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Abstract

The time evolution of linear fields of spin s = ±1 and s = ±2 on Kerr
black hole spacetimes are investigated by solving the homogeneous Teukolsky
equation numerically. The applied numerical setup is based on a combination
of conformal compactification and the hyperbolic initial value problem. The
evolved basic variables are expanded in terms of spin-weighted spherical har-
monics, which allows us to evaluate all angular derivatives analytically, whereas
the evolution of the expansion coefficients in the time-radial section is deter-
mined by applying the method of lines implemented in a fourth order accurate
finite differencing stencil. Concerning the initialization, in all of our investi-
gations, single mode excitations—either static or purely dynamical-type initial
data—are applied. Within this setup the late-time tail behavior is investigated.
Because of the applied conformal compactification, the asymptotic decay rates
are determined at three characteristic locations—in the domain of outer com-
munication, at the event horizon, and at future null infinity—simultaneously.
A recently introduced new type of “energy” and “angular momentum” balance
relations are also applied in order to demonstrate the feasibility and robustness
of the developed numerical schema and also to verify the proper implementation
of the underlying mathematical model.
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1 Introduction
The study of the long-time evolution of various linear fields on given black hole back-
grounds has served for decades as a preparation for the more involved study of linear
and possibly nonlinear stability of the background black hole solutions themselves.
In the last couple of years considerable progress has been made concerning the linear
stability of the Kerr solution (see, e.g. [1, 9] and references therein). Notably, even
these analytic results rest on various technical assumptions which apparently all boil
down to the long-time behavior of linear spin s fields satisfying the Teukolsky master
equation [1, 9]. This provides immediate motivation for a thorough investigation of
the asymptotic in time behavior of solutions to the Teukolsky equation on a Kerr
black hole background.

This paper reports about our findings concerning numerical investigations of the
dynamics of electromagnetic and gravitational perturbations on a Kerr background.
Our aim was to carry out comprehensive investigations of the time evolution of linear
spin s fields, in particular, to study their tail behavior. This is done by solving the
homogeneous Teukolsky master equation for generic linear spin s = ±1 and s = ±2
fields numerically. Since previous numerical studies focused mostly on axisymmet-
ric configurations, we aimed to provide a more detailed study of nonaxisymmetric
configurations. In doing so, the analytic framework was chosen such that it incor-
porates both techniques of conformal compactification and the hyperboloidal initial
value problem. The time slices in the latter were chosen to be horizon penetrating,
which allows us to determine the decay rates at the three characteristic locations si-
multaneously: at the black hole event horizon, in the domain of outer communication,
and at future null infinity. In addition, the applied mathematical setup also makes
it possible to use a spherical spectral representation of all the basic variables. This
is so as they are expanded in terms of spin-weighted spherical harmonics based on
the foliation of the Kerr background by topological two-spheres, which in practice are
the Boyer-Lindquist t = const and r = const ellipsoids. As all angular derivatives
can be given then either in terms of the “eth” and “ethbar”, ð and ð, operators or
by Lie derivatives with respect to the axial symmetry of the Kerr background, all
angular derivatives are evaluated analytically. This, in turn, guarantees that the per-
tinent multipole expansion coefficients—as elements of a large set of coupled scalar
fields—get to be subject of an involved but otherwise only (1 + 1)-dimensional time-
evolution problem. Notably, even the case of the most generic linear spin s fields can
be tested within the very same mathematical and numerical setup which, in turn,
allows us to treat all the nonaxisymmetric configurations as well. Though in practice,
our attention was restricted to the range m = 0,±1,±2 of the azimuthal parameter,
in principle, one could investigate the full spectra of nonaxisymmetric configurations
within the chosen framework.
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In checking and interpreting our numerical findings it was very informative and
supportive to compare them to both analytic and numerical results prior to our in-
vestigations. On a Kerr background, the first systematic analytic estimates on the
decay exponents were derived by Barack and Ori [2, 4]. They developed a method
capable of studying the evolution of linear spin s = 0, s = ±1, and s = ±2 in the
time domain. By applying this they discovered an interesting phenomenon. Namely,
for axially symmetric configurations, the decay rates at the event horizon are larger
by 1 for spin s > 0 with respect to those relevant for s < 0 [3]. By applying the same
method, they could also study the behavior of linear perturbations while approaching
the Cauchy or inner horizon of the Kerr background [17, 18]. The alternative ana-
lytic investigations by Hod were carried out in the frequency domain [12–14]. In [6,7]
Casals et al. developed a technique to further improve on the results of Hod. They pre-
sented a method to include higher order terms in the low-frequency expansion, which
is necessary for computing self-force. Some complementary analytic studies can also
be found in the Appendix of [11]. Note that in Ref. [11], Harms et al. also report
impressive and comprehensive numerical investigations concerning the long-time evo-
lution of axially symmetric linear spin s fields on a Kerr background. It is important
to emphasize that the initial data we apply are always of pure mode excitation, which
allows us to study the long-time behavior of various higher mode excitations. It is
of crucial importance then that the analytic and numerical investigations carried out
in [11, 14] are also based on the use of single-mode-excitation-type initial data. In
this respect, from among all the aforementioned excellent investigations, the ones re-
ported in [11, 14] will be at the center of our interest. Most of the predictions made
in these studies are confirmed by our investigations. Nevertheless, as there were some
slight disagreements even between the predictions of these two sets of investigations,
in our studies particular attention was given to clear up of the corresponding cases.
Notably, our numerical results led us to the conclusion that, though only in some very
special subcases, neither of the former predictions was satisfactory: i.e., they did not
give the correct value for the decay exponents.

In coming up with a firm statement of the above type, it is extremely important to
guarantee the self-consistency of the underlying numerical results. It is indeed critical
to verify that our findings are not simply numerical artifacts of the applied method,
but they are rooted in the true nature of the investigated fields. For this reason, we
implemented—in addition to the conventional convergence rate checks—the recently
introduced [22] new type of “energy” and “angular momentum” balance relations to
verify both the proper implementation of the underlying mathematical model and the
feasibility and robustness of the developed numerical schema.

Before proceeding in presenting our main results, it appears to be rewarding to
recall that linear spin s = ±1 or s = ±2 fields satisfying the homogeneous Teukolsky
master equations arise in a straightforward way in studying evolution of source-free
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electromagnetic fields in Maxwell theory or in that of linear metric perturbations
on a Kerr background [20, 21]. To see this, e.g. in the electromagnetic case, recall
first that in applying the Newman-Penrose formalism [16], one starts by fixing a
complex null tetrad {la, na,ma,ma} comprising at each point two real la and na and
two complex ma and ma null vectors such that their only nonzero inner products are
lana = −mama = 1. We fix the remaining guage freedom by using the Kinnersley
tetrad. The algebraically independent components of the Faraday tensor Fab can
always be represented by the three complex Maxwell scalar fields

φ0 = Fabl
amb , (1)

φ1 =
1

2

(
Fabl

anb + Fabm
amb

)
, (2)

φ2 = Fabm
anb . (3)

Two of these, φ0 and φ2, represent the outgoing and ingoing radiations, respectively,
whereas φ1 stores the Coulombic part of the electromagnetic field.

If Fab satisfies the source-free Maxwell equations on a Kerr black hole background,
then some of the one-order-higher wave equations—which can be deduced for the in-
dividual Maxwell scalar components φ0 and φ2, respectively—decouple. In particular,
the fields ψ(+1) and ψ(−1) defined as

ψ(+1) = φ0 , (4)

ψ(−1) = (Ψ2)−2/3 · φ2 (5)

satisfy the homogeneous Teukolsky master equation (11) with spin s = +1 and
s = −1, respectively [20]. Here, Ψ2 is the only nonvanishing and gauge invariant
Weyl-scalar component on a Kerr background which has the following form in Boyer-
Lindquist coordinates using the Kinnersley tetrad:

Ψ2 = − M

(r − i a cosϑ)3
. (6)

By a completely analogous argument, it can also be verified [20, 21] that in the
case of linear metric perturbations, the specific contractions

Ψ0 = −Cabcd lamblcmd and Ψ4 = −Cabcd nam bncm d (7)

of the Weyl tensor Cabcd—which is also equal to the curvature tensor in the case
of vacuum spacetimes—and elements of the complex null tetrad {la, na,ma,ma} are
distinguished like φ0 and φ2 were in the electromagnetic case. Indeed, the linear wave
equations—these can be deduced from the Bianchi identity, and they are relevant for
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the linearly perturbed configurations—really do decouple, and the fields

ψ(+2) = Ψ0 , (8)

ψ(−2) = (Ψ2)−4/3 ·Ψ4 (9)

satisfy the homogeneous Teukolsky master equation (11) relevant for these spin s =
+2 and s = −2 fields, respectively [20].

This paper is organized as follows. In Sec. 2 first the analytic framework is intro-
duced. This part (see Sec. 2.2) is to set up the form of the wave equation to be solved
once the conformal compactification and suitable regularizations of the basic variables
have been carried out. Some of the details of the new type of energy and angular mo-
mentum balance relations are also discussed in Sec. 2.3. More details on the analytic
and numerical setup are given in Sec. 3 containing the discussion of multipole expan-
sions, the choice made for the initialization of time evolution, the determination of
the decay rates and a summary of the results prior to ours. Sec. 4 presents all of our
numerical findings. We start by discussing axially symmetric configurations in Sec.
4.2 which is followed by a detailed investigation of nonaxisymmetric configurations
in Sec. 4.3. A thorough discussion of the use of the energy and angular momentum
balance relations, as well as their use in verifying the convergence properties of the
applied numerical implementation is given in Sec. 4.4. The discussions are completed
by our final remarks in Sec. 5. The paper is closed by several appendixes providing
useful details on the applied analytic and numerical settings.

2 Linear fields of spin s on a Kerr background
This section provides all the details related to the applied analytic setup. In addition
to the various forms of the Teukolsky master equation, the energy and angular mo-
mentum balance relations will also be discussed briefly. This section also lays down
the mathematical groundwork that will be applied in later papers of this series.

2.1 Teukolsky equation

The metric of the Kerr background in Boyer-Lindquist coordinates (t, r, ϑ, φ) can be
given by the line element

(ds)2 =

(
1− 2Mr

Σ

)
(dt)2 +

4arM

Σ
sin2 ϑ dtdφ

− Σ

∆
(dr)2 − Σ (dϑ)2 − (r2 + a2)2 − a2∆ sin2 ϑ

Σ
sin2 ϑ (dφ)2, (10)
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where Σ = r2 + a2 cos2 ϑ and ∆ = r2− 2Mr+ a2, whereas M and a are the mass and
the angular momentum per unit mass parameters of the Kerr black hole.

