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MAHLER’S WORK ON DIOPHANTINE EQUATIONS

AND SUBSEQUENT DEVELOPMENTS

JAN-HENDRIK EVERTSE, KÁLMÁN GYŐRY,
AND CAMERON L. STEWART

The main body of Mahler’s work on Diophantine equations consists

of his 1933 papers [54, 55, 56], in which he proved a generalization of

the Thue-Siegel Theorem on the approximation of algebraic numbers

by rationals, involving P -adic absolute values, and applied this to get

finiteness results for the number of solutions for what became later

known as Thue-Mahler equations. He was also the first to give upper

bounds for the number of solutions of such equations. In fact, Mahler’s

extension of the Thue-Siegel Theorem made it possible to extend var-

ious finiteness results for Diophantine equations over the integers to

S-integers, for any arbitrary finite set of primes S. For instance Mahler

himself [57] extended Siegel’s finiteness theorem on integral points on

elliptic curves to S-integral points.

In this paper we discuss Mahler’s work on Diophantine approxima-

tion and its applications to Diophantine equations, in particular Thue-

Mahler equations, S-unit equations and S-integral points on elliptic

curves, and go into later developments concerning the number of so-

lutions to Thue-Mahler equations and effective finiteness results for

Thue-Mahler equations. For the latter we need estimates for P -adic

logarithmic forms, which may be viewed as an outgrowth of Mahler’s

work on the P -adic Gel’fond-Schneider theorem [59]. We also go briefly

into decomposable form equations, these are certain higher dimensional

generalizations of Thue-Mahler equations.
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1. Mahler’s P -adic generalization of the Thue-Siegel

Theorem

We adopt the convention that if p/q denotes a rational number then

p, q are integers with gcd(p, q) = 1 and q > 0. Thue [81] proved in 1909

that if ζ is any real algebraic number of degree n and β > 1
2
n+1, then

the inequality

|ζ − p
q
| ≤ q−β

has only finitely many solutions in rational numbers p/q. This was later

generalized by Siegel [71] in 1921 to all β with

(1.1) β > β0 := min
s=1,...,n−1

(

n
s+1

+ s
)

.

This condition is satisfied for instance if β ≥ 2
√
n. Siegel’s result was

further extended in the late 1940-s to β >
√
2n by Gel’fond [31] and

Dyson [19], and finally by Roth [65] in 1955 to the weakest possible

condition β > 2.

To state Mahler’s generalization of Siegel’s theorem we introduce

some notation. For a prime number P , we denote by | · |P the standard

P -adic absolute value on Q with |P |P = P−1. This has a unique exten-

sion to QP . To uniformize our notation, we write | · |∞ for the ordinary

absolute value, and Q∞, Q∞ for R and C, respectively. Further, we set

MQ := {∞} ∪ {primes}. We use the notation |p, q| for max(|p|, |q|).
Now Mahler’s main theorem on Diophantine approximation [54, Satz

1, p. 710] can be stated somewhat more efficiently as follows:

Theorem 1.1. Let S be a finite subset of MQ, let f(X) ∈ Z[X ] be

an irreducible polynomial of degree n ≥ 3 having a zero ζP ∈ QP for

P ∈ S, and let k ≥ 1 and β > β0. Then the inequality

(1.2)
∏

P∈S
min

(

1,
∣

∣

∣
ζP − p

q

∣

∣

∣

P

)

≤ k · |p, q|−β

has only finitely many solutions in rational numbers p/q.

An important step in the proof is to reduce the single inequality (1.2)

to a finite number of systems of inequalities each of which involves only

one absolute value. To this end, Mahler used a combinatorial argument

which was also an important tool in later work, e.g., quantitative ver-

sions of the P -adic Subspace Theorem.
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Choose β1 with

β0 < β1 < min(n, β)

and define λ by β = (1+λ)β1. We restrict ourselves to rational solutions

p/q of (1.2) with

(1.3) |p, q| ≥ k1/β1 .

For each such solution we have k · |p, q|−β ≤ (k · |p, q|−β1)1+λ ≤ 1 since

k ≥ 1, and

min
(

1,
∣

∣

∣
ζP − p

q

∣

∣

∣

P

)

= (k · |p, q|−β1)(1+λ)γP for P ∈ S,

where γP ≥ 0 for P ∈ S and
∑

P∈S γP ≥ 1. Take

(1.4) v := 1 +

[

t+ 1

λ

]

= 1 +

[

β1

β − β1
· (t+ 1)

]

and let gP := [(1+λ)γP · v] for P ∈ S. Then
∑

P∈S gP ≥ v, hence there

are integers fP with 0 ≤ fP ≤ gP for P ∈ S and
∑

P∈S fP = v. Taking

ΓP := fP/v for P ∈ S, we get ΓP ≤ (1 + λ)γP for P ∈ S and thus,

(1.5) min
(

1,
∣

∣

∣
ζP − p

q

∣

∣

∣

P

)

≤ (k · |p, q|−β1)ΓP for P ∈ S.

Notice that (ΓP : P ∈ S) belongs to the finite set S of rational

tuples (fP/v : P ∈ S), where the fP are non-negative integers with
∑

P∈S fP = v. For later reference we record that for all (ΓP : P ∈ S) ∈
S we have

(1.6)
∑

P∈S
ΓP = 1, ΓP ≥ 0 for P ∈ S

and, by (1.4),

(1.7) |S| =
(

v + t

t

)

≤ 2v+t ≤ 2
β

β−β1
·(t+1)

,

where here and below, we denote by |A| the cardinality of a set A.

Thus, inequality (1.2) has been reduced to at most |S| systems (1.5),

hence to prove Theorem 1.1, it suffices to prove that each of these

systems (1.5) has only finitely many solutions p/q ∈ Q. In fact, Mahler

[54, p. 709] proved the following more precise result.

