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We consider 3-dimensional isolated horizons (IHs) generated by null curves that form
nontrivial U(1) bundles. We find a natural interplay between the IH geometry and the U(1)-
bundle geometry. In this context we consider the Petrov type D equation introduced and
studied in previous works [1–4]. From the 4-dimensional spacetime point of view, solutions to
that equation define isolated horizons embeddable in vacuum spacetimes (with cosmological
constant) as Killing horizons to the second order such that the spacetime Weyl tensor at the
horizon is of the Petrov type D. From the point of view of the U(1)-bundle structure, the
equation couples a U(1)-connection, a metric tensor defined on the base manifold and the
surface gravity in a very nontrivial way. We focus on the U(1)-bundles over 2-dimensional
manifolds diffeomorphic to 2-sphere. We have derived all the axisymmetric solutions to
the Petrov type D equation. For a fixed value of the cosmological constant they set a 3-
dimensional family as one could expect. A surprising result is, that generically our horizons
are not embeddable in the known exact solutions to Einstein’s equations. It means that
among the exact type D spacetimes there exists a new family of spacetimes that generalize
the properties of the Kerr- (anti) de Sitter black holes on one hand and the Taub-NUT
spacetimes on the other hand.

I. INTRODUCTION

The theory of non expanding horizons (NEH) is often used to describe black holes
[5]. It is, however, far more general and may also be applied to spacetimes containing
cosmological horizons, null boundaries of the conformally completed asymptotically flat
spacetimes [6] or black hole holograph construction of spacetimes about isolated horizons
[7–9]. Properties of NEHs find their analogs in the black hole spacetimes, such as the black
hole ’thermodynamics’ [10], uniqueness theorems [11] and rigidity theorem [12]. The long
term program is to understand conditions satisfied by geometry of NEHs that distinguish
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the horizons of physical black holes. In a case of NEH embeddable in spacetime as a Killing
horizon to the second order, the vacuum Einstein equations (possibly with a cosmological
constant) and the Petrov type D of the spacetime Weyl tensor at the horizon, amount to an
equation on the Riemann geometry induced on the 2-dimensional space of null generators
and the 2-form representing the rotation [1, 13]. The equation and solutions were investi-
gated in the case of horizons which have the structure of a trivial principal fiber bundle.
For rotating solutions, the only allowed topology of a cross-section is that of a 2-sphere
[4]. For bifurcated horizons, the type D equation implies the axial symmetry [3, 14]. All
the axially symmetric solutions were derived [2, 13]. For every value of the cosmological
constant, they form a 2-dimensional family that can be parametrized by the area and an-
gular momentum. In that sense, the equation has the properties of rigidity and no hair so
well known in the global black hole theory [15]. Eventhough the Petrov type D equation
was derived for non-extremal horizons, it is also an integrability condition for the condition
satisfied by the geometry and rotation 1-form potential induced on 2-dimensional spaces of
null generators of extremal Killing horizons to the first order [1, 5, 11]. This condition is
also known as the Near Horizon Geometry (NHG) equation [16, 17]. That relation between
the type D and the NHG equation was used to show that in the case of non-zero genus,
the only solutions to the NHG equation are geometries of constant Gauss curvature and
zero rotation 1-form potential [18].

In this paper we consider the Petrov type D equation and the vacuum Einstein equations
with cosmological constant for IHs of the structure of a nontrivial bundle, the Hopf bundle
or, more generally, the Dirac monopol bundle. Hence, the space of the null generators
is topologically 2-sphere, however there is no global spacelike cross-section. An example
of spacetime containing such horizon is the Taub-NUT spacetime [19]. We derive all the
axisymmetric solutions to the Petrov type D equation. They set a 3-dimensional family
for every value of the cosmological constant. As it could be expected, there emerges a new
parameter - the topological charge times the surface gravity. The final result, however, is
surprising. In the previous, trivial bundle case, the axisymmetric Petrov type D horizons
are embeddable in the Kerr-(anti) de Sitter spacetimes. The generic horizons we find in the
current case turn out not to be embeddable in the known in the literature generalizations
of the Kerr spacetimes. That conclusion is so surprising, because the Kerr-NUT spacetimes
contain horizons of the Petrov type D that are believed to have the Hopf (or Dirac monopol)
bundle structure.

