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34CEA Saclay, 91191 Gif sur Yvette, France
35European Space Research and Technology Center, Keplerlaan 1 2201 AZ Noordwijk, The

Netherlands
36Department of Physics and Astronomy, Aichi University of Education, 1 Hirosawa,

Igaya-cho, Kariya, Aichi 448-8543
37Department of Physics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba,

278-8510
38Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle,

Baltimore, MD 21250, USA
39Department of Applied Physics and Electronic Engineering, University of Miyazaki, 1-1

Gakuen Kibanadai-Nishi, Miyazaki, 889-2192
40Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602
41Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho,

Toyonaka, Osaka 560-0043
42Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337
43Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo

171-8501
44Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road,

Piscataway, NJ 08854, USA
45Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506
46Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
47Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo,

Shinjuku, Tokyo 169-8555
48Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551
49Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo

152-8550
50Department of Physics, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510
51Department of Physics, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo, Kyoto

606-8502
52European Space Astronomy Center, Camino Bajo del Castillo, s/n., 28692 Villanueva de la



4 Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0
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Abstract

We present results from the Hitomi X-ray observation of a young composite-type super-

nova remnant (SNR) G21.5−0.9, whose emission is dominated by the pulsar wind nebula

(PWN) contribution. The X-ray spectra in the 0.8–80 keV range obtained with the Soft X-ray

Spectrometer (SXS), Soft X-ray Imager (SXI) and Hard X-ray Imager (HXI) show a significant

break in the continuum as previously found with the NuSTAR observation. After taking into

account all known emissions from the SNR other than the PWN itself, we find that the Hitomi

spectra can be fitted with a broken power law with photon indices of Γ1 = 1.74± 0.02 and

Γ2 = 2.14± 0.01 below and above the break at 7.1± 0.3 keV, which is significantly lower than

the NuSTAR result (∼ 9.0 keV). The spectral break cannot be reproduced by time-dependent

particle injection one-zone spectral energy distribution models, which strongly indicates that

a more complex emission model is needed, as suggested by recent theoretical models. We

also search for narrow emission or absorption lines with the SXS, and perform a timing anal-

ysis of PSR J1833−1034 with the HXI and SGD. No significant pulsation is found from the

pulsar. However, unexpectedly, narrow absorption line features are detected in the SXS data

at 4.2345 keV and 9.296 keV with a significance of 3.65 σ. While the origin of these features is

not understood, their mere detection opens up a new field of research and was only possible

with the high resolution, sensitivity and ability to measure extended sources provided by an

X-ray microcalorimeter.

Key words: ISM: individual objects (G21.5−0.9) – ISM: supernova remnants – pulsars: individual

(PSR J1833−1034)

1 Introduction

A pulsar wind nebula (PWN) is driven by relativistic particles

and magnetic field generated by its central compact object, a

pulsar inside a supernova remnant (SNR) shell (Pacini & Salvati

1973; Rees & Gunn 1974; Kennel & Coroniti 1984). A bub-

ble is formed beyond a termination shock where the relativistic

wind of non-thermal electrons and positrons interact with the

surrounding ejecta (e.g., Fang & Zhang 2010). The resultant

emission is dominated by centrally peaked synchrotron radia-

tion from radio to X-rays and inverse Compton scattering (IC)

at higher energies. The observed spectra of PWNe are basi-

cally characterized by a power law with a hard spectral index

α∼−0.3−0 at radio wavelengths and a steeper photon index in

X-rays, Γ≡ 1−α∼ 2 (cf. Gaensler & Slane 2006). Because the

break energy is associated with the acceleration process and the

aging of the particles, a wide-band analysis helps us understand

∗ The corresponding authors are Hiroyuki UCHIDA, Takaaki TANAKA, Samar

SAFI-HARB, Masahiro TSUJIMOTO, Yukikatsu TERADA, Aya BAMBA,

Yoshitomo MAEDA, and John P. HUGHES

the evolution of PWNe (Reynolds & Chevalier 1984), although

the nature of the spectral steepening is still under debate.

One of the best observed examples of a young PWN is

G21.5−0.9 (Altenhoff et al. 1970; Becker & Szymkowiak

1981), which substitutes for the Crab nebula (Kirsch et al. 2005)

as a standard candle or a calibration target for X-ray satellites.

Several X-ray studies of this nebula with Chandra and XMM-

Newton show a non-thermal power-law spectrum with no line

emission (Slane et al. 2000; Safi-Harb et al. 2001; Warwick et

al. 2001). Using G21.5−0.9, Tsujimoto et al. (2011) performed

a comprehensive cross calibration of Chandra, INTEGRAL,

RXTE, Suzaku, Swift, and XMM-Newton as one of the ac-

tivities of the International Astronomical Consortium for High

Energy Calibration (IACHEC). They separated these instru-

ments into two groups; Chandra ACIS, Suzaku XIS, Swift

XRT, and XMM-Newton EPIC (MOS and pn) for the soft band

(< 10 keV); INTEGRAL IBIS-ISGRI, RXTE PCA, and Suzaku

HXD-PIN for the hard band (> 10 keV). One of their results of

interest to scientific studies is a significant difference of pho-
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ton indices Γ ∼ 1.84 and ∼ 2.05 taken from the joint fittings

of the soft- and hard-band instruments, respectively. This study

implies spectral steepening of G21.5−0.9 in the X-ray band, as

indicated by the preceding soft-band analyses (e.g., Matheson

& Safi-Harb 2010, in addition to the above), although the ra-

dially dependent Γ should be considered in the discussion of

the nature of the steepening. Nynka et al. (2014) observed

G21.5−0.9 with NuSTAR and revealed a high-energy spectral

feature in the band of 3–45 keV. The spectrum is represented by

a broken power law with a break energy of ∼ 9 keV. A broad-

band spectral energy distribution (SED) model built by Tanaka

& Takahara (2011) gives a poor fit to the NuSTAR spectrum

and thus Nynka et al. (2014) suggested that further modeling

is required to explain the wide-band spectrum of G21.5−0.9.