Theorem 1.2. Let β0 < β1 < n and let ΓP (P ∈ S) be non-negative

reals with
∑

P∈S ΓP = 1. There are effectively computable numbers

C1, C2, depending only on k, f and β1, and thus independent of the
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set S and the reals ΓP , such that if (1.5) has a solution p1/q1 ∈ Q with

|p1, q1| ≥ C1 then for any other solution p2/q2 ∈ Q of (1.5) we have

|p2, q2| ≤ |p1, q1|C2.

Sketch of proof. Mahler’s proof is an adaptation of that of Siegel [71].

We give a very brief outline. Assume that Theorem 1.2 is false and

take two rational solutions p1/q1, p2/q2 of (1.5) such that |p1, q1| ≥ C1

and λ :=
log |p2,q2|
log |p1,q1| > C2. Let r := [λ] + 1 and choose an integer s with

1 ≤ s ≤ n − 1 such that n
s+1

+ s = β0. Let m be an integer with

m > r and (m + 1)(s + 1) > nr. Following Siegel, Mahler shows that

there is a polynomial Rm(X, Y ) of degree at most m in X and degree

at most s in Y , with integer coefficients of not too large size, such that

Rm(p1/q1, p2/q2) 6= 0 and ∂iRm

∂X i (ζ, ζ) = 0 for i = 0, . . . , r − 1 and each

root ζ of f(X). Then

Rm(X, Y ) = Fm(X, Y, ζ)(X − ζ)r +Gm(X, Y, ζ)(X − ζ)

for each root ζ of f(X), where Fm(X, Y, Z), Gm(X, Y, Z) are polyno-

mials with integral coefficients. Now Am := qm1 qs2Rm(p1/q1, p2/q2) is a

non-zero integer, hence
∏

P∈S |Am|P ≥ 1. On the other hand, using

that p1/q1, p2/q2 are solutions of (1.5) and that β > β0 one can deduce

good upper bounds for |Am|P for P ∈ S, and in fact show that there

is m with
∏

P∈S |Am|P < 1. This leads to a contradiction. �

Mahler used Theorem 1.2 in [55] to compute an upper bound for the

number of solutions of (1.5) or (1.2). Another important tool is the

following simple observation that solutions of (1.5) are far apart [55,

p. 40], nowadays called a gap principle.

Lemma 1.3. Let p1/q1, p2/q2 be two distinct rational solutions of

(1.5), with |p2, q2| ≥ |p1, q1| > k1/β1. Then

|p2, q2| ≥ 1
2k

· |p1, q1|β1−1.

Proof. Write s(∞) = 1 and s(P ) = 0 if P is a prime. Let S ′ := S∪{∞}
and put Γ∞ := 0 if ∞ 6∈ S. Let P ∈ S ′. Then if ΓP > 0 we have
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∣

∣ζP − pi
qi

∣

∣

P
≤ (k · |pi, qi|−β)ΓP for i = 1, 2 and so

|p1q2 − p2q1|P ≤ (|p1, q1| · |p2, q2|)s(P )
∣

∣

∣

p1
q1

− p2
q2

∣

∣

∣

P

≤ (2|p1, q1| · |p1, q2|)s(P )max
(
∣

∣

∣

p1
q1

− ζP

∣

∣

∣

P
,
∣

∣

∣

p2
q2

− ζP

∣

∣

∣

P

)

≤ (2|p1, q1| · |p1, q2|)s(P )(k · |p1, q1|−β1)ΓP

while if ΓP = 0 we have the trivial estimate

|p1q2 − p2q1|P ≤ (2|p1, q1| · |p1, q2|)s(P ).

By taking the product over P ∈ S ′, using
∏

P∈S′ |p1q2 − p2q1|P ≥ 1, we

obtain

1 ≤ 2k · |p1, q1|1−β1 · |p2, q2|,
which implies our lemma. �

Assume n = deg f ≥ 3. Combining Theorem 1.2 with Lemma 1.3,

one easily deduces that the number of solutions of (1.5) is at most a

quantity depending only on k, f and β1. Invoking (1.7), we arrive at

the following (see [55, pp. 46–47, Hilfssatz 3]):

Theorem 1.4. (i) System (1.5) has at most C3 solutions in rationals

p/q with |p, q| > k1/β1, where C3 is effectively computable and depends

only on k, f and β1;

(ii) Inequality (1.2) has at most C3 · 2
β

β−β1
·(t+1)

solutions in rationals

p/q with |p, q| > k1/β1 .

Theorems 1.1 and 1.4 have been generalized and refined in several re-

spects. Already Siegel [71] considered approximation of algebraic num-

bers by elements from a given number field. In his PhD-work from 1939,

published much later in a journal [61], Parry proved a common gener-

alization of the results of Siegel and Mahler for inequalities over a given

number field involving various archimedean and non-archimedean ab-

solute values. Roth [65] and Ridout [64] extended the results of Siegel

and Mahler from β > β0 to β > 2. Lang [50] extended this further to

number fields, thereby also improving Parry’s result.

Also there has been much work on estimating the number of approx-

imants. Davenport and Roth [18] were the first to give an upper bound

for the number of solutions of |ζ − p/q| ≤ q−β in rational numbers

p/q, where ζ is a real algebraic number and β is any real > 2. Their
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bound was improved by Mignotte and then further by Bombieri and

van der Poorten. We give the up to now best quantitative result for the

number of solutions of a system (1.5), which can be deduced from a

more general result of Bugeaud and Evertse [13, Prop. A.1] over num-

ber fields. The height H(P ) of a polynomial P with integer coefficients

is the maximum of the absolute values of its coefficients.

Theorem 1.5. Let k ≥ 1, let f(X) ∈ Z[X ] be a polynomial of degree

n ≥ 3, let S be a finite subset of MQ, for P ∈ S let ζP be a zero of

f(X) in QP , let β1 > 2, and let ΓP (P ∈ S) be non-negative reals with
∑

P∈S ΓP = 1. Put δ := 1− 2/β1. Then the number of p/q ∈ Q with

|p, q| ≥ (4k)2/(β1−2)H(f),

min
(

1,
∣

∣

∣
ζP − p

q

∣

∣

∣

P

)

≤ (k · |p, q|−β1)ΓP for P ∈ S

is at most 230δ−3 log 3n · log(δ−1 log 3n).