II. ISOLATED HORIZONS OF NONTRIVIAL U(1)-BUNDLE TOPOLOGY

In this section we introduce a general definition of 3-dimensional isolated horizons (IHs)
whose null generators have the structure of nontrivial fibration. While eventually the hori-
zons are surfaces in 4-dimensional spacetimes, their intrinsic structure can be considered on
its own, independently of an embedding. That is what we do in the first subsection below.
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In the second subsection, we explain the 4-dimensional spacetime context of embedded IHs,
the symmetries assumed in this paper, briefly discuss the Einstein constraints and recall
the Petrov type equation. For a detailed derivation of the Petrov type D equation for IHs
see [1]. The derivation is local and applies also to the current case.

In this paper we use the same abstract index notation [20], as in [1]:

• Indices of 4-dimensional spacetime M tensors are denoted by lower Greek letters:
α, β, γ, ... = 1, 2, 3, 4.

• Tensors defined in 3-dimensional space H carry indexes denoted by lower Latin
letters: a, b, c, ... = 1, 2, 3.

• Capital Latin letters A,B,C, ... = 1, 2 are for the tensors defined on the 2-
dimensional space S of the null generators of H.

A. IH structure on a U(1) bundle

A nontrivial bundle structure is a new element introduced in the IH theory in the current
paper. Let

Π : H → S (1)

be a principal fiber bundle with the structure group U(1). Denote by ` the fundamental
vector field on H, that is such that its flow coincides with the action of U(1) on H. We
normalize ` such that the parameter of the flow ranges the interval [0, 2π].

Throughout this paper

dimH = 3. (2)

On H we introduce an IH geometry compatible with the bundle structure. It consists
of:

(i) a degenerate metric tensor gab of the signature 0 + +, such that

`agab = 0 = L`gab; (3)

and
(ii) a covariant derivative ∇a on T (H), torsion free and such that

∇agbc = 0, [L`,∇a] = 0. (4)

The second condition means that ∇a is invariant with respect to the the action of the U(1)
group on H. The same is true about gab due to the second equality in (3) .
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It follows, that

`a∇a`b = κ`b (5)

and through out this paper we are assuming that

κ = const 6= 0. (6)

After assuming the Einstein constraints, the constancy of κ will be a necessary property,
and the not-vanishing means that H is a non-extremal (non-degenerate) IH.

The key ingredient of the covariant derivative (for our paper) is the rotation 1-form
potential ωa defined as follows

∇a`b = ωa`
b, (7)

and by (4) it satisfies

L`ωa = 0. (8)

It follows from (6) that, the 1-form

ω̃ :=
1

κ
ω (9)

is a connection 1-form on the U(1) bundle (1). Indeed, due to (7) and the second eq. (4)
ωa satisfies

`aω̃a = 1, L`ω̃a = 0. (10)

The degenerate metric tensor gab induces on S a (genuine) metric tensor gAB such that gab
is its pullback,

gab = Π∗ab
ABgAB. (11)

The area 2-form ηAB defined on S and corresponding to gAB (and some orientation of
S) may also be pulled back to H,

ηab := Π∗ab
ABηAB. (12)

We use it to define a rotation pseudo scalar Ω,

Ωηab := dωab = κdω̃ab. (13)

It satisfies

`aΩ,a = 0 (14)

hence we consider Ω as a function on S. The rotation 1-form potential ωa can be represented
by, locally defined in a neighborhood of each point x ∈ S, 1-forms ωA such that

dωAB = ΩηAB, (15)

where Ω is a scalar function globally defined and regular on the entire manifold S.
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B. Embedded IHs and the Petrov type D equation

In 4-dimensional spacetime (M, gµν) of the signature −+ ++, every IH (H, `a, gab,∇a)
introduced in the previous subsection is a null surface such that the intrinsic geometry
(gab,∇a) coincides with the spacetime metric tensor gµν and the covariant derivative ∇µ
restricted to T (H) (preserved by ∇µ). Due to the intrinsic symmetries (the second eq. (3)
and the second eq. (4)) IH H can be called a Killing horizon to the first order. Indeed,
there exists an extension t of the vector field ` to a neighborhood of H in M , such that

Ltgµν |H = 0 = [Lt,∇µ]|H . (16)

Throughout this paper we assume that the spacetime metric tensor gµν satisfies the
vacuum Einstein equations:

Gµν + Λgµν = 0, (17)

where Λ is a cosmological constant and Gµν is the Einstein tensor.
The constraints induced on (H, `a, gab,∇a) by Einstein’s equations are soluble explicitly

in the non-extremal case (6) considered in this paper. The degenerate metric tensor gab
and the rotation 1-form ωa can be set freely on H (modulo (3,6,8)), and they determine
the remaining ingredients of ∇a.

