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COMPOSITE RATIONAL FUNCTIONS AND

ARITHMETIC PROGRESSIONS

SZ. TENGELY

Abstract. In this paper we deal with composite rational func-
tions having zeros and poles forming consecutive elements of an
arithmetic progression. We also correct a result published in [12]
related to composite rational functions having a fixed number of
zeros and poles.

1. Introduction

We consider a problem related to decompositions of polynomials and
rational functions. In this subject a classical result obtained by Ritt
[13] says that if there is a polynomial f ∈ C[X ] satisfying certain
tameness properties and

f = g1 ◦ g2 ◦ · · · ◦ gr = h1 ◦ h2 ◦ · · · ◦ hs,

then r = s and {deg g1, . . . , deg gr} = {deg h1, . . . , deg hr}. Ritt’s fun-
damental result has been investigated, extended and applied in various
wide-ranging contexts (see e.g. [4, 6, 7, 9, 10, 11, 14, 15]). The above
mentioned result is not valid for rational functions. Gutierrez and
Sevilla [9] provided the following example

f =
x3(x+ 6)3(x2 − 6x+ 36)3

(x− 3)3(x2 + 3x+ 9)3
,

f = g1 ◦ g2 ◦ g3 = x3 ◦ x(x− 12)

x− 3
◦ x(x+ 6)

x− 3
,

f = h1 ◦ h2 =
x3(x+ 24)

x− 3
◦ x(x2 − 6x+ 36)

x2 + 3x+ 9
.

To determine decompositions of a given rational function there were
developed algorithms (see e.g. [1, 2, 3]). In [2], Ayad and Fleischmann
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2 SZ. TENGELY

implemented a MAGMA [5] code to find decompositions, they provided
the following example

f =
x4 − 8x

x3 + 1
and they obtained that f(x) = g(h(x)), where

g =
x2 + 4x

x+ 1
and h =

x2 − 2x

x+ 1
.

Fuchs and Pethő [8] proved the following theorem.

Theorem A. Let k be an algebraically closed field of characteristic
zero. Let n be a positive integer. Then there exists a positive integer
J and, for every i ∈ {1, . . . , J}, an affine algebraic variety Vi defined
over Q and with Vi ⊂ An+ti for some 2 ≤ ti ≤ n, such that:
(i) If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g, deg h ≥ 2, g

not of the shape (λ(x))m, m ∈ N, λ ∈ PGL2(k), and f has at most n
zeros and poles altogether, then there exists for some i ∈ {1, . . . , J}
a point P = (α1, . . . , αn, β1, . . . , βti) ∈ Vi(k), a vector (k1, . . . , kti) ∈
Zti with k1 + k2 + . . . + kti = 0 depending only 1 on Vi , a partition
of {1, . . . , n} in ti + 1 disjoint sets S∞, Sβ1, . . . , Sβti

with S∞ = ∅ if
k1 + k2 + . . . + kti = 0, and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n,
also both depending only on Vi, such that

f(x) =

ti
∏

j=1

(ωj/ω∞)kj , g(x) =

ti
∏

j=1

(x− βj)
kj

and

h(x) =

{

βj +
ωj

ω∞
(j = 1, . . . , ti), if k1 + k2 + . . .+ kti 6= 0

βj1
ωj2

−βj2
ωj1

ωj2
−ωj1

(1 ≤ j1 < j2 ≤ ti), otherwise,

where
ωj =

∏

m∈Sβj

(x− αm)
lm, j = 1, . . . , ti

and
ω∞ =

∏

m∈S∞

(x− αm)
lm .

Moreover, we have deg h ≤ (n− 1)/max{ti − 2, 1} ≤ n− 1.
(ii) Conversely for given data P ∈ Vi(k), (k1, . . . , kti), S∞, Sβ1, . . . , Sβti

,
(l1, . . . , ln) as described in (i) one defines by the same equations ratio-
nal functions f, g, h with f having at most n zeros and poles altogether
for which f(x) = g(h(x)) holds.

1in [8] it is written as ”or not depending”, this typo is corrected here.
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(iii) The integer J and equations defining the varieties Vi are effec-
tively computable only in terms of n.

Pethő and Tengely [12] provided some computational experiments
that they obtained by using a MAGMA [5] implementation of the al-
gorithm of Fuchs and Pethő [8].
If the zeros and poles of a composite rational function form an arith-

metic progression, then we have the following result.

Theorem 1. Let f, g, h be rational functions as in Theorem A. Assume
that the zeros and poles of f form an arithmetic progression, that is

αi = α0 + Tid

for some α0, d ∈ k and Ti ∈ {0, 1, . . . , n− 1}. If k1 + k2 + . . .+ kt 6= 0,
then either the difference d satisfies an equation of the form

dN = M

for some N ∈ Z,M ∈ Q or (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n satisfies a
system of linear equations

∑

r∈Sβi

lr =
∑

s∈Sβj

ls, i, j ∈ {1, . . . , t}, i 6= j.

