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ABSTRAK

Komputer selari merupakan gabungan beberapa pemproses yang bertujuan
meningkatkan keupayaan séééb’uah sistem komputer dalam melaksanakafi sesuatu
pengatucaraan. Dalam pro’jék ini, sistem komﬁuter sélari yang digunakan dikenali
sebbagai sistem komputer selari berkelompok. Kelebihan menggunakan sistem
}(brffbuter selari berkelompok ini ialah ia mampu bergerak-sendiri sebagai komputer
. sesiri jika tidak beroperasi sebagai komputer seldri. Perisian komputer selari yang
boleh digunakan sebagai sistem operasi kepadé sistem komputer selari berkelompok
ini termasuklah UNIX, Window NT atau Linux. Projek ini memberikan penumpuan
dalam penggunaan sistem kotnputer selari berkelompok menggunakan perisian PVM
untuk menyelesaikan persamaan Navier-Stoke dalam membuat simulasi dua dimensi
aliran tidak boleh mampat dalam ruang segiempat. Kaedah yang digunakan adalah
berasaskan algoritma SIMPLE dan algoritma SIMPLE yangfelah diubahsuai dengan
menggunakan kaedah petpbahagian domaii; dan kaedah pembahagian fungsi.
Ketepatan kedua-dua kaedah tersebut telah dibandifigkan dengan keputusan piawai
yang berkaitan dengan masalah aliran dua dimensi dalam ruang segiempat.
Keupayaan kedua-dua kaedah tersebut dari segi masa perlaksanaan, kecepatan dan
keberkesanan juga telah diperolehi dan didapati penggunaan komputer selari telah
memberikan prestasi yang lebih baik dalam menyelesaikan masalah persamaan
Navier-Stoke tersebut. Dengan kaedah pembahagian domain, didapati masa
perlaksanaan dapaf Lﬁlgurangkan sebanyak 70%- manakala dengan menggunakan
kaedah pembahggi‘éri fungsi, masa perlaksanaan dapat dikurangkan sebanyak 25 %

berbariding dengan menggunakan komputer sesiri.
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CHAPTER 1

INTRODUCTION

1.1 Background

Computational fluid dynamics (CFD) has advanced rapidly over the last two
decades and it is recognized as a valuable tool for engineering applications.
However, numerical simulation of viscous flow fields remains very expensive even
with the use of current vector computers. Advances in numerical algorithms are not
expected to reduce the cost of those computations to the extent that they can

routinely be applied for design.

Vector computers consist of a few powerful processing units that work
independently accelerating computations by one or two orders of magnitude
compared to scalar machines, which are not sufficient for efficient large scale flow
simulations. Another approach to computer architectures is the employment of a
number of processors that work in parallel executing the same job. Parallel

computing appears to be a promising approach for future design application of CFD.

Parallel computing or also known as parallel processing refers to the concept
of speeding up the excitation of a program using multiple processors by dividing the
program into multiple fragments that can execute simultaneously, each on its own
processor. A program being executed across n processors might execute n times
faster that it would use a single processor. Parallel processing differs from

multitasking in which single processors execute several programs at once.



Since a new generdtion of single processor comiputer is a costly enterprise in
order to obtain a larger and faster communications, parallel computing becomes a
key for high perforffrance architecture. All cotemporary’ supercomputers are paral_le’(
processing computers. Massively parallel processors (MPPs)} are now the most
powerful computer in the world. These machines*combine a few hundred to a few
thousand CPUs in & single jarge cabinet connected to hundreds of {'gigabytes of

memory.
There are two methods of parallel processing.

i.  Domain Decomposition Method — Domain decomposition or "data
parallelism", data are divided into pieces of approximately the same size and then
mapped to different processors. Each processor then works only on the portion of
the data that is assigned-to it. Of course, the:processes may need to communicate
periodically in order to exchange data: Data parallelism provides the advantage of
maintaining a single flow of control. A data parallel algorithm consists of a
sequence of elementary instructions applied t6:the data an instruction is initiated

only if the previous instruction is ended.

ii.  Functional Decomposition Method - Functional decomposition or also known
as task parallelism, the problem is decomposed into a large number of smaller tasks
and then, the tasks are assigned to the processors as they become available.
Processors that finish quickly are simply assigned more work. Task parallelism is

implemented in a client-server paradigm.