Henceforth, about the vector field t (16) and the spacetime Weyl tensor Cµναβ we
assume a stronger condition, namely

LtCµναβ |H = 0. (18)

That property of H may be called a Killing (or stationary isolated) horizon to the second
order. That assumption does not constraint the intrinsic non-extremal IH H geometry
(gab,∇a). Instead, via the Einstein equations, it determines all the components of the
spacetime Weyl tensor at H by gab and ωa. Therefore assumption that the Petrov type of
the Weyl tensor at H is D turns into an equation on (gAB,Ω). We consider that equation
in the next section. However before doing that we would like to briefly give the idea on
the spacetime elements of the problem and sketch the derivation presented in [1].

In the IH framework we use adapted null frames (see [1], Sec. III.B ). Each of them
consists of a real null vector field `µ tangent to H and coinciding thereon with the vector
field tµ (16), another real null vector field nµ orthogonal to a foliation of H by space like
3-sections, and two complex valued vector fields mµ tangent to the foliation. The foliation
and the frame are preserved by the flow generated by the vector field `µ. The Weyl tensor
complex components (see [1], Sec. III.C ) Ψ0, Ψ1, Ψ2 and Ψ3 are automatically guaranteed
to be constant along the null generators ofH (with the first two vanishing). So the condition
(18) is on Ψ4 only. Moreover, in the consequence of the Bianchi identities the components
Ψ3 and now also Ψ4 can be expressed by Ψ2 and its first and second derivatives. Next,
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the Weyl tensor is of the Petrov type D iff it admits two double principal null directions
(PNDs). The vector field `µ is already tangent to a double PND (the vanishing of Ψ0

and Ψ1). Hence, the type D assumption concerns the remaining transversal PNDs. For a
generic type D horizon, the transversal null vector nµ is not a PND for any adapted null
frame. However, the existence of a second double PND turns into an algebraic condition,
namely

3Ψ2Ψ4 − 2Ψ3
2 = 0. (19)

After expressing Ψ3 and Ψ4 by Ψ2 and its derivatives, the equation somewhat magically
takes a compact form. We remind it in the next section.

III. THE PETROV TYPE D EQUATION

Given an IH structure (H, `a, gab,∇a, S), introduced above, the Petrov type D equation
is imposed on the Riemaniann metric gAB and the rotation pseudo-scalar Ω defined on S.
We will also use the Gauss curvature K of gAB,

(2)RAB =: KgAB, (20)

where (2)RAB is the Ricci tensor of the metric tensor gAB. To write the equation we
introduce a complex null co-frame mA such that the metric gAB and area 2-form ηAB take
the following form:

gAB = mAm̄B +mBm̄A, ηAB = i(m̄AmB − m̄BmA). (21)

The Weyl tensor is of the type D along the generator Π−1(x) of the horizon H, if and only
if the following equation, which we refer to as the type D equation, holds true at the point
x ∈ S:

m̄Am̄B(2)∇A(2)∇B
(
K − Λ

3
+ iΩ

)− 1
3

= 0, (22)

where (2)∇A is the torsion free, metric covariant derivative defined by gAB, and the term
in the bracket does not vanish at the point x, namely:

K − Λ

3
+ iΩ 6= 0. (23)

This function is related to the only non-zero invariant (given `) component

Ψ2 = −1

2
(K + iΩ) +

Λ

6
. (24)
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of the type D Weyl tensor, and if that component vanishes, then all the Weyl tensor
vanishes at that point.

We will solve eq. (22) assuming that the base manifold S (1) is diffeomorphic to 2-
sphere,

S = S2. (25)

In that case, all the U(1) bundles are numbered by integers. An integer m corresponding
to H can be calculated from the curvature of the U(1)-connection 1-form ω̃, that passes to
a condition on the rotation pseudo-invariant Ω∫

S2

ΩηAB = 2πmκ =: 2πn. (26)

For each Ω there exist 1-forms ω+ and ω− defined on S2 apart from the southern and
northern pole respectively such that:

dω±AB = ΩηAB. (27)

Incidentally, from the mathematical point of view, the case κ = 1 seems to be the most
interesting. However we do not see any reason implied by GR, that would restrict κ to
that value.