A linear sourceless field of spin s—where s is integer or half-integer—on a Kerr
background using the Kinnersley tetrad is known to be subject to the homogeneous
Teukolsky master equation [20][

(r2 + a2)2

∆
− a2 sin2 ϑ

]
∂2ψ(s)

∂t2
+

4Mar

∆

∂2ψ(s)

∂t∂φ
+

[
a2

∆
− 1

sin2 ϑ

]
∂2ψ(s)

∂φ2
−

−∆−s
∂

∂r

(
∆s+1∂ψ

(s)

∂r

)
− 1

sinϑ

∂

∂ϑ

(
sinϑ

∂ψ(s)

∂ϑ

)
− 2s

[
a(r −M)

∆
+

i cosϑ

sin2 ϑ

]
∂ψ(s)

∂φ
−

− 2s

[
M(r2 − a2)

∆
− r − ia cosϑ

]
∂ψ(s)

∂t
+ (s2 cot2 ϑ− s)ψ(s) = 0. (11)

A very simple covariant form of the Teukolsky master equation was introduced by
Bini et al. in [5] which allows us to write (11) in the compact form[

(∇a + sΓa) (∇a + sΓa)− 4 s2 Ψ2

]
ψ(s) = 0 , (12)

where the components of the “connection vector” Γa are [5]

Γt = − 1

Σ

[
M(r2 − a2)

∆
− (r + i a cosϑ)

]
, (13)

Γr = − 1

Σ

(
r −M

)
, (14)

Γϑ = 0, (15)

Γφ = − 1

Σ

[
a(r −M)

∆
+ i

cosϑ

sin2 ϑ

]
. (16)

2.2 Regularization of the basic variables

The solutions to the homogeneous Teukolsky master equation are known to get singu-
lar either in the ∆→ 0 or r →∞ limit. In order to regularize by suitable rescaling of
the field variables and also to get the desired conformal compactification of the Kerr
background, new coordinates are introduced. This is done by following the proposal
in [19] in two succeeding steps. First, the Boyer-Lindquist coordinates (t, r, ϑ, φ)
are replaced by the ingoing Kerr coordinates (τ, r, ϑ, ϕ), where the new time and
azimuthal coordinates τ and ϕ are defined via the relations

τ = t− r +

∫
dr
r2 + a2

∆
, (17)

ϕ = φ+

∫
dr
a

∆
. (18)
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Note that the τ = const hypersurfaces, as indicated in Fig.1. in [19], are horizon
penetrating, whereas they all tend to spacelike infinity in the r →∞ limit.

In the second step, new coordinates (T,R) replacing (τ, r) are introduced by the
implicit relations

τ = T +
1 +R2

1−R2
− 4M log(|1−R2|) , (19)

r =
2R

1−R2
. (20)

The most important advantage of the application of these new coordinates is that
they allow the use of a conformal compactification of the Kerr spacetime such that
future null infinity (I +) gets to be represented by the R = 1 hypersurface and also
that all the T = const hypersurfaces are such that they are both horizon penetrating
and intersecting I + in regular spherical cuts at R = 1.

In order to get the desired suitably regularized basic field variables on the Kerr
background ψ(s) is replaced by Φ(s) defined as

Φ(s)(T,R, ϑ, ϕ) =
[
r(R) ·∆s(R)

]
· ψ(s)(T,R, ϑ, ϕ) . (21)

Once all the foregoing steps have been performed, the homogeneous Teukolsky
master equation (12) can be seen to take the form

∂TTΦ(s) =
1

A + B · Y 0
2

[
cRR · ∂RRΦ(s) + cTR · ∂TRΦ(s) + cTϕ · ∂TϕΦ(s) + cRϕ · ∂RϕΦ(s)

+ cϑϑ · ððΦ(s) + cT · ∂TΦ(s) + i cTy Y
0

1 · ∂TΦ(s) + cR · ∂RΦ(s) + cϕ · ∂ϕΦ(s) + c0 · Φ(s)
]
,

(22)

where Y 0
1 and Y 0

2 stand for the zero spin-weight spherical harmonics with ` = 1, 2 and
m = 0, whereas the explicit form of the involved R-dependent coefficients is given in
Appendix A. Note also that by making use of the ð and ð operators acting on a spin
s field f as

ðf = − sins ϑ

(
∂ϑ +

i

sinϑ
∂ϕ

)
(sin−sϑ · f), (23)

ðf = − sin−s ϑ

(
∂ϑ −

i

sinϑ
∂ϕ

)
(sinsϑ · f) , (24)

all the ϑ derivatives present in the Laplace-Beltrami operator can be incorporated
into a single operator ðð via the relation

ððf = ∂ϑϑf + cotϑ ∂ϑf +
1

sin2 ϑ
∂ϕϕf + 2 i s

cotϑ

sinϑ
∂ϕf + s (1− s cot2 ϑ)f . (25)
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This provides us considerable simplification and enhances the accuracy of our nu-
merical integrator significantly, as our approach is based on the use of multipole
expansions of the basic variables in terms of spin-weighted spherical harmonics, and
all the angular derivatives in (22) can be evaluated analytically. (More details on the
use of spin-weighted spherical harmonics and their relations to the ð and ð operators
can be found in Appendix B.)

2.3 Conserved currents

It is known that there is no way to construct a Lagrangian out of a single spin
s variable ψ(s) and its first order derivatives such that one could get (12) as the
corresponding Euler-Lagrange equation for ψ(s). Nevertheless, as pointed out in [22]
recently, it is possible to associate a meaningful Lagrangian to a pair of spin s and
−s fields via the relation

L = −(∇a − sΓa)ψ(−s)(∇a + sΓa)ψ
(s) − 4 s2Ψ2 ψ

(s)ψ(−s) . (26)

It was also shown in [22] that by making use of some suitable infinitesimal transfor-
mations of the form ψ(±s) → ψ(±s) − ςha∂aψ(±s) of the Lagrangian in (26), canonical
conserved Noether currents can also be associated with a pair of spin s and −s fields.
Note that the involved fields may be completely independent. The only requirement
for the conservation of the currents is that they both satisfy their respective Teukolsky
master equations. In particular, as the Lagrangian in (26) is invariant with respect
to the one-parameter group of diffeomorphisms induced by the Killing vector fields
ha = T a = (∂T )a and ha = ϕa = (∂ϕ)a (which are also coordinate basis fields), the
corresponding infinitesimal transformations endow us with the canonical energy- and
angular-momentum-type currents defined as

Ea = (∇a − sΓa)ψ(−s)T b∂bψ
(s) + (∇a + sΓa)ψ(s)T b∂bψ

(−s) + T aL , (27)

Ja = (∇a − sΓa)ψ(−s)ϕb∂bψ
(s) + (∇a + sΓa)ψ(s)ϕb∂bψ

(−s) + ϕaL . (28)

Notice that for s = 0, (27) and (28) produce the well-known energy and angular
momentum of the massless complex scalar field if ψ(−s)

∣∣
s=0

= ψ(s)
∣∣
s=0

.
As the covariant divergence of these currents vanish, the balance relations∫

Ω

∇aE
a =

∫
∂Ω

naE
a = 0 , (29)∫

Ω

∇aJ
a =

∫
∂Ω

naJ
a = 0 (30)

hold. The spacetime domain of integration Ω in all of our applications is chosen
to be the rectangular coordinate domain in (T,R) such that it is bounded by some
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initial and final time slices T = Ti and T = Tf and by some inner and outer timelike
or null cylinders given by the R = Rin and R = Rout hypersurfaces, respectively. In
particular, denoting by n(T )

a = (dT )a/
√
gTT and n(R)

a = (dR)a/
√
−gRR the respective

normals of the T = const and R = const hypersurfaces and by hT and hR the
determinant of the restriction of the metric to these hypersurfaces, the energy balance
relation can be given as

0 =

∫
T=Ti

n(T )
a Ea

√
|hT | dR dϑ dϕ+

∫
R=Rin

n(R)
a Ea

√
|hR| dT dϑ dϕ

−
∫
T=Tf

n(T )
a Ea

√
|hT | dR dϑ dϕ−

∫
R=Rout

n(R)
a Ea

√
|hR| dT dϑ dϕ . (31)

A completely analogous balance relation can be derived for the angular momen-
tum simply by replacing Ea in (31) with Ja. The explicit form of the integrands
n

(T )
a Ea

√
|hT |, n(R)

a Ea
√
|hR|, n(T )

a Ja
√
|hT |, and n

(R)
a Ja

√
|hR| involved in the energy

and angular momentum balance relations can be found in Appendix C.

3 More on the analytic and numerical setup
The discussions in this section will remain valid for any linear field of spin s satisfying
the homogeneous Teukolsky master equation on a Kerr black hole background.

3.1 Multipole expansions

In solving (22), our basic variables Φ(s) are expanded in terms of spin-weight s spher-
ical harmonics sY`

m as

Φ(s)(T,R, ϑ, ϕ) =
`max∑
`=|s|

∑̀
m=−`

φ`
m(T,R) · sY`m(ϑ, ϕ) . (32)

In this way, (22) becomes a set of coupled (1+1)-dimensional linear wave equations for
the expansion coefficients φ`m(T,R), whereas all the angular derivatives are evaluated
analytically by making use of the ð and ð operators (more details on spin-weighted
spherical harmonics and the ð, ð operators can be found in Appendix B). The sum-
mation goes from ` = |s| to some ` = `max value, which is chosen to be suitably large
in order to keep the truncation error tolerably small (which, in practice, corresponds
to numerical precision).

Note that in the frequency domain analysis, the eigenfunctions of the angular part
of Teukolsky master equation (TME) are spin-weighted spheroidal harmonics instead
of spin-weighted spherical harmonics. In the work of Casals et al. [7], the authors
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demonstrated that expanding in terms of spherical harmonics instead of spheroidal
ones results in branch cuts in the complex Green’s function. However, in the integral,
the contributions of these extra cuts cancel out, so in the end the Green’s function will
be the same, and it is safe to use spin-weighted spherical harmonics as a basis. Since
the spheroidal harmonics themselves can be expanded in terms of spherical harmonics,
at least the decay rate of the slowest decaying modes is the same regardless of the
basis of expansion.

