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Abstract
This paper proposes a novel convolutional neural network (CNN) fusion method for electroencephalography (EEG) motor
imagery (MI) signal classification. The method is named MFBF, which stands for multifrequency band fusion. The MFBF
method relies on filtering the input signal with different frequency bands and feeding each band signal to a duplicate of a
CNN model; then, all duplicates are concatenated to form a fusion model. This paper also introduces the second release of
Coleeg software, which is used for evaluation. The MFBF method has the advantage of the flexibility of choosing any model
and any number of frequency bands. In the experimental evaluation, the CNN1D model and three frequency bands were used
to form the CNN1D_MFBF model, and it was evaluated against the EEGNet_fusion model on three different datasets, which
are: Physionet, BCI competition IV-2a, and a dataset from the Hungarian Academy of Sciences Research Centre for Natural
Sciences (MTA-TTK). The CNN1D_MFBF model had comparable or better accuracy results with less than one-fifth of the
training time, which is a significant advantage for the proposed method.

Keywords Motor imagery · EEG · Fusion CNN · BCI · Open source

1 Introduction

Electroencephalography (EEG) signal analysis [1,2] has
been used intensively in many applications such as diagnosis
of brain-related diseases and rehabilitation of neuromuscular
disorders [3–5], emotion recognition [6–8], brain–computer
interface (BCI) [9–12], and many others. BCI has played
an essential role in helping disabled people to communi-
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cate with assistive technologies and machines that help them
cope with everyday tasks. Deep learning (DL) techniques
[13–15], especially convolutional neural networks (CNNs)
[16,17], have been extensively used in the field of BCI motor
imagery (MI) signal analysis for their high classification
accuracy and simple construction procedure. One success-
ful approach that has been proposed in the literature is fusion
CNN,which enhances classification accuracy by concatenat-
ing (i.e., fusing) the output of different CNNs. The following
paragraph lists some of the recent work that has been carried
out in the field of fusion CNNs. Yang et al. [18] proposed
a combination of a long short-term memory (LSTM) net-
work and a spatial CNN, where the spatial and temporal
features are simultaneously learned from the EEG signals.
A discrete wavelet transform was used to represent the EEG
signals. Amin et al. [19] showed the benefits of fusing multi-
level convolutional features from various CNN layers, their
proposed model can learn spectral and temporal features
from the EEG data, and it outperforms the models where
no fusion is used, their proposed method achieved a 74.5%
accuracy for the BCI competition IV-2a dataset. In another
work, Amin et al. [20] proposed improved fusion CNNmeth-
ods (MCNN) and CCNN that fuse different characteristics
and architectures. Their methods capture spatial and tempo-
ral features from raw EEG data using different convolutional
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features. The MCNN and CCNN methods achieved 75.7%
and 73.8%, respectively, for the BCI Competition IV-2a
dataset, and 95.4% and 93.2%, respectively, for the High
Gamma dataset. Roots et al. [21] proposed a multibranch
CNN, namely EEGNet_fusion, that utilizes different hyper-
parameter values for each branch, and it achieved an accuracy
of 84.1%for twoclasses in thePhysionet dataset. Theirmodel
achieved higher accuracy than EEGNet [22], ShallowCon-
vNet, andDeepConvNet [23]; however, it has four timesmore
computational cost. Li et al. [24] proposed amultiscale fusion
CNN based on an attention mechanism, where spatiotempo-
ral features from different brain areas are extracted and fed
to a fusion network to increase classification accuracy. The
added attention mechanism improved the sensitivity of the
network. Their proposedmethod achieved 79.9% for the BCI
Competition IV-2a dataset. Li et al. [25] proposed a feature
fusion algorithm for neural networks that combines CNN
and LSTM networks and connects them in parallel. The spa-
tial and temporal features are extracted by the CNN and the
LSTM networks, respectively. They achieved 87.68% accu-
racy for the BCI Competition IV-2a dataset. Musallam et al.
[26] proposed TCNet-Fusion, a fixed hyperparameter-based
CNNmodel. In addition to fusion layers, different techniques
were used in this model, such as separable convolution,
depth-wise convolution, and temporal convolution networks
(TCNs). The EEG signal undergoes two successive 1D con-
volutions along the time domain and channel-wise, and then
an image-like representation is fed to the main TCN. Their
model achieved 83.73% and 94.41% for the BCI Competi-
tion IV-2a and the High Gamma datasets, respectively. The
rest of this paper is organized as follows: Sect. 2 describes the
proposed method. Section 3 presents the second release of
Coleeg software, and describes the used datasets. The eval-
uation setup and the experimental results are presented in
Sect. 4. Finally, the paper is concluded in Sect. 5.