As said, Bugeaud and Evertse proved a generalization of this result

over number fields. There are further, higher dimensional generaliza-

tions, namely, quantitative versions of Schmidt’s Subspace Theorem

[69] and generalizations by Schlickewei [67], which allow the unknowns

to be taken from a number field and which involve both archimedean

and non-archimedean absolute values. Evertse and Schlickewei and

lastly Evertse and Ferretti obtained various sharpenings of Schlick-

ewei’s result. We refer only to [26], which contains the sharpest result,

as well as a historical overview of the subject.

2. Thue-Mahler equations and S-unit equations

Let F (X, Y ) = a0X
n + a1X

n−1Y + · · · + anY
n ∈ Z[X, Y ] be an

irreducible (i.e., over Q) binary form of degree n ≥ 3. Thue [81] proved

that for every positive integer m, the equation

(2.1) F (p, q) = m

has only finitely many solutions in integers p, q.

Mahler considerably extended this result. Let β > β0 where as be-

fore β0 = mins=1,...,n−1

( n
s+1

+ s
)

and let P1, . . . , Pt be distinct prime
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numbers. Put S := {∞, P1, . . . , Pt}. Mahler considered the inequality

(2.2)
∏

P∈S
|F (p, q)|P ≤ |p, q|n−β

to be solved in integers p, q with gcd(p, q) = 1. In [54, Satz 2] he proved

that this inequality has only finitely many solutions. In [55, Satz 6] he

gave an upper bound for the number of solutions of (2.2) which we

state here in a simplified form.

Theorem 2.1. The number of solutions of (2.2) is at most Ct+1
4 , where

C4 is an effectively computable number that depends only on F and β,

and so is independent of P1, . . . , Pt.

Sketch of proof. Without loss of generality we consider solutions with

q > 0. Put f(X) := F (X, 1). Then by an elementary argument Mahler

[54, pp. 716–722] shows that for every P ∈ MQ = {∞}∪{primes} there

is cF,P with 0 < cF,P ≤ 1 such that if p, q are any two coprime integers

with q > 0, then

|F (p, q)|P ≥ cF,∞MF,∞|p, q|n if P = ∞,

|F (p, q)|P ≥ cF,PMF,P if P is a prime,

where

MF,P =







1 if f(X) has no zeros in QP ,

min
(

1,
∣

∣

∣
ζP − p

q

∣

∣

∣

P

)

otherwise,

with ζP the zero of f in QP P -adically closest to p/q. Further, cF,P = 1

for all but finitely many P . Hence cF :=
∏

P∈MQ
cF,P is positive. Now

let S ′ be the subset of P ∈ S such that f(X) has roots in QP . Let (p, q)

be a solution of (1.2) and for P ∈ S ′, let ζP be as above. Then

|p, q|n−β ≥ cF · |p, q|n
∏

P∈S′

min
(

1,
∣

∣

∣
ζP − p

q

∣

∣

∣

P

)

,

that is, (p, q) satisfies (1.2) with k = c−1
F and S ′ in place of S for certain

roots ζP ∈ QP of f(X). Now Theorem 2.1 follows from Theorem 1.4,

taking into consideration that for every P ∈ S ′ there are at most n

possibilities for ζP . �

We state some immediate consequences. We keep the assumption

that F is a binary form with integer coefficients that is irreducible over
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Q. First note that if in (2.2) we take β = n, we get
∏

P∈S |F (p, q)|P = 1

and thus,

(2.3) |F (p, q)| = P z1
1 · · ·P zt

t

where z1, . . . , zt are non-negative integers. This equation is nowadays

called the Thue-Mahler equation. Then from Theorem 2.1 we immedi-

ately deduce (cf. [55, Folgerung 1, p. 52]):

Corollary 2.2. Eq. (2.3) has at most Ct+1
5 solutions in integers p, q,

z1, . . . , zt with gcd(p, q) = 1, where C5 is effectively computable and

depends only on F .

Another quick consequence gives an upper bound for the number

of solutions of (2.1). Let P1, . . . , Pt denote the primes dividing m.

Let (p, q) be a solution of (2.1) and let (p′, q′) = (p/d, q/d) where

d = gcd(p, q). Then |F (p′, q′)| is composed of primes from P1, . . . , Pt.

Further, given (p′, q′) there is at most one positive integer d such that

(p, q) := (dp′, dq′) satisfies (2.1). Thus, we obtain the following quanti-

tative version of Thue’s Theorem:

Corollary 2.3. Eq. (2.1) has at most C
ω(m)+1
5 solutions in integers

p, q, where ω(m) is the number of prime divisors of m.

We give another result of Mahler, which for later purposes we have

reformulated in more modern language. Let S := {P1, . . . , Pt} be a set

of primes. An S-unit is a rational number of the shape ±P z1
1 · · ·P zt

t

with z1, . . . , zt ∈ Z. Consider the so-called S-unit equation

(2.4) x+ y = 1 in S-units x, y.

Given such a solution, we may write x = A/C, y = B/C where A,B,C

are integers with gcd(A,B,C) = 1, all composed of primes from S.

Subsequently, we can write A = ap5, B = bq5, with a, b from finite sets

independent of A,B and p, q coprime integers. Thus, (2.4) becomes

|ap5 + bq5| = P z1
1 · · ·P zt

t with z1, . . . , zt non-negative integers. If −a/b

is not the fifth power of a rational number then the binary form aX5+

bY 5 is irreducible, in which case we can directly apply Corollary 2.2.

Otherwise, there is a factorization aX5 + bY 5 = (a′X + b′Y )G(X, Y )

where a′, b′ are integers and G(X, Y ) is an irreducible binary form of

degree 4 with integral coefficients, and then (2.4) leads to an equation
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|G(p, q)| = P z1
1 · · ·P zt

t to which Corollary 2.2 can be applied. This leads

to:

Corollary 2.4. Equation (2.4) has only finitely many solutions.

With Mahler’s results one can compute an upper bound for the num-

ber of solutions of (2.4), but this does not lead to anything interesting.