They proposed some extra aspects to take into account, for ex-

ample, more complex electron injection spectra, additional loss

processes (e.g., diffusion) or radial dependence of the PWN pa-

rameters.

One of the clear differences between G21.5−0.9 and the

Crab is the existence of faint thin-thermal extended emission

(Bocchino et al. 2005; Matheson & Safi-Harb 2005; Matheson

& Safi-Harb 2010). This fact illustrates how accumulated cali-

bration observations help to reveal a shell component in a Crab-

like PWN. However, given the brightness of the PWN and

the relatively weak thermal X-ray emission from G21.5−0.9,

the parameters of the thermal emission from the shell are still

poorly determined. In particular, we have no information on

Fe-K emission line which is common in young SNRs such as

Cassiopeia A (Hughes et al. 2000). Depending on the magnetic

field strength of the powering pulsar, the emission from the pul-

sar itself also reveals line features in the X-ray band due to the

cyclotron effect (Meszaros & Nagel 1985). It is thus of interest

to search for emission/absorption line structures with excellent

energy resolution detectors.

PSR J1833−1034 was discovered at the center of

G21.5−0.9 in the radio band (Gupta et al. 2005; Camilo et

al. 2006) and GeV gamma-ray band (Abdo et al. 2013). The

characteristic age of the pulsar is estimated to be 4850 yr

from the period of ∼ 61.9 ms and the period derivative of

∼ 2.0× 10−13 s s−1, however the dynamics of its associated

PWN indicates a much younger age of 870+200
−150 yr (Bietenholz

& Bartel 2008), which makes this pulsar one of the youngest

and the most energetic systems in our Galaxy. On the other

hand, no significant pulsation has been found yet in the X-ray

band (Camilo et al. 2006; Bocchino et al. 2005; Matheson &

Safi-Harb 2010), although the central pulsar is very energetic

(Kargaltsev & Pavlov 2008; Bamba et al. 2010). It is likely due

to the contamination from the very bright PWN. Typically, X-

ray emission from a pulsar is harder than that from the PWN

(Kargaltsev & Pavlov 2008), and therefore, the hard X-ray

band is suitable to search for the coherent pulsation. Hitomi

HXI has good sensitivity, low background (Nakazawa et al.

2018; Matsumoto et al. 2017; Hagino et al. 2018), and good

timing accuracy (Terada et al. 2017) with a rather long time du-

ration of the G21.5−0.9 observation of 329 ks, and thus it could

have higher sensitivity for the search for the coherent pulsation

from the pulsar.

In this paper we report on observational results of

G21.5−0.9 with Hitomi (formerly known as ASTRO-H;

Takahashi et al. 2016). The observation was performed during

the commissioning and performance verification phase. We ob-

tained simultaneous data of all the instruments aboard with the

longest exposure among the targeted celestial sources Hitomi

observed. Here we focus on the following three studies; a wide-

band spectroscopy, narrow emission or absorption line searches,

and a timing analysis. In section 2, we present detailed infor-

mation on the Hitomi observation and the data reduction. In

section 3, we perform the joint fitting of the G21.5−0.9 data

and discuss the result. The blind search of emission or absorp-

tion lines and the timing analysis are presented in sections 4 and

5, respectively. All the results are summarized in section 6.

2 Observation and Data Reduction

G21.5−0.9 was observed with Hitomi on 2016 March 19–23

during the instrument commissioning phase of the satellite. We

analyzed data from the four instruments aboard Hitomi: the

Soft X-ray Spectrometer (SXS; Kelley et al. 2016), the Soft X-

ray Imager (SXI; Tanaka et al. 2018), the Hard X-ray Imager

(HXI; Nakazawa et al. 2018), and the Soft Gamma-ray Detector

(SGD; Watanabe et al. 2016). The Soft X-ray Telescope (SXT;

Soong et al. 2014; Okajima et al. 2016) consists of two modules

of X-ray mirrors, SXT-S and SXT-I, which focus X-rays for the

SXS and SXI, respectively. The HXI system consists of two sets

of detector modules referred to as HXI1 and HXI2. Two sets of

the Hard X-ray Telescope (HXT; Awaki et al. 2014) are used to

focus hard-band X-rays for each of the HXI sensors. The SGD

system consists of two sets of detector modules referred to as

SGD1 and SGD2. Detailed information on the observation is

summarized in table 1.

We combined all the data of four different sequence IDs (see

table 1) for our spectral analysis. We performed the data reduc-

tion with version 6.20 of the HEAsoft tools, which is compati-

ble with version 005b of the Hitomi Software released on 2017

March 6. We applied the Hitomi Calibration Database version 6

released on 2017 March 6 for the following analysis. Note that

the gate valve of the SXS remained closed during the observa-

tion, which significantly reduced the effective area of the SXS

below 2 keV. We applied the “Crab ratio correction factor” for

modeling the effective area of SXS (Tsujimoto et al. 2018). In

the SXI data analysis, we carefully excluded events detected in

“minus-Z day earth (MZDYE)” intervals, during which the SXI
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Table 1. Observation log.

Target Obs. Date (R.A., Dec.)J2000 Sequence ID Effective Exposure (ks)

G21.5−0.9 2016 Mar 19–23 (278.39, −10.57) 100050010–100050040 165 (SXS) / 51 (SXI) / 99 (HXI) / 255 (SGD)

Fig. 1. Top left: SXS sky coordinate image of G21.5−0.9. Top right: SXI

image of the source and the surrounding region. Two calibration-source re-

gions are also included in the image. The FOV of the HXI are indicated by

the solid squares. Bottom: HXI1 (left) and HXI2 (right) images of G21.5−0.9.

