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ABSTRACT

We investigate the dynamical evolution of an intermediate-mass black hole (IMBH) in a nuclear

star cluster hosting a supermassive black hole (SMBH) and both a spherical and a flattened disk-like

distribution of stellar-mass objects. We use a direct N-body (ϕGPU) and an orbit-averaged (N-ring)

numerical integrator to simulate the orbital evolution of stars and the IMBH. We find that the IMBH’s

orbit gradually aligns with the stellar disk if their mutual initial inclination is less than 90◦. If it is larger

than 90◦, i.e. counterrotating, the IMBH does not align. Initially, the rate of orbital reorientation

increases linearly with the ratio of the mass of the IMBH over the SMBH mass and it is orders of

magnitude faster than ordinary (i.e. Chandrasekhar) dynamical friction, particularly for high SMBH

masses. The semimajor axes of the IMBH and the stars are approximately conserved. This suggests

that the alignment is predominantly driven by orbit-averaged gravitational torques of the stars, a

process which may be called resonant dynamical friction. The stellar disk is warped by the IMBH, and

ultimately increases its thickness. This process may offer a test for the viability of IMBH candidates

in the Galactic Center. Resonant dynamical friction is not limited to IMBHs; any object much more

massive than disk particles may ultimately align with the disk. This may have implications for the

formation and evolution of black hole disks in dense stellar systems and gravitational wave source

populations for LIGO, VIRGO, KAGRA, and LISA.

Keywords: Astrophysical black holes (98), Stellar kinematics (1608), Stellar dynamics (1596), Dynam-

ical friction (422), N-body simulations (1083), Astrophysical processes (104)

1. INTRODUCTION

The stellar distribution in the Milky Way’s nuclear

star cluster shows intriguing dynamical behavior around

the central SMBH, Sgr A?. A young coeval population of

massive Wolf–Rayet stars, luminous blue variables and

O-type stars are observed in one or two warped disks in

the 0.03− 0.5 pc vicinity of Sgr A? (Schödel et al. 2005;

Bartko et al. 2009, 2010; Lu et al. 2009; Yelda et al.

2014; Schödel et al. 2018; Gallego-Cano et al. 2018; Ali

et al. 2020); some of these massive stars form a tightly

bound group (e.g. IRS 13E complex) (Schödel et al.

2005), while old low-mass stars are observed to be spher-

ically distributed (Feldmeier et al. 2014; Schödel et al.
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2018; Gallego-Cano et al. 2018). Two main formation

channels have been proposed to explain the observed

distribution (Tremaine et al. 1975; Milosavljević & Mer-

ritt 2001; Hansen & Milosavljevi 2003; Kim et al. 2004;

Levin et al. 2005; Antonini et al. 2012; Antonini 2013;

Alig et al. 2013; Mapelli et al. 2013; Gnedin et al. 2014;

Antonini 2014; Arca-Sedda & Capuzzo-Dolcetta 2014a;

Antonini et al. 2015; Arca-Sedda et al. 2015, 2017; Tsatsi

et al. 2017; Arca-Sedda & Gualandris 2018a; Trani et al.

2018; Arca Sedda et al. 2019; Mastrobuono-Battisti et al.

2019; Schödel et al. 2020; Arca Sedda et al. 2020; Do

et al. 2020): the observed distribution is either (i) a

remnant of a previous star-forming gas disk; or (ii) the

stars have been delivered via massive compact star clus-

ters from the surrounding regions of the Galaxy.

Both scenarios may lead to the formation or deliv-

ery of IMBHs in the galactic nucleus (Goodman & Tan
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2004; Portegies Zwart et al. 2006; McKernan et al. 2012,

2014; Fragione et al. 2018a; Arca-Sedda & Gualandris

2018b; Askar et al. 2021; Arca Sedda 2019; Arca-Sedda

& Capuzzo-Dolcetta 2018; Fragione & Silk 2020) where

they can play an important role in the local dynamics

(Gualandris & Merritt 2009) triggering star formation

(Thompson et al. 2005), accelerating two-body relax-

ation (Mastrobuono-Battisti et al. 2014), disrupting bi-

naries (Deme et al. 2020), leading to tidal disruption

events (Chen et al. 2009; Chen & Liu 2013; Fragione

et al. 2018b) and extreme mass ratio inspirals (Bode &

Wegg 2014). The detection of IMBHs in the Galactic

Center may become possible using precision astrometry

(Gualandris et al. 2010; Girma & Loeb 2019; Naoz et al.

2020) or pulsar timing (Kocsis et al. 2012). Recently,

promising IMBH candidates have been identified in the

centers of compact gas clumps near the Galactic Cen-

ter, supporting formation scenario (i): CO–0.40–0.22

(Oka et al. 2017; Ballone et al. 2018), HCN–0.009–0.044

(Takekawa et al. 2019a), CO–0.31+0.11 (Takekawa et al.

2019b) and HCN-0.085-0.094 (Takekawa et al. 2020).

However, IRS 13E complex can be an example of sce-

nario (ii) for the delivery of an IMBH to the Galactic

Center (Schödel et al. 2005; Tsuboi et al. 2017; Zhu et al.

2020; Greene et al. 2020, but see Petts & Gualandris

2017). The observed metal-poor rotating stellar sub-

population implies that at least 7% of the nuclear star

cluster may have been delivered by scenario (ii) (Arca

Sedda et al. 2020; Do et al. 2020).

The IMBHs are expected to sink deep into the Galac-

tic Center due to dynamical friction (Levin et al. 2005;

Mastrobuono-Battisti et al. 2014). In the vicinity of the

central SMBH, the IMBHs settle on short-period (1−104

yr) approximately Keplerian orbits. Then the eccentric-

ity and the orbital inclination change predominantly due

to the orbit-averaged gravitational interactions of the

stars, a process known as resonant relaxation (Rauch &

Tremaine 1996). Since the mean spherical potential of

the nuclear star cluster also drives rapid apsidal in-plane

precession with 104–105 yr period, this limits the reso-

nant accumulation of torques that drive the eccentric-

ity evolution. However, one component of the resonant

torques that drive the reorientation of the orbital planes

is not limited by apsidal precision; this process is known

as vector resonant relaxation (VRR).

The timescale of VRR has been determined for single-

mass and two-component clusters of stellar objects to

be between 105 − 107 yr (Hopman & Alexander 2006;

Eilon et al. 2009; Kocsis & Tremaine 2011, 2015; Gi-

ral Mart́ınez et al. 2020). This timescale is sufficiently

short that the orbital inclinations may be expected to

reach a quasi-stationary equilibrium distribution while

the eccentricities and semimajor axes change much more

slowly (Roupas et al. 2017; Takács & Kocsis 2018; Bar-

Or & Fouvry 2018; Fouvry et al. 2019; Roupas 2020).

However, entropy is expected to be maximized when

the inclination distribution exhibits mass segregation,

meaning that higher-mass objects are ultimately con-

fined to smaller root-mean-square inclinations compared

to lower-mass objects (Rauch & Tremaine 1996; Roupas

et al. 2017; Szölgyén & Kocsis 2018; Gruzinov et al.

2020). The eccentricity of higher-mass objects may also

become systematically different (Bar-Or & Fouvry 2018;

Gruzinov et al. 2020). The systematic change of the ec-

centricity of massive objects has been confirmed by nu-

merical simulations (Levin et al. 2005; Alexander et al.

2007; Löckmann et al. 2009; Iwasawa et al. 2011; Sesana

et al. 2011; Madigan & Levin 2012; Foote et al. 2020;

Bonetti et al. 2020). Mass segregation in the vertical

direction has also been identified in numerical simula-

tions of initially strongly non-axisymmetric nuclear stel-

lar disks that lack a spherical cusp of stars (Foote et al.

2020).

In multi-mass gravitating systems, dynamical friction

drives the relaxation toward a mass-dependent statis-

tical equilibrium. In such a system, a massive object

may “polarize” the medium and the perturbations get

amplified by collective gravitational effects, which back-

react and lead to a rapid relaxation toward a statistical

equilibrium (Sellwood 2013; Fouvry et al. 2015, 2017;

Sridhar & Touma 2017; Lau & Binney 2019; Hamil-

ton et al. 2018; Hamilton & Heinemann 2020; Hamilton

2021; Fouvry et al. 2021). This may lead to a reso-

nantly enhanced rate of dynamical friction if the mean-

field potential admits action-angle variables (Lynden-

Bell & Kalnajs 1972; Tremaine & Weinberg 1984; Wein-

berg 1989; Nelson & Tremaine 1999; Chavanis 2012;

Heyvaerts et al. 2017; Fouvry & Bar-Or 2018; Bortolas

et al. 2020, 2021; Banik & van den Bosch 2021) which

may result in orders-of-magnitude faster relaxation than

predicted by Chandrasekhar’s estimate (however, see In-

oue 2011; Petts et al. 2016).