2 The proposedmethod

The proposed method is named multifrequency band fusion
(MFBF). Its main idea is to divide the signal spectrum into
multiple frequency bands and feed each band into a duplicate
of the selected model. All the model duplicates are then con-
catenated to give the required classification. The proposed
method, which is illustrated in Fig. 1, has the flexibility of
choosing any neural network model and any number of fre-
quency bands. This paper uses Coleeg software [27] for the
evaluation process; the CNN1D model was selected to build
the CNN1D_MFBF model. A block diagram that describes
the CNN1D model is shown in Fig. 2. The spectrum of the
signal is divided into the following frequency bands: 0.5–8.0
Hz, 8.0–13.0 Hz, and 13.0–40.0 Hz. The frequency bands
were selected to coincide with the distinctive brainwave fre-
quencies to get homogeneous signal properties in each band.
The band 0.5–8.0 Hz coincides with delta (δ) and theta (θ )
waves combined. The band 8.0–13.0 Hz contains the alpha
(α) rhythm, while the band 13.0–40.0 Hz coincides with beta
(β) wave and some of the lower part of gamma (γ ) wave. The
function raw.filter() provided by the mne library [28] was
used to filter the signal with default parameters, such as fir-
win filter design, and Hamming window. With firwin option,
a finite impulse response filter with a linear phase is used for
filtering.

3 Introduction to the second release of
Coleeg software

Coleeg [27,29] is an open-source initiative for EEGMI signal
classification. Its goal is to deal with different neural net-
work models and datasets in a unified and simplified manner.
Coleeg uses GoogleT M Colaboratory (or Colab), so there is
no need to install any software on the computer. Coleeg con-
sists of an application file (Coleeg2_App.ipynb) and a python
module file (coleeg.py). The application file calls the utility

Fig. 1 Illustration of the proposed method
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Fig. 2 A detailed block diagram for the CNN1D model

Fig. 3 Mean accuracies for Physionet dataset

functions in the module file, which facilitates the evaluation
process. In the second release of Coleeg, two models were
added: CNN1D_MFBF, and EEGNet_fusion [21]. A new
dataset from the Hungarian Academy of Sciences Research
Centre for Natural Sciences (MTA-TTK) is also added to the
two datasets that Coleeg already have, which are: Physionet
[30] and BCI Competition IV-2a [31]. New utility functions
were also added, which are: (1) divide_time: used to divide
the time of a trial event into multiple portions, and that could
be used for data augmentation. (2) evaluate_model: model
evaluation is now done using this function instead of in the
application file (as in the first release). (3) get_data_ttk: used
to load the data from theMTA-TTK dataset. (4) plot_results:
used to plot the evaluation accuracy versus training epochs.
(5) save_results: save the evaluation results to Google Drive.

The first used dataset is Physionet, which has 109 subjects,
64 EEG sensor channels, and a 160 Hz sampling frequency.
Five classes were considered, which are: rest and the imag-

Fig. 4 Mean accuracies for BCI Competition IV-2a dataset

Fig. 5 Mean accuracies for MTA-TTK dataset

ined opening and closing of the left fist, right fist, both fists,
andboth feet. Subjects 88, 89, 92, 100, and104were excluded
due to data annotation errors. The second dataset is BCI
Competition IV-2a, which has 18 subjects, 22 EEG sensor
channels, and a 250 Hz sampling frequency. Four classes
were considered: the imagined movements of the left hand,
right hand, both feet, and tongue. The third dataset is MTA-
TTK, with 25 subjects, 63 EEG sensor channels, and a 500
Hz sampling frequency. Five classes were considered: rest,
imaginedmovements of the left hand, right hand, left leg, and
right leg. No filtering was applied to the original raw signals;
however, a 0.5-Hz low-pass filter is used in this paper in order
to remove the DC component from the signal and enhance
its accuracy.
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Table 1 Evaluation time for the considered models and datasets

