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Abstract: Patients presenting with insufficient tissue oxygenation and impaired lung function as in
acute respiratory distress syndrome (ARDS) frequently require mechanical ventilation with supple-
mental oxygen. Despite the lung being used to experiencing the highest partial pressure of oxygen
during healthy breathing, the organ is susceptible to oxygen-induced injury at supraphysiological
concentrations. Hyperoxia-induced lung injury (HALI) has been regarded as a second hit to pre-
existing lung injury and ventilator-induced lung injury (VILI) attributed to oxidative stress. The
injured lung has a tendency to form atelectasis, a cyclic collapse and reopening of alveoli. The
affected lung areas experience oxygen conditions that oscillate between hyperoxia and hypoxia
rather than remaining in a constant hyperoxic state. Mechanisms of HALI have been investigated in
many animal models previously. These studies provided insights into the effects of hyperoxia on
the whole organism. However, cell type-specific responses have not been dissected in detail, but
are necessary for a complete mechanistic understanding of ongoing pathological processes. In our
study, we investigated the effects of constant and intermittent hyperoxia on the lung endothelium
from a mouse by an in vitro proteomic approach. We demonstrate that these oxygen conditions
have characteristic effects on the pulmonary endothelial proteome that underlie the physiological
(patho)mechanisms.

Keywords: acute respiratory distress syndrome; hyperoxic acute lung injury; lung microvascu-
lar endothelial cells; ventilator-induced lung injury; hyperoxia; oxygen oscillations; proteomics;
enrichment analysis

1. Introduction

Acute respiratory distress syndrome (ARDS) is a life-threatening condition caused
either by extra-pulmonary or intrapulmonary events such as sepsis, aspiration, pneumonia
or trauma. It is characterized by activation of the immune system and severe inflammation
of the lungs, increased alveolar capillary permeability leading to pulmonary edema, dys-
functional blood clotting and loss of ventilated lung area. Patients present with impaired
gas exchange, hypoxemia, decreased carbon dioxide (CO2) elimination and reduced lung
compliance [1–3]. A standard treatment of ARDS is invasive mechanical ventilation ac-
companied with supplemental oxygen to ensure sufficient tissue oxygenation. Ventilation
and high fractions of inspired oxygen (FiO2) by themself bear the risk of further damaging
the lung, known as ventilator-induced lung injury (VILI) and hyperoxic acute lung injury
(HALI) [4]. VILI is caused by lung overdistention resulting in “volutrauma”, and by shear
stress due to cyclic collapse and the reopening of diseased lung areas with a low functional
residual capacity (“atelectotrauma”). Physical demand together with the initial disease
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result in inflammatory states (“biotrauma”), which are probably a prime cause of death
in these patients [5]. An additional threat are secondary pulmonary infections that are
facilitated by invasive ventilation. Oxygen therapy aims to prevent states of hypoxemia,
but since the 1960s it has been increasingly recognized that oxygen in high concentrations
(FiO2 > 0.7) is harmful to the lung tissue. Patients with severe ARDS often require hyperoxic
therapy and are therefore at risk of developing HALI. Underlying pathological mechanisms
and triggers of tissue damage due to HALI have been characterized to some extent in
animal models [6]. However, clinical conditions might be frequently divergent [7]. Cyclic
recruitment and de-recruitment of atelectasis have been shown to result in oscillations of
the arterial partial pressure of oxygen, which can be transmitted to remote organ systems
via the vascular system [8]. Such oxygen oscillations (in the range between severe states
of hypoxia and hyperoxia) most likely trigger different molecular responses, posing the
risk of an independent and hitherto uncharacterized (patho) mechanism. A primary re-
cipient of these oxygen conditions, and at the same time a primary transmitting organ for
downstream effects, is the pulmonary endothelium.

In our study, we aimed to investigate specific oxygen condition-dependent cell re-
sponses in murine lung endothelial cells with a proteomic and bioinformatic approach. We
used murine primary cell cultures that were directly exposed to these oxygen conditions in
order to eliminate other influencing factors, such as shear stress or primary inflammation.

2. Methods
2.1. Isolation of Mouse Lung Endothelial Cells and Cell Culture

Mouse primary lung endothelial cells were isolated after digesting lung tissue from
adult C57B/L6 mice (aged 6–8 weeks) with collagenase II by magnetic separation using
bead-coated antibodies for endothelial cell surface markers CD31 and ICAM1, according to
the method described in [9]. six-well cell culture dishes were precoated with 2% gelatin and
10 µg/mL fibronectin, and cells were plated in M199 medium (ThermoFisher, Waltham,
MA, USA), 20% fetal calf serum superior (Biochrom GmbH, Berlin, Germany), 30 µg/mL
endothelial cell growth supplement from bovine pituitary (Sigma-Aldrich, Burlington, MA,
USA), 5 U/mL heparin, and antibiotics. Cells were expanded for 2 weeks in vitro and
repurified by magnetic separation prior to seeding for gas exposure. Three individual
cell cultures (prepared from 30 mice each) were used for label-free proteomic analysis.
Another three independent cell cultures (prepared from 15 mice each) were used for mRNA
expression analysis by qRT-PCR.

2.2. Cell Exposure to Different Oxygen Conditions

Trypsinized cells were plated into 6-well plates containing gas-permeable membranes
(imaging plates; Zellkontakt, Nörten-Hardenberg, Germany) and transferred to custom-
made boxes 24 h after plating (as described in [10]). Cells were exposed to different
O2-conditions supplied by premixed gas bottles: (1) 21% O2—5% CO2—74% N2; (2) 95%
O2, 5% CO2; (3) 0–95% O2 oscillations—5% CO2—rest N2, with a frequency of 6 oscillations
per hour (as described in [11]).

2.3. Sample Preparation for Proteomic Analysis

After 24 h and 72 h of exposure to different oxygen conditions, cells were lysed
with RIPA buffer (25 mM Tris/HCl pH 7.4; 150 mM NaCl; 0.5% sodium deoxycholate;
0.1% SDS; 1% NP-40; PIERCE protein inhibitor tablet). Proteins were quantified by a
bicinchoninic acid-based protein assay (PIERCE- ThermoFisher, Waltham, MA, USA) and
precipitated according to a modified method of Wessel and Fluegge [12]. 200 µg of protein
was redissolved in 50 µL of 0.5% RapiGest (Waters Corporation, Milford, MA, USA) in
50 mM ammonium bicarbonate pH 7.8 and used for analysis.
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2.4. Protein Identification and Semi-Quantitative Comparison by 2D-Liquid Chromatography/Mass
Spectrometry (2DLC-MS)

We have described our proteomic methodology in a previous paper from our lab [13].
Individual steps and settings are summarized here.

2.5. Enzymatic Digestion

Proteomic investigations were performed in three biological replicates. Protein sam-
ples were digested in-solution after the reduction in disulfide bridges and alkylation
(reduction: 2 µL 100 mM DTT; 56 ◦C for 30 min; alkylation: 4 µL of 100 mM iodoacetamide;
40 min room temperature in the dark; quenching: 0.2 µL 100 mM DTT). Digestion was
performed with 2.4 µL of 1 µg/µL trypsin at 37 ◦C overnight, and terminated by adding
12 µL of 10% formic acid.