The SXS pixel array (white squares) overlaid on the HXI1 image.

has many pixels affected by light leakage from the day earth

(Nakajima et al. 2018). We eliminated the SGD data for the

wide-band spectroscopy since the observation was performed

during the turn-on phase of SGD1 and we have no SGD2 data.

In figure 1, we present the full-band images of G21.5−0.9

taken by the SXS, SXI, and HXI. We note that there are no sig-

nificant transient sources in the vicinity of G21.5−0.9 within

the field of view (FOV) of the SXI. As previously reported by

Slane et al. (2000), G21.5−0.9 has a core of the wind termi-

nation shock surrounded by a synchrotron nebula with a radius

of ∼ 30′′, which is consistent with the centrally-peaked profile

shown in figure 1. G21.5−0.9 also has a faint 150′′ radius halo

that almost covers the 3′ × 3′ SXS FOV.

To extract the SXS spectrum, we used all 35

pixels. The source extraction region for the SXI

and HXI is a circle with a ∼ 3′ radius centered at

(R.A., Dec.) = (18h 33m 33.s57, − 10◦ 34′ 07.′′5) in the

equinox J2000.0, which is the position of the central pulsar,

PSR J1833−1034. Spectral fittings were performed with

the X-ray Spectral Fitting Package (XSPEC) version 12.9.0u

(Arnaud 1996) with the Cash statistics (Cash 1979). We did not

rebin the spectra since the Cash statistics can deal with low-

count bins as opposed to the χ2 fitting method. We generated

redistribution matrix files for the SXS and SXI with sxsmkrmf

and sxirmf, respectively. We ran aharfgen (Yaqoob et al.

2018) to generate ancillary response files for the SXS and SXI

and and response files for the HXI. Since G21.5−0.9 has a

faint diffuse extended halo out to ∼ 140′′ from the pulsar (e.g.,

Matheson & Safi-Harb 2005), we generated the response files

by inputing a Chandra image (0.5–10.0 keV) to aharfgen

to take into account the spatial extent. Note however that

whether the assumed source type is “extended” or “point-like”,

our spectral analysis results are unaffected. The background

spectrum for the SXI is extracted from a source-free region of

the on-axis segment (CCD2CD). Off-source spectra are used

for the HXI backgrounds as well.

3 Wide-band Spectroscopy

3.1 Analysis

Figure 2 (a) shows the background-subtracted spectra of

G21.5−0.9 (0.8–10.0 keV for the SXI, 5.0–80.0 keV for the

HXI and 2.0–12.0 keV for the SXS). The featureless spectral

shape already suggests that the emission is dominated by non-

thermal X-ray emission, as reported by previous X-ray studies

(Slane et al. 2000; Safi-Harb et al. 2001; Warwick et al. 2001;

Bocchino et al. 2005; Matheson & Safi-Harb 2010; Tsujimoto

et al. 2011; Nynka et al. 2014). In order to fit the SXS, SXI

and HXI data, we first attempted a single power law (here-

after, single PL) modified by interstellar absorption using the

Tuebingen–Boulder ISM absorption (TBabs in XSPEC; Wilms

et al. 2000). We find that while this model fits well the spectra

up to ∼ 10 keV, giving a photon index of ∼ 2.0, it overpredicts

the emission in the HXI band, suggesting a spectral break. The

residuals and the fitting parameters are shown in figure 2 (b)

and table 2, respectively. When fitting the HXI data alone with

the column density frozen to its best fit value from the broad-

band fit, we find a steeper photon index of ∼ 2.2, confirming

our conclusion above.

Guided by the most recent spatially resolved Chandra stud-

ies of this source (Matheson & Safi-Harb 2010; Guest & Safi-

Harb 2018; see also Bocchino et al. 2005 for the XMM-Newton

study) showing that the spectrum steepens away from the source

and has some weak thermal X-ray emission from the northern

knot, we used a “composite” model that accounts for the emis-

sion from all but the power-law emission from the PWN (as

observed with Chandra, Guest & Safi-Harb 2018). We de-

fine the model “composite+PL” as multiple components from

the pulsar, the extended halo and the limb, a weak, thermal

soft (kTe ∼ 0.15 keV) component from the northern knot, rep-

resented by a non-equilibrium ionization model (vpshock in
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Fig. 2. Wide-band spectra of G21.5−0.9 obtained with the SXI (black; 0.8–

10.0 keV), HXI1 (red; 5.0–80.0 keV), HXI2 (green; 5.0–80.0 keV) and the

SXS (blue; 2.0–12.0 keV). The data is rebinned only for plotting purposes.

The best-fit model (composite+Broken PL; see text and table 2) is overlaid

with the solid lines in panel (a). The dotted lines indicate all the additive

components in the model. Panels (b), (c), and (d) show residuals from the

single PL, composite+PL and composite+Broken PL models, respectively.

XSPEC; Borkowski et al. 2001) plus a power-law component

from the PWN (the most dominant component). We note here

that the SXS is not sensitive to the localized thermal com-

ponent due to the limited sensitivity below ∼ 2 keV and the

lack of spatial resolution to extract the thermal knots. We also

note that the blackbody thermal component from the pulsar,

PSR J1833−1034, reported by Matheson & Safi-Harb (2010)

is not significant and contributes with a negligible fraction to

the spectrum of the SNR obtained with Hitomi. As shown in

figure 2 (c), we find that the model (composite+PL) is suffi-

cient to explain the SXS data. The model, however, underpre-

dicts or overpredicts the soft and hard X-ray emissions detected

with the SXI and HXI, respectively. The result again clearly

shows negative residuals at > 10 keV, which suggests that a

steeper power-law slope is required by the HXI data, as claimed

by recent studies obtained in the hard X-ray band (Tsujimoto

et al. 2011; Nynka et al. 2014). The best-fit results for the

composite+PL model are displayed in table 2.

