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ABSTRACT 

The interest in microwave technology for biological applications using metamaterial 

as sensing element is increasing due to strong electric field compared to traditional 

microwave sensors. The operation at millimetre-wave frequencies further enhances the 

field intensity leading to increased sensitivity, which can be used in the detection of 

the dengue virus and it can be vital in controlling the disease. The millimetre-wave 

metamaterial-based resonators are presented in this thesis to characterise blood’s 

dielectric properties in the case of the dengue virus. The correlation coefficient, t-test, 

and cross-correlation were applied on S11 phase responses. During measurements, tap 

water was used instead of blood, and methylated alcohol was added to the water to 

lower its permittivity, mimicking the dielectric response of infected blood. First, a 

single-layered design with an engraved space to hold blood samples is presented as a 

proof of concept for blood-sensing and the application of statistical models. This 

sensor showed a resonance shift of 0.22 GHz due to an 8 unit decrease in blood’s 

permittivity. In contrast, three (3) designs of two-layered sensors are proposed with 

replaceable sensing layers suitable for repeated measurements. Double-layered Sensor 

1 showed resonance at 36.28 GHz for normal blood. The perturbation observed was 

0.88 GHz when the blood’s permittivity was reduced by 8 units. Sensor 2 showed a 

resonance shift from 27.22 GHz to 29.82 GHz with the 8 unit change in blood’s 

permittivity. Sensor 3 showed a lesser resonance shift, which is 0.44 GHz. However, 

the double-layered Sensor 3 has the edge over other designs in terms of its performance 

in all statistical methods. In double-layered sensors, the replaceable sensing layer 

provides quick and accurate results. As a result, the sensors presented here can detect 

the dengue virus using a simple finger-prick blood extraction method.  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 

 

ABSTRAK 

Teknologi gelombang mikro untuk aplikasi biologi menggunakan bahanmeta sebagai 

elemen penderiaan semakin diminati dan meningkat disebabkan mempunyai medan 

elektrik yang kuat berbanding dengan penderia gelombang mikro tradisional. Operasi 

pada frekuensi gelombang milimeter meningkatkan lagi keamatan medan yang 

membawa kepada peningkatan kepekaan, yang boleh digunakan dalam pengesanan 

virus denggi dan penting dalam mengawal penyakit ini. Penyalun berasaskan 

bahanmeta gelombang milimeter dibentangkan dalam tesis ini untuk mendapatkan ciri 

sifat dielektrik darah dalam kes virus denggi. Pekali korelasi, ujian-t, dan korelasi 

silang digunakan pada tindak balas fasa S11. Air paip digunakan sebagai pengganti 

darah semasa pengukuran, dan alkohol metilasi dicampurkan ke dalam air untuk 

menurunkan kebertelusan air bagi mimik tindak balas dielektrik darah yang dijangkiti. 

Pertama, rekabentuk penderia selapis dengan ruang terukir untuk menyimpan sampel 

darah direkabentuk sebagai bukti konsep untuk penderiaan darah dan penerapan model 

statistik. Penderia ini menunjukkan anjakan salunan 0.22 GHz disebabkan oleh 

penurunan 8 unit dalam kebertelusan darah. Sebaliknya, tiga (3) rekabentuk penderia 

dua lapis dicadangkan dengan lapisan atas yang lebih sesuai untuk pengukuran 

berulang. Penderia dua lapis 1 menunjukkan salunan pada 36.28 GHz dalam darah 

normal. Gangguan yang diperhatikan ialah 0.88 GHz apabila kebertelusan darah 

berkurangan sebanyak 8 unit. Penderia 2 menunjukkan anjakan salunan daripada 27.22 

GHz kepada 29.82 GHz dengan perubahan 8 unit dalam kebertelusan darah. Sensor 3 

menunjukkan anjakan salunan yang lebih rendah, iaitu 0.44 GHz. Dalam rekabentuk 

ini, korelasi silang didapati meningkat dengan penurunan kebertelusan. Penderia 3 

berlapis dua mempunyai kelebihan berbanding reka bentuk lain dari segi prestasinya 

dalam semua kaedah statistik. Lapisan penderiaan yang boleh diganti dalam penderia 

dua lapis menawarkan hasil yang cepat dan tepat. Oleh itu, penderia yang 

dibentangkan boleh digunakan dalam pengesanan virus denggi dengan kaedah perahan 

darah tusukan jari yang mudah. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