By applying standard order reduction techniques—by introducing (φT )`
m = ∂Tφ`

m

and (φR)`
m = ∂Rφ`

m as additional dependent variables—a first order strongly hyper-
bolic system is introduced for a vector variable that is composed of the multipole
expansion coefficients. These equations were evolved in our numerical code by ap-
plying the method of lines in a fourth order Runge-Kutta integrator and also using a
sixth order dissipation term for suppressing high-frequency spurious solutions [10].

3.2 The applied initial data

In solving (22) in any time-evolution scheme it is necessary to initialize Φ(s) by spec-
ifying, on some T = T0 (∈ R) initial data surface, a pair of functions (φ(s), φ

(s)
T ) such

that φ(s) = Φ(s)|T=T0 and φ
(s)
T = (∂TΦ(s))|T=T0 hold. In order to be able to uncover

the coupling between various modes in (32) characterized by their multipole indices
s, `,m, the applied initial data will always be a single mode excitation. In addition,
they will be either “static” or “purely dynamical”.

Accordingly, for some fixed values of the s, `,m indices, a single mode excitation
type of initial data (φ(s), φ

(s)
T ) is called static (ST) if

(ST ) :

φ(s)(R, ϑ, ϕ) = φ`
m(T0, R) · sY`m(ϑ, ϕ)

φ
(s)
T (R, ϑ, ϕ) ≡ 0 ,

(33)

while it will be called purely dynamical (PD) if

(PD) :

φ(s)(R, ϑ, ϕ) ≡ 0,

φ
(s)
T (R, ϑ, ϕ) = (φT )`

m(T0, R) · sY`m(ϑ, ϕ)
(34)

hold on the T = T0 initial data surface, and no summation is meant in either (33) or in
(34). Because of the linearity of the TME (22) and the use of single mode excitations,
with multipole indices s, `,m, all the excited modes in (32) will share the s and m
values. In what follows, the ` parameter of the exciting mode will be distinguished
by priming it, i.e., denoting it by `′, while the ` parameter of the excited modes will
be referred to without priming.

10



The R dependence of the nonvanishing part of the initial data—φ`′
m(T0, R) in the

static case or (∂Tφ)`′
m(T0, R) in the purely dynamical case—is restricted by choosing

it to be the “bump” with center c and width w,

B(R) =

 2R
1−R2 exp

(
− 1
R−c+w/2 + 1

R−c−w/2 + 4
w

)
, if c− w/2 < R < c+ w/2,

0 , otherwise .
(35)

Note that B(R) is a smooth function of compact support, the parameters of which
were fixed in our numerical simulations as c = 0.7 and w = 0.1.

3.3 The late-time behavior

Likewise, in the case of spin zero fields—when monitored at certain fixed spatial
locations—after an initial dynamical phase, each of the excited modes φ`m(T,R)
go through a lasting quasinormal ringing period which is supplemented by a late-
time tail behavior. In particular, this means that for sufficiently large values of T ,
the individual multipole expansion coefficients at any fixed R = R0 spatial location
decrease as

φ`
m(T,R0) ∼ T−n , (36)

where n is a positive integer, the value of which may depend on all the involved
parameters; i.e., in general, it has the functional form n = n(s, `,m, `′).

3.3.1 Earlier analytic and numerical results on the decay rates

In studying the tail behavior the functional form of the decay rate n = n(s, `,m, `′)
is the center of interest. In interpreting our numerical findings, we may use as our
reference frames two independent investigations prior to ours. First, we may refer to
the detailed analytic studies carried out by Hod [14]. Second, the accurate numerical
investigations carried out in [11] provide us important clues concerning the functional
dependence of the decay rates.

Both of these investigations have some limitations in their scopes. For instance,
the decay rates determined in [14] by using some Green’s-function-based analytic
arguments apply only to purely dynamical initial data; i.e., no decay rates are derived
therein for static initial data. It is worth also mentioning that—based on analogous
analytic investigations carried out in [11] (see, in particular, Appendix B therein)—in
certain (though very limited) subcases, these estimates of Hod were claimed to be
imprecise. The numerical studies in [11] were also somewhat restricted, as apart from
a few special cases, they were limited to axisymmetric configurations.

Despite the slight limitations in their scopes—as the aforementioned investiga-
tions are also complementary to each other—they provide us important guidance in
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carrying out and interpreting our numerical results. Below, we summarize the most
important findings reported in [11,14]. In particular, for purely dynamical initial data
the pertinent results obtained by Green’s-function-based analytic arguments and by
numerical simulations can be summarized as follows:

(1) At the horizon R = R+,

n|R+ =


`′ + `+ 3 + α , if `′ = `0,

`′ + `+ 3 + α− δ , if `′ = `0 + 1,

`′ + `+ 1 + α , if `′ > `0 + 1 ,

(37)

where `0 = max{|m|, |s|} is the lowest allowed value of ` for given s and m, and
α = 0 in all cases except if s > 0 and m = 0 when α = 1. We find δ = 1 in the
analytic investigations of Hod [14] but numerical results in [11] suggest that at
least in the case m = 0, the correct value is δ = 0.

(2) At finite intermediate spatial locations with R+ < R < 1, the values of n can
be deduced from (37) by the substitution of α = 0, i.e.,

n|R =


`′ + `+ 3 , if `′ = `0,

`′ + `+ 3− δ , if `′ = `0 + 1,

`′ + `+ 1 , if `′ > `0 + 1 .

(38)

Similarly, as in (37) δ = 1 in [14]; however, in this case, in Appendix B of [11]
Harms et al. pointed out a missed case in the argument of Hod, and as a result,
δ = 0 when m = 0. This correction is also consistent with the numerical results
of [11].

(3) At R = 1, representing future null infinity I +,

n|R=1 =

`− s+ 2 + γ , if `′ ≤ `+ 1 ,

`′ − s , if `′ > `+ 1 ,
(39)

where γ = 0 in all cases except ifm = 0, `′ = `0+1, and ` = `0 when γ = 1. With
vanishing γ, (39) reproduces the result of Hod [14]; nevertheless, in Appendix
B of [11] the authors pointed out a missed case in the corresponding argument
of [14], necessitating the inclusion of γ in (39). This correction was also verified
numerically in [11].
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Although the numerical results presented in [11] are mostly for axisymmetric config-
urations, there are two sets of decay exponents gained from nonaxisymmetric purely
dynamical initial data with s = 0, m = 1 and s = −2, m = 2, respectively. The
exponents for s = 0, m = 1 and s = −2, m = 2 are in agreement with the predictions
of [13, 14].

In the case of static initial data, we may only refer to the empirical results in [11]
where, as mentioned above, the functional forms are limited to axially symmetric
configurations with m = 0. The pertinent findings in [11] can be summarized as
follows:

(1’) At the horizon R = R+,

n|R+ =

`′ + `+ 3 + α , if `′ = |s| ,
`′ + `+ 2 + α , if `′ > |s| ,

(40)

where now α = 0 for s = 0 and α = 1 otherwise.

(2’) At any finite intermediate spatial location with R+ < R < 1, the values of n
can be given as in (40), with the distinction that α = 0 in all possible cases,
i.e.,

n|R =

`′ + `+ 3 , if `′ = |s|
`′ + `+ 2 , if `′ > |s| .

(41)

(3’) At R = 1,

n|R=1 =

`− s+ 2 , if `′ ≤ ` ,

`′ − s+ 1 , if `′ > ` .
(42)

As both the analytic and numerical setups outlined in the previous sections allow
us to study nonaxisymmetric configurations, one of our main motivations in this paper
is, besides verifying (40)–(42), if possible, to deduce the corresponding generalizations
of these relations.

3.3.2 The local power index

As mentioned above, the excited modes following a long-lasting quasinormal ringing
phase all end up in a power-law decay φ`m ∼ T−n [11, 14, 19] as depicted in Fig. 1.
The question is then how to determine the specific value of n. In practice, the value of

13
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Figure 1: For the specific choice of excitation with multipole parameters s = −1, `′ =
1,m = 0, the time dependence of the ` = 1 mode is depicted at the outer horizon R = R+

at the R = 1 line representing future null infinity and at some intermediate R = const
locations. At each fixed spatial location, the initial long-lasting quasinormal oscillatory
phase is supplemented by a specific power-law decay corresponding to some integer rate n.

the decay rate n—for each specific mode—is approximated by the local power index
(LPI) µ determined as

µ =
∂ ln |φ|
∂ lnT

= T · Re(φ) ·Re(φT ) + Im(φ) · Im(φT )

(Re(φ))2 + (Im(φ))2
, (43)

where, for simplicity, the multipole indices ` and m of φ`m are suppressed. Note that,
just as the decay rate n, the local power index µ also depends on the spatial location
as well as on the multipole indices s, `,m, and `′ of the involved modes [11,19].

4 Numerical results
The discussions up to this point are valid for any linear field of spin s satisfying the
homogeneous Teukolsky master equation on a Kerr black hole background. In this
section, considerations will be restricted to the numerical investigations of linear fields
of spin s = ±1,±2, and our numerical findings will be reviewed.
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4.1 More specific settings

4.1.1 The input parameters

In most of our numerical simulations the parameters of the Kerr background were
fixed as M = 1 and a = 0.5. A cutoff in the multipole expansion (32) at `max = 8
was found to be completely satisfactory for achieving the necessary precision. Some
experimentation with doubling `max shows that the accuracy of our results is not
limited by this value. This suggests that the error introduced by radial discretization
and numerical arithmetic is still bigger than the error introduced by this cutoff. In
many of the simulations, the use of 1024 spatial grid points on the [R+, 1] interval
was satisfactory (see Fig. 2), though, in most cases we used 2048, and there were
also cases where the use 4098 spatial grid points was more rewarding. As for the

T

L
P
I

512 grid points between R+ and I +

1024 grid points between R+ and I +

2048 grid points between R+ and I +

1

Figure 2: The T dependence of the LPI of the ` = 1 excited mode is depicted for various
resolutions. The multipole indices of applied static excitation were s = 1, `′ = 1, m = 1. It
is visible that the use of 512 spatial grid points does not even allow us to get a hint of the
correct value of LPI. It is also clearly visible that by increasing the number of involved grid
points the value of µ becomes more accurate.

applied numerical precision, note that in most of our simulations the use of long
double arithmetic was sufficient. Nevertheless, as for negative values of the spin
parameter s, the LPI values were always harder to be determined, and we used the
computationally more expensive quadruple precision in those cases. Unfortunately,
for negative s values even the use of quadruple precision could not always guarantee
the required level of precision at late time which, on the other hand, is essential to
draw a conclusive result on the tail behavior. In many cases, the pertinent LPIs could
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not even be determined despite that for positive values of the spin parameter the LPI
values are already sufficiently accurate with the use of long double precision and, in
general, with the use of lower spatial resolution.

