[10] Matthieu Martel. Accurate evaluation of arithmetic expressions (invited talk). Electronic Notes
Theoretical Computer Science, 287:3–16, 2012.

[11] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[12] Michael L. Overton. Numerical computing with IEEE floating point arithmetic - including one theorem,
one rule of thumb, and one hundred and one exercices. SIAM, 2001.

N. Damouche et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 47–5454

	Introduction
	Description of the PID Controller
	How to Get a More Accurate PID?
	How to Get an Even More Accurate PID?
	Experimental Results
	Conclusion
	References