In this paper, we examine the dynamical mechanism

which leads to the rapid reorientation of the orbital

plane of a massive object (e.g. an IMBH) in response

to a population of lower-mass stars orbiting a SMBH

in a disk configuration, a process that may be called

resonant dynamical friction (RDF) (Rauch & Tremaine

1996). In particular, we investigate how an IMBH set-

tles into the midplane of a stellar disk, such as the clock-

wise disk around Sgr A? in the Galactic Center (Bartko

et al. 2009; Lu et al. 2009; Yelda et al. 2014; Gillessen

et al. 2017), and study the response of the disk using

numerical simulations.
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We use two different numerical methods: (i) ϕGPU

– a direct N-body simulator accelerated by graphical

processing units (Berczik et al. 2011, 2013), and (ii) N-

ring – a secular N-body simulator that uses the orbital-

and precession-period averaged interactions (Kocsis &

Tremaine 2015).Both ϕGPU and N-ring account for

the superposition of the interactions between all pairs

of particles, but while ϕGPU simulates the instanta-

neous interaction between the point masses N-ring cal-

culates the interaction between annuli covered during

the orbital and precession period. The semimajor axes

and eccentricities of different stars are free to change

in ϕGPU while they are fixed by construction in N-

ring. The difference between the two methods allows

us to identify the main dynamical mechanism driving

the evolution and in particular to explore the contri-

bution of Chandrasekhar’s (ordinary nonresonant) dy-

namical friction (CDF) and resonant dynamical friction

(RDF) to the process of inclination relaxation. We find

that the N-ring simulations, which account for RDF

but not CDF by construction, match the results of the

ϕGPU simulations that include both CDF and RDF.

The alignment process is much more rapid in the sim-

ulations than expected by a simple analytic estimate of

CDF. We examine the process using numerical simu-

lations with different initial IMBH orbital inclinations,

IMBH masses, number of stars, and radial surface den-

sity profiles for the stellar disk. We measure the warp

and the thickness of the disk, as well as the evolution

of the IMBH’s semimajor axis, eccentricity, and inclina-

tion. We construct a simple empirical analytic model

for the alignment via RDF.

2. NONRESONANT DYNAMICAL FRICTION

We start with a simple analytic estimate of the align-

ment time of the IMBH due to Chandrasekhar’s dynam-

ical friction (CDF) with respect to the disk stars during

disk crossings. The mean deceleration of the IMBH is

given by Chandrasekhar’s formula for a homogeneous

medium as (Eq. 8.1a in Binney & Tremaine 2008):

dvIMBH

dt
= 4πG2mIMBHρ ln(Λ)

∫
d3vf(v)

v − vIMBH

|v − vIMBH|3
(1)

where ρ is the density of stars and ln(Λ) is the

Coulomb logarithm with Λ = hd/b90. b90 = G(mIMBH+

m)/〈v2rel〉 � hd, where vrel is the relative velocity of stars

and the IMBH, hd is the thickness of the disk, and f(v)

is the probability density function of disk star velocities

in a small box around the crossing point of the IMBH.1

The alignment time due to dynamical friction account-

ing for two disk crossings of duration tcross = hd/vIMBH,z

per orbit of period torb may be estimated as

talign,CDF =

(
dι

dt

)−1
=

torb
2tcross

vIMBH,z

aCDF,z
(2)

where vIMBH,z is the IMBH’s velocity in the z-direction,

aCDF,z = dvIMBH,z/dt and ι is the inclination angle of

the IMBH with respect to the stellar disk.

In the limit of small IMBH orbital eccentricity and a

cold thin disk of total mass md and maximum radius of

rd with density

ρ(r, z) =
2− γ

2πr2dhd

(
r

rd

)−γ
md if |z| < hd

2
(3)

and ρ(r, z) = 0 otherwise. We define Cartesian coordi-

nates (x, y, z) where the disk plane is spanned by {x, y}
and the IMBH crosses the z = 0 midplane at x = 0,

substitute vIMBH = (vK cos ι0, 0, vK sin ι0) and assume

that all stars have v = (vK, 0, 0) in the vicinity of the

crossing point of the IMBH in the disk in Eq. (1) where

vK = (GmSMBH/r)
1/2 is the Keplerian velocity. Then

the alignment time simplifies to

talign,CDF =
2 sin ι sin3(ι/2)

(2− γ) ln Λ

(
r

rd

)γ−2
m2

SMBH

mdmIMBH
torb

=
2 sin ι sin3(ι/2)

ln Λ

m2
SMBH

md,locmIMBH
torb , (4)

where we have introduced the “local disk mass at r” as

md,loc =
dm

d ln r
=

∫
2πr2ρdz = (2− γ)

(
r

rd

)2−γ

md .

(5)

The CDF alignment time is 43 Myr for ι = 45◦ at r =
0.15 pc for our fiducial model with mSMBH = 106M�,

mIMBH = 103M�, md = 8, 191M�, md,loc = 2, 273M�,

γ = 0.75, and rd = 0.5 pc. For our alternative model

with γ = 1.75 and all other parameters fixed, we have

md,loc = 1, 516M�, so talign,CDF = 65 Myr. Note that

the result depends on the radius and the stellar disk

properties only through the orbital period and the lo-

cal disk mass. It is otherwise independent of hd and

the mass of individual disk stars, but it shows a strong

inclination dependence as shown in Figure 12 below.

We also find a similar result by measuring the CDF

alignment time in the numerical simulations by substi-

tuting the actual velocity distribution of stars (Figure

1 To calculate b90, note that we assume that hd is smaller than the
Hill radius rH = (mIMBH/mSMBH)1/3r = 0.1 r, which holds for
hd = 0.01 pc and r > 0.1 pc in our fiducial model.
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14, see Appendix 5) around the IMBH within a cylin-

der around the crossing point of the IMBH in the disk

(r = 0.15 pc) of height hd = 0.01pc (i.e. the local thick-

ness of the stellar disk) and radius chosen arbitrarily to

be rcyl = 0.05pc in Eq. (1) and find a similar result.

We note, however, that talign,CDF is an upper limit

for the true alignment time for, several reasons. First,

dynamical friction is enhanced significantly in an inho-

mogeneous cuspy density profile around SMBH (Arca-

Sedda & Capuzzo-Dolcetta 2014b). Further, dynamical

friction may be accelerated by orbit-averaged torques,

which drives resonant relaxation (Madigan & Levin

2012). We confirm this estimate in detail below. For

the system parameters listed above, the apsidal preces-

sion rate of the IMBH is 0.019 times the orbital angu-

lar velocity around the SMBH according to Eq. (A1) in

Kocsis & Tremaine (2015). Thus, the apsidal precession

period of the IMBH is ta,prec = 0.28 Myr, which is much

larger than the orbital period, torb = 5.4 kyr. However,

it is much shorter than the initial nodal precession pe-

riod of the IMBH and the stellar disk measured using

N-ring to be tn,prec = 2.9 Myr, which approximately

characterizes the RDF timescale.2 Eq. (4) shows that

talign,CDF ∝ ι4 for small ι, implying that CDF may play

an important role in aligning the orbit during the later

phase of the evolution when the inclination is small (see

Section 4.8 for further discussion).3

3. NUMERICAL METHODS

We run simulations using ϕGPU (Berczik et al. 2011,

2013; Li et al. 2012, 2017) a direct-summation N -body

code that uses the Hermite integration scheme with

individual block time steps to solve the instantaneous

equations of motion of point particles with gravitational

softening. We also run N-ring (Kocsis & Tremaine

2015) with the same initial conditions. In contrast with

ϕGPU, N-ring is a secular code that integrates the

pairwise interactions of orbit-averaged stellar trajecto-

ries using a time-reversible symplectic parallel scheme

using a multipole expansion. By construction, N-ring

neglects variations in the semimajor axes and eccentric-

ities, implying that it neglects two-body relaxation and

scalar resonant relaxation, and thus simulates the effects

of VRR only, while ϕGPU does not make any such ap-

proximations. We direct the readers to the references

2 Note that, given the large initial inclination, the measured nodal
precession timescale is consistent with the quadrupole approxi-
mation (Nayakshin 2005; Kocsis & Tremaine 2015) as tn,prec ∼
4
3

(cos ι)−1mSMBH(mIMBH +md,loc)−1torb = 3.1 Myr

3 Note that the ι4 scaling is valid only for small orbital inclinations
but larger than the thickness of the disk.

for a detailed discussion of these numerical methods. N-

ring neglects the contribution of multipoles with ` > 50

which amounts to softening with an angular separa-

tion of 1.5◦ in angular momentum direction space, while

ϕGPU applies softening with 10−5 pc for stars and 10−3

pc for the SMBH and IMBH. We use both codes to un-

derstand the relative contribution of VRR and two-body

relaxation to the inclination relaxation.

