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In a liability problem, the asset value of an insolvent firm must be distributed among the creditors and 

the firm itself, when the firm has some freedom in negotiating with the creditors. We model the negotia- 

tions using cooperative game theory and analyze the Shapley value to resolve such liability problems. We 

establish three main monotonicity properties of the Shapley value. First, creditors can only benefit from 

the increase in their claims or of the asset value. Second, the firm can only benefit from the increase of a 

claim but can end up with more or with less if the asset value increases, depending on the configuration 

of small and large liabilities. Third, creditors with larger claims benefit more from the increase of the 

asset value. Even though liability games are constant-sum games and we show that the Shapley value 

can be calculated directly from a liability problem, we prove that calculating the Shapley payoff to the 

firm is NP-hard. 
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. Introduction 

An insolvent firm (country, state, individual, etc.) with some 

sset value has liabilities towards a group of creditors. Com- 

ared to standard bankruptcy games as studied in the game- 

heoretical literature (see O’Neill, 1982 for a seminal contribution 

nd Thomson, 2013; Thomson, 2015 for recent surveys) Csóka & 

erings (2019) introduced liability problems, by modeling the firm 

s an explicit player. A liability problem is given by the asset value 

f the firm to be allocated and the claims of the creditors. 

Instead of directly using the values given in a liability prob- 

em, Csóka & Herings (2019) defined liability games to indirectly 

llocate the asset value using a solution concept from cooperative 

ame theory with transferable utility. The worth of a coalition in 

 liability game is defined as follows. Given a coalition and its 
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omplement, the firm first makes payments to the coalition it 

elongs to, up to the value of the liabilities in the firm’s coalition 

nd the asset value of the firm, and then (if possible) pays to 

he complementary coalition. They remarked that liability games 

re superadditive: there is no loss of merging disjoint coalitions. 

oreover, they proved that the core of a liability game is empty 

nd analyzed one of the two most popular solution concepts, the 

ucleolus ( Schmeidler, 1969 ). 

In this paper, we investigate the Shapley value ( Shapley, 1953 ) 

f liability games. 1 The numerous applications of the Shapley value 

nclude aircraft landing fees ( Dubey, 1982; Littlechild & Owen, 

973 ), minimal cost spanning trees ( Bergantinos & Lorenzo-Freire, 

008 ), a combinatorial structure called augmenting system ( Bilbao 

 Ordóñez, 2009 ), directed graph games ( Khmelnitskaya, Selçuk, & 

alman, 2016 ), risk capital allocation ( Balog, Bátyi, Csóka, & Pintér, 

017 ), and environmental costs in supply chains ( Ciardiello, Gen- 

vese, & Simpson, 2018 ), among others. 
1 We also assume transferable utility (TU), assuming that money has the same 

tility for all the players and utility functions are linear and separable in it. 

e believe that the TU assumption is a good approximation in many applica- 

ions. However, we also note possible generalizations towards nontransferable util- 

ty (NTU). For the first formal NTU bankruptcy game see Orshan, Valenciano, & 

arzuelo (2003) , for recent advances see, for instance, Dietzenbacher, Borm, & 

stévez-Fernández (2020) , Dietzenbacher & Peters (2020) , Estévez-Fernández, Borm, 

 Fiestras-Janeiro (2020) . 
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We show that the Shapley value can also be used as a liabil- 

ty allocation, that is, it allocates the asset value non-negatively 

mong the creditors and the firm in such a way that no creditor 

ets more than his liability. We establish lower and upper bounds 

or the Shapley payments. Moreover, we show that (i) creditors can 

nly benefit from the increase in their claims or of the asset value; 

ii) the firm can only benefit from the increase of a claim but can 

nd up with more or with less if the asset value increases, depend- 

ng on the configuration of small and large liabilities; (iii) credi- 

ors with larger claims benefit more from the increase of the asset 

alue. In most cases, we even establish sharp upper bounds for the 

hanges in the payments. 

It is easy to check that in liability games, for one or two cred-

tors (that is, for two or three players), the Shapley value coin- 

ides with the nucleolus. However, for three or more creditors, 

hey give different payoffs in generic examples. Csóka & Herings 

2019) showed that at the nucleolus of a liability game, the firm 

ets a positive payment, which is at most half of the asset value. 

e show that at the Shapley value, there are cases when the 

rm can keep almost the whole asset value. Csóka & Herings 

2019) also showed that at the nucleolus, creditors with higher lia- 

ilities receive higher payments, but they also get higher debt for- 

iveness (defined as the difference between the liability and the 

eceived payments), a result we also have for the Shapley value. 

hey also provided conditions under which the nucleolus coincides 

ith a generalized proportional rule, where the firm gets a positive 

mount, and the rest is allocated in proportional to the liabilities. 

Csóka & Herings (2019) noted that in a liability game, the 

orth of a coalition plus the worth of the complementary coali- 

ion is always equal to the asset value, that is, a liability game 

s a constant-sum game ( Von Neumann & Morgenstern, 1944 ). 

riginally, Von Neumann & Morgenstern (1944) analyzed strategic 

on-cooperative games, where a coalition and the complementary 

oalition play a constant-sum game. They discussed constant-sum 

imple games with winning or losing coalitions, where the worth 

f any coalition can be either zero or one. A prominent application 

s (weighted) majority voting games, where the worth of the grand 

oalition is one, and if a coalition is winning, then its complemen- 

ary coalition is losing. Constant-sum games also play a role in 

ames modeling Bitcoin mining pools ( Lewenberg, Bachrach, Som- 

olinsky, Zohar, & Rosenschein, 2015 ). For a recent generalization 

o alpha-constant-sum games, see Wang, van den Brink, Sun, Xu, 

 Zou (2019) . A related new concept is called games of threats 

 Kohlberg & Neyman, 2018 ), where the constant sum is zero, but 

he value of the empty coalition is not always zero. For more de- 

ails on the value theory of strategic games, see Cai, Candogan, 

askalakis, & Papadimitriou (2016) . 

Since constant-sum games are exciting on their own, we first 

tudy the Shapley value for constant-sum games in general. We 

ropose a basis for the linear vector space of constant-sum games 

hat provides a specialized formula for the Shapley payoff to a 

layer in a constant-sum game. It turns out that some of those 

eneral results are very handy for liability games. We obtain a sim- 

le computational scheme by which the Shapley value of a liability 

ame is derived directly from the liability problem, that is, from 

he asset value and the liabilities. 

In general, computing the Shapley value based on its defini- 

ion is practically impossible for large games. Computing the Shap- 

ey value in weighted majority games is #P-complete ( Deng & Pa- 

adimitriou, 1994 ) and one has to rely on its estimation. Esti- 

ation techniques were introduced by Castro, Gómez, & Tejada 

2009) and Castro, Gómez, Molina, & Tejada (2017) . However, for 

pecial classes of games, the Shapley value can be calculated in 

 polynomial manner ( Castro, Gómez, & Tejada, 2008; Granot, 

uipers, & Chopra, 2002; Megiddo, 1978 ). We show that in liabil- 

ty games, calculating the Shapley value of the insolvent firm is 
379 
P-hard. Thus even though the Shapley value can be calculated di- 

ectly from the liability problem, its application to large liability 

roblems could become computationally laborious. 

The paper is organized as follows. In Section 2 , we consider 

eneral constant-sum games. In Section 3 , we introduce liability 

ames, show that the Shapley value can be used as a liability allo- 

ation. In Section 4 , we prove various properties of the Shapley lia- 

ility allocation rule. Section 5 , we show that calculating the Shap- 

ey value of the firm is NP-hard. Section 6 contains concluding re- 

arks and possibilities for further research. 