We subsequently replaced the power-law model compo-

nent representing the PWN with a broken power-law model

(composite+Broken PL) to reproduce the spectral break. The

result and residuals are presented in figures 2 (a) and (d), respec-

tively. The model (composite+Broken PL) reduces the large

residuals at > 10 keV seen in figure 2 (c). As shown in ta-

ble 2, this model fits the spectra with photon indices of Γ1 =

1.74± 0.02 for the soft band and Γ2 = 2.14± 0.02 for the hard

band, giving a break energy Ebreak=7.1±0.3 keV. We note that

the best-fit column density of NH=(3.2±0.03)×1022 cm−2 is

lower than those obtained by Matheson & Safi-Harb (2010) and

previous Chandra and XMM-Newton studies. This is mainly

due to the difference of the abundance tables used in the spec-

tral fittings. We use here the updated abundance table (Wilms

et al. 2000) whereas most previous X-ray studies used the abun-

dances given by Anders & Grevesse (1989). The choice, how-

ever, does not affect the other spectral parameters such as the

photon indices or the break energy.

3.2 Origin of Spectral Break at ∼ 7 keV

We know from previous Chandra X-ray studies that the spec-

tral index for G21.5−0.9 steepens away gradually from the

PSR J1833−1034 as we go out to the limb of the SNR

(Matheson & Safi-Harb 2005). Here we demonstrate that the

spectral softening or break required for fitting the HXI spectrum

of the SNR cannot be due to this spatially-varying photon index;

that is, the addition of the different power law components does

not reproduce the spectrum observed with the Hitomi data. This

conclusion was similarly reached by the NuSTAR study (Nynka

et al. 2014).

To that end, we construct a composite power-law model con-

sisting of spatially resolved spectra of 50 regions obtained with

all Chandra data acquired to date (Guest & Safi-Harb 2018; see

also Matheson & Safi-Harb 2005). The model accounts for the

small-scale regions extending from the pulsar out to the SNR

limb and consists of power-law model components with an in-

dex steepening from ∼ 1.5 at the pulsar to ∼ 2.6 in the outer-

most region. Fitting this composite model to the Hitomi spectra

clearly shows that the model does not fit the HXI data, as shown

in figure 3.

We have to consider possible mechanisms to make the spec-

tral break other than the spatial variation of the synchrotron ra-

diation. Let us discuss this in the context of a multi-wavelength

study using data from radio up to TeV gamma rays including

the Hitomi data. Many authors have been trying to reproduce

spectral energy distributions of PWNe such as the Crab neb-

ula and G21.5−0.9 in the literature (e.g., Atoyan & Aharonian

1996; Zhang et al. 2008; Tanaka & Takahara 2010; Tanaka &

Takahara 2011; Martı́n et al. 2012; Torres et al. 2014). In what

follows, we calculate emission models for G21.5−0.5 based on

the one-zone model by Tanaka & Takahara (2010) and Tanaka

& Takahara (2011).

The PWN is assumed to be a uniform sphere with a radius

of Rpwn expanding with a constant velocity vpwn (i.e., Rpwn =

vpwnt). The spin-down power of the central pulsar is expressed

as

Lsd(t) = Lsd0

(

1+
t

τ0

)−
n+1

n−1

, (1)

where Lsd0, τ0, and n are the initial spin-down luminosity,
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Table 2. Spectral Fitting Results of the Hitomi G21.5−0.9 Data.

Model

Parameter single PL composite+PL composite+Broken PL

NH (1022 cm−2) 3.50± 0.03 3.64± 0.02 3.22± 0.03

Γ1 2.03± 0.01 2.01± 0.01 1.74± 0.02

Γ2 — — 2.14± 0.01

Ebreak (keV) — — 7.1± 0.3

FX,soft
∗ (10−11 erg s−1 cm−2) 3.39± 0.04 2.88± 0.03 4.80± 0.02

FX,hard
† (10−11 erg s−1 cm−2) 4.96± 0.04 4.92± 0.04 4.54± 0.04

C-statistics (using 23035 PHA bins) /d.o.f. 25447.06/23030 25380.67/23029 24228.18/23027

The errors are 90% confidence level.
∗ Intrinsic flux in the 2.0–8.0 keV range for the SXI and SXS.
† Intrinsic flux in the 15.0–50.0 keV range for the HXI.

Fig. 3. The SXI (black) and HXI1/2 data (red and green) fitted with the

composite+PL model accounting for the spatially resolved spectroscopic

study of the SNR with Chandra (Guest & Safi-Harb 2018; see also Matheson

& Safi-Harb 2005). The individual components contributing to the fitted spec-

trum are shown as dashed lines. The bottom panel shows the data-to-model

ratios and illustrates that this model does not reproduce the spectral shape

obtained with the HXI.

the initial spin-down timescale, and the breaking index, respec-

tively. The spin-down luminosity is finally converted either to

kinetic power of relativistic positrons and electrons (we refer to

simply as electrons hereafter) Le or into magnetic power LB in

the PWN region. The ratio of the two channels is determined by

the temporally and spatially constant parameter η (0≤ η≤ 1) as

Le(t) = (1− η)Lsd(t), (2)

LB(t) = ηLsd(t). (3)

Electrons are injected to the PWN with a broken power-law

spectrum:

Q(E,t) =







Q0(t)(E/Eb)
−p1 (Emin ≤ E < Eb)

Q0(t)(E/Eb)
−p2 (Eb ≤ E ≤ Emax)

0 (otherwise),

(4)

where E denotes the kinetic energy of electrons and Eb is the

break energy. The normalization Q0(t) can be obtained by sub-

stituting

Le(t) =

∫ Emax

Emin

EQ(E,t)dE (5)

into equation (2). The magnetic energy conservation,

4π

3
[RPWN(t)]

3 [B(t)]2

8π
=

∫ t

0

ηL(t′)dt′, (6)

together with equation (1) yields the magnetic field strength

B(t) =

√

3(n− 1)ηLsd0τ0
[RPWN(t)]3

[

1−
(

1+
t

τ0

)− 2
n−1

]

. (7)

The electron spectrum at time t is obtained by solving the

Fokker-Planck equation

∂N(E,t)

∂t
=

∂

∂E
[b(E,t) N(E,t)]+Q(E,t) (8)

for N(E,t), where b(E,t) is the energy loss rate of electrons.