2.6. 2D LC-MSMS Analysis

High pH reversed phase (RP) fractionation was performed using an Eldex micro HPLC
pump (Sunchrom, Friedrichsdorf, Germany) on a RP column (Phenomenex, Kinetex 5u EVO
C18 100A, 2.1 × 100 mm; Cat# 00D-4622-AN). Mobile phases were: A: 10 mM (NH4)HCO3,
pH = 10; B:10% A in acetonitrile. Elution was performed at a flow rate of 150 µL/min with
the following gradient: 5–40% B in 10 min, 40–95% B in 2 min, 95% B for 3 min 95–5% B in
2 min and 5% B for 7 min. 48 fractions were collected from 1 to 25 min and 4-4 fractions
were combined (1, 13, 24, 37; 2, 14, 26, 38, etc.). This finally resulted in 12 fractions. Each of
them was dried in a vacuum centrifuge, resolved in 0.1% formic acid in water and subjected
to nanoLC-MSMS analysis on an LTQ-Orbitrap Elite (Thermo Fisher Scientific, Waltham,
MA, USA) mass spectrometer. NanoUPLC runs were performed on a Waters nanoAcquity
ULC system (Waters, Milford, MA, USA), using gradient elution after trapping the samples
onto the trap column (186007238 Waters Symmetry C18, 0.180 mm × 20 mm, 5 µm, 100 Å)
with 3% of B (mobile phase A: 0.1% formic acid in water; mobile phase B: 0.1% formic
acid in acetonitrile) for 2 min with 10 µL/min flow rate. The analytical separation was
performed with the following gradient elution: 3–10% B in 5 min and to 40% in 32 min,
followed by double wash at the end of the gradient in order to reduce any carry over for
the next run. The flow rate was 200 nl/min, the column (186003545 Waters BEH130 C18,
0.075 mm × 250 mm, 1.7 µm, 130 Å) was kept at 60 ◦C.

We applied data-dependent analyses: the 20 most intense peaks were selected for
ion-trap CID after each survey scan. The survey spectra were measured in the Orbitrap
(mass range: 380–1400 m/z; resolution: 120,000 @ 400 m/z), while the CID MS2 spectra
were detected in the ion trap. Selected precursor masses were dynamically excluded for
15 s to facilitate more comprehensive analysis of the samples.

2.7. Data Evaluation

We used Proteome Discoverer (version 1.3, Thermo Fisher Scientific, Waltham, MA,
USA) to generate msms peaklist files and our in-cloud ProteinProspector (version 5.18.0,
UCSF, San Francisco, CA, USA) database search engine for protein identification. Peaklist
files related to one sample were merged and used for searches against the bovine and
mouse proteins from UniProtKB.2015.4.16. database, supplemented with their random
sequences (109,150 sequences). Only fully specific tryptic peptides with a maximum of one
missed cleavage site were considered. Carbamidomethyl cysteine as constant, methionine
oxidation, peptide N-terminal pyro-glutamine formation from glutamine, and protein
N-terminal acetylation were set as variable modifications. Error tolerance for precursor
ions was set to 10 ppm and 0.6 Da for fragment masses. Maximum 2 modifications per
peptides were allowed.

2.8. Semi-Quantitative Evaluation by Spectral Counting

Because there are a lot of proteins with a high degree of homology between mouse
and bovine (source of bovine proteins: fetal calf serum of cell culture medium), it is
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challenging to decide the origin of the proteins. Database search results were acquired
without homology and set MOUSE as the preferred species. The calculated false discovery
rates (FDR) were less than 1%. In at least one of the groups, the protein from all of the three
replicates had to be identified and at least 5 unique peptides had to match the protein in
2 cases from the 3 replicates. The semi-quantitative analysis relied on the number of spectra
identifying the particular protein (peptide count/total number of peptide spectrum match)
of the sample. To avoid the calculation problem when a protein showed spectral count
zero in one of the samples, the following formula was used to calculate the relative spectral
counts: RPC = (n + f )/(t + f ), where RPC is the relative peptide count, n is the number of
spectra identifying the protein, t is the total number of identified spectra in the sample, f is
a correction factor, set to 1.

2.9. Functional Protein-Interaction and Pathway Enrichment Analysis

The lists of proteins that were identified as significantly changed in expression after
treatment with constant or intermittent hyperoxia were uploaded, including fold change val-
ues, to the web-based analysis platform NetworkAnalyst (3.0) [14] (www.networkanalyst.ca
(accessed on 7 April 2022) using MOUSE as species and ID (Uniprot) as an identifier. Using
this platform, differentially expressed proteins were compared with the protein interactome
of the STRING database (cut-off: 700) generating first- and higher-order networks with the
differentially regulated proteins from the list as seeds. The networks were downloaded as
graphml file and imported into Cytoscape 3.8.2 (The Cytoscape Consortium, San Diego,
CA, USA) [15]. The stringApp of Cytoscape was used to “STRINGify” the network for the
species mus musculus followed by functional enrichment of pathways and gene ontologies.
The STRING enrichment table was ranked according to FDR values and filtered for Reac-
tome, KEGG pathways and Gene Ontologies. Detailed results of the individual analysis
are provided as Supplemental Information (Supplementary Data S2).

2.10. Quantitative Real-Time PCR

For quantification of protein gene expression, mRNA was isolated from cells after ex-
posure to different oxygen conditions using the Rneasy plus kit (Qiagen, Hilden, Germany).
Reverse transcription was performed using qScript Supermix (Quanta Biosciences, Gaithers-
burg, MD, USA), and resulting cDNA was analyzed by quantitative real-time PCR on a
RotorGene Q (Qiagen, Hilden, Germany). Changes in gene expression were calculated
relative to the control condition (21% O2) using the ∆∆Ct method and Actb or Gadph as
house-keeping gene. Primer sequences are provided in Supplementary Data S1.

2.11. Statistical Analysis

Proteomic data were generated from three independent cell preparations. Fold changes
in protein levels were statistically evaluated by Student’s t-test (two sample t-test, assuming
unequal variances) to decide whether the difference between the two groups (with 3 repli-
cates) was significant (p < 0.05). Comparing different groups meant levels of individual
proteins under constant or intermittent hyperoxia relative to protein levels after culture
under normoxia (21% O2) for the same period of time (24 h or 72 h).

Since there was a significant variance between groups, the averages of the relative
peptide counts were compared and at least two-fold changes were considered as real
differences. As it was assumed that most of the proteins did not show significant changes,
the relative peptide count ratio normalization by the median value was performed.

qPCR analysis was performed from three independent experiments. The graphs
show the results from one representative experiment analyzed from 3 individual wells
(triplicates) of gas-exposed cell culture dishes. qPCR data were statistically evaluated by
one-way ANOVA followed by Dunnett’s multiple comparison test using GraphPad Prism
8.0 software (GraphPad Software, San Diego, CA, USA). Mean expression levels were
further compared to the value 1.0 by using a one-sample t-test. In all statistical tests p < 0.05
was regarded as the threshold for significant results.

www.networkanalyst.ca
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3. Results

In order to analyze robust changes in protein expression in response to different oxygen
conditions, we exposed cells initially for 24 h and as a follow up for a total of 72 h. Protein
expression levels under constant hyperoxia (95% O2) and oxygen oscillations (0–95% O2)
were directly compared to expression levels in cells that were exposed to normoxia (21% O2)
for the same period of time (fold-change of expression).

3.1. Changes in Protein Expression over Prolonged Periods of Severe Constant Hyperoxia

24 h of exposure to constant severe hyperoxia significantly changed the expression of
59 proteins (=Differentially Expressed Proteins, DEPs), of which 49 were upregulated and
10 were downregulated (see Table 1A).

Table 1. Differentially expressed proteins (DEPs) after 24 h and 72 h exposure to constant severe
hyperoxia. Murine lung endothelial cells were exposed for 24 h (A) and 72 h (B) to 95% O2. Semi-
quantitative proteomic analysis revealed statistically significant changes in protein expression (blue:
downregulated DEPs; red: upregulated DEPs). Results are log(2) fold changes compared to exposure
under 21% O2 for the same period of time. Statistical evaluation: two-sample t-test assuming
unequal variances.