If k1 + k2 + . . .+ kt = 0 and 1 ≤ j1 < j2 < j3 ≤ t, then

d

∑
m1∈Sβj1

lm1
, d

∑
m2∈Sβj2

lm2
, d

∑
m3∈Sβj3

lm3

satisfy a system of linear equations and βj1, βj2, βj3 satisfy a system of
linear equations.

We will apply the above theorem to determine composite rational
functions having 4 zeros and poles. We prove the following statement.

Proposition 1. Let k be an algebraically closed field of characteristic
zero. If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g, deg h ≥ 2, g
not of the shape (λ(x))m, m ∈ N, λ ∈ PGL2(k), and f has 4 zeros and
poles altogether forming an arithmetic progression, then f is equivalent
to the following rational function

(x− α0)
k1(x− α0 − d)k2(x− α0 − 2d)k2(x− α0 − 3d)k1,

for some α0, d ∈ k and k1, k2 ∈ Z, k1 + k2 6= 0.

In this paper we correct results obtained in [12], where the com-
putations related to the case k1 + k2 + . . . + kt 6= 0, S∞ = ∅ are
missing. The following theorem is the corrected version of Theorem
1 from [12], where part (c) was missing. We define equivalence of ra-

tional functions. Two rational functions f1(x) =
∏n

u=1(x−α
(1)
u )f

(1)
u and
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f2(x) =
∏n

u=1(x − α
(2)
u )f

(2)
u are equivalent if there exist au,v ∈ Q, u ∈

{1, 2, . . . , n}, v ∈ {1, 2, . . . , n+ 1} such that

α(1)
u = au,1α

(2)
1 + au,2α

(2)
2 + . . .+ au,nα

(2)
n + au,n+1,

for all u ∈ {1, 2, . . . , n}.
Theorem 2. Let k be an algebraically closed field of characteristic zero.
If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g, deg h ≥ 2, g not
of the shape (λ(x))m, m ∈ N, λ ∈ PGL2(k), and f has 3 zeros and
poles altogether, then f is equivalent to one of the following rational
functions

(a) (x−α1)k1 (x+1/4−α1)2k2

(x−1/4−α1)2k1+2k2
for some α1 ∈ k and k1, k2 ∈ Z, k1+k2 6= 0,

(b) (x−α1)2k1 (x+α1−2α2)2k2

(x−α2)2k1+2k2
for some α1, α2 ∈ k and k1, k2 ∈ Z, k1 +

k2 6= 0,

(c)
(

x− α1+α2

2

)2k1 (x − α1)
k2(x − α2)

k2 for some α1, α2 ∈ k and
k1, k2 ∈ Z, k1 + k2 6= 0.

Remark. The MAGMA procedure CompRatFunc.m can be downloaded
from http://shrek.unideb.hu/∼tengely/CompRatFunc.m. All sys-
tems in cases of n ∈ {3, 4, 5} can be downloaded from
http://shrek.unideb.hu/∼tengely/CFunc345.tar.gz.

Remark. It is interesting to note that in the above formulas the zeros
and poles form an arithmetic progression

(a): α1 −
1

4
, α1, α1 +

1

4
difference:

1

4
,

(b): α1, α2,−α1 + 2α2 difference: α2 − α1,

(c): α1,
α1 + α2

2
, α2 difference:

α2 − α1

2
.

2. Auxiliary results

We repeat some parts of the proof of Theorem A from [8] that will
be used here later on. Without loss of generality we may assume that
f and g are monic. Let

f(x) =
n
∏

i=1

(x− αi)
fi

with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n. Similarly, let

g(x) =

t
∏

j=1

(x− βj)
kj
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with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N.
Hence we have

n
∏

i=1

(x− αi)
fi = f(x) = g(h(x)) =

t
∏

j=1

(h(x)− βj)
kj .

We shall write h(x) = p(x)/q(x) with p, q ∈ k[x], p, q coprime. Fuchs
and Pethő [8] showed that if k1 + k2 + . . . + kt 6= 0, then there is a
subset S∞ of the set {1, . . . , n} for which

q(x) =
∏

m∈S∞

(x− αm)
lm

and there is a partition of the set {1, . . . , n} \ S∞ in t disjoint non
empty subsets Sβ1 , . . . , Sβt

such that

(1) h(x) = βj +
1

q(x)

∏

m∈Sβj

(x− αm)
lm ,

where lm ∈ N satisfies lmkj = fm for m ∈ Sβj
, and this holds true for

every j = 1, . . . , t. We get at least two different representations of h,
since we assumed that g is not of the special shape (λ(x))m. Therefore
we get at least one equation of the form

(2) βi +
1

q(x)

∏

r∈Sβi

(x− αr)
lr = βj +

1

q(x)

∏

s∈Sβj

(x− αs)
ls.

