
Hybrid PDE-ABM models: from
oncology to virology

Abstract of Ph.D. Thesis

Sadegh Marzban

Supervisor:
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Introduction

Mathematical models describing natural phenomena can be encoded into computer programs,
and then the behaviour of the system can be simulated. Beyond representing equations
defined in the mathematical models, computer simulations can offer higher flexibility and
finer resolution than we can analyse by equation based models. In this work, we strive for
taking advantages of both methods: combining differential equations with computational
simulations, we have access to the insights gained from mathematical analysis, and also to
the rich dynamical behaviours we can observe by performing a large amount of computations.
A simulation utilizing agent-based modeling (ABM) involves capturing the properties and
behaviors of abstract entities known as agents. Each agent in an ABM possesses characteristics
and behaviors, and can act autonomously based on the environment and other agents in the
model. This is similar to the concept of classes in many Object-Oriented languages. The
interactions among agents in many ABMs lead to emergent behaviors that can only be
described at the system level. An example can be found in the flocking of birds in which the
birds exhibit properties similar to those of self-governing organisms. As emergent behavior is
difficult to study directly, in contrast to the individual behavior of a single agent, ABMs are
well suited to analyzing these types of complex systems. In this method, the fundamental
idea is the definition of a discrete heterogeneous state space in which the elements or agents
have collective interactions with each other and change their states accordingly [1]. This
thesis utilizes ABM to investigate two biological phenomena. A model is developed to
simulate the emergence of resistant cancer cells as a result of chemotherapy. We also study
viral dynamics at the cellular level.

Development of resistance to chemotherapy in cancer patients strongly effects the outcome
of the treatment. Due to chemotherapeutic agents, resistance can emerge by Darwinian
evolution. Besides this, acquired drug resistance may arise via changes in gene expression.
A recent discovery in cancer research uncovered a third possibility, indicating that this
phenotype conversion can occur through the transfer of microvesicles from resistant to
sensitive cells, a mechanism resembling the spread of an infectious agent. We present a
model describing the evolution of sensitive and resistant tumour cells considering Darwinian
selection, Lamarckian induction and microvesicle transfer.

We also establish an agent based model as a spatial version of the ODE model and
compare the outputs of the two models. We find that although the ODE model does not
provide spatial information about the structure of the tumour, it is capable to determine the
outcome in terms of tumour size and distribution of cell types.

The results of our models demonstrate the recent observation that some cancer cells can
be transferred by microvesicles. It would be natural to observe how microvesicles affect
treatment along with other factors contributing to the spread of cancer cells.

We propose a hybrid partial differential equation – agent-based (PDE–ABM) model to
describe the spatio-temporal viral dynamics in a cell population. The virus concentration
is considered as a continuous variable and virus movement is modelled by diffusion, while
changes in the states of cells (i.e. healthy, infected, dead) are represented by a stochastic
agent-based model. The two subsystems are intertwined: the probability of an agent getting
infected in the ABM depends on the local viral concentration, and the source term of viral
production in the PDE is determined by the cells that are infected.
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We develop a computational tool that allows us to study the hybrid system and the
generated spatial patterns in detail. We systematically compare the outputs with a classical
ODE system of viral dynamics, and find that the ODE model is a good approximation only
if the diffusion coefficient is large.

We demonstrate that the model is able to predict SARS–CoV–2 infection dynamics, and
replicate the output of in vitro experiments. Applying the model to influenza as well, we
can gain insight into why the outcomes of these two infections are different.

We rigorously verify an experimental observation suggested by our previous simulations:
once established, infections almost never disappear spontaneously. Using the powerful
toolbox of branching processes we theoretically calculate the probability of extinction for
a single cell and obtain an O(0.01) value corresponding to our expectations.

We also explore fundamental statistical features such as mean and a 95% confidence
interval for the number of infected cells. The latter results visually confirm a satisfactory
level of variability within the system: on the one hand it supports small and natural changes
from outcome to outcome, on the other hand it clearly allows successful large-scale prediction
and analysis as most infection curves remain close to the average.