We also assume, that the metric tensor gAB and the rotation pseudo-scalar Ω invariantly
defined on S admit an axial symmetry. Consequently, we choose the coordinates adapted
to the symmetry (Appendix) in which the 2-metric tensor gAB reads:

gABdx
AdxB = R2

(
1

P (x)2
dx2 + P (x)2dϕ2

)
, (28)

where x ∈ [−1; 1], ϕ ∈ [0; 2π] and R is the area parameter [11, 21]. The frame vector and
its dual take the form:

mA∂A =
1

R
√

2

(
P (x)∂x + i

1

P (x)
∂ϕ

)
, m̄Adx

A =
R√
2

(
1

P (x)
dx− iP (x)dϕ

)
. (29)

The above coordinate system is not well defined at x = ±1, therefore to derive the regu-
larity conditions1 we use the relation between the metric (28) and the standard 2-sphere
coordinates, namely:

R2

(
1

P (x)2
dx2 + P (x)2dϕ2

)
= Σ2(θ)

(
dθ2 + sin2 θdϕ2

)
. (30)

1 for more details see Appendix.
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For an axisymmetric scalar function f defined globally on S2 (as one of the functions: K,
Ω and Ψ2) the differentiability condition at the poles x = ±1 reads:

∂θf = 0. (31)

This condition is equivalent to:

P∂xf = 0 (32)

and it will be assumed for functions K and Ω (or in other words for Ψ2). For the metric (28)
to be twice differentiable at the poles the following boundary conditions must be satisfied:

P 2
∣∣
x=±1

= 0, (33)

∂xP
2|x=±1 = ∓2. (34)

The condition (26) boils down to ∫ 1

−1
ΩR2dx = mκ = n. (35)

Eq. (22) in the coordinates adapted to the axial symmetry reads

∂2
xΨ2 = 0, (36)

and its general solution is of the form:

Ψ2 = (c1x+ c2)−
1
3 , (37)

where c1 and c2 are complex constants. Now comparing it to eq. (24) and expressing the
Gaussian curvature in the introduced coordinates yields:

1

(c1x+ c2)3
=

1

4R2
∂2
xP

2 − 1

2
iΩ + Λ′. (38)

This equation can be solved for the values of the complex parameters c1, c2 that satisfy
solubility conditions.

IV. SOLUTION TO THE PETROV TYPE D EQUATION ON THE
NONTRIVIAL BUNDLE TOPOLOGY

In the following section we will solve eq. (38), first for the case in which the constant
c1 vanishes, and later for c1 taking arbitrary (nonzero) complex values. In the case when
c2 vanishes the geometry is not well defined (see below) therefore we will exclude it from
our considerations. We have used a similar approach in [2], where we solved the type D
equation for the trivial bundle that is n = 0.
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A. The solution for vanishing c1

The type D equation (38) with the vanishing complex constant c1 reads:

4R2

c3
2

= ∂2
xP

2 − 2iR2Ω + 4R2Λ′. (39)

where Λ′ (as in [2]) denotes a rescaled cosmological constant:

Λ′ := Λ/6. (40)

Integrating both sides of eq. (39) and using boundary conditions (34) and (35) yields:

c3
2 =

4R2

−2− in+ 4Λ′R2
. (41)

We then find the solution to eq. (39):

P 2 = 1− x2, (42)

and

Ω =
n

2R2
. (43)

Now we find the rotation 1-form potential ω±. Since ω± has to satisfy eq. (27) and the
regularity conditions at x = ±1, namely:

ω+|x=1 = 0 = ω−|x=−1, (44)

it follows that

ω±Adx
A =

n

2
(x∓ 1)dϕ. (45)

Consequently, in case of c1 = 0, solution to the type D equation can be parametrized by
2 parameters: R2 and n. Moreover, if n = 0 then ω± vanishes. The found solution is
embeddable in the Taub-NUT-(anti) de Sitter spacetime which is of the type D and is
defined by the static spacetime metric tensors satisfying the vacuum Einstein equations
with the cosmological constant Λ [19], namely:

ds2 = −Q
ρ2

[
dt− 4l sin2

(
1
2θ
)
dφ
]2

+
ρ2

Q
dr2 + ρ2

(
dθ2 + sin2 θdφ2

)
, (46)

where

ρ2 = r2 + l2; (47)
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Q = r2 − 2Mr − l2 − Λ
(
−l4 + 2l2r2 + 1

3r
4
)
. (48)

Its extension contains Killing horizons, which are parametrized by the roots of the equation:

r2
H − 2MrH − l2 − Λ

(
−l4 + 2l2r2

H + 1
3r

4
H

)
= 0. (49)

Each of such horizons, that is not non-extremal, is one of the type D horizons that we
consider. The 2-metric on the (space of the null generators of) Killing horizon admits
spherical symmetry:

ds2
2 = ρ2

(
dθ2 + sin2 θdφ2

)
(50)

and the relation between cordinates x, ϕ and θ, φ is the following:

x(θ) = − cos θ, ϕ(φ) = φ. (51)

Furthermore, we express the parameters R2 and n in terms of the parameters of the Taub-
NUT horizon, namely r and l. From the comparison of the area of the S2 metrics on the
horizon, we find that:

R2 = r2
H + l2. (52)

The Killing vector field:

ξ = M
∂

∂t
, (53)

on the horizon defines our generator of the null symmetry (we have introduced the factor
M to make the vector field dimensionless as above). It is such that on the horizon:

` = ξ|H . (54)

Next we use the following formula

(ξµξµ);ν |H = −2κξν (55)

to calculate the surface gravity κ on the horizon:

κ =
−M
2rH

(
−Λr4

H + (1− 2Λl2)r2
H + (1− Λl2)l2

r2
H + l2

)
. (56)

In case of the Taub-NUT-(anti) de Sitter metric (46), the 1-form ω̃− reads:

ω̃−Adx
A = − 4l

M
sin2

(
1
2θ
)
dφ. (57)
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Furthermore, we use the obtained expressions for κ (56) and ω̃ (57) and plug them into
(9), (26) and (27) to find the relation between n and the parameters r and l, namely

n =
−4lκ

M
=

2l

rH

(
−Λr4

H + (1− 2Λl2)r2
H + (1− Λl2)l2

r2
H + l2

)
(58)

To conclude, the found horizon for the vanishing c1 is embeddable in the quotient of Taub-
NUT-(anti) de Sitter spacetime by the symmetry: t 7→ t + 2πM and the correspondence
between our parameters and those of the Taub-NUT-(anti) de Sitter horizon is listed in (52)
and (58). The embedding, obviously, is not unique and depends on the chosen symmetry.

B. The solution for arbitrary nonzero c1

Now assuming that neither complex constant vanishes we integrate eq. (38) twice to
obtain:

P 2 = 2R2Re

[
1

c2
1(c1x+ c2)

]
− 2R2Λ′x2 + Cx+D. (59)

Using the boundary conditions (33) and (34) we find integration constants C and D:

C = −2 + 4R2Λ′ + 2R2Re

[
1

c1(c1 + c2)2

]
= −2R2Re

[
1

c1(c2
1 − c2

2)

]
, (60)

D = 2R2Re

[
2c1 + c2

c2
1(c1 + c2)2

]
+ 2R2Λ′ − 2, (61)

Moreover, integrating eq. (38) once and using (34) and (35) yields the relation between
R2, Λ′, n and parameters c1, c2:

R2 =
−2− in

4( c2
(c21−c22)2

− Λ′)
. (62)

The area radius R2 has to be real (and positive), therefore the following equation must be
satisfied:

Im

4
(

c2
(c21−c22)2

− Λ′
)

2 + in

 = 0. (63)

Consequently, we can choose the following parametrization:

c2

(c2
1 − c2

2)2
=

1

γ
− i1

2
n

(
Λ′ − 1

γ

)
, (64)
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where γ is a real parameter. The last equality in (60) yields:

1

2R2
− Λ′ = Re

[(
c1

c2
− 1

)
c2

(c2
1 − c2

2)2

]
(65)

which we use to introduce yet another real parameter η:

c2

c1
=

ηn

4Λ′R2 − 2
+ iη =

1

2
ηn(Λ′γ − 1) + iη, (66)

where we have assumed that:

1− 2Λ′R2 6= 0. (67)

Using such parametrization, the expression for P 2 reads:

P 2 =

(
1− x2

) ((
x− 1

2ηn (1− Λ′γ)
)2

+ η2 + 1−x2
1−Λ′γ

)
(
x− 1

2ηn (1− Λ′γ)
)2

+ η2
. (68)

For n = 0 eq. (68) reduces to the case known from [1, 2], namely:

P 2 =

(
1− x2

) (
η2 (1− Λ′γ)− Λ′γx2 + 1

)
(1− Λ′γ) (x2 + η2)

. (69)

We can now calculate the rotation 1-form potential ω±, just as we previously did for c1 = 0.
Taking the imaginary part of both sides of the type D equation (38) yields:

Ω = Im

 −2

c3
1

(
x+ c2

c1

)3


= Im

2i
(

1− η2
(

1
2n (Λ′γ − 1) + i

)2)
ηγ
(
x+ 1

2ηn (Λ′γ − 1) + iη
)3
 (70)

and therefore

ω± = Im

 i
(

1− η2
(
n
2 (Λ′γ − 1) + i

)2)2

2η (1− Λ′γ)
(
x+ η

(
n
2 (Λ′γ − 1) + i

))2 + iC±

 dφ. (71)

Since ω± satisfies the boundary conditions (44) it follows that:

C± =
1

2η(1− γΛ′)

[
1− η2 +

n2η2

4
(1− γΛ′)2 ∓ nη(1− γΛ′)

]
. (72)
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Taking all into consideration, the family of solutions (for c1 6= 0) to the type D equation
(38) can be expressed in terms of three real parameters: η, γ and n.