This project deals with the solving of an incompressible flow simulation
using Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) that originally
put form ward by Patankar and Spalding (1972). As we know, the analysis of an
incompressible flow become more complicated and need a high performance
computer to solve the problem. One of the problems in solving the complicated
problem of an incompressible flow is the time constraint. More complicated of the

problem means more time should be spend to solve the problem.



To overcome this-problem, parallel.compuictwas used and ‘;to:':determine the
performance of this parallel computations, the cotresponding parallel algorithms was
developed and it based on the two methods of paraliglization therc are” Domain
Decompositions Metfigd {{DM) and Funcﬁjana? Decgmposition Method (FDM), At
the end of this project, the restlt for both simulations using_parallel algorithm¢ are

presented and discussed.

1.2 Objective of the Project

The objective of this praject is to develop a code of parallel algorithm and to
determine the performance of the code on parallel computer. The numerical
procedure are based on modified SIMPLE algorithm and the parallelization methods
used both Domain Decomposition Technique and Functional Decomposition
Method.

The model used to analyse performance of the parallel computations is the
problem of natural convection occurred in a square cavity with specified boundary
conditions. The fl6w in a square cavity that is considered here is due to natural
convection. The fluid used is air with a Prandtl number of 0.71. The aspect ratio L/H

is 1.

The flow is described by the Navier-Stokes equations under the Boussinesq
approximation that will discuss later. The summary of the boundary conditions

chosen are as follow:

i. Both the upper and the lower wall are adiabatic.
ii. The vertical walls are isothermal; the left wall is at hot temperature Ty
and the right wall is at cold temperature T..

iii. Velocities at all boundaries are zer0.



The model of square cavity was shown in Figure 1.1.
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Figure 1.1  Model of a square cavity.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Since the parallel computations were introduced, research on incompressible
flow is expanding towards more on applications of solving engineering problems.
This is because using parallel computations, the problems of time constraint can be
reduced. It means that the complicated problems can be solved with more faster than
the serial computer. Starting early 90°s, many researchers tried to solve a past
problem of fluid dynamics using parallel computers. They reworked on the past
problem with a little modification using parallel computer. They found that the
problems can be solved faster and easier than before, even though they have to use

complicated algorithms.

A.W Date (1986) modified a SIMPLE algorithm by adding an extra pressure
correction step on the original SIMPLE algorithms. The purpose of the modification
is to accelerate the convergence of pressure relaxation. For the purpose of study, the
author tried to solve a natural convection heat transfer in horizontal annulus using
two modifications on SIMPLE algorithms. As a result, the SIMPLE algorithm was
found to be extremely slow to converge and even after 1000 iterations the heat
balance only 2.7%. By using the modification of SIMPLE algorithm on parallel
processing, it showed that the result nearly 4 times faster although it involved

solution of a greater number of equation per iteration.




In order to give a faster rate of convergence of the solution of the pressure-
correction equation, V.A.O. Anjorin and LE. Barton (2001) modified a SIMPLE
algorithm and developed SIMPLEV (SIMPLE-Vincent). A proposed improvement is
made to enhance the convergence rate of this algorithm. This is aimed at giving d
faster rate of convergence of the solution of the pressure-correction equation
(Versteeg and Malalasekera, 1995) than the SIMPLE algorithm. The SIMPLEV
algorithm uses the same methodology as that of the SIMPLE algorithm in solving the
velocity fields that satisfy the continuity equation except that the under relaxation
and temporal terms are removed from the pressure-correction equation of the
SIMPLE algorithm. When this is performed the pressure correction tends to zero
therefore satisfying the continuity equation to obtain better convergence. The
problem on this algorithm is for grid systems with large number of nodes, the
efficiency of the SIMPLEV algorithm will reduces.