We also investigate Paxlovid as a promising, orally bioavailable novel drug for SARS-
CoV-2 with excellent safety profiles. Our main goal here is to explore the pharmacometric
features of this new antiviral. To provide a detailed assessment of Paxlovid, we propose a
hybrid multiscale mathematical approach. We demonstrate that the results of the present
in silico evaluation match the clinical expectations remarkably well: on the one hand, our
computations successfully replicate the outcome of an actual in vitro experiment; on the other
hand, we verify both the sufficiency and the necessity of Paxlovid’s two main components
(nirmatrelvir and ritonavir) for a simplified in vivo case. Moreover, in the simulated context
of our computational framework, we visualize the importance of early interventions and
identify the time window where a unit-length delay causes the highest level of tissue damage.
Finally, the results’ sensitivity to the diffusion coefficient of the virus is explored in detail.
The dissertation is based on three articles of the author. These publications are the following:

[1] Attila Dénes, Sadegh Marzban, and Gergely Röst. Global analysis of a cancer model
with drug resistance due to Lamarckian induction and microvesicle transfer. Journal
of Theoretical Biology, 527, 110812, year = 2021 .

[2] Sadegh Marzban, Renji Han, Nóra Juhász, and Gergely Röst. A hybrid PDE-ABM
model for viral dynamics with application to SARS-CoV-2 and influenza. Royal Society
Open Science, 8(11), 210787, year = 2021 .

[3] Ferenc A. Bartha, Nóra Juhász, Sadegh Marzban, Renji Han, and Gergely Röst.
In Silico Evaluation of Paxlovid’s Pharmacometrics for SARS-CoV-2: A Multiscale
Approach. Viruses, 14(5), 1103, year = 2022 .
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Cancer

We established a mathematical model describing the evolution of tumour cells sensitive
or resistant to chemotherapy. In the model, we considered three ways of emergence of
chemotherapy resistance as a result of the therapeutic drug: Darwinian selection, Lamarckian
induction and, based on recent discoveries, the emergence of resistance via the transfer of
microvesicles from resistant to sensitive cells, which happens in a similar way as the spread
of an infectious agent.

S ′(t) = −βS(t)R(t)− θS(t) + ρ0S(t)(K − S(t)−R(t))− µ0S(t)− pS(t),

R′(t) = βS(t)R(t) + ρrR(t)(K − S(t)−R(t))− µrR(t) + pS(t).
(1)

Our simple ODE model (1) certainly has its limitations. As we use ordinary differential
equations, our model cannot provide information about the spatial structure of a tumour.
To assess the capabilities of our model in describing tumour growth, we have also established
a spatial version of the model in the form of an agent based model. In order to simulate the
spatial model regarding to equation (1), we begin by defining the assumptions of the model
and then describe the important technical aspects of the model in the implementation part.
The following assumptions are considered for the ABM model.

1. There are two possible states for agents: we have sensitive or resistant cells.

2. If there is an empty space in the 8 cells Moore neighbourhood of each cell, both sensitive
and resistant cells divide with a probability of birth, Pb, which is equal to PS or PR,
depending on the type of the given cell.

3. Sensitive cells die due to apoptosis with rate µS, and due to drug effect with rate
θABM . Resistant cells die due to apoptosis with rate µR. Let Pd denote the probability
of death. Hence, in sensitive cells Pd = µS + θABM and in resistant cells Pd = µR.

4. Phenotype conversion from sensitive to resistant cells can happen due to Lamarckian
induction, the rate of which we denote by PABM . Another way of phenotype conversion
is due to the transfer of microvesicles between cells. This phenomenon is described by
two parameters, namely the distance from resistant cells (if there exists resistant cell(s)
in the von Neumann neighbourhood of each sensitive cell) and the rate of phenotype
conversion due to microvesicles is denoted by βABM in this model.

Comparing the two models, we can deduce that the ODEmodel performs well in reproducing
the possible outcomes of the tumour growth: as for total mass of the two cell types, there is
no further scenario provided by the ABM than the ones experienced with the ODE model.
Of course, this model will only give us information about the tumour mass and not about
the spatial distribution of the two types of the tumour cells or the direction of spatial growth
of the tumour as it is shown in Figure 1. Also, the simulations suggest that the ODE model
and the agent based model react in a similar way to parameter changes. Furthermore, the
ODE model cannot describe the transfer of microvesicles as a spatial phenomenon in a way
the ABM is capable to do so, although by modifying the parameter β in the ODE, in some
extent we also consider the effect of distance between cells on the transfer of microvesicles.
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Figure 1: Possible outcomes with respect to drug concentration and the fitness of the resistant
cells: partial response to therapy (a), tumour eradication (b), or treatment failure (c). Above
is ABM outcome and below is ODE result.
In its present form, the effect of microvesicles and Lamarckian induction is described in a
simple way in our model, especially in the simplified form (1). To consider these phenomena
in a more realistic way can be subject of future research.