If k1 + k2 + . . .+ kt = 0, then we have

(p(x)− βjq(x))
kj =

∏

m∈Sβj

(x− αm)
fm .

Now we have that t ≥ 3, otherwise g is in the special form we excluded.
Siegel’s identity provides the equations in this case. That is if 1 ≤ j1 <
j2 < j3 ≤ t, then we have

(3) vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0,

where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x− αm)
lm .
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3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. If k1 + k2 + . . . + kt 6= 0 and there exist r1 ∈
Sβi

, s1 ∈ Sβj
for some i 6= j such that lr1 6= 0 and ls1 6= 0, then it

follows from (2) that

βi − βj =

∏

s∈Sβj
(αr1 − αs)

ls

∏

m∈S∞
(αr1 − αm)lm

,(4)

βi − βj = −
∏

r∈Sβi

(αs1 − αr)
lr

∏

m∈S∞
(αs1 − αm)lm

(5)

for any appropriate αr1 ∈ Sβi
and αs1 ∈ Sβj

. Hence we obtain that

C1(i, j, r1, s1) = d
∑

r∈Sβi
lr−

∑
s∈Sβj

ls
,

where C1(i, j, r1, s1) ∈ Q. If there exist Sβi
and Sβj

for which
∑

r∈Sβi
lr−

∑

s∈Sβj

ls 6= 0, then the possible values of d satisfy equations of the form

xN = M. Otherwise we get that
∑

r∈Sβi

lr =
∑

s∈Sβj

ls, i, j ∈ {1, . . . , t}, i 6= j.

Let us consider the special case when lr = 0 for all r ∈ Sβi
. If ls = 0

for all s ∈ Sβj
, then we get that

h(x) = βi +
1

q(x)
= βj +

1

q(x)
.

Hence βi = βj for some i 6= j, a contradiction. Thus we may assume
that there exists s1 ∈ Sβj

for which ls1 6= 0. In a similar way as in the
above case it follows that

βi − βj =

∏

s∈Sβj

(αr1 − αs)
ls

∏

m∈S∞
(αr1 − αm)lm

− 1
∏

m∈S∞
(αr1 − αm)lm

,(6)

βi − βj = − 1
∏

m∈S∞
(αs1 − αm)lm

.(7)

Therefore

d
∑

s∈Sβj
ls
= C2(i, j, r1, s1),

where C2(i, j, r1, s1) ∈ Q. Since s1 > 0 we have that
∑

s∈Sβj

ls 6= 0, that

is d satisfies an appropriate polynomial equation.
If k1+k2+. . .+kt = 0, then there are at least 3 partitions and for any

appropriate r1 ∈ Sβj1
, r2 ∈ Sβj2

, r3 ∈ Sβj3
(that is lri 6= 0, i = 1, 2, 3)
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equation (3) implies that

(βj3 − βj1)
∏

m2∈Sβj2

(αr3 − αm2)
lm2 + (βj2 − βj3)

∏

m1∈Sβj1

(αr3 − αm1)
lm1 = 0

(βj1 − βj2)
∏

m3∈Sβj3

(αr2 − αm3)
lm3 + (βj2 − βj3)

∏

m1∈Sβj1

(αr2 − αm1)
lm1 = 0

(βj1 − βj2)
∏

m3∈Sβj3

(αr1 − αm3)
lm3 + (βj3 − βj1)

∏

m2∈Sβj2

(αr1 − αm2)
lm2 = 0,

that is a system of linear equations in d1, d2, d3, where di = d

∑
mi∈Sβji

lmi
, i ∈

{1, 2, 3} and the statement follows. In a very similar way we obtain a
system of equations if lr = 0 for all r ∈ Sβj3

, the last two equations
are as before, while on the left-hand side of the first one there is an
additional term βj1 − βj2 . �

Proof of Theorem 2. In [12] all cases are given with k1+k2+. . .+kt = 0
and also with k1 + k2 + . . . + kt 6= 0, S∞ 6= ∅. Therefore it remains to
deal with those cases with k1 + k2 + . . . + kt 6= 0, S∞ = ∅. First let
t = 2. There are 18 systems of equations. Among these systems there
are two types. The first one has only a single equation, e.g. when
Sβ1 = {1, 2}, Sβ2 = {3}, (l1, l2, l3) = (1, 0, 1), this equation is as follows

α1 − α3 − β1 + β2 = 0.

Hence

h(x) = β1 + (x− α1) = β2 + (x− α3)

is a linear function. A system from the second type is given by Sβ1 =
{1, 2}, Sβ2 = {3}, (l1, l2, l3) = (1, 1, 2) and equations as follows

α1 + α2 − 2α3 = 0

(α2 − α3)
2 − β1 + β2 = 0.