In 1961, Lewis and Mahler [52] obtained explicit versions of Corol-

laries 2.2 and 2.4. In this paper they proved that if F (X, Y ) is a not

necessarily irreducible binary form with integer coefficients of degree

n ≥ 3 with non-zero discriminant and with F (1, 0)F (0, 1) 6= 0, then

(2.3) has at most

(2.5) (c1nH(F ))
√
n + (c2n)

t+1

solutions, where c1, c2 are absolute constants. By means of the argu-

ment described above, they derived an upper bound for the number

of solutions of (2.4) depending on the primes in the set S, and they

posed as an open problem to obtain an upper bound depending only

on the cardinality of S. However, the condition F (1, 0)F (0, 1) 6= 0 is

not necessary in the result of Lewis and Mahler. Indeed, there are in-

tegers u, v ∈ {0, . . . , n−1} such that F (1, u) 6= 0 and F (v, uv+1) 6= 0.

Put G(X, Y ) := F (X + vY, uX + (uv+1)Y ). Then G(1, 0)G(0, 1) 6= 0,

and the number of solutions of (2.3) does not change if we replace F

by G, since G is obtained from F by means of a transformation from

SL2(Z). So we can apply the result of Lewis and Mahler with F (X, Y ) =

XY (X + Y ) and deduce at once that (2.4) has at most ct+1
3 solutions,

where c3 is an absolute constant. Erdős, Stewart and Tijdeman showed

in 1998 [21] that this estimate cannot be improved that much. Let ǫ

be a positive real number. They proved that if t is sufficiently large in

terms of ǫ then there exist a set of primes S = {P1, . . . , Pt} such that

(2.4) has at least exp((4 − ǫ)(t/ log t)1/2) solutions. In 2007 Konyagin

and Soundararajan [49] improved the lower bound to exp(t2−
√
2−ǫ).

After the result of Lewis and Mahler it remained as an open problem

whether (2.5) can be replaced by a bound depending only on n = deg F

and t, so independent of the height of F . In his PhD-thesis [22] Evertse

established such a bound, though with a much worse dependence on

n than (2.5). Independently of Evertse, Mahler [60] took up again the

study of the number of solutions of Thue equations (2.1). He proved
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that if F (X, Y ) ∈ Z[X, Y ] is an irreducible binary form of degree n ≥ 3

and |m| ≥ (450n4H(F )4)n/(n−2), then the Thue equation

(2.1) F (p, q) = m

has at most 64nω(m)+1 solutions p, q ∈ Z with gcd(p,m) = gcd(q,m) =

1. Some years later, Bombieri and Schmidt [10] proved, without any

condition on m, that (2.1) has at most c0n
ω(m)+1 solutions p, q ∈ Z

with gcd(p, q) = 1, where c0 is an absolute constant. Let g be a divisor

of m, coprime with the discriminant of F , with g ≥ |m| 2.5n . Stewart

[75] showed in 1991 that (2.1) has at most 4200nω(g)+1 solutions in

pairs of coprime integers (p, q). Erdős and Mahler [20] were the first

to estimate the number of solutions of (2.1) in terms of a divisor g

of m. Bombieri improved Evertse’s bound for the number of solutions

of the Thue-Mahler equation (2.3) in terms of the degree n of F , and

this was subsequently improved by Evertse by a different method. We

mention only Evertse’s result [25], which asserts that if F (X, Y ) is an

irreducible binary form of degree n ≥ 3, then (2.3) has at most

2× (105n)t+1

solutions. In fact, he proved a generalization of this for Thue-Mahler

equations over number fields. Evertse’s result implies that (2.1) has

at most 2 × (105n)ω(m)+1 solutions p, q ∈ Z, without the requirement

gcd(p, q) = 1.

Instead of (2.4) one may consider the weighted S-unit equation

(2.6) ax+ by = 1 in S-units x, y,

where again S = {P1, . . . , Pt} with P1, . . . , Pt distinct primes, and

where a, b are non-zero rationals. Evertse [23] obtained a uniform upper

bound for the number of solutions, independent of a, b and the primes

in S, i.e., 72t+4. Again, Evertse proved a more general result over num-

ber fields. A substantial generalization was obtained by Beukers and

Schlickewei [8]. From their result it follows that if a, b are any two com-

plex numbers and Γ is any multiplicative subgroup of C∗ of finite rank r

(i.e., r is the maximal number of multiplicatively independent elements

that can be chosen from Γ), then the equation

ax+ by = 1 in x, y ∈ Γ

has at most 216(r+1) solutions.



MAHLER’S WORK ON DIOPHANTINE EQUATIONS 11

Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 3 which is

irreducible over Q, Z ≥ 1 a real, and P1, . . . , Pt distinct primes. Put

S := {∞, P1, . . . , Pt}. Denote by AF (Z) the number of solutions of the

inequality

|F (p, q)| ≤ Z in (p, q) ∈ Z2.

More generally, denote by AF,S(Z) the number of solutions of

(2.7)
∏

P∈S
|F (p, q)|P ≤ Z in (p, q) ∈ Z2 with gcd(p, q, P1 · · ·Pt) = 1.

For instance, taking Z = 1 we get the number of pairs (p, q) such that

|F (p, q)| is composed of primes from {P1, . . . , Pt} and gcd(p, q, P1, . . . , Pt)

= 1.

By a minor modification of the proof of Theorem 2.1 one can show

that AF,S(Z) is finite for every Z. Based on unpublished work of Siegel

on AF (Z), Mahler [56, pp. 93–94] derived an asymptotic formula for

AF,S(Z). His result is as follows.

Theorem 2.5. There is σF,S > 0 such that

AF,S(Z) = σF,SZ
2/n + O(Z1/n) as Z → ∞ if t0 = 0,

AF,S(Z) = σF,SZ
2/n + O(Z1/(n−1)(logZ)t0−1) as k → ∞ if t0 > 0,

where t0 is the number of P ∈ S such that F (X, 1) has a zero in QP ,

and where the implied constants depend on F and S.

We mention that with Mahler’s proof the implied constants cannot be

computed effectively.