(A) Hyperoxia 95% O2 vs. Normoxia 24 h

Acc # Gene Name t-Test
p-Value

log(2)
[Fold Change] Protein MW Species Protein Name

P51410 Rpl9 0.045581 −1.461 21,881.6 MOUSE 60S ribosomal protein L9

Q91YT0 Ndufv1 0.02777 −1.369 50,834.7 MOUSE NADH dehydrogenase [ubiquinone] flavoprotein 1,
mitochondrial

Q9R0Y5 Ak1 0.00099 −1.269 21,539.8 MOUSE Adenylate kinase isoenzyme 1

P62911 Rpl32 0.03549 −1.164 15,859.9 MOUSE 60S ribosomal protein L32

Q545Q2 Surf4 0.00021 −1.156 30,381.3 MOUSE Surfeit gene 4, isoform CRA_a

Q6ZQ38 Cand1 0.01071 −1.143 136,332.9 MOUSE Cullin-associated NEDD8-dissociated protein 1

P22777 Serpine1 0.04550 −1.122 45,170.6 MOUSE Plasminogen activator inhibitor 1

P60766 Cdc42 0.00012 −1.116 21,258.8 MOUSE Cell division control protein 42 homolog

E9PUD2 Dnm1l 0.00539 −1.089 79,533.3 MOUSE Dynamin-1-like protein

Q04447 Ckb 0.04549 −1.005 42,713.6 MOUSE Creatine kinase B-type

Q3V3R1 Mthfd1l 0.02608 1.012 105,729.7 MOUSE Monofunctional C1-tetrahydrofolate synthase,
mitochondrial

B2RQC6 Cad 0.04433 1.012 243,240.6 MOUSE CAD protein

Q3ULB1 Tes 0.02179 1.022 46,587.2 MOUSE Testin

O35350 Capn1 0.03432 1.025 82,107 MOUSE Calpain-1 catalytic subunit

Q3U417 Ppfibp1 0.00443 1.045 108,539.3 MOUSE PTPRF interacting protein, binding protein 1
(liprin beta 1)

P24270 Cat 0.03979 1.082 59,795.8 MOUSE Catalase

Q3TJ95 Cltb 0.04187 1.095 23,116.5 MOUSE Clathrin light chain

Q9D6Z1 Nop56 0.01453 1.107 64,464.9 MOUSE Nucleolar protein 56

Q8BJ71 Nup93 0.03429 1.126 93,281.9 MOUSE Nuclear pore complex protein Nup93

P55302 Lrpap1 0.01909 1.152 42,215.4 MOUSE Alpha-2-macroglobulin receptor-associated protein

Q9D2R0 Aacs 0.00194 1.161 75,200.9 MOUSE Acetoacetyl-CoA synthetase

Q8BXZ1 Tmx3 0.03757 1.163 51,848.5 MOUSE Protein disulfide-isomerase TMX3

Q9ER72 Cars1 0.02970 1.178 94,860.6 MOUSE Cysteine—tRNA ligase, cytoplasmic

Q3T9V8 Dctn1 0.00045 1.184 136,879.4 MOUSE Dynactin subunit 1

P97742 Cpt1a 0.01288 1.191 88,252.3 MOUSE Carnitine O-palmitoyltransferase 1, liver isoform

Q91XH5 Spr 0.03473 1.220 27,928.4 MOUSE Sepiapterin reductase

Q921X9 Pdia5 0.02308 1.273 59,267.7 MOUSE Protein disulfide-isomerase A5

B8X349 Spag9 0.04057 1.307 146,132.7 MOUSE JNK-interacting leucine zipper protein long form

Q9Z0X1 Aifm1 0.00500 1.344 66,766.1 MOUSE Apoptosis-inducing factor 1, mitochondrial
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Table 1. Cont.

Q6ZQ84 mKIAA0617 0.02823 1.385 91,277.7 MOUSE MKIAA0617 protein (Fragment)

Q3UW53 Niban1 0.03476 1.399 102,649.9 MOUSE Protein Niban

Q8K1N2 Phldb2 0.03488 1.401 141,486.8 MOUSE Pleckstrin homology-like domain family B member 2

O35226 Psmd4 0.00918 1.407 40,704.1 MOUSE 26S proteasome non-ATPase regulatory
subunit 4

O70318 Epb41l2 0.00888 1.589 109,940.4 MOUSE Band 4.1-like protein 2

Q02819 Nucb1 0.01474 1.640 53,409.1 MOUSE Nucleobindin-1

Q91X52 Dcxr 0.00908 1.673 25,746.1 MOUSE L-xylulose reductase

Q3TRX4 Palm 0.00689 1.684 36,750.1 MOUSE Isoform 2 of Paralemmin-1

P58871 Tnks1bp1 0.00854 1.688 181,826.4 MOUSE 182 kDa tankyrase-1-binding protein

O08759 Ube3a 0.00112 1.717 99,820.4 MOUSE Ubiquitin-protein ligase E3A

Q62376 Snrnp70 0.01119 1.728 51,992.5 MOUSE U1 small nuclear ribonucleoprotein 70 kDa

Q9EP71 Rai14 0.00394 1.753 108,853.2 MOUSE Ankycorbin

Q3UF75 Parva 0.00386 1.825 38,361.5 MOUSE Alpha-parvin

Q3UDJ2 Sgpl1 0.00440 1.902 63,649.8 MOUSE Sphingosine-1-phosphate lyase 1

Q78IK4 Apool 0.00092 2.050 29,261 MOUSE MICOS complex subunit Mic27

Q9ERU9 Ranbp2 0.00396 2.196 341,123.8 MOUSE E3 SUMO-protein ligase RanBP2

B2RWW2 Golgb1 0.00383 2.265 370,113.8 MOUSE Golgb1 protein

Q8BL66 Eea1 0.00080 2.357 160,915.9 MOUSE Early endosome antigen 1

Q9CYG7 Tomm34 0.00028 2.407 34,278.3 MOUSE Mitochondrial import receptor subunit TOM34

Q3U962 Col5a2 0.02207 2.539 145,019.6 MOUSE Collagen alpha-2(V) chain

Q922J3 Clip1 0.03234 2.757 155,815.2 MOUSE CAP-Gly domain-containing linker protein 1

Q3THU7 Clta 0.04798 2.766 23,563.9 MOUSE Clathrin light chain

Q9Z0U1 Tjp2 0.00852 2.854 131,281 MOUSE Tight junction protein ZO-2

(B) Hyperoxia 95% O2 vs. Normoxia 72 h

Acc # Gene Name t-Test
p-Value

log(2)
[Fold Change] Protein MW Species Protein Name

P52293 Kpna2 0.00578 −3.516 57,928.6 MOUSE Importin subunit alpha-1

Q00915 Rbp1 0.01992 −2.516 15,846.3 MOUSE Retinol-binding protein 1

P50543 S100a11 0.00185 −1.587 11,082.8 MOUSE Protein S100-A11

P17918 Pcna 0.00288 −1.448 28,785.1 MOUSE Proliferating cell nuclear antigen

O35682 Myadm 0.00299 −1.363 35,284.9 MOUSE Myeloid-associated differentiation marker

Q3UJR8 Btf3 0.01726 −1.295 17,699.2 MOUSE Transcription factor BTF3

P46061 Rangap1 0.03792 −1.243 63,531.5 MOUSE Ran GTPase-activating protein 1

Q8K2B3 Sdha 0.00396 −1.237 72,586.1 MOUSE Succinate dehydrogenase [ubiquinone] flavoprotein
subunit, mitoch.

