COMPOSITE RATIONAL FUNCTIONS AND ARITHMETIC PROGRESSIONS

SZ. TENGELY

ABSTRACT. In this paper we deal with composite rational functions having zeros and poles forming consecutive elements of an arithmetic progression. We also correct a result published in [12] related to composite rational functions having a fixed number of zeros and poles.

1. INTRODUCTION

We consider a problem related to decompositions of polynomials and rational functions. In this subject a classical result obtained by Ritt [13] says that if there is a polynomial $f \in \mathbb{C}[X]$ satisfying certain tameness properties and

$$f = g_1 \circ g_2 \circ \cdots \circ g_r = h_1 \circ h_2 \circ \cdots \circ h_s,$$

then r = s and $\{\deg g_1, \ldots, \deg g_r\} = \{\deg h_1, \ldots, \deg h_r\}$. Ritt's fundamental result has been investigated, extended and applied in various wide-ranging contexts (see e.g. [4, 6, 7, 9, 10, 11, 14, 15]). The above mentioned result is not valid for rational functions. Gutierrez and Sevilla [9] provided the following example

$$f = \frac{x^3(x+6)^3(x^2-6x+36)^3}{(x-3)^3(x^2+3x+9)^3},$$

$$f = g_1 \circ g_2 \circ g_3 = x^3 \circ \frac{x(x-12)}{x-3} \circ \frac{x(x+6)}{x-3},$$

$$f = h_1 \circ h_2 = \frac{x^3(x+24)}{x-3} \circ \frac{x(x^2-6x+36)}{x^2+3x+9}.$$

To determine decompositions of a given rational function there were developed algorithms (see e.g. [1, 2, 3]). In [2], Ayad and Fleischmann

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R58; Secondary 14H05, 12Y05.

Key words and phrases. composite rational functions, lacunary polynomials, arithmetic progressions.

Research supported in part by the OTKA grants NK104208 and K100339.

implemented a MAGMA [5] code to find decompositions, they provided the following example

$$f = \frac{x^4 - 8x}{x^3 + 1}$$

and they obtained that f(x) = g(h(x)), where

$$g = \frac{x^2 + 4x}{x+1}$$
 and $h = \frac{x^2 - 2x}{x+1}$.

Fuchs and Pethő [8] proved the following theorem.

Theorem A. Let k be an algebraically closed field of characteristic zero. Let n be a positive integer. Then there exists a positive integer J and, for every $i \in \{1, \ldots, J\}$, an affine algebraic variety V_i defined over \mathbb{Q} and with $V_i \subset \mathbb{A}^{n+t_i}$ for some $2 \leq t_i \leq n$, such that:

(i) If $f, g, h \in k(x)$ with f(x) = g(h(x)) and with $\deg g, \deg h \ge 2, g$ not of the shape $(\lambda(x))^m, m \in \mathbb{N}, \lambda \in PGL_2(k)$, and f has at most nzeros and poles altogether, then there exists for some $i \in \{1, \ldots, J\}$ a point $P = (\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{t_i}) \in V_i(k)$, a vector $(k_1, \ldots, k_{t_i}) \in \mathbb{Z}^{t_i}$ with $k_1 + k_2 + \ldots + k_{t_i} = 0$ depending only 1 on V_i , a partition of $\{1, \ldots, n\}$ in $t_i + 1$ disjoint sets $S_{\infty}, S_{\beta_1}, \ldots, S_{\beta_{t_i}}$ with $S_{\infty} = \emptyset$ if $k_1 + k_2 + \ldots + k_{t_i} = 0$, and a vector $(l_1, \ldots, l_n) \in \{0, 1, \ldots, n-1\}^n$, also both depending only on V_i , such that

$$f(x) = \prod_{j=1}^{t_i} (\omega_j / \omega_\infty)^{k_j}, \quad g(x) = \prod_{j=1}^{t_i} (x - \beta_j)^{k_j}$$

and

$$h(x) = \begin{cases} \beta_j + \frac{\omega_j}{\omega_{\infty}} & (j = 1, \dots, t_i), & \text{if } k_1 + k_2 + \dots + k_{t_i} \neq 0\\ \frac{\beta_{j_1}\omega_{j_2} - \beta_{j_2}\omega_{j_1}}{\omega_{j_2} - \omega_{j_1}} & (1 \le j_1 < j_2 \le t_i), & \text{otherwise,} \end{cases}$$

where

$$\omega_j = \prod_{m \in S_{\beta_j}} (x - \alpha_m)^{l_m}, \quad j = 1, \dots, t_i$$

and

$$\omega_{\infty} = \prod_{m \in S_{\infty}} (x - \alpha_m)^{l_m}.$$

Moreover, we have deg $h \le (n-1)/\max\{t_i - 2, 1\} \le n-1$.

(ii) Conversely for given data $P \in V_i(k), (k_1, \ldots, k_{t_i}), S_{\infty}, S_{\beta_1}, \ldots, S_{\beta_{t_i}}, (l_1, \ldots, l_n)$ as described in (i) one defines by the same equations rational functions f, g, h with f having at most n zeros and poles altogether for which f(x) = g(h(x)) holds.

¹in [8] it is written as "or not depending", this typo is corrected here.

(iii) The integer J and equations defining the varieties V_i are effectively computable only in terms of n.

Pethő and Tengely [12] provided some computational experiments that they obtained by using a MAGMA [5] implementation of the algorithm of Fuchs and Pethő [8].

If the zeros and poles of a composite rational function form an arithmetic progression, then we have the following result.

Theorem 1. Let f, g, h be rational functions as in Theorem A. Assume that the zeros and poles of f form an arithmetic progression, that is

$$\alpha_i = \alpha_0 + T_i d$$

for some $\alpha_0, d \in k$ and $T_i \in \{0, 1, \dots, n-1\}$. If $k_1 + k_2 + \dots + k_t \neq 0$, then either the difference d satisfies an equation of the form

$$d^N = M$$

for some $N \in \mathbb{Z}, M \in \mathbb{Q}$ or $(l_1, \ldots, l_n) \in \{0, 1, \ldots, n-1\}^n$ satisfies a system of linear equations

$$\sum_{r \in S_{\beta_i}} l_r = \sum_{s \in S_{\beta_j}} l_s, \quad i, j \in \{1, \dots, t\}, i \neq j.$$

If $k_1 + k_2 + \ldots + k_t = 0$ and $1 \le j_1 < j_2 < j_3 \le t$, then $d^{\sum_{m_1 \in S_{\beta_{j_1}}} l_{m_1}}, d^{\sum_{m_2 \in S_{\beta_{j_2}}} l_{m_2}}, d^{\sum_{m_3 \in S_{\beta_{j_3}}} l_{m_3}}$

satisfy a system of linear equations and $\beta_{j_1}, \beta_{j_2}, \beta_{j_3}$ satisfy a system of linear equations.

We will apply the above theorem to determine composite rational functions having 4 zeros and poles. We prove the following statement.