. The Shapley value of constant-sum games 

A transferable utility cooperative game (N, v ) is a pair where N

s a non-empty, finite set of players and v : 2 N → R is a coalitional

unction satisfying v (∅ ) = 0 . The number v (S) is regarded as the

orth of the coalition S ⊆ N. We identify the game with its coali- 

ional function since the player set N is fixed throughout the pa- 

er. The game (N, v ) is called 0-normalized if v ({ i } ) = 0 for every

 ∈ N; superadditive if S ∩ T = ∅ implies v (S) + v (T ) ≤ v (S ∪ T ) for

very two coalitions S, T ⊆ N. The game (N, v ) is constant-sum if 

 (S) + v (N \ S) = v (N) for every coalition S ⊆ N. 

Given a game (N, v ) , a payoff allocation x ∈ R 

N represents the 

ayoffs to the players. The total payoff to coalition S ⊆ N is denoted 

y x (S) = 

∑ 

i ∈ S x i if S 
 = ∅ and x (∅ ) = 0 . In a game v , we say the

ayoff allocation x is efficient , if x (N) = v (N) ; individually rational , if

 i = x ({ i } ) ≥ v ({ i } ) for all i ∈ N; coalitionally rational , if x (S) ≥ v (S)

or all S ⊆ N. The set of preimputations , I ∗(v ) , consists of the ef-

cient payoff vectors, the set of imputations , I(v ) , consists of the 

ndividually rational preimputations, and the core , C(v ) , is the set 

f coalitionally rational (pre)imputations. We call a game balanced 

f its core is non-empty. 

We denote the set of all cooperative games on a fixed player set 

by G N . It is well-known that G N is a linear vector space of dimen-

ion 2 n − 1 where n = | N| . A value on G N is a map f : G N → R 

N ,

hich assigns to every game v on N a vector f (v ) with compo- 

ents f i (v ) for all i ∈ N. We say that value f satisfies 

• linearity : if f (αv + βw ) = α f (v ) + β f (w ) holds for all α, β ∈ R

and v , w ∈ G N . 
• efficiency : if 

∑ 

j∈ N f j (v ) = v (N) holds for all v ∈ G N . 
• the equal treatment property : if j, k ∈ N are symmetric players 

in game v ∈ G N , that is if v (S ∪ j) = v (S ∪ k ) ∀ S ⊆ N \ { j, k } , then

f j (v ) = f k (v ) . 
• the null player property : if j ∈ N is a null player in game v ∈ G N ,

that is if v (S ∪ j) − v (S) = 0 ∀ S ⊆ N \ j, then f j (v ) = 0 . 

The best known and most frequently used value for general 

oalitional games was introduced and characterized by a few ap- 

ealing properties by Lloyd Shapley. 

heorem 1 ( Shapley, 1953 ) . The value φ : G N → R 

N defined by 

i (v ) = 

∑ 

S⊆N\ i 
γN (S)[ v (S ∪ i ) − v (S)] (i ∈ N) (1)

here γN (S) = 

s !(n − 1 − s )! 

n ! 
= 

1 

n 
(

n −1 
s 

) and s = | S| , n = | N| , is the

nly value on G N that satisfies linearity, efficiency, the equal treatment 

roperty, and the null player property. 

The Shapley value can also be axiomatized using various alter- 

ative sets of axioms. A prominent one is due to Young (1985) who 

eplaced linearity and the null player property with marginality 

which requires that the value of a player i depend only on the 

layer’s marginal contributions v (S ∪ i ) − v (S) in a game v ). Pintér

2015) proved that Young’s axiomatization also holds for various 

pecial classes of games. 
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For constant-sum games, Khmelnitskaya (2003) characterized 

he Shapley value with the set of axioms used by Young (1985) . 

n their illuminating paper, Kohlberg & Neyman (2018) (Corollary 

) showed that the Shapley value can also be characterized with 

hapley’s original set of axioms. For a common generalization of 

onstant-sum coalitional games and games of threats we refer to 

he paper by Wang et al. (2019) where the aformentioned axioma- 

izations of the Shapley value are extended to alpha-constant-sum 

ames. 

Although in his seminal paper Shapley (1953) has not discussed 

he axiomatization of his value for special classes of games, he de- 

ived a specialized formula for constant-sum games. For the sake 

f completeness, we also present the short proof. Let G N 
CS 

denote 

he set of all constant-sum games on fixed player set N. 

roposition 2 ( Shapley, 1953 ) . The Shapley value of constant-sum 

ame v ∈ G N 
CS 

is 

i (v ) = −v (N) + 2 

∑ 

S⊆N\ i 
γN (S) v (S ∪ i ) (i ∈ N) . (2)

roof. Let v be a constant-sum game and i ∈ N be fixed. 

or S ⊆ N \ i , we have v (S) = v (N) − v (N \ S) = v (N) − v ((N \ i \
) ∪ i ) . If we substitute this in the general formula (1) , we

et φi (v ) = 

∑ 

S⊆N\ i γN (S)[ v (S ∪ i ) + v ((N \ i \ S) ∪ i ) − v (N)] . Since

n (s ) = 

1 

n ( n −1 
s ) 

= 

1 

n ( n −1 
n −1 −s ) 

= γn (n − 1 − s ) and N \ i \ S ⊆ N \ i , each

oalition value of type v (T ∪ i ) for T ⊆ N \ i appears twice and is

eighted by the same coefficient in the sum. Taking out the con- 

tant term −v (N) from the summation, we get (2) . �

It is well-known that the weight coefficients { γN (S) } S⊆N\ i form 

 probability distribution, we call it the Shapley distribution , on the 

amily 2 N\ i of coalitions which do not contain player i . Therefore, in 

eneral, φi (v ) is the expected marginal contribution of player i in v 
o coalitions not containing i , when the random formation of such 

oalitions is described by the Shapley distribution. Notice that in 

onstant-sum games, the Shapley payoff to a player depends only 

n the values of coalitions the player belongs to, no need to com- 

ute his marginal contributions. Since γN (S) depends only on the 

ardinalities n = | N| and s = | S| of the two coalitions, we also write

n (s ) when more convenient. 

Next, we investigate how the Shapley value of constant-sum 

ames can be computed based on its linearity. Although our ar- 

uments would resemble the standard Shapley-type uniqueness 

roofs (cf. Shapley, 1953 , or for constant-sum games, Kohlberg & 

eyman (2018) and Wang et al., 2019 ), our aim is not to give

nother characterization but to find a basis which facilitates an 

easy” decomposition of constant-sum games. Indeed, we work 

ith a “trivial” basis in which the determination of the coefficients 

Harsányi dividends) in the linear decomposition require no com- 

utation. This computational simplicity comes at the price of not 

eing able to apply the null player property for our basic “trivial”

onstant-sum games. 

It is easily seen that any linear combination of constant-sum 

ames is also a constant-sum game. Thus G N CS is a linear sub- 

pace of G N . It is well-known that additive games are the only 

alanced constant-sum games, so the standard approach of de- 

omposing a game as a linear combination of unanimity games, 

hich are balanced games, cannot be followed for G N 
CS 

. Only the 

dditive unanimity games, that is, the dictator games u { i } ( i ∈ N), 

ould be part of a basis for G N 
CS 

, but they are sufficient to span only

he n -dimensional linear subspace of G N CS consisting of the additive 

onstant-sum games. On the other hand, the average of an una- 

imity game and its dual game is a constant-sum game (in which 

he players outside the carrier coalition are null players), and all 

he aformentioned characterization proofs ( Khmelnitskaya, 2003; 
380 
ohlberg & Neyman, 2018; Wang et al., 2019 ) apply these basic 

onstant-sum games. 