That is we obtain that

h(x) = β2 +

(

x− α1 + α2

2

)2

,

g(x) =

(

x− β2 −
(

α2 − α1

2

)2
)k1

(x− β2)
k2,

f(x) =

(

x− α1 + α2

2

)2k1

(x− α1)
k2(x− α2)

k2 .

It is a decomposition of type (c) in the theorem. Let t = 3. There are
6 systems of equations, all of the same type, e.g. Sβ1 = {1}, Sβ2 =
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{2}, Sβ3 = {3}, (l1, l2, l3) = (1, 1, 1) and

α1 − α3 − β1 + β3 = 0

α2 − α3 − β2 + β3 = 0.

Hence the degree of h is 1, that yields a trivial decomposition. �

4. Proof of Proposition 1

Proof of Proposition 1. In this section we apply Theorem 1 to deter-
mine composite rational functions having zeros and poles as consecu-
tive elements of certain arithmetic progressions. We need to handle the
following cases

(I) : n = 4 and t ∈ {2, 3, 4}, k1 + k2 + . . .+ kt 6= 0, S∞ = ∅,
(II) : n = 4 and t ∈ {2, 3}, k1 + k2 + . . .+ kt 6= 0, S∞ 6= ∅,

(III) : n = 4 and t ∈ {3, 4}, k1 + k2 + . . .+ kt = 0, S∞ = ∅.

In the proof we use the notation of Theorem 1, that is we write

αi = α0 + Tid,

where α0, d ∈ k and {T1, T2, T3, T4} = {0, 1, 2, 3}.
(I) : t = 2, {|Sβ1|, |Sβ2|} = {1, 3}.Wemay assume that Sβ1 = {1}, Sβ2 =

{2, 3, 4}. We obtain that

h(x) = β1 + (x− α1)
l1,

h(x) = β2 + (x− α2)
l2(x− α3)

l3(x− α4)
l4 .

Substituting x = α2, α3, α4 yields (assuming l2l3l4 6= 0)

(α2 − α1)
l1 = (α3 − α1)

l1 = (α4 − α1)
l1.

Since the zeros and poles form an arithmetic progression one gets that
either d = 0 or l1 = 0. In the former case the zeros and poles are not
distinct, a contradiction. In the latter case the degree of h is less than
2, a contradiction as well. If two out of l2, l3, l4 are equal to zero, then
it follows that l1 = 1, hence the degree of h is 1, a contradiction. If
exactly one out of l2, l3, l4 is zero, then l1 = 2 and the corresponding f
has only 3 zeros and poles. As an example we consider the case l4 = 0.
We obtain that

α1 =
α2 + α3

2
and β2 = β1 +

(

α2 − α3

2

)2

.

It follows that f(x) =
(

x− α2+α3

2

)2
f1(x), where deg f1 = 2.
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(I) : t = 2, {|Sβ1|, |Sβ2|} = {2}.Here we may assume that Sβ1 = {1, 2}, Sβ2 =

{3, 4}. We get that

h(x) = β1 + (x− α1)
l1(x− α2)

l2 ,

h(x) = β2 + (x− α3)
l3(x− α4)

l4 .

It follows that (assuming that 0 /∈ {l1, l2, l3, l4})
(α1 − α3)

l3(α1 − α4)
l4 = (α2 − α3)

l3(α2 − α4)
l4

and

(α3 − α1)
l1(α3 − α2)

l2 = (α4 − α1)
l1(α4 − α2)

l2 .

Using the fact that the zeros and poles form an arithmetic progression
it turns out that one has to deal with 80 cases.

• There are 8 cases with (l1, l2, l3, l4) = (1, 1, 1, 1). We obtain
equivalent solutions, so we only consider one of these. Let α1 =
α0, α2 = α0 +3d. It follows that β2 = β1− 2d2. That is we have

g(x) = (x− β1)(x− β1 + 2d2),

h(x) = β1 + (x− α0)(x− α0 − 3d),

f(x) = (x− α0)(x− α0 − d)(x− α0 − 2d)(x− α0 − 3d).

• There are 16 equivalent cases with (l1, l2, l3, l4) ∈ {(1, 1, 2, 2), (2, 2, 1, 1)}.
One obtains that d2 = ±1

2
and β2 = β1 ± 1. One example from

this family is given by

g(x) = (x− β1)(x− β1 − 1),

h(x) = β1 + (x− α0 −
√
2/2)2(x− α0 −

√
2)2,

f(x) = (x− α0)

(

x− α0 −
√
2

2

)2

(x− α0 −
√
2)2

(

x− α0 −
3
√
2

2

)

f2(x),

where f2(x) is a quadratic polynomial such that f has more
than 4 zeros and poles. We remark that if we use the equations
related to β2 we have

g(x) = (x− β2)(x− β2 + 1),

h(x) = β2 + (x− α0)(x− α0 − 3
√
2),

f(x) = (x− α0)

(

x− α0 −
√
2

2

)

(x− α0 −
√
2)

(

x− α0 −
3
√
2

2

)

,

that is we obtain a ”solution” covered by the family given by
the case (l1, l2, l3, l4) = (1, 1, 1, 1).