Proposition 1. Let k be an algebraically closed field of characteristic zero. If $f, g, h \in k(x)$ with f(x) = g(h(x)) and with deg $g, \text{deg } h \ge 2, g$ not of the shape $(\lambda(x))^m, m \in \mathbb{N}, \lambda \in PGL_2(k)$, and f has 4 zeros and poles altogether forming an arithmetic progression, then f is equivalent to the following rational function

$$(x - \alpha_0)^{k_1}(x - \alpha_0 - d)^{k_2}(x - \alpha_0 - 2d)^{k_2}(x - \alpha_0 - 3d)^{k_1},$$

for some $\alpha_0, d \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1 + k_2 \neq 0$.

In this paper we correct results obtained in [12], where the computations related to the case $k_1 + k_2 + \ldots + k_t \neq 0, S_{\infty} = \emptyset$ are missing. The following theorem is the corrected version of Theorem 1 from [12], where part (c) was missing. We define equivalence of rational functions. Two rational functions $f_1(x) = \prod_{u=1}^n (x - \alpha_u^{(1)})^{f_u^{(1)}}$ and $f_2(x) = \prod_{u=1}^n (x - \alpha_u^{(2)})^{f_u^{(2)}} \text{ are equivalent if there exist } a_{u,v} \in \mathbb{Q}, u \in \{1, 2, \dots, n\}, v \in \{1, 2, \dots, n+1\} \text{ such that}$

$$\alpha_u^{(1)} = a_{u,1}\alpha_1^{(2)} + a_{u,2}\alpha_2^{(2)} + \ldots + a_{u,n}\alpha_n^{(2)} + a_{u,n+1},$$

for all $u \in \{1, 2, \dots, n\}$.

Theorem 2. Let k be an algebraically closed field of characteristic zero. If $f, g, h \in k(x)$ with f(x) = g(h(x)) and with deg $g, \text{deg } h \ge 2, g$ not of the shape $(\lambda(x))^m, m \in \mathbb{N}, \lambda \in PGL_2(k)$, and f has 3 zeros and poles altogether, then f is equivalent to one of the following rational functions

(a)
$$\frac{(x-\alpha_1)^{k_1}(x+1/4-\alpha_1)^{2k_2}}{(x-1/4-\alpha_1)^{2k_1+2k_2}}$$
 for some $\alpha_1 \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1+k_2 \neq 0$.

- (b) $\frac{(x-\alpha_1)^{2k_1}(x+\alpha_1-2\alpha_2)^{2k_2}}{(x-\alpha_2)^{2k_1+2k_2}}$ for some $\alpha_1, \alpha_2 \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1 + k_2 \neq 0$,
- (c) $\left(x \frac{\alpha_1 + \alpha_2}{2}\right)^{2k_1} (x \alpha_1)^{k_2} (x \alpha_2)^{k_2}$ for some $\alpha_1, \alpha_2 \in k$ and $k_1, k_2 \in \mathbb{Z}, k_1 + k_2 \neq 0.$

Remark. The MAGMA procedure CompRatFunc.m can be downloaded from http://shrek.unideb.hu/~tengely/CompRatFunc.m. All systems in cases of $n \in \{3, 4, 5\}$ can be downloaded from http://shrek.unideb.hu/~tengely/CFunc345.tar.gz.

Remark. It is interesting to note that in the above formulas the zeros and poles form an arithmetic progression

(a):
$$\alpha_1 - \frac{1}{4}, \alpha_1, \alpha_1 + \frac{1}{4}$$
 difference: $\frac{1}{4}$,
(b): $\alpha_1, \alpha_2, -\alpha_1 + 2\alpha_2$ difference: $\alpha_2 - \alpha_1$,
(c): $\alpha_1, \frac{\alpha_1 + \alpha_2}{2}, \alpha_2$ difference: $\frac{\alpha_2 - \alpha_1}{2}$.

2. Auxiliary results

We repeat some parts of the proof of Theorem A from [8] that will be used here later on. Without loss of generality we may assume that f and g are monic. Let

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i)^{f_i}$$

with pairwise distinct $\alpha_i \in k$ and $f_i \in \mathbb{Z}$ for $i = 1, \ldots, n$. Similarly, let

$$g(x) = \prod_{j=1}^{t} (x - \beta_j)^{k_j}$$

with pairwise distinct $\beta_j \in k$ and $k_j \in \mathbb{Z}$ for $j = 1, \ldots, t$ and $t \in \mathbb{N}$. Hence we have

$$\prod_{i=1}^{n} (x - \alpha_i)^{f_i} = f(x) = g(h(x)) = \prod_{j=1}^{t} (h(x) - \beta_j)^{k_j}$$

We shall write h(x) = p(x)/q(x) with $p, q \in k[x], p, q$ coprime. Fuchs and Pethő [8] showed that if $k_1 + k_2 + \ldots + k_t \neq 0$, then there is a subset S_{∞} of the set $\{1, \ldots, n\}$ for which

$$q(x) = \prod_{m \in S_{\infty}} (x - \alpha_m)^{l_m}$$

and there is a partition of the set $\{1, \ldots, n\} \setminus S_{\infty}$ in t disjoint non empty subsets $S_{\beta_1}, \ldots, S_{\beta_t}$ such that

(1)
$$h(x) = \beta_j + \frac{1}{q(x)} \prod_{m \in S_{\beta_j}} (x - \alpha_m)^{l_m},$$

where $l_m \in \mathbb{N}$ satisfies $l_m k_j = f_m$ for $m \in S_{\beta_j}$, and this holds true for every $j = 1, \ldots, t$. We get at least two different representations of h, since we assumed that g is not of the special shape $(\lambda(x))^m$. Therefore we get at least one equation of the form

(2)
$$\beta_i + \frac{1}{q(x)} \prod_{r \in S_{\beta_i}} (x - \alpha_r)^{l_r} = \beta_j + \frac{1}{q(x)} \prod_{s \in S_{\beta_j}} (x - \alpha_s)^{l_s}.$$

If $k_1 + k_2 + \ldots + k_t = 0$, then we have

$$(p(x) - \beta_j q(x))^{k_j} = \prod_{m \in S_{\beta_j}} (x - \alpha_m)^{f_m}.$$

Now we have that $t \ge 3$, otherwise g is in the special form we excluded. Siegel's identity provides the equations in this case. That is if $1 \le j_1 < j_2 < j_3 \le t$, then we have

(3)
$$v_{j_1,j_2,j_3} + v_{j_3,j_1,j_2} + v_{j_2,j_3,j_1} = 0$$

where

$$v_{j_1,j_2,j_3} = (\beta_{j_1} - \beta_{j_2}) \prod_{m \in S_{\beta_{j_3}}} (x - \alpha_m)^{l_m}.$$

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. If $k_1 + k_2 + \ldots + k_t \neq 0$ and there exist $r_1 \in S_{\beta_i}, s_1 \in S_{\beta_j}$ for some $i \neq j$ such that $l_{r_1} \neq 0$ and $l_{s_1} \neq 0$, then it follows from (2) that