Foreshadowing the application of the game-theoretic results in 

his section to a special type of constant-sum games induced by 

iability problems with an insolvent firm, we arbitrarily choose a 

layer (the insolvent firm) and denote him by 0 ∈ N. The set of 

he n − 1 other players is denoted by C = N \ { 0 } . Given this fixed

highlighted” player, the family of all coalitions is decomposed in 

wo parts of equal size: the 2 n −1 “partner” coalitions containing 0 

nd the 2 n −1 “complement” coalitions. Let P 0 = { S ⊆ N : 0 ∈ S} de-

ote the family of partner coalitions of 0, and C 0 = { S ⊆ N : 0 / ∈ S}
enote the family of coalitions not containing 0. Obviously, S ∈ P 0 

f and only if N \ S ∈ C 0 , In particular, N ∈ P 0 and ∅ ∈ C 0 , also { 0 } ∈
 0 and C ∈ C 0 . 

In a constant-sum game v ∈ G N CS , we have v (N \ S) = v (N) − v (S)

or all S ∈ P 0 , thus the values of the partner coalitions v (S) ( S ∈ P 0 )

uffice to fully determine v . It follows that the dimension of G N 
CS 

is

t most 2 n −1 = |P 0 | . Next, we show that, in fact, equality holds.

e present 2 n −1 linearly independent “elementary” constant-sum 

ames, which form a very “convenient” basis of G N 
CS 

, inasmuch the 

calar coefficients in the (unique) linear decompositions are simply 

he coalitional values. 

We define for 0 ∈ R � N the constant-sum game d R ∈ G N 
CS 

for all

 ⊆ N by 

 

R (S) = 

{ 

1 , if S = R, 

−1 , if S = N \ R, 

0 , otherwise. 
(3) 

or R = N, the constant-sum game d N ∈ G N 
CS 

is defined for all S ⊆ N

s 

 

N (S) = 

{
1 , if S = N or 0 / ∈ S 
 = ∅ , 
0 , otherwise. 

(4) 

t is easily checked that d R (∅ ) = 0 and d R is indeed constant-sum

or all R ∈ P 0 . Moreover, d N (S) = 1 but d R (S) = 0 for all S 
 = R ∈ P 0 .

otice that for all R, S ∈ P 0 , we have d R (S) = 1 if and only if R = S,

ut d R (S) = 0 otherwise. It follows that the 2 n −1 = |P 0 | games d R 

 R ∈ P 0 ) are linearly independent in G N CS . 

We summarize the above discussion in the following proposi- 

ion. 

roposition 3. The games d R ∈ G N CS ( R ∈ P 0 ) form a basis of G N CS ,

enceforth dim (G N 
CS 

) = 2 n −1 . Moreover, v (S) = 

∑ 

R ∈P 0 
v (R ) · d R (S) for

ll S ⊆ N and v ∈ G N CS , consequently, by linearity of the Shapley value, 

(v ) = 

∑ 

R ∈P 0 
v (R ) · φ(d R ) . 

The basis game values d R (S) ( R, S ∈ P 0 ) form a unit matrix, thus

y formula (2) , using r = | R | , the Shapley payoffs to our special

layer 0 in the basis games are 

0 (d R ) = 

{
2 γn (r − 1) , if R 
 = N, 

−1 + 2 γn (n − 1) , if R = N. 
(5) 

he payoffs to the players in C = N \ { 0 } can then be easily ob-

ained from efficiency and the equal treatment property of the 

hapley value. 

For R ∈ P 0 \ { N} , in basis game d R the players in R are all sym-

etric, so φ0 (d R ) = φi (d R ) for all i ∈ R . Similarly, the players in N \
 are all symmetric, so φ j (d R ) = φk (d R ) for all j, k ∈ N \ R . Since

 

R (N) = 0 , efficiency gives rφ0 (d R ) + (n − r) φk (d R ) = 0 , where k ∈
 \ R . From (5) we easily derive the Shapley payoffs in basis game

 

R when R 
 = N. 

i (d R ) = 

{
2 γn (r − 1) , if i ∈ R, 

−2 γn (r) , if i ∈ N \ R. 
(6) 

For R = N, in basis game d N all non-distinguished players in 

are symmetric, so φ j (d N ) = φk (d N ) for all j, k ∈ N \ { 0 } . Since
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2 Csóka & Herings (2019) consider a slightly restricted class, when all liabilities 

are at most as large as the asset value, the asset value is strictly positive, there are 

at least two creditors and the firm is insolvent. 
 

N (N) = 1 , efficiency gives φ0 (d N ) + (n − 1) φk (d N ) = 1 , where k 
 =
 . From (5) , we easily get the Shapley payoffs in d N as 

i (d N ) = 

{
−1 + 2 γn (n − 1) , if i = 0 , 

2 γn (n − 1) , if i 
 = 0 . 
(7) 

otice that none of the players is a null player in any of the basis

ames d R with carrier R ∈ P 0 . 

Sharing system (8) schematically summarizes the above formu- 

as. The columns correspond to the partner coalitions of the form 

 = { 0 } ∪ S. The first line in the header specifies the number of

artners s = | S| of player 0, the second line gives the number of

oalitions in that category. The third header line indicates the two 

ubcategories (except for the two boundary cases: for the empty 

et in the first column, and for the full partner set in the last col-

mn) whether an arbitrarily fixed player i 
 = 0 is a partner of 0 or

ot. The fourth line gives the number of coalitions in the subcat- 

gories. Any given player i ∈ C can either be a partner of player 0 

r not. Thus, except when S = ∅ or S = C, among the 
(

n −1 
s 

)
coali-

ions S ⊆ C of size 1 ≤ s ≤ n − 2 there are 
(

n −2 
s −1 

)
coalitions which 

ontain i , the remaining 
(

n −2 
s 

)
coalitions do not contain i . The two 

highlighted) rows of the table give the Shapley values of players 

n the basis constant-sum games with carrier coalitions of the form 

 = { 0 } ∪ S, first for our distinguished player 0, second for a generic

ther player i ∈ C. 

The following features of the Shapley sharing system are easily 

hecked. 

roposition 4. In the Shapley sharing system (8) 

1. the φ0 row sum = 1 , every other φi ( i ∈ C) row sum = 0 ; 

2. the s = n − 1 column sum = 1 , every other 0 ≤ s ≤ n − 2 column

sum = 0 . 

For illustration, we give the Shapley sharing system for 3-player 

onstant-sum games on N = { 0 } ∪ C with C = { 1 , 2 } : 

We replaced the subcategorization in the third and fourth 

eader lines in (8) with the actual set of partners S and the corre- 

ponding carrier coalitions R in (9). 

The Shapley payoffs are easily computed from sharing sys- 

em (9) for any 3-player constant-sum game v with distinguished 

layer 0. We simply take the linear combination of the “partner”

oalition values weighted with the “shares” of the given player. In 

ormula, 

0 (v ) = 

2 v 0 + v 01 + v 02 − v N 
3 

, φi ( v ) = 

−v 0 + v 
0 i 

− 2 v 
0 j 

+ 2 v N 
3 

( i 
 = j) ,

(10) 
381 
here coalitions are described without braces and separating com- 

as but overlined: for example, 0 j means coalition { 0 , j} . Its value 

s shorthanded as v 
0 j 

= v ( 0 j ) . 
Although in a general constant-sum game distinguishing one 

rbitrarily picked player served only technical purposes, next, we 

iscuss a special type of constant-sum game where one player is 

ndeed “different” from the other players. 

. Liability games and the Shapley value 

We consider a special class of constant-sum games, liability 

ames, introduced by Csóka & Herings (2019) . 

Let N = { 0 , 1 , . . . , c} denote the set of agents, where agent 0

s a firm having a set of creditors C = { 1 , . . . , c} with cardinality

 C| = c ≥ 1 . The firm has asset value A ∈ R + and liabilities � ∈ R 

C + ,
ith � i ∈ R + the liability to creditor i ∈ C. The question is how to

llocate the asset value among the creditors and the firm. If the 

rm is solvent, that is, 
∑ 

i ∈ C � i ≤ A , then the obvious solution is that 

very creditor receives its full claim and the firm keeps the rest. 

enceforth we only consider the insolvent case, but for ease of 

resentation, we also allow borderline solvency, that is, 
∑ 

i ∈ C � i = A . 

efinition 5. A liability problem is a pair (A, � ) ∈ R + × R 

C + such that
 

i ∈ C � i ≥ A . 