With the interesting of using SIMPLE method on solving an incompressible
Navier-Stokes equation, G.Horton (1992) tried to solve an incompressible Navier-
Stokes equation using SIMPLE with time-parallel method. According to his study, he
found that the advantage of time-parallel approach over standard parallel methods is
the retainment of larger vector lengths. Grid portioning schemes suffer from the
reduction of vector length incurred by the subdivision of the computations grid.
However, several problems often associated with the implementation of space-
parallel methods such as load balancing, restructuring of sequential code and the

mapping of the problem onto the parallel machine.

Shinsuke Kato, Shuzo Murakami, Wei Zhang, Nabuhiro Miura, Tadashi
Okamoto (1995) also studied on incompressible flow simulation on parallel
computer. However, there were used a SIMPLE algorithm that was modified by Date
(1986) and known as SIMPLE-D method. The computer used in this study is
ADENART (Alternating Direction Edition Nexus ARray system). In their study,
they were compared the analysis between two system there are ADENART64 (with
64 processor) and ADENART256 (with 256 processor). 2D and 3D square cavity
was simulated with ADENART64 and ADENART256 and from the result that was
obtained, the ADENART256 showed that it have a lower calculation time (in




second) compare with ADENARTG64 for the calculation time of 100 iteration, 82 x
82 grid system, calculation time for ADENART64 is 74.5 second while
ADENART?256 only take 37.9 second.

When the parallel computer becomes widely used in solving a fluid flow
problem, groups of researcher start looking on the method of parallelization. Kenjiro
Shimano and Chuichi Arakawa (1995) had tried to solve an incompressible flow
simulation using parallel computations with domain decomposition technique.
During their study, they try to examine the effect of domain decomposition technique
on the convergence property and also to determine how frequently processor should
communicate to obtain the best efficiency. To achieve this propose, the authors were
calculated the laminar flow in a square cavity for laminar flow and the turbulent flow
in a suddenly expanding pipe. From their study, they were found that the
parallelization efficiency will increase as the number of grid increase. It showed that
the domain decomposition technique on parallelization will give the best

performance during to solve the incompressible flow.

Other groups of researcher that try to vary the methods of parallelization are
Jerome Breil, Rossitza S. Marinova, Hideiki Aiso and Tadayasu Takahashi (2003).
They were presented a fully coupled method to solve incompressible Navier-Stokes
equations. The parallelization of their implicit method is based on domain
decomposition method. As a result, the scheme that was produced has second order
accuracy and the domain decomposition allows solving a big problem in less
computational times. The speed-up will increase by using multy-dimensional

domain decomposition methods.

Based on the research that had been done, one of the interesting about the
parallel computer is about the convergence properties. According to this interesting,
San-Yih Lin and Zhong-Xin Yu (2003) compared the various numerical method for
incompressible Navier-Stokes Equations. To analyze the convergent rate, the authors
were used an explicit Runge-Kutta and implicit DDADI method and compared in the
parallel computations. For complex configurations computation, the multizovine

technique is usually utilized to generate a grid system. The result showed that the



DDADI methods performs better that the Runge-Kutta method does. In their paper
work also showed the multizone division will affect the convergent rate. However,
the performance of the DDADI method in the parallel computations still efficiency

for solving the incompressible flow problem.

2.2 Overview of Parallel Programming

For over 40 years, virtually all computers have followed a model known as
the von Neumann computer. This model was introduced by Hungarian
mathematician, John von Neumann. A von Neumann computer uses the stored-
program concept. The CPU executes a stored program that specifies a sequence of
read and writes operations on the memory. This model absolutely differs with a
parallel computer where in the parallel computer, a collection of processors are used

to speed up the execution of one program.

The history of the growth of parallel programming is showed in Table 2.1

below.

Table 2.1: The history of parallel computer architecture development.

Year  Parallel Computer Architecture

1976 Cray - 1 First pipelined

1981 BBN Butterfly 256 processor Motorola 68000

1982 Cray X/MP 4 processors of Cray-1: Shared memory

1986 TMCCM -1 64k processors 1-bit, 12-D hypercube network
1988 Intel iPSC/2 Intel processor 80386, 7-D hypercube network
1989 Fujitsu VP2000 2 multiprocessors processors

1991 KSR-1 32 processors shared virtual memory machine
1992 T™MC CM-5 1204 processors SPARC with tree topology

1995 Intel P6 9000 processors machine based on P6




The classification of the parallel computer architecture can be divided into

three categories: Flynn’s taxonomy, Quinn classification and Cheong classification.