(4)
$$\beta_i - \beta_j = \frac{\prod_{s \in S_{\beta_j}} (\alpha_{r_1} - \alpha_s)^{l_s}}{\prod_{m \in S_\infty} (\alpha_{r_1} - \alpha_m)^{l_m}},$$
$$\prod_{r \in S_\infty} (\alpha_{s_1} - \alpha_r)^{l_r}$$

(5)
$$\beta_i - \beta_j = -\frac{\prod_{r \in S_{\beta_i}} (\alpha_{s_1} - \alpha_r)^{l_r}}{\prod_{m \in S_{\infty}} (\alpha_{s_1} - \alpha_m)^{l_m}}$$

for any appropriate $\alpha_{r_1} \in S_{\beta_i}$ and $\alpha_{s_1} \in S_{\beta_i}$. Hence we obtain that

$$C_1(i, j, r_1, s_1) = d^{\sum_{r \in S_{\beta_i}} l_r - \sum_{s \in S_{\beta_j}} l_s},$$

where $C_1(i, j, r_1, s_1) \in \mathbb{Q}$. If there exist S_{β_i} and S_{β_j} for which $\sum_{r \in S_{\beta_i}} l_r - \sum_{s \in S_{\beta_j}} l_s \neq 0$, then the possible values of d satisfy equations of the form $x^N = M$. Otherwise we get that

$$\sum_{r \in S_{\beta_i}} l_r = \sum_{s \in S_{\beta_j}} l_s, \quad i, j \in \{1, \dots, t\}, i \neq j.$$

Let us consider the special case when $l_r = 0$ for all $r \in S_{\beta_i}$. If $l_s = 0$ for all $s \in S_{\beta_i}$, then we get that

$$h(x) = \beta_i + \frac{1}{q(x)} = \beta_j + \frac{1}{q(x)}$$

Hence $\beta_i = \beta_j$ for some $i \neq j$, a contradiction. Thus we may assume that there exists $s_1 \in S_{\beta_j}$ for which $l_{s_1} \neq 0$. In a similar way as in the above case it follows that

(7)
$$\beta_i - \beta_j = -\frac{1}{\prod_{m \in S_\infty} (\alpha_{s_1} - \alpha_m)^{l_m}}$$

Therefore

$$d^{\sum_{s \in S_{\beta_j}} l_s} = C_2(i, j, r_1, s_1),$$

where $C_2(i, j, r_1, s_1) \in \mathbb{Q}$. Since $s_1 > 0$ we have that $\sum_{s \in S_{\beta_j}} l_s \neq 0$, that is d satisfies an appropriate polynomial equation.

If $k_1 + k_2 + \ldots + k_t = 0$, then there are at least 3 partitions and for any appropriate $r_1 \in S_{\beta_{j_1}}, r_2 \in S_{\beta_{j_2}}, r_3 \in S_{\beta_{j_3}}$ (that is $l_{r_i} \neq 0, i = 1, 2, 3$)

equation (3) implies that

$$(\beta_{j_3} - \beta_{j_1}) \prod_{m_2 \in S_{\beta_{j_2}}} (\alpha_{r_3} - \alpha_{m_2})^{l_{m_2}} + (\beta_{j_2} - \beta_{j_3}) \prod_{m_1 \in S_{\beta_{j_1}}} (\alpha_{r_3} - \alpha_{m_1})^{l_{m_1}} = 0 (\beta_{j_1} - \beta_{j_2}) \prod_{m_3 \in S_{\beta_{j_3}}} (\alpha_{r_2} - \alpha_{m_3})^{l_{m_3}} + (\beta_{j_2} - \beta_{j_3}) \prod_{m_1 \in S_{\beta_{j_1}}} (\alpha_{r_2} - \alpha_{m_1})^{l_{m_1}} = 0 (\beta_{j_1} - \beta_{j_2}) \prod_{m_3 \in S_{\beta_{j_3}}} (\alpha_{r_1} - \alpha_{m_3})^{l_{m_3}} + (\beta_{j_3} - \beta_{j_1}) \prod_{m_2 \in S_{\beta_{j_2}}} (\alpha_{r_1} - \alpha_{m_2})^{l_{m_2}} = 0,$$

that is a system of linear equations in d_1, d_2, d_3 , where $d_i = d^{\sum_{m_i \in S_{\beta_{j_i}}} l_{m_i}}, i \in \{1, 2, 3\}$ and the statement follows. In a very similar way we obtain a system of equations if $l_r = 0$ for all $r \in S_{\beta_{j_3}}$, the last two equations are as before, while on the left-hand side of the first one there is an additional term $\beta_{j_1} - \beta_{j_2}$.

Proof of Theorem 2. In [12] all cases are given with $k_1 + k_2 + \ldots + k_t = 0$ and also with $k_1 + k_2 + \ldots + k_t \neq 0, S_{\infty} \neq \emptyset$. Therefore it remains to deal with those cases with $k_1 + k_2 + \ldots + k_t \neq 0, S_{\infty} = \emptyset$. First let t = 2. There are 18 systems of equations. Among these systems there are two types. The first one has only a single equation, e.g. when $S_{\beta_1} = \{1, 2\}, S_{\beta_2} = \{3\}, (l_1, l_2, l_3) = (1, 0, 1)$, this equation is as follows

$$\alpha_1 - \alpha_3 - \beta_1 + \beta_2 = 0.$$

Hence

$$h(x) = \beta_1 + (x - \alpha_1) = \beta_2 + (x - \alpha_3)$$

is a linear function. A system from the second type is given by $S_{\beta_1} = \{1, 2\}, S_{\beta_2} = \{3\}, (l_1, l_2, l_3) = (1, 1, 2)$ and equations as follows

$$\alpha_1 + \alpha_2 - 2\alpha_3 = 0 (\alpha_2 - \alpha_3)^2 - \beta_1 + \beta_2 = 0.$$

That is we obtain that

$$h(x) = \beta_2 + \left(x - \frac{\alpha_1 + \alpha_2}{2}\right)^2,$$

$$g(x) = \left(x - \beta_2 - \left(\frac{\alpha_2 - \alpha_1}{2}\right)^2\right)^{k_1} (x - \beta_2)^{k_2},$$

$$f(x) = \left(x - \frac{\alpha_1 + \alpha_2}{2}\right)^{2k_1} (x - \alpha_1)^{k_2} (x - \alpha_2)^{k_2}.$$

It is a decomposition of type (c) in the theorem. Let t = 3. There are 6 systems of equations, all of the same type, e.g. $S_{\beta_1} = \{1\}, S_{\beta_2} =$

 $\{2\}, S_{\beta_3} = \{3\}, (l_1, l_2, l_3) = (1, 1, 1)$ and

$$\alpha_1 - \alpha_3 - \beta_1 + \beta_3 = 0$$

$$\alpha_2 - \alpha_3 - \beta_2 + \beta_3 = 0.$$

Hence the degree of h is 1, that yields a trivial decomposition.