We consider energy losses by synchrotron, IC, and adiabatic ex-

pansion of the PWN. We then calculate synchrotron and IC radi-

ation spectra from the electrons with the spectrum N(E,tage),

where tage is the age of the pulsar. In the calculation of the

synchrotron spectrum, we assume that the magnetic field line

directions are randomly distributed, and use the analytical for-

mula for the synchrotron spectrum from a single electron by

Zirakashvili & Aharonian (2007). We consider isotropic radi-

ation fields for IC, and calculate the spectrum by using the ex-

pression given by Jones (1968). The radiation fields spectra are

taken from the model implemented in GALPROP (Porter et al.

2006), which includes the cosmic microwave background, opti-

cal radiation from stars, and infrared radiation due to reemission

of the optical component by dust.

We first tried fitting the overall shape of the multi-

wavelength spectrum of G21.5−0.9 (Case 1). Figure 4 shows

the result of the calculation plotted with the data in the radio,

infrared, X-ray, and TeV gamma-ray bands. In the calculation,

we assumed 4.7 kpc as the distance to the PWN (Camilo et al.
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Fig. 4. Spectral energy distribution of G21.5−0.9 with the Case 1 model

whose parameters are summarized in table 3. The black, blue, and green

data points in the X-ray band are from the SXI, SXS, and HXI, respectively.

The data from HXI1 and HXI2 are co-added for display purpose. The radio

data points are taken from Wilson & Weiler (1976), Becker & Kundu (1975),

Morsi & Reich (1987), and Salter et al. (1989) The infrared data are obtained

with the Infrared Space Observatory by Gallant & Tuffs (1999). The H.E.S.S.

data points in the TeV gamma-ray band are by Djannati-Ataı̈ et al. (2008).

2006). Referring to Bietenholz & Bartel (2008), we assumed

the expansion velocity of the PWN and the age of the pulsar to

be vpwn=910 km s−1 and tage=870 yr, respectively. Since the

second derivative of the pulsar period has not been measured,

we simply assumed n= 3, which corresponds to spin-down via

magnetic dipole radiation. The rotation period P and period

derivative Ṗ of PSR J1833−1034 are taken from Camilo et al.

(2006) as P = 61.9 ms and Ṗ = 2.02× 10−13, which are used

to obtain τ0 and Lsd0τ0 as

τ0 =
P

(n− 1)Ṗ
− tage = 4.0 kyr (9)

P0 = P
(

1+
tage
τ0

)− 1
n−1

= 56 ms (10)

Lsd0τ0 =
I

(n− 1)τ0

(

2π

P0

)2

= 6.3× 1048 erg. (11)

Here P0 is the initial pulsar period, and I is pulsar’s moment

of inertia for which we assumed 1045 g cm2. The parameters

are similar to those of Model 1 by Tanaka & Takahara (2011).

Although the model fits well the radio, infrared, and gamma-ray

data points, it fails to fit the Hitomi spectra particularly in the

soft X-ray band below the break at 7 keV.

One of the possible mechanisms to make the X-ray spec-

tral break is synchrotron cooling. In the model presented in

figure 4, the synchrotron cooling break appears at ∼ 102 eV.

Since the synchrotron cooling break energy is roughly propor-

tional to B−3, we need to have a weaker magnetic field and

thus smaller η to move the break toward a higher energy up to

7 keV at which we found the break. In figure 5, we plot model

curves for which we assumed smaller η so that the synchrotron

break coincides with the observed break (Case 2). The param-

eters are summarized in table 3. Smaller η results in a lower

synchrotron-to-IC flux ratio, which contradicts the data. In ad-

Fig. 5. Same as figure 4 but with the Case 2 model curves.

dition, the model predicts a smaller spectral slope change at the

break than the Hitomi data. The assumption about the magnetic

field evolution in principle can affect the results. Several authors

(e.g., Zhang et al. 2008; Torres et al. 2014) indeed considered

different magnetic field evolution models. The situation, how-

ever, would not be drastically improved even if we adopt their

assumptions.

Instead of synchrotron cooling, another break in the electron

injection spectrum might be able to explain the break we ob-

served. This scenario, however, would not be feasible at least

with a one-zone model. As demonstrated by the Case 1 model

shown in figure 4, the parameter η should be ∼ 10−2 to account

for the observed synchrotron-to-IC ratio. In this case, the syn-

chrotron cooling break inevitably appears at an energy below

the X-ray band, which leads to a softer X-ray spectrum. It is

then difficult to reproduce the low-energy part of the Hitomi

spectrum, i.e., the hard spectrum below the break with a photon

index of Γ1 = 1.7.

It is likely that more complicated models are required to

reproduce the observational data. We assumed a single elec-

tron population in an emitting region where physical parameters

such as the magnetic field strength are uniform. In reality, elec-

trons are transported from the termination shock of the PWN

through advection and diffusion (de Jager et al. 2008; Tang &

Chevalier 2012; Vorster & Moraal 2013). Higher energy elec-

trons suffer from significant synchrotron cooling, which makes

the electron spectrum spatially variable. The magnetic field

should have spatial variation as well. X-rays would be emit-

ted by electrons close to the termination shock where the mag-

netic field is relatively high while the radio-to-infrared radia-

tion might be coming from a larger region. In this context, it

is of interest to note that the radio and X-ray images presented

by Matheson & Safi-Harb (2005) suggest different morpholo-

gies. The X-ray emission appears more concentrated close to

the pulsar compared with the radio image. It is also possible

that radio-emitting and X-ray-emitting electrons have different

origins. Tanaka & Asano (2017) proposed such a model (see



Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0 11

Table 3. Parameters for model calculations.