First, we run 6 ϕGPU and N-ring simulations with

different initial inclinations for the IMBH’s orbit as spec-

ified below. Then, we explore the evolution for differ-

ent disk surface density profiles and IMBH masses using

N-ring to determine the main properties of resonant

dynamical friction and to derive an empirical analytic

model.

3.1. Initial conditions

Our models consist of a disk of N = 8191 equal-

mass 1 M� stars together with an mIMBH = 103 M�
IMBH and a mSMBH = 106 M� SMBH fixed at the cen-

ter. In addition, we include a static Plummer-potential

ΦP(r) = −GmP/
√
r2 + r2P with mP = 105M� and rP =

0.2 pc, in order to mimic the gravity of the spherical

stellar component in the galactic nucleus, which drives

apsidal precession and quenches the coherent torques of

eccentric orbits.4 While this model is obviously far from

a realistic representation of the Galactic Center, which

has a Bahcall-Wolf cusp of 107 stars with a possible in-

ner cavity, a population of S-stars, a warped and twisted

stellar disk of 104 M� stars, 104 black holes, a massive

molecular torus, etc. (Genzel et al. 2010), it serves as

a simplified model to gain an understanding of the or-

bital alignment of a massive point mass in an anisotropic

system.

The stars are initially distributed in the simulation

in an axisymmetric thin disk with height hd = 0.01

pc, which is uniform in cylindrical coordinates along

the azimuth angle and the z-axis. The surface den-

sity in our fiducial model is chosen according to Eq. (3)

with surface density ∝ r−0.75 between 0.03 − 0.5 pc

4 Without the spherical component, the disk may preserve a
strongly non-axisymmetric structure, if present initially, which
may strongly influence the evolution (Madigan et al. 2009; Madi-
gan & Levin 2012; Madigan et al. 2018; Foote et al. 2020; Ro-
driguez et al. 2021, but see Gualandris et al. 2012). A possi-
bly important simplification for the spherical component of mass
distribution in our simulations is the assumption of a smooth
mean-field potential, which neglects N1/2 fluctuations caused by
the finite number of stars in the spherical cusp, which may excite
long-wavelength warps in the disk (Kocsis & Tremaine 2011) and
also may affect the evolution of the IMBH. We leave the study
of the influence of the fluctuations of the spherical component to
a future study.
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from the SMBH. This matches the expectation for the

cluster infall scenario (Berukoff & Hansen 2006), but

it is much shallower than the observed surface den-

sity profile of the clockwise disk in the Galactic Cen-

ter, which is proportional to r−2.1±0.4 (Lu et al. 2009),

r−1.95±0.25 (Bartko et al. 2009), or r−1.4±0.2 (Bartko

et al. 2010). We also explore a steeper density pro-

file of r−1.75 separately below. The initial velocities of

stars are perturbed with respect to the circular veloc-

ities5 corresponding to the SMBH and the Plummer-

potential component: vi = vc,i ± 0.05f(vc,i), where

v2c,i = G(mSMBH + mP)/
√
x2i + y2i is the ith star’s cir-

cular velocity, f(vc,i) is a randomly sampled value from

the PDF of a Maxwell-Boltzmann distribution that has

the mean at vc,i, and xi, yi are the coordinates of the

ith star. We choose the direction of vc,i such that 95%

and 5% of stars are orbiting respectively in the same

sense and in the opposite sense as the IMBH in the

disk. In comparison, 19 out of 90 WR/O-stars in the

Galactic Center are consistent with belonging to a ret-

rograde disk (Bartko et al. 2009) although they are also

consistent with belonging to a spherical distribution (Lu

et al. 2009; Yelda et al. 2014). This disk configuration

is not in statistical equilibrium initially, thus we first

let the system to evolve for a few million years until

the disk reaches a mean-field equilibrium in which the

inclination distributions of the inner, overlapping, and

outer stars have mean and standard deviation 〈cos2 ι〉 =

0.994, 0.996, 0.998 and σ(cos2 ι) = 0.022, 0.036, 0.012, re-

spectively; see Sec. 3.2 below. We show the relaxed

distribution of orbital parameters in the Appendix; see

Figure 13.

We use this relaxed disk model together with an

IMBH parameterized by (mIMBH, aIMBH, eIMBH) =

(103M�, 0.15pc, 0.33) as the initial condition in both the

ϕGPU and in the N-ring simulations. We run 6 sim-

ulations with ι0 = 35◦, 45◦, 55◦, 65◦, 75◦, 135◦ different

orbital inclinations for the IMBH. The initial orbital

parameters and masses of stars, as well as the IMBH

are identical in the ϕGPU and the N-ring simulations.

N-ring does not include the Plummer-potential com-

ponent directly, but its influence is included in the as-

sumption of rapid apsidal precession, as the interaction

in N-ring is averaged over the orbital and the apsidal

precession period.

5 Note that vc,i is the Keplerian circular velocity for a point mass of
mSMBH+mP, which is somewhat larger than the circular velocity
of the actual SMBH+Plummer potential by a factor (mSMBH +
mP)/{mSMBH +mP[1 + (rP/r)

2]−3/2} ≈ 1 + (mP/mSMBH){1−
[1 + (rP/r)

2]−3/2}, which is between 1 and 1.1.

3.2. Characterization of disk thickness and warp

To characterize the state of the disk in the simulation,

we introduce the quadrupole tensor of the stellar angular

momenta:

Qαβ =

∑N
i=1 LiαLiβ∑N
i=1 |Li|2

, (6)

where Li denotes the angular momentum vector of the

ith star, and α and β respectively label the Cartesian

vector components. The largest eigenvalue (denoted by

q hereafter) quantifies the flatness, as it is given by

q = 〈cos2 ι〉 =

∑N
i=1 |Li|2 cos2 ιi∑N

i=1 |Li|2
(7)

where ιi is the orbital inclination of stars relative to the

disk midplane, i.e., the angle subtended by Li and the

principal eigenvector of Qαβ .6

We characterize the root-mean-square warp angle or

thickness of the disk by the quantity

∆ι ≡ cos−1
√
q . (8)

Note that ∆ι = 0 for a razor-thin flat disk, and ∆ι is

independent of an overall tilt of the disk but it increases

with the warp of a thin disk and with the thickness. In

the limit of an isotropic distribution, or a razor thin disk

warped by 180◦, ∆ι = cos−1(3−1/2) = 54.7◦.

We measure ∆ι for the inner, overlapping, and outer

regions of the disk with respect to the IMBH, separately,

by evaluating the sums over only the corresponding stars

in Eq. (6). We define these regions depending on the

peri- and apocenter (rp, ra) of the stars with respect to

the IMBH (rp,IMBH, ra,IMBH) as

• inner region: ra < rp,IMBH,

• overlapping region: rp 6 ra,IMBH or rp,IMBH 6 ra,

• outer region: ra,IMBH < rp.

The number of stars in the three regions are 〈Nin〉 =

9.4% ± 0.64%, 〈Noverl〉 = 18.1% ± 4.3%, and 〈Nout〉 =

72.5% ± 4.0%, respectively, for our standard model.

Here, the fluctuations are mostly due to variations in

the IMBH eccentricity with time.

6 In particular, since TrQ = 1 and all eigenvalues are non-negative,
the principal eigenvalue q = 1 corresponds to the case where
the other two eigenvalues are 0 and so all angular momentum
vectors have ι = 0◦ or 180◦ representing a razor-thin disk in
physical space. Further, q = 1/3 corresponds to the case where all
eigenvalues are equal which represents an approximately isotropic
spherical distribution of orbits both in angular momentum space
and in physical space.
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Figure 1. The inclinations and semimajor axes of stars (colored points) and the IMBH (black dot) in the ϕGPU simulation
shown as a scatter plot for 6 snapshots in the 6 panel at 0, 0.4, 0.9, 1.8, 2.7, and 4.5 Myr as labeled. Red, green, and blue points
show the inner, overlapping, and outer region of the disk with respect to the IMBH orbit, respectively. See also the animated
time evolution.

4. RESULTS

We first present the results of ϕGPU simulations for

initial IMBH inclination ι0 = 45◦. Figure 1 shows the

scatter plot of orbital inclinations and semimajor axes of

disk stars and the IMBH, cos ιi = Li ·Ltot/(|Li||Ltot|),
for 6 representative snapshots as indicated in the pan-

els. Here Ltot is the total angular momentum of the

system. We also provide an animated video showing the

complete structural evolution of the disk as the IMBH

sinks down and aligns with the disk. The stars are de-

picted by red, blue, or green points depending on their

peri- and apocenter (rp, ra) with respect to the IMBH

(rp,IMBH, ra,IMBH) (see definition below Eq. 8): inner or-

bits in red; outer orbits in blue; and overlapping orbits

in green. The black filled circle indicates the IMBH. The

figure shows that initially the disk is flat and thin and

the IMBH is at ι0 = 45◦. The inclination angles start to

change visibly at 0.4 Myr. At 0.9 Myr, the inner regions

develop a larger warp. At 1.8 Myr, the IMBH aligns

the disk first and the disk is significantly warped in the

inner and overlapping region. At 2.7 and 4.5 Myr, the

IMBH settles into the midplane, and the disk warp is

limited mostly to the inner region to within r < 0.08 pc,

where the local disk mass Eq. (5) is smaller than the

IMBH mass, but the disk thickness in the overlapping

and the close by parts of the outer disk is much larger

than initially. We examine the evolution of the orbital

elements of the IMBH and the response of the disk in

detail next.