4. Proof of Proposition 1

Proof of Proposition 1. In this section we apply Theorem 1 to determine composite rational functions having zeros and poles as consecutive elements of certain arithmetic progressions. We need to handle the following cases

(I) :
$$n = 4$$
 and $t \in \{2, 3, 4\}, k_1 + k_2 + \ldots + k_t \neq 0, S_\infty = \emptyset$
(II) : $n = 4$ and $t \in \{2, 3\}, k_1 + k_2 + \ldots + k_t \neq 0, S_\infty \neq \emptyset$,
(III) : $n = 4$ and $t \in \{3, 4\}, k_1 + k_2 + \ldots + k_t = 0, S_\infty = \emptyset$.

In the proof we use the notation of Theorem 1, that is we write

$$\alpha_i = \alpha_0 + T_i d,$$

where $\alpha_0, d \in k$ and $\{T_1, T_2, T_3, T_4\} = \{0, 1, 2, 3\}.$

 $\frac{(I): t = 2, \{|S_{\beta_1}|, |S_{\beta_2}|\} = \{1, 3\}}{\{2, 3, 4\}.}$ We may assume that $S_{\beta_1} = \{1\}, S_{\beta_2} = \{2, 3, 4\}.$ We obtain that

$$h(x) = \beta_1 + (x - \alpha_1)^{l_1},$$

$$h(x) = \beta_2 + (x - \alpha_2)^{l_2} (x - \alpha_3)^{l_3} (x - \alpha_4)^{l_4}.$$

Substituting $x = \alpha_2, \alpha_3, \alpha_4$ yields (assuming $l_2 l_3 l_4 \neq 0$)

$$(\alpha_2 - \alpha_1)^{l_1} = (\alpha_3 - \alpha_1)^{l_1} = (\alpha_4 - \alpha_1)^{l_1}.$$

Since the zeros and poles form an arithmetic progression one gets that either d = 0 or $l_1 = 0$. In the former case the zeros and poles are not distinct, a contradiction. In the latter case the degree of h is less than 2, a contradiction as well. If two out of l_2, l_3, l_4 are equal to zero, then it follows that $l_1 = 1$, hence the degree of h is 1, a contradiction. If exactly one out of l_2, l_3, l_4 is zero, then $l_1 = 2$ and the corresponding fhas only 3 zeros and poles. As an example we consider the case $l_4 = 0$. We obtain that

$$\alpha_1 = \frac{\alpha_2 + \alpha_3}{2}$$
 and $\beta_2 = \beta_1 + \left(\frac{\alpha_2 - \alpha_3}{2}\right)^2$.

It follows that $f(x) = \left(x - \frac{\alpha_2 + \alpha_3}{2}\right)^2 f_1(x)$, where deg $f_1 = 2$.

 $(I): t = 2, \{|S_{\beta_1}|, |S_{\beta_2}|\} = \{2\}.$ Here we may assume that $S_{\beta_1} = \{1, 2\}, S_{\beta_2} = \{3, 4\}.$ We get that

$$h(x) = \beta_1 + (x - \alpha_1)^{l_1} (x - \alpha_2)^{l_2},$$

$$h(x) = \beta_2 + (x - \alpha_3)^{l_3} (x - \alpha_4)^{l_4}.$$

It follows that (assuming that $0 \notin \{l_1, l_2, l_3, l_4\}$)

$$(\alpha_1 - \alpha_3)^{l_3} (\alpha_1 - \alpha_4)^{l_4} = (\alpha_2 - \alpha_3)^{l_3} (\alpha_2 - \alpha_4)^{l_4}$$

and

$$(\alpha_3 - \alpha_1)^{l_1} (\alpha_3 - \alpha_2)^{l_2} = (\alpha_4 - \alpha_1)^{l_1} (\alpha_4 - \alpha_2)^{l_2}$$

Using the fact that the zeros and poles form an arithmetic progression it turns out that one has to deal with 80 cases.

• There are 8 cases with $(l_1, l_2, l_3, l_4) = (1, 1, 1, 1)$. We obtain equivalent solutions, so we only consider one of these. Let $\alpha_1 = \alpha_0, \alpha_2 = \alpha_0 + 3d$. It follows that $\beta_2 = \beta_1 - 2d^2$. That is we have

$$g(x) = (x - \beta_1)(x - \beta_1 + 2d^2),$$

$$h(x) = \beta_1 + (x - \alpha_0)(x - \alpha_0 - 3d),$$

$$f(x) = (x - \alpha_0)(x - \alpha_0 - d)(x - \alpha_0 - 2d)(x - \alpha_0 - 3d)$$

• There are 16 equivalent cases with $(l_1, l_2, l_3, l_4) \in \{(1, 1, 2, 2), (2, 2, 1, 1)\}$. One obtains that $d^2 = \pm \frac{1}{2}$ and $\beta_2 = \beta_1 \pm 1$. One example from this family is given by

$$g(x) = (x - \beta_1)(x - \beta_1 - 1),$$

$$h(x) = \beta_1 + (x - \alpha_0 - \sqrt{2}/2)^2 (x - \alpha_0 - \sqrt{2})^2,$$

$$f(x) = (x - \alpha_0) \left(x - \alpha_0 - \frac{\sqrt{2}}{2}\right)^2 (x - \alpha_0 - \sqrt{2})^2 \left(x - \alpha_0 - \frac{3\sqrt{2}}{2}\right) f_2(x),$$

where $f_2(x)$ is a quadratic polynomial such that f has more than 4 zeros and poles. We remark that if we use the equations related to β_2 we have

$$g(x) = (x - \beta_2)(x - \beta_2 + 1),$$

$$h(x) = \beta_2 + (x - \alpha_0)(x - \alpha_0 - 3\sqrt{2}),$$

$$f(x) = (x - \alpha_0)\left(x - \alpha_0 - \frac{\sqrt{2}}{2}\right)(x - \alpha_0 - \sqrt{2})\left(x - \alpha_0 - \frac{3\sqrt{2}}{2}\right),$$

that is we obtain a "solution" covered by the family given by the case $(l_1, l_2, l_3, l_4) = (1, 1, 1, 1)$.

• There are 8 equivalent cases with $(l_1, l_2, l_3, l_4) = (2, 2, 2, 2)$. All of these cases can be eliminated in the same way. From the equation

(8)
$$(\alpha_1 - \alpha_3)^{l_3} (\alpha_1 - \alpha_4)^{l_4} = -(\alpha_3 - \alpha_1)^{l_1} (\alpha_3 - \alpha_2)^{l_2}$$

it follows that

$$d^{l_1+l_2-l_3-l_4} = \frac{(T_1 - T_3)^{l_3}(T_1 - T_4)^{l_4}}{-(T_3 - T_1)^{l_1}(T_3 - T_2)^{l_2}},$$

where $\{T_1, T_2, T_3, T_4\} = \{0, 1, 2, 3\}$. The left-hand side is $d^0 = 1$ and the right-hand side is -1, a contradiction.