η Emin Eb Emax p1 p2

Case 1 2.0× 10−2 0.5 GeV 50 GeV 1 PeV 1.0 2.5

Case 2 1.0× 10−3 0.5 GeV 50 GeV 1 PeV 1.0 2.5

also Ishizaki et al. 2017). In their model, electrons responsible

for X-rays are provided by the pulsar wind and are accelerated at

the termination shock through the diffusive shock acceleration

process. On the other hand, radio-emitting electrons are sup-

plied, for example, by supernova ejecta, and are stochastically

accelerated by turbulence inside a PWN. Such models could re-

produce the complex synchrotron shape that the Hitomi result

revealed.

4 Search for Lines

4.1 Analysis

We performed a blind search of emission and absorption lines

from the SXS spectrum. We focus on narrow lines in the 2–

10 keV band. The bandpass is limited by the attenuation by the

closed gate-valve below 2 keV and the photon statistics above

10 keV. Features with a width up to 1280 km s−1 were searched.

A search for weak broad features is strongly coupled with the

exact shape of the continuum, details of which are hampered

by the incomplete calibration of the effective area of the SXS

(Tsujimoto et al. 2018).

We took the same approach as for the Crab nebula (Hitomi

Collaboration et al. 2018a), in which we fitted the spectrum lo-

cally and added a single Gaussian model with a fixed trial en-

ergy and width. The trial energies are from 2 to 10 keV with a

0.5 eV step and the width are 0, 20, 40, 80, 160, 320, 640, and

1280 km s−1. The power-law model was used for the local con-

tinuum fitting in an energy range 3–20 σ(E) on both sides of

the trial energy E, in which σ(E) is the quadrature sum of the

trial width and the line spread function width. The significance

of the detection was assessed as

σ =
Nline

√

∆N2
line +(Nline∆Icont/Icont)2

, (12)

in which Nline and ∆Nline are the best-fit and 1 σ statistical

uncertainty of the line normalization in the unit of s−1 cm−2,

whereas Iline and ∆Iline are those of the continuum intensity in

the unit of s−1 cm−2 keV−1 at the line energy. Positive values

indicate emission, whereas negative values indicate absorption.

Figure 6 shows the distribution of significance for some se-

lected trial widths. The distribution of significances is well fit-

ted by a simple Gaussian distribution. Assuming that it is in-

deed a single Gaussian distribution, we set the detection limit

such that, on both sides, there is less than 0.01 false posi-

tive for the number of trials. There are nine trial absorption

Fig. 6. Distribution of significance (equation 12) for several selected trial

widths in different colors. The distribution is fitted by a single Gaussian

model, and its best-fit parameter is shown in the legend as (center, width).

The horizontal dotted lines indicate the significance at which the upper or

lower probability is 0.1% assuming the best-fit Gaussian distribution.

lines that lie in the tail of the distribution with significance of

the with deviations of 3.65 σ. All of these lines are either at

4.2345 keV or 9.296 keV. We show the fits to the two most sig-

nificant ones in figure 7. These modeled absorption lines yield

an equivalent width of −2.3±0.8 eV and velocity widths of 50–

400 km s−1 for 4.2345 keV and −4.9±2.2 eV and <89 km s−1

for 9.296 keV. The results are summarized in table 4.

In figure 7, for comparison, we also plot the G21.5−0.9

spectrum made with unfiltered events and the Crab spectrum

with screened events. The former is intended to examine arti-

facts by event screening, while the latter by the effective area

calibration. For both energies, the absorption features are not

seen in the Crab data (and other Hitomi datasets), indicating

that they are not instrumental features. The features are seen

both in the unfiltered and screened spectra, suggesting that they

are not due to the screening.

4.2 Possible Absorption Line Features

The method described above using the SXS data revealed ab-

sorption features around 4.2345 keV and 9.296 keV. Given that

these lines are not present in other Hitomi data, including the

Crab (an object similar in nature to G21.5−0.9), we propose an

astrophysical origin. However, we cannot identify these lines as

there is no known strong atomic transitions in nearby energies

even if we consider doppler effect due to the expansion.
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Table 4. Parameters for detected absorption lines.

Line Centroid (keV) Equivalent Width (eV) Velocity Width (km s−1) Significance (σ)

4.2345 −2.3± 0.8 50–400 3.65

9.296 −4.9± 2.2 <89 3.65

Fig. 7. Background-unsubtracted spectra at two energies (4.2345 keV and 9.296 keV for the left and right panels, respectively). Black, red, and blue respec-

tively show the background-unsubtracted spectrum for the screened G21.5−0.9, the unfiltered G21.5−0.9, and the screened Crab data, which are normalized

and offset to have a mean at 3.0, 2.0, and 1.0. The black dotted curve is the best-fit continuum plus Gaussian model for a velocity width of 0 km s−1. The red

and blue curves are the same model with a different offset to match with the comparison data.

One interpretation is electron cyclotron resonance scattering.

The absorption feature would then be at

Ec = 11.6
(

B

1012 G

)

keV∼ 42
(

B

3.6× 1012 G

)

keV, (13)

for a surface dipole magnetic field strength of the pulsar B =

3.6× 1012 G, which is estimated from P and Ṗ . If interpreted

as electron cyclotron features, the absorption features would be

associated with lower magnetic fields of the order of 4×1011 G

and 8 ×1011 G for 4.2345 keV and 9.296 keV lines, respec-

tively. In this case, the absorbing electrons would be located

higher in the magnetosphere. However the line features are not

as broad as we expect for cyclotron absorption lines, and the

ratio of their energies (given the precise values determined by

the SXS) is not 1 : 2, as would be expected from harmonics.

We therefore rule out the possibility of the electron cyclotron

absorption lines.