Q4KML4 Abracl 0.00194 −1.149 9030.5 MOUSE Costars family protein ABRACL

Q3TA69 Rap1gds1 0.01416 −1.124 66,076.1 MOUSE Rap1 GTPase-GDP dissociation stimulator 1

Q04447 Ckb 0.01411 −1.103 42,713.6 MOUSE Creatine kinase B-type

Q8R2Y2 Mcam 0.00035 −1.095 71,546.1 MOUSE Cell surface glycoprotein MUC18

Q564E8 Rpl4 0.02582 −1.091 47,154.1 MOUSE Ribosomal protein L4

P30999 Ctnnd1 0.00303 −1.050 104,925.7 MOUSE Catenin delta-1

P83940 Eloc 0.04477 −1.017 12,473.3 MOUSE Elongin-C

Q99LJ0 Cttnbp2nl 0.02629 1.005 69,841.7 MOUSE CTTNBP2 N-terminal-like protein

Q64521 Gpd2 0.00564 1.009 80,954.5 MOUSE Glycerol-3-phosphate dehydrogenase, mitochondrial

P31230 Aimp1 0.00542 1.036 33,997.6 MOUSE Aminoacyl tRNA synthase complex-interacting
multifunctional protein 1

Q05816 Fabp5 0.00502 1.064 15,137.6 MOUSE Fatty acid-binding protein, epidermal

P97314 Csrp2 0.02217 1.075 20,926 MOUSE Cysteine and glycine-rich protein 2

Q3TW96 Uap1l1 0.02466 1.130 56,614.3 MOUSE UDP-N-acetylhexosamine pyrophosphorylase-like
protein 1

Q78IK4 Apool 0.03345 1.162 29,261 MOUSE MICOS complex subunit Mic27
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Table 1. Cont.

O88543 Cops3 0.03558 1.174 47,832.5 MOUSE COP9 signalosome complex subunit 3

Q6PHZ2 Camk2d 0.01028 1.236 56,369.9 MOUSE Calcium/calmodulin-dependent protein kinase type II
subunit delta

P97447 Fhl1 0.00893 1.265 31,889.1 MOUSE Four and a half LIM domains protein 1

Q3U1W3 Adam9 0.00134 1.308 91,848 MOUSE Disintegrin and metalloproteinase domain-containing
protein 9

Q9DBL1 Acadsb 0.01594 1.349 47,874.5 MOUSE Short/branched chain specific acyl-CoA
dehydrogenase, mitochondrial

Q03145 Epha2 0.01586 1.402 108,853.2 MOUSE Ephrin type-A receptor 2

O70439 Stx7 0.02471 1.602 29,821 MOUSE Syntaxin-7

Q9ER00 Stx12 0.00453 1.614 31,195.5 MOUSE Syntaxin-12

Q3UDJ2 Sgpl1 0.04139 1.631 63,649.8 MOUSE Sphingosine-1-phosphate lyase 1

Q5SUH6 Clint1 0.02425 1.736 69,759.8 MOUSE Clathrin interactor 1

O35382 Exoc4 0.03902 1.745 110,545.9 MOUSE Exocyst complex component 4

Q8BL66 Eea1 0.01546 1.863 160,915.9 MOUSE Early endosome antigen 1

P41105 Rpl28 0.00425 2.118 15,733.6 MOUSE 60S ribosomal protein L28

Q6PB44 Ptpn23 0.00004 2.754 185,218 MOUSE Tyrosine-protein phosphatase non-receptor type 23

Differentially expressed proteins were analyzed on the web-based platform Network-
Analyst 3.0 [14]. To that end, DEPs were compared with the protein interactome of the
STRING database (established by a consortium of the Swiss Institute of Bioinformatics,
Novo Nordisk Foundation Center Protein Research and European Molecular Biology Lab-
oratory, EMBL). The STRING database comprises known and predicted protein-protein
interactions, which include physical and functional associations derived from genomic
context predictions, high-throughput lab experiments, coexpression data, and automated
text mining. Data included in the STRING database stem from other primary databases,
from computational predictions and knowledge transfer between organisms. A first order
network was computed that comprises the DEPs (as seed proteins) and the predicted
STRING interactome as described in the Methods section. This network was downloaded
as graphml-file, imported into Cytoscape 3.9.1. software, and “STRINGified” with the
stringApp, followed by a functional enrichment analysis.

Enriched KEGG and Reactome pathways, as well as gene ontologies for biological
functions, were visualized in color-coded networks. The largest subnetwork showing nodes
and first neighbors is depicted in Figure 1.

At 72 h 95% O2, 15 proteins were significantly downregulated and 21 proteins upregu-
lated (see Table 1B). Deferred protein-protein interaction analysis gave 4 subnetworks. The
largest subnetwork showing nodes and first neighbors is depicted in Figure 2.

3.2. Bioinformatic Analysis: Pathways and Enrichment Analysis

Functional enrichment analysis was performed in order to identify processes and path-
ways, that are overrepresented compared to background. We used Gene Ontology (GO),
KEGG, and Reactome database, and performed enrichment analysis using the STRING-App
of the Cytoscape software. Proteins entered in the query were those which were signifi-
cantly changed in expression under different oxygen conditions at the time points 24 h
and 72 h. A complete list of statistically enriched pathways is found in the Supplemental
Information (Supplementary Data S2).
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Figure 1. Subnetwork 1 of DEPs and their protein interaction partners after 24 h exposure to 95% O2.
Differentially expressed proteins (seed proteins of the network) are shown as squares, with the fill
color corresponding to the expression level (blue: downregulated; red: upregulated; the intensity
of the color represents the degree of down- or upregulation as indicated in the legend). Interacting
proteins not belonging to the seed protein list are shown as ellipses. Primary enriched pathways and
functions with FDR < 0.05 are highlighted: Upregulated: cell cycle (orange), metabolism of RNA and
RNA splicing (red borders), Downregulated: ribosomes (dark blue).
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Figure 2. Subnetwork 1 of functionally associated DEPs and their interaction partners after 72 h
exposure to 95% O2. Upregulated proteins are shown as red squares, downregulated nodes are
shown as blue squares as described in Figure 1. Primary enriched pathways with FDR < 0.05 are
highlighted: upregulated: metabolism of proteins (orange), ribosome (purple), downregulated: cell
cycle (blue).

Major enriched biological processes and pathways associated with upregulated proteins
after 24 h 95% O2 were RNA metabolism, cell cycle, mRNA splicing, cellular stress response,
tight junctions and focal adhesions, neddylation, interleukin signaling, and apoptosis.

Biological processes associated with downregulated proteins at 24 h 95% O2 included
translation, Rho and Ras (small GTPases) protein signal transduction, the citric acid (TCA)
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cycle and respiratory electron transport/oxidative phosphorylation, regulation of the actin
cytoskeleton, VEGFA-VEGFR2 pathway, platelet activation, and cell junction organization.

72 h 95% O2 revealed enriched the biological processes of upregulated proteins primar-
ily related to the metabolism of proteins, ribosomes and cellular transport mechanisms.
Predominant downregulated processes after 72 h 95% O2 were cell cycle, DNA repair, TCA
cycle and respiratory electron transport, and cellular stress response.

3.3. Changes in Protein Expression over Prolonged Periods of Hypoxic/Hyperoxic Oscillations

Detected changes of protein expression after 24 h of 0–95% O2 oscillations resulted
in significantly fewer DEPs when compared to 24 h 21% O2. A total of 12 proteins were
downregulated and 3 proteins were upregulated (see Table 2A).

Table 2. Differentially expressed proteins (DEPs) after 24 h and 72 h exposure to hypoxic-hyperoxic
oscillations. Murine lung endothelial cells were exposed for 24 h (A) and 72 h (B) to 0–95% O2

oscillations. Semi-quantitative proteomic analysis revealed statistically significant changes in protein
expression (blue: downregulated DEPs; red: upregulated DEPs). Results are log(2) fold changes
compared to exposure under 21% O2 for the same period of time. Statistical evaluation: two-sample
t-test assuming unequal variances.