• There are 16 equivalent cases with $(l_1, l_2, l_3, l_4) \in \{(1, 1, 3, 3), (3, 3, 1, 1)\}$. As an example we handle the one with $(l_1, l_2, l_3, l_4) = (3, 3, 1, 1)$ and

$$\begin{aligned} \alpha_1 &= \alpha_0, \\ \alpha_2 &= \alpha_0 + 3d, \\ \alpha_3 &= \alpha_0 + 2d, \\ \alpha_4 &= \alpha_0 + d. \end{aligned}$$

Equation (8) implies that either d = 0 or $d^4 = \frac{1}{4}$. If $d^2 = \frac{1}{2}$, then we get

$$g(x) = (x - \beta_1)(x - \beta_1 + 1),$$

$$h(x) = \beta_1 + (x - \alpha_0)^3 (x - \alpha_0 - 3\sqrt{2}/2)^3,$$

$$f(x) = (x - \alpha_0)^3 \left(x - \alpha_0 - \frac{\sqrt{2}}{2}\right) (x - \alpha_0 - \sqrt{2}) \left(x - \alpha_0 - \frac{3\sqrt{2}}{2}\right)^3 f_3(x),$$

where $f_3(x)$ is a quartic polynomial resulting an f having more than 4 zeros and poles. If $d^2 = -\frac{1}{2}$, then we get

$$g(x) = (x - \beta_1)(x - \beta_1 - 1),$$

$$h(x) = \beta_1 + (x - \alpha_0)^3 (x - \alpha_0 - 3\sqrt{-2}/2)^3,$$

$$f(x) = (x - \alpha_0)^3 \left(x - \alpha_0 - \frac{\sqrt{-2}}{2}\right) (x - \alpha_0 - \sqrt{-2}) \left(x - \alpha_0 - \frac{3\sqrt{-2}}{2}\right)^3 f_4(x),$$

where f_4 is a quartic polynomial and we get a contradiction in the same way as before.

• There are 16 equivalent cases with $(l_1, l_2, l_3, l_4) \in \{(2, 2, 3, 3), (3, 3, 2, 2)\}$. We handle the case with $(l_1, l_2, l_3, l_4) = (3, 3, 2, 2)$ and

$$\begin{aligned} \alpha_1 &= \alpha_0 + 3d, \\ \alpha_2 &= \alpha_0, \\ \alpha_3 &= \alpha_0 + 2d, \\ \alpha_4 &= \alpha_0 + d. \end{aligned}$$

It follows from equation (8) that d = 0 or $d^2 = \frac{1}{2}$. Also we have that $\beta_2 = \beta_1 - 1$. In a similar way as in the above cases we obtain a composite function f having 4 zeros and poles forming an arithmetic progression, but an additional quartic factor appears, a contradiction.

• There are 8 equivalent cases with $(l_1, l_2, l_3, l_4) = (3, 3, 3, 3)$. Here we consider the case with

$$\begin{aligned} \alpha_1 &= \alpha_0, \\ \alpha_2 &= \alpha_0 + 3d, \\ \alpha_3 &= \alpha_0 + d, \\ \alpha_4 &= \alpha_0 + 2d. \end{aligned}$$

It follows that $\beta_2 = \beta_1 - 8d^6$. As in the previous cases g(h(x)) has 4 zeros and poles coming from an arithmetic progression, but there is an additional quartic factor yielding a contradiction.

If $0 \in \{l_1, l_2, l_3, l_4\}$, then we have three possibilities. Either $\{l_1, l_2\} = \{l_3, l_4\} = \{0, 1\}$ or $\{l_1, l_2\} = \{1\}, \{l_3, l_4\} = \{0, 2\}$ or $\{l_1, l_2\} = \{0, 2\}, \{l_3, l_4\} = \{1\}$. In the first case the degree of h is 1, a contradiction. The last two cases can be handled in the same way, therefore we only deal with the case $\{l_1, l_2\} = \{1\}, \{l_3, l_4\} = \{0, 2\}$. Without loss of generality we may assume that $l_3 = 2, l_4 = 0$. It follows that $\alpha_1 = 2\alpha_3 - \alpha_2$ and $\beta_2 = \beta_1 - (\alpha_2 - \alpha_3)^2$. Thus

$$h(x) = \beta_1 + (x - 2\alpha_3 + \alpha_2)(x - \alpha_2),$$

$$g(x) = (x - \beta_1)(x - \beta_1 + (\alpha_2 - \alpha_3)^2),$$

$$f(x) = (x - \alpha_2)(x - \alpha_3)^2(x - 2\alpha_3 + \alpha_2).$$

We conclude that f(x) has only 3 zeros and poles, a contradiction.

 $(I): t = 3, |S_{\beta_1}| = |S_{\beta_2}| = 1, |S_{\beta_3}| = 2.$ Here we may assume that $S_{\beta_1} = \{1\}, S_{\beta_2} = \{2\}, S_{\beta_3} = \{3, 4\}$, that is one has

$$\begin{split} h(x) &= \beta_1 + (x - \alpha_1)^{l_1}, \\ h(x) &= \beta_2 + (x - \alpha_2)^{l_2}, \\ h(x) &= \beta_3 + (x - \alpha_3)^{l_3} (x - \alpha_4)^{l_4}, \end{split}$$

where $l_1, l_2 \in \{2, 3\}$. Let us consider the case $l_3 \neq 0, l_4 \neq 0$. Substitute α_3, α_4 into the above system of equations to get

$$\beta_3 = \beta_1 + (\alpha_3 - \alpha_1)^{l_1}, \beta_3 = \beta_2 + (\alpha_3 - \alpha_2)^{l_2}, \beta_3 = \beta_1 + (\alpha_4 - \alpha_1)^{l_1}, \beta_3 = \beta_2 + (\alpha_4 - \alpha_2)^{l_2}.$$

These equations imply that $\alpha_i = \alpha_j$ for some $i \neq j$, a contradiction. Now assume that $l_4 = 0$, hence $l_3 = 2$ or 3. We can reduce the system as follows

$$\begin{aligned} & (\alpha_1 - \alpha_2)^{l_2} + (\alpha_2 - \alpha_1)^{l_1} &= 0, \\ & (\alpha_1 - \alpha_3)^{l_3} + (\alpha_3 - \alpha_1)^{l_1} &= 0, \\ & (\alpha_2 - \alpha_3)^{l_3} + (\alpha_3 - \alpha_2)^{l_2} &= 0, \end{aligned}$$

where $l_1, l_2, l_3 \in \{2, 3\}$. We get a contradiction in all these cases. (I): $t = 4, S_{\beta_1} = \{1\}, S_{\beta_2} = \{2\}, S_{\beta_3} = \{3\}, S_{\beta_4} = \{4\}$. We obtain the system of equations

$$h(x) = \beta_1 + (x - \alpha_1)^{l_1},$$

$$h(x) = \beta_2 + (x - \alpha_2)^{l_2},$$

$$h(x) = \beta_3 + (x - \alpha_3)^{l_3},$$

$$h(x) = \beta_4 + (x - \alpha_4)^{l_4},$$

where $l_i \geq 2$ (since deg $h \geq 2$.) Here we prove that this type of composite rational function cannot exist. One has that for any different i, j

$$(\alpha_i - \alpha_j)^{l_j - l_i} = (-1)^{l_i + 1}$$

If $l_i = l_j = 2$, then we have a contradiction. Assume that $l_i = 2$. There exist $l_j = l_k = 3$. Hence $\alpha_i = \alpha_j - 1$ and $\alpha_i = \alpha_k - 1$, a contradiction. Let us deal with the case $(l_1, l_2, l_3, l_4) = (3, 3, 3, 3)$. Substituting $\alpha_1 + \alpha_2$ into the system of equations

yields $\beta_1 = \beta_2 + \alpha_1^3 - \alpha_2^3$. We also have that $\beta_1 = \beta_2 + (\alpha_1 - \alpha_2)^3$. By combining these equations we get that

$$-3\alpha_1\alpha_2(\alpha_1-\alpha_2)=0.$$

In a similar way we obtain

$$-3\alpha_3\alpha_4(\alpha_3-\alpha_4)=0.$$

It follows that for some different i, j one has $\alpha_i = \alpha_j$, a contradiction.