4.1. Semimajor-axis and eccentricity evolution

Figure 2 shows the semimajor-axis and eccentricity

evolution of the IMBH. The IMBH orbit circularizes

during the relaxation process as also found by Madigan

& Levin (2012) for a corotating disk and by Bonetti et al.

(2020). The mean eccentricity decays from 0.33 to 0.02

during 4.5 Myr. The semimajor axis is approximately

constant during the evolution to within 6% until the

IMBH aligns with the disk at 2.6 Myr, when the semi-

major axis decreases suddenly by another 6% within 0.1

Myr then decreases gradually by 9% until 4.5 Myr.

The semimajor-axis distribution of stars shows a de-

pletion around the IMBH’s semimajor axis in the bot-

tom left panel of Figure 13 in the Appendix. The scalar

angular momentum of the IMBH varies by less than 6%.

4.2. Orbital alignment and warps

The top panel in Figure 3 shows the time evolution of

the angle between LIMBH and Ltot (black line), where

LIMBH is the angular momentum vector of the IMBH.

Colored curves show the angle between the respective

principal angular momentum eigenvector7 of the disk

stars (i.e. that of Qαβ , see Eq. 6) and Ltot separately

for the inner, overlapping, and outer stars as defined

below Eq. (8). The bottom panel shows ∆ι (Eq. 8).

In practice, the top panel characterizes the evolution of

an overall tilt of the three parts of the disk, and the

7 Note that the principal angular momentum eigenvector charac-
terizes the instantaneous mean orientation/tilt of the disk; it is
approximately parallel with the mean angular momentum of the
given region to less than 5.2◦ in our reference simulation.

http://galnuc.elte.hu/szolgyen_et_al_2021_Fig1.mp4
http://galnuc.elte.hu/szolgyen_et_al_2021_Fig1.mp4
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Figure 2. The semimajor axis (red, left axis) and the
eccentricity (blue, right axis) of the IMBH as a function of
time. For the evolution of the distribution of semimajor axis
and eccentricity of the stellar disk, see Figure 13 in the Ap-
pendix.

bottom panel characterizes the evolution of the warp

and/or the disk thickness within the three regions. The

top panel shows that the IMBH sinks into the plane of

the disk in an accelerated way, and settles after around

2.6 Myr. The disk is initially flat, but the inner disk

quickly becomes tilted as the orientation of the inner-

most part of the disk separates from that of the over-

lapping and the outer disk in the top panel. At around

> 0.6 Myr, the overlapping part of the disk also decou-

ples from the outer disk. The inner disk tilt peaks at

∼ 30◦ at ∼ 2.5 Myr, while the overlapping stars’ incli-

nation peaks around ∼ 12◦ at almost the same time.
8

The bottom panel of Figure 3 shows that the curvature

or thickness of the disk increase in all three regions until

the IMBH settles into the disk at 2.6 Myr, and this is
more prominent in the inner and overlapping regions.

The thickness/curvature continues to increase only in

the inner and overlapping regions after the IMBH aligns

with the disk. By 4.5 Myr, ∆ι is increased by respective

factors of 7.4, 5.1, and 4.1 in the inner, overlapping, and

outer regions.

4.3. Dependence on the initial IMBH inclination

Let us now compare the results of models with differ-

ent initial inclinations. Figure 4 shows the evolution of

the IMBH inclination in the top panel with respect to

the disk (ι = cos−1(L̂disk · L̂IMBH)) for 6 different initial

8 The strong variation in the inner disk after 2.6 Myr is a nu-
merical artifact, as the particle representing the spherical stellar
background distribution (i.e the Plummer potential) in the sim-
ulation gets displaced from the center by 0.005 pc.
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Figure 3. Top: The time evolution of the orbital inclina-
tion of the IMBH and stars for the inner, overlapping, and
outer region with respect to the total angular momentum,
L̂tot. Black curve shows the alignment angle of the IMBH,
defined as the angle between the angular momentum L̂IMBH

and L̂tot. We characterize the orientation of the stellar disk
with the respective principal angular momentum eigenvec-
tors (Eq. 6) of the stars in the given radial group, ζgroup.
Red, green, and blue curves show the angle between ζ̂group
and L̂tot for the stars in the inner, radially overlapping, and
outer parts of the disk with respect to the IMBH. Bottom:
The time evolution of the disk warp/thickness in the inner
(red), overlapping (green), and outer region (blue) defined
by Eq. (8).

inclinations, 35◦, 45◦, 55◦, 65◦, 75◦, and 135◦, from bot-

tom to top. The bottom panel shows the evolution of ∆ι

(Eq. 8). Solid and dashed lines show simulations with

ϕGPU and N-ring, respectively, started from the same

relaxed disk initial conditions (see Section 3.1). For ∆ι

this is shown in separate subpanels for clarity, as the

curves are intersecting.

The figure shows that the ϕGPU and N-ring results

are in qualitative agreement. The alignment is some-

what more rapid in ϕGPU by a factor∼ 10% (ι0 = 35◦),

∼ 5% (ι0 = 45◦), and ∼ 4% (ι0 = 55◦) than in the
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Figure 4. Inclination evolution of the IMBH using ϕGPU
(solid curves) and N-ring (dashed curves) from different ini-
tial inclinations. ι = cos−1(L̂disk ·L̂IMBH), where L̂disk is the
direction of the total angular momentum of disk stars. The
bottom panel is similar to that of Figure 3, but showing the
evolution of the warp or thickness of the disk (Eq. 8). Colors
refer to different initial inclinations of the IMBH. Top and
bottom subpanels of the bottom panel show the results of
ϕGPU and N-ring, respectively. See Figures 9 and 11 for
longer timescales and different surface density profiles.

N-ring results. Regardless of the value ι0, the discrep-

ancy is more significant once the alignment angle is less

than ι . 30◦. The difference is well-explained by the

differences in the approximations; N-ring neglects two-

body relaxation and SRR by assuming that the eccen-

tricity and semimajor axes of all objects are conserved.

As shown above by Eq. (4), energy exchange by close

two-body encounters results in Chandrasekhar dynam-

ical friction, which leads to an alignment timescale of

43 Myr at ι = 45◦, 9.4 Myr at 30◦ and 1.9 Myr at

20◦. The total time needed for alignment is determined

by the evolution at large ι if ι0 > 30◦, where Chan-

drasekhar dynamical friction is insignificant. Note fur-

ther that Figure 2 has shown that the eccentricity of

the IMBH changes significantly over a Myr, which is a

manifestation of scalar resonant relaxation. While this

is also neglected in N-ring, VRR is relatively insensi-

tive to eccentricity for e < 0.7 as shown in Figure 7 of

Kocsis & Tremaine (2015). Thus, we conclude that the

alignment is predominantly driven by VRR if ι0 > 30◦,

and in this case the total alignment time is well-modeled

by N-ring.

The counter-rotating simulations do not lead to sys-

tematic deviations between the two methods, showing

that VRR is dominant over scalar resonant relaxation

and two-body relaxation in this case. Here, the IMBH’s

inclination angle and the disk exhibit small-amplitude

periodic oscillations. In this case, the conservation of

total angular momentum vector inhibits the IMBH’s or-

bital flip. For counter-rotating orbits, two-body inter-

actions between disk stars and the IMBH is extremely

weak to drive angular momentum exchange between the

IMBH and the disk. We ran the N-ring simulations

for an extended timescale of 150 Myr for ι0 = 105◦ and

135◦, and found small-amplitude oscillations throughout

the evolution.

The similarity of the results of the two numerical

methods at large inclinations ι0 & 30◦ in Figure 4, shows

that the IMBH’s alignment is mainly driven by VRR.

Rauch & Tremaine (1996) named this process resonant

dynamical friction (RDF). Next, we explore this process

by running N-ring simulations on longer timescales, dif-

ferent IMBH masses, and surface density profiles.

4.4. Dependence on the IMBH mass

Let us now compare the alignment times for a fixed

initial IMBH inclination (ι0 = 45◦) with different IMBH

masses, mIMBH = 31.25, 250, 500, 1000, 2000, 4000M�.