Another potential origin is surface atomic lines from the

strongly magnetized neutron star atmosphere, as predicted

by calculations with a high-field multiconfigurational Hartree-

Fock code (Miller & Neuhauser 1991; Miller 1992, and refer-

ences therein). While absorption features (or emission lines in a

few cases) have been reported from a range of isolated neutron

stars, from the extremely high magnetic field objects like mag-

netars (e.g., Turolla et al. 2015), to the extremely low magnetic

field objects like the Central Compact Objects (e.g., Bignami et

al. 2003), to the X-ray Dim Isolated Neutron Stars (Borghese et

al. 2017), to even an isolated ‘ordinary’ rotation-powered pul-

sar (Kargaltsev et al. 2012), these lines are all either relatively

broad, or if similarly narrow (e.g., as seen in XMM-Newton

gratings spectra of isolated neutron stars, Hohle et al. 2012),

they are at much lower energies. Furthermore, the presence of

the lines is controversial in some of these sources. The SXS

features reported here in G21.5−0.9 are the first such narrow

lines found in the hard X-ray band and for a rotation-powered

pulsar powering a PWN.

More recently, Rajagopal et al. (1997) and Mori & Ho

(2007) constructed models of magnetized atmospheres com-

posed of Fe and mid-Z elements, respectively. According

to their calculations and simulated spectra, multiple absorp-

tion features appear in the energy range from ∼ 0.1 keV up

to ∼ 10 keV. We note that if the atmosphere is dominated

by O or Ne (Mori & Ho 2007), a magnetic field strength of

B > 1013 G is required to explain the observed line feature at

the energy as high as 9.296 keV. Given the magnetic field of

PSR J1833−1034, B = 3.6× 1012 G, we speculate that heav-

ier elements may be dominant in its atmosphere (unless we are

probing higher order strong multipoles). This then suggests fall-

back of supernova ejecta onto the neutron star surface. While

the pulsar powering G21.5−0.9 is believed to be an isolated

pulsar, the possibility of fallback would be interesting in the

light of PSR J1833−1034 being likely the youngest known pul-

sar in our Galaxy with a PWN age estimated at only 870 yr

(Bietenholz & Bartel 2008). It is however difficult to identify a

specific element only from the two faint features. The Thomson

depth has a complicated structure and the resultant spectra show

many absorption lines whose centroids highly depend on B and
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Fig. 8. Period measurements of PSR J1833−1034 in the radio and GeV

gamma-ray band (Gupta et al. 2005; Camilo et al. 2006; Abdo et al. 2013),

shown in red and cyan, respectively. The search area with Hitomi is shown

in magenta.

the temperature of the atmosphere (Mori & Ho 2007).

Lastly, another potential origin is absorption associated with

its surroundings, noting that the PWN has a significant dust

scattering halo. Again however, the line energies are much too

high to be associated with an ISM component. The lack of de-

tection of X-ray pulsations (section 5) hampers a phase-resolved

spectroscopic study which would help differentiate between an

intrinsic-to-the-pulsar or ambient origin. Future deep observa-

tions of PSR J1833−1034 with a high-resolution spectrometer,

as well as the detection of similarly narrow hard X-ray absorp-

tion features from other similar systems, will help reveal the na-

ture of these features, and may open a new window for studying

the atmospheres or environment of isolated pulsars.

5 Search for Coherent Pulsation

We searched the HXI and SGD data for pulsed signals from the

central pulsar PSR J1833−1034. Before analyzing the data, we

estimated the expected period of the pulsar during the Hitomi

observation. The measured P in radio and GeV observations

(Gupta et al. 2005; Camilo et al. 2006; Abdo et al. 2013) show

straight linear increase with time as shown in Figure 8. The

slope is consistent with Ṗ =2.2025(3)×10−13 s s−1, the result

of the most detailed observation (Camilo et al. 2006). We thus

decided to search P in the range of 61.92–61.94 ms, and fixed

Ṗ = 2.2025× 10−13 s s−1.

Extracting the HXI events, we tried two sizes of

circular regions with 8′′ and 70′′ radii centered at

(R.A., Dec.) = (18h 33m 33.s8, − 10◦ 34′ 01′′) for better

signal-to-noise ratio for the pulsar against the PWN and the

pulsar against the background, respectively. In the extraction

of the SGD events, the photo-absorption events were extracted

following the method described in the appendix 2 in Hitomi

Collaboration et al. (2018b). We applied the barycentric cor-

rection on the arrival times of events using barycen for Hitomi

(Terada et al. 2017). The timing searches were performed in

each of the energy bands: 20–30 keV, 30–40 keV, 40–50 keV,

50–60 keV, and 60–70 keV for the HXI, and 20–30 keV,

30–50 keV, 50–100 keV, and 100–200 keV for the SGD. As

a result, about 10–170 events were obtained per each energy

band for the HXI smaller region, about 370–2,800 events for

the HXI larger region, and about 12,000–17,000 events for the

SGD. We performed efserach in HEAsoft 6.20 with the time

resolution of 1 ns on four sets of phase bin sizes (5, 7, 13, and

23 bins) with five different time origins (shifted by 0, 20%,

40%, 60%, and 80% of each phase-bin size) and found no

significant pulsation (i.e., the values of χ2/d.o.f. of trial-pulse

profiles to the constant model are close to unity for all the

trials). We estimated the 5 σ values of the χ2/d.o.f. on all the

trials, as summarized in table 5. In comparison of these χ2

values with the numerical simulations of possible pulses under

the assumption that the pulse profiles have sinusoidal shapes

in various amplitudes, the pulse fractions corresponding to the

5 σ values of the χ2/d.o.f. were also estimated (table 5); the

pulse fractions become similar values among various phase-bin

settings although χ2/d.o.f. varies by the settings. The 5 σ

upper limit in the count rate in each energy band were also

estimated in the table. We also tried Zm analysis (Buccheri

et al. 1983; Brazier 1994) for the same data set, in order to

reduce high frequency noise. Again, no significant pulsation

was found.