Viral dynamics for SARS-COV-2 and influenza

We have applied two different models for investigating the dynamical aspects of virus spread.
The first model we considered was a hybrid PDE-ABM system (2), which is essentially
a result of merging a discrete state space representing epithelial cells with a continuous
reaction-diffusion equation grasping virus concentration.

∂V h(t, x, y)

∂t
= DV∆V h − µV · V h(t, x, y) +

∑
(i,j)∈J

gi,j(t, x, y), t > 0, (x, y) ∈ Ω, (2)

At the same time, we have used the so-called May-Nowak system – a well-known version
of the classical ODE model (3) – as a reference system. As for theoretical completeness,
we provide a rigorous analysis of both models in the Appendix, including a well-posedness
result related to the hybrid model and the study of the ODE model’s temporal dynamics.

dH(t)
dt

= −βH(t)V (t), t > 0,
dI(t)
dt

= βH(t)V (t)− δI(t), t > 0,
dV (t)
dt

= pI(t)− cV (t), t > 0,
dD(t)
dt

= δI(t), t > 0,
H(0) = H0 ≥ 0, I(0) = I0 ≥ 0, V (0) = V0 ≥ 0, D(0) = D0 ≥ 0,

(3)
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The hybrid model’s computational implementation and the careful exploration of its results
is in some sense the heart of our work – we highlight that our program code is based on a
free and open source Java library, HAL (Hybrid Automata Library) [3], commonly used for
oncology modeling.

The connection between the ODE model and hybrid PDE-ABM
system

In this subsection we examine the relationship between the two main models’ respective
parameters. Expressing these connections is not always a trivial task as the hybrid PDE-
ABM framework exists in space, while the ODE model’s functions are defined as variables
only in time. In order to match the two different systems’ corresponding parameters, we
need to fix some basic features of the spatial domain: first of all, let A denote the complete
area of the state space; moreover, for simplicity let us assume that each cell has the area of
a unit space – for the latter we introduce the notation σ2. Finally, let τ denote the unit step
in time.

1. Parameters related to cell death: We emphasise that the two main models use
different approaches to quantify the chance of an infected cell’s death – on the one
hand, the (3) ODE model works with a δ death rate; on the other hand, the hybrid
system uses a PD probability. We can easily obtain a conversion between probability
and rate by following the exact meaning behind these parameters. When infected
cells die with a death rate δ, their natural decay can be described by the function e−δt;
hence, the probability of an infected cell’s death between any two arbitrary time points
t1 and t2 is given by

e−δt1 − e−δt2

e−δt1
= 1− e−δ(t2−t1).

Specifically, for a time interval of length τ the above formula means that an infected
cell dies within that given time frame with a probability of 1− e−δτ .

Applying the Taylor expansion of the exponential function and combining it with the
fact that τ is small, we arrive to the 1−e−δτ ≈ δτ approximation, i.e. we the connection
between δ and PD is given by

PD ≈ δ · τ. (4)

2. Parameters related to new infections: In this part we establish a connection
between the ODE model’s infection rate β and the hybrid system’s probability of
infection PI . Similarly to the previous point, we need to quantify a relationship between
parameters of different dimensions – one being a rate, the other a probability – but this
time the solution is a bit more complex due to the role of spatial factors. We first
focus on the hybrid model’s PI parameter solely within the context of the PDE-ABM
system. We define the probability of a cell’s infection in a way that this probability is
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directly proportional to the local virus concentration V h(Ωi,j) in the (i, j)-th cell (n.b.
the number of viruses per unit space) and to the τ time unit, i.e. we have

PI(V
h(Ωi,j), τ) = ι · V h(Ωi,j) · τ, (5)

where ι is some appropriately set constant value. Our next step is to express the
relationship between β and PI for a specifically chosen, simplified scenario – we temporarily
assume a homogeneous virus distribution over the domain Ω. Now, the key to expressing
PI in terms of β consists in carefully counting the newly infected cells over one iteration
in both the ODE and the hybrid systems. Assuming H healthy cells and a V total
number of viruses at a given time, the corresponding number in the ODE model is
naturally β · V · H · τ. When we switch to the context of the spatial hybrid model,
we need to keep in mind that the virus particles are now spread throughout the entire
domain Ω, and as a consequence, a single cell is exposed only to the locally, physically
present virus particles, whose number is v̄ = V/A. This means that the expected value
of the total number of newly infected cells in the hybrid system is H ·PI(v̄, τ). Setting
the respective values in the two main models equal leads us to

PI(v̄, τ) = β · A · v̄ · τ. (6)

The final step is to combine (5) and (6) – by substituting V h(Ωi,j) = v̄ in the former
we immediately obtain ι = β · A. The connection between β and PI is thus captured
by

PI(V
h(Ωi,j), τ) = β · A · V h(Ωi,j) · τ. (7)

We highlight that the hybrid model’s PI parameter takes the above form exclusively
when the PDE-ABM model’s parameters are configured with a very specific goal
in mind: to match the ODE system. Otherwise, when the hybrid software is used
completely as a standalone, ι is simply a parameter in the hybrid model.