4.1.2 Assembling the determined LPIs

In the succeeding subsections, our numerical findings will be reported. First, the
LPIs determined are collected in tables, and then the implications of the observed
phenomena are described briefly.

The tables of LPIs are given for various values of the relevant parameters. In
particular, s = ±1,±2 with exciting modes `′ and excited modes ` both taking (the
allowed) positive integer values from the interval 1 ≤ `′, ` ≤ 5. The values of m will
also be restricted to 0,±1,±2.

In advance of turning to the contents of these tables, note first that concerning
the dependences of the LPIs on the spin parameter s, the following two cases have
significantly different characters. Whenever s < 0, it suffices to determine the values
of µ at the outer horizon R = R+ and at the future null infinity R = 1, as the LPIs
relevant for the intermediate values R+ < R < 1 are exactly the same as those at the
outer horizon R = R+. As opposed to this, whenever s > 0, the LPIs have a higher
variety; i.e., the value of µ at the intermediate location R+ < R < 1 differs from that
at the outer horizon R = R+ though asymptotically the LPI takes the same value
for any intermediate finite locations R+ < R < 1. As it is clearly indicated by the
graphs in Fig. 3, for s > 0, the values of µ have to be monitored not only at the outer
horizon (R = R+) and at future null infinity (R = 1) but for several intermediate
R = const locations as well. Remarkably, the closer the intermediate R value is to
R = R+ or to R = 1, the longer it takes to settle down to the LPI value that is
relevant for pertinent intermediate locations.

In accordance with the above outlined observations, the tables will be structured
as follows: As for negative s (with s = −1 or s = −2), the LPI values at the horizon
and intermediate finite locations are the same, and for each slot labeled by `′ and
`, only the values “µR+” at the horizon and “µI +” at future null infinity will be
indicated by separating them with a vertical line in writing “µR+ |µI + .” As for the
positive s (with s = 1 or s = 2), the LPI values at the intermediate locations, with
R+ < R < 1 differ from that of µR+ and µI + , and we arrange these three values by
separating them with vertical lines in writing “µR+ |µR |µI + .” In practice, the LPI
value indicated in the middle slot will always correspond to the one measured along
the R = 0.88 timeline.

There is various additional information indicated in the succeeding tables. Note
first that in most cases the precise value of the LPIs could be determined in a clean
way by making use of (43) (see also Figs. 1–3). Nevertheless, there were some cases
where the limited accuracy at the very late time did not allow us to draw a clear
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Figure 3: The R dependence of the LPI values is depicted for a mode with multipole indices
s = 1, ` = 1,m = 0 that was yielded by applying a static initial excitation with `′ = 1. The
value of µ at the outer horizon R = R+ is −6, while it is −2 at the R = 1 line representing
future null infinity. It is also clearly indicated that the closer a finite intermediate spatial
location with R+ < R < 1 is to the outer horizon R = R+ or to the R = 1 line representing
future null infinity, the longer it takes to settle down to the pertinent shared LPI value
µ = −5.

conclusion this way. In such cases, instead of using (43), a line fitting on the log-log
plots was applied in order to determine the approximate value of the LPIs relevant for
the pertinent modes. Note that, as the output of this method depends, for instance,
on the choice of the subintervals where the fitting is carried out, the yielded LPI
values have to be taken with some caveats. To warn the reader, the corresponding
LPI values are always indicated by round brackets around the pertinent numbers,
i.e., by writing (µ) instead of µ. We also have to admit that there were cases—
especially for negative values of s—where neither of the above-discussed methods
could be sufficiently conclusive. All these cases will be indicated by filling up the
pertinent slot labeled by the `′ and ` values with a question mark “?.”

4.2 Axially symmetric configurations

Note first that in [11] detailed numerical investigations of the axisymmetric case were
carried out. This gives us the opportunity to compare the observed LPI values and,
thereby, to check the performance and the reliability of our code.

The LPIs obtained for the axially symmetric cases with |s| = ±1,±2 and with
m = 0 are assembled in Table 1 for |s| = ±1 and in Table 2 for |s| = ±2.
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`’ `=1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|8
2 5|4 6|5 7|6 8|(7) 9|?
3 6|5 7|5 8|(5) 9|? 10|?
4 7|6 8|6 9|6 10|? 11|?
5 8|7 9|7 10|7 ?|? ?|?

(a) s = −1, static initial data.

`’ `=1 2 3 4 5

1 6|5|2 7|6|3 8| 7|4 9| 8|5 10| 9 | 6
2 6|5|2 7|6|3 8| 7|4 9| 8|5 10| 9 | 6
3 7|6|3 8|7|3 9| 8|4 10| 9|5 11| 10 |(7)
4 8|7|4 9|8|4 10| 9|4 11|10|? 12| 11 |(7)
5 9|8|5 10|9|5 11|10|5 12|11|5 13|(12)|(7)

(b) s = 1, static initial data.
`’ `=1 2 3 4 5

1 5|4 6|5 7| 6 8 | 7 9|(9)
2 6|5 7|5 8| 6 9 | 7 10|(8)
3 5|4 6|5 7| 6 8 | 7 9| ?
4 6|5 7|5 8|(5) 9 |(7) 10| ?
5 7|6 8|6 9| 6 (10)| ? ?| ?

(c) s = −1, dynamic initial data.

`’ `=1 2 3 4 5

1 6|5|2 7|6|3 8|7|4 9| 8| 5 10| 9 |6
2 7|6|3 8|7|3 9|8|4 10| 9| 5 11| 10 |6
3 6|5|2 7|6|3 8|7|4 9| 8| 5 10| (8)|6
4 7|6|3 8|7|3 9|8|4 10| 9| 5 11| 10 |6
5 8|7|4 9|8|4 10|9|4 11|10|(4) 12|(10)|6

(d) s = 1, dynamic initial data.

Table 1: |s| = 1, m = 0

The most characteristic features which deserve notice are as follows:

1. The values of the LPIs at R+ and at intermediate locations R+ < R < 1 are
always increased by 1 if the value of the excited mode ` is increased by 1.

2. The values of the LPIs at I + do not necessarily increase in an analogous,
strictly monotonous way, though they never decrease either while the value of
` is increased.

3. The above two observations imply that the mode with the lowest possible `
value always decays at the slowest rate, though at I + there may be some other
` modes which are also decaying at the same rate.

4. For s > 0, the value µR+ is always larger by 1 than the LPI at intermediate
locations R+ < R < 1.

5. All observations made in the previous point are in full agreement with the
analytic results and numerical findings in [14] and [11], respectively.

6. For |s| = 2, the most significant distinction is that the first row and the first
column of the tables signified by `′, ` slots are missing, as the corresponding
modes are excluded by the fact that all the spin-weighted spherical harmonics
with ` < max{|s|, |m|} are annihilated by the ð operator.

Note, finally, that in Table 1 there are seven numerically determined LPI values—
they are indicated by boldface (in color by orange)—that differ from those which can
be deduced from the rules laid down in [11, 14]. Notably, the difference is always
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`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|? 9|? 10|?
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(a) s = −2, static initial data.

`’ `=1 2 3 4 5

1 X X X X X
2 X 8|7|2 9| 8|3 10| 9|4 11|10|5
3 X 8|7|2 9| 8|3 10| 9|4 11|10|5
4 X 9|8|3 10| 9|3 11|10|4 12|11|5
5 X 10|9|4 11|10|4 12|11|4 13|12|5

(b) s = 2, static initial data.
`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 8|7 ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(c) s = −2, dynamic initial data.

`’ `=1 2 3 4 5

1 X X X X X
2 X 8|7|2 9|8|3 10| 9|4 11|10|5
3 X 9|8|3 10|9|3 11|10|4 12|11|5
4 X 8|7|2 9|8|? 10| 9|4 11|10|5
5 X 9|8|3 10|9|3 11|10|4 12|11|5

(d) s = 2, dynamic initial data.

Table 2: |s| = 2, m = 0

1. Nevertheless, these seven numbers are all in round brackets indicating that the
corresponding estimates have to be taken with some caveats.

4.3 Nonaxially symmetric configurations

Note that in the nonaxisymmetric scenarios, due to the fact that the spin-weighted
spherical harmonics with ` < max{|s|, |m|} are annihilated by the ð operator the first
row and the first column of the tables signified by the `′, ` slots are always missing
if either |m| = 2 or |s| = 2. Nevertheless, for the sake of easier comparisons between
the axisymmetric and nonaxisymmetric cases, we assemble the LPI values using the
interval 1 ≤ `′, ` ≤ 5, as done previously.

4.3.1 |m| = 1, 2 with static initial data

In this subsection, excitations generated by the |m| = 1, 2 modes with static initial
data are considered. The relevant LPIs are collected in Tables 3–6, and the main
observations concerning them are summarized as follows:

1. Now, even for positive values of s, i.e. for s = 1 and s = 2, the pertinent LPI
values at the horizon and the LPI values at intermediate locations coincide.

2. For any fixed value of s, the LPIs are independent of the sign of m.

3. The LPI values µR+ at the horizon are also independent of the sign of s. As
opposed to this, the LPI values µI + at future null infinity depend on the sign
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`’ `=1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|?
2 5|4 6|5 7|6 8|(7) 9|?
3 6|5 7|5 8|6 9|(6) 10|?
4 7|6 8|6 9|6 10|? 11|?
5 8|7 9|7 10|7 ?|? ?|?