10 SZ. TENGELY

• There are 8 equivalent cases with (l1, l2, l3, l4) = (2, 2, 2, 2). All
of these cases can be eliminated in the same way. From the
equation

(8) (α1 − α3)
l3(α1 − α4)

l4 = −(α3 − α1)
l1(α3 − α2)

l2

it follows that

dl1+l2−l3−l4 =
(T1 − T3)

l3(T1 − T4)
l4

−(T3 − T1)l1(T3 − T2)l2
,

where {T1, T2, T3, T4} = {0, 1, 2, 3}. The left-hand side is d0 = 1
and the right-hand side is -1, a contradiction.

• There are 16 equivalent cases with (l1, l2, l3, l4) ∈ {(1, 1, 3, 3), (3, 3, 1, 1)}.
As an example we handle the one with (l1, l2, l3, l4) = (3, 3, 1, 1)
and

α1 = α0,

α2 = α0 + 3d,

α3 = α0 + 2d,

α4 = α0 + d.

Equation (8) implies that either d = 0 or d4 = 1
4
. If d2 = 1

2
,

then we get

g(x) = (x− β1)(x− β1 + 1),

h(x) = β1 + (x− α0)
3(x− α0 − 3

√
2/2)3,

f(x) = (x− α0)
3

(

x− α0 −
√
2

2

)

(x− α0 −
√
2)

(

x− α0 −
3
√
2

2

)3

f3(x),

where f3(x) is a quartic polynomial resulting an f having more
than 4 zeros and poles. If d2 = −1

2
, then we get

g(x) = (x− β1)(x− β1 − 1),

h(x) = β1 + (x− α0)
3(x− α0 − 3

√
−2/2)3,

f(x) = (x− α0)
3

(

x− α0 −
√
−2

2

)

(x− α0 −
√
−2)

(

x− α0 −
3
√
−2

2

)3

f4(x),

where f4 is a quartic polynomial and we get a contradiction in
the same way as before.
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• There are 16 equivalent cases with (l1, l2, l3, l4) ∈ {(2, 2, 3, 3), (3, 3, 2, 2)}.
We handle the case with (l1, l2, l3, l4) = (3, 3, 2, 2) and

α1 = α0 + 3d,

α2 = α0,

α3 = α0 + 2d,

α4 = α0 + d.

It follows from equation (8) that d = 0 or d2 = 1
2
. Also we have

that β2 = β1 − 1. In a similar way as in the above cases we
obtain a composite function f having 4 zeros and poles form-
ing an arithmetic progression, but an additional quartic factor
appears, a contradiction.

• There are 8 equivalent cases with (l1, l2, l3, l4) = (3, 3, 3, 3). Here
we consider the case with

α1 = α0,

α2 = α0 + 3d,

α3 = α0 + d,

α4 = α0 + 2d.

It follows that β2 = β1−8d6. As in the previous cases g(h(x)) has
4 zeros and poles coming from an arithmetic progression, but
there is an additional quartic factor yielding a contradiction.

If 0 ∈ {l1, l2, l3, l4}, then we have three possibilities. Either
{l1, l2} = {l3, l4} = {0, 1} or {l1, l2} = {1}, {l3, l4} = {0, 2} or
{l1, l2} = {0, 2}, {l3, l4} = {1}. In the first case the degree of
h is 1, a contradiction. The last two cases can be handled in
the same way, therefore we only deal with the case {l1, l2} =
{1}, {l3, l4} = {0, 2}. Without loss of generality we may assume
that l3 = 2, l4 = 0. It follows that α1 = 2α3 − α2 and β2 =
β1 − (α2 − α3)

2. Thus

h(x) = β1 + (x− 2α3 + α2)(x− α2),

g(x) = (x− β1)(x− β1 + (α2 − α3)
2),

f(x) = (x− α2)(x− α3)
2(x− 2α3 + α2).

We conclude that f(x) has only 3 zeros and poles, a contradic-
tion.
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(I) : t = 3, |Sβ1| = |Sβ2| = 1, |Sβ3| = 2. Here we may assume

that Sβ1 = {1}, Sβ2 = {2}, Sβ3 = {3, 4}, that is one has

h(x) = β1 + (x− α1)
l1 ,

h(x) = β2 + (x− α2)
l2 ,

h(x) = β3 + (x− α3)
l3(x− α4)

l4 ,

where l1, l2 ∈ {2, 3}. Let us consider the case l3 6= 0, l4 6= 0.
Substitute α3, α4 into the above system of equations to get

β3 = β1 + (α3 − α1)
l1 ,

β3 = β2 + (α3 − α2)
l2 ,

β3 = β1 + (α4 − α1)
l1 ,

β3 = β2 + (α4 − α2)
l2 .