CNN1D CNN1D CNN1D_MBFF EEGNET_fusion
No multiband filtering With multiband filtering With multiband filtering No multiband filtering

Physionet (Imagined) 0:38:15 0:59:48 1:22:18 8:32:04

BCI Competition IV-2a 0:12:51 0:17:55 0:24:16 2:12:00

MTA-TTK 0:25:57 0:36:28 0:56:59 4:53:15

Table 2 The average of the values in Figs. 3, 4, and 5 from epoch 200 to 300

CNN1D CNN1D CNN1D_MBFF EEGNET_fusion
No multiband filtering (%) With multiband filtering (%) With multiband filtering (%) No multiband filtering (%)

Physionet (Imagined) 52.2 57.9 58.7 57.0

BCI Competition IV-2a 65.0 68.1 72.8 73.5

MTA-TTK 37.3 42.5 47.6 45.1

4 Evaluation setup and experimental results

The signals from the three datasets were resampled at 100
Hz, and the loaded data were balanced so that each sub-
ject had the same number of trial events for each class. The
data are normalized to have zero mean and unity standard
deviation. In this way, the batch normalization stage is not
used in CNN1D and CNN1D_MFBF models. The evalua-
tion process was carried out considering two scenarios. The
first one is where no multiband filtering is used, and it was
applied to the CNN1D and the EEGNet_fusion models. The
second scenario is where the following frequency bands are
used to filter the signal: 0.5–8.0 Hz, 8.0–13.0 Hz, and 13.0–
40.0 Hz. The second scenario is applied to the CNN1D and
CNN1D_MFBF models. It should be noted that the CNN1D
model can accept single or multi frequency bands at its input.
Cross-subject validation was carried out for each dataset by
dividing the subjects into five groups and performing the
evaluation for each group for 500 epochs. Figures 3, 4, and 5
show the mean accuracy versus epochs for both scenarios for
Physionet, BCI Competition IV-2a, and MTA-TTK datasets,
respectively.

The evaluation time is also shown in Table 1. Figures 3, 4,
and 5 show thatwhen theCNN1D_MFBFmodel is compared
to the EEGNet_fusion model, it gives comparable accuracy
results for the BCI Competition IV-2a dataset and better
accuracy results for Physionet and MTA-TTK datasets. The
significant advantage is apparent when the evaluation time is
considered, where the time taken by the CNN1D_MFBF is
less than one-fifth of the time taken by the EEGNet_fusion
model. The experimental results also show that feeding mul-
tiple bands for the CNN1D model increases the accuracy,
even though no fusion is used.

In order to get a numerical insight regarding the accuracy,
in Table 2 the average of the values in Figs. 3, 4, and 5 is

calculated from epoch 200 to 300, where the curve settled
around a constant value. Table 2 shows that EEGNet_fusion
exceeds the CNN1D_MFBF model for the BCI Competition
IV-2a dataset with only 0.7%, while it falls behind with 1.7%
and2.5% for Physionet andMTA-TTKdatasets, respectively.

It isworthmentioning that the accuracy results are affected
by the parameters used in the evaluation process. Some of the
parameters used in this paper, such as cross-subject instead of
within-subject validation, data balancing, unprocessed raw
signal, and a higher number of classes, generally result in
reduced accuracy values.

5 Conclusion

In this paper, a novel fusion method for CNNs is proposed.
The method is named multifrequency band fusion (MFBF)
and is based on dividing the input signal spectrum into multi-
ple frequency bands and feeding each band into a duplicate of
a CNNmodel. The output of the model duplicates is concate-
nated to form a fusionmodel. Themethod shows comparable
or better results when compared to EEGNet_fusion model,
with less than one-fifth of the training time. The evaluation
was conducted using the second release of Coleeg software,
which is an open-source initiative for dealing with different
models and datasets for EEG MI signal classification in a
unified and simplified manner.
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