(a) s = −1, m = 1

`’ `=1 2 3 4 5

1 5|5|2 6|6|3 7| 7|4 8| 8|5 9| 9 | 6
2 5|5|2 6|6|3 7| 7|4 8| 8|5 9| 9 | 6
3 6|6|3 7|7|3 8| 8|4 9| 9|5 10| 10 |6
4 7|7|4 8|8|4 9| 9|4 10|10|5 11| 11 |(6)
5 8|8|5 9|9|5 10|10|5 11|11|5 12|(12)|(6)

(b) s = 1, m = 1

`’ `=1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|?
2 5|4 6|5 7|6 8|? 9|?
3 6|5 7|5 8|6 9|? 10|?
4 7|6 8|6 9|6 10|? 11|?
5 8|7 9|7 10|7 ?|? ?|?

(c) s = −1, m = −1

`’ `=1 2 3 4 5

1 5|5|2 6|6|3 7|7|4 8|8|5 9|9|6
2 5|5|2 6|6|3 7|7|4 8|8|5 9|9|6
3 6|6|3 7|7|3 8|8|4 9|9|5 10|10|6
4 7|7|4 8|8|4 9|9|4 10|10|5 11|11|(6)
5 8|8|5 9|9|5 10|10|5 11|11|5 12|(12)|(6)

(d) s = 1, m = −1

Table 3: |s| = 1, |m| = 1 with static initial data

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 8|6 9|(7) 10|?
4 X 8|6 9|6 10|? 10|?
5 X 9|7 10|7 ?|? ?|?

(a) s = −1, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|3 8| 8|4 9| 9|5 10| 10 | 6
3 X 7|7|3 8| 8|4 9| 9|5 10| 10 | 6
4 X 8|8|4 9| 9|4 10|10|5 11| 11 |6
5 X 9|9|5 10|10|5 11|11|5 12|(12)|6

(b) s = 1, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 8|6 9|(7) 10|?
4 X 8|6 9|6 10|? 11|?
5 X 9|7 10|7 ?|? ?|?

(c) s = −1, m = −2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|3 8|8|4 9|9|5 10|10|6
3 X 7|7|3 8|8|4 9|9|5 10|10|6
4 X 8|8|4 9|9|4 10|10|5 11|11|6
5 X 9|9|5 10|10|5 11|11|5 12|(12)|6

(d) s = 1, m = −2

Table 4: |s| = 1, |m| = 2 with static initial data

of s, such that the values of µI + relevant for negative s are always larger by
2 |s| than the pertinent LPI values µI + for positive s.

4. The LPI values µR+ and µI + relevant for the considered nonaxisymmetric case
are pairwise equal to the LPI values at intermediate locations R+ < R < 1 and
µI + relevant for the corresponding axially symmetric configurations (discussed
in the previous section).
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`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|?
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(a) s = −2, m = 1

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 8|3 9| 9|4 10|10|5
4 X 8|8|3 9| 9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5

(b) s = 2, m = 1

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|?
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(c) s = −2, m = −1

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 8|3 9| 9|4 10|10|5
4 X 8|8|3 9| 9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5

(d) s = 2, m = −1

Table 5: |s| = 2, |m| = 1, static initial data

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(a) s = −2, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|8|3 9|9|4 10|10|5
4 X 8|8|3 9|9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5

(b) s = 2, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 8|? 9|? 10|?
4 X 8|7 ?|? ?|? ?|?
5 X 9|8 ?|? ?|? ?|?

(c) s = −2, m = −2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|8|3 9|9|4 10|10|5
4 X 8|8|3 9|9|3 10|10|4 11|11|5
5 X 9|9|4 10|10|4 11|11|4 12|12|5

(d) s = 2, m = −2

Table 6: |s| = 2, |m| = 2, static initial data

4.3.2 |m| = 1, 2 with purely dynamical initial data

The excitations generated by purely dynamical initial data are visibly more interest-
ing. This gets to be transparent, for instance, when `′ = `0 + 1. In this case the
Green’s-function-based argument of Hod [14] was corrected by results in [11], though
only for m = 0. Nevertheless, our findings indicate that corrections are needed also
for m 6= 0. The relevant LPI values are highlighted by boldface (in color: green)
characters in the Tables 7–10.

1. As in other cases, the LPI values at the horizon R+ are always increased at
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`’ `=1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|(8)
2 5|4 6|5 7|6 8|7 ?|(8)
3 5|4 6|5 7|6 8|(7) 9|?
4 6|5 7|5 8|6 9|(7) 10|?
5 7|6 8|6 9|6 (9)|? ?|?

(a) s = −1, m = 1

`’ `=1 2 3 4 5

1 5|5|2 6|6|3 7| 7|4 8| 8|5 9| 9 | 6
2 5|5|2 6|7|3 7|8|4 8|9|5 9|10| 6
3 5|5|2 6|6|3 7|(7)|4 8| ?|5 9| ? |6
4 6|6|3 7|7|3 8| 8|4 9|9|5 10| 10 |6
5 7|7|4 8|8|4 9| 9|4 10|10|(5) 11| 11 |(6)

(b) s = 1, m = 1

`’ `=1 2 3 4 5

1 5|4 6|5 7|6 8|7 9|(8)
2 5|4 6|5 7|6 8|7 9|(8)
3 5|4 6|5 7|6 8|(7) 9|?
4 6|5 7|5 8|6 9|? 10|?
5 7|6 8|6 9|6 10|? ?|?

(c) s = −1, m = −1

`’ `=1 2 3 4 5

1 5|5|2 6|6|3 7|7|4 8|8|5 9|9|6
2 5|5|2 6|7|3 7|8|4 8|9|5 9|10|6
3 5|5|2 6|6|3 7|?|4 8|?|5 9|?|6
4 6|6|3 7|7|3 8|8|4 9|9|5 10|10|6
5 7|7|4 8|8|4 9|9|4 10|10|5 11|11|6

(d) s = 1, m = −1

Table 7: |s| = 1, |m| = 1 with purely dynamical initial data

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 9|6 10|7 11|?
4 X 7|5 8|6 9|? 10|?
5 X 8|6 9|6 10|? 11|?

(a) s = −1, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|3 8| 8|4 9| 9|5 10| 10 | 6
3 X 7|7|3 8| 9|4 9|10|5 10|11 | 6
4 X 7|7|3 8| 8|4 9| ?|5 10| ? |6
5 X 8|8|4 9| 9|4 10|10|5 11|(11)|6

(b) s = 1, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|5 8|6 9|7 10|?
3 X 7|5 ?|6 ?|7 ?|?
4 X 7|5 8|6 9|? 10|?
5 X 8|6 9|6 10|? 11|?

(c) s = −1, m = −2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|3 8|8|4 9|9|5 10|10|6
3 X 7|7|3 8|9|4 9|10|5 10|11|6
4 X 7|7|3 8|8|4 9| ?|5 10| ?|6
5 X 8|8|4 9|9|4 10|10|5 11|?|6

(d) s = 1, m = −2

Table 8: |s| = 1, |m| = 2 with purely dynamical initial data

least by 1 while the value of ` is increased by 1.

2. The LPI values at future null infinity I + do not necessarily increase, though
they never decrease while the value of ` is increased.

3. For any fixed value of s, the LPIs are independent of the sign of m.

4. The LPI values µR+ at the horizon are independent of the sign of the spin
parameter s, with some exceptions when `′ = `0 + 1, ` ≥ `′, |s| = 1, m = 2.
Unfortunately, we do not have the data to check if a similar effect is present
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`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X ?|? ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(a) s = −2, m = 1

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 9|3 9|10|4 10|11|5
4 X 7|7|2 8| 8|3 9| 9|4 10|10|5
5 X 8|8|3 9| 9|3 10|10|4 11|11|5

(b) s = 2, m = 1

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X ?|? ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(c) s = −2, m = −1

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8| 8|3 9| 9|4 10|10|5
3 X 7|7|2 8| 9|3 9|10|4 10|11|5
4 X 7|7|2 8| 8|3 9| 9|4 10|10|5
5 X 8|8|3 9| 9|3 10|10|4 11|11|5

(d) s = 2, m = −1

Table 9: |s| = 2, |m| = 1, purely dynamical initial data

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(a) s = −2, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|9|3 9|10|4 10|11|5
4 X 7|7|2 8|8|3 9|9|4 10|10|5
5 X 8|8|3 9|9|3 10|10|4 11|11|5

(b) s = 2, m = 2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|6 8|7 9|8 10|9
3 X 7|6 ?|? ?|? ?|?
4 X 7|6 8|? 9|? 10|?
5 X 8|7 ?|? ?|? ?|?

(c) s = −2, m = −2

`’ `=1 2 3 4 5

1 X X X X X
2 X 7|7|2 8|8|3 9|9|4 10|10|5
3 X 7|7|2 8|9|3 9|10|4 10|11|5
4 X 7|7|2 8|8|3 9|9|4 10|10|5
5 X 8|8|3 9|9|3 10|10|4 11|11|5

(d) s = 2, m = −2

Table 10: |s| = 2, |m| = 2, purely dynamical initial data

when |s| = 2. Nevertheless, using also Table 5 of [11], it can be seen that the
effect is not present for |s| = 2, m = 2.

5. As above, the LPI values µI + do depend on the sign of s such that the value
of µI + relevant for negative s is always larger by 2 |s| than the LPI value µI +

pertinent to the corresponding positive s.

Concerning the two Green’s-function-based arguments, we draw the following conclu-
sions from our numerical findings:
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6. The LPI values at the horizon µR+ are reassuring that the modifications in [11]
are valid only in the case m = 0. A notable exception is the row `′ = 3 in Table
8-a. There, the data suggest that for ` > 2 a similar modification is needed as
in the m = 0 case.

7. For s > 0, apart from `′ = `0 + 1, the values µR+ and the LPI values at
intermediate locations R+ < R < 1 are always equal to each other. Whenever
`′ = `0 + 1, our LPI values µR at intermediate locations, with the exception
of ` = `0, are systematically larger by 1 than predicted by (38). Again, this
suggests that a correction similar to the one presented in [11] is needed whenever
s > 0, `′ = `0 + 1, and ` > `0.

8. At future null infinity our numerically determined values for µI + are consistent
with the results of [11, 14].

All in all, it appears that in the very limited subcase with `′ = `0 + 1, there are
certain special circumstances where neither the predictions made in [14] nor those
made in [11] are supported by our numerical findings. The corresponding subcase
would definitely desire more thoughtful analytic inspection.