In case of:

1− 2Λ′R2 = 0 (73)

we introduce the following parametrization:

c2

(c2
1 − c2

2)2
= −1

2
inΛ′

c2

c1
= −nΛ′

2α
. (74)

It is easy to see that both expressions vanish for n = 0, that is consistent with the result
obtained in [2], in which R2 = 1

2Λ′ case has been excluded for the geometry to be well
defined. The frame coefficient P 2 takes the following form:

P 2 = 1− x2, (75)

and

Ω = −
2α

(
1−

(
nΛ′

2α

)2
)2

(
x− nΛ′

2α

)3 . (76)

The 1-form ω± reads:

ω± =


α

(
1−

(
nΛ′

2α

)2
)2

2Λ′
(
x− nΛ′

2α

)2 + C±

 dϕ, (77)

where

C± = − α

2Λ′

(
1± nΛ′

2α

)2

. (78)

V. SUMMARY

We have considered 3-dimensional IHs (isolated horizons) generated by null curves that
form nontrivial U(1) bundles. In the non-extremal IH case, the rotation 1-form potential
corresponds to a connection on the bundle times the surface gravity. Hence, there is a
natural interplay between the IH geometry and the U(1)-bundle geometry. In this context
we have considered the Petrov type D equation (22) introduced and studied in previous
works ([1–4]). From the 4-dimensional spacetime point of view, solutions of that equation
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define isolated horizons embeddable in vacuum spacetimes (with cosmological constant) as
Killing horizons to the second order such that the spacetime Weyl tensor at the horizon is
of the Petrov type D. From the point of view of the U(1)-bundle structure, the equation
couples a U(1)-connection, a metric tensor defined on the base manifold and the surface
gravity in a very nontrivial way. An example of known spacetime containing an IH of
the nontrivial bundle structure is the Taub-NUT solution. The Killing horizon in that
spacetime has the structure of the Hopf fibration of S3 over S2, and it is of the Petrov
type D (along with all the spacetime). In the current paper we have focused on the U(1)-
bundles over 2-dim manifolds diffeomorphic to 2-sphere. A general bundle of that type
is characterized by an integer topological charge and is mathematically equivalent to the
Dirac monopol, however, the role of the electromagnetic vector potential of the original
Dirac monopole in our case is played by the rotation 1-form potential divided by the surface
gravity. We have derived all the axisymmetric solutions to the Petrov type D equation.
Below we summarize our results. The analysis is followed by our final comments.

The solutions we have derived are determined by the cosmological constant Λ, the area
radius R2, a function P (R and P give rise to the metric (28)), and by the rotation pseudo-
scalar Ω (13). From gAB and Ω one can reconstruct the remaining element of the IH,
namely derivative ∇a (see [1]). The topological charge m (integer) of the U(1)-bundle
structure of the horizon and the surface gravity κ set the parameter n that features in
Table I. The list of (Λ, R2, P,Ω) we have found is divided into three classes. We discuss
them now.

The first class consists of the metric tensors gAB of constant Gaussian curvature

K =
1

R2
(79)

and constant rotation scalar Ω related in the table with n and R2, and is embeddable in
the Taub-NUT-(anti) de Sitter spacetime. The cosmological constant is arbitrary in this
class, and unrelated to K and Ω. Hence, that class is parametrized freely by three real
parameters Λ′, R2 > 0 and n.

Class 2 in the Table I is characterized by the special relation between R2 and Λ =: 6Λ′,

R2 =
1

2Λ′
, (80)

and by the condition

∂AΩ 6= 0. (81)

The class is parametrized by real parameters Λ′, n, α constrained by certain conditions
discussed now. It follows that here we can only consider positive Λ′ for the area radius R2

to be positive:

Λ′ > 0. (82)
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Furthermore, the frame coefficient takes the form (75) and it is clear that it is non-negative
for all x in the domain. However, one has to pay attention to the behavior of Ψ2, eq. (37),
on the domain x ∈ [−1, 1] and require it to be well-defined, which means:∣∣∣∣nΛ′

2α

∣∣∣∣ > 1. (83)

The third class is parametrized by real parameters Λ′, η, γ, n. First, we specify their do-
mains, in which the metric gAB is well-defined and at least 4-times differentiable including
the poles of the sphere. We want the area radius R2 to be positive and therefore:

R2 =
1

2

γ

Λ′γ − 1
> 0 ⇔ Λ′ >

1

γ
. (84)