In the special case S = {∞}, i.e., if there are no primes, Theorem 2.5

asserts that there is σF > 0 such that AF (Z) = σFZ
2/n + O(Z1/(n−1))

if F (X, 1) has a real root, and AF (Z) = σFZ
2/n + O(Z1/n) if F (X, 1)

has no real root. Here, σF is the area of the set of (x, y) ∈ R2 with

|F (x, y)| ≤ 1 and σFZ
2/n is the area of (x, y) ∈ R2 with |F (x, y)| ≤ Z.

For arbitrary S, Mahler expressed σF,S as a product of local factors
∏

P∈S σF,P . Another formulation of σF,S is as follows. Let µr = µr
∞ be

the Lebesgue measure on Rr, normalized such that µr
∞([0, 1]r) = 1,

for a prime P let µr
P be the Haar measure on Qr

P normalized such

that µr
P (Z

r
P ) = 1 and subsequently let µr

S be the product measure on

Ar
S :=

∏

P∈S Q
r
P . Write elements of this product as (xP )P∈S where
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xP ∈ Qr
P and for xP = (x1, . . . , xr) ∈ Qr

P , write |xP |P := maxi |xi|P .

Define the sets

SF,S(Z) :=
{

(xP )P∈S ∈ A2
S :

∏

P∈S
|F (xP )|P ≤ Z,

|xP |P = 1 for P ∈ S \ {∞}
}

and SF,S := SF,S(1). Then σF,S = µ2
S(SF,S) and σF,SZ

2/n = µ2
S(SF,S(Z))

for Z > 0. If we identify x ∈ Z2 with (x)P∈S ∈ A2
S, then AF,S(Z) counts

the number of lattice points in SF,S(Z), and Theorem 2.5 states in a

more precise form that this number is approximately the measure of

SF,S(Z).

Sketch of proof of Theorem 2.5. We give a very brief outline of Mahler’s

lengthy proof. Mahler divides the solutions (p, q) of (2.7) into large

solutions, i.e., with |p, q| ≥ (4Z)1/(n−2), medium solutions, i.e., with

Z1/(n−1) ≤ |p, q| < (4Z)1/(n−2), and small solutions, i.e., with |p, q| <
Z1/(n−1). Mahler estimates the number of large numbers using the ap-

proximation techniques discussed in the previous section, and the num-

ber of medium solutions by means of an elementary argument based on

congruences and continued fractions. As it turns out, both the numbers

of large and medium solutions go into the error term. Then Mahler es-

timates the number of small solutions by combining congruence results

for binary forms with elementary estimates for the difference between

the number of lattice points in a bounded two-dimensional region and

the area of that region. �

Since we know that for the number of solutions of the Thue-Mahler

equation we have an upper bound independent of the coefficients of

the involved binary form F , one may wonder whether AF,S(Z) can

be estimated from above independently of the coefficients of F . More

precisely, one may ask whether σF,S and the implied constant of the

error term can be estimated from above independently of F .

Some progress has been made on these problems. Bean [6] showed

that if F (X, Y ) ∈ R[X, Y ] is a binary form of degree n ≥ 3 with

discriminant D(F ) 6= 0, then σF ≤ 16|D(F )|−1/n(n−1). Thunder [82]

proved that if F (X, Y ) ∈ Z[X, Y ] is a cubic binary form which is
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irreducible over Q, then

|AF (Z)− Z2/3σF | < 9 +
2000k1/3

|D(F )|1/2 + 3156Z1/3.

Later, Thunder proved some general results for inequalities involving

decomposable forms. Specialized to binary forms, these results imply

that if F (X, Y ) ∈ Z[X, Y ] is a binary form of degree n with non-zero

discriminant, having no linear factor over Q, then for all Z ≥ 1 we have

AF (Z) ≤ c1(n)Z
2/n if n ≥ 3 [83],

|AF (Z)− σFZ
2/n| ≤ c2(n)Z

2/(n+1) if n ≥ 3, n odd [84],

where c1(n), c2(n) are effectively computable and depend on n only.

An estimate with error term depending only on n and Z has not been

deduced yet for even n.

In his PhD-thesis [53], Liu generalized the work of Thunder on de-

composable forms to the p-adic case. We mention some consequences

for binary forms. Let P1, . . . , Pt be distinct primes, S = {∞, P1, . . . , Pt}
and F (X, Y ) ∈ Z[X, Y ] a binary form of degree n with non-zero dis-

criminant and without linear factor over Q. Then

σF,S ≤ c1(n, S), AF,S(Z) ≤ c2(n, S)Z
2/n if n ≥ 3,

|AF,S − σF,SZ
2/n| ≤ c3(n, S)Z

2/(n+1)(1 + logZ)2n(t+1) if n ≥ 3, n odd,

where the ci(n, S) are effectively computable and depend only on n and

S. The constants ci(n, S) that arise from Liu’s proof depend on the sizes

of the primes in S. Another open problem is, whether the ci(n, S) can

be replaced by numbers depending only on n and the cardinality of S.

Let F be a binary form with integer coefficients, non-zero discrimi-

nant and degree n with n ≥ 3. For any positive number Z let RF (Z)

denote the set of non-zero integers h with |h| ≤ Z for which there exist

integers p and p with F (p, q) = h. Denote the cardinality of a set A by

|A| and put RF (Z) := |RF (Z)|. In 1938 Erdős and Mahler [20] proved

that if F is irreducible over Q then there exist positive numbers c1 and

c2, which depend on F , such that

RF (Z) > c1Z
2

n

for Z > c2. In 1967 Hooley [44] determined the asymptotic growth rate

of RF (Z) when F is an irreducible binary cubic form with discriminant
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which is not a square. He proved that

(2.8) RF (Z) = σFZ
2

3 +O
(

Z
2

3 (log logZ)−
1

600

)

.