4.4 Energy and angular momentum conservation

As it was shown in [22], to any pair of spin s and −s solutions of the Teukolsky
master equations, there always exist some conserved canonical energy- and angular-
momentum-type currents. Since the corresponding vector fields Ea and Ja are di-
vergence free, i.e.,∇aE

a = 0 and ∇aJ
a = 0, and by construction are complex, they

provide us two complex balance relations as formulated by (31) along with its corre-
spondent yielded by the replacement of Ea by Ja. All in all, the real and imaginary
parts of these two complex balance relations give us four real ones, and these four
together provide us—in addition to the conventional checks such as the numerical
convergence rate—a very important verification of the correctness and robustness of
our numerical results.

In this subsection, first these energy and angular momentum balance relations will
be applied. In particular, in the panels of Fig. 4, the time dependence of the real and
imaginary parts of the numerical errors

δE =

∫
∂Ω

nµE
µ and δJ =

∫
∂Ω

nµJ
µ (44)

are plotted against time. The applied rectangular domain of integration Ω is bounded
by an initial time slice T = Ti and by a running T slice, and also by the null cylinders
at the horizon R = R+ and at future null infinity at R = 1, respectively. Note that on
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analytic grounds, the integrals δE and δJ in the balance relations in (44) should vanish
identically. Accordingly, they have to be (and they are expected to stay) small if the
numerical implementation is correct. It is also important to emphasize that in each

T

R
e(
δE

)

1024
(16×) 2048
(256×) 4096

1(a) The time dependence of the real part Re(δE) of en-
ergy balance relation δE is plotted for three resolutions.
The convergence rate is slightly better than 4.

T

I
m
(δ
E
)

1024
(16×) 2048
(256×) 4096

1(b) The time dependence of the imaginary part Im(δE)
of energy balance relation δE is depicted for three reso-
lutions. The convergence rate is exactly 4.

T

R
e(
δJ

)

1024
(16×) 2048
(256×) 4096

1(c) The time dependence of the real part Re(δJ) of an-
gular momentum balance relation δJ is shown. The con-
vergence rate is seen to be slightly better than 4.

T

I
m
(δ
J
)

1024
(16×) 2048
(256×) 4096

1(d) The time dependence of the imaginary part Im(δJ)
of angular momentum balance relation δJ is shown. The
convergence rate remains close to 4.

Figure 4: The time dependence of the real and imaginary parts of the energy and angular
momentum balance relations δE and δJ are shown, respectively. This is done in each panel
for three different resolutions with 1024, 2048, 4096 spatial grid points. In order to make it
transparent that our numerical implementation, as desired, is of fourth order accurate, the
numerical values of δE and δJ relevant for the resolutions 2048 and 4096 are multiplied by
16 and 256, respectively.

panel of Fig. 4, the aforementioned time dependences are plotted for three different
resolutions, with 1024, 2048, 4096 spatial grid points. In this respect, the panels in
Fig. 4 are not only to demonstrate that the real and imaginary parts of the balance
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relations (29) and (30) hold at a satisfactorily accurate level but also to make it
transparent that our numerical implementation has a fourth order convergence rate—
even in the considered highly complicated expressions deduced from the numerically
determined basic variables—as it should happen as a fourth order accurate Runge-
Kutta time integrator is applied in the T − R section. To make this transparent,
the numerical values of δE and δJ relevant for the resolutions 2048 and 4096 are
multiplied by 16 and 256, respectively.

If the numerical values of δE and δJ were exactly proportional to the fourth power
of the grid spacing δR, then the lines corresponding to the three different resolutions
shown in the panels of Fig. 4 would exactly coincide. The apparent deviation from
this prediction, which is very small in Fig. 4b but larger in the other three panels,
can be explained by higher order corrections to the leading ∝ (δR)4 power law. In
particular, the assumption that the dependence of the numerical values of δE and δJ
on δR has the functional form c4(δR)4 + c5(δR)5 + . . . , where c4 and c5 are suitable
constants, implies that the distance between the lines for the 2048 and 4096 grid
points should be approximately half the distance between the lines for the 1024 and
2048 grid points, which can indeed be seen in Fig. 4.

The conserved currents Ea and Ja can also be used to analyze transport in the
energy- and angular-momentum-type quantities, and we shall do so in the rest of this
subsection. Nevertheless, in advance of doing so it is important to emphasize that
these currents, apart from the spin-weight s = 0 case, are not defined for individual
fields but only for a pair of spin-weight s and −s solutions to the Teukolsky master
equation. This restriction applies even though the spin-weight s and −s solutions can
be generic; i.e., they could completely be independent of each other.

In the panels in Fig. 5, the time dependence of the real and imaginary parts of the
total energy and angular momentum,

ET =

∫
ΣT

n(T )
a Ea

√
|hT | dR dϑ dϕ and JT =

∫
ΣT

n(T )
a Ja

√
|hT | dR dϑ dϕ , (45)

where ΣT signifies the T = const slices, as well as the time dependence of the integrals
of the corresponding flows

FE =

∫
CylR,T

n(R)
a Ea

√
|hR| dT dϑ dϕ and FJ =

∫
CylR,T

n(R)
a Ja

√
|hR| dT dϑ dϕ , (46)

where the latter integrals are supposed to be evaluated at the cylinders R+ × [Ti, T ]
at the black hole event horizon and RI + × [Ti, T ] at future null infinity, are plotted,
respectively. These plots are showing only the initial parts of the time evolution;
nevertheless, as 99% of the transport processes happens in the corresponding initial
intervals, these plots are informative about the characteristic features.
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T

Re(ET )
Re(FE)|R+

Re(FE)|I +

1(a) The time dependence of the real part Re(ET ) of the
total energy ET , along with the real part Re(FE) of the
integrated energy flow FE , evaluated at R+ and at I +,
is plotted. It is visible that first about half of the energy
stored by the initial data is leaving the domain of outer
communication via the black hole event horizon. The
other half leaves later through future null infinity I +.

T

Im(ET )
Im(FE)|R+

Im(FE)|I +

1(b) The imaginary part Im(ET ) of the total energy ET ,
along with the imaginary part Im(FE) of the integrated
energy flow FE , evaluated at R+ and at I +, is plotted
against time. Two spikes are visible on this figure which
occur exactly when the pulses go through the event hori-
zon and through future null infinity. Apart from these
spikes the transport processes here remain small scale.

T

Re(JT )
Re(FJ)|R+

Re(FJ)|I +

1(c) The time dependence of the real part Re(JT ) of
the total angular momentum JT , along with the real
part Re(FJ ) of the integrated energy flow FJ , evaluated
at R+ and at I +, is plotted. The angular momentum
drops significantly by the loss through the black hole
event horizon which is followed by some negative flow
through null infinity. Notably, there is more angular mo-
mentum in the system at T = 10 than around T = 5.

T

Im(JT )
Im(FJ)|R+

Im(FJ)|I +

1(d) The imaginary part Im(JT ) of the total angular
momentum JT , along with the imaginary part Im(FJ )
of the integrated energy flow FJ , evaluated at R+ and
at I +, is plotted against time. The losses here are of
opposite sign w.r.t. the real part; i.e., the flow through
the black hole event horizon is negative whereas the flow
through null infinity is positive. These losses almost
emptying the imaginary part of the total angular mo-
mentum.

Figure 5: The time dependence of the real and imaginary parts of the total energy ET and
total angular momentum JT , as well as those of the corresponding flows FE and FJ are
depicted. Though only the initial parts of the time evolution are shown in these plots, they
make transparent about 99% of the pertinent transport processes.

Even though the spin-weight s and −s solutions to the Teukolsky master equation
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may be completely independent in our simulations, they were yielded by applying
exactly the same R-dependent bumpy profile (35), with exactly the same parameters
as described in Sec. 3.2. Probably for this reason, there is a striking similarity between
the real parts of the energy- and angular-momentum-type transport processes, as
depicted in Figs. 5(a) and 5(c) and between the corresponding figures (5) and (7)
in [19] depicting the true energy and angular momentum transport processes relevant
for a single spin-weight zero scalar field investigated in detail in [19].

In closing this subsection, note that it is obviously interesting to know what hap-
pens with the conserved currents and with their integrals under the flip a 7→ −a of the
sign of the rotation parameter of the background Kerr spacetime. Remarkably, only
the following two flippings are induced by this transformation. Notably, a flipping
happens in the signs of the imaginary part Im(ET ) of the total energy ET and with
the imaginary part Im(FE) of the integrated energy flow FE evaluated at R+ and
at I +, whereas a completely analogous flipping happens in the real part Re(JT ) of
the total angular momentum JT and with the real part Re(FJ) of the integrated
energy flow FJ evaluated at R+ and at I +. The sign flips in the real part of the
angular momentum integrals seem to be in accordance with intuition as under the
flip a 7→ −a of the rotation parameter the background Kerr black hole gets to be
counterrotating with respect to the spin s and −s solutions of the Teukolsky master
equation.

5 Final remarks
The time evolution and the late-time behavior of spin s fields with s = ±1,±2 on a
fixed Kerr background was examined numerically. The applied mathematical setup
incorporated the techniques of conformal compactification and the hyperbolic initial
value formulation of these spin s fields. A new code was introduced that was de-
veloped based on the two-parameter foliation of the Kerr background by topological
two-spheres as determined by the Boyer-Lindquist t = const and r = const level
surfaces. The angular dependences along the foliating two-surfaces were treated by
applying multipole expansions of the basic variables in terms of spin-weighted spheri-
cal harmonics, by which the applied method gets to be fully spectral in these angular
directions. In the complementary time-radial section, the method of lines in a fourth
order accurate Runge-Kutta time integration scheme was applied.

The time evolution of purely static and purely dynamical initial data were inves-
tigated. The asymptotic decay rates were evaluated at the black hole event horizon,
in the domain of outer communication and at future null infinity. This was done sys-
tematically by scanning through a significantly wide range of the input and output
parameters `′,m, s, `. The deduced decay rates were compared to those which were
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deduced prior to our investigation. In particular, our most important findings can be
summarized as follows by referring to the results covered by [11–14].