(A) Oscillation 0–95% O2 vs. Normoxia 24 h

Acc # Gene Name t-Test
p-Value

log(2)
[Fold Change] Protein MW Species Protein Name

Q91YT0 Ndufv1 0.01774 −2.093 50,834.7 MOUSE NADH dehydrogenase [ubiquinone] flavoprotein 1,
mitochondrial

Q9DBR7 Ppp1r12a 0.02466 −2.034 114,997.2 MOUSE Protein phosphatase 1 regulatory subunit 12A

Q53WR6 Glg1 0.01798 −1.668 133,735.2 MOUSE Golgi apparatus protein 1

Q99KP6 Prpf19 0.01909 −1.634 55,239.3 MOUSE Pre-mRNA-processing factor 19

P97447 Fhl1 0.00851 −1.613 31,889.1 MOUSE Four and a half LIM domains protein 1

Q3TZU7 Snx9 0.04307 −1.594 66,516.2 MOUSE Sorting nexin

P70227 Itpr3 0.03133 −1.570 304,277.6 MOUSE Inositol 1,4,5-trisphosphate receptor type 3

Q9DBF1 Aldh7a1 0.01686 −1.352 58,862 MOUSE Alpha-aminoadipic semialdehyde dehydrogenase

P47856 Gfpt1 0.02266 −1.334 78,539.8 MOUSE Glutamine–fructose-6-phosphate aminotransferase
[isomerizing] 1

Q99J77 Nans 0.00815 −1.271 40,024.5 MOUSE Sialic acid synthase

Q9CQC6 Bzw1 0.02597 −1.238 48,043.6 MOUSE eIF5-mimic protein 2

P29268 Ccn2 0.00962 −1.010 37,824.6 MOUSE CCN family member 2

Q6PAC1 Gsn 0.04512 1.059 80,763.2 MOUSE Gelsolin

Q543N3 Lasp1 0.04676 1.073 29,994.7 MOUSE LIM and SH3 domain protein 1

(B) Oscillation 0–95% O2 vs. Normoxia 72 h

Acc # Gene Name t-Test
p-Value

log(2)
[Fold Change] Protein MW Species Protein Name

Q91VH6 Memo1 0.00606 −2.074 33,692.4 MOUSE Protein MEMO1

P17918 Pcna 0.00344 −1.579 28,785.1 MOUSE Proliferating cell nuclear antigen

O88544 Cops4 0.01743 −1.564 46,285.2 MOUSE COP9 signalosome complex subunit 4

P52293 Kpna2 0.01117 −1.272 57,928.6 MOUSE Importin subunit alpha-1

P46638 Rab11b 0.00025 1.014 24,489.7 MOUSE Ras-related protein Rab-11B

Q6P6L0 Filip1l 0.00871 1.097 129,773.6 MOUSE Filamin A-interacting protein 1-like

Q3TW96 Uap1l1 0.01494 1.189 56,614.3 MOUSE UDP-N-acetylhexosamine pyrophosphorylase-like
protein 1

Q3MIA8 Gps1 0.01047 1.347 55,163.7 MOUSE COP9 signalosome complex subunit 1

Q5SWZ5 Mprip 0.00666 1.353 257,288.4 MOUSE Myosin phosphatase Rho-interacting protein

Protein interaction analysis resulted in 6 small subnetworks The first subnetwork
showing nodes and first neighbors is depicted in Figure 3.
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Figure 3. Subnetwork 1 of functionally associated DEPs and their interaction partners after 24 h
exposure to 0–95% O2 oscillations. Blue square nodes are seed proteins found to be downregulated.
The most significant enriched pathway associated with the interacting proteins with FDR < 0.05 is
shown as blue ellipses and represents: “response to oxygen-containing compound”.

After 72 h, 0–95% O2 oscillations, 4 proteins were found to be downregulated and
5 proteins were upregulated (see Table 2B). DEPs showed functional relationship in 4 sub-
networks. Subnetwork 1 showing nodes and first neighbors is depicted in Figure 4.
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Figure 4. Subnetwork 1 of functionally associated DEPs and their interaction partners after 72 h
exposure to 0–95% O2. Squares: seed proteins; ellipses: interaction partners. Colors of the ellipses
highlight the following enriched pathways with FDR < 0.05: Downregulated: DNA repair (blue fill
color) (GO database), cell cycle (blue border) (Reactome data base).

3.4. Bioinformatic Analysis: Pathways and Enrichment Analysis

Oxygen oscillations (0–95% O2) at 24 h revealed a downregulation of cellular re-
sponse to oxygen-containing compounds, cellular calcium homeostasis, the regulation of
phosphorylation, and platelet activation.

After 72 h 0–95% O2 oscillations, upregulated proteins were related to neddylation,
post-translational protein modification, and endocytosis, while downregulated proteins
were related to DNA repair, cell cycle, and p53 signaling pathway.

3.5. Changes in Protein Expression over Prolonged Periods of Cultivation under
Normoxic Conditions

Primary mouse lung endothelial cells in culture tend to dedifferentiate quite rapidly
assuming a more mesenchymal phenotype over longer culture periods (Endothelial-
mesenchymal transition, Endo-MT). This process will also affect changes in protein ex-
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pression. We therefore also compared protein expression at time points 24 h and 72 h to
baseline values (at time = 0 h), when cultured under normoxic conditions (21% O2). At 24 h,
only 5 proteins were differently expressed: 1 downregulated protein (Caldesmon-Cald 1),
and 4 upregulated proteins (Plasminogen Activator Inhibitor, PAI-1, Transforming Growth
Factor TGF-ß1ITP, Cadherin Cadh5, Glutamine–fructose-6-phosphate transaminase (isomer-
izing) GFAT-1) (Table 3A). These genes are involved in vascular development, angiogenesis,
tissue remodeling, growth, cell migration, developmental maturation, tube development,
cell fate commitment, regulation of lymphocyte activation, epithelial to mesenchymal transi-
tion, endothelial cell proliferation and migration, cell–cell junction organization, cell-matrix
adhesion, MAPK pathways, protein phosphorylation, and proteoglycan biosynthesis.

Table 3. Differentially expressed proteins (DEPs) after 24 h and 72 h exposure to normoxia (21%
O2) compared to baseline (0 h). Murine lung endothelial cells were exposed for 24 h (A) and 72 h
(B) to 21% O2. Semi-quantitative proteomic analysis revealed statistically significant changes in
protein expression (blue: downregulated DEPs; red: upregulated DEPs). Results are log(2) fold
changes compared to baseline (=start of experiment, Time = 0). Statistical evaluation: two-sample
t-test assuming unequal variances.

(A) Baseline vs. Normoxia 24 h

Acc # Gene Name t-Test
p-Value

log(2)
[Fold Change] Protein MW Species Protein Name

E9QA15 Cald1 0.044003 −1.097 89,274.1 MOUSE Protein Cald1

P22777 Serpine1 0.042341 1.145 45,170.6 MOUSE Plasminogen activator inhibitor 1

Q62219 Tgfb1i1 0.004814 2.049 50,101.1 MOUSE Transforming growth factor beta-1-induced transcript 1
protein

P55284 Cdh5 0.03317 1.556 87,903.7 MOUSE Cadherin-5

P47856 Gfpt1 0.023897 1.678 78,539.8 MOUSE Glutamine–fructose-6-phosphate aminotransferase
[isomerizing] 1

(B) Baseline vs. Normoxia 72 h

Acc # Gene Name t-Test
p-Value

log(2)
[Fold Change] Protein MW Species Protein Name

P29533 Vcam1 0.04293 −1.191 81,318.2 MOUSE Vascular cell adhesion protein 1

P28660 Nckap1 0.02359 1.019 128,785.1 MOUSE Nck-associated protein 1

P52293 Kpna2 0.01242 1.092 57,928.6 MOUSE Importin subunit alpha-1

P31938 Map2k1 0.01551 1.111 43,474.4 MOUSE Dual specificity mitogen-activated protein kinase
kinase 1

P50543 S100a11 0.02928 1.124 11,082.8 MOUSE Protein S100-A11

Q8BKC5 Ipo5 0.04751 1.146 123,592.2 MOUSE Importin-5

Q8R016 Blmh 0.02996 1.164 52,511.6 MOUSE Bleomycin hydrolase

P30999 Ctnnd1 0.02446 1.266 104,925.7 MOUSE Catenin delta-1

Q62470 Itga3 0.00063 1.292 116,746.2 MOUSE Integrin alpha-3

D3YVF0 Akap5 0.00832 1.304 79,397.3 MOUSE A-kinase anchor protein 5

Q8R3B1 Plcd1 0.02847 1.308 85,873.9 MOUSE 1-phosphatidylinositol 4,5-bisphosphate
phosphodiesterase delta-1