These equations imply that αi = αj for some i 6= j, a contra-
diction. Now assume that l4 = 0, hence l3 = 2 or 3. We can
reduce the system as follows

(α1 − α2)
l2 + (α2 − α1)

l1 = 0,

(α1 − α3)
l3 + (α3 − α1)

l1 = 0,

(α2 − α3)
l3 + (α3 − α2)

l2 = 0,

where l1, l2, l3 ∈ {2, 3}.We get a contradiction in all these cases.
(I) : t = 4, Sβ1 = {1}, Sβ2 = {2}, Sβ3 = {3}, Sβ4 = {4}. We ob-

tain the system of equations

h(x) = β1 + (x− α1)
l1,

h(x) = β2 + (x− α2)
l2,

h(x) = β3 + (x− α3)
l3,

h(x) = β4 + (x− α4)
l4,

where li ≥ 2 (since deg h ≥ 2.) Here we prove that this type of
composite rational function cannot exist. One has that for any
different i, j

(αi − αj)
lj−li = (−1)li+1.

If li = lj = 2, then we have a contradiction. Assume that
li = 2. There exist lj = lk = 3. Hence αi = αj − 1 and αi =
αk−1, a contradiction. Let us deal with the case (l1, l2, l3, l4) =
(3, 3, 3, 3). Substituting α1 + α2 into the system of equations
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yields β1 = β2+α3
1−α3

2. We also have that β1 = β2+(α1−α2)
3.

By combining these equations we get that

−3α1α2(α1 − α2) = 0.

In a similar way we obtain

−3α3α4(α3 − α4) = 0.

It follows that for some different i, j one has αi = αj , a contra-
diction.
(II) : t = 2, |S∞| = 2, |Sβ1| = |Sβ2| = 1.Wemay assume that S∞ =

{1, 2}, Sβ1 = {3}, Sβ2 = {4}. The system of equations in this
case is as follows

h(x) = β1 +
(x− α3)

l3

(x− α1)l1(x− α2)l2
,

h(x) = β2 +
(x− α4)

l4

(x− α1)l1(x− α2)l2
.

If l3 = l4 = 0, then it follows that β1 = β2, a contradiction. Let
us deal with the case l3 = 0, l4 6= 0 (in a similar way one can
handle the case l3 6= 0, l4 = 0). There are only three systems to
consider. If (l1, l2, l3, l4) = (0, 1, 0, 1) or (1, 0, 0, 1), then β1−1 =
β2 and the composite function f has only 2 zeros and poles, a
contradiction. If (l1, l2, l3, l4) = (1, 1, 0, 2), then β1−1 = β2 and
α4 = α2±1, α1 = α2±2. In all these cases we obtain a composite
function f having only 3 zeros and poles, a contradiction. Let
us consider the cases with l3 6= 0, l4 6= 0. There are 18 systems
to deal with. It turns out that d satisfies the equation

dl4−l3 = −(T4 − T3)
l3(T3 − T1)

l1(T3 − T2)
l2

(T4 − T1)l1(T4 − T2)l2(T3 − T4)l4
,

where αi = α0 + Tid for some Ti ∈ {0, 1, 2, 3}. If (l1, l2, l3, l4) =
(1, 0, 2, 2), then

(T1, T2, T3, T4) ∈ {(1, 3, 0, 2), (1, 3, 2, 0), (2, 0, 1, 3), (2, 0, 3, 1)}.

In all these cases we obtain a composite function f having only
3 zeros and poles, a contradiction. As an example we compute
f when (T1, T2, T3, T4) = (1, 3, 0, 2). We get that β2 = β1 + 4d



14 SZ. TENGELY

and

h(x) = β1 +
(x− α0)

2

(x− α0 − d)
,

g(x) = (x− β1)(x− β1 − 4d),

f(x) =
(x− α0 − 2d)2(x− α0)

2

(x− α0 − d)2
.

We exclude the tuple (l1, l2, l3, l4) = (0, 1, 2, 2) following the
same lines. If (l1, l2, l3, l4) = (1, 1, 1, 2), then we also have that
d = 1

T1+T2−2T4
and d = T2−T3

(T2−T4)2
, it is easy to check that such

tuple (T1, T2, T3, T4) does not exist. In a very similar way if
(l1, l2, l3, l4) = (1, 1, 2, 1) we obtain that

d =
1

T1 + T2 − 2T3
=

T2 − T4

(T2 − T3)2

and such tuple (T1, T2, T3, T4) does not exist. If (l1, l2, l3, l4) =
(2, 1, 2, 3), then

(T3 − T4)
3

(T3 − T1)2(T3 − T2)
= 1,

− (T4 − T3)
2

(T4 − T1)2(T4 − T2)
=

4

27(T3 − T4)
.