As noted earlier, in the case of static initial data, we compared our numerical re-
sults with those deduced also numerically in [11]. The only limitation in doing so was
that (apart from a few exceptions) the decay exponents were determined in [11] only
for axially symmetric configurations with m = 0. Remarkably, for purely static initial
data, if |s| is replaced by `0 = max{|m|, |s|} everywhere in (40) and (41)—these were
deduced in [11] for the m = 0 case—the yielded relations [see (47) and (48) below]
are automatically valid to the fully general (not necessarily axially symmetric) con-
figurations. Accordingly, for static configurations, our findings—these are collected
in Tables 1-a, 1-b, 2-a, 2-b, for axisymmetric configurations with m = 0 and in Tables
3–6 for nonaxisymmetric configurations with m 6= 0—can be summarized as follows:

(ST1) At the horizon R = R+

n|R+ =

`′ + `+ 3 + α , if `′ = `0 ,

`′ + `+ 2 + α , if `′ > `0 ,
(47)

where—now as it was in (37)—`0 = max{|m|, |s|} and α = 0 in all cases except
if s > 0 and m = 0, when α = 1.

(ST2) At any finite intermediate spatial location with R+ < R < 1,

n|R =

`′ + `+ 3 , if `′ = `0 ,

`′ + `+ 2 , if `′ > `0 .
(48)

(ST3) Finally, at future null infinity signified by R = 1,

n|R=1 =

`− s+ 2 , if `′ ≤ ` ,

`′ − s+ 1 , if `′ > ` .
(49)

As for the solutions of the Teukolsky master equation starting with purely dy-
namical initial data, as indicated earlier, the situation gets more involved at least
in certain subcases. The relevant data are collected in Tables 1-c, 1-d, 2-c, 2-d for
axisymmetric and in Tables 7-10 for nonaxisymmetric initial data.

(PD1) For instance, at the horizon with R = R+, for m 6= 0 and `′ = `0 + 1 the
decay rates based on our numerical findings do not fully agree with the former
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predictions. Our results can be described by the following modification of (37):

n|R+ =


`′ + `+ 3 + α , if `′ = `0 ,

`′ + `+ 3 + α− δ̃ , if `′ = `0 + 1 ,

`′ + `+ 1 + α , if `′ > `0 + 1 ,

(50)

where `0 = max{|m|, |s|}, α = 0 in all cases except if s > 0 and m = 0, when
α = 1, and also δ̃ = 0 if m = 0 or m = 2 with s = −1 and ` > `0, δ̃ = 1 in all
other cases.

(PD2) At finite intermediate spatial locations with R+ < R < 1, we also found that
there are differences between (38) and our results if `′ = `0 + 1 and m 6= 0.
Again, this difference can be taken into account by a minor modification of δ:

n|R =


`′ + `+ 3 + α , if `′ = `0 ,

`′ + `+ 3 + α− δ̂ , if `′ = `0 + 1 ,

`′ + `+ 1 + α , if `′ > `0 + 1 ,

(51)

where `0 and α are as above, and also δ̂ = 0 if m = 0 or m 6= 0 but ` > `0 and
δ̂ = 1 otherwise.

(PD3) At R = 1 representing future null infinity I +, all of our pertinent numerical
findings support the predictions of (39); i.e., the following rules apply

n|R=1 =

`− s+ 2 + γ , if `′ ≤ `+ 1 ,

`′ − s , if `′ > `+ 1 ,
(52)

where γ = 0 in all cases except if m = 0, `′ = `0 + 1, and ` = `0, when γ = 1.

The apparent dependence of the decay rate on the value of the azimuthal param-
eter m at the horizon R = R+ and intermediate locations R+ < R < 1 indicate that
there may be interesting features which will definitely desire further investigation. To
clear this up, along with possibly some other interesting issues is, however, out of the
scope of the present paper and they are left for future studies.
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Appendixes
The succeeding appendixes are to provide the explicit form of the expressions men-
tioned and applied in the main part of the discussions of the foregoing sections. Also,
we give a brief summary of the use of spin-weighted spherical harmonics.

A The homogeneous TME
As mentioned in Sec. 2.2, after regularization, the homogeneous Teukolsky master
equation takes the form

∂TTΦ(s) =
1

A + B · Y 0
2

[
cRR · ∂RRΦ(s) + cTR · ∂TRΦ(s) + cTϕ · ∂TϕΦ(s) + cRϕ · ∂RϕΦ(s)

+ cϑϑ · ððΦ(s) + cT · ∂TΦ(s) + i cTy Y
0

1 · ∂TΦ(s) + cR · ∂RΦ(s) + cϕ · ∂ϕΦ(s) + c0 · Φ(s)
]
.

All the involved R-dependent coefficients are listed below. In particular, A and B
are

A = a + b/3 and B =
4

3

√
π

5
b , where (A.1)

a =− 4R
(
A0 + A1R + A2R

2 + A3R
3 + A4R

4 + A5R
5 + A6R

6
)
, (A.2)

A0 = −M , (A.3)
A1 = a2 − 1 + 4a2M − 5M + 4a2M2 − 8M2 , (A.4)
A2 = a2 − 1 + 4a2M − 11M + 4a2M2 − 24M2 − 16M3 , (A.5)
A3 = −4a2M +M − 8a2M2 − 8M2 − 16M3 , (A.6)
A4 = −4a2M − 8a2M2 + 8M2 + 16M3 , (A.7)
A5 = 4a2M2 + 16M3 , (A.8)
A6 = 4a2M2 , (A.9)

b = a2(1 +R)(R2 + 1)2. (A.10)
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The rest of the involved coefficients are

cRR =
1

4
(1 +R)(R2 − 1)2(cRR0 + cRR1R + cRR2R

2 + cRR3R
3 + cRR4R

4) , (A.11)

cRR0 = a2 , (A.12)
cRR1 = −4M , (A.13)
cRR2 = −2(a2 − 2) , (A.14)
cRR3 = 4M , (A.15)
cRR4 = a2 , (A.16)

cTR = 2R (1 +R)
[
cTR0 + cTR1R + cTR2R

2 + cTR3R
3 + cTR4R

4 + cTR5R
5 + cTR6R

6
]
,

(A.17)
cTR0 = −a2 − 2a2M + 2M , (A.18)
cTR1 = 4M(1 + 2M) , (A.19)
cTR2 = 2(a2 − 2 + 3a2M − 4M) , (A.20)
cTR3 = −4M(1 + 4M) , (A.21)
cTR4 = −a2 − 6a2M + 6M , (A.22)
cTR5 = 8M2 , (A.23)
cTR6 = 2a2M , (A.24)

cTϕ = 4aR(1 +R)(1 +R2)(−1− 2M + 2MR2) , (A.25)
cRϕ = a(1 +R2)(R− 1)2(R + 1)3 , (A.26)
cϑϑ = (1 +R)(R2 + 1)2 , (A.27)
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cT =
1

1 +R2

(
cT0 + cT1R + cT2R

2 + cT3R
3

+ cT4R
4 + cT5R

5 + cT6R
6 + cT7R

7 + cT8R
8 + cT9R

9
)
, (A.28)

cT0 = a2 + 2a2M − 2M − 2Ms , (A.29)
cT1 = a2 + 2a2M − 2M − 4s− 6Ms− 8M2s , (A.30)
cT2 = 5a2 − 4 + 12a2M − 14M + 4s+ 6Ms− 8M2s , (A.31)
cT3 = 5a2 − 4 + 12a2M − 30M − 48M2 − 8s+ 2Ms− 8M2s , (A.32)
cT4 = −5a2 + 4− 24a2M + 10M − 48M2 + 8s+ 18Ms− 8M2s , (A.33)
cT5 = −5a2 + 4− 24a2M + 26M + 32M2 − 4s+ 22Ms+ 8M2s , (A.34)
cT6 = −a2 + 4a2M + 6M + 32M2 + 4s+ 10Ms+ 8M2s , (A.35)
cT7 = −a2 + 4a2M + 6M + 16M2 + 14Ms+ 8M2s , (A.36)
cT8 = 2M(3a2 + 8M + 4Ms) , (A.37)
cT9 = 6a2M , (A.38)

cTy =− 4a(1 +R)(R2 + 1)2s

√
π

3
, (A.39)

cR =
1

2R(1 +R2)

(
R− 1

)(
R + 1

)2
(
cR0 + cR1R + cR2R

2 + cR3R
3 + cR4R

4

+ cR5R
5 + cR6R

6 + cR7R
7 + cR8R

8
)
, (A.40)

cR0 = a2 , (A.41)
cR1 = −2M(1 + s) , (A.42)
cR2 = 3a2 + 4s , (A.43)
cR3 = −2M(7 + s) , (A.44)
cR4 = −7a2 + 12 + 8s , (A.45)
cR5 = 2M(5 + s) , (A.46)
cR6 = a2 + 4 + 4s , (A.47)
cR7 = 2M(3 + s) , (A.48)
cR8 = 2a2 , (A.49)

cϕ =
1

R
a(R− 1)(R2 + 1)2(R + 1)2 , (A.50)

c0 =
1

2R2
(R− 1)(R2 + 1)2(R + 1)2(−a2 + 2MR + a2R2 + 2MRs) . (A.51)
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B Spin-weighted spherical harmonics
One of the advantages of applying the multipole expansion

Φ(s)(T,R, ϑ, ϕ) =
∞∑
`=|s|

l∑
m=−l

φ`
m(T,R) · sY`m(ϑ, ϕ) (B.1)

in terms of spin-weight s spherical harmonics sY`
m is that all the angular derivatives

in (22) can be evaluated analytically. This is done by making use of the ð and ð
operators which act on a function f of spin-weight s as

ðf = − sinsϑ

(
∂ϑ +

i

sinϑ
∂ϕ

)
(sin−sϑ · f) , (B.2)

ðf = − sin−sϑ

(
∂ϑ −

i

sinϑ
∂ϕ

)
(sinsϑ · f) . (B.3)

It is straightforward to check that for their commutator, the relation

(ðð− ðð)f = 2 s f (B.4)

holds. It is also important to mention that all the ϑ derivatives present in the Laplace-
Beltrami operator relevant for spin s fields are contained by the operator ðð as the
relation

ððf = ∂ϑϑf + cotϑ ∂ϑf +
1

sin2 ϑ
∂ϕϕf + 2 i s

cotϑ

sinϑ
∂ϕf + s (1− s cot2 ϑ)f (B.5)

can be seen to hold.
In addition, the spin-weighted spherical harmonics sY`

m are eigenfunctions of the
operators ðð and ∂ϕ and their spin weight is shifted by ð and ð, as they satisfy

ð sY`
m =

√
(`− s)(`+ s+ 1) · s+1Y`

m , (B.6)

ð sY`
m = −

√
(`+ s)(`− s+ 1) · s−1Y`

m , (B.7)

ðð sY`
m = −(`− s)(`+ s+ 1) · sY`m , (B.8)

∂ϕ sY`
m = im · sY`m . (B.9)

Note that as ð `Y`
m = 0 for s = ` and ð −`Y`m = 0 for s = −`, all the spin-weighted

spherical harmonics sY`
m with ` < |s| vanish.