The top panel in Figure 5 shows the IMBHs’ incli-

nation with respect to the disk as a function of time

(top subpanel) and dι/dt as a function of inclination

(bottom subpanel), while the bottom panel shows the

warp/thickness of the disk. We find that, for an IMBH

mass of 250 ≤ mIMBH ≤ 1000M�, the initial rate of

alignment is approximately proportional to

dι

dt

∣∣∣∣
RDF

∝ mα
IMBH (9)

We measure α by comparing pairs of simulations as

α = ln[(dι1/dt)/(dι2/dt)]/ ln(m1/m2) for masses (250,

500, or 1000 M�) starting from the same ι = 45◦. Figure

6 shows that α = 1 ± 0.1 initially for 44◦ ≤ ι ≤ 45◦ for

both γ = 0.75 and for γ = 1.75. At later times for

25◦ ≤ ι < 44◦, α = 1.3 ± 0.2 for γ = 0.75, but it

is less than 1 for γ = 1.75 for 41◦ ≤ ι < 44◦, as the

inclination exhibits a hang-up (see Section 4.7 below).
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Figure 5. Top: The evolution of the orbital inclination
of an IMBH with a mass of 31.25, 250, 500, 1000, 2000, or
4000M�, respectively, due to a stellar disk starting from ι0 =
45◦ initial inclination in N-ring. The top subpanel is similar
to the top panel of Figure 4, i.e. the inclination of the IMBH
as a function of time. The bottom subpanel shows the the
rate of change of the inclination as a function of inclination in
the first decreasing phases, prior to the first local minima in
the top panel. Bottom: Similar to the bottom panel of Figure
4 showing the warp or thickness of the disk as a function of
time for different IMBH masses (Eq. 8).

Note that α = 1 matches the value for CDF. For larger

IMBH masses, the mass dependence of alignment rate

is shallower, which is to be expected since in this case

the local disk mass is comparable to or smaller than

the IMBH mass, and angular momentum conservation

inhibits the rapid relaxation process.

We find that the IMBH ultimately aligns with the

stellar disk for mIMBH ≥ 250M� for our standard
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Figure 6. The α exponent of the mass dependence of
the alignment rate, dι/dt ∝ mα, measured as a function
of inclination in a disk with surface density exponent γ =
0.75 (top) and 1.75 (bottom). We compare simulations with
IMBH mass m1 = 250 M� versus m2 = 500 M� (blue) or
m2 = 1000M� (red) and plot ln(ι′1/ι

′
2)/ ln(m1/m2) where

ι′1 = dι1/dt. The value of ι1 is the inclination of IMBH with
mass m1 and similarly for ι′2. All simulations were initialized
with ι1 = ι2 = 45◦. In all cases, the mass dependence is close
to linear, α = 1, initially.

model with (md, γ,N, ι0) = (8191M�, 0.75, 8191, 45◦)

and also for our alternative model with (md, γ,N, ι0) =

(8191M�, 1.75, 8191, 35◦). However, there is no align-

ment for mIMBH = 31.25M� for the former model. In

this case, the system exhibits quasiperiodic oscillations

between 30◦ ≤ ι ≤ 45◦ throughout the simulation for

175 Myr (see also Kocsis & Tremaine 2011, for a discus-

sion of normal mode oscillations of a thin nuclear stellar

disk).

4.5. Dependence on the disk mass, radius, SMBH mass

Due to the scale-free nature of the N-ring simula-

tions, the simulation time in code units is converted to

physical time by scaling with

tunit =
runit
√
GmSMBHrunit
Gmunit

=
mSMBH

munit

torb(runit)

2π
(10)

where runit and munit are the distance and mass

units adopted in the simulation. Here, torb(r) =

2π(GmSMBH)−1/2r3/2 is the orbital time. Note that

the N-ring simulation in code units is independent

of mSMBH; this quantity enters the results only when

converting the code units to physical units using

Eq. (10). Indeed, N-ring follows orbit-averaged in-

teractions among stellar objects; the influence of the

SMBH is accounted for by the orbit averaging. Eq. (10)

shows that, if the mass of the IMBH and the disk are

both increased by the same factor κ, keeping the SMBH
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mass and all other parameters fixed, this is equivalent to

changing munit to κmunit and the evolution is identical

if the time is scaled by the factor κ−1.

However, we have shown in Section 4.4 that the align-

ment rate scales initially approximately with mα
IMBH

where α ≈ 1 initially, and later by a somewhat dif-

ferent value for a range of IMBH and disk masses

with mIMBH ≤ md,loc. Based on dimensional analy-

sis,9 combining with Eq. (10) implies that if the RDF

rate of alignment scales with the masses as dι/dt ∝
mα

IMBHmβ
d,locm

δ
SMBH then β = 1 − α and δ = 1. For

α ≈ 1 this is independent of md,loc. Note, however,

that here ι is the relative angle between the IMBH and

the disk, and the rate of reorientation of the IMBH only

(with respect to an inertial frame) may be different if the

disk angular momentum is comparable to or less than

the IMBH’s (see Section 4.8).

Furthermore, Eq. (10) shows that, if the semimajor

axes of the IMBH and all disk stars are scaled by a

factor κ, this results in an identical evolution if the time

unit is increased according to the change in the orbital

time, i.e., by a factor of κ3/2.

4.6. Dependence on the number of stars

To examine how the results depend on the total num-

ber of disk stars N , we compare simulations with ap-

proximately fixed total disk mass and IMBH mass,

i.e. (N,mdisk,mIMBH) = (4095, 8190 M�, 2000 M�)

with (8191, 8191 M�, 2000 M�) and (2047, 8188 M�,

4000 M�) with (8191, 8191 M�, 4000 M�), and find that

the respective discrepancies in the alignment time are

less than 10% and 16%. These simulations assume

γ = 0.75 and ι0 = 45◦. We conclude that resonant

dynamical friction in many cases does not depend on

the mass of individual disk stars and their total number

for fixed stellar surface density profile.

However, we found that the number of particles N

significantly affects the long-term evolution for surface

density profile γ = 1.75, high initial IMBH inclination,

and IMBH masses less than the local disk mass. The

time duration of the orbital inclination hang-up phase

is increased for higher N and the oscillation amplitude is

decreased in this phase; see further discussion in Sec. 4.7.

9 Indeed, denoting the dimensionless code units with overline:
m̄IMBH = mIMBH/munit, m̄d,loc = md,loc/munit, t̄ =
t/tunit, dι/dt̄ = tunitdι/dt and given that the evolution in
code units is independent of mSMBH, assuming that dι/dt ∝
mα

IMBHmβ
d,loc for α and β real numbers, implies that dι/dt ∝

t−1
unit(mIMBH/munit)

α(md,loc/munit)
β . Substituting tunit from

Eq. (10) shows that β = 1 − α to ensure that dι/dt is indepen-
dent of the assumed units.

4.7. Dependence on the disk surface density profile,

γ = 1.75

Up to this section, we mostly used stellar disk surface

density profile ρ ∝ r−γ with γ = 0.75 in Eq. (3). Now

using N-ring, we present the time evolution for a stellar

disk with a steeper radial density profile with γ = 1.75,

consistent with that in the Galactic Center (Bartko et al.

2009; Lu et al. 2009; Yelda et al. 2014). We keep all other

parameters of the surface density profile (Eq. 3) and the

IMBH the same as before. In this case, the local disk

mass is 1.5× smaller at the IMBH semimajor axis, and

the mass distribution is approximately uniform on a log

scale md,loc ∝ r0.25, while for γ = 0.75 most of the mass

was at the outside md,loc ∝ r1.25.

We initialize the IMBH (mIMBH = 1000M�) with ι0 =

35◦, 45◦, 55◦, 65◦ and 75◦, respectively, and follow the

evolution of the system. Figures 7 and 8 show snapshots

of the evolution of orbital inclinations vs. semimajor

axes for 45◦ and 75◦, respectively. In contrast to the case

with γ = 0.75 where the inner disk gets warped rapidly,

Figure 1, the inner disk remains flat for γ = 1.75 and

ι0 ≥ 55◦ and the outer disk develops the warp starting

from the outer edge. The warp propagates inward in

time, at a rate that is smaller for larger ι0. If ι0 ≥
55◦, the IMBH orbital inclination exhibits a hang-up

until the disk warp reaches close to the IMBH apoapsis,

after which the IMBH quickly plunges into the disk. For

highly inclined initial conditions, the orbital hang-up

may be quite prolonged; see the yellow and purple curves

in the top panel of Figure 9.

Figure 9 shows the inclination of the IMBH (top) and

the evolution of the disk warp/thickness (bottom) as a

function of time for the 5 different cases. In compar-

ison to the γ = 0.75 case (see Figure 4 and 11), here

the local disk mass is 1.5× smaller, and the alignment
occurs more slowly by ∼ 1.2× (ι0 = 35◦) and ∼ 1.6×
(ι0 = 45◦). For larger ι0 the alignment time is much

longer due to the orbital hang-up by ∼ 4.3× (ι0 = 55◦),

∼ 8.5× (ι0 = 65◦), and ∼ 12.4× (ι0 = 75◦), respectively.