Also the frame coefficient P 2 has to be positive for x ∈ (−1, 1):

P 2 > 0⇔
(
x− 1

2
ηn
(
1− Λ′γ

))2

+ η2 +
1− x2

1− Λ′γ
> 0 (85)

and that occures whenever one of the following is satisfied:

• γ < 0;

•
(
γ > 0

)
∧
(
η2 > −Λ′γ

(1−Λ′γ)
(

(1−Λ′γ)2 n2

4
+Λ′γ

));

•
(
γ > 0

)
∧
(
η2 < −Λ′γ

(1−Λ′γ)
(

(1−Λ′γ)2 n2

4
+Λ′γ

))
∧
(∣∣ηn∣∣ < Λ′γ+

√
((1−Λ′γ)η2+1)Λ′γ+ 1

4
η2n2(1−Λ′γ)3

1
2

(1−Λ′γ)

)
.

Moreover, c2 in (37) has to be nonzero, because otherwise Ψ2 component of the Weyl tensor
would be ill-defined at x = 0, it follows that η cannot vanish at any case:

η 6= 0. (86)

Several remarks are in order.
The first remark concerns reconstruction of a U(1)-bundle and the IH structure from

the data provided above. Let us fix arbitrarily a topological charge

m 6= 0 (87)

and a corresponding U(1)-bundle Π : H → S2. Then, for every data from the table such
that

n 6= 0 (88)
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we set the surface gravity κ to be

κ =
n

m
, (89)

and we can reconstruct a unique (modulo automorphisms of H) IH structure gab,∇a.
For

n = 0 (90)

on the other hand, Table I reduces to the earlier derived [2] axisymmetric solutions to the
Petrov type D equation the horizon of the R×S2 topology. Those horizons can be defined
by a subgroup of R and become the trivial U(1) bundle U(1)× S2.

The last remark concerns the issue of embedding the generic IHs of the Petrov type D
found in the current paper in the known exact solutions to Einstein’s equations. Only the
special class I family of solutions is embeddable in the known spacetime of the type D,
namely the Taub-NUT-(anti) de Sitter spacetime. In the trivial bundle case of H = R×S2

considered in previous works [2], a generic axisymmetric Petrov type D IH (H, gab,∇a) can
be embedded in one of the non-extremal Schwarzschild - (anti) de Sitter / Kerr-(anti) de
Sitter spacetimes. In the current case, however, for the nonzero values of n and a generic
solution in the Table I, we were not able to identify any generalized black hole solution that
can accommodate it. That result requires a better understanding. It may be an indication
of an existence of a new family of Kerr -(anti) de Sitter - Taub-NUT like spacetimes.
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Possible solutions to type D equation

Class I Class II Class III

R2 > 0 R2 = 1
2Λ′ and Λ′ > 0 R2 6= 1

2Λ′

P 2 = 1− x2 P 2 = 1− x2
P 2 =

(1−x2)
(
(x− 1

2ηn(1−Λ′γ))
2
+η2+ 1−x2

1−Λ′γ

)
(x− 1

2ηn(1−Λ′γ))
2
+η2

Ω = n
2R2 Ω = −

2α

(
1−

(
nΛ′
2α

)2
)2

(x−nΛ′
2α )

3

Ω = Im

[
2i
(

1−η2( 1
2n(Λ′γ−1)+i)

2
)

ηγ(x+ 1
2ηn(Λ′γ−1)+iη)

3

]

TABLE I: Solutions to the type D equation on horizons of nontrivial bundle topology divided into
three classes.
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VI. APPENDIX

The conditions (33) and (34) are necessary for the metric tensor (28) to be continues
and differentiable at the poles [2]. Now, we will show (33) and (34) are also sufficient.
Consider a 2-sphere metric with a conformal factor Σ (independent of ϕ because of the
symmetry):

gABdx
AdxB = Σ2(θ)(dθ2 + sin2 θdϕ2), (91)

and the following transformation:

dx =
Σ2 sin θ

R2
dθ, (92)

where R2 is defined to be the area radius satisfying:

A = 4πR2.