Q91VH6 Memo1 0.02678 1.309 33,692.4 MOUSE Protein MEMO1

Q03145 Epha2 0.00533 1.365 108,853.2 MOUSE Ephrin type-A receptor 2

Q8R2Y2 Mcam 0.00016 1.573 71,546.1 MOUSE Cell surface glycoprotein MUC18

O35345 Kpna6 0.02067 1.634 59,964.9 MOUSE Importin subunit alpha-7

E9QNA7 Sorbs1 0.04557 1.705 82,875.8 MOUSE Sorbin and SH3 domain-containing protein 1

Q62219 Tgfb1i1 0.00452 1.715 50,101.1 MOUSE Transforming growth factor beta-1-induced transcript 1
protein

Q8CGB9 Ide 0.04366 2.118 117,696 MOUSE Insulin degrading enzyme

P37889 Fbln2 0.03797 2.344 131,834.9 MOUSE Fibulin-2

P51655 Gpc4 0.01642 2.629 62,586.8 MOUSE Glypican-4
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At 72 h cultivation at 21% O2, more proteins were changed in expression (19 up-
regulated, 1 downregulated) (Table 3B). Functional protein interaction analysis gave a
network with 16 seeds (data not shown). Enriched cellular processes include intracellular
signal transduction, cytoskeletal organization, cell migration, MAPK cascade, cell-substrate
adhesion, actin filament-based processes, cell adhesion, angiogenesis, cell proliferation, cell
projection assembly, and Rho signal transduction. These are biological processes, which are
expected in the context of Endo-MT.

In order to identify oxygen-dependent changes in protein expression and to exclude
culture-dependent changes, we referenced all protein expression changes relative to 21%
O2 at the same time point. Results from enrichment analysis show that this procedure
eliminated influences from the dedifferentiation of primary cells.

3.6. Time-Dependent Expression of mRNA Levels of Selected Proteins as Quantified by qRT-PCR

The Eepression of mRNA levels of selected DEPs involved in key cellular processes,
as described in Table 4, was analyzed by qRT-PCR at time points 4 h, 24 h and 72 h.

Table 4. Proteins identified as DEPs in proteomic analysis and selected for further quantification of
mRNA expression at time points 4 h, 24 h and 72 h. Significant upregulation and downregulation of
DEPs as determined by proteomic analysis (protein), and qRT-PCR (mRNA) is indicated by arrows.

Protein Location Function and Related Pathways * mRNA Protein

95% O2 0–95% O2 95% O2 0–95% O2

Eea1
Early endosome antigen

early endosome,
cytosol

endosomal trafficking, endocytosis, vesicle
fusion

4 h ↓
24 h ↑
72 h ↑

24 h ↑
72 h ↑

Snx1
Sorting nexin endosomes

intracellular trafficking, protein recycling to
plasma membrane, retrograde transport from
endosomes to the Trans-Golgi-Network (TGN) 24 h ↑ 24 h ↓ 24 h ↓

Kpna1
Importin-1 nuclear pores nuclear protein import

4 h ↑
24 h ↑
72 h ↑ 72 h ↓

Tomm34
Translocase of outer

mitochondrial
membrane

outer
mitochondrial

membrane,
cytosol

import of preproteins into mitochondria 24 h ↑
72 h ↑

24 h ↑

Zo2 (Tjp2)
Tight junction protein 2

tight junctions
adherens
junctions

cell adhesion, apoptotic cleavage of cellular
proteins

4 h ↑ 4 h ↑
24 h ↑

Parva
Parvin-

focal adhesion
nucleus, cytosol enables actin binding activity, lamellipodium

4 h ↓
24 h ↑

4 h ↓
24 h ↑

Nucb1
nucleobindin Golgi apparatus

calcium-binding EF-hand protein family, Golgi
calcium homeostasis, calcium-regulated signal
transduction, non-receptor guanine nucleotide

exchange factor (GEF), binds and activates
G-proteins

24 h ↑
24 h ↑

Aifm1
Apoptosis- inducing

factor1 mitochondrion
associated

nucleus, cytosol,
mitochondria

Triggers chromatin condensation and DNA
fragmentation to induce programmed cell

death; regulates permeability of the
mitochondrial membrane; acts as NADH

oxidase

4 h ↑
24 h ↓
72 h ↓

4 h ↑
24 h ↑

Fhl1
Four and a half Lim

domains

cytosol, nucleus,
plasma

membrane

zink-finger domain protein, cell differentiation,
establishment of localization

4 h ↓

72 h ↓

4 h ↓
24 h ↑
72 h ↓ 72 h ↑

24 h ↓

Ip3r3
Inositol 1,4,5

triphosphate receptor
type 1

endoplasmic
reticulum (ER),

nucleus, plasma
membrane

mediates calcium release from ER following
stimulation with inositol-1,4,5-triphosphate 24 h ↓

72 h ↑ 24 h ↓
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Table 4. Cont.

Protein Location Function and Related Pathways * mRNA Protein

95% O2 0–95% O2 95% O2 0–95% O2

Pcna
Proliferating cell
nuclear antigen

nucleus,
cytoskeleton

cofactor of DNA polymerase activity, in
response to DNA damage the protein is

ubiquitinated and involved in DNA repair, role
in mitotic G1 phase and G1/S transition

4 h ↑
24 h ↓
72 h ↓

4 h ↑

72 h ↓ 72 h ↓ 72 h ↓

Ppp1ca
Protein phosphatase 1
catalytic subunit alpha

nucleus, cytosol,
plasma

membrane

serine/threonine specific phosphatase, broad
functions including cell division, glycogen

metabolism, protein synthesis

24 h ↑
72 h ↑

Nans
N-Acetylneuraminate

synthase
cytosol biosynthetic pathways of sialic acids 24 h ↓

4 h ↑
24 h ↓
72 h ↓

24 h ↓

Memo1
Mediator of cell motility

intracellular,
plasma

membrane,
vesicles

control of cell migration by relaying
chemotactic signals to the microtubule

cytoskeleton

4 h ↑
24 h ↑

4 h ↑
24 h ↑
72 h ↓ 72 h ↓

UAP1
UDP-N-

acetylhexosamine
pyrophosphorylase-like

protein 1

plasma
membrane,

nucleus, cytosol

Involved in the biosynthesis of
UDP-N-acetylglucosamine

4 h ↑

72 h ↓

4 h ↑
24 h ↓
72 h ↑ 72 h ↑ 72 h ↑

S100a11
S100 calcium-binding

protein A11-calgizzarin

nucleus,
cytoplasm

2 EF-hand binding motifs, cell cycle
progression, differentiation, motility, tubulin

polymerization

4 h ↑
24 h ↑
72 h ↓

4 h ↑

72 h ↓
* Sources: MGI (mouse genome informatics) mouse genome database, Gene Cards human gene database (www.
genecards.org (accessed on 11 July 2022), Uniprot Database (www.uniprot.org (accessed on 11 July 2022)).