Dengue is a deadly mosquito-borne virus spreading throughout the world. In 

the last five decades, the prevalence of the dengue virus has climbed 30-fold with its 

emergence into new countries, and it has also expanded from urban to rural areas in 

the last decade [1]. This rate is still increasing despite vector control efforts and the 

widespread use of clinical guidelines. According to World Health Organisation 

(WHO), an estimated 390 million dengue infections occur every year, in which Asian 

countries account for 70% of the total cases [2]. Currently, there is an increasing trend 

of mortality rate due to dengue infection in Malaysia [3]. The number of reported 

dengue infections in Malaysia was 130,101 in 2019, which is 60% more than the cases 

in 2018. In addition, 182 deaths were also reported in Malaysia related to dengue 

infections during the same year [2]. The forecasted rate of infections per 100,000 

Malaysian population for 2030 and 2040 is 798 and 940, respectively [3]. A primary 

intervention and prevention plan is essential to evade the predicted prevalence of 

dengue, as this will impose a huge burden on the country’s people and its economy. 

According to WHO, if disease cases are detected early in an epidemic, emergency 

space spraying and increased larviciding can benefit reduction measures [1]. 

The biosensors in this aspect are vital because of their portability and remote 

sensing ability. Biological investigations can be carried out using portable sensors with 

the help of microelectrodes as well as conventional electrodes [4]. A measurable signal 

is obtained from the device called a biosensor which senses biological response. 

Various biosensors used in the detection of tuberculosis, human chorionic 

gonadotropin (hCG), human immunodeficiency virus (HIV), cancer, glucose, and 
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malaria are based on optical or electrochemical methods [5]. However, apart from 

being accurate and providing high precision, these sensors also suffer from some 

limitations. These sensors are based on invasive operation and require purification of 

the samples. Moreover, some sensing methods are based on laboratory investigations 

[4].  

The biosensors generally can be categorised into a couple of classes, one 

includes those which are cheaper and easier to use and the other includes those 

providing accurate results. Among these, those cost low, and are easy to detect have 

sought more attention despite being less accurate and less sensitive [4]. Figure 1.1 

shows the commercially available portable biosensing device used in the detection of 

glucose, HIV, tuberculosis, etc.  

 

Figure 1.1: Point-of-care testing (POCT) device for home-based sensing [5] 

The sensor’s suitability in biomedical applications can be assessed depending 

on certain performance indicators, such as accuracy, precision and portability. The 

rising interest in the development of microwave biosensors has grown to a new level 

that they will be potentially made available in the commercial market very soon. This 

is certainly because high-frequency waves can pass through the cell membrane and 

interact with the cytoplasm, eventually interacting with γ-dispersion. 

Due to the aforementioned constraints of conventional biosensors, the 

scientists’ focus has diverted to some methods that analyse electrical parameters. In 

these developments, the metamaterial is considered an exceptionally suitable 

candidate due to its extraordinary properties. This is due to the highly concentrated 

fields provided by metamaterial structures that result in enhanced sensitivity [6]. Split 

Ring Resonator (SRR) and its complementary version are the two most researched 

configurations of metamaterials [7]. Metamaterial exhibit negative values of 

permittivity, permeability, and refractive index at different microwave frequency 

ranges, which is not possible in commonly available materials. These subwavelength 

resonators in biosensing are used to achieve a significant response against small 
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APPENDIX B 

 

MATLAB KEYWORDS FOR STATISTICAL METHODS 

MATLAB keyword used to apply correlation coefficient: 

[rho, pval]=corr(x,y,’type’,’name’) 

‘type’: 'Pearson'    ‘spearman’    ‘kendall’ 

 

MATLAB keyword used to apply t-test: 

[h,p,ci,stats]=ttest2(x, y, 'alpha',0.1) 

 

MATLAB code to apply Cross-correlation: 

[c,lags] = xcorr(x,y); 

[pks,locs] =findpeaks(c,lags,'SortStr','descend'); 
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