In this case, the IMBH does not follow the same expo-

nential decay as the empirical fit for γ = 0.75, Eq. (12).

For simulations with ι0 = 55◦, 65◦, 75◦, the IMBH incli-

nation first decreases to an intermediate value of ∼ 45◦ )

where the IMBH oscillates with a decreasing amplitude

until structural changes in the disk allow the IMBH’s

direct and rapid infall.

Note that Chandrasekhar’s dynamical friction has

been neglected here, but that timescale is even longer

than the alignment time found here (see the solid line

and × symbols in Figure 12). CDF may possibly af-

fect the evolution for ι0 & 55◦ by slowly pushing the or-

bital inclination past the intermediate equilibrium value,
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Figure 7. Same as Figure 1 but for a surface density profile that scales with r−1.75 instead of r−0.75 showing the scatter plot
of semimajor axes and orbital inclinations of the disk and the IMBH for 6 representative snapshots in the 6 panels as labeled.
The initial condition (top left panel) has ι0 = 45◦. There are more stars in the inner region (red points) and the inner disk gets
warped less than in Figure 1.
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Figure 8. Same as Figure 7 but for initial IMBH orbital inclination of ι0 = 75◦. The alignment time is much longer, as the
IMBH stalls at around 45◦ for an extended period of time until a discontinuity develops in the outer disk and propagates inward
to the IMBH radius.

thereby possibly shortening the orbital hang-up phase.

A detailed study of the orbital hang-up phase requires

direct N-body simulations over extended time periods,

which are beyond the scope of this paper.

Figure 10 shows how the number of disk stars, N ,

affects the orbital inclination hang-up phase for model

(mIMBH, ι0, γ) = (1000M�, 75◦, 1.75) for N = 2047,

4095, and 8191 and fixed total disk mass md = 8191M�.

We find that the oscillation amplitude is increased

around the intermediate equilibrium inclination of 45◦

and the total time duration of the hang-up is decreased

for smaller N . It is remarkable that, for systems that

exhibit the orbital inclination hang-up phenomenon, the

evolution remains sensitive to N even in the N � 1000

limit. Indeed, Figure 10 shows that, while the initial

rate of reoriention is independent of N for a fixed ini-

tial ι, the orbital hang-up phase may be significantly

extended in time for very large N . We find that this is

due to a discontinuity that forms in the inclination dis-

tribution in the disk in a narrow range of semimajor axis

in the outer region, i.e. near a = 0.38 pc at 21 Myr for

N = 8191 in Figure 8. However, since the discontinuity
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Figure 9. Similar to Figure 4 showing the inclination
evolution of the IMBH (top panel), as well as the evolution
of disk warp and thickness (bottom panel), using N-ring
but with a disk model with surface density profile ∝ r−1.75.
Here, mIMBH = 1000M�, and the total mass (8191M�) and
number of stars in the disk (N = 8191) are the same as
in Figures 4. The evolution consists of three phases: (i)
initial reorientation, (ii) oscillations around an intermediate
orbital inclination of ι ∼ 45◦, and (iii) final plunge. Phase (ii)
prolongs the total alignment time significantly for ι0 ≥ 55◦

(see Figures 4 and 10).

is manifested in only a small number of stars, the evo-

lution remains sensitive to N even for N = 8191. The

final IMBH realignment takes place after the disconti-

nuity propagates to overlapping radii. The discontinuity

moves more slowly for a smoother disk, i.e. for larger

N .

4.8. Analytic model

Following the arguments in Sec. 4.5, in the limit of

a scale-free disk, and with an IMBH much larger than

the mass of individual objects in the disk, we expect a

scaling as10

dι

dt

∣∣∣∣
RDF

= f

(
ι, ι0,

mIMBH

md

)
m1−α

d mα
IMBH t

−1
orb

mSMBH
(11)

where α ≈ 1 initially as measured above (and it may be

somewhat larger or smaller at later times) and f may

depend on the IMBH inclination with respect to the

actual state of the disk, which in turn may be expected

to depend mostly on the initial value ι0, the ratio of

IMBH mass to the local disk mass and the IMBH mass

to the individual object mass in the disk. Note that,

10 Here, md may depend on the total disk mass, the local disk mass
(Eq. 5), or the characteristic disk mass (Eq. 20). We leave a more
accurate determination to future work.
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N = 8191, m? = 1M�

Figure 10. Similar to the top panel in Figure 9: the
orbital inclination of the IMBH for ι0 = 75◦ as a function of
time relative to a stellar disk containing different numbers
of disk stars N = 2047 (blue), 4095 (red), and 8191 (green),
respectively. Other parameters are the same as in Figure 9
including the mass of the IMBH (1000M�), as well as the
total mass and surface density profile of the disk: 8191M�
and r−1.75.
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80◦
ι

Figure 11. Similar to Figure 4 but showing the longer
time evolution. Faded data points show the results of N-
ring, and solid lines are the empirical fit, Eq. (12). The
inclination changes exponentially in time.

as long as ι ≈ ι0, the disk has not had time to change

significantly and f is expected to depend mostly only on

ι0. We determine this function by fitting to simulations

next. We derive this function for the model with γ =

0.75 since this model is free from discontinuities and does

not exhibit the orbital hang-up phenomenon, but we find

that the resulting formula is a reasonable approximation

to describe the initial rate of reorientation for the γ =

1.75 model as well.

Figure 11 shows the results of N-ring for the evolu-

tion similar to the top panel of Figure 3 for the same

surface density profile Eq. (3) with γ = 0.75, but on

longer timescales, and solid lines show empirical fits to

the evolution. The inclination angle decays at an expo-
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nentially growing rate in the simulations for ι0 & 15◦,

which may be fit for 35◦ ≤ ι0 ≤ 75◦ initial inclination

by

ι(t) =

(
ιmin +

|ι′max|
λ

)
(1− eλt) + ι0e

λt , (12)

where the parameters depend on ι0 as

λ = 8.2e−0.636ι0
mIMBH

mSMBH
t−1orb = 1.51e−0.636ι0 Myr−1 ,

(13)

ι′max = −3.2
mIMBH

mSMBH
t−1orb = −0.6 Myr−1 , (14)

ιmin = −0.122 + 0.4ι0 (15)

These parameters have the following physical inter-

pretation: ι′max is the rate of alignment when the IMBH

inclination reaches the edge of the warped disk, which

is found to be approximately independent of the ini-

tial condition ι0; ιmin is the inclination when the IMBH

reaches the edge of the warped disk, which increases

with ι0 to roughly the saturation value of ∆ι (Fig-

ure 3);and λ is related to the change of the alignment

rate (ι′0− ι′max)/(ι0− ιmin). Note that these parameters

are not universal for RDF. They may depend on the

IMBH mass relative to the local disk mass, the radial

dependence of the local disk mass, and the eccentrici-

ties. The particular scaling with the IMBH and SMBH

mass and the Keplerian orbital time is motivated by

Eq. (11). Based on Eq. (12), the rate of reorientation

for RDF increases exponentially as

dι

dt

∣∣∣∣
RDF

= [λ(ι0 − ιmin)− |ι′max|]eλt , (16)

which may be expressed in terms of the instantaneous

inclination of the IMBH in the form of Eq. (11) as

dι

dt

∣∣∣∣
RDF

= λ(ι− ιmin)− |ι′max|

=

(
8.2ι− 3.28ι0 + 1

e0.636 ι0
− 3.2

)
mIMBH

mSMBH
t−1orb .

(17)

This model may be interpreted physically as follows.

Initially, the alignment rate is very slow, as the stellar

distribution and potential are nearly axisymmetric for

which Lz is conserved. This is analogous to the lack

of dynamical friction in a homogeneous medium before

any particle made a close encounter and before a density

wake develops. The gravitational influence of the IMBH

warps the disk, which in turn torques the IMBH’s or-

bit to align toward the disk. The speed of reorientation

grows exponentially in the simulations, which is typical

for other types of instabilities in galactic dynamics (see,

e.g. Sellwood 2013; Sellwood & Gerhard 2020). The in-

stability here is driven by the IMBH, as the stellar disk

was started from a stable configuration before deploying

the IMBH. For larger ι0 the disk has more time to re-

spond and becomes more warped by the time the IMBH

aligns with the disk. The rate of alignment is largest

when the orbit first reaches the edge of the warped disk;

here, ι = ιmin and the first term vanishes in Eq. (17).

Since this configuration is roughly independent of the

initial ι0, in terms of the inclination between the IMBH

and the local disk, the final rate of alignment is roughly

universal for fixed (md,loc,mIMBH, torb, γ). However, the

bottleneck for alignment is in the initial phase, which is

highly sensitive to ι0.