3. Parameters related to virus production: The (3) ODE model’s parameter p
corresponds to virus production rate per unit time. Respectively, in our spatial hybrid
model’s virus dynamical equation (2) the parameter gi,j represents the virus production
rate per unit time per unit space2 – in particular, gi,j = fi,j within infected cells (see
??), hence, clearly, fi,j matches p.

4. Parameters related to virus removal: Analogously, the respective pair of the
hybrid model’s mV parameter is the ODE system’s c virus removal constant.

5. Parameters related to virus diffusion: We highlight that the hybrid model’s
diffusive constant DV does not have a corresponding parameter in the ODE system,
as the latter model is defined only in time and diffusivity is strictly related to spacial
dimensions.
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Compared to the ODE system, both the decisive advantages and the main difficulties of
the hybrid model are naturally related to the PDE-ABM system’s added (and quite high-
level) complexity: the inclusion of spatial effects. On the one hand, the limiting factors of this
model include an increased computational demand and the fact that it is virtually impossible
to consider a really large number of cells on an ordinary computer (we worked with a slice
of tissue consisting of 4 · 104 cells). On the other hand however, this hybrid model provides
us with the invaluable spatial distribution of infection spread: by running simulations for
influenza and SARS-CoV-2 propagation, the results of our spatiotemporal PDE-ABM system
suggested that influenza seems to generate sharper frontlines in virus concentration than
COVID-19 does; moreover, especially for higher diffusion values, COVID-19 visibly spreads
in a more homogeneous manner compared to influenza. This simply would not have been
possible using the ODE model as the latter is defined only in time. The ODE system
represents a scenario where all cells can interact with all virus particles, or in other words,
it implicitly assumes an infinite diffusion coefficient in some sense. Real-life viruses however
clearly have a finite diffusion rate. This also means that if the specific virus in question has a
relatively low diffusion rate, then the ODE model’s predictions regarding infection dynamics
will be less accurate: the lower the diffusion coefficient, the more important it is to apply
the more complex and more suitable spatial hybrid model.

A B

C D

Figure 2: Comparison of the ODE model (solid lines) and the hybrid PDE-ABM model
(dashed lines) for influenza. All figures depict a change taking place over the course of
seven days; specifically, A Viral load (copies/ml), B Number of healthy cells, C Number of
infected cells, D Number of dead cells.

In terms of verifying the accuracy and correctness of our proposed model, we have
relatively successfully recreated the real results of a scientific in vitro experiment: our
computer-simulated results matched the actual events and features of infection spread on a
satisfactory level (Figure 3). Regarding correctness, we refer to Figure 2 as well: about 30
to 50% of the epithelial cells are destroyed in the upper respiratory system at the peak of
infection, which corresponds to the observations of [4] and [5].

As for possible further improvements and applications of our hybrid spatial model, we
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Experimental in vitro results of [10] assessing viral spread.

Figure 3: The simulated spatiotemporal dynamics of SARS–CoV–2 virus spread in human
airway epithelial cells – the results were obtained by our source code implementing the
hybrid PDE–ABM model. This sequence of pictures from our model output shows a striking
resemblance to Figure(4B) in [10] (seen below), where the latter depicts real experimental
results assessing viral propagation. Note the colour choice we apply in this figure: in order
to match our simulation’s colours to the experimental results in [10], in this particular image
the colour green represents virus particles and not healthy cells.