 $(II): t = 2, |S_{\infty}| = 2, |S_{\beta_1}| = |S_{\beta_2}| = 1.$ We may assume that $S_{\infty} = \{1, 2\}, S_{\beta_1} = \{3\}, S_{\beta_2} = \{4\}$. The system of equations in this case is as follows

$$h(x) = \beta_1 + \frac{(x - \alpha_3)^{l_3}}{(x - \alpha_1)^{l_1} (x - \alpha_2)^{l_2}},$$

$$h(x) = \beta_2 + \frac{(x - \alpha_4)^{l_4}}{(x - \alpha_1)^{l_1} (x - \alpha_2)^{l_2}}.$$

If $l_3 = l_4 = 0$, then it follows that $\beta_1 = \beta_2$, a contradiction. Let us deal with the case $l_3 = 0, l_4 \neq 0$ (in a similar way one can handle the case $l_3 \neq 0, l_4 = 0$). There are only three systems to consider. If $(l_1, l_2, l_3, l_4) = (0, 1, 0, 1)$ or (1, 0, 0, 1), then $\beta_1 - 1 = \beta_2$ and the composite function f has only 2 zeros and poles, a contradiction. If $(l_1, l_2, l_3, l_4) = (1, 1, 0, 2)$, then $\beta_1 - 1 = \beta_2$ and $\alpha_4 = \alpha_2 \pm 1, \alpha_1 = \alpha_2 \pm 2$. In all these cases we obtain a composite function f having only 3 zeros and poles, a contradiction. Let us consider the cases with $l_3 \neq 0, l_4 \neq 0$. There are 18 systems to deal with. It turns out that d satisfies the equation

$$d^{l_4-l_3} = -\frac{(T_4 - T_3)^{l_3}(T_3 - T_1)^{l_1}(T_3 - T_2)^{l_2}}{(T_4 - T_1)^{l_1}(T_4 - T_2)^{l_2}(T_3 - T_4)^{l_4}},$$

where $\alpha_i = \alpha_0 + T_i d$ for some $T_i \in \{0, 1, 2, 3\}$. If $(l_1, l_2, l_3, l_4) = (1, 0, 2, 2)$, then

 $(T_1, T_2, T_3, T_4) \in \{(1, 3, 0, 2), (1, 3, 2, 0), (2, 0, 1, 3), (2, 0, 3, 1)\}.$

In all these cases we obtain a composite function f having only 3 zeros and poles, a contradiction. As an example we compute f when $(T_1, T_2, T_3, T_4) = (1, 3, 0, 2)$. We get that $\beta_2 = \beta_1 + 4d$

and

$$h(x) = \beta_1 + \frac{(x - \alpha_0)^2}{(x - \alpha_0 - d)},$$

$$g(x) = (x - \beta_1)(x - \beta_1 - 4d),$$

$$f(x) = \frac{(x - \alpha_0 - 2d)^2(x - \alpha_0)^2}{(x - \alpha_0 - d)^2}$$

We exclude the tuple $(l_1, l_2, l_3, l_4) = (0, 1, 2, 2)$ following the same lines. If $(l_1, l_2, l_3, l_4) = (1, 1, 1, 2)$, then we also have that $d = \frac{1}{T_1 + T_2 - 2T_4}$ and $d = \frac{T_2 - T_3}{(T_2 - T_4)^2}$, it is easy to check that such tuple (T_1, T_2, T_3, T_4) does not exist. In a very similar way if $(l_1, l_2, l_3, l_4) = (1, 1, 2, 1)$ we obtain that

$$d = \frac{1}{T_1 + T_2 - 2T_3} = \frac{T_2 - T_4}{(T_2 - T_3)^2}$$

and such tuple (T_1, T_2, T_3, T_4) does not exist. If $(l_1, l_2, l_3, l_4) = (2, 1, 2, 3)$, then

$$\frac{(T_3 - T_4)^3}{(T_3 - T_1)^2(T_3 - T_2)} = 1,$$

$$-\frac{(T_4 - T_3)^2}{(T_4 - T_1)^2(T_4 - T_2)} = \frac{4}{27(T_3 - T_4)}.$$

There is no solution in $T_i \in \{0, 1, 2, 3\}, T_i \neq T_j, i \neq j$. We obtain a very similar system of equations in case of $(l_1, l_2, l_3, l_4) = (1, 2, 3, 2), (1, 2, 2, 3), (2, 1, 3, 2)$. If $(l_1, l_2, l_3, l_4) = (1, 1, 3, 3)$, then we get

$$T_1 + T_2 = T_3 + T_4,$$

$$(T_4 - T_1)(T_4 - T_2) = (T_3 - T_1)(T_3 - T_2),$$

$$27(T_2 - T_4)^4(T_4 - T_1)^2 = 9(T_4 - T_3)^3(T_2 - T_4)^2(T_4 - T_1) - (T_4 - T_3)^6$$

The above system has no solution in (T_1, T_2, T_3, T_4) . If $(l_1, l_2, l_3, l_4) = (1, 2, 3, 1)$, then

$$T_1 - 4T_3 + 3T_4 = 0,$$

$$2T_2 + T_3 - 3T_4 = 0,$$

$$(T_4 - T_3)^3 = (T_4 - T_1)(T_4 - T_2)^2.$$

The system has no solution. The same argument works in case of $(l_1, l_2, l_3, l_4) = (1, 2, 1, 3), (2, 1, 1, 3), (2, 1, 3, 1)$. If $(l_1, l_2, l_3, l_4) =$

(0, 2, 2, 1), then we have

$$\begin{aligned} \alpha_2 &= \alpha_4 + \frac{1}{4}, \\ \alpha_3 &= \alpha_4 - \frac{1}{4}, \end{aligned}$$

hence

$$h(x) = \beta_1 + \frac{(x - \alpha_4 + \frac{1}{4})^2}{(x - \alpha_4 - \frac{1}{4})^2},$$

$$g(x) = (x - \beta_1)(x - \beta_1 - 1),$$

$$f(x) = \frac{(x - \alpha_4)(x - \alpha_4 + \frac{1}{4})^2}{(x - \alpha_4 - \frac{1}{4})^4}.$$

That is f has only 3 zeros and poles, a contradiction. We handle in the same way the tuples $(l_1, l_2, l_3, l_4) = (2, 0, 2, 1), (2, 0, 1, 2), (0, 2, 1, 2).$ If $(l_1, l_2, l_3, l_4) = (0, 0, 1, 1)$, then deg h(x) = 1, a contradiction.