2.2.1 Flynn’s Taxonomy

Flynn’s Taxonomy is one of the standard ways of classifying computer
systems in that proposed by Flynn (1972). Flynn’s Taxonomy distinguishes multi-
processor computer architectures according to how they can be classified along two
independent dimensions of instruction and data. Each of these dimensions can have
only of two possible states, single or multiple. According to this classification there

are four basic types there are;

i.  Single Instruction — Single Data (SISD)

The Von Neumann model

ii. Single Instruction — Multiple Data (SIMD)
These include machines supporting array parallelism

iii. Multiple Instruction — Single Data (MISD)
No systems have been built which fit this classification

iv. Multiple Instruction — Multiple Data (MIMD).
Covers the multiprocessors systems supporting process parallelism on

which we concentrate

2.2.2 Quinn Classification

Quinn (1994) verified that the architecture of parallel computer can be
classified according to the memory architecture, organization of processors, number
of processors that communicate between each other and the flow of the data.
Memory and processors organization can be divided into a parallel computer system

and distributed parallel computer system.
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Parallel computer system consists of two or more unit of similar processors,
special and limited, organization and architecture of the system (Huang & Douglas,
1989). Processors that build in this system will connect by a networking with the
fastest cross communication. Every processor shars the data and executes a job

simultaneously among each processor.

The distributed parallel computer system consists of several processors units
that not related for each other and will connected with a networking to do a sending
message process for communication between the processors. Every processor
working autonomously and consist of their own local memory. According to the
memory organization class, this parallel computer system will be categorized as

multiprocessors computer system and multicomputer computer system.

2.2.3 Cheong Classification

According to Cheong (1992), parallel computer system will be categorized

into the three main structures. The structures are as follow;

i. Array multiprocessor computer
Array multiprocessor computer is a machine consisting of a processor that
operating with parallel on the different input. This type of structure has a
very high speed and efficiency. The example of this parallel computer is a

Cray Y/MP.

ii. Combination of parallel processor
Combination of parallel processor consists of a set of processor that is
bigger than a set of array multiprocessor computer. A classification of the
design system for combination parallel processor is the same like

Taxonomi Flynn classification.
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iii. Cluster of workstations
Cluster of workstations is a new feature on a parallel computer system
design. The cluster of workstations is a structure of multi workstation that
rapidly growth. This is because the cost of building the parallel
application with big memory storage is cheaper compare with
multiprocessor parallel computer. At the same time, achievement of this
cluster of workstations is approaching the multiprocessor parallel

computer (Phyllis & Clement, 1996).

Development of the cluster of workstations only needs a several workstations
or personal computers that connected with a low cost network such as Ethernet with
Linux configuration (Grammatikakis, 2001). Domain software packages for
communication system such as PVM (Geist et al. 1994a & 1994b), MPI (Gropp,
1999) or PARMACS can be obtained freely from internet.



CHAPTER 3

BACKGROUND THEORY

3.1 Mathematical Formulation

The equations governing the fluid dynamics and energy flow have been
known for the most part for more than a century and yet have continued to defy
analytical solution. Instead their solutions have largely been obtained by
experimental simulations in wind tunnels, water tables and shock tubes. Now with
the availability of advanced scientific computers, the equations can be solved using
the methods of computational fluid dynamics (CFD). With a new trend in using a
parallel computer to solve an engineering problem, it is not surprising that, fluid
dynamics and heat transfer are contributing to and benefiting from the current

development in finite difference numerical analysis.

The numerical solution to a problem related to fluid and energy flows

depends on:
i. The number of equations that governs the system undertaken.
ii. The form of the partial differential equations involved - parabolic,
hyperbolic or elliptic.

iii. The linearity of the equations.
iv. The system of the equations - coupling or not.

V. The source term in the equations.
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