We now introduce the frame coefficient:

P 2 =
Σ2 sin2 θ

R2
.
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Calculating the area of the transformed metric gAB yields:

A = R2(x1 − x0)2π. (93)

Since x has been defined up to an additive constant, by setting x1 = 1 from the above
equation we obtain that x0 = −1. The coordinate ϕ is such that the (normalized) infinites-
imal axial symmetry equals ∂ϕ and the curves ϕ = const are orthogonal to the infinitesimal
symmetry. The metric tensor gAB reads:

gABdx
AdxB = R2

(
1

P (x)2
dx2 + P (x)2dϕ2

)
. (94)

Next, we check whether condition for the lack of conical singularity, namely:

lim
x→±1

∂xP
2 = ∓2 (95)

implies that the metric (91) is differentiable, that is if Σ,θ = 0 is satisfied on the poles.
Using the relation between P and Σ we obtain:

Σ,θ = ∂θ

(
PR

sin θ

)
=
RP,θ −Σ cos θ

sin θ
=

Σ2 sin θ
R P,x−Σ cos θ

sin θ
= Σ

PP,x− cos θ

sin θ
(96)

Now taking a limit as θ approaches 0 (or π) and using the L’Hospital’s rule we find:

Σ,θ
∣∣
θ=0,π

= lim
θ→0,π

RP (1 + 1
2

P 2

sin2 θ
∂2
xP

2)

cos θ
. (97)

As long as the limit of P
sin θ as θ approaches 0 (or π) is finite, the expression on the right

hand side will vanish. To calculate this limit we will use the obtained expression for P 2:

P 2 =
(1− x2)

(
(x− 1

2ηn(1− Λ′γ))2 + η2 + 1−x2
1−Λ′γ

)
(x− 1

2ηn(1− Λ′γ))2 + η2
(98)

and plug it in the following:

1

P 2
dx =

1

sin θ
dθ. (99)

We can use new parameters: b := −1
2ηn(1− Λ′γ), g = 1

1−Λ′γ and simplify 1
P 2 as follows:

1

P 2
=

1

1− x2
− g

x2(1− g) + 2bx+ η2 + b2 + g
. (100)
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That way integrating the left hand side of eq. (99) yields:

L =

∫ (
1

1− x2
− g

x2(1− g) + 2bx+ η2 + b2 + g

)
dx

=

∫ (
1

1− x2
− g

(1− g)

1

x2 + 2x b
1−g + η2+b2+g

1−g

)
dx

= log

(√
x+ 1

1− x

)
− 2G√

4A−B2
arctan

(
B + 2x√
4A−B2

)
+ C

= log

(
C ′
√
x+ 1

1− x

)
− 2G√

4A−B2
arctan

(
B + 2x√
4A−B2

)
, (101)

where:

G =
g

1− g
;

A =
η2 + b2 + g

1− g
;

B =
2b

1− g
;

and we assumed that 4A − B2 > 0, otherwise the term under square root would take
the form: −4A + B2 and the sign in front of the arctan function would change. Next we
integrate the right hand side of eq. (99) to obtain:

R =

∫
1

sin θ
dθ = − log(cot θ +

1

sin θ
) +D = log

(
sin θ

cos θ + 1

)
+D. (102)

Using expressions (101) and (102) we find θ as a function of x:

θ(x) = 2 arctan

(
C ′′
√
x+ 1

1− x
exp

(
−2G√

4A−B2
arctan

(
B + 2x√
4A−B2

)))
. (103)

Next we write sin2 θ in terms of x:

sin2 θ = 4

(
C ′′2

x+ 1

1− x
exp

(
−4G√

4A−B2
arctan

(
B + 2x√
4A−B2

))

+
1

C ′′2
1− x
x+ 1

exp

(
4G√

4A−B2
arctan

(
B + 2x√
4A−B2

))
+ 2

)−1

. (104)
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Finally, we use (68) and (104) to find:

P 2

sin2 θ
=

(x+ a)2 + η2 + g(1− x2)

4((x+ a)2 + η2)

(
C ′′2(x+ 1)2 exp

(
−4G√

4A−B2
arctan

(
B + 2x√
4A−B2

))

+
1

C ′′2
(1− x)2 exp

(
4G√

4A−B2
arctan

(
B + 2x√
4A−B2

))−1

+ 2(1− x2)

)

=
(x+ 1

2B(1 +G)−1)2 + (A(1 +G)−G(1 +G)− 1
4B

2)(1 +G)−2 +G(1 +G)−1(1− x2)

4((x+ 1
2B(1 +G)−1)2 + η2)

×

×

(
C ′′2(x+ 1)2 exp

(
−4G√

4A−B2
arctan

(
B + 2x√
4A−B2

))

+
1

C ′′2
(1− x)2 exp

(
4G√

4A−B2
arctan

(
B + 2x√
4A−B2

))−1

+ 2(1− x2)

)

therefore the term P 2

sin θ is finite at the poles and in the consequence the right hand side of
eq. (97) vanishes2.

2 It is easy to see that for P 2 of the form (42) the get the same conclusion
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