 $(II): t = 3, |S_{\infty}| = |S_{\beta_1}| = |S_{\beta_2}| = |S_{\beta_3}| = 1.$ We may assume that $S_{\infty} = \{1\}, S_{\beta_1} = \{2\}, S_{\beta_2} = \{3\}, S_{\beta_3} = \{4\}$. In this case h(x) can be written as follows

$$h(x) = \beta_1 + \frac{(x - \alpha_2)^{l_2}}{(x - \alpha_1)^{l_1}},$$

$$h(x) = \beta_2 + \frac{(x - \alpha_3)^{l_3}}{(x - \alpha_1)^{l_1}},$$

$$h(x) = \beta_3 + \frac{(x - \alpha_4)^{l_4}}{(x - \alpha_1)^{l_1}}.$$

The only possible exponent tuple (l_1, l_2, l_3, l_4) is (0, 1, 1, 1). Thus deg h(x) = 1, a contradiction.

 $(III): t = 3, |S_{\beta_1}| = 2, |S_{\beta_2}| = |S_{\beta_3}| = 1.$ We may assume that $S_{\beta_1} = \{1, 2\}, S_{\beta_2} = \{3\}, S_{\beta_3} = \{4\}$. The only exponent tuple for which deg h(x) > 1 is given by (l_1, l_2, l_3, l_4) is (1, 1, 2, 2). We obtain the following system of equations if $d \neq 0$:

$$\begin{aligned} &(\beta_3 - \beta_1)(T_4 - T_3)^2 + (\beta_2 - \beta_3)(T_4 - T_1)(T_4 - T_2) &= 0\\ &(\beta_1 - \beta_2)(T_3 - T_4)^2 + (\beta_2 - \beta_3)(T_3 - T_1)(T_3 - T_2) &= 0\\ &(\beta_1 - \beta_2)(T_1 - T_4)^2 + (\beta_3 - \beta_1)(T_1 - T_3)^2 &= 0\\ &(\beta_1 - \beta_2)(T_2 - T_4)^2 + (\beta_3 - \beta_1)(T_2 - T_3)^2 &= 0, \end{aligned}$$

where $\{T_1, T_2, T_3, T_4\} = \{0, 1, 2, 3\}$. Solving the above system of equations for all possible tuples (T_1, T_2, T_3, T_4) one gets that $\beta_i = \beta_j$ for some $i \neq j$, a contradiction.

 $\begin{array}{l} (III):t=3, |S_{\beta_1}|=|S_{\beta_2}|=|S_{\beta_3}|=|S_{\beta_4}|=1. \mbox{ We may assume that } S_{\beta_1}=\\ \hline \{1\}, S_{\beta_2}=\{2\}, S_{\beta_3}=\{3\}, S_{\beta_4}=\{4\}. \mbox{ The only possible exponent tuple}\\ \mbox{ is } (l_1, l_2, l_3, l_4)=(1, 1, 1, 1). \mbox{ Thus the corresponding } h(x) \mbox{ has degree } 1,\\ \mbox{ a contradiction. As an example we consider the case} \end{array}$

$$\begin{aligned} \alpha_1 &= \alpha_0 + d, \\ \alpha_2 &= \alpha_0, \\ \alpha_3 &= \alpha_0 + 3d, \\ \alpha_4 &= \alpha_0 + 2d. \end{aligned}$$

We use equation (3) here with $(j_1, j_2, j_3) = (1, 2, 3)$ and $(j_1, j_2, j_3) = (1, 2, 4)$. If $d \neq 0$, then we have

$$\beta_3 = 3\beta_1 - 2\beta_2,$$

$$\beta_4 = 2\beta_1 - \beta_2.$$

Let $k_1, k_2, k_3, k_4 \in \mathbb{Z}$ such that $k_1 + k_2 + k_3 + k_4 = 0$. Theorem A implies that

$$g(x) = (x - \beta_1)^{k_1} (x - \beta_2)^{k_2} (x - 3\beta_1 + 2\beta_2)^{k_3} (x - 2\beta_1 + \beta_2)^{k_4},$$

$$h(x) = \frac{1}{d} (\beta_1 (x - \alpha_0) - \beta_2 (x - \alpha_0 - d)),$$

$$f(x) = (x - \alpha_0 - d)^{k_1} (x - \alpha_0)^{k_2} (x - \alpha_0 - 3d)^{k_3} (x - \alpha_0 - 2d)^{k_4}.$$

5. Cases with n = 4

In this section we provide some details of the computation corresponding to cases with $n = 4, t \in \{2, 3, 4\}, k_1+k_2+\ldots+k_t \neq 0, S_{\infty} = \emptyset$. These are the cases which are not mentioned in Section 5 in [12]. The case n = 4, t = 2 and $S_{\infty} = \emptyset$. There are 134 systems to deal with. We treat only a few representative examples.

We treat only a few representative examples. If $S_{\beta_1} = \{1, 2\}, S_{\beta_2} = \{3, 4\}$ and $(l_1, l_2, l_3, l_4) = (2, 1, 2, 1)$, then we

have

$$\begin{aligned} \alpha_1 + 1/2\alpha_2 - \alpha_3 - 1/2\alpha_4 &= 0\\ \alpha_2 - 4/3\alpha_3 + 1/3\alpha_4 &= 0\\ \alpha_2\alpha_3^2 - 2\alpha_2\alpha_3\alpha_4 + \alpha_2\alpha_4^2 - \alpha_3^2\alpha_4 + 2\alpha_3\alpha_4^2 - \alpha_4^3 - 9\beta_1 + 9\beta_2 &= 0\\ \alpha_2 - 4/3\alpha_3 + 1/3\alpha_4 &= 0\\ \alpha_3^3 - 3\alpha_3^2\alpha_4 + 3\alpha_3\alpha_4^2 - \alpha_4^3 - 27/4\beta_1 + 27/4\beta_2 &= 0. \end{aligned}$$

The corresponding rational functions are as follows

$$f(x) = (x - \alpha_1)^{2k_1} (x - \alpha_2)^{k_1} (x - \frac{1}{3}\alpha_1 - \frac{2}{3}\alpha_2)^{2k_2} (x - \frac{4}{3}\alpha_1 + \frac{1}{3}\alpha_2)^{k_2},$$

$$g(x) = (x - \beta_1)^{k_1} (x - \beta_1 - \frac{4}{27}(\alpha_1 - \alpha_2)^3)^{k_2}$$

$$h(x) = \beta_1 + (x - \alpha_1)^2 (x - \alpha_2)$$

where $k_1 + k_2 \neq 0$. We note that the zeros and poles of f do not form an arithmetic progression for all values of the parameters as the choice $\alpha_1 = 0, \alpha_2 = 3$ shows.