In 2000 Hooley [47] obtained an asymptotic estimate for RF (Z) in

the case when the discriminant is a perfect square. Hooley [46] also

obtained such an estimate for quartic forms of the shape

F (X, Y ) = aX4 + 2bX2Y 2 + cY 4

and for forms which are the product of linear factors over the rationals

[48]. Several authors, including Bennett, Dummigan, and Wooley [7],

Browning [11], Greaves [37], Heath-Brown [43], Hooley [45], Skinner

and Wooley [74] and Wooley [85], obtained an asymptotic estimate for

RF (Z) when F is a binomial form. Stewart and Xiao [79] have recently

proved that if F is a binary form with integer coefficients, non-zero

discriminant and degree n with n ≥ 3 then there is a positive number

CF such that RF (Z) is asymptotic to CFZ
2

n . In the case that the

form F is irreducible over the rationals a key ingredient in the proof is

Theorem 2.5. When F is reducible one appeals to a special case of a

result of Thunder [83].

Let k be an integer with k ≥ 2. An integer is said to be k-free if it

is not divisible by the k-th power of a prime number. For any positive

number Z let RF,k(Z) denote the set of k-free integers h with |h| ≤ Z

for which there exist integers p and q such that F (p, q) = h and put

RF,k(Z) := |RF,k(Z)|. Gouvêa and Mazur [35] in 1991 proved that if

there is no prime P such that P 2 divides F (a, b) for all pairs of integers

(a, b), if all the irreducible factors of F over Q have degree at most 3

and if ǫ is a positive real number then there are positive numbers C1

and C2, which depend on ǫ and F , such that if Z exceeds C1 then

(2.9) RF,2(Z) > C2Z
2

n
−ǫ.

This was subsequently extended by Stewart and Top in [78]. Let r be

the largest degree of an irreducible factor of F over Q. Let k be an

integer with k ≥ 2 and suppose that there is no prime P such that P k

divides F (a, b) for all integer pairs (a, b). They showed, by utilizing an

argument of Greaves [36] and the result of Erdős and Mahler [20], that

if k is at least (r − 1)/2 or k = 2 and r = 6 then there are positive

numbers C3 and C4, which depend on k and F , such that if Z exceeds
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C3 then

(2.10) RF,k(Z) > C4Z
2

n .

The estimates of Gouvêa and Mazur and of Stewart and Top were

used to count the number of twists of an elliptic curve defined over the

rationals for which the rank of the group of rational points on the curve

is at least 2.

Let F be a binary form with integer coefficients, non-zero discrimi-

nant and degree d with d at least 3 and let r denote the largest degree

of an irreducible factor of F over the rationals. Let k be an integer with

k ≥ 2 and suppose again that there is no prime P such that P k divides

F (a, b) for all pairs of integers (a, b). Stewart and Xiao [80] proved

that there is a positive number CF,k such that RF,k(Z) is asymptotic

to CF,kZ
2

n provided that k exceeds 7r
18

or (k, r) is (2, 6) or (3, 8). For a

positive number Z we put

NF,k(Z) := {(p, q) ∈ Z2 : F (p, q) is k-free and 1 ≤ |F (p, q)| ≤ Z}
and

NF,k(Z) := |NF,k(Z)|.
For each positive integer m we put

ρF (m) := |{(i, j) ∈ {0, · · · , m− 1}2 : F (i, j) ≡ 0 (mod m)}|
and

λF,k :=
∏

P

(

1− ρF (P
k)

P 2k

)

,

where the product is taken over the primes P . A first step in the proof of

the estimate for RF,k(Z) is to estimate NF,k(Z) provided that k exceeds
7r
18

or (k, r) is (2, 6) or (3, 8). Stewart and Xiao [80] proved that under

this assumption

(2.11) NF,k(Z) ∼ λF,kσFZ
2

n

which extends Mahler’s result [56].

3. Cubic Thue equations with many solutions

Chowla [15] was the first to show that there are cubic Thue equations

with many solutions. He proved in 1933 that there is a positive number

c0 such that if k is a non-zero integer then the number of solutions of

p3 − kq3 = m in integers p and q is at least c0 log logm for infinitely
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many positive integers m. This was refined by Mahler [58] in 1935. Let

F (X, Y ) be a cubic binary form with integer coefficients and non-zero

discriminant. Let m be a non-zero integer and consider the equation

(3.1) F (p, q) = m,

in integers p and q. Mahler proved that there is a positive number c1,

which depends on F , such that for infinitely many positive integers m

equation (3.1) has at least

(3.2) c1(logm)1/4

solutions. In 1983, Silverman [73] proved that the exponent of 1/4 in

(3.2) can be improved to 1/3. Silverman streamlined the approach of

Mahler by introducing the theory of height functions on elliptic curves

into the argument. Chowla, Mahler and Silverman obtained their re-

sults by viewing (3.1), when it has a rational point, as defining an

elliptic curve E and then by constructing, from rational points on E,

integers m′ for which F (p, q) = m′ has many solutions in integers p

and q. The solutions (p, q) constructed by this method have very large

common factors. By showing that it is always possible to find a twist of

E for which the rank of the group of rational points is at least 2 Stew-

art [76] was able to make a further improvement on Mahler’s result. He

showed that (3.2) holds with 1/4 replaced by 1/2. In addition Stewart

[77], utilizing some elliptic curves whose group of rational points has

rank 12 discovered by Quer [63], showed that there are infinitely many

cubic binary forms with integer coefficients, content 1 and non-zero

discriminant which are inequivalent under the action of GL(2,Z) and

for which the estimate (3.2) applies with 1/4 replaced by 6/7.

4. S-integral points on elliptic curves

In his celebrated paper [72], Siegel proved that non-singular affine

plane curves of genus at least 1 over Q have only finitely many points

in Z2. In fact, he proved a more general result for curves defined over

a number field. Mahler [57] proved a generalization to S-integers in a

special case, namely for curves of genus 1 over Q. We state his result.

In what follows, S = {P1, . . . , Pt} is a finite set primes and ZS is

the corresponding ring of S-integers, i.e., the ring of rational numbers
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whose denominators do not contain any prime factor different from

P1, . . . , Pt.

Theorem 4.1. Let f ∈ Q[X, Y ] be such that f(x, y) = 0 defines a non-

singular affine algebraic curve of genus 1. Then there are only finitely

many x, y ∈ ZS with f(x, y) = 0.