Up to this point, we have discussed the relative an-

gle between the IMBH and the disk ι = cos−1(L̂IMBH ·
L̂disk). Let us now determine the rate of reorien-

tation of the IMBH only, i.e., relative to an inertial

frame. Since Ltot = LIMBH + Ldisk is conserved,

we expect that (dιIMBH/dt)/(dι/dt) = [Ldisk/(Ldisk +

LIMBH)] = md,char/(md,char + mIMBH), where md,char =

mIMBHLdisk/LIMBH is the “characteristic mass of the

disk” at the IMBH. Substituting in Eq. (17) gives

dιIMBH

dt

∣∣∣∣
RDF

=

(
8.2ι− 3.28ι0 + 1

e0.636 ι0
− 3.2

)
µIMBH

mSMBH
t−1orb ,

(18)

where

µIMBH =
mIMBHmd,char

mIMBH +md,char
, (19)

md,char =
LdiskmIMBH

LIMBH
=

∫
ρr1/2dV

r1/2
=

5− 2γ

4− 2γ

√
rd
r
md .

(20)

Here, we substituted Eq. (3) for ρ with γ < 2 in the limit

of a thin flat Keplerian disk and an IMBH on a circular

orbit at r. Note that md,char > md as long as r ≤ rd.

Thus, if the IMBH is much less massive than the disk,

mIMBH � md, then µIMBH ≈ mIMBH, as expected.

Note that RDF is quite different from Chandrasekhar

dynamical friction which is described by Eq. (4) as

dιIMBH

dt

∣∣∣∣
CDF

=
ln Λ

2 sin ι sin3(ι/2)

mIMBHmd,loc

m2
SMBH

t−1orb .

(21)

Comparing Eqs. (18) and (21), it is clear that

RDF is more efficient than CDF by a factor of

(mSMBH/md,loc)/[1 + (mIMBH/md,char)], i.e. approxi-

mately mSMBH/md,loc for mIMBH � md < md,char, and

a factor that depends on inclination. For our standard

disk model, this mass factor is 440. Thus, in com-

parison to CDF, the rate of alignment due to RDF is
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Figure 12. The alignment time of an IMBH via resonant
dynamical friction measured in N-ring (symbols) versus the
ordinary Chandrasekhar dynamical friction as a function of
initial inclination for surface density exponent γ = 0.75 (solid
line) and 1.75 (dashed line) (Eq. (4)) for γ = 0.75. Colored
circles and × symbols show the results of the N-RING sim-
ulations for γ = 0.75 and 1.75, respectively. The dotted
line shows the analytic fit to the simulations with γ = 0.75
Eq. (17). For γ = 1.75, while the initial rate of alignment
(not shown) is close to the dotted line, the total alignment
time is much longer for high ι0 because the relative inclina-
tion settles to an intermediate equilibrium for an extended
period; see Figure 9.

boosted most significantly for low-mass IMBHs (includ-

ing heavy stellar-mass black holes), low-mass disks, and

high-mass SMBHs. Note that for (mIMBH,mSMBH) =

(103, 109) M� and with all other parameters unchanged,

the rate of reorientation due to Chandrasekhar’s dynam-

ical friction and resonant dynamical friction are respec-

tive factors of 106 and 103 slower. Thus, in this case

tCDF/tRDF > 104 for ι0 ∼ 45◦.

Figure 12 compares the alignment time of an IMBH

in N-ring for a disk of mass md = 8, 191M� and that

due to Chandrasekhar’s dynamical friction (Eq. 4) as

a function of ι0. Dashed and solid black curves show

the CDF (Eq. 4) for surface density profile exponent

γ = 0.75 and 1.75, respectively, while the dotted black

curve represents the empirical fit to RDF for γ = 0.75

(Eq. 17). Colored circles and crosses show the measured

alignment times (up to the point when the relative in-

clination of the IMBH and the disk reaches ι = 15◦)

in the simulations with γ = 0.75 and 1.75, respectively.

These correspond to values where the IMBH crosses 15◦

in Figure 11 and 9 (top panel). The figure shows that

RDF becomes dominant over CDF in aligning the IMBH

beyond a critical inclination of ι0 & 15◦.

The analytic model (Eq. 18) is successful at describ-

ing the initial rate of reorientation for both models with

γ = 0.75 and 1.75, respectively. However, it fails to de-

scribe the total alignment time for systems that exhibit

the inclination hang-up phenomenon (e.g. ι0 ≥ 55◦ for

(N,mIMBH, γ) = (8191, 103M�, 1.75)). By comparing

the disk structure for the different simulations shown in

Figure 10, we find that systems that exhibit the orbital

hang-up phase form a discontinuity in the inclination

distribution in a narrow range of radii in the outer disk;

see upper right panel of Figure 8 showing at 21 Myr

in the region near a = 0.38 pc. The analytic model

presented here describes the initial rate of reorientation

before discontinuities may form.

5. DISCUSSION

We have examined the dynamical evolution of a nu-

clear star cluster around an SMBH with both a spherical

and a stellar disk component, as well as an IMBH on an

initially inclined orbit with respect to the disk. We ran

numerical simulations with two codes, ϕGPU and N-

ring with the same initial conditions.

For an initial inclination of ι0 = 45◦ and for

(mIMBH,mSMBH = (103M�, 106M�), we found the ec-

centricity of the IMBH decreased from the initial value

of 0.33 to 0.02 in 4.5 Myr in ϕGPU, while the eccentric-

ity is fixed by construction in N-ring. This timescale

for the IMBH’s eccentricity decrease is much shorter

than Chandrasekhar’s dynamical friction timescale (Sec-

tion 2), supporting previous findings by Madigan &

Levin (2012) that resonant dynamical friction, which

arises due to orbit-averaged torques, dominates over or-

dinary dynamical friction driven by hyperbolic encoun-

ters and decreases the eccentricity for a disk corotating

with the IMBH. This is related to the process of scalar

resonant relaxation.

To investigate the contribution of VRR to how the

orbital plane of the IMBH aligns with the stellar disk,

we compared ϕGPU direct N-body simulations with the

orbit-averaged N-ring simulations that follow VRR and

neglect two-body relaxation and scalar resonant relax-

ation. The results of the two types of methods were in

approximate agreement with respect to the evolution of

angular momentum vector directions (Figure 4). Since

VRR is weakly sensitive to the orbital eccentricity for

e < 0.7 if the spherical component of the cluster’s po-

tential drives rapid in-plane apsidal precession (Kocsis

& Tremaine 2015), the change of eccentricity does not

influence the VRR evolution strongly. We have con-

firmed with ϕGPU that the semimajor axis changes

much more slowly during the alignment. The agreement

between ϕGPU and N-ring for the evolution of the or-

bital inclination of the IMBH and the disk suggests that

the alignment is mainly driven by resonant gravitational

torques between the stellar disk and the IMBH.
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We investigated the response of the stellar disk due

to the interaction with an IMBH. In the case where

disk surface density follows r−0.75, we found that the

inner region of the disk exhibits a strong warp, while

the outer disk is initially not affected (Figure 1). Then,

as the IMBH aligns with the midplane of the disk, the

thickness of the disk increases in the radially overlapping

regions and in the inner region. However, if the disk sur-

face density is more cuspy and follows r−1.75 consistent

with the clockwise disk of massive stars in the Galactic

Center (Lu et al. 2009; Bartko et al. 2009, 2010; Yelda

et al. 2014), the evolution is qualitatively different, since

in this case the mass is nearly uniformly distributed on

a logarithmic scale, and there is much more mass in the

inner disk and less mass in the outer disk in comparison

to the shallower surface density profile. The disk is then

stiffer in the inner region and more prone to deforma-

tions in the outer regions (Figure 7 and 8). In case of

high initial IMBH inclination (ι ≥ 45◦) and if the frac-

tion of IMBH mass to local disk mass is smaller than

0.7, then the IMBH alignment process is delayed and it

takes place in three steps (Figure 9):

(i) The inclination decreases to an intermediate value

of around ι ∼ 45◦ on a timescale similar to the

γ = 0.75 case.

(ii) The orbital inclination settles and oscillates with

a decreasing amplitude for an extended period of

time In this phase, while the inner disk perturba-

tions are small, the outer disk ultimately responds

in an irreversible way by developing a strong dis-

continuous warp starting near the outer edge of the

disk, which propagates inward.

(iii) Once the warp approaches the apoapsis of the

IMBH orbit, the IMBH plunges rapidly into the

disk. Ultimately, the inner disk is flat and aligned

with the IMBH, and it becomes more warped and

thicker in the outer regions.