In most cases, the expressions of mRNA and protein were shown to go in parallel,
though sometimes shifted in time (see Table 4 and Figure 5). We selected genes involved in
intracellular trafficking (Eea1, Snx1) and import into cellular organelles (Kpna1, Tomm34),
cellular junctions (Tjp2, Parva1), calcium homeostasis and signaling (Nucb1, Ip3r3, S100a11),
biosynthesis of glycans (Nans, Uap1), DNA replication and repair (Pcna), cellular motility
(Memo1), and phosphorylation (Ppp1), as well as a protein previously shown to be involved
in vascular remodeling in response to altered oxygen conditions (Fhl1) [16]. Constant and
intermittent hyperoxia were shown to have similar trends in mRNA expression in several
cases, despite differences in absolute values, as seen for Eea1, Tomm34, Tjp2, Parva1, Nucb1,
Aifm1, Nans, Uap1, Memo1, Fhl1, S100a11 and Pcna. Obvious differences were observed
for Snx1 at 24 h, Kpna1 at 72 h, and Ppp1 at 72 h. Generally, it seems that a fast response
(4 h) of lung endothelial cells to hyperoxia is an attempt to maintain homeostasis by counter-
regulating a potential detrimental effect of high oxygen, as exemplified by a reduction in
endocytosis (Eea1), a strengthened barrier by increasing tight junction proteins (Tjp2), an
increased importance of calcium signaling and homeostasis (Nucb1, Ip3r3, S100a11), an
increase in the biosynthesis of sialic acids (Nans, Uap1) (investigated in more detail by our
group in a previous study [13]), and an attempt to improve the fidelity of DNA replication
and DNA repair (Pcna). Many of these effects are reversed at later time points.

www.genecards.org
www.genecards.org
www.uniprot.org
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Figure 5. Expression of mRNA levels of selected DEPs as analyzed by qRT-PCR. The mRNAs of
the following DEPs as identified from proteomic analysis were quantified: Eea1 (Early Endosomal
Antigen-1), Snx1 (Sorting Nexin-1), Kpna1 (importin-α1), Tomm34 (Translocase of Outer Mitochon-
drial Membrane 34), Zo-2, Tjp2 (Zona Occludens-2, Tight junction protein-2), Parva1 (Parvin-α1),
Nucb1 (Nucleobindin-1), Aifm1 (Apoptosis Inducing Factor-1, mitochondrion-associated), Nans
(N-Acetylneuraminate Synthase), Memo1, Fhl1 (Four and a half LIM domain protein 1), Ip3r3
(Inositol-1,4,5-triphosphate Receptor 3), Uap1 (UDP-N-acetyl hexosamine pyrophosphorylase-1),
Pcna (Proliferating Cell Nuclear Antigen), S100a11 (S100 calcium binding protein-A11); Ppp1 (Pro-
tein phosphatase1). Statistical significance was determined by one-sample t-test by comparing to
the hypothetical value 1.0 (=no change). p-values are indicated as follows: * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.

4. Discussion

The special properties of the pulmonary vascular beds allow adaptation to different
requirements with regard to flow rates depending on cardiac output, thereby optimizing
perfusion and gas exchange. The pulmonary endothelium regulates barrier function, vas-
cular tone and immune responses, is involved in various signaling pathways, counteracts
thrombosis, and has a special active metabolism [17]. Barrier function is maintained by
multi-protein complexes, which form adherent junctions, tight junctions, and gap junctions,
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that control flow of fluids and transmigration of proteins and cells. Barrier disintegration
leads to pulmonary edema, which is a hallmark of several lung diseases, including acute
lung injury (ALI) and its worse form, acute respiratory distress syndrome (ARDS).

In accordance with being a syndrome, ARDS is triggered by different (direct and
indirect) insults and appears in different phenotypes with various degrees of hypoxemia,
endothelial and epithelial injury, inflammation and aberrant coagulation. Accordingly, there
have been a lot of efforts to sub-characterize the condition with regard to sub-phenotypes
and endo-types in order to provide better suitable therapies and prognosis [18]. Precision
medicine approaches, for instance, have been helpful in distinguishing a hyperinflamma-
tory versus an uninflamed endo-type characterized by different plasma levels of inflamma-
tory biomarkers, such as IL-6, IL-8, sICAM-1, and sTNFRI, that exhibited different response
to treatments and outcome [19].

Central to all ARDS treatment regimens is providing sufficient oxygenation. There
has been considerable argumentation regarding whether this can only be achieved by
very high oxygen saturation, and at the same time taking the risk of oxygen toxicity.
A recent clinical trial compared liberal (target PaO2: 90–105 mm Hg; SpO2 >96%) and
conservative (SpO2: 88–92%) oxygen therapy in ARDS patients, implying a possible worse
outcome in the conservative-oxygenation strategy with regard to 90-days mortality [20].
However, responses to oxygen therapy can also be different in ARDS sub-phenotype groups
depending on genetic factors and oxidative stress levels, which are linked to inflammation.

The pulmonary vasculature has the special capability of sensing oxygen. Hypoxic
conditions lead to the vasoconstriction of small pulmonary arteries, while systemic arteries
dilate (=hypoxic pulmonary vasoconstriction, HPV) [21]. This mechanism redirects blood
flow to better ventilated areas. Hyperoxia, on the other hand, leads to vasoconstriction
in systemic microcirculation and high concentrations of oxygen further induce toxicity
in the lungs, which is an issue in patients ventilated with supraphysiological oxygen.
Translational animal experiments have shown that high oxygen aggravates ventilation-
induced lung injury (VILI) with regard to pulmonary edema and inflammation [6]. Baboons
exposed to hyperoxia revealed the destruction of endothelial cells and alveolar type I cells,
interstitial edema, and activation of neutrophils [22].

Despite a number of animal experiments using hyperoxia exposure followed by
proteomic analysis [23–25], detailed studies of molecular effects of hyperoxia on isolated
cell types have only been described for alveolar type II cells [26], but not for the pulmonary
endothelium.

In this study, we therefore aimed to decipher changes of the proteome in pulmonary
endothelial cells in response to chronic constant and intermittent hyperoxia, which might
help to better understand detrimental impact of oxygen on the organ lung.

Analysis of the mRNA levels of selected proteins revealed dynamic changes of expres-
sion starting from as early as 4 h until 72 h of exposure. For quantitative proteomic analysis,
however, we chose exposure times of 24 h and 72 h. These data showed that constant and
intermittent hyperoxia induce different responses with regard to the proteome. A total of
24 h of constant severe hyperoxia upregulated pathways related to RNA metabolism, cell
cycle, mRNA splicing, cellular stress response, interleukin signaling, and apoptosis, and
downregulated translation, processes involving small GTPases, TCA cycle and respiratory
electron transport, VEGF (vascular endothelial growth factor) signaling, platelet activation,
and cell junction organization. After 72 h of constant severe hyperoxia, enriched pathways
shift to an upregulation of protein metabolism, ribosomes, and intracellular transport,
while cell cycle, DNA repair, TCA cycle, respiratory electron transport, and cellular stress
response are downregulated. These dynamics might reflect the situation encountered by
a relatively fast start-up response of mRNAs (as measured at 4 h by qRT-PCR), that in
many cases is counter-regulated at later time points and is also translated into proteins
with the necessary time delay. Here, feedback mechanisms might play an important role,
as can be anticipated as an example of “cell cycle”, which is upregulated at 24 h and again
downregulated at 72 h 95% O2.
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24 h of intermittent hyperoxia (0–95% O2) downregulates calcium homeostasis, re-
sponses to oxygen compounds, phosphorylation, and platelet activation. After 72 h (0–95%
O2), posttranslational modifications such as neddylation and endocytosis are upregulated,
while cell cycle, DNA repair, and p53 signaling are downregulated. Neddylation is a post-
translational conjugation of the ubiquitin-like molecule neural precursor cell-expressed
developmentally downregulated protein 8 (Nedd8) to different substrates, such as cullins,
Akt, Hdac2, Hif1α, Hif2α, IKKγ, Traf6, Myd88, PPARγ, and Pcna, and affects transcription
factors such as Nrf2 and NF-KB, the expression of pro-inflammatory cytokines, and barrier
function [27].

It can be observed that under both conditions, long-term constant and intermittent
hyperoxia, cells cease to proliferate, which is seen in a reduced cell count [28].