In his proof, Mahler closely follows Siegel and uses his own Theorem

1.1 instead of Siegel’s approximation theorem.

Sketch of proof. Mahler proves in fact an essentially equivalent result,

invariant under birational transformations over Q, which in more mod-

ern form may be stated as follows:

let E be a non-singular projective curve of genus 1 over Q and g ∈ Q(E)

a non-constant rational function on E over Q; then the set of p ∈ E(Q)

with g(p) ∈ ZS is finite.

Assume on the contrary that this set is infinite. After a birational

transformation over Q we may assume that E is an elliptic curve with

Weierstrass equation y2 = x3 +Ax+B with A,B ∈ Q and point O at

infinity. Fix an integer n which is later chosen to be sufficiently large.

By the weak Mordell-Weil theorem, the quotient group E(Q)/nE(Q)

is finite. Hence there is p0 ∈ E(Q) such that the set An of p ∈ E(Q)

with g(p0+np) ∈ ZS is infinite. Suppose that g has degree r and let h

be the maximum of the orders of its poles. Then gn : p 7→ g(p0 + np)

is a rational function on E defined over Q of degree n2r, whose poles

still have order at most h. Let ϕ : (x, y) 7→ ax+b
cx+d

with a, b, c, d ∈ Q

with ad − bc 6= 0 be such that ϕ(q) 6= ∞ for every pole q of g on

E. By a straightforward generalization of Siegel’s arguments, Mahler

shows that there are P ∈ S ′ := S ∪ {∞}, a pole q ∈ E(QP ) of gn and

infinitely many p ∈ An such that

|ϕ(q)− ϕ(p)|P ≤ H(ϕ(p))−n2r/6|S′|h,

where H(p/q) := max(|p|, |q|) for p, q ∈ Z with q > 0 and gcd(p, q) = 1.

The number ϕ(q) is algebraic of degree at most n2r since q is a pole of

gn and gn has degree at most n2r. If we choose n large enough so that

n2r/6|S ′|h > 2
√
n2r = 2n

√
r, we obtain a contradiction with Theorem

1.1. �



18 J.-H. EVERTSE, K. GYŐRY, AND C.L. STEWART

Siegel treated the case of curves of genus larger than 1 by embed-

ding such a curve in its Jacobian, applying the Mordell-Weil theorem

to this Jacobian, and using a simultaneous Diophantine approximation

argument. After Roth’s approximation theorem and height theory be-

came available, Siegel’s method of proof could be greatly simplified.

Lang [50] worked this out and obtained a version of Siegel’s theorem

for curves of arbitrary genus g ≥ 1 over a number field K, implying

that for every finite set of places S of K, such a curve has only finitely

S-integral points. For curves over K of genus > 1 this was of course

superseded by Faltings [30], who proved that such curves have only

finitely many K-rational points. The booklet [86] contains a transla-

tion into English by Fuchs of Siegel’s paper [72], and a paper by Fuchs

and Zannier giving an overview of several methods of proof of Siegel’s

theorem, including one by Corvaja and Zannier, which uses Schmidt’s

Subspace Theorem instead of the Mordell-Weil theorem.

5. Effective finiteness results for Thue equations,

Thue–Mahler equations and unit equations

Consider again the Thue equation

F (p, q) = m in integers p, q(2.1)

and the Thue–Mahler equation

|F (p, q)| = P z1
1 · · ·P zt

t in integers p, q, z1, . . . , zt(2.3)

with gcd(p, q) = 1,

where F (X, Y ) is an irreducible binary form of degree ≥ 3 with coeffi-

cients in Z, m a non-zero integer and P1, . . . , Pt a set of t ≥ 0 distinct

primes. The proofs of the finiteness theorems of Thue [81] and Mahler

[54, 55] concerning equations (2.1) and (2.3), respectively, were ineffec-

tive, i.e. did not provide any algorithm for determining the solutions of

these equations.

The first effective proof for Thue theorem was given by Baker [4] and

subsequently, for Mahler’s theorem, by Coates [16, 17]. They obtained

explicit upper bounds for |p, q|, the maximum of the absolute values of

the solutions p, q.

Baker’s proof is based on his effective lower bounds for linear forms

in the logarithms of algebraic numbers. Gel’fond [32] and Schneider [70]
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proved independently of each other that if α and β are algebraic num-

bers such that α 6= 0, 1 and β is not rational, then αβ is transcendental.

An equivalent formulation of this theorem is that if α1, α2 are non-zero

algebraic numbers such that logα1 and logα2 are linearly independent

over Q, then they are linearly independent over Q. Further, Gel’fond

[34] gave a non-trivial effective lower bound for |β1 logα1 + β2 logα2|,
where β1, β2 denote algebraic numbers, not both 0, and α1, α2 denote

algebraic numbers different from 0 and 1 such that logα2/ logα2 is not

rational. Baker [1, 2, 3] generalized the Gel’fond–Schneider theorem

to arbitrary many logarithms and provided non-trivial effective lower

bounds for |β1 logα1 + · · · + βk logαk|, where α1, . . . , αk are non-zero

algebraic numbers such that logα1, . . . , logαk are linearly independent

over Q and β1, . . . , βk are algebraic numbers, not all zero.

Baker’s effective estimates for logarithmic forms led to significant ap-

plications in Diophantine equations and other parts of number theory.

Baker [4] showed that |p, q| ≤ C for every solution p, q of (2.1), with

an explicitly given C depending only on m and the degree and height

of F .

Mahler [59] proved a P -adic analogue of the Gel’fond–Schneider the-

orem. Gel’fond [34] gave an effective estimate for linear forms in two

P -adic logarithms which was generalized by Coates [16] to arbitrarily

many P -adic logarithms. Using his estimate, Coates [17] proved that

|p, q| ≤ C ′ for every solution p, q, z1, . . . , zt of (2.3), with an explicit

bound C ′ depending only on t, the maximum of the primes P1, . . . , Pt

and the degree and height of F .