There is no solution in Ti ∈ {0, 1, 2, 3}, Ti 6= Tj, i 6= j. We ob-
tain a very similar system of equations in case of (l1, l2, l3, l4) =
(1, 2, 3, 2), (1, 2, 2, 3), (2, 1, 3, 2). If (l1, l2, l3, l4) = (1, 1, 3, 3), then
we get

T1 + T2 = T3 + T4,

(T4 − T1)(T4 − T2) = (T3 − T1)(T3 − T2),

27(T2 − T4)
4(T4 − T1)

2 = 9(T4 − T3)
3(T2 − T4)

2(T4 − T1)− (T4 − T3)
6.

The above system has no solution in (T1, T2, T3, T4). If (l1, l2, l3, l4) =
(1, 2, 3, 1), then

T1 − 4T3 + 3T4 = 0,

2T2 + T3 − 3T4 = 0,

(T4 − T3)
3 = (T4 − T1)(T4 − T2)

2.

The system has no solution. The same argument works in case
of (l1, l2, l3, l4) = (1, 2, 1, 3), (2, 1, 1, 3), (2, 1, 3, 1). If (l1, l2, l3, l4) =
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(0, 2, 2, 1), then we have

α2 = α4 +
1

4
,

α3 = α4 −
1

4
,

hence

h(x) = β1 +
(x− α4 +

1
4
)2

(x− α4 − 1
4
)2
,

g(x) = (x− β1)(x− β1 − 1),

f(x) =
(x− α4)(x− α4 +

1
4
)2

(x− α4 − 1
4
)4

.

That is f has only 3 zeros and poles, a contradiction. We handle
in the same way the tuples (l1, l2, l3, l4) = (2, 0, 2, 1), (2, 0, 1, 2), (0, 2, 1, 2).
If (l1, l2, l3, l4) = (0, 0, 1, 1), then deg h(x) = 1, a contradiction.

(II) : t = 3, |S∞| = |Sβ1| = |Sβ2| = |Sβ3| = 1.Wemay assume that S∞ =

{1}, Sβ1 = {2}, Sβ2 = {3}, Sβ3 = {4}. In this case h(x) can be written
as follows

h(x) = β1 +
(x− α2)

l2

(x− α1)l1
,

h(x) = β2 +
(x− α3)

l3

(x− α1)l1
,

h(x) = β3 +
(x− α4)

l4

(x− α1)l1
.

The only possible exponent tuple (l1, l2, l3, l4) is (0, 1, 1, 1).Thus deg h(x) =
1, a contradiction.
(III) : t = 3, |Sβ1| = 2, |Sβ2| = |Sβ3| = 1. We may assume that Sβ1 =

{1, 2}, Sβ2 = {3}, Sβ3 = {4}. The only exponent tuple for which deg h(x) >
1 is given by (l1, l2, l3, l4) is (1, 1, 2, 2). We obtain the following system
of equations if d 6= 0 :

(β3 − β1)(T4 − T3)
2 + (β2 − β3)(T4 − T1)(T4 − T2) = 0

(β1 − β2)(T3 − T4)
2 + (β2 − β3)(T3 − T1)(T3 − T2) = 0

(β1 − β2)(T1 − T4)
2 + (β3 − β1)(T1 − T3)

2 = 0

(β1 − β2)(T2 − T4)
2 + (β3 − β1)(T2 − T3)

2 = 0,

where {T1, T2, T3, T4} = {0, 1, 2, 3}. Solving the above system of equa-
tions for all possible tuples (T1, T2, T3, T4) one gets that βi = βj for
some i 6= j, a contradiction.
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(III) : t = 3, |Sβ1| = |Sβ2| = |Sβ3| = |Sβ4| = 1.Wemay assume that Sβ1 =

{1}, Sβ2 = {2}, Sβ3 = {3}, Sβ4 = {4}. The only possible exponent tuple
is (l1, l2, l3, l4) = (1, 1, 1, 1). Thus the corresponding h(x) has degree 1,
a contradiction. As an example we consider the case

α1 = α0 + d,

α2 = α0,

α3 = α0 + 3d,

α4 = α0 + 2d.

We use equation (3) here with (j1, j2, j3) = (1, 2, 3) and (j1, j2, j3) =
(1, 2, 4). If d 6= 0, then we have

β3 = 3β1 − 2β2,

β4 = 2β1 − β2.