We determined the alignment time of the IMBH with

ϕGPU and N-ring for 6 different initial inclinations

(ι0) and found an analytic fit to the results. The evolu-

tion of the disk and the IMBH are in approximate agree-

ment for ϕGPU and N-ring if ι0 > 20◦. The align-

ment time is an exponential function of ι0 if ι0 < 90◦

(Eq. 18 and Figure 12) and there is no alignment in

the counter-rotating case, i.e., if ι0 > 90◦. For the

surface density profile of r−0.75, the alignment of the

IMBH with the stellar disk is between 9–28× faster for

ι0 = 35◦–75◦ than the estimate for the Chandrasekhar

type dynamical friction (Eq. 4). The orbital inclina-

tion alignment for ι > 20◦ for component masses of

(mSMBH,mdisk,mIMBH) = (106M�, 8× 103M�, 103M�)

increases at an exponentially accelerating rate (Eq. 12).

These findings are valid for the total alignment time

for surface density r−0.75 for a wide range of masses

and inclinations, and also for r−1.75 surface density as

long as the initial inclination satisfies ι0 . 45◦ and the

IMBH mass is not much smaller than the local disk mass.

However, for surface density r−1.75 with large ι0 and/or

small IMBH mass, the exponential fit to the realignment

(Eq. 12) is valid approximately only for phase (i), but

the total alignment is delayed due to the orbital inclina-

tion hang-up phase (ii). Nevertheless, this is typically

still much faster than the Chandrasekhar’s dynamical

friction (Figure 12). The time duration of the inclina-

tion hang-up phase increases with the smoothness of the

disk by increasing the number of disk particles for fixed

total disk mass (Figure 10).

We also examined the dependence of the alignment

rate on the mass of the IMBH and found that it

is initially linearly proportional to mass, similarly to

Chandrasekhar’s dynamical friction, if the IMBH mass

is much larger than the mass of disk particles (Fig-

ure 6). At later times, as the disk gets signifi-

cantly perturbed, the scaling with mIMBH can be ei-

ther stronger or weaker, depending on the surface

density exponent γ and mIMBH. Furthermore, we

found that the resonant dynamical friction timescale

is approximately proportional to mSMBH/mIMBH unlike

Chandrasekhar’s dynamical friction, which scales with

m2
SMBH/(mdmIMBH). This implies that, while RDF is

faster than CDF by a factor of 10–40 for our fiducial

model with (mIMBH,mSMBH) = (103M�, 106M�), RDF

is faster than CDF by a factor of more than ∼ 104 for

(mIMBH,mSMBH) = (103M�, 109M�).

These findings may provide an explanation for the

dynamical origin of the warped structures of the stel-
lar disks in the Galactic Center (Bartko et al. 2009).

Our results indicate that an inclined massive perturber,

like an IMBH, can strongly warp an initially flat stel-

lar distribution, due to coherent gravitational torques.

Depending on the mass of the IMBH and the surface

density profile of the disk, it may cause a strongly per-

turbed inner or outer disk and a significantly thickened

overlapping disk on a 1 − 100 Myr timescale after its

formation or its arrival to the Galactic Center, see e.g.,

Figure 1.

Resonant dynamical friction may have applications

beyond the relaxation of IMBHs examined in this pa-

per. It may affect all objects in stellar clusters much

more massive than the individual constituents of the

disk, if present, including massive stars, stellar mass

black holes (BHs), or the center of mass of massive bi-
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Figure 13. Orbital parameter distributions of stars in the disk: the number density of semimajor axes and eccentricities, the
distribution of inclinations as a function semimajor axis, and the surface density of the disk as a function of radius, respectively,
from left to the right. First row shows the initial conditions at 0 Myr of the ϕGPU simulation, second row shows the parameters
at 2.6 Myr, and the third row shows parameters at 4.5 Myr.

naries. Furthermore, it is also expected to operate in

any type of disk with a high number of particles, in-

cluding active galactic nucleus (AGN) accretion disks.

Previously, it has been argued that stars and BHs cross-

ing the disk on low-inclination orbits get captured by

Chandrasekhar dynamical friction into the disk (Bartos

et al. 2017; Panamarev et al. 2018; Tagawa et al. 2020).

An interesting implication is that, if BHs settle into the

disk, they interact dynamically and form BH-BH bina-

ries efficiently, and frequent dynamical interactions and

gas effects drive the BHs to merger, producing grav-

itational waves (GWs) detectable by LIGO, VIRGO,

and KAGRA (McKernan et al. 2014, 2018; Bartos et al.

2017; Leigh et al. 2018; Yang et al. 2019; Tagawa et al.

2020, 2021; Samsing et al. 2020). Mergers are also facil-

itated by Lidov-Kozai oscillations in anistropic systems

(Heisler & Tremaine 1986; Petrovich & Antonini 2017;

Hamilton & Rafikov 2019). The results in this paper

show that resonant dynamical friction may accelerate

the capture of objects in the accretion disks by a fac-

tor proportional to the SMBH mass over the local disk

mass for large orbital inclinations. Pressure and viscos-

ity in a gaseous disk do not inhibit the orbit-averaged

torque from the IMBH, which leads to realignment and

the warping of the disk (Bregman & Alexander 2012).

Thus, RDF may efficiently catalyze the alignment of the

orbital planes of BHs even in low-luminosity AGN or

Seyfert galaxies with relatively small disk masses, which

may not be possible for Chandrasekhar dynamical fric-

tion. In fact, this mechanism extends the scope of the

“AGN merger channel” for GW source populations even

beyond low-luminosity AGN and Seyfert galaxies, as it

may organize BHs into disks also in nonactive galaxies

with nuclear stellar disks.

Even more generally, resonant dynamical friction may

be expected to operate in all systems whose mean-field

potential admits action-angle variables where one of the

precession frequencies is zero, e.g. for approximately

spherical systems. RDF may accelerate the relaxation of

massive subsystems including dark matter substructures

in the spherical halo into galactic disks, which could then

catalyze the formation of galactic spiral arms (D’Onghia

et al. 2013), similarly to how an IMBH may excite spiral

waves in a stellar disk in the Galactic center (Perets

et al. 2018). It may also play a role in the formation

and evolution of anisotropic groups of galaxies, including

the disk of Milky Way satellites (Kroupa et al. 2005) or

anisotropic galaxy clusters (Binney 1977).
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Figure 14. Velocity density histograms of stars in the vicinity of the IMBH’s crossing point of the stellar disk during the first
crossing.
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APPENDIX

Distribution of orbital parameters

Here, we give the semimajor-axis, eccentricity, in-

clination, and mass distributions of this paper’s fidu-

cial relaxed stellar disk model that we introduced in

Section 3.1. Figure 13 shows the number density of

semimajor axes and eccentricities, the distribution of

the cosine of the inclinations as a function semimajor

axes, and the surface density as a function of radius

(∝ r−0.75), respectively, in panels from the left to the

right. The first row of panels represents the initial, re-

laxed disk model at 0 Myr when the IMBH is added

to the simulation. The second and the third row show

snapshots of ϕGPU simulation at 2.6 Myr (when the

IMBH reaches the disk), and 4.5 Myr (end of the simu-

lation). Here, the initial IMBH parameters are (mIMBH,

aIMBH, eIMBH, ι0) = (103M�, 0.15pc, 0.33, 45◦).

The first column of panels show the evolution of disk

stars’ semimajor axes. As the IMBH’s orbital inclination

enters the disk at 2.6 Myr, the number density of stars

around the IMBH’s semimajor axis (0.15 pc) is strongly

depleted. By 4.5 Myr, the number density decreases

by a factor of ∼ 50% which suggests that the IMBH

strongly scatters the disk stars out of their orbit, i.e.,

nonresonant dynamical friction becomes dominant over

VRR.

The eccentricity density of stars does not vary much

during the evolution, as shown by the second column of

panels. However, the eccentricity distribution flattens

as the peak decreases by 22% and the standard devi-

ation increases by 50%. Note that, unlike Gualandris

et al. (2012), we do not find the eccentric disk instabil-

ity that forms a bimodal eccentricity distribution, but

this may be due to the differences in our assumptions.

The disk is initially axisymmetric in our simulations,

and we account for the spherical potential of the stel-

lar cusp, which drives differential apsidal precession and

quenches scalar resonant relaxation.

The inclination of stars as a function of the semimajor

axis shows a warp and an increase of the thickness of

the disk in the third column of panels, which is also

presented in Figure 1 and 3 in detail.

Figure 14 shows the local 3D velocity density of stars

in cylindrical coordinates at 0 Myr. The velocity dis-

tribution f(vr, vφ, vz) is restricted to the stars in the

neighborhood of the crossing point of the IMBH in the

disk in a cylindrical box with radius rcyl = 0.05 pc and

height hd = 0.01 pc.
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Schödel, R., Nogueras-Lara, F., Gallego-Cano, E., et al.

2020, A&A, 641, A102,

doi: 10.1051/0004-6361/201936688
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