Let L 

N denote the class of liability problems 2 on set of agents 

 = { 0 } ∪ C. We seek a liability rule that assigns a unique allocation

o each liability problem. 

efinition 6 ( Csóka & Herings, 2019 ) . A liability rule is a function

f : L 

N → R 

N + such that, for every (A, � ) ∈ L 

N , the payment vector

f = f (A, � ) ∈ R 

N is an allocation , that is a non-negative vector f ∈
 + × R 

C + satisfying liabilities boundedness , that is, f i ≤ � i for all i ∈
, and efficiency , that is, 

∑ 

i ∈ N f i = A . 

Note that by non-negativity and efficiency, the payments in al- 

ocation f ∈ R 

N fall between the following bounds: 

 ≤ f 0 ≤ A and 0 ≤ f i ≤ � A i for all i ∈ C, 

here � A 
i 

= min { A, � i } is the truncated liability of creditor i ∈ C. Let

 

A ∈ R 

C + denote the vector of liabilities truncated by the asset value. 

Given a subset of creditors S ⊆ C, we will use the notation 

 S = � (S) = 

∑ 

i ∈ S � i for the total liabilities of S and � A (S) = 

∑ 

i ∈ S � A i 
or the total truncated liabilities of S. On the other hand, we will 

lso use the shorthand � A 
S 

= min { A, � (S) } = min { A, � A (S) } for the

runcated total (truncated) liabilities of creditor group S ⊆ C. Clearly, 

 

A 
S ≤ � A (S) . 

A liability problem gives rise to a transferable utility coopera- 

ive game called liability game ( Csóka & Herings, 2019 ). 

efinition 7. Let (A, � ) ∈ L 

N be a liability problem. On player set

, the induced liability game v : 2 N → R is defined by setting, for 

 ∈ 2 N , 

 (S) = 

{
min { A, � (S \ { 0 } ) } = � A 

S\{ 0 } , if 0 ∈ S, 

max { 0 , A − � (C \ S) } , if 0 
∈ S. 

The interpretation of a liability game is as follows. Given a 

oalition and its complement, the firm first makes payments to the 

oalition it belongs to, up to the value of the liabilities in the firm’s 

oalition and the asset value of the firm, and then (if possible) pays 

o the complementary coalition. 

Note that v (∅ ) = 0 , 0 ≤ v (S) ≤ A for all S ∈ 2 N , and v (N) = A .

sóka & Herings (2019) note that liability games are superadditive , 
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hat is, for all S, T ∈ 2 N , S ∩ T = ∅ implies v (S) + v (T ) ≤ v (S ∪ T ) ;

nd constant-sum , that is, for all S ∈ 2 N , v (S) + v (N \ S) = v (N) .

ue to their superadditivity and nonnegativity, liability games are 

onotonic , that is, for all S, T ∈ 2 N , S ⊂ T implies v (S) ≤ v (T ) . 

We aim to define a liability rule by applying the Shapley value 

o the induced liability game. This works in practice only if we 

an compute the Shapley-vector of the liability game directly from 

he data of the underlying liability problem, that is, from the asset 

alue and the liabilities. The following straightforward observation 

mplies that our indirect approach could only provide a liability 

ule that ignores excessive parts of the claims. Notice that cutting 

ff the parts of liabilities over the asset value does not make the 

rm solvent, that is, � (C) ≥ A implies � A (C) ≥ A . 

emark 8. Liability problems (A, � ) and (A, � A ) induce the same

iability game, where � A denotes the vector of liabilities truncated 

y the asset value. 

It follows that the Shapley rule (or any other liability allocation 

ule defined via a single-valued solution of the induced game) is 

ifferent from rules that allocate (some portion of) the asset value 

mong the creditors proportional to their claims (or to their trun- 

ated liabilities). 

Next, we show that the Shapley value indeed defines a liabil- 

ty rule, that is, the Shapley-vector of the liability game associated 

ith a liability problem is an allocation. 

roposition 9. Let (A, � ) ∈ L 

N be a liability problem and let v be the

nduced liability game on N. Then the Shapley-vector φ(v ) of v satis- 

es efficiency, non-negativity, and (truncated) liabilities boundedness. 

roof. The Shapley value assigns an efficient vector to any TU 

ame, so for any liability game (N, v ) we have 
∑ 

i ∈ N φi (v ) = v (N) =
 . By monotonicity of liability games all marginal contributions are 

on-negative, hence the Shapley payoffs are non-negative. 

To prove (truncated) liabilities boundedness, let i ∈ C be a 

reditor and S ⊆ N \ i . We have two cases. If 0 ∈ S, so v (S ∪ i ) −
 (S) = min { � (S \ 0) + � i , A } − min { � (S \ 0) , A } , then the difference

s clearly at most � i . If 0 / ∈ S, so v (S ∪ i ) − v (S) = max { A − � (C \ S) +
 i , 0 } − max { A − � (C \ S) , 0 } , then again the difference is clearly at

ost � i . Thus, we get that all marginal contributions, hence the 

hapley payoffs to all creditors are upper bounded by the liabili- 

ies. Since non-negativity and efficiency imply φi ≤ A for all i ∈ N, 

ncluding the firm, for creditor i ∈ C we can sharpen the upper 

ound to φi ≤ � A 
i 

. �

Next, we define (truncated) debt forgiveness of a creditor as the 

ifference between the (truncated) liability towards him and the 

ayment he receives. Formally, let (A, � ) ∈ L 

N be a liability problem

nd x ∈ R 

N + be an allocation. The debt forgiveness of creditor i ∈ C is

iven by � i − x i . The truncated debt forgiveness by creditor i ∈ C is

iven by � A 
i 

− x i = min { A, � i } − x i . 

xample 10. Consider a generic liability problem with two credi- 

ors, so N = { 0 , 1 , 2 } and A ≤ � 1 + � 2 . The induced liability game v
s the following: 

S { 0 } { 1 } { 2 } { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 1 , 2 } 
v (S) 0 A − � A 2 A − � A 1 � A 1 � A 2 A A 

We can compute the Shapley allocation from sharing system (9) 

erived for 3-player constant-sum games. This format is very use- 

ul for studying various properties of the Shapley rule. 
382 
The Shapley payments are obtained by multiplying row [ v (S)] 

f the coalition values by row [ φk ] of the shares for player k ∈ N.

e can derive the following formulas and bounds (from A ≤ � 1 + 

 2 implying A ≤ � A 
1 

+ � A 
2 

≤ 2 A ). 

For the firm, 

 ≤ φ0 = 

� A 1 + � A 2 − A 

3 

≤ A 

3 

. 

learly both bounds are sharp. Notice that at the Shapley alloca- 

ion, an insolvent firm ends up with a strictly positive payoff. 

For creditor i 
 = j ∈ C, since 0 ≤ A − � A 
j 

≤ � A 
i 

, 

� A 
i 

3 

≤ φi = 

� A 
i 

− 2 � A 
j 
+ 2 A 

3 

= � A i − 2 φ0 ≤ � A i . 

t is easily seen that both bounds are sharp. For the debt forgive- 

ess and for the truncated debt forgiveness of creditor i ∈ C, we 

mmediately get the following sharp bounds: 

 i − � A i ≤ � i − φi ≤ � i −
� A 

i 

3 

, 0 ≤ � A i − φi = 2 φ0 ≤
2 � A 

i 

3 

. 

bserve that both creditors give the same truncated debt forgive- 

ess (2 φ0 ) to the firm. 