6 Summary

While a standard pulsar wind theory of the Crab Nebula has

been established by Kennel & Coroniti (1984), there are many

evolution models proposed to generally describe the spectra of

PWNe from radio to gamma rays. G21.5−0.9 is a good ex-

ample to investigate the emission mechanism in this context

since the remnant is considered to be a prototype pulsar/PWN

system in the early stage of the evolution (cf. Gaensler &

Slane 2006). We observed G21.5−0.9 with Hitomi on 2016

March 19–23 during the instrument commissioning and verifi-

cation phase of the satellite. Thanks to their high sensitivity,

wide band spectra obtained with the SXS, SXI and HXI on-

board Hitomi revealed a detailed spectral feature in the range

of 0.8–80 keV where a spectral break had been pointed out by

previous studies (Tsujimoto et al. 2011; Nynka et al. 2014).

We constructed a “composite” spectral model accounting for

all components of G21.5−0.9 to constrain the break energy of

the central PWN. Our results indicate that the PWN spectrum is

reproduced by a broken power-law model with photon indices

of Γ1 = 1.74± 0.02 and Γ2 = 2.14± 0.01 below and above

the break, respectively. The break energy Ebreak is located at

7.1± 0.3 keV, which is significantly lower than that estimated
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Table 5. Timing Search Results for Each Setting

Instrument Region Energy band (keV) count∗ χ2/d.o.f.† pulse fraction (%) † count s−1‡

HXI 8′′ circle 30–40 168 4.5,3.8,3.0,2.5 24,26,30,35 < 2.4× 10−4

HXI 8
′′ circle 40–50 90 4.5,3.9,3.0,2.5 31,34,39,41 < 1.6× 10

−4

HXI 8′′ circle 50–60 28 4.7,4.0,3.1,2.5 41,42,41,41 < 5.8× 10−5

HXI 8
′′ circle 60–70 10 4.4,3.8,3.0,2.5 42,42,42,42 < 2.1× 10

−5

HXI 70′′ circle 30–40 2768 4.7,4.0,3.1,2.5 6, 7, 9,10 < 1.1× 10−3

HXI 70
′′ circle 40–50 1218 4.5,3.9,3.0,2.5 10,11,13,14 < 7.3× 10

−4

HXI 70′′ circle 50–60 628 4.6,3.9,3.1,2.5 13,15,18,20 < 5.2× 10−4

HXI 70
′′ circle 60–70 370 4.6,3.9,3.1,2.5 17,19,22,25 < 3.9× 10

−4

SGD — 20–30 11766 4.5,3.9,3.0,2.5 3, 3, 4, 5 < 1.7× 10−3

SGD — 30–50 12401 4.7,3.9,3.1,2.5 3, 3, 4, 5 < 1.8× 10−3

SGD — 50–100 17069 4.5,3.9,3.0,2.5 2, 3, 3, 4 < 2.0× 10
−3

SGD — 100–200 14855 4.4,3.8,3.0,2.5 2, 3, 3, 4 < 1.7× 10−3

∗ Total number of events, including background.

† 5-σ upper limit by searches in the 5, 7, 13, and 23 phase bins, respectively.

‡ 5-σ upper limit in count rate.

from the NuSTAR spectra (9.0+0.6
−0.4 keV in the 30′′ inner re-

gion) by Nynka et al. (2014). We attempted to explain the SED

from radio to TeV gamma rays with a spectral evolution model

based on the work by Tanaka & Takahara (2010) and Tanaka

& Takahara (2011). The overall shape of the multi-wavelength

spectrum is well fitted by the model, whereas it fails to repro-

duce the Hitomi spectra particularly in the soft X-ray band be-

low the break. Our results require more complicated models

considering, for example, stochastic acceleration (e.g., Tanaka

& Asano 2017). We also performed a timing analysis and a

thermal line search of G21.5−0.9 with the Hitomi instruments:

no significant pulsation was found from PSR J1833−1034 with

the HXI and SGD. Two narrow absorption line features were

detected at 3.65 σ confidence at 4.2345 keV and 9.296 keV in

the SXS spectrum. The observed absorption features reported

here are not seen in the Crab data or other Hitomi datasets, sug-

gesting that they are not an instrumental artifact. The nature of

these features is not well understood, but their mere detection

opens up a new area of research in the physics of plerions and

isolated pulsars and is a challenge to present-day models. It

is highly surprising in that the spectrum of what was supposed

to be a featureless calibration source shows significant unex-

pected spectral features. This indicates the power of the X-ray

microcalorimeter for opening up a new discovery space in as-

trophysics.

Author Contributions

H. Uchida, T. Tanaka, and S. Safi-Harb led the data analysis and

draft preparation. The wide-band spectroscopy was performed

mainly by H. Uchida, T. Tanaka, S. Safi-Harb, Y. Maeda, N.

Nakaniwa, and B. Guest. The thermal line search was done by

M. Tsujimoto and T. Sato. Y. Terada took responsibility for

the timing analysis with the help of H. Murakami. A. Bamba

coordinated the analysis tasks for each topic. The paper was

improved by J. P. Hughes, R. Mushotzky, and M. Sawada.

Acknowledgments

We thank D. A. Smith and M. Kerr to giving us the detailed informa-

tion on the Fermi LAT observations of PSR J1833−1034. We thank the

support from the JSPS Core-to-Core Program. We acknowledge all the

JAXA members who have contributed to the ASTRO-H (Hitomi) project.

All U.S. members gratefully acknowledge support through the NASA

Science Mission Directorate. Stanford and SLAC members acknowl-

edge support via DoE contract to SLAC National Accelerator Laboratory

DE-AC3-76SF00515. Part of this work was performed under the aus-

pices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

Support from the European Space Agency is gratefully acknowledged.

French members acknowledge support from CNES, the Centre National
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