Let k1, k2, k3, k4 ∈ Z such that k1+k2+k3+k4 = 0. Theorem A implies
that

g(x) = (x− β1)
k1(x− β2)

k2(x− 3β1 + 2β2)
k3(x− 2β1 + β2)

k4 ,

h(x) =
1

d
(β1(x− α0)− β2(x− α0 − d)),

f(x) = (x− α0 − d)k1(x− α0)
k2(x− α0 − 3d)k3(x− α0 − 2d)k4.

�

5. Cases with n = 4

In this section we provide some details of the computation corre-
sponding to cases with n = 4, t ∈ {2, 3, 4}, k1+k2+. . .+kt 6= 0, S∞ = ∅.
These are the cases which are not mentioned in Section 5 in [12].
The case n = 4, t = 2 and S∞ = ∅. There are 134 systems to deal with.
We treat only a few representative examples.
If Sβ1 = {1, 2}, Sβ2 = {3, 4} and (l1, l2, l3, l4) = (2, 1, 2, 1), then we

have

α1 + 1/2α2 − α3 − 1/2α4 = 0

α2 − 4/3α3 + 1/3α4 = 0

α2α
2
3 − 2α2α3α4 + α2α

2
4 − α2

3α4 + 2α3α
2
4 − α3

4 − 9β1 + 9β2 = 0

α2 − 4/3α3 + 1/3α4 = 0

α3
3 − 3α2

3α4 + 3α3α
2
4 − α3

4 − 27/4β1 + 27/4β2 = 0.
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The corresponding rational functions are as follows

f(x) = (x− α1)
2k1(x− α2)

k1(x− 1

3
α1 −

2

3
α2)

2k2(x− 4

3
α1 +

1

3
α2)

k2,

g(x) = (x− β1)
k1(x− β1 −

4

27
(α1 − α2)

3)k2

h(x) = β1 + (x− α1)
2(x− α2),

where k1 + k2 6= 0. We note that the zeros and poles of f do not form
an arithmetic progression for all values of the parameters as the choice
α1 = 0, α2 = 3 shows.
If Sβ1 = {1, 2}, Sβ2 = {3, 4} and (l1, l2, l3, l4) = (1, 1, 0, 2), then we

get the system of equations

α1 + α2 − 2α4 = 0

(α2 − α4)
2 − β1 + β2 = 0.

It yields a decomposable rational function f having only 3 zeros and
poles altogether.
If Sβ1 = {1, 2}, Sβ2 = {3, 4} and (l1, l2, l3, l4) = (1, 1, 1, 1), then we

obtain

α1 + α2 − α3 − α4 = 0

α2
2 − α2α3 − α2α4 + α3α4 − β1 + β2 = 0.

It yields the following solution

f(x) = (x+ α2 − α3 − α4)
k1(x− α2)

k1(x− α3)
k2(x− α4)

k2 ,

g(x) = (x− β1)
k1(x− β1 + α2

2 − α2α3 − α2α4 + α3α4)
k2

h(x) = β1 + (x− α3 − α4 + α2)(x− α2),

where k1 + k2 6= 0.
If Sβ1 = {1, 2, 3}, Sβ2 = {4} and (l1, l2, l3, l4) = (1, 1, 1, 3), then we

have

α1 + α2 + α3 − 3α4 = 0

α2
2 + α2α3 − 3α2α4 + α2

3 − 3α3α4 + 3α2
4 = 0

α3
3 − 3α2

3α4 + 3α3α
2
4 − α3

4 − β1 + β2 = 0.

We obtain the following rational functions

f(x) = (x− α1)
k1(x− α2)

k1(x− α3)
k1(x− α4)

3k2 ,

g(x) = (x− β2 − (α3 − α4)
3)k1(x− β2)

k2

h(x) = β2 + (x− α4)
3,
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where k1 + k2 6= 0 and

α1 =
1

2
α4

(

−i
√
3 + 3

)

− 1

2
α3

(

−i
√
3 + 1

)

α2 =
1

2
α4

(

i
√
3 + 3

)

+
1

2
α3

(

−i
√
3− 1

)

.

The case n = 4, t = 3 and S∞ = ∅. There are 48 systems to handle in
this case. We consider one of these. Let Sβ1 = {1}, Sβ2 = {2, 3}, Sβ3 =
{4} and (l1, l2, l3, l4) = (1, 1, 0, 1). We obtain the system of equations

α1 − α4 − β1 + β3 = 0

α2 − α4 − β2 + β3 = 0.

It follows that h is a linear function, which only provides trivial de-
composition. In the remaining cases we have the same conclusion.
The case n = 4, t = 4 and S∞ = ∅. Here we get 24 systems to consider.
In all cases we have that

{Sβ1, Sβ2, Sβ3, Sβ4} = {{1}, {2}, {3}, {4}}
and (l1, l2, l3, l4) = (1, 1, 1, 1). Therefore h is linear, a contradiction.
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