Baker’s and Coates’ bounds for linear forms in logarithms and for

the solutions of (2.1) and (2.3) were later improved by many people;

for references see e.g. Baker and Wüstholz [5] and Bugeaud [12]. The

best known bounds for (2.1) and (2.3), proved over number fields, are

due to Bugeaud and Győry [14] and Győry and Yu [42]. In [14] it is

proved that all solutions p, q of (2.1) satisfy

|p, q| < exp{c(n)H2n−2(logH)2n−1 logM},

where c(n) = 33(n+9)n18(n+1), and M,H(≥ 3) are upper bounds for |m|
and for the maximum absolute value of the coefficients of F , respec-

tively. A similar upper bound is given in [14] for the solutions of (2.3),

but that bound depends also on t and the maximum of P1, . . . , Pt. In
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terms of c(n) and H better bounds are obtained in [42] which depend,

however, on some parameters of the splitting field of F . We note that

the exponential dependence is a consequence of the exponential char-

acter of the bounds for linear forms in logarithms.

Effective generalizations to equations over finitely generated domains

can be found in Bérczes, Evertse and Győry [9].

Mahler’s finiteness result [54] concerning equation (2.3) implies that

the greatest prime factor P (F (p, q)) of F (p, q) at integral points (p, q)

tend to infinity as |p, q| → ∞. Coates [17] deduced from his effective

theorem mentioned above the first general effective lower bound for

P (F (p, q)) by showing that

P (F (p, q)) ≫ (log2 |p, q|)1/4.(5.1)

Here and below logi denotes the ith iterate of the logarithmic function

with log1 = log. The lower estimate (5.1) was improved by several

authors; the best known estimate, due to Győry and Yu [42], is

P (F (p, q)) ≫ log2 |p, q| ·
log3 |p, q|
log4 |p, q|

.(5.2)

In (5.1) and (5.2) the constants implied by ≫ are effective and depend

only on the degree and height of F . We note that (5.2) was established

in a more general form, over number fields.

From Coates’ explicit upper bound for the solutions of equation (2.3)

one can easily deduce an explicit upper bound for the solutions of the

S-unit equation (2.4) and its weighted version (2.6) over Q. The first

explicit bounds for the solutions of S-unit equations over number fields

were obtained by Győry [38, 40]. These bounds were later improved by

several people and led to many applications; see e.g. Evertse and Győry

[29] and the references given there. The best known bounds over num-

ber fields are due to Győry and Yu [42]. For effective generalizations to

unit equations over finitely generated domains, see Evertse and Győry

[28].

6. Higher dimensional generalizations of Thue equations,

Thue–Mahler equations and unit equations

Let again S = {P1, . . . , Pt} be a set of t ≥ 0 primes, and denote

by ZS the ring of S-integers in Q, i.e. those rational numbers whose



MAHLER’S WORK ON DIOPHANTINE EQUATIONS 21

denominators do not contain any prime factor different from P1, . . . , Pt.

We consider decomposable form equations of the form

F (q1, . . . , qn) = m in q1, . . . , qn ∈ ZS,(6.1)

where m ∈ ZS \ {0} and F ∈ Z[X1, . . . , Xn] is a decomposable form,

i.e. a homogeneous polynomial which factorizes into linear factors over

Q.

Decomposable form equations are of basic importance in Diophan-

tine number theory. For n = 2, equation (6.1) can be written in the

form (2.3) and if F is irreducible and of degree ≥ 3, Mahler’s result ap-

plies. Conversely, equation (2.3) can be easily reduced to finitely many

equations of the shape (6.1). For n ≥ 2, further important classes of

decomposable form equations are norm form equations, discriminant

form equations and index form equations. For norm form equations

over Q Schmidt [68] (case t = 0), Schlickewei [66] (case t ≥ 0), and

over number fields Laurent [51] obtained finiteness results for equation

(6.1), thereby considerably generalizing Mahler’s finiteness theorem on

equation (2.3). For discriminant form equations and index form equa-

tions Győry [39, 41] provided finiteness criteria. The proofs in [68], [66]

and [51] are ineffective because they depend of Schmidt’s Subspace

Theorem and its p-adic generalization, while the proofs in [39], [41]

are based on Baker’s effective theory of logarithmic forms, hence are

effective.

Evertse and Győry [27] gave a general finiteness criterion for equation

(6.1). Let L be a maximal set of pairwise linearly independent linear

factors of F over Q. A non-zero subspace V of the Q-vector space Qn

is said to be L-non-degenerate or L-degenerate according as L does or

does not contain a subset of at least three linear forms which are linearly

dependent on V , but pairwise linearly independent on V . In particular,

V is L-degenerate if V has dimension 1. We call V L-admissible if no

form in L is identically zero on V . Evertse and Győry [27] proved that

the following two statements are equivalent:

(i) Every L-admissible subspace of Qn of dimension ≥ 2 is L-non

degenerate.

(ii) For any finite set S of primes and any non-zero m ∈ ZS, equa-

tion (6.1) has only finitely many solutions.
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This was proved in a more general form, over finitely generated domains

over Z.

The proof of the above finiteness criterion depends on the following

finiteness result on multivariate unit equations of the form

a1u1 + · · ·+ anun = 1 in u1, . . . , un ∈ Γ,(6.2)

where a1, . . . , an are non-zero elements of a number field K and Γ is

a finitely generated subgroup of K∗. This equation is a generalization

of (2.6). A solution u1, . . . , un of (6.2) is called degenerate if there is

a vanishing subsum on the left hand side of (6.2). In this case (6.2)

has infinitely many solutions if Γ is infinite. As a considerable gener-

alization of Mahler’s finiteness theorem on S-unit equations (2.6), van

der Poorten and Schlickewei [62] and independently Evertse [24] proved

that equation (6.2) has only finitely many non-degenerate solutions. As

is pointed out in Evertse and Győry [27], this theorem and the implica-

tion (i) ⇒ (ii) concerning equation (6.1) are equivalent statements. For

further related results, including bounds for the number of solutions,

applications and references, see Evertse and Győry [29].
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