It also follows from the above formulas that if � i ≤ � j , hence 

lso � A 
i 

≤ � A 
j 
, then φi ≤ φ j and � i − φi ≤ � j − φ j . That is, at the Shap-

ey allocation, the creditor with higher claim gets higher payment, 

ut it also gives an at least as high debt forgiveness. 

. Properties of the Shapley liability rule 

In this section, we generalize the observations we made 

n the Shapley allocations for 2-creditor liability problems in 

xample 10 and investigate further properties of the Shapley rule. 

As observed in Proposition 9 , the Shapley rule satisfies ef- 

ciency, non-negativity and (truncated) liabilities boundedness, 

ence it is a liability rule. As noticed in Remark 8 , the Shapley rule

as any rule induced by a solution of an associated TU game) ig- 

ores excessive parts of claims , that is, φ(A, � ) = φ(A, � A ) . It is also

asily seen that the Shapley rule respects minimal rights of credi- 

ors , that is, it satisfies φi ≥ max { 0 , A − � (C \ i ) } for any i ∈ C. In-

eed, the minimal right of creditor i is precisely his value v (i ) in

he associated liability game, which is superadditive, and the Shap- 

ey value is well-known to prescribe individually acceptable payoffs 

n superadditive games. 

Since liability games are constant-sum, from sharing table (8), 

aken into account that v (0 ∪ S) = � A S for coalitions of the form 0 ∪
with S ⊆ C, we get that for liability problem (A, � ) the Shapley 

ule prescribes the following payments. 

0 (A, � ) = −A + 2 

∑ 

S⊆C 

γn (s ) � A S , (12) 

i (A, � ) = 2 

∑ 

S⊆C\ i 
γn (s + 1)(� A S∪ i − � A S ) , (i ∈ C) (13) 

here s = | S| and � A S = min { A, 
∑ 

i ∈ S � i } . 

.1. Bounds on the Shapley payments 

First, we establish lower and upper bounds for the Shapley pay- 

ent of the firm. 

roposition 11. Let (A, � ) ∈ L 

N be a liability problem and let v be

he induced liability game on N. Then for the Shapley payment of the 

rm φ0 we have that 

 ≤ n − 2 

n 

min { A, min 

i ∈ C 
� i , � C − A } ≤ φ0 (A, � ) ≤ n − 2 

n 

A. (14) 
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roof. Since v (0) = � A ∅ = 0 , v (N) = � A 
C 

= A , and γn (S) = γn (C \ S)
or S ⊆ C, 

φ0 (A, � ) = 

∑ 

∅
 = S 
 = C 
γn (s )(� A S + � A C\ S ) + 

2 − n 

n 

A. (15) 

f n = 2 then the summation in (15) is over the empty 

et, thus φ0 (A, � ) = 0 . It means that the Shapley rule allo-

ates the full asset value to the single creditor. In contrast, 

f c ≥ 2 , then the firm has some implicit bargaining lever- 

ge by threatening to form a coalition with the other cred- 

tors and compensate them first up to their full liabilities 

r the asset value. From � A S + � A 
C\ S = min { 2 A, A + � S , A + � C\ S , � C } =

 + min { A, � S , � C\ S , � C − A } and 

∑ 

∅
 = S 
 = C γn (s ) = 

n −2 
n , where s = | S| ,

e get φ0 = 

∑ 

∅
 = S 
 = C γn (s ) min { A, � S , � C\ S , � C − A } . Eq. (14) now

ollows. �

In the insolvent (non-degenerate) case, that is, if � C > A (and 

 > 0 and min i ∈ C � i > 0 ), the lower bound is positive, that is, the

rm ends up with positive payoff. The lower bound in (14) is sharp 

f and only if � C − A ≤ A and � C − A ≤ min i ∈ C � i , that is, the defi-

iency of the firm does not exceed any of the individual liabilities 

nd the asset value. The upper bound in (14) is sharp if and only

f A ≤ min i ∈ C � i (that implies � C − A ≥ A for c ≥ 2 ), that is, all cred-

tors claim the full asset value so each one is willing to forgive 

ome of its debt to stay a partner of the firm and receive some 

ositive payment. Note that in this case as the number of creditors 

ncreases, the firm can keep almost all the asset value. 

Second, we establish lower and upper bounds for the Shapley 

ayments of the creditors. 

roposition 12. Let (A, � ) ∈ L 

N be a liability problem and let v be

he induced liability game on N. Then for any i ∈ C for the Shapley 

ayment of the creditor φi have that 

2 

n (n − 1) 
� A i ≤ φi (A, � ) ≤

(
2 

n (n − 1) 
+ 

(n − 2)(n + 1) 

n (n − 1) 

)
� A i = � A i . 

(16) 

roof. Since v (0) = � A ∅ = 0 and γn (1) = 

1 
n (n −1) 

, from (13) we get

or i ∈ C, 

i (A, � ) = 

2 

n (n − 1) 
� A i + 2 

∑ 

∅
 = S⊆C\ i 
γn ( s + 1)(� A S∪ i − � A S ) . (17)

f n = 2 , that is, C = { 1 } , then the summation in (17) is over

he empty set, thus φ1 (A, � ) = � A 
i 

. It means that the Shapley

ule allocates the full asset value to the single creditor. In 

ontrast, if c ≥ 2 then the summation in (17) is clearly non- 

egative, and it is zero if and only if A ≤ � A 
i 

for all i ∈ C. On

he other side, � A 
S∪ i − � A 

S 
= min { A − � A 

S 
, � A 

i 
} ≤ � A 

i 
in case of A > � A 

S 
.

t follows from 

∑ 

∅
 = S⊆C\ i γn (s + 1) = 

∑ n −2 

s =1 

(
n − 2 

s 

)
γn (s + 1) = 

 n −2 

s =1 

(n − 2)! 

s !(n − 2 − s )! 

1 

n 

(s + 1)!(n − 2 − s )! 

(n − 1)! 
= 

∑ n −2 

s =1 

s + 1 

n (n − 1) 
= 

(n − 2)(n + 1) 

2 n (n − 1) 
that the summation in (17) is at most 

(n − 2)(n + 1) 

n (n − 1) 
� A 

i 
, and equality holds if and only if A ≥ � C (that 

mplies A ≥ � S∪ i for all S ⊆ C \ i ). �

Both bounds are sharp in (16) . The lower bound is attained 

hen all creditors claim the full asset value, hence considerably 

eaken each other’s bargaining position. On the other side, the 

reditors can be fully compensated if and only if the firm is sol- 

ent. 
383 
.2. Order preservation and monotonicity properties 

First, we show that creditors with higher claims get higher 

hapley payments, a property called order preservation in the re- 

iew article on bankruptcy rules by Thomson (2015) . We also show 

hat creditors with higher claims also give higher (truncated) debt 

orgiveness. 

roposition 13. Let (A, � ) ∈ L 

N be a liability problem and v the in-

uced liability game. Let i, j ∈ C be such that � i ≤ � j . At the Shapley

alue it holds that φi ≤ φ j , � i − φi ≤ � j − φ j and � A 
i 

− φi ≤ � A 
j 
− φ j . 

roof. Let i, j ∈ C be two creditors with � i ≤ � j , hence also � A 
i 

≤ � A 
j 
.

ince liability games are constant-sum games, we use formula 

2) to show 0 ≤ φ j − φi ≤ � A 
j 
− � A 

i 
≤ � j − � i . 