Using these relations, it is also straightforward to check that the spin-weighted
spherical harmonics can be generated by the spin-raising ð and the spin-lowering ð
operators starting with the conventional (zero spin-weight) spherical harmonics Y`m
as

sY`
m =

√
(`− s)!
(`+ s)!

· ðsY`m (B.10)
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if 0 ≤ s ≤ ` and

sY`
m = (−1)s

√
(`+ s)!

(`− s)! · ð
−s
Y`
m (B.11)

if 0 > s ≥ −`. Note finally that the complex conjugation acts as

sY`
m = (−1)s+m−sY`

−m . (B.12)

In virtue of Eq. (22), one of the coefficients involves a multiplication by Y1
0,

whereas a division by the expression A +B ·Y 0
2 must also be performed. Concerning

multiplications, as it was explained in great detail in the appendixes of [8], once we
have the expansion of scalar variables in terms of spherical harmonics, the products
of these variables can easily be evaluated by making use of the Gaunt coefficients
Gm1
`1

m2
`2

m3
`3

=
∫
Y m1
`1
Y m2
`2
Y m3
`3

sinϑ dϑdϕ. Notably, completely analogous arguments ap-
ply when our spin s variables are expanded in terms of spin-weighted spherical har-
monics. The corresponding Gaunt coefficients—which now acquire three additional
spin indices—can be given as

s1s2s3G
m1
`1

m2
`2

m3
`3

=

∫
s1Y

m1
`1
· s2Y m2

`2
· s3Y m3

`3
sinϑ dϑdϕ , (B.13)

which can also be expressed via the Wigner-3j symbols as

s1 s2 s3G
m1
`1

m2
`2

m3
`3

=

√
(2 `1 + 1)(2 `2 + 1)(2 `3 + 1)

4π

×
(

`1 `2 `3

−s1 −s2 −s3

)(
`1 `2 `3

m1 m2 m3

)
. (B.14)

Then, in particular, the product Y`10 · sY`2m can be evaluated as

Y`1
0 · sY`2m =

`1+`2∑
`3=|`1−`2|

(−1)s+m · 0 s−sG
0
`1
m
`2
−m
`3
· sY`3m . (B.15)

As for the division by the term A + B · Y 0
2 , note that by following the ideas

introduced in [8] (see also [15, 19]) the division by this term can also be traced back
to multiplications. The essential observation made in [8] was that the Neumann series
expansion

A−1 =
∞∑
k=0

(1− A)k (B.16)
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can be applied to do so. In particular, by replacing A with 1+x, where x = B/A ·Y 0
2 ,

and by choosing the value kmax sufficiently large—as the term B/A ·Y 0
2 for any value

of ϑ is much smaller than 1—the approximate relation

[
1 + (B/A ) · Y 0

2

]−1 ≈
kmax∑
k=0

[
− (B/A ) · Y 0

2

]k (B.17)

holds. Note that in practice numerical precision with an error tolerance of 10−20 does
not require the use of more than kmax = 12 terms in this series.

C The conserved currents
In order to evaluate the energy and angular momentum balance relations we need the
explicit form of

√
|hT |n(T )

a Ea,
√
|hR|n(R)

a Ea,
√
|hT |n(T )

a Ja and
√
|hR|n(R)

a Ja. The
following subsections list the explicit form of the implemented expressions.

C.1 Energy density

√
|hT |n(T )

a Ea =
(
cTT + cTTyY2

0
)
∂TΦ(s)∂TΦ(−s) + cϑϑ

(
Φ(s)ððΦ(−s) + Φ(−s)ððΦ(s)

)
+ cRϕ

(
∂RΦ(s)∂ϕΦ(−s) + ∂ϕΦ(s)∂RΦ(−s))+ cRR∂RΦ(s)∂RΦ(−s)

+ (cR + s cRs)Φ
(s)∂RΦ(−s) + (cR − s cRs)Φ(−s)∂RΦ(s)

+ cϕ
(
Φ(s)∂ϕΦ(−s) + Φ(−s)∂ϕΦ(s)

)
+ c0Φ(s)Φ(−s) , (C1.1)
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where

cTT =
1

6(1 +R)R2(1 +R2)

(
a2(1 +R)[−1 + 2(5 + 24M + 24M2)R2

− (1 + 48M + 96M2)R4 + 48M2R6] + 12R[−(R(1 +R))

+M(−1− 5R− 11R2 +R3) + 8M2R(−1− 3R−R2 +R3)

+ 16M3(−1 +R)R2(R + 1)2]
)
, (C1.2)

cTTy =− 2a2(1 +R2)

3R2

√
π

5
, (C1.3)

cϑϑ =
1 +R2

4R2
, (C1.4)

cRϕ =− a(R2 − 1)2

4R2
, (C1.5)

cRR =− (R2 − 1)2(4R(R +M(R2 − 1)) + a2(R2 − 1)2)

8R2(1 +R2)
, (C1.6)

cR =− (R2 − 1)(a2(R2 − 1)2 + 2R(2R + 2M(R2 − 1)))

8R3
, (C1.7)

cRs =− (R2 − 1)(4R2 − 2MR + 2MR3)

8R3
, (C1.8)

cϕ =− a(−1 +R4)

4R3
, (C1.9)

c0 =− (1 +R2)(4R(R +M(R2 − 1)) + a2(R2 − 1)2)

8R4
. (C1.10)

C.2 Energy current

√
|hR|n(R)

a Ea = cTT ∂TΦ(s)∂TΦ(−s) + cTR
(
∂TΦ(s)∂RΦ(−s) + ∂TΦ(−s)∂RΦ(s)

)
+ cTϕ

(
∂TΦ(s)∂ϕΦ(−s) + ∂ϕΦ(s)∂TΦ(−s))

+ (cT + s cTs)Φ
(s)∂TΦ(−s) + (cT − s cTs)Φ(−s)∂TΦ(s) , (C2.1)
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where

cTT =
1

R +R3
(a2(−1 + 2M(R2 − 1))(R2 − 1)2

+ 2(−2R2 + 4M2R(R2 − 1)2 +M(1 + 4R + 3R2)(R− 1)2)) , (C2.2)

cTR =
(R2 − 1)2(4R(R +M(R2 − 1)) + a2(R2 − 1)2))

8R2(1 +R2)
, (C2.3)

cTϕ =
a(R2 − 1)2

4R2
, (C2.4)

cT =
(R2 − 1)(a2(R2 − 1)2 + 2R(2R + 2M(R2 − 1)))

8R3
, (C2.5)

cTs =
(R2 − 1)(4R2 − 2MR + 2MR3)

8R3
. (C2.6)

C.3 Angular momentum density

√
|hT |n(T )

a Ja =
(
cTϕ + cTϕyY2

0
) (
∂TΦ(s)∂ϕΦ(−s) + ∂ϕΦ(s)∂TΦ(−s))

+ cRϕ
(
∂RΦ(s)∂ϕΦ(−s) + ∂ϕΦ(−s)∂RΦ(s)

)
+ cϕϕ∂ϕΦ(s)∂ϕΦ(−s)

+
(
cϕ + s (cϕs + cϕyiY1

0)
)

Φ(s)∂ϕΦ(−s)

+
(
cϕ − s (cϕs + cϕyiY1

0)
)

Φ(−s)∂ϕΦ(s) , (C3.1)

where

cRϕ =
1

2(R +R3)

(
a2(−1 + 2M(R2 − 1))(R2 − 1)2

+ 2(−2R2 + 4M2R(R2 − 1)2 +M(1 + 4R + 3R2)(R− 1)2)
)
,

(C3.2)

cTϕ =
1

6(1 +R)R2(1 +R2)

(
a2(1 +R)(−1 + 2(5 + 24M + 24M2)R2

− (1 + 48M + 96M2)R4 + 48M2R6) + 12R[−R(1 +R)

+M(−1− 5R− 11R2 +R3) + 8M2R(−1− 3R−R2 +R3)

+ 16M3(−1 +R)R2(R + 1)2]
)
, (C3.3)

cTϕy =− 2a2(1 +R2)

3R2

√
π

5
, (C3.4)

cϕϕ =
2a(−1 + 2M(R2 − 1))

R
(C3.5)
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cϕ =
1

2R2(R2 − 1)

(
a2(R2 − 1)2(2M(R2 − 1)− 1)

+2(4M2R(R2 − 1)2 − 2R2 +M(R− 1)2(1 + 4R + 3R2))
)
, (C3.6)

cϕs =
(4M2(R− 1)R(R + 1)2 +M (7R3 + 5R2 − 3R− 1) + 2(R− 1)R)

2R2(R + 1)
, (C3.7)

cϕy =− a (R2 + 1)

R2

√
π

3
. (C3.8)

C.4 Angular momentum current

√
|hR|n(R)

a Ja = cRϕ
(
∂RΦ(s)∂ϕΦ(−s) + ∂RΦ(−s)∂ϕΦ(s)

)
+ cϕϕ∂ϕΦ(s)∂ϕΦ(−s)

+ cTϕ
(
∂TΦ(s)∂ϕΦ(−s) + ∂ϕΦ(s)∂TΦ(−s))

+ (cϕ + s cϕs)Φ
(s)∂ϕΦ(−s) + (cϕ − s cϕs)Φ(−s)∂ϕΦ(s) , (C4.1)

where

cRϕ =
(R2 − 1)2(4R(R +M(R2 − 1)) + a2(R2 − 1)2)

8R2(1 +R2)
, (C4.2)

cTϕ =
1

2(R +R3)

(
a2(−1 + 2M(R2 − 1))(R2 − 1)2 + 2(−2R2 + 4M2R(R2 − 1)2

+M(1 + 4R + 3R2)(R− 1)2)
)
, (C4.3)

cϕϕ =
a(R2 − 1)2

2R2
, (C4.4)

cϕ =
(R2 − 1)

(
a2 (R2 − 1)

2
+ 2R (2M (R2 − 1) + 2R)

)
8R3

, (C4.5)

cϕs =
(R2 − 1) (2MR3 − 2MR + 4R2)

8R3
. (C4.6)
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