From what is already known, both conditions—constant and intermittent hyperoxia—
will induce oxidative stress in the pulmonary endothelium, but the mechanisms and
sources of ROS might be different. Molecular mechanisms of intermittent hyperoxia have
not been elucidated in detail so far. In some of our previous studies, our group found that
intermittent hyperoxia blunts the inflammatory response elicited by constant hyperoxia [29],
activates the renin-angiotensin-system (RAS), and generates large amounts of peroxynitrite
in the pulmonary endothelium [30]. Interestingly, nitric oxide (NO) has been shown to
inhibit the activation of NF-KB induced by hyperoxia in neonatal pulmonary microvascular
endothelial cells [31]. There is a mechanistic concept for molecular events in intermittent
hypoxia proposed by Nanduri [32], according to which NADPH oxidase-derived ROS
activates PLCγ and produces a calcium signal via inositol-3-phosphate, that ultimately
activates HIF-1α. Interestingly, our proteomic study also highlights the inositol-3-phosphate
receptor as a protein affected by hypoxic/hyperoxic O2 oscillations, implicating the role
of calcium signaling under these conditions, and KEGG pathway enrichment analysis
implicates HIF-1 pathway involvement at 24 h 0–95% O2. Further detailed mechanistic
studies into these issues are certainly required.

Previous studies have shown that alternating oxygen between hypoxia and hyperoxia
leads to the activation of signaling pathways that resemble hypoxic responses (such as
HIF1 activation) without their detrimental side effects (“hyperoxic-hypoxic paradox”) [33].
Repeated oscillations between hyperoxia and hypoxia are believed to increase the ROS
scavenger/ROS ratio, thereby protecting cells from ROS damage. Moreover, the oxygen
oscillations present a therapeutical stress on mitochondria, encouraging the elimination of
damaged organelles and the biogenesis of new, healthy mitochondria. The hypoxic periods
allow the activation of HIF1, VEGF (angiogenesis, arteriogenesis), and stem cell prolifer-
ation. Clinical therapies making use of this phenomenon include Intermittent Hypoxic-
Hyperoxic Treatment (IHHT) [34] and Hyperbaric Oxygen Treatment (HBOT) [35]. In a
clinical setting, IHHT has been shown to improve the lipid profile and anti-inflammatory
status in patients with metabolic syndrome [36]. An interesting issue for further mecha-
nistic investigations might be the crosstalk between HIF and NF-KB transcription factors,
which have been shown to be interlinked in a cell-type specific way [37].

In context of such mechanistic insights, an old therapeutical concept obtrudes, suggest-
ing the use of pharmaceuticals or nutraceuticals to tackle oxidative stress and inflammation.
There are many “natural” candidates, such as antioxidants resveratrol, N-acetyl cysteine
(NAC) or anti-inflammatory sulforaphane from broccoli, curcuminoids or short-chain fatty
acids (SCFA) acetate, propionate and butyrate, which are metabolites of a healthy gut
microbiome. In addition, there is a large number of pharmaceutical drugs available. Inter-
estingly, despite some promising results from preclinical in vitro and animal studies, the
translation into human medicine is frequently difficult [38]. Resveratrol has been shown
to induce apoptosis and autophagy in cancer cells [39] and attenuates inflammation in
allergic asthma [40]. Similarly, SCFAs have been shown to exhibit anti-cancer and anti-
inflammatory activity in cell cultures [41]. There is plenty of evidence that gut dysbiosis
underlies many diseases, including diabetes mellitus, atherosclerosis, depression, and
pulmonary arterial hypertension [42]. Curcuminoids are known to inactivate NF-KB and



Antioxidants 2022, 11, 2349 19 of 22

thereby decrease the transcription of pro-inflammatory mediators. In addition, they are
capable of modulating the immune response and are promising drug candidates in cancer
therapy [43]. Due to the chemical properties of these compounds, they are not readily
bioavailable and are poorly assimilated upon ingestion. These problems with efficacy are
addressed by efforts to encapsulate the substances and to use to lipid carriers for delivery
to targets [44].

On the other hand, we are exposed to environmental toxins which have an impact
on the antioxidant and inflammatory status of the respiratory system, thereby most likely
also increasing the probability of developing ARDS during lung disease. One example are
endocrine disruptors, which are part of plastics (“microplastics”, for example Bisphenol A)
or are used as fungicides in agriculture (for example, Vinclozolin). These substances not
only have an impact on the reproductive system, but also other organs including the lung
by affecting Nrf2/NF-KB pathways [45,46].

Oxygen therapy in cancer patients seems to be a double-edged sword, and its benefits
and potential harmful effects are a matter of continuous debate. Tumor microenvironments
are frequently hypoxic due to rapid cell growth, and, despite the neovascularization, due
to limited oxygen supply. Switching the metabolism of cancer cells to hypoxia plays a role
in metastasis [47]. Hypoxia also fosters resistance to cytotoxic CD8+ T-cell (CTL)-attack by
different mechanisms, and upregulates the expression of PD-L1 to increase CTL apoptosis.
Immune checkpoint inhibitors (ICIs) have been developed that block PD-L1, PD-1, or
CTLA-4. These drugs have been shown to improve overall survival in cancer patients,
but have also adverse (cardiac) side effects [48]. Mechanisms of action are an increase in
NLRP3, MyD88, and interleukin signaling inducing a cytokine storm. In order to reduce
tumor hypoxia and also to increase ROS that might support cancer therapy, the application
of oxygen has been proposed as a supplemental measure [49]. Overall, several studies
have resulted in mixed outcomes; therefore, a general recommendation has not been given.
A reason for this might be the challenge of fully understanding the regulation of oxygen
homeostasis in the organism in its complexity, ROS signaling function, and detrimental side
effects and the network of differentially regulated antioxidative response genes. Additional
oxygen not only alleviates hypoxia, but can also induce inflammation; therefore, the right
dosage reaching the target is difficult to obtain. Moreover, respiratory oxygen application
efforts are made to enclose oxygen in microcapsules, which was shown to improve immune
checkpoint blockades in pre-clinical studies [50]. This might also be an issue, especially in
the context of anti-cancer drugs such as doxorubicin and angiogenesis inhibitors, where
inflammation and endotheliotoxicity are significant risks [51].

Limitations of the Study

This study was performed using murine primary pulmonary endothelial cells, which—
as discussed previously—are prone to relatively rapid dedifferentiation in vitro after isola-
tion from the lungs. We tried to tackle this problem by repurifying cells in cultures prior to
the experiment, using endothelial-specific surface markers in order to make sure the cells
maintained the endothelial properties. We always quantified changes in protein expression
related to the normoxic condition at the same time point in order to eliminate changes in
protein expression attributed to in vitro culturing.

It could be argued that another issue is that our “normoxic” condition (=21% O2) is not
“physoxia” for lung endothelial cells (5–10% O2), but rather already a slightly hyperoxic
condition. The pulmonary endothelium and other microvascular endothelial cells sense
oxygen and its metabolism in an organ-specific way [34]. Reiterer et al. [34] show that
maintaining cells at supra-physiological O2 levels impairs a normal response to hypoxia.
However, in our study we merely investigate responses to severe hyperoxia and oscillations
around a hyperoxic mean value compared to ambient O2 concentrations (21% O2).

A technical limitation of this study is owed to the fact that the yield of endothelial
cells from mouse lung is low. For the sake of reducing animal numbers in the sense of
the “3R Principle (Replacement-Reduction-Refinement of animal experiments”, we limited
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our proteomic analysis to the minimum of necessary replicates for a (semi-)quantitative
assessment of changes in protein expression. However, results have been supported by
independent mRNA expression analysis and are in good accordance with previous findings,
as discussed in this paper.

5. Conclusions

Proteomic analysis of pulmonary endothelial cells reveals that exposure to constant
and intermittent hyperoxia have different and time-dependent impacts on molecular events.
Many processes seem to be blunted by the hypoxic/hyperoxic oscillation, which can be
deduced from mRNA quantification and also from a much shorter list of proteins with
significant changes of expression. However, there also seem to be differences in signaling
pathways, which require further mechanistic studies into detailed molecular pathways.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11122349/s1, Supplementary Data S1: qRT-PCR primers
for expression analysis of mRNAs; Supplementary Data S2: enrichment analysis using GO, KEGG
and Reactome data bases of individual treatments at different time points.
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