When taking the difference φ j − φi the terms v (S ∪ i ∪ j) , S ⊆
 \ { i, j} , containing both players cancel out, so we get 

j (v ) − φi (v ) = 

2 

n 

n −1 ∑ 

s =0 

1 (
n −1 

s 

) ∑ 

S⊆N\{ i, j} : | S| = s 
(v (S ∪ j) − v (S ∪ i )) . (18) 

t is easily checked from the definition of v that 0 ≤ v (S ∪ j) − v (S ∪
 ) ≤ � A 

j 
− � A 

i 
≤ � j − � i for all S ⊆ N \ { i, j} . Substituting each term in

18) with these non-negative constant bounds gives 

 ≤ φ j (v ) − φi (v ) ≤ (� A j − � A i ) ·
2 

n 

n −1 ∑ 

s =0 

1 (
n −1 

s 

)(
n − 2 

s 

)
, (19) 

ince there are 
(

n −2 
s 

)
coalitions S ⊆ N \ { i, j} of cardinality s . From

2 
n 

∑ n −1 
s =0 

1 

( n −1 
s ) 

(
n −2 

s 

)
= 

2 
n 

∑ n −1 
s =0 (1 − s 

n −1 ) = 

2 
n (n − 1 

n −1 

∑ n −1 
s =0 s ) = 

2 
n (n − n 

2 ) = 1 , and the obvious � A 
j 
− � A 

i 
≤ � j − � i , the claim

ollows. �

Note that order preservation in Proposition 13 obviously implies 

qual treatment of equal creditors , that is, if two creditors have the 

ame claims, then they should get the same compensations. From 

roposition 13 we readily get that the Shapley rule treats creditors 

ith equal (truncated) liabilities in the same way. 

orollary 14. Let (A, � ) ∈ L 

N be a liability problem and v the induced

iability game. Let i, j ∈ C be such that � i = � j . At the Shapley value it

olds that φi = φ j , � i − φi = � j − φ j and � A 
i 

− φi = � A 
j 
− φ j . 

Next, we discuss three basic monotonicity properties of liabil- 

ty rules. The question is how changes in certain parameters of a 

iability problem influence the payments of the agents. 

efinition 15. Liability rule f : L 

N → R 

N + is said to be 

1. liability monotonic if for any creditor i ∈ C and liability prob- 

lems (A, � ) , (A, � ′ ) such that � ′ 
i 
> � i and � ′ 

k 
= � k for all k ∈ C \ i ,

it holds that f i (A, � ′ ) ≥ f i (A, � ) . 

2. asset monotonic for creditors if for any creditor i ∈ C and liabil- 

ity problems (A, � ) , (A 

′ , � ) such that � (C) ≥ A 

′ > A , it holds that

f i (A 

′ , � ) ≥ f i (A, � ) . 

3. super-modular for creditors if for any two creditors i, j ∈ C with 

� i ≥ � j and liability problems (A, � ) , (A 

′ , � ) such that � (C) ≥ A 

′ >
A , it holds that f i (A 

′ , � ) − f i (A, � ) ≥ f j (A 

′ , � ) − f j (A, � ) . 

In the following three theorems we prove that the Shapley rule 

atisfies these three monotonicity properties. We also make some 

bservations on the changes in the firm’s payment. 

First, we show that the Shapley rule is liability monotonic. It 

eans that the payment of a creditor can only increase if his li- 

bility increases, but every other parameter of the problem stays 

ut. Moreover, we show that also the firm can only benefit from 

he increase of a liability. 
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roposition 16. Let liability problems (A, � ) and (A, � ′ ) be such that

 

′ 
i 
> � i for i ∈ C, and � ′ 

k 
= � k for all k ∈ C \ i . Then 

i (A, � ′ ) ≥ φi (A, � ) + 

2 

n (n − 1) 
min { � ′ i − � i , A − � A i } . 

oreover, φ0 (A, � ′ ) ≥ φ0 (A, � ) . 

roof. Let liability problems (A, � ) and (A, � ′ ) be such that � ′ 
i 
> � i 

or i ∈ C, and � ′ 
k 

= � k for all k ∈ C \ i . Clearly, � ′ A 
S∪ i ≥ � A 

S∪ i and � ′ A 
S 

= � A 
S 

henever S ⊆ C \ i . From formula (17) we get 

i (A, � ′ ) − φi (A, � ) = 

2 

n (n − 1) 
( � ′ A i − � A i ) + 2 

∑ 

∅
 = S⊆C\ i 
γn (s + 1)(� ′ A S∪ i − � A S∪ i ) . 

(20) 

ince the summation term in (20) is non-negative, and � ′ A 
i 

− � A 
i 

= 

in { � ′ 
i 
− � i , A − � A 

i 
} , the inequality for φi (A, � ) follows. 

From formula (12) we get 

0 (A, � ′ ) − φ0 (A, � ) = 2 
∑ 

S⊆C\ i 
γn (s + 1)(� ′ A S∪ i − � A S∪ i ) + 2 

∑ 

S⊆C\ i 
γn (s )(� ′ A S − � A S ) . 

(21) 

ince each term in the first summation is non-negative, and zero 

n the second one, we conclude that the payment to the firm can 

nly increase if a liability increases. �

Second, we show that the Shapley rule is asset monotonic for 

reditors. It means that the payments to the creditors can only 

ncrease if the asset value increases, but all liabilities remain the 

ame. Moreover, we observe that the firm can end up with smaller 

r with higher payoff. 

roposition 17. Let liability problems (A, � ) and (A 

′ , � ) be such that

 (C) ≥ A 

′ > A . Then for any creditor i ∈ C, 

 ≤ φi (A 

′ , � ) − φi (A, � ) ≤ min { A 

′ − A, � i } , 
nd for the firm, 

2 − n 

n 

(A 

′ − A ) ≤ φ0 (A 

′ , � ) − φ0 (A, � ) ≤ n − 2 

n 

(A 

′ − A ) . 

oreover, for c = | C| ≥ 2 , all bounds are sharp. 

In case of a single creditor, C = { 1 } , φ1 (A 

′ , � ) − φ1 (A, � ) = A 

′ − A

nd φ0 (A 

′ , � ) = φ0 (A, � ) . 

roof. Let liability problems (A, � ) and (A 

′ , � ) be such that � (C) ≥
 

′ > A . From formula (13) we get for any i ∈ C, 

i (A 

′ , � ) − φi (A, � ) = 2 

∑ 

S⊆C\ i 
γn (s + 1) 

[
(� A 

′ 
S∪ i − � A S∪ i ) − (� A 

′ 
S − � A S ) 

]
. 

(22) 

irst of all, since 
[
(� A 

′ 
S∪ i − � A 

S∪ i ) − (� A 
′ 

S − � A S ) 
]

= 

(� A 
′ 

S∪ i − � A 
′ 

S ) − (� A 
S∪ i − � A S ) 

]
and the difference � A 

S∪ i − � A S = 

in { � i , A − � A 
S 
} where A − � A 

S 
= max { A − � S , 0 } is clearly non-

ecreasing in A , we get that the difference in the bracket in each 

erm is non-negative, implying asset monotonicity for creditor 

 ∈ C. 

Let us assume c ≥ 2 . Then there are at least two dif- 

erent terms in (22) . One is the term for S = ∅ . It equals
2 

n (n −1) 

[
(� A 

′ 
i 

− � A 
i 
) − (0 − 0) 

]
. The difference in the bracket can 

ange from 0 (attained, if � i ≤ A < A 

′ ) to min { A 

′ − A, � i } (at-

ained, if A < A 

′ ≤ � i ). The other term is for S = C \ i 
 = ∅ .
t equals 2 

n 

[ 
(� A 

′ 
C 

− � A 
C 
) − (� A 

′ 
C\ i − � A 

C\ i ) 
] 

= 

2 
n 

[ 
(A 

′ − A ) − (� A 
′ 

C\ i − � A 
C\ i ) 

] 
. 

gain, the difference in the bracket can range from 0 (attained, 

f A < A 

′ ≤ � C\ i ) to (A 

′ − A ) (attained, if � C\ i ≤ A < A 

′ )). Likewise,

f � i ≤ A < A 

′ but A < A 

′ ≤ � j for any other creditor j 
 = i , then all
384 
erms in (22) are zero, implying that the zero lower bound is 

ndeed sharp. In contrast, if A < A 

′ ≤ � i but � C\ i ≤ A < A 

′ (imply-

ng � j ≤ A < A 

′ for any other creditor j 
 = i ), then the differences

n all brackets in (22) are equal to min { A 

′ − A, � i } . In light of

 

∑ 

S⊆C\ i γn (s + 1) = 1 , the claimed upper bound is also sharp. 

