Optimization of an innovative hydrothermal processing on prebiotic properties of eucheuma denticulatum, a tropical red seaweed ## **ABSTRACT** Seaweed is a sustainable source of marine oligosaccharides that potentially could be used as a prebiotic ingredient for functional food development. The study aims to optimize the oligosaccharide preparation through thermal hydrolysis of an under-utilized red seaweed, Eucheuma denticulatum. Response surface methodology (RSM) applying Box-Behnken design (BBD) was used on three parameters including temperature (105-135 °C), hydrolysis time (15-35 min) and sulfuric acid concentration (0.05-0.2 M). Optimized fractions with good prebiotic activity were characterized using high-performance size-exclusion chromatography (HP-SEC) and Fourier transform infrared spectroscopy (FT-IR). Eucheuma denticulatum oligosaccharides fraction 1 (ED-F1) was shown to promote the growth of beneficial gut microbiota including Lactobacillus plantarum, L. casei, L. acidophilus, Bifidobacterium animalis and B. longum with the highest prebiotic activity score of 1.64 \pm 0.17. The optimization studies showed that hydrolysis time was the most significant parameter for the oligosaccharides yield. Optimal hydrolysis conditions for ED-F1 were 120 °C, 21 min, 0.12 M H2SO4 with the highest yield achieved (11.15 q/100 q of dry weight). The molecular weight of ED-F1 was determined at 1025 Da while FT-IR analysis revealed the presence of sulfated oligosaccharides with similar characteristics of icarrageenan. These findings signify the innovative method for the efficient production of seaweed derived prebiotic oligosaccharides, which could be a promising source of functional food ingredients for the development of health foods and beverages.