If $S_{\beta_1} = \{1, 2\}, S_{\beta_2} = \{3, 4\}$ and $(l_1, l_2, l_3, l_4) = (1, 1, 0, 2)$, then we get the system of equations

$$\alpha_1 + \alpha_2 - 2\alpha_4 = 0 (\alpha_2 - \alpha_4)^2 - \beta_1 + \beta_2 = 0.$$

It yields a decomposable rational function f having only 3 zeros and poles altogether.

If $S_{\beta_1} = \{1, 2\}, S_{\beta_2} = \{3, 4\}$ and $(l_1, l_2, l_3, l_4) = (1, 1, 1, 1)$, then we obtain

$$\alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$$

$$\alpha_2^2 - \alpha_2 \alpha_3 - \alpha_2 \alpha_4 + \alpha_3 \alpha_4 - \beta_1 + \beta_2 = 0.$$

It yields the following solution

$$f(x) = (x + \alpha_2 - \alpha_3 - \alpha_4)^{k_1} (x - \alpha_2)^{k_1} (x - \alpha_3)^{k_2} (x - \alpha_4)^{k_2},$$

$$g(x) = (x - \beta_1)^{k_1} (x - \beta_1 + \alpha_2^2 - \alpha_2 \alpha_3 - \alpha_2 \alpha_4 + \alpha_3 \alpha_4)^{k_2},$$

$$h(x) = \beta_1 + (x - \alpha_3 - \alpha_4 + \alpha_2) (x - \alpha_2),$$

where $k_1 + k_2 \neq 0$.

If $S_{\beta_1} = \{1, 2, 3\}, S_{\beta_2} = \{4\}$ and $(l_1, l_2, l_3, l_4) = (1, 1, 1, 3)$, then we have

$$\alpha_1 + \alpha_2 + \alpha_3 - 3\alpha_4 = 0$$

$$\alpha_2^2 + \alpha_2\alpha_3 - 3\alpha_2\alpha_4 + \alpha_3^2 - 3\alpha_3\alpha_4 + 3\alpha_4^2 = 0$$

$$\alpha_3^3 - 3\alpha_3^2\alpha_4 + 3\alpha_3\alpha_4^2 - \alpha_4^3 - \beta_1 + \beta_2 = 0.$$

We obtain the following rational functions

$$f(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_1} (x - \alpha_3)^{k_1} (x - \alpha_4)^{3k_2},$$

$$g(x) = (x - \beta_2 - (\alpha_3 - \alpha_4)^3)^{k_1} (x - \beta_2)^{k_2},$$

$$h(x) = \beta_2 + (x - \alpha_4)^3,$$

where $k_1 + k_2 \neq 0$ and

$$\begin{aligned} \alpha_1 &= \frac{1}{2} \alpha_4 \Big(-i \sqrt{3} + 3 \Big) - \frac{1}{2} \alpha_3 \Big(-i \sqrt{3} + 1 \Big) \\ \alpha_2 &= \frac{1}{2} \alpha_4 \Big(i \sqrt{3} + 3 \Big) + \frac{1}{2} \alpha_3 \Big(-i \sqrt{3} - 1 \Big). \end{aligned}$$

The case n = 4, t = 3 and $S_{\infty} = \emptyset$. There are 48 systems to handle in this case. We consider one of these. Let $S_{\beta_1} = \{1\}, S_{\beta_2} = \{2, 3\}, S_{\beta_3} = \{4\}$ and $(l_1, l_2, l_3, l_4) = (1, 1, 0, 1)$. We obtain the system of equations

$$\begin{aligned} \alpha_1 - \alpha_4 - \beta_1 + \beta_3 &= 0 \\ \alpha_2 - \alpha_4 - \beta_2 + \beta_3 &= 0. \end{aligned}$$

It follows that h is a linear function, which only provides trivial decomposition. In the remaining cases we have the same conclusion. The case n = 4, t = 4 and $S_{\infty} = \emptyset$. Here we get 24 systems to consider. In all cases we have that

$$\{S_{\beta_1}, S_{\beta_2}, S_{\beta_3}, S_{\beta_4}\} = \{\{1\}, \{2\}, \{3\}, \{4\}\}\$$

and $(l_1, l_2, l_3, l_4) = (1, 1, 1, 1)$. Therefore h is linear, a contradiction.

References

- C. Alonso, J. Gutierrez, and T. Recio. A rational function decomposition algorithm by near-separated polynomials. J. Symbolic Comput., 19(6):527–544, 1995.
- [2] M. Ayad and P. Fleischmann. On the decomposition of rational functions. J. Symbolic Comput., 43(4):259–274, 2008.
- [3] D. R. Barton and R. Zippel. Polynomial decomposition algorithms. J. Symbolic Comput., 1(2):159–168, 1985.
- [4] A. F. Beardon and T. W. Ng. On Ritt's factorization of polynomials. J. London Math. Soc. (2), 62(1):127–138, 2000.
- [5] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
- [6] M. Fried. The field of definition of function fields and a problem in the reducibility of polynomials in two variables. *Illinois J. Math.*, 17:128–146, 1973.
- [7] M. Fried. On a theorem of Ritt and related Diophantine problems. J. Reine Angew. Math., 264:40–55, 1973.
- [8] C. Fuchs and A. Pethő. Composite rational functions having a bounded number of zeros and poles. Proc. Amer. Math. Soc., 139(1):31–38, 2011.
- [9] J. Gutierrez and D. Sevilla. Building counterexamples to generalizations for rational functions of Ritt's decomposition theorem. J. Algebra, 303(2):655– 667, 2006.
- [10] J. Gutierrez and D. Sevilla. On Ritt's decomposition theorem in the case of finite fields. *Finite Fields Appl.*, 12(3):403–412, 2006.
- [11] H. Levi. Composite polynomials with coefficients in an arbitrary field of characteristic zero. Amer. J. Math., 64:389–400, 1942.

COMPOSITE RATIONAL FUNCTIONS AND ARITHMETIC PROGRESSIONS 19

- [12] A. Pethő and Sz. Tengely. On composite rational functions. In Number theory, analysis, and combinatorics. Proceedings of the Paul Turán memorial conference, Budapest, Hungary, August 22–26, 2011, pages 241–259. Berlin: De Gruyter, 2014.
- [13] J. F. Ritt. Prime and composite polynomials. Trans. Amer. Math. Soc., 23(1):51–66, 1922.
- [14] U. Zannier. Ritt's second theorem in arbitrary characteristic. J. Reine Angew. Math., 445:175–203, 1993.
- [15] U. Zannier. On the number of terms of a composite polynomial. Acta Arith., 127(2):157–167, 2007.

MATHEMATICAL INSTITUTE UNIVERSITY OF DERECEN P.O. BOX 12 4010 DEBRECEN HUNGARY *E-mail address*: tengely@science.unideb.hu