For the change in the Shapley payment to the firm, taken into 

ccount that � A ∅ = 0 and � A 
C 

= A , from formula (12) we get 

0 (A 

′ , � ) − φ0 (A, � ) = −(A 

′ − A ) + 2 
∑ 

∅
 = S� C 

γn (s )(� A 
′ 

S − � A S ) + 

2 

n 
(A 

′ − A ) . 

(23) 

ince the difference � A 
′ 

S 
− � A 

S 
is clearly non-negative but cannot ex- 

eed A 

′ − A , from 

∑ 

∅
 = S� C γn (s ) = 1 − 2 
n , the claimed inequalities 

or the difference φ0 (A 

′ , � ) − φ0 (A, � ) follow. The negative lower 

ound is attained if � S ≤ A for every non-empty set of creditors 

 
 = C implying � A 
′ 

S − � A S = 0 . The positive upper bound is attained if

 i ≥ A 

′ for all creditors i ∈ C implying � S ≥ A 

′ and � A 
′ 

S − � A S = A 

′ − A

or every non-empty set of creditors S 
 = C. 

Finally, in case of a single creditor C = { 1 } , Equation (22) sim-

lifies to φ1 (A 

′ , � ) − φ1 (A, � ) = 

2 
2(2 −1) 

[
(� A 

′ 
i 

− � A 
i 
) − (0 − 0) 

]
= A 

′ −
 , reconfirming that the Shapley rule gives everything to the sin- 

le creditor. By efficiency, the firm ends up with nothing, thus, 

0 (A 

′ , � ) − φ0 (A, � ) = 0 − 0 = 0 . Notice that for n = 2 , the summa-

ion in (23) is over the empty set, and the claimed lower and upper 

ounds coincide at zero. �

Finally, we show that the Shapley rule is super-modular for 

reditors. It means that creditors with higher liabilities receive 

ore from the increment in the asset value. This property is a kind 

f combination of order preservation (when the payments to two 

reditors in the same problem are compared) and asset monotonic- 

ty (when the payments to the same creditor in two related prob- 

ems are compared). 

roposition 18. Let liability problems (A, � ) and (A 

′ , � ) be such that

 (C) ≥ A 

′ > A . If � i ≥ � j for creditors i, j ∈ C then 

 ≤
(
φi (A ′ , � ) − φi (A, � ) 

)
−

(
φ j (A ′ , � ) − φ j (A, � ) 

)
≤ min { � i − � j ; A ′ − A } . 

(24) 

roof. Given two creditors i, j ∈ C, a set of creditors S ⊆ C can be

ne of four types: S contains both i and j; contains i but not j; 

ontains j but not i ; contains neither i nor j. For brevity, we repre- 

ent S ⊆ C respectively as Ri j, Ri , R j, R with a generic R ⊆ C \ { i, j} .
rom the formula in (13) we get that φi (A 

′ , � ) − φi (A, � ) = 

 

∑ 

R 

{
γn (r + 1) 

[
� A 

′ 
Ri − � A Ri − � A 

′ 
R + � A R 

]
+ γn (r + 2) 

[
� A 

′ 
R ji − � A R ji − � A 

′ 
R j + � A R j 

]}
. 

(25) 

xchanging i and j gives φ j (A 

′ , � ) − φ j (A, � ) = 

 

∑ 

R 

{
γn (r + 1) 

[
� A 

′ 
R j − � A R j − � A 

′ 
R + � A R 

]
+ γn (r + 2) 

[
� A 

′ 
Ri j − � A Ri j − � A 

′ 
Ri + � A Ri 

]}
. 

(26) 

ubtracting (26) from (25) gives (φi (A 

′ , � ) − φi (A, � )) − (φ j (A 

′ , � ) −
j (A, � )) = 

 

∑ 

R 

[ γn (r + 1) + γn (r + 2) ] 
[
(� A 

′ 
Ri − � A Ri ) − (� A 

′ 
R j − � A R j ) 

]
. (27) 

uppose � i ≥ � j , implying � Ri ≥ � R j . It is easily checked that 

� A 
′ 

Ri − � A Ri ) − (� A 
′ 

R j − � A R j ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 , if � R j ≤ � Ri ≤ A ≤ A 

′ , 
� Ri − A, if � R j ≤ A ≤ � Ri ≤ A 

′ , 
A 

′ − A, if � R j ≤ A ≤ A 

′ ≤ � Ri , 

� Ri − � R j , if A ≤ � R j ≤ � Ri ≤ A 

′ , 
A 

′ − � R j , if A ≤ � R j ≤ A 

′ ≤ � Ri , 

0 , if A ≤ A 

′ ≤ � R j ≤ � Ri . 
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t follows that 

 ≤ (� A 
′ 

Ri − � A Ri ) − (� A 
′ 

R j − � A R j ) ≤ min { � Ri − � R j = � i − � j ; A 

′ − A } . 
aken into account that ∑ 

 ⊆C\ i j 

[ γn (r + 1) + γn (r + 2) ] = 

∑ 

R ⊆C\ i j 

γn (r + 1) + 

∑ 

j∈ Q⊆C\ i 
γn (q + 1) 

= 

∑ 

S⊆C\ i 
γn (s + 1) = 1 / 2 , 

here q = | Q| and s = | S| , from (27) we get the claimed inequali-

ies in (24) . �

A straightforward corollary of Proposition 18 is that if � i = � j 
or creditors i, j ∈ C then φi (A 

′ , � ) − φi (A, � ) = φ j (A 

′ , � ) − φ j (A, � ) .

learly, this also follows from the equal treatment property of the 

hapley rule ( Corollary 14 ). 

. Complexity of computing the Shapley value 

Even though liability games are constant-sum games and we 

howed in (12) and (13) that the Shapley value of a liability game 

an be directly calculated from the parameters of the underlying 

iability problem, now we prove that calculating the Shapley payoff

o the firm is NP-hard 

3 . 

heorem 19. Given two liability problems and the induced liability 

ames, it is NP-hard to verify whether the firm has the same Shapley 

alue in both games. 

roof. Recall the NP-complete subset sum problem SUBSUM (See 

or instance Garey & Johnson, 1979 ): given a 1 , a 2 , . . . , a n ∈ Z and

 ∈ Z we ask whether there exists a subset a i 1 , a i 2 , . . . , a i k such that
 

a i j = K. Here we consider a special case of this problem, HALF- 

UM: given positive integers a 1 , a 2 , . . . , a n we ask whether there

xists a subset a i 1 , a i 2 , . . . , a i k such that 
∑ 

a i j = 

∑ 

a i 
2 . It is very easy

o show by the following steps that HALFSUM is still NP-complete. 

• It is trivial to show that SUBSUM is NP-complete if we restrict 

it to even numbers, so we can assume that 
∑ 

a i is even. 
• We get an equivalent instance of SUBSUM if we replace K by ∑ 

a i − K. Using this observation, it is clear that we can assume 

that K ≤
∑ 

a i 
2 . 

• This special form of SUBSUM can be reduced to HALFSUM by 

adding an extra number a n +1 = 

∑ 

a i 
2 − K to the set. 