mention two main points. Firstly; fine-tuning features such as immune response processes,
time delay between infection and virus production, and the phenomenon of cell regeneration
are ignored in our current study. These can be the subject of possible future work, although
we note that the present model itself can also be considered to be highly realistic in specific
cases where some of the above mentioned elements are naturally negligible (e.g. at the
short early phase of an infection the immune system has typically not responded yet, while
the time frame is too short for cell regeneration to be relevant). Secondly, we plan to
apply the hybrid system for parameter fitting analogously as [4] used the ODE model for
a similar task for the case of influenza A. In more detail, the authors of [4] calculated a
best fit of the ODE model using experimental data on viral load – they extracted viral
kinetic parameters such as infection rate, virus production rate, viral clearance rate, and
the half-life of free infectious viruses. We simulated the corresponding scenario with both
systems and – as expected, considering the relatively low diffusion value set for influenza
– there was an apparent difference between the respective numerical solutions of the ODE
model and the hybrid system. According to our results, [4] somewhat underestimates the
R0 value: as Figure 2 shows, in order to obtain a solution with the PDE-ABM model that
corresponds to the ODE solution (and hence, to the real curve), it seems that the R0 value of
the hybrid model needs to be higher than the value estimated by [4] to fit the experimental
data. This is another example of how the assumption of homogeneous virus spread can be
misleading – the kinetic values obtained by [4] could be adjusted towards their real biological
value by means of the hybrid PDE-ABM model. Thus, parameter estimation and fitting the
stochastic hybrid model to various virological data is something we also consider as valuable
future work.

The complex hybrid approach allows our model to capture fundamental physical processes
such as diffusion. We have seen that this is paramount in analysing spatiotemporal virus
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spread, but we emphasise that virus diffusion itself is not the only example for this feature’s
significance. Future works using this framework may consider immune response or antiviral
drugs. For the latter, drug diffusion is essential, since spatial heterogeneity naturally arises
as the drug enters the tissue through the capillary network. Hence, the diffusive property
has a key role in the analysis of antiviral drug effectiveness, which can be precisely evaluated
only in spatiotemporal context, and our proposed model can be of great use for assessing
potential COVID-19 treatment strategies.

Our final synopsis is that the hybrid PDE-ABM model is better suited for thorough and
detailed virus spread assessment than the classical ODE system. Following virus propagation
on an individual cellular level and taking important spatial effects into account results in
a more accurate and complete picture regarding the infection’s outcome. Even though the
additional integrated details clearly come at a price in terms of computational demand, this
pays off very well in the form of information on spatial virus distribution and more accurate
predictions.

Stochastic variability

The complex hybrid PDE-ABM approach we considered in chapter allowed us to capture
and predict the spatio-temporal viral dynamics in a cell population. Our hybrid model
presented two fundamental advantages: firstly, it yielded vital information on the spatial
patterns of virus spread, and secondly, its stochastic approach to state changes allowed more
realistic simulation outputs. As simulated infection outputs varied based on pure chance,
the quantitative assessment of stochastic uncertainty was a crucial remaining task. The
present follow-up chapter serves this exact purpose as a supplementary study to chapter :
our work successfully tackled non-deterministic variability in a tangible way by elaborating
two specific, concrete approaches.

Applying the powerful theory of branching processes we rigorously verified an experimental
observation suggested by our previous simulations: once established, infections almost never
disappear spontaneously. Specifically, we calculated the probability of spontaneous virus
extinction and for a single cell obtained an O(0.01) value, corresponding to our expectations.
We highlight that we successfully estimated the offspring distribution of the branching
process describing virus spread: based purely on the original model assumptions and our
computer-generated data, we concluded that the number of new infections generated by
a single infected cell is best described by a negative binomial distribution – we found
a virtually perfect correspondence between the estimated and the observed curves. Our
research concerning spontaneous ultimate extinction was conducted for SARS–CoV–2 infections,
investigating two different virus removal rates (Figure 4). Increased virus clearance can be
viewed as a positive immune response or an effect of treatment, this feature remains to be
further investigated as future work.

We completed our study by performing some base-level statistical analysis: we explored
fundamental features such as mean and we have calculated a 95% confidence interval for
both the number of infected cells and healthy cells (Figure 5). The latter results visually
confirmed a reasonable level of variability within our framework: on the one hand, non-
deterministic uncertainty allows small and natural changes from outcome to outcome, on
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Figure 4: Finding the probability of extinction using the fixed-point method for an
experimentally estimated version of the GX probability generating function. The probability
of extinction appears as the intersection of the function GX with the line y = x. A) All data
were obtained using SARS–CoV–2 parameters. B) Data were obtained using a quintupled
the virus removal rate compared to SARS–CoV–2 parameters (other parameter values remain
unchanged).

the other hand, successful large-scale predictions and analysis remain possible as the vast
majority of infection curves remains close to their estimated mean.