We reduce HALFSUM to the Shapley value calculation. Let 

S = (a 1 , a 2 , . . . , a n ) be an instance of the HALFSUM problem.

onsider the liability problems (A, � ) and (A − 1 , � ) , where � =
� 1 , � 2 , . . . , � n ) = (a 1 , a 2 , . . . , a n ) and A = 

∑ 

a i 
2 . Let v and v 2 be the

iability games corresponding to (A, � ) and (A − 1 , � ) , respectively.

e show that the defaulting firm has a different Shapley value in 

 and v 2 if and only if the instance of the HALFSUM problem has

 solution. 

Given a subset of creditors S ⊆ C, let mc (S) = v (S ∪ { 0 } ) − v (S)

e the marginal contribution of player 0 in the liability game v , 
orresponding to the first liability problem. We claim that 

c (S) = 

{
� (S) , if � (S) ≤ A, 

� (C \ S) , if � (S) ≥ A. 
(28) 

To prove (28) , recall that the value of the assets A is exactly 

alf of the sum of liabilities. Notice that creditors in S can be paid 

f and only if creditors in C \ S cannot be paid. If � (S) ≤ A , then

 (S) = 0 , however, in this case v (S ∪ { 0 } ) = � (S) . If � (S) ≥ A , then

 (S) = A − � (C \ S) and v (S ∪ { 0 } ) = A . 
3 Aziz (2013) shows that for regular bankruptcy problems, the computation of the 

hapley value is #P-complete. 

385 
Let φ0 be the Shapley value of player 0 in v . We have that 

 ! φ0 = 

∑ 

S⊆C 

| S| !(n − | S| − 1)! mc (S) = 

∑ 

� (S) <A 

| S| !(n − | S| − 1)! � (S) 

+ 

∑ 

� (S)= A 
| S| !(n − | S| − 1)! A + 

∑ 

� (S) >A 

| S| !(n − | S| − 1)! � (C \ S) . 
(29)

Now consider the game v 2 , that is, decrease the asset value A 

y 1. Let mc 2 (S) = v 2 (S ∪ { 0 } ) − v 2 (S) . 

If S is a coalition such that � (S) < A , then � (S) ≤ A − 1 , so the

iabilities in S can still be paid in v 2 and � (C \ S) > A > A − 1 , li-

bilities in C \ S obviously cannot be paid with less asset value. 

t follows that v 2 (S) = 0 and v 2 (S ∪ { 0 } ) = � (S) . (Recall that � is

he same in both problems.) Now let’s consider a coalition of 

reditors S ⊂ C such that � (S) > A . In this case � (C \ S) < A , that

s, � (C \ S) ≤ A − 1 . Liabilities in S cannot be paid and liabilities

n C \ S can be paid not only in game v but also in game v 2 .
his means that v 2 (S) = A − 1 − � (C \ S) and v 2 (S ∪ { 0 } ) = A − 1 , so

c (S) = (A − 1) − (A − 1 − � (C \ S) = � (C \ S) . 
It follows that in (29) , the first and the last term do not change

n v 2 , implying that if HS is a FALSE instance of problem HALFSUM, 

hen the sum of these terms does not change when we decrease 

he value of assets by 1. In this case, the second term is empty. 

On the other hand, let’s consider a coalition where � (S) = A 

xactly. In this case, v (S) = 0 and v (S ∪ { 0 } ) = mc (S) = A in the

rst game. However, in the second game, v 2 (S) = v (S) = 0 but

 2 (S ∪ { 0 } ) = mc 2 (S) = A − 1 . If HS is a TRUE instance of the HALF-

UM problem, then the Shapley value of player 0 decreased in 

ame v 2 compared to game v . �

. Concluding remarks 

Liability games are constant-sum transferable utility games, 

eneralizing bankruptcy games by treating the estate (firm) as a 

layer. We investigate the Shapley value of liability games. We pro- 

ose a basis for the linear vector space of constant-sum games that 

rovides a specialized formula for the Shapley payoff to a player 

n a constant-sum game. We show that the Shapley value can also 

e used as a liability allocation rule, that is, it allocates the as- 

et value non-negatively among the creditors and the firm in such 

 way that no creditor gets more than his liability. We establish 

ower and upper bounds for the Shapley payments to the credi- 

ors as well as to the firm. On top of proving order preservation, 

e establish three main monotonicity properties of the Shapley 

ule: liability monotonicity, asset monotonicity for creditors, and 

uper-modularity for creditors. Finally, we show that in liability 

roblems calculating the Shapley payment to the insolvent firm is 

P-hard. 

Structurally, liability games and bankruptcy games are inti- 

ately connected: the subgame of a liability game restricted to the 

et of creditors is a bankruptcy game (as defined by O’Neill, 1982 ) 

nd the other “half-game” (on the coalitions containing the firm) 

s the dual game of that bankruptcy subgame. One may wonder if 

here is any relation between the Shapley value in a liability game 

nd the Shapley value in its bankruptcy subgame or in another 

naturally associated” bankruptcy game. Based on Example 20 , we 

o not believe that any “simple structural” relation could be found. 

xample 20. We take two-creditor liability games (the simplest 

on-trivial type) and associate with each one two two-creditor 

ankruptcy games: 

• Type A: we only reduce the asset value with the Shapley pay- 

ment to the firm, but keep the original claims of the creditors; 
• Type B: we reduce the asset value with the Shapley pay- 

ment to the firm, and we also reduce the claims by half of 
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the firm’s payment (assuming that the creditors accept this 

amount as a fixed loss, split it equally, and reduce their claims 

accordingly). 

Consider the following three instances, differing only in the as- 

et value. 

1. The Shapley payments to the creditors in the liability situation 

are different from the Shapley payments in both bankruptcy sit- 

uations: 

liability A = 36 , � 1 = 34 , � 2 = 32 ϕ 0 = 10 , ϕ 1 = 14 , ϕ 2 = 12 

bankruptcy A E = 26 , c 1 = 34 , c 2 = 32 ϕ A 1 = 13 , ϕ A 2 = 13 

bankruptcy B E = 26 , c 1 = 29 , c 2 = 27 ϕ B 1 = 13 , ϕ B 2 = 13 

2. The creditor’s Shapley payments in the liability situation are 

different from the Shapley payments in the type A bankruptcy 

situation, but coincide with those in the type B bankruptcy sit- 

uation: 

liability A = 39 , � 1 = 34 , � 2 = 32 ϕ 0 = 9 , ϕ 1 = 16 , ϕ 2 = 14 

bankruptcy A E = 30 , c 1 = 34 , c 2 = 32 ϕ A 1 = 15 , ϕ A 2 = 15 

bankruptcy B E = 30 , c 1 = 59 / 2 , c 2 = 55 / 2 ϕ B 1 = 16 , ϕ B 2 = 14 

3. The Shapley payments to the creditors in the liability situa- 

tion are the same as the Shapley payments in both associated 

bankruptcy situations: 

liability A = 42 , � 1 = 34 , � 2 = 32 ϕ 0 = 8 , ϕ 1 = 18 , ϕ 2 = 16 

bankruptcy A E = 34 , c 1 = 34 , c 2 = 32 ϕ A 1 = 18 , ϕ A 2 = 16 

bankruptcy B E = 34 , c 1 = 30 , c 2 = 28 ϕ B 1 = 18 , ϕ B 2 = 16 

However, there are many possibilities for further research. One 

ould investigate the analogues of the various other monotonicity 

roperties discussed in the rich literature on bankruptcy problems, 

ee the book ( Thomson, 2019 ) for a detailed treatment. This, to- 

ether with our basis, could help to get a new characterization of 

he Shapley value on the class of liability or constant-sum games. 

here are also other important values to be considered in a lia- 

ility game, for instance the Banzhaf value ( Banzhaf, 1965 ) or the 

olidarity value ( Nowak & Radzik, 1994 ). Liability games could be 

eneralized to a setting with nontransferable utility, when players 

ave individual utility functions over their monetary payoffs. Ana- 

yzing generalizations of solutions concepts in such a setting is also 

ery promising. 
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