Figure 5: Fundamental statistical features representing stochastic variability for our hybrid
PDE-ABM model. Results were obtained by repeatedly running the hybrid simulation 2000
times, always assuming a default SARS–CoV–2 parametrization and I0 = 20. The result
shows in a tangible way that while peak sizes vary due to pure chance, the elimination of
the cell culture as an outcome is virtually inevitable.

Paxlovid

Even with worldwide vaccination programmes, SARS–CoV–2 and its newly emerging variants
represent an unprecedented global challenge. Consequently, new alternative treatment options
are still very much needed. This paper yields a mathematical, computation-based evaluation
of one of the most promising SARS–CoV–2 inhibitors to date, Paxlovid. We implemented
and carefully calibrated a multiscale mathematical framework (Equation (8) ) to serve as a
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small in silico laboratory where the basic features of Paxlovid can be replicated, explained,
and further investigated.


∂V (t,x,y)

∂t
= DV∆V − µV V + (1− ηN(N)) ·

∑
(i,j)∈J

gi,j(t, x, y), t > 0, (x, y) ∈ Ω,

∂V (t,x,y)
∂ν

= 0, t > 0, (x, y) ∈ ∂Ω,

(8)

Our calculations correspond to clinical expectations remarkably well: we successfully
replicated the outcome of a real-life in vitro experiment in the simulated context of our
model (Figure 6), moreover, both the sufficiency and the necessity of Paxlovid’s two main
components were verified by our computations for a simplified in vivo case.
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Figure 6: A simulated series of in vitro experiments with increasing initial nirmatrelvir
concentrations. Concentration levels are assumed to be constant throughout the entire
course of each experiment. Every simulation follows the emerging infection dynamics for 4
days. SARS–CoV–2 infection and nirmatrelvir treatment are initialized simultaneously. Our
computer-generated predictions correspond reassuringly to real-life scientific measurements
assessing infection inhibition of PF-07321332, see Figure 3D in [9].

To further improve Paxlovid’s assessment, we generated a heatmap investigating the
results’ sensitivity to the inherently vaguely specified virus diffusion coefficient.

The proposed hybrid model has its limitations. In its present form, the system operates
on a simplistic two-dimensional grid, ignoring the complex 3D geometry of the lungs, which
may introduce bias or delays in the predictions. The implementation of a biologically more
realistic three-dimensional structure falls beyond the scope of this study and is subject
of future research. The increase of dimension (and of lattice size) inevitably affects the
computational load and, hence, requires additional, technical optimization of the code in
order to achieve the desired performance. Similarly, the current assumption of a constant
virus clearance rate is ignoring the intricacies of the immune system that is a major limitation
when considering in vivo scenarios. While in real life there is a significant virus release at
burst, our model is averaging out the virus source over a time interval, hence we work with
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constant virus production rates, similarly to [6] and [7]. Consequently, this limitation is
responsible for a slight overestimation regarding advancement of virus release. We note that
in the context of our model it is straightforward to implement more sophisticated approaches
as well (which would not be the case for example in an ODE-based system), and we also
highlight that our source code includes a built-in option allowing to consider latency periods.
However, that would require sufficiently detailed biological data for parametrization. Finally,
we mention that our basic modeling approach to natural cellular life cycles, though being a
simplification, is not expected to imply significant deviation from reality in the context of
a 5-day long Paxlovid treatment: natural cell death is responsible only for circa 1% of cell
population loss during this time frame according to the 17-month half-life of epithelial lung
cells [8].

averted damage

pre-existing damage

initial damage

damage after

start of

treatment
final damage

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100

Damage when treatment starts [%]

T
ot
al
da
m
ag
e
[%

]

Figure 7: The visualization of averted damage as a result of Paxlovid treatment.
The quantity on the horizontal axis (and the x = y line itself) represents the level of cell
culture damage suffered until Paxlovid treatment begins, while data points depicted in blue
show the unavoidable further damage that occurs after therapy commences. The shaded
areas are a precise visual representation of initial damage (red), unavoidable post-intervention
damage (blue), and averted damage (green). Evidently, the light green area represents those
healthily functioning epithelial lung cells that were ultimately saved by Paxlovid.

Despite the mathematical model’s necessary simplifications and the short scope of this
case study we were able to visualize and verify the importance of early interventions (see
Figure 7), moreover, we highlight that such hybrid models and computational frameworks
hold a great deal of promise with applications such as supporting clinical trials by means of
in silico experiments. Computation-based evaluation and simulation of therapies not only
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can enhance optimization of treatments, but a further development of this technology could
also serve to reduce the need for animal testing in the future.
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